WorldWideScience

Sample records for aldo keto reductase

  1. Lignases and aldo-keto reductases for conversion of lignin-containing materials to fermentable products

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Michael; Sethi, Amit

    2016-09-13

    Termites have specialized digestive systems that overcome the lignin barrier in wood to release fermentable simple sugars. Using the termite Reticulitermes flavipes and its gut symbionts, high-throughput titanium pyrosequencing and proteomics approaches experimentally compared the effects of lignin-containing diets on host-symbiont digestome composition. Proteomic investigations and functional digestive studies with recombinant lignocellulases conducted in parallel provided strong evidence of congruence at the transcription and translational levels and provide enzymatic strategies for overcoming recalcitrant lignin barriers in biofuel feedstocks. Briefly described, therefore, the disclosure provides a system for generating a fermentable product from a lignified plant material, the system comprising a cooperating series of at least two catalytically active polypeptides, where said catalytically active polypeptides are selected from the group consisting of: cellulase Cell-1, .beta.-glu cellulase, an aldo-keto-reductase, a catalase, a laccase, and an endo-xylanase.

  2. BIOLOGICAL ROLE OF ALDO-KETO REDUCTASES IN RETINOIC ACID BIOSYNTHESIS AND SIGNALING

    Directory of Open Access Journals (Sweden)

    F. Xavier eRuiz

    2012-04-01

    Full Text Available Several aldo-keto reductase (AKR enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3, as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

  3. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC 50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC 50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the K i values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    Science.gov (United States)

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Makarla, Udayakumar

    2017-07-01

    In recent years, concerns about the use of glyphosate-resistant crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate-detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1- or OsAKRI-expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. 9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Haga, Mariko; Watanabe, Gou; Shinoda, Yuhki; Endo, Satoshi; Kajiwara, Yu; Tanaka, Hiroyuki; Inagaki, Naoki; El-Kabbani, Ossama; Hara, Akira

    2012-02-01

    9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, induces apoptosis via the generation of reactive oxygen species (ROS) because of 9,10-PQ redox cycling. We have found that intratracheal infusion of 9,10-PQ facilitates the secretion of surfactant into rat alveolus. In the cultured rat lung, treatment with 9,10-PQ results in an increase in a lower-density surfactant by ROS generation through redox cycling of the quinone. The surfactant contains aldo-keto reductase (AKR) 1C15, which reduces 9,10-PQ and the enzyme level in the surfactant increases on treatment with 9,10-PQ suggesting an involvement of AKR1C15 in the redox cycling of the quinone. In six human cell types (A549, MKN45, Caco2, Hela, Molt4 and U937) only type II epithelial A549 cells secrete three human AKR1C subfamily members (AKR1C1, AKR1C2 and AKR1C3) with the surfactant into the medium; this secretion is highly increased by 9,10-PQ treatment. Using in vitro enzyme inhibition analysis, we have identified AKR1C3 as the most abundantly secreted AKR1C member. The AKR1C enzymes in the medium efficiently reduce 9,10-PQ and initiate its redox cycling accompanied by ROS production. The exposure of A549 cells to 9,10-PQ provokes viability loss, which is significantly protected by the addition of the AKR1C3 inhibitor and antioxidant enzyme and by the removal of the surfactants from the culture medium. Thus, the AKR1C enzymes secreted in pulmonary surfactants probably participate in the toxic mechanism triggered by 9,10-PQ.

  6. Babesia microti Aldo-keto Reductase-Like Protein Involved in Antioxidant and Anti-parasite Response

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    2017-10-01

    Full Text Available The intraerythrocytic apicomplexan Babesia microti is the primary causative agent of human babesiosis, which is an infectious disease that occurs in various regions around the world. Although the aldo-keto reductases (AKRs of this parasite have been sequenced and annotated, their biological properties remain unknown. AKRs are a superfamily of enzymes with diverse functions in the reduction of aldehydes and ketones. In the present study, we cloned the full-length cDNA of a B. microti aldo-keto reductase-like protein (BmAKR and analyzed the deduced amino acid sequence of the BmAKR protein. This protein has a conserved AKR domain with an N-terminal signal sequence. Bmakr was upregulated on the 8th day after infection, whereas it was downregulated during the later stages. The recombinant protein of BmAKR was expressed in a glutathione S-transferase-fused soluble form in Escherichia coli. Western blot analysis showed that the mouse anti-BmAKR antibody recognized native BmAKR from a parasite lysate. Immunofluorescence microscopy localized BmAKR to the cytoplasm of B. microti merozoites in mouse RBCs in this study. Bmakr expression was significantly upregulated in the presence of oxidant stress. Atovaquone, a known anti-babesiosis drug, and robenidine, a known anti-coccidiosis drug, induced upregulation of Bmakr mRNA, thereby suggesting that Bmakr may be involved in anti-parasite drug response.

  7. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Cindy [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Mueller, Uwe [Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Sun, Lianli [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Zhao, Yu [Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Stöckigt, Joachim, E-mail: stoeckig@mail.uni-mainz.de [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China)

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  8. Aldo-Keto Reductases as Early Biomarkers of Hepatocellular Carcinoma: A Comparison Between Animal Models and Human HCC.

    Science.gov (United States)

    Torres-Mena, Julia Esperanza; Salazar-Villegas, Karla Noemí; Sánchez-Rodríguez, Ricardo; López-Gabiño, Belém; Del Pozo-Yauner, Luis; Arellanes-Robledo, Jaime; Villa-Treviño, Saúl; Gutiérrez-Nava, María Angélica; Pérez-Carreón, Julio Isael

    2018-04-01

    The intrinsic heterogeneity of hepatocellular carcinoma (HCC) represents a great challenge for its molecular classification and for detecting predictive biomarkers. Aldo-keto reductase (Akr) family members have shown differential expression in human HCC, while AKR1B10 overexpression is considered a biomarker; AKR7A3 expression is frequently reduced in HCC. To investigate the time-course expression of Akr members in the experimental hepatocarcinogenesis. Using DNA-microarray data, we analyzed the time-course gene expression profile from nodules to tumors (4-17 months) of 17 Akr members induced by the resistant hepatocyte carcinogenesis model in the rat. The expression of six members (Akr1c19, Akr1b10, Akr7a3, Akr1b1, Akr1cl1, and Akr1b8) was increased, comparable to that of Ggt and Gstp1, two well-known liver cancer markers. In particular, Akr7a3 and Akr1b10 expression also showed a time-dependent increment at mRNA and protein levels in a second hepatocarcinogenesis model induced with diethylnitrosamine. We confirmed that aldo-keto reductases 7A3 and 1B10 were co-expressed in nine biopsies of human HCC, independently from the presence of glypican-3 and cytokeratin-19, two well-known HCC biomarkers. Because it has been suggested that expression of Akr members is regulated through NRF2 activity at the antioxidant response element (ARE) sequences, we searched and identified at least two ARE sites in Akr1b1, Akr1b10, and Akr7a3 from rat and human gene sequences. Moreover, we observed higher NRF2 nuclear translocation in tumors as compared with non-tumor tissues. Our results demonstrate that Akr7a3 mRNA and protein levels are consistently co-expressed along with Akr1b10, in both experimental liver carcinogenesis and some human HCC samples. These results highlight the presence of AKR7A3 and AKR1B10 from early stages of the experimental HCC and introduce them as a potential application for early diagnosis, staging, and prognosis in human cancer.

  9. Expression of the Aldo-Keto Reductases AKR1B1 and AKR1B10 in Human Cancers.

    Directory of Open Access Journals (Sweden)

    Brian eLaffin

    2012-06-01

    Full Text Available The American Cancer Society estimates that there will be more than 1.5 million new cases of cancer in 2011, underscoring the need for identification of new therapeutic targets and development of novel cancer therapies. Previous studies have implicated the human aldo-keto reductases AKR1B1 and AKR1B10 in cancer, and therefore we examined AKR1B1 and AKR1B10 expression across all major human cancer types using the Oncomine cancer gene expression database (Compendia Biosciences, www.oncomine.com. Using this database, we found that expression of of AKR1B1 and AKR1B10 varies greatly by cancer type and tissue of origin, including agreement with previous reports that AKR1B10 is significantly over-expressed in cancers of the lungs and liver. AKR1B1 is more broadly over-expressed in human cancers than AKR1B10, albeit at a generally lower magnitude. AKR1B1 over-expression was found to be associated with shortened patient survival in acute myelogenous leukemias and multiple myelomas. High AKR1B10 expression tends to predict less aggressive clinical course generally, notably within lung cancers, where it tends to be highly over-expressed compared to normal tissue. These findings suggest that AKR1B1 inhibitors in particular hold great potential as novel cancer therapeutics.

  10. Efficient Preparation of (S)-N-Boc-3-Hydroxylpiperidine Through Bioreduction by a Thermostable Aldo-KetoReductase.

    Science.gov (United States)

    He, Mengyan; Zhou, Shuo; Cui, Maolin; Jin, Xiaolu; Lai, Dunyue; Zhang, Shuangling; Wang, Zhiguo; Chen, Zhenming

    2017-04-01

    (S)-N-Boc-3-hydroxypiperidine ((S)-NBHP) is a key pharmaceutical intermediate and the chiral source in synthesizing Imbruvica, which is a newly approved drug in lymphoma therapy by targeting Bruton's tyrosine kinase (BTK). Current chemical synthesis of (S)-NBHP suffered from the need of noble metal catalyst and low yield. The single reported bioconversion of (S)-NBHP was achieved by using recombinant ketoreductase, but enzyme sequence was kept confidential and the catalytic process suffered from the thermodeactivation and substrate inhibition. In the current study, we presented a thermostable aldo-keto reductase (AKR)-AKR-43-which showed high activity toward N-Boc-3-piperidone (NBP) to produce (S)-NBHP, high enantioselectivity, and no substrate inhibition. The molecular simulations demonstrated the structural rationale for the enantioselectivity of AKR-43 toward NBP and supported the classic ordered two-step catalytic mechanism. The catalytic process was achieved by using glucose dehydrogenase (GDH) for cofactor recycling, and the optimal reaction conditions were determined to be 30 °C and pH 7.5. Within a reaction time of 16 h, the 16 % substrate concentration (w/w), over 99 % ee and under 3.5 % of enzyme loading (w/w) characterized a high efficiency process with promising industrial values.

  11. Structural and mutational studies on an aldo-keto reductase AKR5C3 from Gluconobacter oxydans

    Science.gov (United States)

    Liu, Xu; Wang, Chao; Zhang, Lujia; Yao, Zhiqiang; Cui, Dongbing; Wu, Liang; Lin, Jinping; Yuan, Yu-Ren Adam; Wei, Dongzhi

    2014-01-01

    An aldo-keto reductase AKR5C3 from Gluconobacter oxydans (designated as Gox0644) is a useful enzyme with various substrates, including aldehydes, diacetyl, keto esters, and α-ketocarbonyl compounds. The crystal structures of AKR5C3 in apoform in complex with NADPH and the D53A mutant (AKR5C3-D53A) in complex with NADPH are presented herein. Structure comparison and site-directed mutagenesis combined with biochemical kinetics analysis reveal that the conserved Asp53 in the AKR5C3 catalytic tetrad has a crucial role in securing active pocket conformation. The gain-of-function Asp53 to Ala mutation triggers conformational changes on the Trp30 and Trp191 side chains, improving NADPH affinity to AKR5C3, which helps increase catalytic efficiency. The highly conserved Trp30 and Trp191 residues interact with the nicotinamide moiety of NADPH and help form the NADPH-binding pocket. The AKR5C3-W30A and AKR5C3-W191Y mutants show decreased activities, confirming that both residues facilitate catalysis. Residue Trp191 is in the loop structure, and the AKR5C3-W191Y mutant does not react with benzaldehyde, which might also determine substrate recognition. Arg192, which is involved in the substrate binding, is another important residue. The introduction of R192G increases substrate-binding affinity by improving hydrophobicity in the substrate-binding pocket. These results not only supplement the AKRs superfamily with crystal structures but also provide useful information for understanding the catalytic properties of AKR5C3 and guiding further engineering of this enzyme. PMID:25131535

  12. Long-chain fatty acids inhibit human members of the aldo-keto reductase 1C subfamily.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; Yashiro, Koji; El-Kabbani, Ossama

    2017-11-01

    Four human hydroxysteroid dehydrogenases in the aldo-keto reductase (AKR) superfamily, AKR1C1-AKR1C4, are involved in the metabolism of steroids and other carbonyl compounds including drugs, and altered expression of AKRs (1C1, 1C2 and/or 1C3) is related to the pathogenesis of several extrahepatic cancers. Here, we report that unsaturated fatty acids (FAs) are potent competitive inhibitors of the AKR enzymes. The sensitivities to the FAs were different among the enzymes, especially between AKR1C1 and AKR1C2. The most potent inhibitors for AKR1C1, AKR1C2 and AKR1C4 were docosahexaenoic acid (Ki 0.77 µM), palmitoleic acid (Ki 0.41 µM) and linoleic acid (Ki 0.33 µM), respectively. AKR1C3 was the most sensitive to FA inhibition, showing low Ki values (0.23-0.29 µM) for oleic, linoleic, eicosapentaenoic and docosahexaenoic acids. Linoleic and oleic acids also inhibited AKR1C3-mediated metabolism of 9,10-phenanthrenequinone in colon DLD1 cells. Molecular docking and site-directed mutagenesis studies suggested upon FA binding to AKR1C1 and AKR1C3: (i) the carboxyl group of the FA binds to the oxyanion-binding site in the active site; (ii) the difference in FA sensitivity between AKR1C1 and AKR1C2 is due to their residue difference at position 54; (iii) Ser118, Phe306 and Phe311 of AKR1C3 are important for determining the inhibitory potency of FAs. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  13. Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase.

    Directory of Open Access Journals (Sweden)

    Joan Giménez-Dejoz

    Full Text Available Human aldo-keto reductase 1B15 (AKR1B15 is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15.

  14. Role of aldo-keto reductases and other doxorubicin pharmacokinetic genes in doxorubicin resistance, DNA binding, and subcellular localization

    International Nuclear Information System (INIS)

    Heibein, Allan D; Guo, Baoqing; Sprowl, Jason A; MacLean, David A; Parissenti, Amadeo M

    2012-01-01

    Since proteins involved in chemotherapy drug pharmacokinetics and pharmacodynamics have a strong impact on the uptake, metabolism, and efflux of such drugs, they likely play critical roles in resistance to chemotherapy drugs in cancer patients. To investigate this hypothesis, we conducted a whole genome microarray study to identify difference in the expression of genes between isogenic doxorubicin-sensitive and doxorubicin-resistant MCF-7 breast tumour cells. We then assessed the degree of over-representation of doxorubicin pharmacokinetic and pharmacodynamic genes in the dataset of doxorubicin resistance genes. Of 27,958 Entrez genes on the array, 7.4 per cent or 2,063 genes were differentially expressed by ≥ 2-fold between wildtype and doxorubicin-resistant cells. The false discovery rate was set at 0.01 and the minimum p value for significance for any gene within the “hit list” was 0.01. Seventeen and 43 per cent of doxorubicin pharmacokinetic genes were over-represented in the hit list, depending upon whether the gene name was identical or within the same gene family, respectively. The most over-represented genes were within the 1C and 1B families of aldo-keto reductases (AKRs), which convert doxorubicin to doxorubicinol. Other genes convert doxorubicin to other metabolites or affect the influx, efflux, or cytotoxicity of the drug. In further support of the role of AKRs in doxorubicin resistance, we observed that, in comparison to doxorubicin, doxorubincol exhibited dramatically reduced cytotoxicity, reduced DNA-binding activity, and strong localization to extra nuclear lysosomes. Pharmacologic inhibition of the above AKRs in doxorubicin-resistant cells increased cellular doxorubicin levels, restored doxorubicin cytotoxicity and re-established doxorubicin localization to the nucleus. The properties of doxorubicinol were unaffected. These findings demonstrate the utility of using curated pharmacokinetic and pharmacodynamic knowledge bases to identify

  15. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir, E-mail: wsol@faf.cuni.cz

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  16. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3.

    Science.gov (United States)

    Traven, Katja; Sinreih, Maša; Stojan, Jure; Seršen, Sara; Kljun, Jakob; Bezenšek, Jure; Stanovnik, Branko; Turel, Iztok; Rižner, Tea Lanišnik

    2015-06-05

    The human aldo-keto reductases (AKRs) from the 1C subfamily are important targets for the development of new drugs. In this study, we have investigated the possible interactions between the recombinant AKR1C enzymes AKR1C1-AKR1C3 and ruthenium(II) complexes; in particular, we were interested in the potential inhibitory actions. Five novel ruthenium complexes (1a, 1b, 2a, 2b, 2c), two precursor ruthenium compounds (P1, P2), and three ligands (a, b, c) were prepared and included in this study. Two different types of novel ruthenium(II) complexes were synthesized. First, bearing the sulphur macrocycle [9]aneS3, S-bonded dimethylsulphoxide (dmso-S), and an N,N-donor ligand, with the general formula of [Ru([9]aneS3)(dmso)(N,N-ligand)](PF6)2 (1a, 1b), and second, with the general formula of [(η(6)-p-cymene)RuCl(N,N-ligand)]Cl (2a, 2b, 2c). All of these synthesized compounds were characterized by high-resolution NMR spectroscopy, X-ray crystallography (compounds a, b, c, 1a, 1b) and other standard physicochemical methods. To evaluate the potential inhibitory actions of these compounds on the AKR1C enzymes, we followed enzymatically catalyzed oxidation of the substrate 1-acenaphthenol by NAD(+) in the absence and presence of various micromolar concentrations of the individual compounds. Among 10 compounds, one ruthenium complex (2b) and two precursor ruthenium compounds (P1, P2) inhibited all three AKR1C enzymes, and one ruthenium complex (2a) inhibited only AKR1C3. Ligands a, b and c revealed no inhibition of the AKR1C enzymes. All four of the active compounds showed multiple binding with the AKR1C enzymes that was characterized by an initial instantaneous inhibition followed by a slow quasi-irreversible step. To the best of our knowledge, this is the first study that has examined interactions between these AKR1C enzymes and ruthenium(II) complexes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Aldo-keto reductase 1C15 as a quinone reductase in rat endothelial cell: its involvement in redox cycling of 9,10-phenanthrenequinone.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Shinoda, Yuhki; Inoue, Yukari; Shimizu, Yuki; Haga, Mariko; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2011-07-01

    9,10-Phenanthrenequinone (9,10-PQ), a redox-active quinone in diesel exhausts, triggers cellular apoptosis via reactive oxygen species (ROS) generation in its redox cycling. This study found that induction of CCAAT/enhancer-binding protein-homologous protein (CHOP), a pro-apoptotic factor derived from endoplasmic reticulum stress, participates in the mechanism of rat endothelial cell damage. The 9,10-PQ-mediated CHOP induction was strengthened by a proteasome inhibitor (MG132) and the MG132-induced cell sensitization to the 9,10-PQ toxicity was abolished by a ROS inhibitor, suggesting that ROS generation and consequent proteasomal dysfunction are responsible for the CHOP up-regulation caused by 9,10-PQ. Aldo-keto reductase (AKR) 1C15 expressed in rat endothelial cells reduced 9,10-PQ into 9,10-dihydroxyphenanthrene concomitantly with superoxide anion formation, implying its participation in evoking the 9,10-PQ-redox cycling. The 9,10-PQ-induced damage was augmented by AKR1C15 over-expression. 9,10-PQ also provoked the AKR1C15 up-regulation, which sensitized against the quinone toxicity. These results suggest the presence of a negative feedback loop exacerbating the quinone toxicity in rat endothelial cells. © 2011 Informa UK, Ltd.

  18. Characterization of the aldo-keto reductase 1C gene cluster on pig chromosome 10: possible associations with reproductive traits

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-09-01

    Full Text Available Abstract Background The rate of pubertal development and weaning to estrus interval are correlated and affect reproductive efficiency of swine. Quantitative trait loci (QTL for age of puberty, nipple number and ovulation rate have been identified in Meishan crosses on pig chromosome 10q (SSC10 near the telomere, which is homologous to human chromosome 10p15 and contains an aldo-keto reductase (AKR gene cluster with at least six family members. AKRs are tissue-specific hydroxysteroid dehydrogenases that interconvert weak steroid hormones to their more potent counterparts and regulate processes involved in development, homeostasis and reproduction. Because of their location in the swine genome and their implication in reproductive physiology, this gene cluster was characterized and evaluated for effects on reproductive traits in swine. Results Screening the porcine CHORI-242 BAC library with a full-length AKR1C4 cDNA identified 7 positive clones and sample sequencing of 5 BAC clones revealed 5 distinct AKR1C genes (AKR1CL2 and AKR1C1 through 4, which mapped to 126–128 cM on SSC10. Using the IMpRH7000rad and IMNpRH212000rad radiation hybrid panels, these 5 genes mapped between microsatellite markers SWR67 and SW2067. Comparison of sequence data with the porcine BAC fingerprint map show that the cluster of genes resides in a 300 kb region. Twelve SNPs were genotyped in gilts observed for age at first estrus and ovulation rate from the F8 and F10 generations of one-quarter Meishan descendants of the USMARC resource population. Age at puberty, nipple number and ovulation rate data were analyzed for association with genotypes by MTDFREML using an animal model. One SNP, a phenylalanine to isoleucine substitution in AKR1C2, was associated with age of puberty (p = 0.07 and possibly ovulation rate (p = 0.102. Two SNP in AKR1C4 were significantly associated with nipple number (p ≤ 0.03 and another possibly associated with age at puberty (p = 0

  19. Novel Aldo-Keto Reductases for the Biocatalytic Conversion of 3-Hydroxybutanal to 1,3-Butanediol: Structural and Biochemical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeho; Flick, Robert; Brunzelle, Joseph; Singer, Alex; Evdokimova, Elena; Brown, Greg; Joo, Jeong Chan; Minasov, George A.; Anderson, Wayne F.; Mahadevan, Radhakrishnan; Savchenko, Alexei; Yakunin, Alexander F. (KRICT); (Toronto); (NWU)

    2017-01-27

    The nonnatural alcohol 1,3-butanediol (1,3-BDO) is a valuable building block for the synthesis of various polymers. One of the potential pathways for the biosynthesis of 1,3-BDO includes the biotransformation of acetaldehyde to 1,3-BDO via 3-hydroxybutanal (3-HB) using aldolases and aldo-keto reductases (AKRs). This pathway requires an AKR selective for 3-HB, but inactive toward acetaldehyde, so it can be used for one-pot synthesis. In this work, we screened more than 20 purified uncharacterized AKRs for 3-HB reduction and identified 10 enzymes with significant activity and nine proteins with detectable activity. PA1127 fromPseudomonas aeruginosashowed the highest activity and was selected for comparative studies with STM2406 fromSalmonella entericaserovar Typhimurium, for which we have determined the crystal structure. Both AKRs used NADPH as a cofactor, reduced a broad range of aldehydes, and showed low activities toward acetaldehyde. The crystal structures of STM2406 in complex with cacodylate or NADPH revealed the active site with bound molecules of a substrate mimic or cofactor. Site-directed mutagenesis of STM2406 and PA1127 identified the key residues important for the activity against 3-HB and aromatic aldehydes, which include the residues of the substrate-binding pocket and C-terminal loop. Our results revealed that the replacement of the STM2406 Asn65 by Met enhanced the activity and the affinity of this protein toward 3-HB, resulting in a 7-fold increase inkcat/Km. Our work provides further insights into the molecular mechanisms of the substrate selectivity of AKRs and for the rational design of these enzymes toward new substrates.

    IMPORTANCEIn this study, we identified several aldo-keto reductases with significant activity in reducing 3

  20. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate*

    Science.gov (United States)

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-01-01

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-d-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-d-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18–60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  1. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate.

    Science.gov (United States)

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-12-25

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.

    Science.gov (United States)

    Pival, Simone L; Klimacek, Mario; Nidetzky, Bernd

    2009-06-12

    Despite their widely varying physiological functions in carbonyl metabolism, AKR2B5 (Candida tenuis xylose reductase) and many related enzymes of the aldo-keto reductase protein superfamily utilise PQ (9,10-phenanthrenequinone) as a common in vitro substrate for NAD(P)H-dependent reduction. The catalytic roles of the conserved active-site residues (Tyr51, Lys80 and His113) of AKR2B5 in the conversion of the reactive alpha-dicarbonyl moiety of PQ are not well understood. Using wild-type and mutated (Tyr51, Lys80 and His113 individually replaced by alanine) forms of AKR2B5, we have conducted steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in coenzyme and solvent on the enzymatic rates of PQ reduction. Each mutation caused a 10(3)-10(4)-fold decrease in the rate constant for hydride transfer from NADH to PQ, whose value in the wild-type enzyme was determined as approximately 8 x 10(2) s(-1). The data presented support an enzymic mechanism in which a catalytic proton bridge from the protonated side chain of Lys80 (pK=8.6+/-0.1) to the carbonyl group adjacent to the hydride acceptor carbonyl facilitates the chemical reaction step. His113 contributes to positioning of the PQ substrate for catalysis. Contrasting its role as catalytic general acid for conversion of the physiological substrate xylose, Tyr51 controls release of the hydroquinone product. The proposed chemistry of AKR2B5 action involves delivery of both hydrogens required for reduction of the alpha-dicarbonyl substrate to the carbonyl group undergoing (stereoselective) transformation. Hydride transfer from NADH probably precedes the transfer of a proton from Tyr51 whose pK of 7.3+/-0.3 in the NAD+-bound enzyme appears suitable for protonation of a hydroquinone anion (pK=8.8). These results show that the mechanism of AKR2B5 is unusually plastic in the exploitation of the active-site residues, for the catalytic assistance provided to carbonyl group

  3. Involvement of an aldo-keto reductase (AKR1C3) in redox cycling of 9,10-phenanthrenequinone leading to apoptosis in human endothelial cells.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Arakaki, Marina; Kamiya, Tetsuro; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2009-09-14

    9,10-Phenanthrenequinone (9,10-PQ), a major quinone found in diesel exhaust particles, is considered to generate reactive oxygen species (ROS) through its redox cycling. Here, we show that 9,10-PQ evokes apoptosis in human aortic endothelial cells (HAECs) and its apoptotic signaling includes ROS generation and caspase activation. The 9,10-PQ-induced cytotoxicity was inhibited by ROS scavengers, indicating that intracellular ROS generation is responsible for the 9,10-PQ-induced apoptosis. Comparison of mRNA expression levels and kinetic constants in the 9,10-PQ reduction among 10 human reductases suggests that aldo-keto reductase 1C3 (AKR1C3) is a 9,10-PQ reductase in HAECs. In in vitro 9,10-PQ reduction by AKR1C3, the reduced product 9,10-dihydroxyphenanthrene and superoxide anions were formed, suggesting the enzymatic two-electron reduction of 9,10-PQ that thereby causes oxidative stress through its redox cycling. In addition, the participation of AKR1C3 in 9,10-PQ-redox cycling was confirmed by the data that AKR1C3 overexpression in endothelial cells augmented the ROS generation and cytotoxicity by 9,10-PQ, and the ROS scavengers inhibited the toxic effects. Pretreatment of the overexpressing cells with AKR1C3 inhibitors, flufenamic acid and indomethacin, suppressed the 9,10-PQ-induced GSH depletion. These results suggest that AKR1C3 is a key enzyme in the initial step of 9,10-PQ-induced cytotoxicity in HAECs.

  4. Expression of human aldo-keto reductase 1C2 in cell lines of peritoneal endometriosis: potential implications in metabolism of progesterone and dydrogesterone and inhibition by progestins.

    Science.gov (United States)

    Beranič, Nataša; Brožič, Petra; Brus, Boris; Sosič, Izidor; Gobec, Stanislav; Lanišnik Rižner, Tea

    2012-05-01

    The human aldo-keto reductase AKR1C2 converts 5α-dihydrotestosterone to the less active 3α-androstanediol and has a minor 20-ketosteroid reductase activity that metabolises progesterone to 20α-hydroxyprogesterone. AKR1C2 is expressed in different peripheral tissues, but its role in uterine diseases like endometriosis has not been studied in detail. Some progestins used for treatment of endometriosis inhibit AKR1C1 and AKR1C3, with unknown effects on AKR1C2. In this study we investigated expression of AKR1C2 in the model cell lines of peritoneal endometriosis, and examined the ability of recombinant AKR1C2 to metabolise progesterone and progestin dydrogesterone, as well as its potential inhibition by progestins. AKR1C2 is expressed in epithelial and stromal endometriotic cell lines at the mRNA level. The recombinant enzyme catalyses reduction of progesterone to 20α-hydroxyprogesterone with a 10-fold lower catalytic efficiency than the major 20-ketosteroid reductase, AKR1C1. AKR1C2 also metabolises progestin dydrogesterone to its 20α-dihydrodydrogesterone, with 8.6-fold higher catalytic efficiency than 5α-dihydrotestosterone. Among the progestins that are currently used for treatment of endometriosis, dydrogesterone, medroxyprogesterone acetate and 20α-dihydrodydrogesterone act as AKR1C2 inhibitors with low μM K(i) values in vitro. Their potential in vivo effects should be further studied. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    Science.gov (United States)

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Linlin [Department of Medical Microbiology, Immunology, and Cell Biology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794-9626 (United States); Department of Neurobiology and Anatomy, China Medical University, Shenyang 110001 (China); Liu, Ziwen [Department of Medical Microbiology, Immunology, and Cell Biology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794-9626 (United States); Department of Surgery, Peking Union Medical College Hospital, Beijing 100730 (China); Yan, Ruilan [Department of Medical Microbiology, Immunology, and Cell Biology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794-9626 (United States); Johnson, Stephen [Carbon Dynamics Institute, LLC, 2835 via Verde Drive, Springfield, IL 62703-4325 (United States); Zhao, Yupei [Department of Surgery, Peking Union Medical College Hospital, Beijing 100730 (China); Fang, Xiubin [Department of Neurobiology and Anatomy, China Medical University, Shenyang 110001 (China); Cao, Deliang, E-mail: dcao@siumed.edu [Department of Medical Microbiology, Immunology, and Cell Biology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794-9626 (United States)

    2009-09-18

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 {mu}M, 4-hydroxynonenal (HNE) at 0.10 {mu}M, trans-2-hexanal at 0.10 {mu}M, and trans-2,4-hexadienal at 0.05 {mu}M, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 {mu}M (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  7. Overexpression of Aldo-Keto-Reductase in Azole-resistant Clinical Isolates of Candida Glabrata Determined by cDNA-AFLP

    Directory of Open Access Journals (Sweden)

    Mansour Heidari

    2013-01-01

    Full Text Available Background: Candida glabrata causes significant medical problems in immunocompromised patients. Many strains of this yeast are intrinsically resistant to azole antifungal agents, and treatment is problematic, leading to high morbidity and mortality rates in immunosuppressed individuals. The primary goal of this study was to investigate the genes involved in the drug resistance of clinical isolates of C. glabrata.Methods: The clinical isolates of C. glabrata were collected in an epidemiological survey of candidal infection inimmunocompromised patients and consisted of four fluconazole and itraconazole resistant isolates, two fluconazoleand itraconazole sensitive isolates, and C. glabrata CBS 138 as reference strain. Antifungal susceptibility patterns ofthe organisms were determined beforehand by the Clinical and Laboratory Standards Institute (CLSI. The potentialgene(s implicated in antifungal resistance were investigated using complementary DNA- Amplified Fragment Length Polymorphism (cDNA-AFLP. Semi-quantitative RT-PCR was carried out to evaluate the expression of gene(s in resistant isolates as compared to sensitive and reference strains.Results and conclusions: The aldo-keto-reductase superfamily (AKR gene was upregulated in the resistant clinicalisolates as assessed by cDNA-AFLP. Semi-quantitative RT-PCR revealed AKR mRNA expression approximately twice that seen in the sensitive isolates. Overexpression of the AKR gene was associated with increased fluconazole and itraconazole resistance in C. glabrata. The data suggest that upregulation of the AKR gene might give a new insight into the mechanism of azole resistance.

  8. 9,10-phenanthrenequinone induces monocytic differentiation of U937 cells through regulating expression of aldo-keto reductase 1C3.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Hosogai, Mika; Arakaki, Marina; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2012-01-01

    Persistent inhalation of diesel exhaust particles results in damaged lung cells through formation of reactive oxygen species (ROS), but the details of the toxicity mechanism against monocytes are poorly understood. In this study, we used human promyelomonocytic U937 cells as surrogates of monocytes and investigated the toxicity mechanism initiated by exposure to 9,10-phenanthrenequinone (9,10-PQ), a major quinone component in diesel exhaust particles. A 24-h incubation with 9,10-PQ provoked apoptotic cell death, which was due to signaling through the enhanced ROS generation and concomitant caspase activation. Flow cytometric analyses of U937 cells after long-term exposure to 9,10-PQ revealed induction of differentiation that was evidenced by increasing expression of CD11b/CD18, a cell-surface marker for monocytic differentiation into macrophages. The 9,10-PQ-induced differentiation was significantly abolished by ROS inhibitors, suggesting that ROS generation contributes to cell differentiation. The 9,10-PQ treatment increased the expression of aldo-keto reductase (AKR) 1C3, which reached a peak at 1 to 2 d post-treatment and then declined. The bell-shaped curve of the AKR1C3 expression by 9,10-PQ resembled that caused by phorbol 12-myristate 13-acetate, a differentiation inducer. Additionally, the concomitant treatment with tolfenamic acid, a selective AKR1C3 inhibitor, sensitized the differentiation induced by 9,10-PQ. These results suggest that ROS formation during 9,10-PQ treatment acutely leads to apoptosis of U937 cells and the initiation of monocytic differentiation, which proceeds after the provisional overexpression of AKR1C3.

  9. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi; Soda, Midori; Yamamura, Keiko; El-Kabbani, Ossama; Tajima, Kazuo; Ikari, Akira; Hara, Akira

    2014-07-15

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-l-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase.

    Science.gov (United States)

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-12-01

    Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  11. The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease.

    Science.gov (United States)

    Jumper, Natalie; Hodgkinson, Tom; Arscott, Guyan; Har-Shai, Yaron; Paus, Ralf; Bayat, Ardeshir

    2016-07-01

    Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-β1, transforming growth factor-β2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).

    Science.gov (United States)

    Auiyawong, Budsakorn; Narawongsanont, Rawint; Tantitadapitak, Chonticha

    2017-08-01

    Environmental stresses often cause a rapid and excessive accumulation of reactive oxygen species (ROS), the toxicity of which is further amplified by downstream aldehyde production. Aldo-keto reductase (AKR) is a group of enzymes metabolizing aldehyde/ketone to the corresponding alcohol using NADPH as the cofactor. In this study, OsI_20197 (AKR4C15), a novel member of AKR4 subfamily C, was isolated and biochemically characterized. Kinetic studies on bacterially-expressed recombinant AKR4C15 revealed that the enzyme was capable of metabolizing a wide variety of aldehydes but clearly exhibited a preference for three carbon compounds, i.e. methylglyoxal, malondialdehyde and glyceraldehyde. In comparison with His-tagged proteins of AKR4C9 from Arabidopsis and several other rice AKR(s): OsI_04426, OsI_04428, OsI_04429, and OsI_15387, AKR4C15 was the one capable of most efficiently metabolizing MDA and had the highest value of catalytic efficiency, which was higher than the value of AKR4C9, approximately, by 30-fold; while its capability of metabolizing MG was on par with AKR4C9, OsI_04426 and OsI_04428 (AKR4C14); and was considerably higher than the activity of OsI_04429 and OsI_15387. In vivo research on transgenic Arabidopsis seedlings ectopically-expressing AKR4C15 showed that the levels of both MDA and MG were also significantly lower than the levels in wild-type seedlings under both normal and stress conditions, emphasizing the role of AKR4C15 in MG and MDA metabolism. In conclusion, AKR4C15, together with OsI_04426 and AKR4C14, may play protective roles against small reactive aldehydes and medium-chain aldehydes.

  13. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    International Nuclear Information System (INIS)

    Matsunaga, Toshiyuki; Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi; Soda, Midori; Yamamura, Keiko; El-Kabbani, Ossama; Tajima, Kazuo; Ikari, Akira; Hara, Akira

    2014-01-01

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10 up

  14. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Soda, Midori; Yamamura, Keiko [Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); El-Kabbani, Ossama [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Tajima, Kazuo [Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181 (Japan); Ikari, Akira [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hara, Akira [Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan)

    2014-07-15

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10 up

  15. Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: implications for modelling human cancers

    Directory of Open Access Journals (Sweden)

    Schrewe Heinrich

    2009-12-01

    Full Text Available Abstract Background Over recent years, enzymes of the aldo-keto reductase (AKR 1C subfamily have been implicated in the progression of prostate, breast, endometrial and leukemic cancers. This is due to the ability of AKR1C enzymes to modify androgens, estrogens, progesterone and prostaglandins (PGs in a tissue-specific manner, regulating the activity of nuclear receptors and other downstream effects. Evidence supporting a role for AKR1C enzymes in cancer derives mostly from studies with isolated primary cells from patients or immortalized cell lines. Mice are ideal organisms for in vivo studies, using knock-out or over-expression strains. However, the functional conservation of AKR1C enzymes between human and mice has yet to be described. Results In this study, we have characterized and compared the four human (AKR1C1,-1C2, -1C3 and -1C4 and the eight murine (AKR1C6, -1C12, -1C13, -1C14, -1C18, -1C19, -1C20 and -1C21 isoforms in their phylogeny, substrate preference and tissue distribution. We have found divergent evolution between human and murine AKR1C enzymes that was reflected by differing substrate preference. Murine enzymes did not perform the 11β-ketoreduction of prostaglandin (PG D2, an activity specific to human AKR1C3 and important in promoting leukemic cell survival. Instead, murine AKR1C6 was able to perform the 9-ketoreduction of PGE2, an activity absent amongst human isoforms. Nevertheless, reduction of the key steroids androstenedione, 5α-dihydrotestosterone, progesterone and estrone was found in murine isoforms. However, unlike humans, no AKR1C isoforms were detected in murine prostate, testes, uterus and haemopoietic progenitors. Conclusions This study exposes significant lack of phylogenetic and functional homology between human and murine AKR1C enzymes. Therefore, we conclude that mice are not suitable to model the role of AKR1C in human cancers and leukemia.

  16. Crystal structures of three classes of non-steroidal anti-inflammatory drugs in complex with aldo-keto reductase 1C3.

    Directory of Open Access Journals (Sweden)

    Jack U Flanagan

    Full Text Available Aldo-keto reductase 1C3 (AKR1C3 catalyses the NADPH dependent reduction of carbonyl groups in a number of important steroid and prostanoid molecules. The enzyme is also over-expressed in prostate and breast cancer and its expression is correlated with the aggressiveness of the disease. The steroid products of AKR1C3 catalysis are important in proliferative signalling of hormone-responsive cells, while the prostanoid products promote prostaglandin-dependent proliferative pathways. In these ways, AKR1C3 contributes to tumour development and maintenance, and suggest that inhibition of AKR1C3 activity is an attractive target for the development of new anti-cancer therapies. Non-steroidal anti-inflammatory drugs (NSAIDs are one well-known class of compounds that inhibits AKR1C3, yet crystal structures have only been determined for this enzyme with flufenamic acid, indomethacin, and closely related analogues bound. While the flufenamic acid and indomethacin structures have been used to design novel inhibitors, they provide only limited coverage of the NSAIDs that inhibit AKR1C3 and that may be used for the development of new AKR1C3 targeted drugs. To understand how other NSAIDs bind to AKR1C3, we have determined ten crystal structures of AKR1C3 complexes that cover three different classes of NSAID, N-phenylanthranilic acids (meclofenamic acid, mefenamic acid, arylpropionic acids (flurbiprofen, ibuprofen, naproxen, and indomethacin analogues (indomethacin, sulindac, zomepirac. The N-phenylanthranilic and arylpropionic acids bind to common sites including the enzyme catalytic centre and a constitutive active site pocket, with the arylpropionic acids probing the constitutive pocket more effectively. By contrast, indomethacin and the indomethacin analogues sulindac and zomepirac, display three distinctly different binding modes that explain their relative inhibition of the AKR1C family members. This new data from ten crystal structures greatly broadens

  17. The Role of Human Aldo-Keto Reductases (AKRs in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH-catechols and PAH o-Quinones

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2012-11-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAH are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quiniones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  18. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.

    Science.gov (United States)

    O'connor, T; Ireland, L S; Harrison, D J; Hayes, J D

    1999-01-01

    Complementary DNA clones encoding human aflatoxin B(1) aldehyde reductase (AKR7A2), aldehyde reductase (AKR1A1), aldose reductase (AKR1B1), dihydrodiol dehydrogenase 1 (AKR1C1) and chlordecone reductase (AKR1C4) have been expressed in Escherichia coli. These members of the aldo-keto reductase (AKR) superfamily have been purified from E. coli as recombinant proteins. The recently identified AKR7A2 was shown to differ from the AKR1 isoenzymes in being able to catalyse the reduction of 2-carboxybenzaldehyde. Also, AKR7A2 was found to exhibit a narrow substrate specificity, with activity being restricted to succinic semialdehyde (SSA), 2-nitrobenzaldehyde, pyridine-2-aldehyde, isatin, 1,2-naphthoquinone (1,2-NQ) and 9,10-phenanthrenequinone. In contrast, AKR1A1 reduces a broad spectrum of carbonyl-containing compounds, displaying highest specific activity for SSA, 4-carboxybenzaldehyde, 4-nitrobenzaldehyde, pyridine-3-aldehyde, pyridine-4-aldehyde, 4-hydroxynonenal, phenylglyoxal, methylglyoxal, 2,3-hexanedione, 1, 2-NQ, 16-ketoestrone and d-glucuronic acid. Comparison between the kinetic properties of AKR7A2 and AKR1A1 showed that both recombinant enzymes exhibited roughly similar k(cat)/K(m) values for SSA, 1,2-NQ and 16-ketoestrone. Many of the compounds which are substrates for AKR1A1 also serve as substrates for AKR1B1, though the latter enzyme was shown to display a specific activity significantly less than that of AKR1A1 for most of the aromatic and aliphatic aldehydes studied. Neither AKR1C1 nor AKR1C4 was found to possess high reductase activity towards aliphatic aldehydes, aromatic aldehydes, aldoses or dicarbonyls. However, unlike AKR1A1 and AKR1B1, both AKR1C1 and AKR1C4 were able to catalyse the oxidation of 1-acenaphthenol and, in addition, AKR1C4 could oxidize di- and tri-hydroxylated bile acids. Specific antibodies raised against AKR7A2, AKR1A1, AKR1B1, AKR1C1 and AKR1C4 have been used to show the presence of all of the reductases in human hepatic

  19. Sex hormones reduce NNK detoxification through inhibition of short-chain dehydrogenases/reductases and aldo-keto reductases in vitro.

    Science.gov (United States)

    Stapelfeld, Claudia; Maser, Edmund

    2017-10-01

    Carbonyl reduction is an important metabolic pathway for endogenous and xenobiotic substances. The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) is classified as carcinogenic to humans (IARC, Group 1) and considered to play the most important role in tobacco-related lung carcinogenesis. Detoxification of NNK through carbonyl reduction is catalyzed by members of the AKR- and the SDR-superfamilies which include AKR1B10, AKR1C1, AKR1C2, AKR1C4, 11β-HSD1 and CBR1. Because some reductases are also involved in steroid metabolism, five different hormones were tested for their inhibitory effect on NNK carbonyl reduction. Two of those hormones were estrogens (estradiol and ethinylestradiol), another two hormones belong to the gestagen group (progesterone and drospirenone) and the last tested hormone was an androgen (testosterone). Furthermore, one of the estrogens (ethinylestradiol) and one of the gestagens (drospirenone) are synthetic hormones, used as hormonal contraceptives. Five of six NNK reducing enzymes (AKR1B10, AKR1C1, AKR1C2, AKR1C4 and 11β-HSD1) were significantly inhibited by the tested sex hormones. Only NNK reduction catalyzed by CBR1 was not significantly impaired. In the case of the other five reductases, gestagens had remarkably stronger inhibitory effects at a concentration of 25 μM (progesterone: 66-88% inhibition; drospirenone: 26-87% inhibition) in comparison to estrogens (estradiol: 17-51% inhibition; ethinylestradiol: 14-79% inhibition) and androgens (14-78% inhibition). Moreover, in most cases the synthetic hormones showed a greater ability to inhibit NNK reduction than the physiologic derivatives. These results demonstrate that male and female sex hormones have different inhibitory potentials, thus indicating that there is a varying detoxification capacity of NNK in men and women which could result in a different risk for developing lung cancer. Copyright © 2017 Elsevier B

  20. Trypanosoma cruzi: death phenotypes induced by ortho-naphthoquinone substrates of the aldo-keto reductase (TcAKR). Role of this enzyme in the mechanism of action of β-lapachone.

    Science.gov (United States)

    Garavaglia, Patricia Andrea; Rubio, María Fernanda; Laverrière, Marc; Tasso, Laura Mónica; Fichera, Laura Edith; Cannata, Joaquín J B; García, Gabriela Andrea

    2018-02-05

    Several ortho-naphthoquinones (o-NQs) have trypanocidal activity against Trypanosoma cruzi, the aetiological agent of Chagas disease. Previously, we demonstrated that the aldo-keto reductase from this parasite (TcAKR) reduces o-NQs, such as β-lapachone (β-Lap) and 9,10-phenanthrenequinone (9,10-PQ), with concomitant reactive oxygen species (ROS) production. Recent characterization of TcAKR activity and expression in two T. cruzi strains, CL Brener and Nicaragua, showed that TcAKR expression is 2.2-fold higher in CL Brener than in Nicaragua. Here, we studied the trypanocidal effect and induction of several death phenotypes by β-Lap and 9,10-PQ in epimastigotes of these two strains. The CL Brener strain was more resistant to both o-NQs than Nicaragua, indicating that greater TcAKR activity is unlikely to be a major influence on o-NQ toxicity. Evaluation of changes in ROS production, mitochondrial membrane potential, phosphatidylserine exposure and monodansylcadaverine labelling evidenced that β-Lap and 9,10-PQ induce different death phenotypes depending on the combination of drug and T. cruzi strain analysed. To study whether TcAKR participates in o-NQ activation in intact parasites, β-Lap and 9,10-PQ trypanocidal effect was next evaluated in TcAKR-overexpressing parasites. Only β-Lap was more effective and induced greater ROS production in TcAKR-overexpressing epimastigotes than in controls, suggesting that TcAKR may participate in β-Lap activation.

  1. Stereospecific reduction of 5β-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1-AKR1C4 in the metabolism of testosterone and progesterone via the 5β-reductase pathway.

    Science.gov (United States)

    Jin, Yi; Mesaros, A Clementina; Blair, Ian A; Penning, Trevor M

    2011-07-01

    Active sex hormones such as testosterone and progesterone are metabolized to tetrahydrosteroids in the liver to terminate hormone action. One main metabolic pathway, the 5β-pathway, involves 5β-steroid reductase (AKR1D1, where AKR refers to the aldo-keto reductase superfamily), which catalyses the reduction of the 4-ene structure, and ketosteroid reductases (AKR1C1-AKR1C4), which catalyse the subsequent reduction of the 3-oxo group. The activities of the four human AKR1C enzymes on 5β-dihydrotestosterone, 5β-pregnane-3,20-dione and 20α-hydroxy-5β-pregnan-3-one, the intermediate 5β-dihydrosteroids on the 5β-pathway of testosterone and progesterone metabolism, were investigated. Product characterization by liquid chromatography-MS revealed that the reduction of the 3-oxo group of the three steroids predominantly favoured the formation of the corresponding 3α-hydroxy steroids. The stereochemistry was explained by molecular docking. Kinetic properties of the enzymes identified AKR1C4 as the major enzyme responsible for the hepatic formation of 5β-tetrahydrosteroid of testosterone, but indicated differential routes and roles of human AKR1C for the hepatic formation of 5β-tetrahydrosteroids of progesterone. Comparison of the kinetics of the AKR1C1-AKR1C4-catalysed reactions with those of AKR1D1 suggested that the three intermediate 5β-dihydrosteroids derived from testosterone and progesterone are unlikely to accumulate in liver, and that the identities and levels of 5β-reduced metabolites formed in peripheral tissues will be governed by the local expression of AKR1D1 and AKR1C1-AKR1C3.

  2. Overexpression of aldo-keto reductase 1C3 (AKR1C3) in LNCaP cells diverts androgen metabolism towards testosterone resulting in resistance to the 5α-reductase inhibitor finasteride.

    Science.gov (United States)

    Byrns, Michael C; Mindnich, Rebekka; Duan, Ling; Penning, Trevor M

    2012-05-01

    Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) is the major enzyme in the prostate that reduces 4-androstene-3,17-dione (Δ(4)-Adione) to the androgen receptor (AR) ligand testosterone. AKR1C3 is upregulated in prostate cancer (PCa) and castrate resistant prostate cancer (CRPC) that develops after androgen deprivation therapy. PCa and CRPC often depend on intratumoral androgen biosynthesis and upregulation of AKR1C3 could contribute to intracellular synthesis of AR ligands and stimulation of proliferation through AR signaling. To test this hypothesis, we developed an LNCaP prostate cancer cell line overexpressing AKR1C3 (LNCaP-AKR1C3) and compared its metabolic and proliferative responses to Δ(4)-Adione treatment with that of the parental, AKR1C3 negative LNCaP cells. In LNCaP and LNCaP-AKR1C3 cells, metabolism proceeded via 5α-reduction to form 5α-androstane-3,17-dione and then (epi)androsterone-3-glucuronide. LNCaP-AKR1C3 cells made significantly higher amounts of testosterone-17β-glucuronide. When 5α-reductase was inhibited by finasteride, the production of testosterone-17β-glucuronide was further elevated in LNCaP-AKR1C3 cells. When AKR1C3 activity was inhibited with indomethacin the production of testosterone-17β-glucuronide was significantly decreased. Δ(4)-Adione treatment stimulated cell proliferation in both cell lines. Finasteride inhibited LNCaP cell proliferation, consistent with 5α-androstane-3,17-dione acting as the major metabolite that stimulates growth by binding to the mutated AR. However, LNCaP-AKR1C3 cells were resistant to the growth inhibitory properties of finasteride, consistent with the diversion of Δ(4)-Adione metabolism from 5α-reduced androgens to increased formation of testosterone. Indomethacin did not result in differences in Δ(4)-Adione induced proliferation since this treatment led to the same metabolic profile in LNCaP and LNCaP-AKR1C3 cells. We conclude that AKR1C3 overexpression diverts androgen metabolism to

  3. An Indomethacin Analogue, N-(4-Chlorobenzoyl)-melatonin, is a Selective Inhibitor of Aldo-keto Reductase 1C3 (Type 2 3α-HSD, Type 5 17β-HSD, and Prostaglandin F Synthase), a Potential Target for the Treatment of Hormone Dependent and Hormone Independent Malignancies

    Science.gov (United States)

    Byrns, Michael C.; Steckelbroeck, Stephan; Penning, Trevor M.

    2008-01-01

    Aldo-keto reductase (AKR) 1C3 (type 2 3α-HSD, type 5 17β-HSD, and prostaglandin F synthase) regulates ligand access to steroid hormone and prostaglandin receptors and may stimulate proliferation of prostate and breast cancer cells. NSAIDs are known inhibitors of AKR1C enzymes. An NSAID analogue that inhibits AKR1C3 but is inactive against the cyclooxygenases and the other AKR1C family members would provide an important tool to examine the role of AKR1C3 in proliferative signaling. We tested NSAIDs and NSAID analogues for inhibition of the reduction of 9,10-phenanthrenequinone (PQ) catalyzed by AKR1C3 and the closely related isoforms AKR1C1 and AKR1C2. Two of the compounds initially screened, indomethacin and its methyl ester, were specific for AKR1C3 versus the other AKR1C isoforms. Based on these results and the crystal structure of AKR1C3, we predicted that N-(4-chlorobenzoyl)-melatonin (CBM), an indomethacin analogue that does not inhibit the cyclooxygenases, would selectively inhibit AKR1C3. CBM inhibited the reduction of PQ by AKR1C3, but did not significantly inhibit AKR1C1 or AKR1C2. Indomethacin and CBM also inhibited the AKR1C3-catalyzed reduction of Δ4-androstene-3,17-dione but did not significantly inhibit the reduction of steroid hormones catalyzed by AKR1C1 or AKR1C2. The pattern of inhibition of AKR1C3 by indomethacin and CBM was uncompetitive versus PQ, but competitive versus Δ4-androstene-3,17-dione, indicating that two different inhibitory complexes form during the ordered bi-bi reactions. The identification of CBM as a specific inhibitor of AKR1C3 will aid the investigation of its roles in steroid hormone and prostaglandin signaling and the resultant effects on cancer development. PMID:17950253

  4. An indomethacin analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto reductase 1C3 (type 2 3alpha-HSD, type 5 17beta-HSD, and prostaglandin F synthase), a potential target for the treatment of hormone dependent and hormone independent malignancies.

    Science.gov (United States)

    Byrns, Michael C; Steckelbroeck, Stephan; Penning, Trevor M

    2008-01-15

    Aldo-keto reductase (AKR) 1C3 (type 2 3alpha-HSD, type 5 17beta-HSD, and prostaglandin F synthase) regulates ligand access to steroid hormone and prostaglandin receptors and may stimulate proliferation of prostate and breast cancer cells. NSAIDs are known inhibitors of AKR1C enzymes. An NSAID analogue that inhibits AKR1C3 but is inactive against the cyclooxygenases and the other AKR1C family members would provide an important tool to examine the role of AKR1C3 in proliferative signaling. We tested NSAIDs and NSAID analogues for inhibition of the reduction of 9,10-phenanthrenequinone (PQ) catalyzed by AKR1C3 and the closely related isoforms AKR1C1 and AKR1C2. Two of the compounds initially screened, indomethacin and its methyl ester, were specific for AKR1C3 versus the other AKR1C isoforms. Based on these results and the crystal structure of AKR1C3, we predicted that N-(4-chlorobenzoyl)-melatonin (CBM), an indomethacin analogue that does not inhibit the cyclooxygenases, would selectively inhibit AKR1C3. CBM inhibited the reduction of PQ by AKR1C3, but did not significantly inhibit AKR1C1 or AKR1C2. Indomethacin and CBM also inhibited the AKR1C3-catalyzed reduction of Delta(4)-androstene-3,17-dione but did not significantly inhibit the reduction of steroid hormones catalyzed by AKR1C1 or AKR1C2. The pattern of inhibition of AKR1C3 by indomethacin and CBM was uncompetitive versus PQ, but competitive versus Delta(4)-androstene-3,17-dione, indicating that two different inhibitory complexes form during the ordered bi bi reactions. The identification of CBM as a specific inhibitor of AKR1C3 will aid the investigation of its roles in steroid hormone and prostaglandin signaling and the resultant effects on cancer development.

  5. Aldo-keto Reductase Family 1 B10 as a Novel Target for Breast Cancer Treatment

    Science.gov (United States)

    2010-08-01

    University, Beijing 100084,People’s Republic of China . ¥To whom requests reprints: Deliang Cao, Department of Medical Microbiology, Immunology, & Cell...acids, phospholipids, triglycerides, and cholesterol, was analyzed by TLC . Lipid extracts and appropriate lipid standards were spotted on silica gel

  6. Pharmacological Characterization of a Novel Bifunctional Aldo-Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist

    Science.gov (United States)

    2013-10-01

    metastatic form of the disease known as advanced prostate cancer (APC) or castrate resistant prostate cancer (CRPC). APC develops as a result of...Engl J Med 2011, 364, 1995-2005. 8. O’Donnell, A.; Judson, I.; Dowsett, M.; Raynaud , F.; Dearnaley, D.; Mason, M.; Harland, S.; Robbins, A

  7. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase.

    OpenAIRE

    Ellis, E M; Hayes, J D

    1995-01-01

    The enzyme from rat liver that reduces aflatoxin B1-dialdehyde exhibits a unique catalytic specificity distinct from that of other aldo-keto reductases. This enzyme, designated AFAR, displays high activity towards dicarbonyl-containing compounds with ketone groups on adjacent carbon atoms; 9,10-phenanthrenequinone, acenaphthenequinone and camphorquinone were found to be good substrates. Although AFAR can also reduce aromatic and aliphatic aldehydes such as succinic semialdehyde, it is inactiv...

  8. Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase

    Czech Academy of Sciences Publication Activity Database

    Giménez-Dejoz, J.; Kolář, Michal H.; Ruiz, F. X.; Crespo, I.; Cousido-Siah, A.; Podjarny, A.; Barski, O. A.; Fanfrlík, Jindřich; Parés, X.; Farrés, J.; Porté, S.

    2015-01-01

    Roč. 10, č. 7 (2015), e0134506/1-e0134506/19 E-ISSN 1932-6203 Institutional support: RVO:61388963 Keywords : retinoic acid biosynthesis * site-directed mutagenesis * tumor marker AKR1B15 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134506

  9. Genetic variation of Aflatoxin B(1) aldehyde reductase genes (AFAR) in human tumour cells

    DEFF Research Database (Denmark)

    Praml, Christian; Schulz, Wolfgang; Claas, Andreas

    2008-01-01

    AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B(1) (AFB(1)). In the rat, Afar1 induction can prevent AFB(1)-induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic. Furth...... many aldo-keto reductases. This polarity change may have an effect on the proposed substrate binding amino acids nearby (Met(47), Tyr(48), Asp(50)). Further population analyses and functional studies of the nine variants detected may show if these variants are disease-related....

  10. Whole-cell bioreduction of aromatic α-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Egger Sigrid

    2008-12-01

    Full Text Available Abstract Background Whole cell-catalyzed biotransformation is a clear process option for the production of chiral alcohols via enantioselective reduction of precursor ketones. A wide variety of synthetically useful reductases are expressed heterologously in Escherichia coli to a high level of activity. Therefore, this microbe has become a prime system for carrying out whole-cell bioreductions at different scales. The limited capacity of central metabolic pathways in E. coli usually requires that reductase coenzyme in the form of NADPH or NADH be regenerated through a suitable oxidation reaction catalyzed by a second NADP+ or NAD+ dependent dehydrogenase that is co-expressed. Candida tenuis xylose reductase (CtXR was previously shown to promote NADH dependent reduction of aromatic α-keto esters with high Prelog-type stereoselectivity. We describe here the development of a new whole-cell biocatalyst that is based on an E. coli strain co-expressing CtXR and formate dehydrogenase from Candida boidinii (CbFDH. The bacterial system was evaluated for the synthesis of ethyl R-4-cyanomandelate under different process conditions and benchmarked against a previously described catalyst derived from Saccharomyces cerevisiae expressing CtXR. Results Gene co-expression from a pETDuet-1 vector yielded about 260 and 90 units of intracellular CtXR and CbFDH activity per gram of dry E. coli cell mass (gCDW. The maximum conversion rate (rS for ethyl 4-cyanobenzoylformate by intact or polymyxin B sulphate-permeabilized cells was similar (2 mmol/gCDWh, suggesting that the activity of CbFDH was partly rate-limiting overall. Uncatalyzed ester hydrolysis in substrate as well as inactivation of CtXR and CbFDH in the presence of the α-keto ester constituted major restrictions to the yield of alcohol product. Using optimized reaction conditions (100 mM substrate; 40 gCDW/L, we obtained ethyl R-4-cyanomandelate with an enantiomeric excess (e.e. of 97.2% in a yield of 82

  11. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kiyota, Eduardo [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Sousa, Sylvia Morais de [Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Santos, Marcelo Leite dos; Costa Lima, Aline da [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Menossi, Marcelo [Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Yunes, José Andrés [Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP (Brazil); Aparicio, Ricardo, E-mail: aparicio@iqm.unicamp.br [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil)

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  12. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    International Nuclear Information System (INIS)

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-01-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR

  13. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase.

    Science.gov (United States)

    Ellis, E M; Hayes, J D

    1995-01-01

    The enzyme from rat liver that reduces aflatoxin B1-dialdehyde exhibits a unique catalytic specificity distinct from that of other aldo-keto reductases. This enzyme, designated AFAR, displays high activity towards dicarbonyl-containing compounds with ketone groups on adjacent carbon atoms; 9,10-phenanthrenequinone, acenaphthenequinone and camphorquinone were found to be good substrates. Although AFAR can also reduce aromatic and aliphatic aldehydes such as succinic semialdehyde, it is inactive with glucose, galactose and xylose. The enzyme also exhibits low activity towards alpha,beta-unsaturated carbonyl-containing compounds. Determination of the apparent Km reveals that AFAR has highest affinity for 9,10-phenanthrenequinone and succinic semialdehyde, and low affinity for glyoxal and DL-glyceraldehyde. PMID:8526867

  14. Long-term In Vitro Treatment of Human Glioblastoma Cells with Temozolomide Increases Resistance In Vivo through Up-regulation of GLUT Transporter and Aldo-Keto Reductase Enzyme AKR1C Expression

    Directory of Open Access Journals (Sweden)

    Benjamin Le Calvé

    2010-09-01

    Full Text Available Glioblastoma (GBM is the most frequent malignant glioma. Treatment of GBM patients is multimodal with maximum surgical resection, followed by concurrent radiation and chemotherapy with the alkylating drug temozolomide (TMZ. The present study aims to identify genes implicated in the acquired resistance of two human GBM cells of astrocytic origin, T98G and U373, to TMZ. Resistance to TMZ was induced by culturing these cells in vitro for months with incremental TMZ concentrations up to 1 mM. Only partial resistance to TMZ has been achieved and was demonstrated in vivo in immunocompromised mice bearing orthotopic U373 and T98G xenografts. Our data show that long-term treatment of human astroglioma cells with TMZ induces increased expression of facilitative glucose transporter/solute carrier GLUT/SLC2A family members, mainly GLUT-3, and of the AKR1C family of proteins. The latter proteins are phase 1 drug-metabolizing enzymes involved in the maintenance of steroid homeostasis, prostaglandin metabolism, and metabolic activation of polycyclic aromatic hydrocarbons. GLUT-3 has been previously suggested to exert roles in GBM neovascularization processes, and TMZ was found to exert antiangiogenic effects in experimental gliomas. AKR1C1 was previously shown to be associated with oncogenic potential, with proproliferative effects similar to AKR1C3 in the latter case. Both AKR1C1 and AKR1C2 proteins are involved in cancer pro-proliferative cell chemoresistance. Selective targeting of GLUT-3 in GBM and/or AKR1C proteins (by means of jasmonates, for example could thus delay the acquisition of resistance to TMZ of astroglioma cells in the context of prolonged treatment with this drug.

  15. Aldo Leopold: An American Prophet

    Science.gov (United States)

    Frese, Stephen J.

    2003-01-01

    In 1935, Aldo Leopold bought an abandoned farm in the sand counties along the Wisconsin River near Baraboo. Leopold sensed promise in the land, and with his wife and five children nursed the land back to health. They cleaned out the chicken coop and affectionately called their new family retreat "The Shack." Leopold kept detailed notes during the…

  16. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    Science.gov (United States)

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    Science.gov (United States)

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  18. Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae.

    Science.gov (United States)

    Zhang, Min; Jiang, Shao-tong; Zheng, Zhi; Li, Xing-jiang; Luo, Shui-zhong; Wu, Xue-feng

    2015-07-01

    Rhizopus oryzae is valuable as a producer of organic acids via lignocellulose catalysis. R. oryzae metabolizes xylose, which is one component of lignocellulose hydrolysate. In this study, a novel NADPH-dependent xylose reductase gene from R. oryzae AS 3.819 (Roxr) was cloned and expressed in Pichia pastoris GS115. Homology alignment suggested that the 320-residue protein contained domains and active sites belonging to the aldo/keto reductase family. SDS-PAGE demonstrated that the recombinant xylose reductase has a molecular weight of approximately 37 kDa. The optimal catalytic pH and temperature of the purified recombinant protein were 5.8 and 50 °C, respectively. The recombinant protein was stable from pH 4.4 to 6.5 and at temperatures below 42 °C. The recombinant enzyme has bias for D-xylose and L-arabinose as substrates and NADPH as its coenzyme. Real-time quantitative reverse transcription PCR tests suggested that native Roxr expression is regulated by a carbon catabolite repression mechanism. Site-directed mutagenesis at two possible key sites involved in coenzyme binding, Thr(226)  → Glu(226) and Val(274)  → Asn(274), were performed, respectively. The coenzyme specificity constants of the resulted RoXR(T226E) and RoXR(V274N) for NADH increased 18.2-fold and 2.4-fold, which suggested possibility to improve the NADH preference of this enzyme through genetic modification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. PER ALDO NOSEDA: IL CRITICO MUSICALE

    Directory of Open Access Journals (Sweden)

    Chiara Fiaccadori

    2014-03-01

    Full Text Available Il presente articolo è un tentativo di fornire la lista completa degli scritti di Aldo Noseda (Milano, 1853-Stresa, 1916 come critico musicale. Fu un erudito conoscitore d’arte e appassionato collezionista, ma la quasi totalità dei suoi scritti sono dedicati alla scena musicale italiana. Prese parte all’infiammato dibattito a proposito della musica strumentale divenendo membro della Società del Quartetto e fondando la Società orchestrale della Scala a Milano. Dal 1876 al 1894, sotto lo pseudonimo de Il Misovulgo fu tra gli editorialisti militanti di importanti periodici come «La Gazzetta musicale di Milano», il «Corriere della Sera» e «Il Caffè», contribuendovi con una serie di appassionate recensioni dei contemporanei eventi musicali milanesi.

  20. Aldo Oliva: a ghost in Argentine poetry

    Directory of Open Access Journals (Sweden)

    Bruno Crisorio

    2017-03-01

    Full Text Available Aldo Oliva (1927-2000 presents several problems to the researcher: acknowledged as an indispensable voice in Argentinian poetry (to quote David Viñas, his work, however, still waits for academic reception, and has circulated for many years in a marginal and reduced way. His reluctance to publish, his distance from any poetic movement of the second half of the XXth century, the complexity of his work explains, in part, this situation. In this context, the present article tries to locate Oliva in the history of Argentinian poetry; to that end, and considering that his work as well as his creative project prevent any linear and chronological approach, I have used the concepts of “anachronism” (Didi-Huberman, “contemporary” (Agamben o “constellation” (Benjamin, that revealed themselves useful to think this spectral figure that is at the same time unavoidable and invisible.

  1. A spontaneously immortalized Schwann cell line from aldose reductase-deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism.

    Science.gov (United States)

    Niimi, Naoko; Yako, Hideji; Takaku, Shizuka; Kato, Hiroshi; Matsumoto, Takafumi; Nishito, Yasumasa; Watabe, Kazuhiko; Ogasawara, Saori; Mizukami, Hiroki; Yagihashi, Soroku; Chung, Sookja K; Sango, Kazunori

    2018-03-01

    The increased glucose flux into the polyol pathway via aldose reductase (AR) is recognized as a major contributing factor for the pathogenesis of diabetic neuropathy, whereas little is known about the functional significance of AR in the peripheral nervous system. Spontaneously immortalized Schwann cell lines established from long-term cultures of AR-deficient and normal C57BL/6 mouse dorsal root ganglia and peripheral nerves can be useful tools for studying the physiological and pathological roles of AR. These cell lines, designated as immortalized knockout AR Schwann cells 1 (IKARS1) and 1970C3, respectively, demonstrated distinctive Schwann cell phenotypes, such as spindle-shaped morphology and immunoreactivity to S100, p75 neurotrophin receptor, and vimentin, and extracellular release of neurotrophic factors. Conditioned media obtained from these cells promoted neuronal survival and neurite outgrowth of cultured adult mouse dorsal root ganglia neurons. Microarray and real-time RT-PCR analyses revealed significantly down-regulated mRNA expression of polyol pathway-related enzymes, sorbitol dehydrogenase and ketohexokinase, in IKARS1 cells compared with those in 1970C3 cells. In contrast, significantly up-regulated mRNA expression of aldo-keto reductases (AKR1B7 and AKR1B8) and aldehyde dehydrogenases (ALDH1L2, ALDH5A1, and ALDH7A1) was detected in IKARS1 cells compared with 1970C3 cells. Exposure to reactive aldehydes (3-deoxyglucosone, methylglyoxal, and 4-hydroxynonenal) significantly up-regulated the mRNA expression of AKR1B7 and AKR1B8 in IKARS1 cells, but not in 1970C3 cells. Because no significant differences in viability between these two cell lines after exposure to these aldehydes were observed, it can be assumed that the aldehyde detoxification is taken over by AKR1B7 and AKR1B8 in the absence of AR. © 2017 International Society for Neurochemistry.

  2. Aldo van Eyck's Playgrounds : Aesthetics, Affordances, and Creativity

    NARCIS (Netherlands)

    Withagen, Rob; Caljouw, Simone R.

    2017-01-01

    After World War II, the Dutch architect Aldo van Eyck developed hundreds of playgrounds in the city of Amsterdam. These public playgrounds were located in parks, squares, and derelict sites, and consisted of minimalistic aesthetic play equipment that was supposed to stimulate the creativity of

  3. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110

    Directory of Open Access Journals (Sweden)

    Ryu Yeon-Woo

    2010-06-01

    Full Text Available Abstract Background Erythrose reductase (ER catalyzes the final step of erythritol production, which is reducing erythrose to erythritol using NAD(PH as a cofactor. ER has gained interest because of its importance in the production of erythritol, which has extremely low digestibility and approved safety for diabetics. Although ERs were purified and characterized from microbial sources, the entire primary structure and the corresponding DNA for ER still remain unknown in most of erythritol-producing yeasts. Candida magnoliae JH110 isolated from honeycombs produces a significant amount of erythritol, suggesting the presence of erythrose metabolizing enzymes. Here we provide the genetic sequence and functional characteristics of a novel NADPH-dependent ER from C. magnoliae JH110. Results The gene encoding a novel ER was isolated from an osmophilic yeast C. magnoliae JH110. The ER gene composed of 849 nucleotides encodes a polypeptide with a calculated molecular mass of 31.4 kDa. The deduced amino acid sequence of ER showed a high degree of similarity to other members of the aldo-keto reductase superfamily including three ER isozymes from Trichosporonoides megachiliensis SNG-42. The intact coding region of ER from C. magnoliae JH110 was cloned, functionally expressed in Escherichia coli using a combined approach of gene fusion and molecular chaperone co-expression, and subsequently purified to homogeneity. The enzyme displayed a temperature and pH optimum at 42°C and 5.5, respectively. Among various aldoses, the C. magnoliae JH110 ER showed high specific activity for reduction of erythrose to the corresponding alcohol, erythritol. To explore the molecular basis of the catalysis of erythrose reduction with NADPH, homology structural modeling was performed. The result suggested that NADPH binding partners are completely conserved in the C. magnoliae JH110 ER. Furthermore, NADPH interacts with the side chains Lys252, Thr255, and Arg258, which could

  4. Aldo van Eyck's Playgrounds: Aesthetics, Affordances, and Creativity

    OpenAIRE

    Withagen, Rob; Caljouw, Simone R.

    2017-01-01

    After World War II, the Dutch architect Aldo van Eyck developed hundreds of playgrounds in the city of Amsterdam. These public playgrounds were located in parks, squares, and derelict sites, and consisted of minimalistic aesthetic play equipment that was supposed to stimulate the creativity of children. Over the last decades, these playgrounds have been studied by sociologists, theorists of art and architecture, and psychologists. Adopting an ecological approach to the human environment, it i...

  5. To Learn Is To Grow, I: Aldo Leopold, Predator Eradication, and Games Refuges.

    Science.gov (United States)

    Dolph, Gary E.

    1998-01-01

    Follows the evolution in the thinking of Aldo Leopold, a game manager who was initially an advocate of predator eradication but who came to see predators as playing an important role in normally functioning ecosystems. (DDR)

  6. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M. (UPENN)

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  7. Life as a sober citizen: Aldo Leopold's Wildlife Ecology 118

    Science.gov (United States)

    Theiss, Nancy Stearns

    This historic case study addressed the issue of the lack of citizen action toward environmentally responsible behavior. Although there have been studies regarding components of environmental responsible behavior [ERB], there has been little focus on historic models of exemplary figures of ERB. This study examined one of the first conservation courses in the United States, Wildlife Ecology 118, taught by Aldo Leopold (1887--1948) for 13 years at the University of Wisconsin. Today, Aldo Leopold is recognized as an exemplary conservationist whose land ethic is cited as providing the ecological approach needed for understanding the complex issues of modern society. The researcher conjectured that examination of one of the first environmental education courses could support and strengthen environmental education practices by providing a heuristic perspective. The researcher used two different strategies for analysis of the case. For Research Question One---"What were Leopold's teaching strategies in Wildlife Ecology 118?"---the researcher used methods of comparative historical analysis. The researcher examined the learning outcomes that Leopold used in Wildlife Ecology 118 and compared them against a rubric of the Four Strands for Environmental Education (North American Association for Environmental Education [NAAEE], 1999). The Four Strands for Environmental Education are the current teaching strategies used by educators. The results indicated that Wildlife Ecology 118 scored high in Knowledge of Processes and Systems and Environmental Problem Solving strands. Leopold relied on historic case examples and animal biographies to build stories that engaged students. Field trips gave students practical experience for environmental knowledge with special emphasis on phenology. For Research Question Two---"What was the context of the lessons in Wildlife Ecology 118?"---the researcher used environmental history methods for analysis. Context provided the knowledge and

  8. Reading as Writing. Desire and Translation in Aldo Oliva

    Directory of Open Access Journals (Sweden)

    Bruno Crisorio

    2017-07-01

    Full Text Available Aldo Oliva continues to be a well-kept secret in Argentinean poetry: praised by his contemporaries and increasingly read by the younger generations, his work has not yet evoked the expected critical interest. The 2016 reprint of his Poesía completa (which had been published for the first time in 2003 is a good opportunity to break that silence. On the basis of a series of Oliva’s translations of both classical and modern poets (which appear for the first time in this reprint, the article inquiries into the modulations of Oliva’s voice when it comes into contact with the word of the other. These are personal modulations that set the tone of his own poetics, and, at the same time, contrast with other more “academic” forms of translating. Finally, we pose the question of the desire that leads a poet (not just Oliva to translate another poet.

  9. Risk management and the wisdom of Aldo Leopold.

    Science.gov (United States)

    Warren, Julianne Lutz; Kieffer, Susan

    2010-02-01

    Human demands on nature have increased due to our burgeoning population. The applications of scientific knowledge to the development of increasingly powerful technologies and consumptive lifestyles by more and more people have created a modern category of human-caused disaster-stealth disasters. Stealth disasters-such as agriculturally-induced soil erosion and release of unprecedented amounts of greenhouse gases into Earth's atmosphere-tend to have protracted, unobvious onsets; do not necessarily have dramatic manifestations; and often do not attract public attention until they reach a stage approaching catastrophic consequences. At this late stage it is difficult or impossible to undo damage. Scientists tend to be among the first to understand the physical causes and notice the developments of stealth disasters and their risks and yet scientific knowledge is not enough to prevent or mitigate them. As we search for ways to deal with stealth disasters, the concept of "land health" assembled by the prominent conservationist and author, Aldo Leopold (1887-1948), can, in normative terms, provide an ecologically grounded example of nature in good condition toward which society can aim. Evidence of the reverse-symptoms of land illness-can provide a checklist for risk analysis and management that helps guide people away from harm-causing attitudes and activities and toward beneficial outcomes. Leopold's criteria of land health motivated by a land ethic that incorporates the whole of nature may be applied at geographic scales ranging from local to global as a framework for contemporary risk management.

  10. Aldo van Eyck's Playgrounds: Aesthetics, Affordances, and Creativity.

    Science.gov (United States)

    Withagen, Rob; Caljouw, Simone R

    2017-01-01

    After World War II, the Dutch architect Aldo van Eyck developed hundreds of playgrounds in the city of Amsterdam. These public playgrounds were located in parks, squares, and derelict sites, and consisted of minimalistic aesthetic play equipment that was supposed to stimulate the creativity of children. Over the last decades, these playgrounds have been studied by sociologists, theorists of art and architecture, and psychologists. Adopting an ecological approach to the human environment, it is argued that the abstract forms of van Eyck's play sculptures indeed stimulate the creativity of the child. Whereas a slide or a swing almost dictates what a child is supposed to do, van Eyck's play equipment invites the child to actively explore the numerous affordances (action possibilities) it provided. However, it is argued that the standardization (e.g., equal distances between blocks or bars) that tends to characterize van Eyck' play equipment has negative effects on the playability. This standardization, which was arguably the result of the aesthetic motives of the designer, might be appealing to children when simply looking at the equipment, but it is not of overriding importance to them when playing in it. Indeed, a recent study indicates that the affordances provided by messy structures appear to have a greater appeal to playing children.

  11. Aldo van Eyck’s Playgrounds: Aesthetics, Affordances, and Creativity

    Directory of Open Access Journals (Sweden)

    Rob Withagen

    2017-07-01

    Full Text Available After World War II, the Dutch architect Aldo van Eyck developed hundreds of playgrounds in the city of Amsterdam. These public playgrounds were located in parks, squares, and derelict sites, and consisted of minimalistic aesthetic play equipment that was supposed to stimulate the creativity of children. Over the last decades, these playgrounds have been studied by sociologists, theorists of art and architecture, and psychologists. Adopting an ecological approach to the human environment, it is argued that the abstract forms of van Eyck’s play sculptures indeed stimulate the creativity of the child. Whereas a slide or a swing almost dictates what a child is supposed to do, van Eyck’s play equipment invites the child to actively explore the numerous affordances (action possibilities it provided. However, it is argued that the standardization (e.g., equal distances between blocks or bars that tends to characterize van Eyck’ play equipment has negative effects on the playability. This standardization, which was arguably the result of the aesthetic motives of the designer, might be appealing to children when simply looking at the equipment, but it is not of overriding importance to them when playing in it. Indeed, a recent study indicates that the affordances provided by messy structures appear to have a greater appeal to playing children.

  12. Aldo van Eyck’s Playgrounds: Aesthetics, Affordances, and Creativity

    Science.gov (United States)

    Withagen, Rob; Caljouw, Simone R.

    2017-01-01

    After World War II, the Dutch architect Aldo van Eyck developed hundreds of playgrounds in the city of Amsterdam. These public playgrounds were located in parks, squares, and derelict sites, and consisted of minimalistic aesthetic play equipment that was supposed to stimulate the creativity of children. Over the last decades, these playgrounds have been studied by sociologists, theorists of art and architecture, and psychologists. Adopting an ecological approach to the human environment, it is argued that the abstract forms of van Eyck’s play sculptures indeed stimulate the creativity of the child. Whereas a slide or a swing almost dictates what a child is supposed to do, van Eyck’s play equipment invites the child to actively explore the numerous affordances (action possibilities) it provided. However, it is argued that the standardization (e.g., equal distances between blocks or bars) that tends to characterize van Eyck’ play equipment has negative effects on the playability. This standardization, which was arguably the result of the aesthetic motives of the designer, might be appealing to children when simply looking at the equipment, but it is not of overriding importance to them when playing in it. Indeed, a recent study indicates that the affordances provided by messy structures appear to have a greater appeal to playing children. PMID:28725208

  13. Site specific incorporation of keto amino acids into proteins

    Science.gov (United States)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  14. Pulp, noir or neo-noir? Aldo Nove's 'Cannibal Stories' in ...

    African Journals Online (AJOL)

    Uno dei maggiori giocolieri del linguaggio degli ultimi anni, Aldo Nove esordisce con una raccolta di racconti-monologhi, Woobinda e altre storie senza lieto fine, nel 1996, raccolta che egli amplierà in Superwoobinda nel 1998. Annoverato nel gruppo di novelli autori di Gioventù cannibale, antologia di racconti uscita ...

  15. Framing a Philosophy of Environmental Action: Aldo Leopold, John Muir, and the Importance of Community

    Science.gov (United States)

    Goralnik, Lissy; Nelson, Michael P.

    2011-01-01

    A philosophy of action consists of a theory about how and why we do things and what motivates us to act. By juxtaposing the theory of environmental action implied by the works and life of John Muir with the philosophy of action suggested by Aldo Leopold's Land Ethic, we will illuminate the importance of a philosophy of action in determining one's…

  16. The Aldo Leopold Wilderness Research Institute: a national wilderness research program in support of wilderness management

    Science.gov (United States)

    Vita Wright

    2000-01-01

    The Aldo Leopold Wilderness Research Institute strives to provide scientific leadership in developing and applying the knowledge necessary to sustain wilderness ecosystems and values. Since its 1993 dedication, researchers at this federal, interagency Institute have collaborated with researchers and managers from other federal, academic and private institutions to...

  17. Role reduktas v nádorovém onemocnění.

    OpenAIRE

    Škarydová, Lucie

    2009-01-01

    Only a small attention was paid for long time to reducing enzymes, but today it is clear that these are an important part of the endogenous metabolism and also the phase I biotransformation of xenobiotics. The significant group of reducing enzymes are carbonyl reductases that belong to two superfamilies - short chain dehydrogenases/reductases (SDR) and aldo-keto reductases (AKR). Their role in cancer is now intensively studied and their functions in cancer it is possible to divide into two ma...

  18. CHARACTERIZATION OF STABLE BENZO(A)PYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA

    Science.gov (United States)

    Benzo[alpyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  19. CHARACTERIZATION OF STABLE BENZOLALPYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA AND POLYDEOXYNUCLEOTIDES

    Science.gov (United States)

    Bcnzo[a]pyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  20. Antibodies Targeting EMT

    Science.gov (United States)

    2017-10-01

    determine their targets on the cell. The newly discovered antibodies will then be engineered for utility as new highly specific drugs and diagnostics in...are from the aldo-keto reductase family (AKRs). Remarkably, 3 of the top 10 genes with induction in the mesenchymal TES2b cells Figure 1. Amino

  1. The role of aryl hydrocarbon receptor in regulation of enzymes involved in metabolic activation of polycyclic aromatic hydrocarbons in a model of rat liver progenitor cells

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Krčmář, P.; Procházková, Jiřina; Trilecová, L.; Gavelová, M.; Skálová, L.; Szotáková, B.; Bunček, M.; Radilová, H.; Kozubík, Alois; Machala, M.

    2009-01-01

    Roč. 180, č. 2 (2009), s. 226-237 ISSN 0009-2797 R&D Projects: GA ČR(CZ) GA524/06/0517 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cytochromes P450 * PAHs * aldo-keto reductases Subject RIV: BO - Biophysics Impact factor: 2.457, year: 2009

  2. Nonviolence and Religion: Creating a Post-Secular Narrative with Aldo Capitini

    Directory of Open Access Journals (Sweden)

    Roberto Baldoli

    2018-03-01

    Full Text Available This article argues that nonviolence is a valid framework for religions to build up a post-secular narrative. Drawing from the approach of Aldo Capitini, I claim that religions can choose nonviolence as a religious path to integrate the different narratives of secularism via the concepts and practices of liberation and openness. In particular, nonviolence adds self-rule to an immanent framework; it offers resilience to the society; and it adds “the heroism of peace” to the political sphere. The result is the construction via facti of an innovative post-secular narrative.

  3. Destrutturare le maiuscole. Pensiero debole, Italian Theory e politica. Conversazione con Pier Aldo Rovatti

    Directory of Open Access Journals (Sweden)

    Pier Aldo Rovatti

    2014-06-01

    Full Text Available The conversation focuses on the social and political role of the philosopher nowadays. Pier Aldo Rovatti discusses about the growing philosophical movement called “Italian Theory” while revisiting his own recent intellectual path. The italian philosopher retraces the cultural experience of the “pensiero debole”, whereof he has been one of the two promoters, and underlines the intellectual and political fight, against all the so-called universal truths (and ideological violences, inspired by this philosophical trend at the beginning of the Eighties. The interview ends with a discussion about the dawning perspectives of the political-philosophical action in the post-modern age.

  4. Hexose-6-phosphate dehydrogenase modulates 11beta-hydroxysteroid dehydrogenase type 1-dependent metabolism of 7-keto- and 7beta-hydroxy-neurosteroids.

    Directory of Open Access Journals (Sweden)

    Lyubomir G Nashev

    Full Text Available BACKGROUND: The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH, which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed. METHODOLOGY: We investigated the 11beta-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA and 7-keto- and 7beta-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11beta-HSD1. PRINCIPAL FINDINGS: We demonstrated that 11beta-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11beta-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7beta-hydroxy metabolites, indicating a role for H6PDH and 11beta-HSD1 in the local generation of 7beta-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7beta-hydroxy-neurosteroids. CONCLUSIONS: Our results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11beta-HSD1 and greatly

  5. The Architecture of a Lifetime: Structures of Remembrance and Invention in Walter Benjamin and Aldo Rossi

    Directory of Open Access Journals (Sweden)

    Jolien Paeleman

    2016-05-01

    Full Text Available This article presents the result of research on the influence of Walter Benjamin’s thinking in the work of Italian architect Aldo Rossi (1931–1997. In present-day architectural criticism, Aldo Rossi’s oeuvre still constitutes a rich subject for discussion because of its resistance to easy pinpointing, even if Rossi himself explained his theories and methods of design on numerous occasions. In his writings, among these A Scientific Autobiography, Rossi quotes from a collection of Benjamin’s memoirs: Berlin Childhood around 1900. The architect believes that these short prose pieces express better than anything else what he himself had not been able to explain in his writing. In this paper I intend to show the poignancy of the words Rossi referred to and the implications they had on his architecture by offering close comparisons of Benjamin’s and Rossi’s autobiographical writings. In addition, this study examines how one of Rossi’s most famous architectural artefacts, the ossuary of San Cataldo cemetery at Modena, can be viewed as a coalescence of a Benjaminian thought-image, thereby fortifying the philosopher’s presence in modern architecture.

  6. The enantioselective b-keto ester reductions by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HASSAN TAJIK

    2006-09-01

    Full Text Available The enantioselective yeast reduction of aromatic b-keto esters, by use of potassium dihydrogen phosphate, calcium phosphate (monobasic, magnesium sulfate and ammonium tartrate (diammonium salt (10:1:1:50 in water at pH 7 as a buffer for 72–120 h with 45–90 % conversion to the corresponding aromatic -hydroxy esters was achieved by means of Saccharomyces cerevisiae.

  7. Aldo Leopold on Education: An Educator and His Land Ethic in the Context of Contemporary Environmental Education.

    Science.gov (United States)

    Callicott, J. Baird

    1982-01-01

    Aldo Leopold, the founder of wildlife management (wildlife ecology) is credited with powerfully advocating for the first time in Western intellectual history, broad human ethical responsibility to the nonhuman natural world. Leopold's views on education and Leopold as an educator are discussed. (Author/JN)

  8. Synthesis, spectral studies, antimicrobial and insect antifeedant potent keto oxiranes

    Directory of Open Access Journals (Sweden)

    Ganesamoorthy Thirunarayanan

    2016-09-01

    Full Text Available A series of ee (αS, βR biphenyl keto oxiranes (biphenyl-4-yl[3-(substituted phenyloxiran-2-yl]methanones have been synthesized by phase transfer catalysed epoxidation of biphenyl 2E-chalcones. The yields of oxiranes are more than 95%. The synthesized oxiranes have been characterized by IR, 1H, 13C and GC–MS spectra. The spectral data are correlated with Hammett substituent constants and Swain–Lupton parameters. From the regression analyses, the effect of substituent on the group frequencies has been predicted. The antimicrobial and insect antifeedant activities of all synthesized oxiranes have been evaluated.

  9. Concominant extracellular accumulation of alpha-keto acids and higher alcohols by Zygosaccharomyces rouxii

    NARCIS (Netherlands)

    Sluis, van der C.; Rahardjo, Y.S.P.; Smit, B.A.; Kroon, P.J.; Hartmans, S.; Schure, ter E.G.; Tramper, J.; Wijffels, R.H.

    2002-01-01

    Alpha-keto acids are key intermediates in the formation of higher alcohols, important flavor components in soy sauce, and produced by the salt-tolerant yeast Zygosaccharomyces rouxii. Unlike most of the higher alcohols, the alpha-keto acids are usually not extracellularly accumulated by Z. rouxii

  10. Oxone-mediated oxidative cleavage of β-keto esters and 1,3-diketones to α-keto esters and 1,2-diketones in aqueous medium.

    Science.gov (United States)

    Stergiou, Anastasios; Bariotaki, Anna; Kalaitzakis, Dimitris; Smonou, Ioulia

    2013-07-19

    A versatile and highly efficient method for the direct synthesis of α-keto esters and 1,2-diketones has been developed. This approach utilizes the oxidative cleavage of a variety of β-keto esters and 1,3-diketones mediated by an Oxone/aluminum trichloride system. The simple one-step oxidation reaction proceeded selectively in aqueous media to afford products in high yields, short reaction times, and environmentally benign conditions.

  11. Binding pattern of intermediate UDP-4-keto-xylose to human UDP-xylose synthase: Synthesis and STD NMR of model keto-saccharides.

    Science.gov (United States)

    Puchner, Claudia; Eixelsberger, Thomas; Nidetzky, Bernd; Brecker, Lothar

    2017-01-02

    Human UDP-xylose synthase (hUXS1) exclusively converts UDP-glucuronic acid to UDP-xylose via intermediate UDP-4-keto-xylose (UDP-Xyl-4O). Synthesis of model compounds like methyl-4-keto-xylose (Me-Xyl-4O) is reported to investigate the binding pattern thereof to hUXS1. Hence, selective oxidation of the desired hydroxyl function required employment of protecting group chemistry. Solution behavior of synthesized keto-saccharides was studied without enzyme via 1 H and 13 C NMR spectroscopy with respect to existent forms in deuterated potassium phosphate buffer. Keto-enol tautomerism was observed for all investigated keto-saccharides, while gem-diol hydrate forms were only observed for 4-keto-xylose derivatives. Saturation transfer difference (STD) NMR was used to study binding of synthesized keto-gylcosides to wild type hUXS1. Resulting epitope maps were correlated to earlier published molecular modeling studies of UDP-Xyl-4O. STD NMR results of Me-Xyl-4O are in good agreement with simulations of the intermediate UDP-Xyl-4O indicating a strong interaction of proton H3 with the enzyme, potentially caused by active site residue Ala 79 . In contrast, pyranoside binding pattern studies of methyl uronic acids showed some differences compared to previously published STD NMR results of UDP-glycosides. In general, obtained results can contribute to a better understanding in binding of UDP-glycosides to other UXS enzyme family members, which have high structural similarities in the active site. Copyright © 2016. Published by Elsevier Ltd.

  12. Ordine temporale e ordine spirituale nella riflessione di Aldo Moro: una lezione sottratta all’oblio

    Directory of Open Access Journals (Sweden)

    Luigi Barbieri

    2017-03-01

    In 1978 thanks to the heirs and the "A. Moro" Foundation it was published the monograph: A. Moro, Lezioni di filosofia di diritto tenute presso l’ Università di Bari. Il diritto 1944-45- appunti sull’esperienza giuridica: lo Stato 1946-47, Published by Cacucci of Bari. The work collects the lectures presented by the statesman at the University of Bari for a series of legal philosophy lessons during the academic years 1944-45 and 1946-47. The volume partially reproduces the original text, published many years before, in lithographed volumes, by another publisher. In the posthumous edition the chapter about ‘Church and State’ has been omitted.For the ecclesiastical science researcher, Aldo Moro’s considerations about the relationship between church and state appear unavoidable. The inexplicably obliterated pages are still applicable to these days, especially if compared to the contribution made by Moro during the Constituent Assembly for the final draft of the Articles 7 and 8 of the Constitution. This study aims to go beyond the limits of an arid archival recovery, it not only aims to interpret the cultural dimension of the future constituent deputy, but it aims to identify the doctrinal sources that the young Moro used for his reflections about the relationships between Church and State.

  13. Iron reductases from Pseudomonas aeruginosa.

    Science.gov (United States)

    Cox, C D

    1980-01-01

    Cell-free extracts of Pseudomonas aeruginosa contain enzyme activities which reduce Fe(III) to Fe(II) when iron is provided in certain chelates, but not when the iron is uncomplexed. Iron reductase activities for two substrates, ferripyochelin and ferric citrate, appear to be separate enzymes because of differences in heat stabilities, in locations in fractions of cell-free extracts, in reductant specificity, and in apparent sizes during gel filtration chromatography. Ferric citrate iron reductase is an extremely labile activity found in the cytoplasmic fraction, and ferripyochelin iron reductase is a more stable activity found in the periplasmic as well as cytoplasmic fraction of extracts. A small amount of activity detectable in the membrane fraction seemed to be loosely associated with the membranes. Although both enzymes have highest activity reduced nicotinamide adenine dinucleotide, reduced glutathione also worked with ferripyochelin iron reductase. In addition, oxygen caused an irreversible loss of a percentage of the ferripyochelin iron reductase following sparge of reaction mixtures, whereas the reductase for ferric citrate was not appreciably affected by oxygen. PMID:6766439

  14. Crystallization and preliminary X-ray diffraction analysis of salutaridine reductase from the opium poppy Papaver somniferum

    International Nuclear Information System (INIS)

    Higashi, Yasuhiro; Smith, Thomas J.; Jez, Joseph M.; Kutchan, Toni M.

    2010-01-01

    Recombinant P. somniferum salutaridine reductase (SalR) was purified and crystallized with NADPH using the hanging-drop vapor-diffusion method. Crystals of the SalR–NADPH complex diffracted X-rays to a resolution of 1.9 Å. The opium poppy Papaver somniferum is the source of the narcotic analgesics morphine and codeine. Salutaridine reductase (SalR; EC 1.1.1.248) reduces the C-7 keto group of salutaridine to the C-7 (S)-hydroxyl group of salutaridinol in the biosynthetic pathway that leads to morphine in the opium poppy plant. P. somniferum SalR was overproduced in Escherichia coli and purified using cobalt-affinity and size-exclusion chromatography. Hexagonal crystals belonging to space group P6 4 22 or P6 2 22 were obtained using ammonium sulfate as precipitant and diffracted to a resolution of 1.9 Å

  15. 3-Keto umbilicagenin A and B, new sapogenins from Allium umbilicatum Boiss.

    Science.gov (United States)

    Sadeghi, Masoud; Zolfaghari, Behzad; Troiano, Raffaele; Lanzotti, Virginia

    2015-04-01

    Two sapogenins, named 3-keto umbilicagenin A and B (1 and 2), possessing a novel chemical structure with a 3-keto group on the spirostane skeleton, have been isolated from Allium umbilicatum Boiss. Their chemical structure has been established through a combination of extensive spectroscopic analysis, mainly nuclear magnetic resonance and mass spectrometry, and chemical methods as (25R)-3-keto-spirostan-2α,5α,6β-triol (1) and (25R)-3-keto-spirostan-2α,5α-diol (2). The isolated compounds were tested for cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Research progress on the roles of aldose reductase in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Hong-Zhe Li

    2015-07-01

    Full Text Available Aldose reductase(ARbelonging to nicotinamide-adenine dinucleotide phosphate(NADPH-dependent aldehyde-keto reductase superfamily, is the key rate-limiting enzyme in the polyol pathway which plays an important role in the body's high-sugar metabolism. AR is widely present in the kidneys, blood vessels, lens, retina, heart, skeletal muscle and other tissues and organs, converts glucose to sorbitol which easy permeability of cell membranes, cause cell swelling, degeneration, necrosis, and have a close relationship with the development of chronic complications of diabetes mellitus. Diabetic retinopathy(DRis a multifactorial disease, the exact cause is currently unknown, but polyol pathway has been demonstrated to play an important role in the pathogenesis of DR. Clinical risk factors such as blood sugar control, blood pressure and other treatments for DR only play a part effect of remission or invalid, if we can find out DR genes associated with the disease, this will contribute to a better understanding of the pathological mechanisms and contribute to the development of new treatments and drugs. The current research progress of AR, AR gene polymorphism, Aldose reductase inhibitors to DR was reviewed in this article.

  17. Isolated menthone reductase and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  18. Natural polyprenylated benzophenones: keto-enol tautomerism and stereochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Felipe T.; Cruz Junior, Jose W.; Doriguetto, Antonio C. [Universidade Federal de Alfenas, MG (Brazil). Dept. de Ciencias Exatas. Lab. de Cristalografia]. E-mail: doriguetto@unifal-mg.edu.br; Derogis, Priscilla B.M.C.; Santos, Marcelo H. dos; Veloso, Marcia P. [Universidade Federal de Alfenas, MG (Brazil). Dept. de Ciencias Exatas. Lab. de Fitoquimica e Quimica Medicinal; Ellena, Javier [Universidade de Sao Paulo, Sao Carlos, SP (Brazil). Inst. de Fisica

    2007-07-01

    The keto-enol tautomerism and stereochemistry study of a HIV-inhibitory natural benzophenone, (1R,5R,7R,8S)-(+)-3-(10-(3,4-dihydroxyphenyl)-10-hydroxymethylene) -8-methyl-1,5,7-tris(3-methyl-2-butenyl)-8-(4-methyl-3-pentenyl)-bicyclo [3.3.1]nonane-2,4,9-trione (a), isolated from Garcinia brasiliensis seeds is presented. The crystal structure of (a), which is also know as guttiferona A, was determined by X-ray diffraction and its intra and inter-molecular geometries discussed and compared with two analogue natural benzophenones: clusianone and epiclusianone. In (a), the hydroxyl H atom from enolizable 2,4,10-trione moiety is linked in the oxygen atom bonded to 10-(3,4-dihydroxyphenyl)methylene group, in opposition to the related natural benzophenones, where this analogue H-atom is placed in different O-atoms from bicyclo[3.3.1]nonane ring system. Such behaviour can be explained by the presence of aromatic OH6 group in (a) that origins a further delocalized resonance path along of 3,4-dihydroxyphenyl- C10-OH2 group. In addition, the (a) stereochemistry around C7 atom is compared with known structures of clusianone and epiclusianone and the influence from configuration in this chiral Catom to structural features found in the enolizable system is proposed. (author)

  19. Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase.

    Science.gov (United States)

    Mathew, Sam; Nadarajan, Saravanan Prabhu; Sundaramoorthy, Uthayasuriya; Jeon, Hyunwoo; Chung, Taeowan; Yun, Hyungdon

    2017-04-01

    To enzymatically synthesize enantiomerically pure β-amino acids from β-keto nitriles using nitrilase and ω-transaminase. An enzyme cascade system was designed where in β-keto nitriles are initially hydrolyzed to β-keto acids using nitrilase from Bradyrhizobium japonicum and subsequently β-keto acids were converted to β-amino acids using ω-transaminases. Five different ω-transaminases were tested for this cascade reaction, To enhance the yields of β-amino acids, the concentrations of nitrilase and amino donor were optimized. Using this enzymatic reaction, enantiomerically pure (S)-β-amino acids (ee > 99%) were generated. As nitrilase is the bottleneck in this reaction, molecular docking analysis was carried out to depict the poor affinity of nitrilase towards β-keto acids. A novel enzymatic route to generate enantiomerically pure aromatic (S)-β-amino acids from β-keto nitriles is demonstrated for the first time.

  20. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... reductase activity and nitrite accumulation depend on the exogenous nitrate. Nitrite itself is reduced to ammonium by palstidic nitrite reductase. Nitrite reductase is activated by both nitrate and nitrite ions by positive feed forward, whereas nitrate metabolites, most likely ammonium and glutamine; down.

  1. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects.

  2. Association between methylenetetrahydrofolate reductase (MTHFR ...

    African Journals Online (AJOL)

    Association between methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and risk of ischemic stroke in North Indian population: A hospital based case–control study. Amit Kumar, Shubham Misra, Anjali Hazarika, Pradeep Kumar, Ram Sagar, Abhishek Pathak, Kamalesh Chakravarty, Kameshwar ...

  3. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects of MTHFR ...

  4. Trametes versicolor carboxylate reductase uncovered.

    Science.gov (United States)

    Winkler, Margit; Winkler, Christoph K

    The first carboxylate reductase from Trametes versicolor was identified, cloned, and expressed in Escherichia coli . The enzyme reduces aromatic acids such as benzoic acid and derivatives, cinnamic acid, and 3-phenylpropanoic acid, but also aliphatic acids such as octanoic acid are reduced.

  5. Louis I. Kahn ja Aldo van Eyck : paralleelid moodsa arhitektuuri teises traditsioonis / Robert McCarter ; tõlk. Tiina Randus

    Index Scriptorium Estoniae

    McCarter, Robert

    2007-01-01

    Vaadeldakse Louis I. Kahni ja Aldo van Eycki esinemist 1959. a. CIAMi (Congres Internatinaux d'Architecture Moderne) XI kongressil Otterlos, ajaloolistes paikades saadud kogemuste mõju nende loomingule, suhteid kaasaja kunstnikega ja kunstnike loomingu mõju neile, hoonete kavandamist, linnaarhitektuuri ja -planeerimist. Bibliograafia lk.101-102

  6. Detection Identification and Quantification of Keto-Hydroperoxides in Low-Temperature Oxidation.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils; Moshammer, Kai; Jasper, Ahren W.

    2017-07-01

    Keto-hydroperoxides are reactive partially oxidized intermediates that play a central role in chain-branching reactions during the low-temperature oxidation of hydrocarbons. In this Perspective, we outline how these short lived species can be detected, identified, and quantified using integrated experimental and theoretical approaches. The procedures are based on direct molecular-beam sampling from reactive environments, followed by mass spectrometry with single-photon ionization, identification of fragmentation patterns, and theoretical calculations of ionization thresholds, fragment appearance energies, and photoionization cross sections. Using the oxidation of neo-pentane and tetrahydrofuran as examples, the individual steps of the experimental approaches are described in depth together with a detailed description of the theoretical efforts. For neo-pentane, the experimental data are consistent with the calculated ionization and fragment appearance energies of the keto-hydroperoxide, thus adding confidence to the analysis routines and the employed levels of theory. For tetrahydrofuran, multiple keto-hydroperoxide isomers are possible due to the presence of nonequivalent O2 addition sites. Despite this additional complexity, the experimental data allow for the identification of two to four keto-hydroperoxides. Mole fraction profiles of the keto-hydroperoxides, which are quantified using calculated photoionization cross sections, are provided together with estimated uncertainties as function of the temperature of the reactive mixture and can serve as validation targets for chemically detailed mechanisms.

  7. Major urinary metabolites of 6-keto-prostaglandin F2α in mice[S

    Science.gov (United States)

    Kuklev, Dmitry V.; Hankin, Joseph A.; Uhlson, Charis L.; Hong, Yu H.; Murphy, Robert C.; Smith, William L.

    2013-01-01

    Western diets are enriched in omega-6 vs. omega-3 fatty acids, and a shift in this balance toward omega-3 fatty acids may have health benefits. There is limited information about the catabolism of 3-series prostaglandins (PG) formed from eicosapentaenoic acid (EPA), a fish oil omega-3 fatty acid that becomes elevated in tissues following fish oil consumption. Quantification of appropriate urinary 3-series PG metabolites could be used for noninvasive measurement of omega-3 fatty acid tone. Here we describe the preparation of tritium- and deuterium-labeled 6-keto-PGF2α and their use in identifying urinary metabolites in mice using LC-MS/MS. The major 6-keto-PGF2α urinary metabolites included dinor-6-keto-PGF2α (∼10%) and dinor-13,14-dihydro-6,15-diketo-PGF1α (∼10%). These metabolites can arise only from the enzymatic conversion of EPA to the 3-series PGH endoperoxide by cyclooxygenases, then PGI3 by prostacyclin synthase and, finally, nonenzymatic hydrolysis to 6-keto-PGF2α. The 6-keto-PGF derivatives are not formed by free radical mechanisms that generate isoprostanes, and thus, these metabolites provide an unbiased marker for utilization of EPA by cyclooxygenases. PMID:23644380

  8. Very low levels of 6-keto-prostaglandin F 1/sub α/ in human plasma

    International Nuclear Information System (INIS)

    Siess, W.; Dray, F.

    1982-01-01

    Two stable derivatives of PGI 2 , its nonenzymatic hydrolysis product (6-keto-PGF 1 /sub α/) and an enzymatic metabolite (6, 15-diketo-PGF 1 /sub α/) were determined in human plasma and urine. These compounds were measured by RIA after separation on rp-HPLC. Previous purification of the samples on rp=HPLC markedly enhanced the specificity of the RIA determinations of those compounds in plasma and urine. The PGI 2 derivative 6-keto-PGF 1 /sub α/ was detected in both plasma (4.7 +/- 3.2 pg/ml, mean +/- S.D., n = 34) and urine (166 +/- 61 pg/ml, n = 9). No gender differences of the plasma or urinary levels of 6-keto-PGF 1 /sub α/ were found. The PGI 2 metabolite 6, 15-diketo-PGF 1 /sub α/ was not measurable in plasma or urine ( 2 in man. When [ 3 H]PGI 2 was added to citrated blood immediately after venipuncture, it was recovered entirely as [ 3 H]6-keto-PGF 1 /sub α/ after rp-HPLC. Therefore any circulating PGI 2 would be measured as 6-keto-PGF 1 /sub α/ by our method. The results obtained suggest that PGI 2 could be present in human venous blood under physiological conditions, but only in very low concentrations

  9. Quantitative analysis of hydroperoxy-, keto- and hydroxy-dienes in refined vegetable oils.

    Science.gov (United States)

    Morales, Arturo; Marmesat, Susana; Dobarganes, M Carmen; Márquez-Ruiz, Gloria; Velasco, Joaquín

    2012-03-16

    Quantitative analysis of the main oxidation products of linoleic acid - hydroperoxy-, keto- and hydroxy-dienes - in refined oils is proposed in this study. The analytical approach consists of derivatization of TAGs into FAMEs and direct analysis by HPLC-UV. Two transmethylation methods run at room temperature were evaluated. The reactants were KOH in methanol in method 1 and sodium methoxide (NaOMe) in method 2. Method 1 was ruled out because resulted in losses of hydroperoxydienes as high as 90 wt%. Transmethylation with NaOMe resulted to be appropriate as derivatization procedure, although inevitably also gives rise to losses of hydroperoxydienes, which were lower than 10 wt%, and formation of keto- and hydroxy-dienes as a result. An amount of 0.6-2.1 wt% of hydroperoxydienes was transformed into keto- and hydroxy-dienes, being the formation of the former as much as three times higher. The method showed satisfactory sensitivity (quantification limits of 0.3 μg/mL for hydroperoxy- and keto-dienes and 0.6 μg/mL for hydroxydienes), precision (coefficients of variation ≤ 6% for hydroperoxydienes and ≤ 15% for keto- and hydroxy-dienes) and accuracy (recovery values of 85(± 4), 99(± 2) and 97.0(± 0.6) % for hydroperoxy-, keto- and hydroxy-dienes, respectively). The method was applied to samples of high-linoleic (HLSO), high-oleic (HOSO) and high-stearic high-oleic (HSHOSO) sunflower oils oxidized at 40 °C. Results showed that the higher the linoleic-to-oleic ratio, the higher were the levels of hydroperoxy-, keto- and hydroxy-dienes when tocopherols were completely depleted, i.e. at the end of the induction period (IP). Levels of 23.7, 2.7 and 1.1 mg/g oil were found for hydroperoxy-, keto- and hydroxy-dienes, respectively, in the HLSO when tocopherol was practically exhausted. It was estimated that hydroperoxydienes constituted approximately 100, 95 and 60% of total hydroperoxides in the HLSO, HOSO and HSHOSO, respectively, along the IP. Copyright © 2012

  10. The House of the Dead. The San Cataldo Cemetery in Modena, by Aldo Rossi and Gianni Braghieri

    Directory of Open Access Journals (Sweden)

    Gilda Giancipoli

    2015-12-01

    Full Text Available One of the projects that absolute addresses the clear relationship between the city of the living and the city of the dead is the project for the competition of the Cemetery in Modena, won by Aldo Rossi and Gianni Braghieri in 1971. Then it was revised for the second degree of the competition and for another step of the project in 1976. Now it remains unfinished, as the administration plans to achieve it programmatically. It has a clear organization of his differentiated and related parts through formal hierarchies, that recognize in the cube and the cone the “facts” of this urban city of the dead, with its rich symbolism linked to the cult of the dead. However, the cemetery isn’t, an isolated moment in Rossi’s work, but it is possible to recognize in it a declination of formal characterizations that returns throughout its design process.

  11. BENEFICIAL EFFECT OF KETO AMINO ACIDS FOR DIALYSIS PATIENTS

    Directory of Open Access Journals (Sweden)

    Vladimir Teplan

    2012-06-01

    Full Text Available Nutritional status is an important predictor of clinical outcome in dialysed patients. Beside decreased serum protein/albumin,lower BMI with decreased muscle mass is the most significant predictor of morbidity and mortality. Keto amino acids (KA represent an additional source for protein anabolism influencing indirectly also carbohydrate and lipid metabolism,Ca-P and acid base balance.Additionaly,by concominant metabolic and hemodynamic effect on residual nefrons, KA can help to slow progression of residual renal function (RRF mainly in peritoneal dialysis patients. We conducted a long-term prospective randomized placebo controlled trial to test whether a modified low-protein diet (LPD with or without keto acids (KA would be safe ,well tolerated and associated with an increase of metabolic status and preservation of RRF in peritoneal dialysis (PD. We evaluated a total of 62 PD patients (32M/30F aged 26-72 yrs with creatinine clearance (Ccr 7.9-5.7 mL/min/1.73m2 for a period of 12 months. All patients were on modified LPD containing 0.8 protein/kg/IBW/day and 135/kJ/kg/IBW/day. LPD was randomly supplemented with KA at dosage of 100 mg/kg/IBW/day (30 patients, Group I while 30 patients (Group II received placebo. We analysed also muscle and fat metabolism by MR spectroscopy (MRS, m.tibialis anterior and imagining (MRI,visceral fat.Patients from Group I were before enrolment on conservative management using LPD + KA (0.6g P + 0.1g KA/kg/IBW/day for longer time (18-48 months, median 28 with good compliance (SGA. Patients from group II were never treated with LPD and KA.All patients were monitored at the beginning of PD and at every 3 months for 12 months.;A neutral or positive long- term nitrogen balance (nPCR in g/kg IBW/day was achieved in Group I (p<0.05 .RRF measured as Ccr remained stable in Group I (6.5 ± 2.18 to 5.9 ± 2.54 ml/min, p=NS,while it decreased in Group II (6.7 ± 2.22 to 3.2 ± 1.44 ml/min, p<0.02.There were no differences in

  12. Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species

    NARCIS (Netherlands)

    Kremer, D.R.; Veenhuis, M.; Fauque, G.; Peck Jr., H.D.; LeGall, J.; Lampreia, J.; Moura, J.J.G.; Hansen, T.A.

    1988-01-01

    The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were

  13. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  14. Quorum Sensing Inhibition and Structure–Activity Relationships of β-Keto Esters

    Directory of Open Access Journals (Sweden)

    Stephanie Forschner-Dancause

    2016-07-01

    Full Text Available Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS—a cell-cell communication system in bacteria—controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure–activity relationships needed to allow for the development of novel anti-virulence agents.

  15. Biotransformation of isonitrosoacetophenone (2-keto-2-phenyl-acetaldoxime) in tobacco cell suspensions

    CSIR Research Space (South Africa)

    Madala, NE

    2012-07-01

    Full Text Available Biotechnology Letters July 2012/ Vol. 34 No.7, pp 1351-1356 Biotransformation of isonitrosoacetophenone (2-keto-2- phenyl-acetaldoxime) in tobacco cell suspensions Ntakadzeni E. Madala 1 , P. A. Steenkamp 2 , L. A. Piater 1 and I. A. Dubery 1 1...

  16. Investigation of Keto-enol Tautomers during the Synthesis of Aryl-bis ...

    Indian Academy of Sciences (India)

    This study investigated the existence of keto-enol tautomers for the first time during the synthesis of aryl-bis(2-hydroxy-1-naphthyl)methane from 2-naphthol and -tolualdehyde or 4-chlorobenzaldehyde in methanol using CuSO4.5H2O as catalyst under reflux condition. The exclusive formation of ...

  17. Chemical conversion of alpha-Keto acids in relation to flavour formation in fermented foods

    NARCIS (Netherlands)

    Smit, B.A.; Engels, W.J.M.; Alewijn, M.; Lommerse, G.; Kippersluijs, E.A.H.; Wouters, J.T.M.; Smit, G.

    2004-01-01

    Formation of flavor compounds from branched-chain -keto acids in fermented foods such as cheese is believed to be mainly an enzymatic process, while the conversion of phenyl pyruvic acid, which is derived from phenylalanine, also proceeds chemically. In this research, the chemical conversion of

  18. Direct Spirocyclization from Keto-sulfonamides: An Approach to Azaspiro Compounds.

    Science.gov (United States)

    Beltran, Frédéric; Fabre, Indira; Ciofini, Ilaria; Miesch, Laurence

    2017-10-06

    Spontaneous spirocyclization of keto-sulfonamides via ynamides through a one-pot process is presented. Push-pull ynamides were obtained through Michael addition/elimination without Cu. The obtained azaspiro compounds are building blocks for indole alkaloids. Theoretical studies provide insights into the mechanism of the formal Conia-ene reaction.

  19. Rhodium(I) complexes of αα-keto-stabilised 1,2-bis ...

    Indian Academy of Sciences (India)

    Unknown

    Rh(I) complexes; ylide-phosphine; ambidentate coordination; crystal structure; NMR. 1. Introduction. The coordination and organometallic chemistry of α-keto stabilised phosphorus ylides has been investigated extensively and their ambidenticity explained in terms of a delicate balance between electronic and steric factors.1 ...

  20. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  1. Characterization of xylose reductase from Candida tropicalis ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... Xylose reductase gene, enzyme cofactors and plasmids. E.coli BL21(DE3) was used as host strains for ... C. tropicalis xylose reductase gene was isolated from plasmid. pMD18-T (TaKaRa, Japan). Enzyme ..... the gels is instable, soft and even dissolve in the solution containing multivalent anions or high ...

  2. Mechanistic aspects of rearrangement of 16alpha-hydroxy-17-keto steroids to the 17beta-hydroxy-16-keto isomers.

    Science.gov (United States)

    Numazawa, Mitsuteru; Nagaoka, Masao; Matsuzaki, Hisao; Yamashita, Kouwa; Komatsu, Sachiko; Osawa, Yoshio

    2008-09-01

    The mechanistic aspects of the alkali-catalyzed rearrangement of 16alpha-hydroxy-17-keto steroid 1 to 17beta-hydroxy-16-keto steroid 2 are elucidated by use of (18)O- and deuterium-labeling experiments. The (18)O-labeling experiments refute the gem-hydration-quasi-diaxial dehydration mechanism for the rearrangement previously proposed and support the conventional enolization mechanism. Moreover, equilibrium by gem-hydration-dehydration occurs at the C-17 carbonyl more efficiently than at the C-16 carbonyl. Enolization rate of a carbonyl group at C-16 of 17beta-ketol 2 toward the C-17 position (k(16,17)) was about 8-10 times higher than those of 16alpha-ketol 1 toward the C-16 position (k(17,16)) and ketol 2 toward the C-15 position (k(16,15)). The marked deuterium-isotope effect on each enolization was observed with k(H)/k(D) ranging between 5.4 and 8.8. The present findings reveal that the initial hydration-dehydration equilibration at the C-17 carbonyl of ketol 1 followed by enolization of the carbonyl gives the ene-diol intermediate that isomerizes quantitatively to the 16-keto isomer of which the 16-carbonyl moiety enolizes preferentially toward the C-17 position rather than the C-15 position, yielding the ene-diol. Computational calculations of ground state energies of ketols 1-M and 2-M, trans-cyclohexane/cyclopentane structures, and their activation energies in the rearrangement support the dynamic aspects of the rearrangement as well as the kinetics data of the enolization.

  3. Identification of a 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid Reductase, FlRed, in an Alginolytic Bacterium Flavobacterium sp. Strain UMI-01

    Directory of Open Access Journals (Sweden)

    Akira Inoue

    2015-01-01

    Full Text Available In alginate-assimilating bacteria, alginate is depolymerized to unsaturated monosaccharide by the actions of endolytic and exolytic alginate lyases (EC 4.2.2.3 and EC 4.2.2.11. The monosaccharide is non-enzymatically converted to 4-deoxy-l-ery thro-5-hexoseulose uronic acid (DEH, then reduced to 2-keto-3-deoxy-d-gluconate (KDG by a specific reductase, and metabolized through the Entner–Doudoroff pathway. Recently, the NADPH-dependent reductase A1-R that belongs to short-chain dehydrogenases/reductases (SDR superfamily was identified as the DEH-reductase in Sphingomonas sp. A1. We have subsequently noticed that an SDR-like enzyme gene, flred, occurred in the genome of an alginolytic bacterium Flavobacterium sp. strain UMI-01. In the present study, we report on the deduced amino-acid sequence of flred and DEH-reducing activity of recombinant FlRed. The deduced amino-acid sequence of flred comprised 254 residues and showed 34% amino-acid identities to that of A1-R from Sphingomonas sp. A1 and 80%–88% to those of SDR-like enzymes from several alginolytic bacteria. Common sequence motifs of SDR-superfamily enzymes, e.g., the catalytic tetrad Asn-Lys-Tyr-Ser and the cofactor-binding sequence Thr-Gly-x-x-x-Gly-x-Gly in Rossmann fold, were completely conserved in FlRed. On the other hand, an Arg residue that determined the NADPH-specificity of Sphingomonas A1-R was replaced by Glu in FlRed. Thus, we investigated cofactor-preference of FlRed using a recombinant enzyme. As a result, the recombinant FlRed (recFlRed was found to show high specificity to NADH. recFlRed exhibited practically no activity toward variety of aldehyde, ketone, keto ester, keto acid and aldose substrates except for DEH. On the basis of these results, we conclude that FlRed is the NADH-dependent DEH-specific SDR of Flavobacterium sp. strain UMI-01.

  4. Production of α-keto acids with alginate-entrapped whole cells of the yeastTrigonopsis variabilis.

    Science.gov (United States)

    Nilsson, K; Brodelius, P; Mosbach, K

    1982-01-01

    The yeast,Trigonopsis variabilis, was immobilized by entrapment in alginate. The immobilized cells containing high amounts of D-amino acid oxidase were used to convert D-amino acids to their corresponding α-keto acids.

  5. Carboxylic acid reductase enzymes (CARs).

    Science.gov (United States)

    Winkler, Margit

    2018-04-01

    Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Aldo Leopold's land health from a resilience point of view: self-renewal capacity of social-ecological systems.

    Science.gov (United States)

    Berkes, Fikret; Doubleday, Nancy C; Cumming, Graeme S

    2012-09-01

    Health approaches to ecology have a strong basis in Aldo Leopold's thinking, and contemporary ecohealth in turn has a strong philosophical basis in Leopold. To commemorate the 125th anniversary of Leopold's birth (1887-1948), we revisit his ideas, specifically the notions of stewardship (land ethic), productive use of ecosystems (land), and ecosystem renewal. We focus on Leopold's perspective on the self-renewal capacity of the land, as understood in terms of integrity and land health, from the contemporary perspective of resilience theory and ecological theory more generally. Using a broad range of literature, we explore insights and implications of Leopold's work for today's human-environment relationships (integrated social-ecological systems), concerns for biodiversity, the development of agency with respect to stewardship, and key challenges of his time and of ours. Leopold's seminal concept of land health can be seen as a triangulation of productive use, self-renewal, and stewardship, and it can be reinterpreted through the resilience lens as the health of social-ecological systems. In contemporary language, this involves the maintenance of biodiversity and ecosystem services, and the ability to exercise agency both for conservation and for environmental justice.

  7. Ferrisiderophore reductase activity in Bacillus megaterium.

    Science.gov (United States)

    Arceneaux, J E; Byers, B R

    1980-01-01

    The release of iron from ferrisiderophores (microbial ferric-chelating iron transport cofactors) by cell-free extracts of Bacillus megaterium was demonstrated. Reductive transfer of iron from ferrisiderophores to the ferrous-chelating agent ferrozine was measured spectrophotometrically. This ferrisiderophore reductase activity (reduced nicotinamide adenine dinucleotide phosphate:ferrisiderophore oxidoreductase) was associated primarily with the cell soluble rather than particulate (membrane) fraction. Ferrisiderophore reductase was inhibited by oxygen and required the addition of a reductant (reduced nicotinamide adenine dinucleotide phosphate was most effective) for maximal activity. The activity was destroyed by both heat and protease treatments and was inhibited by iodoacetamide treatment. Ferrisiderophore reductase activity for several microbial ferrisiderophores was measured; highest activity was displayed for ferrischizokinen, the ferrisiderophore produced by this organism. The Km and Vmax values of the reductase for ferrischizokinen were 2.5 x 10(-4) M and 35.7 nmol/min per mg of the ferrisiderophore reductase reaction. Preliminary fractionation of the cell soluble material by gel filtration chromatography resulted in the demonstration of ferrisiderophore reductase activity in three peaks of different molecular weight. Ferrisiderophore reductase probably mediates entrance of iron into cellular metabolism. PMID:6444944

  8. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  9. Asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with α-fluoro-β-keto esters

    Directory of Open Access Journals (Sweden)

    Lin Yan

    2013-09-01

    Full Text Available In the presence of a commercially available Cinchona alkaloid as catalyst, the asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates, with α-fluoro-β-keto esters as nucleophiles, have been successfully developed. A series of important fluorinated adducts, with chiral quaternary carbon centres containing a fluorine atom, was achieved in good yields (up to 93%, with good to excellent enantioselectivities (up to 96% ee and moderate diastereoselectivities (up to 4:1 dr.

  10. Asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates with α-fluoro-β-keto esters.

    Science.gov (United States)

    Yan, Lin; Han, Zhiqiang; Zhu, Bo; Yang, Caiyun; Tan, Choon-Hong; Jiang, Zhiyong

    2013-01-01

    In the presence of a commercially available Cinchona alkaloid as catalyst, the asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates, with α-fluoro-β-keto esters as nucleophiles, have been successfully developed. A series of important fluorinated adducts, with chiral quaternary carbon centres containing a fluorine atom, was achieved in good yields (up to 93%), with good to excellent enantioselectivities (up to 96% ee) and moderate diastereoselectivities (up to 4:1 dr).

  11. Supramolecular Influence on Keto-Enol Tautomerism and Thermochromic Properties of o-Hydroxy Schiff Bases

    Directory of Open Access Journals (Sweden)

    Marija Zbačnik

    2016-06-01

    Full Text Available This work presents a study on thermo-optical properties of three Schiff bases (imines in the solid state. The Schiff bases were obtained by means of mechanochemical synthesis using monosubstituted o-hydroxy aromatic aldehydes and monosubstituted aromatic amines. The keto-enol tautomerism and proton transfer via intramolecular O∙∙∙N hydrogen bond of the reported compounds was found to be influenced more by supramolecular interactions than by a temperature change. All products were characterised by powder X-ray diffraction (PXRD, FT-IR spectroscopy, thermogravimetric (TG analysis and differential scanning calorimetry (DSC. Molecular and crystal structures of compounds 1, 2 and 3 were determined by single crystal X-ray diffraction (SCXRD. The molecules of 1 appear to be present as the enol-imine, the molecules of 2 as the keto-amine tautomer and the molecules of 3 exhibit keto-enol tautomeric equilibrium in the solid state. An analysis of Cambridge structural database (CSD data on similar imines has been used for structural comparison. This work is licensed under a Creative Commons Attribution 4.0 International License.

  12. Thioredoxin Reductase and its Inhibitors

    Science.gov (United States)

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  13. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model.

    Directory of Open Access Journals (Sweden)

    Meng-Huang Wu

    Full Text Available This study evaluates the sustained analgesic effect of ketorolac-eluting thermosensitive biodegradable hydrogel in the plantar incisional pain model of the rat hind-paw. A ketorolac-embedded 2, 2'-Bis (2-oxazolin (BOX linking methoxy-poly(ethylene glycol and poly(lactide-co-glycolide (mPEG-PLGA diblock copolymer (BOX copolymer was synthesized as keto-hydrogel based on optimal sol-gel phase transition and in vitro drug release profile. The effect of keto-hydrogel on postoperative pain (POP was assessed using the established plantar incisional pain model in hind-paw of rats and compared to that of ketorolac solution. Pain and sensory threshold, as well as pain scoring, were evaluated with behavioral tests by means of anesthesiometer and incapacitance apparatus, respectively. Pro-inflammatory cytokine levels (TNF-α, IL-6, VEGF, and IL-1β around incisional wounds were measured by ELISA. Tissue histology was assessed using hematoxylin and eosin and Masson's trichrome staining. Ten mg/mL (25 wt% keto-hydrogel showed a sol-gel transition at 26.4°C with a 10-day sustained drug release profile in vitro. Compared to ketorolac solution group, the concentration of ketorolac in tissue fluid was higher in the keto-hydrogel group during the first 18 h of application. Keto-hydrogel elevated pain and sensory threshold, increased weight-bearing capacity, and significantly reduced the levels of TNF-α, IL-6, and IL-1β while enhanced VEGF in tissue fluid. Histologic analysis reveals greater epithelialization and collagen deposition around wound treated with keto-hydrogel. In conclusion, our study suggests that keto-hydrogel is an ideal compound to treat POP with a secondary gain of improved incisional wound healing.

  14. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata

    Directory of Open Access Journals (Sweden)

    Arora Daljit S

    2011-03-01

    Full Text Available Abstract Background Boswellic acids are pentacyclic triterpenes, which are produced in plants belonging to the genus Boswellia. Boswellic acids appear in the resin exudates of the plant and it makes up 25-35% of the resin. β-boswellic acid, 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid have been implicated in apoptosis of cancer cells, particularly that of brain tumors and cells affected by leukemia or colon cancer. These molecules are also associated with potent antimicrobial activities. The present study describes the antimicrobial activities of boswellic acid molecules against 112 pathogenic bacterial isolates including ATCC strains. Acetyl-11-keto-β-boswellic acid (AKBA, which exhibited the most potent antibacterial activity, was further evaluated in time kill studies, postantibiotic effect (PAE and biofilm susceptibility assay. The mechanism of action of AKBA was investigated by propidium iodide uptake, leakage of 260 and 280 nm absorbing material assays. Results AKBA was found to be the most active compound showing an MIC range of 2-8 μg/ml against the entire gram positive bacterial pathogens tested. It exhibited concentration dependent killing of Staphylococcus aureus ATCC 29213 up to 8 × MIC and also demonstrated postantibiotic effect (PAE of 4.8 h at 2 × MIC. Furthermore, AKBA inhibited the formation of biofilms generated by S. aureus and Staphylococcus epidermidis and also reduced the preformed biofilms by these bacteria. Increased uptake of propidium iodide and leakage of 260 and 280 nm absorbing material by AKBA treated cells of S aureus indicating that the antibacterial mode of action of AKBA probably occurred via disruption of microbial membrane structure. Conclusions This study supported the potential use of AKBA in treating S. aureus infections. AKBA can be further exploited to evolve potential lead compounds in the discovery of new anti-Gram-positive and anti-biofilm agents.

  15. Effect of 3-keto-1,5-bisphosphonates on obese-liver's rats.

    Science.gov (United States)

    Lahbib, Karima; Touil, Soufiane

    2016-10-01

    Obesity is associated with an oxidative stress status, which is defined by an excess of reactive oxygen species (ROS) vs. the antioxidant defense system. We report in this present work, the link between fat deposition and oxidative stress markers using a High Fat Diet-(HFD) induced rat obesity and liver-oxidative stress. We further determined the impact of chronic administration of 3-keto-1, 5-BPs 1 (a & b) (40μg/kg/8 weeks/i.p.) on liver's level. In fact, exposure of rats to HFD during 16 weeks induced body and liver weight gain and metabolic disruption with an increase on liver Alanine amino transférase (ALAT) and Aspartate aminotransférase (ASAT) concentration. HFD increased liver calcium level as well as free iron, whereas, it provoked a decrease on liver lipase activity. HFD also induced liver-oxidative stress status vocalized by an increase in reactive oxygen species (ROS) as superoxide radical (O 2 ), hydroxyl radical (OH) and Hydrogen peroxide (H 2 O 2 ). Consequently, different deleterious damages as an increase on Malon Dialdehyde MDA, Carbonyl protein PC levels with a decrease in non-protein sulfhydryls NPSH concentrations, have been detected. Interestingly, our results demonstrate a decrease in antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx) and peroxidases (POD). Importantly, 3-keto-1,5-bisphosphonates treatment corrected the majority of the deleterious effects caused by HFD, but it failed to correct some liver's disruptions as mineral profile, oxidative damages (PC and NPSH levels) as well as SOD and lipase activities. Our investigation point that 3-keto-1,5-bisphosphonates could be considered as safe antioxidant agents on the hepatic level that should also find other potential biological applications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. 3-Keto-22-epi-28-nor-cathasterone, a brassinosteroid-related metabolite from Cystoseira myrica.

    Science.gov (United States)

    Hamdy, Abdel-Hamid A; Aboutabl, Elsayed A; Sameer, Somayah; Hussein, Ahmed A; Díaz-Marrero, Ana R; Darias, José; Cueto, Mercedes

    2009-11-01

    Bioassay-guided purification of an ethanolic extract of Cystoseira myrica against HEPG-2 (liver) and HCT116 (colon) human cancer cell lines led to the isolation of 3-keto-22-epi-28-nor-cathasterone, 1 and cholest-4-ene-3,6-dione, 2. This finding allowed us to report for the first time that a brassinosteroid-related metabolite occurs in seaweed. These compounds showed activity in the range of 12.38-1.16 microM with selective activity of compound 2 to liver cancer cell lines.

  17. Determining the saturation vapour pressures of keto-dicarboxylic acids in aqueous solutions

    Science.gov (United States)

    Crljenica, Ivica; Yli-Juuti, Taina; Zardini, Alessandro A.; Julin, Jan; Bilde, Merete; Riipinen, Ilona

    2013-05-01

    A two-compartment binary mass transport model with group contribution methods parametrizations for the physical properties of the organic acids (UNIFAC Dortmund method for activity coefficients, GCVOL-OL-60 method for the pure liquid acid density, GC-MG method for the pure acid surface tension at room temperature, Fuller et al. method for the diffusion coefficients) was used to interpret the evaporation experiments of 100 nm sized ketodicarboxylic acid aqueous solutions droplets at ambient temperature. The determined values for the saturation vapour pressure of liquid 2-keto-glutaric acid are in the order of 10-5 Pa.

  18. Spectral correlation, antimicrobial and insect antifeedant activities of some 1-naphthyl keto-oxiranes

    Directory of Open Access Journals (Sweden)

    G. Thirunarayanan

    2014-12-01

    Full Text Available Thirteen optically active (αS,βR 1-naphthyl keto-oxiranes (1-naphthyl-4-yl[3-(substituted phenyloxiran-2-yl]methanones have been synthesised by phase transfer catalysed epoxidation of 1-naphthyl chalcones. The yields of oxiranes are more than 95%. The synthesized oxiranes have been characterized by IR, 1H, 13C and MS spectra. The spectral data are correlated with Hammett substituent constants and Swain–Lupton parameters. From the regression analysis the effect of substituent on the group frequencies has been predicted. The antimicrobial and insect antifeedant activities of all synthesised oxiranes have been evaluated.

  19. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  20. Improving low-temperature activity of Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase

    Directory of Open Access Journals (Sweden)

    Suzanne Wolterink-van Loo

    2009-01-01

    Full Text Available Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase (SacKdgA displays optimal activity at 95°C and is studied as a model enzyme for aldol condensation reactions. For application of SacKdgA at lower temperatures, a library of randomly generated mutants was screened for improved synthesis of 2-keto-3-deoxygluconate from pyruvate and glyceraldehyde at the suboptimal temperature of 50 °C. The single mutant SacKdgA-V193A displayed a threefold increase in activity compared with wild type SacKdgA. The increased specific activity at 40–60 °C of this mutant was observed, not only for the condensation of pyruvate with glyceraldehyde, but also for several unnatural acceptor aldehydes. The optimal temperature for activity of SacKdgA-V193A was lower than for the wild type enzyme, but enzymatic stability of the mutant was similar to that of the wild type, indicating that activity and stability were uncoupled. Valine193 has Van der Waals interactions with Lysine153, which covalently binds the substrate during catalysis. The mutation V193A introduced space close to this essential residue, and the increased activity of the mutant presumably resulted from increased flexibility of Lysine153. The increased activity of SacKdgA-V193A with unaffected stability demonstrates the potential for optimizing extremely thermostable aldolases for synthesis reactions at moderate temperatures.

  1. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters.

    Directory of Open Access Journals (Sweden)

    O Buß

    Full Text Available β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods-namely, the classical Z'-factor, standardized mean difference (SSMD, the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening.

  2. Keto-enol tautomerization and intermolecular proton transfer in photoionized cyclopentanone dimer in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arup K.; Chatterjee, Piyali; Chakraborty, Tapas, E-mail: pctc@iacs.res.in [Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A Raja S. C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2014-07-28

    Time-of-flight mass spectra of cyclopentanone and its clusters cooled in a supersonic jet expansion have been measured following 4-, 3-, and 2-photon ionizations by the 2nd, 3rd, and 4th harmonic wavelengths, respectively, of a Q-switched Nd:YAG laser. The mass spectra reveal signatures of energetically favored keto to enol tautomerization of the molecular ion leading to intermolecular proton transfer, and this observation is found sharply dependent on the ionization wavelengths used. Electronic structure calculation predicts that in spite of the energetic preference, keto-enol conversion barrier of isolated molecular ion is high. However, the barrier is significantly reduced in a CH⋯O hydrogen-bonded dimer of the molecule. The transition states associated with tautomeric conversion of both cyclopentanone monomer and dimer cations have been identified by means of intrinsic reaction co-ordinate calculation. In a supersonic jet expansion, although a weakly bound dimer is readily generated, the corresponding cation and also the protonated counterpart are observed only for ionization by 532 nm. For other two ionization wavelengths, these species do not register in the mass spectra, where the competing reaction channels via α-cleavage of the ring become dominant. In contrast to the report of a recent study, we notice that the intact molecular ion largely survives fragmentations when ionized from the 2-photon resonant 3p Rydberg state as intermediate using nanosecond laser pulses, and the corresponding resonant 3-photon ionization spectrum has been recorded probing the intact molecular ion.

  3. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... nitrate salts supply on nitrate accumulation, amino acid biosynthesis, total protein production, nitrate reductase activity and carbohydrate biosynthesis in the roots and leaves of the plants. The results indicate that both sodium and potassium nitrate supplementation had stimulatory effects on all of the.

  4. Methylenetetrahydrofolate reductase A1298C polymorphism and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: A meta analysis of 33 studies. ... were searched for case‑control studies relating the association between MTHFR A1298C polymorphism and BC risk and estimated summary odds ratios (ORs) with confidence intervals (CIs) for assessment.

  5. Xylose reductase from the thermophilic fungus Talaromyces ...

    Indian Academy of Sciences (India)

    Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed ...

  6. Methylenetetrahydrofolate reductase (MTHFR) C677T gene ...

    Indian Academy of Sciences (India)

    vitamin B12 and riboflavin that are required in Hcy metabolic pathway. Gene that encodes the methylenete- trahydrofolate reductase (MTHFR) enzyme that .... tors like climate, food habits, lifestyle and genetic makeup are common. Validation of the results of the present study in different ethnic groups with larger sample ...

  7. phenotype correlation of methylene tetrahydrofolate reductase ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    2014-06-21

    Jun 21, 2014 ... ORIGINAL ARTICLE. Study of genotype–phenotype correlation of methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms in a sample of Egyptian autistic children. Rabah M. Shawky a,. *, Farida El-baz b. , Tarek M. Kamal c. , Reham M. Elhossiny b. ,. Mona A. Ahmed b. , Ghada H. El Nady d.

  8. Structural, Biochemical, and Evolutionary Characterizations of Glyoxylate/Hydroxypyruvate Reductases Show Their Division into Two Distinct Subfamilies.

    Science.gov (United States)

    Kutner, Jan; Shabalin, Ivan G; Matelska, Dorota; Handing, Katarzyna B; Gasiorowska, Olga; Sroka, Piotr; Gorna, Maria W; Ginalski, Krzysztof; Wozniak, Krzysztof; Minor, Wladek

    2018-02-13

    The d-2-hydroxyacid dehydrogenase (2HADH) family illustrates a complex evolutionary history with multiple lateral gene transfers and gene duplications and losses. As a result, the exact functional annotation of individual members can be extrapolated to a very limited extent. Here, we revise the previous simplified view on the classification of the 2HADH family; specifically, we show that the previously delineated glyoxylate/hydroxypyruvate reductase (GHPR) subfamily consists of two evolutionary separated GHRA and GHRB subfamilies. We compare two representatives of these subfamilies from Sinorhizobium meliloti (SmGhrA and SmGhrB), employing a combination of biochemical, structural, and bioinformatics approaches. Our kinetic results show that both enzymes reduce several 2-ketocarboxylic acids with overlapping, but not equivalent, substrate preferences. SmGhrA and SmGhrB show highest activity with glyoxylate and hydroxypyruvate, respectively; in addition, only SmGhrB reduces 2-keto-d-gluconate, and only SmGhrA reduces pyruvate (with low efficiency). We present nine crystal structures of both enzymes in apo forms and in complexes with cofactors and substrates/substrate analogues. In particular, we determined a crystal structure of SmGhrB with 2-keto-d-gluconate, which is the biggest substrate cocrystallized with a 2HADH member. The structures reveal significant differences between SmGhrA and SmGhrB, both in the overall structure and within the substrate-binding pocket, offering insight into the molecular basis for the observed substrate preferences and subfamily differences. In addition, we provide an overview of all GHRA and GHRB structures complexed with a ligand in the active site.

  9. Adiponectin,leptin: focus on low-protein diet supplemented with keto acids in chronic glomerulonephritis with hbv patients

    Directory of Open Access Journals (Sweden)

    Shan Mou

    2012-06-01

    In conclusion: Short-term restriction of DPI 0.6–0.8 g of protein/ kg IBW/day is safe, when combined with keto acids, is associated with decreased of urinary protein and improvement of lipid metabolism

  10. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; MacLean, D A; Saltin, B

    1996-01-01

    1. Exercise leads to activation (dephosphorylation) of the branched-chain alpha-keto acid dehydrogenase (BCKADH). Here we investigate the effect of low pre-exercise muscle glycogen content and of branched-chain amino acid (BCAA) ingestion on the activity of BCKADH at rest and after 90 min of one...

  11. Pyruvate: immunonutritional effects on neutrophil intracellular amino or alpha-keto acid profiles and reactive oxygen species production

    NARCIS (Netherlands)

    Mathioudakis, D.; Engel, J.; Welters, I.D.; Dehne, M.G.; Matejec, R.; Harbach, H.; Henrich, M.; Schwandner, T.; Fuchs, M.; Weismuller, K.; Scheffer, G.J.; Muhling, J.

    2011-01-01

    For the first time the immunonutritional role of pyruvate on neutrophils (PMN), free alpha-keto and amino acid profiles, important reactive oxygen species (ROS) produced [superoxide anion (O(2) (-)), hydrogen peroxide (H(2)O(2))] as well as released myeloperoxidase (MPO) acitivity has been

  12. Activated endothelial cells elicit paracrine induction of epithelial chloride secretion. 6-Keto-PGF1alpha is an epithelial secretagogue.

    Science.gov (United States)

    Blume, E D; Taylor, C T; Lennon, P F; Stahl, G L; Colgan, S P

    1998-09-15

    Endothelial cells play a central role in the coordination of the inflammatory response. In mucosal tissue, such as the lung and intestine, endothelia are anatomically positioned in close proximity to epithelia, providing the potential for cell-cell crosstalk. Thus, in this study endothelial-epithelial biochemical crosstalk pathways were studied using a human intestinal crypt cell line (T84) grown in noncontact coculture with human umbilical vein endothelia. Exposure of such cocultures to endothelial-specific agonists (LPS) resulted in activation of epithelial electrogenic Cl- secretion and vectorial fluid transport. Subsequent experiments revealed that in response to diverse stimuli (LPS, IL-1alpha, TNF-alpha, hypoxia), endothelia produce and secrete a small, stable epithelial secretagogue into conditioned media supernatants. Further experiments identified this secretagogue as 6-keto-PGF1alpha, a stable hydrolysis product of prostacyclin (PGI2). Results obtained with synthetic prostanoids indicated that 6-keto-PGF1alpha (EC50 = 80 nM) and PGI2 stable analogues (EC50 = 280 nM) activate the same basolaterally polarized, Ca2+-coupled epithelial receptor. In summary, these findings reveal a previously unappreciated 6-keto-PGF1alpha receptor on intestinal epithelia, the ligation of which results in activation of electrogenic Cl- secretion. In addition, these data reveal a novel action for the prostacyclin hydrolysis product 6-keto-PGF1alpha and provide a potential endothelial- epithelial crosstalk pathway in mucosal tissue.

  13. Bismuth(III) trifluoromethanesulfonate catalyzed ring opening reaction of mono epoxy oleochemicals to form keto and diketo derivatives

    Science.gov (United States)

    Using a catalytic system, methyl oleate is transformed into long chain keto and diketo derivatives via an epoxide route. Methyl 9(10)-oxooctadecanoate and methyl 9,10-dioxooctadecanoate were made by a ring opening reaction of epoxidized methyl oleate using bismuth triflate catalyst. Lower reaction t...

  14. The diterpenoid 7-keto-sempervirol, derived from Lycium chinense, displays anthelmintic activity against both Schistosoma mansoni and Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Jennifer Edwards

    2015-03-01

    Full Text Available BACKGROUND: Two platyhelminths of biomedical and commercial significance are Schistosoma mansoni (blood fluke and Fasciola hepatica (liver fluke. These related trematodes are responsible for the chronic neglected tropical diseases schistosomiasis and fascioliasis, respectively. As no vaccine is currently available for anti-flukicidal immunoprophylaxis, current treatment is mediated by mono-chemical chemotherapy in the form of mass drug administration (MDA (praziquantel for schistosomiasis or drenching (triclabendazole for fascioliasis programmes. This overreliance on single chemotherapeutic classes has dramatically limited the number of novel chemical entities entering anthelmintic drug discovery pipelines, raising significant concerns for the future of sustainable blood and liver fluke control. METHODOLOGY/ PRINCIPLE FINDINGS: Here we demonstrate that 7-keto-sempervirol, a diterpenoid isolated from Lycium chinense, has dual anthelmintic activity against related S. mansoni and F. hepatica trematodes. Using a microtiter plate-based helminth fluorescent bioassay (HFB, this activity is specific (Therapeutic index = 4.2, when compared to HepG2 cell lines and moderately potent (LD50 = 19.1 μM against S. mansoni schistosomula cultured in vitro. This anti-schistosomula effect translates into activity against both adult male and female schistosomes cultured in vitro where 7-keto-sempervirol negatively affects motility/behaviour, surface architecture (inducing tegumental holes, tubercle swelling and spine loss/shortening, oviposition rates and egg morphology. As assessed by the HFB and microscopic phenotypic scoring matrices, 7-keto-sempervirol also effectively kills in vitro cultured F. hepatica newly excysted juveniles (NEJs, LD50 = 17.7 μM. Scanning electron microscopy (SEM evaluation of adult F. hepatica liver flukes co-cultured in vitro with 7-keto-sempervirol additionally demonstrates phenotypic abnormalities including breaches in tegumental

  15. Very low levels of 6-keto-prostaglandin F /sub 1//sub. cap alpha. / in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Siess, W.; Dray, F.

    1982-03-01

    Two stable derivatives of PGI/sub 2/, its nonenzymatic hydrolysis product (6-keto-PGF/sub 1//sub ..cap alpha../) and an enzymatic metabolite (6, 15-diketo-PGF/sub 1//sub ..cap alpha../) were determined in human plasma and urine. These compounds were measured by RIA after separation on rp-HPLC. Previous purification of the samples on rp=HPLC markedly enhanced the specificity of the RIA determinations of those compounds in plasma and urine. The PGI/sub 2/ derivative 6-keto-PGF/sub 1//sub ..cap alpha../ was detected in both plasma (4.7 +/- 3.2 pg/ml, mean +/- S.D., n = 34) and urine (166 +/- 61 pg/ml, n = 9). No gender differences of the plasma or urinary levels of 6-keto-PGF/sub 1//sub ..cap alpha../ were found. The PGI/sub 2/ metabolite 6, 15-diketo-PGF/sub 1//sub ..cap alpha../ was not measurable in plasma or urine (<1 and <10 pg/ml, respectively, n = 4). Thus this compound may not be a major endogenous metabolite of PGI/sub 2/ in man. When (/sup 3/H)PGI/sub 2/ was added to citrated blood immediately after venipuncture, it was recovered entirely as (/sup 3/H)6-keto-PGF/sub 1//sub ..cap alpha../ after rp-HPLC. Therefore any circulating PGI/sub 2/ would be measured as 6-keto-PGF/sub 1//sub ..cap alpha../ by our method. The results obtained suggest that PGI/sub 2/ could be present in human venous blood under physiological conditions, but only in very low concentrations.

  16. Accumulation of α-Keto Acids as Essential Components in Cyanide Assimilation by Pseudomonas fluorescens NCIMB 11764

    Science.gov (United States)

    Kunz, Daniel A.; Chen, Jui-Lin; Pan, Guangliang

    1998-01-01

    Pyruvate (Pyr) and α-ketoglutarate (αKg) accumulated when cells of Pseudomonas fluorescens NCIMB 11764 were cultivated on growth-limiting amounts of ammonia or cyanide and were shown to be responsible for the nonenzymatic removal of cyanide from culture fluids as previously reported (J.-L. Chen and D. A. Kunz, FEMS Microbiol. Lett. 156:61–67, 1997). The accumulation of keto acids in the medium paralleled the increase in cyanide-removing activity, with maximal activity (760 μmol of cyanide removed min−1 ml of culture fluid−1) being recovered after 72 h of cultivation, at which time the keto acid concentration was 23 mM. The reaction products that formed between the biologically formed keto acids and cyanide were unambiguously identified as the corresponding cyanohydrins by 13C nuclear magnetic resonance spectroscopy. Both the Pyr and α-Kg cyanohydrins were further metabolized by cell extracts and served also as nitrogenous growth substrates. Radiotracer experiments showed that CO2 (and NH3) were formed as enzymatic conversion products, with the keto acid being regenerated as a coproduct. Evidence that the enzyme responsible for cyanohydrin conversion is cyanide oxygenase, which was shown previously to be required for cyanide utilization, is based on results showing that (i) conversion occurred only when extracts were induced for the enzyme, (ii) conversion was oxygen and reduced-pyridine nucleotide dependent, and (iii) a mutant strain defective in the enzyme was unable to grow when it was provided with the cyanohydrins as a growth substrate. Pyr and αKg were further shown to protect cells from cyanide poisoning, and excretion of the two was directly linked to utilization of cyanide as a growth substrate. The results provide the basis for a new mechanism of cyanide detoxification and assimilation in which keto acids play an essential role. PMID:9797306

  17. Enzymatic Conversion of Glucose to UDP-4-Keto-6-Deoxyglucose in Streptomyces spp.

    Science.gov (United States)

    Liu, Song Yu; Rosazza, John P. N.

    1998-01-01

    All of the 2,6-dideoxy sugars contained within the structure of chromomycin A3 are derived from d-glucose. Enzyme assays were used to confirm the presence of hexokinase, phosphoglucomutase, UDPG pyrophosphorylase (UDPGP), and UDPG oxidoreductase (UDPGO), all of which are involved in the pathway of glucose activation and conversion into 2,6-dideoxyhexoses during chromomycin biosynthesis. Levels of the four enzymes in Streptomyces spp. cell extracts were correlated with the production of chromomycins. The pathway of sugar activation in Streptomyces spp. involves glucose 6-phosphorylation by hexokinase, isomerization to G-1-P catalyzed by phosphoglucomutase, synthesis of UDPG catalyzed by UDPGP, and formation of UDP-4-keto-6-deoxyglucose by UDPGO. PMID:9758828

  18. Powstanie i rozwój filozofii środowiskowej w USA na podstawie poglądów Johna Muira, Aldo Leopolda i J. Bairda Callicota

    Directory of Open Access Journals (Sweden)

    Leszek Pyra

    2013-06-01

    Full Text Available The Origin and Development of Environmental Philosophy in the US according to John Muir, Aldo Leopold and J. Baird Callicot. The publication refers to environmental philosophy, which is also called ecological philosophy or ecophilosophy. It shows in what way philosophical reflection on the environment has been shaped in the American tradition. In this context, the views of the thinkers listed below have been presented, analysed and evaluated. John Muir, an astute observer of wild nature, has been presented as an enthusiast and a prophet persuading a return to nature. Muir was a forester under the strong influence of the representatives of transcendentalism. As an activist, he founded national parks that served to preserve virgin areas, and as a writer he popularized the concept of the preservation of wild areas. For many representatives of ecophilosophy, the views of Aldo Leopold, as expressed in his well-known work, A Sand County Almanac, constituted a new pattern of thinking about wild nature. The book itself is almost generally regarded as a bible of environmental philosophy. Leopold, a forester interested in philosophy, created the fundamentals of holistic environmental philosophy, but the theory he developed is not without defects, to which some attention has been paid in this paper. The theory of J. Baird Callicot presents the attitude of an academic philosopher with regard to wild nature. His attitude is fully professional as regards the applied method, thus allowing the author to avoid committing a naturalistic fallacy. Callicot reinterprets the issues of facts and values, because he thinks that the discoveries of the dynamically developing ecology make possible the reformulation of the traditional approach to such issues by utilising a spirit of acceptance, and lead to a shift from is to ought to be

  19. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae.

    Science.gov (United States)

    Jirschitzka, Jan; Schmidt, Gregor W; Reichelt, Michael; Schneider, Bernd; Gershenzon, Jonathan; D'Auria, John Charles

    2012-06-26

    The pharmacologically important tropane alkaloids have a scattered distribution among angiosperm families, like many other groups of secondary metabolites. To determine whether tropane alkaloids have evolved repeatedly in different lineages or arise from an ancestral pathway that has been lost in most lines, we investigated the tropinone-reduction step of their biosynthesis. In species of the Solanaceae, which produce compounds such as atropine and scopolamine, this reaction is known to be catalyzed by enzymes of the short-chain dehydrogenase/reductase family. However, in Erythroxylum coca (Erythroxylaceae), which accumulates cocaine and other tropane alkaloids, no proteins of the short-chain dehydrogenase/reductase family were found that could catalyze this reaction. Instead, purification of E. coca tropinone-reduction activity and cloning of the corresponding gene revealed that a protein of the aldo-keto reductase family carries out this reaction in E. coca. This protein, designated methylecgonone reductase, converts methylecgonone to methylecgonine, the penultimate step in cocaine biosynthesis. The protein has highest sequence similarity to other aldo-keto reductases, such as chalcone reductase, an enzyme of flavonoid biosynthesis, and codeinone reductase, an enzyme of morphine alkaloid biosynthesis. Methylecgonone reductase reduces methylecgonone (2-carbomethoxy-3-tropinone) stereospecifically to 2-carbomethoxy-3β-tropine (methylecgonine), and has its highest activity, protein level, and gene transcript level in young, expanding leaves of E. coca. This enzyme is not found at all in root tissues, which are the site of tropane alkaloid biosynthesis in the Solanaceae. This evidence supports the theory that the ability to produce tropane alkaloids has arisen more than once during the evolution of the angiosperms.

  20. A Combined DFT and NMR Investigation of the Zinc Organometallic Intermediate Proposed in the Syn-Selective Tandem Chain Extension-Aldol Reaction of β-Keto Esters

    Science.gov (United States)

    Aiken, Karelle S.; Eger, Wilhelm A.; Williams, Craig M.; Spencer, Carley M.

    2012-01-01

    The tandem chain extension-aldol (TCA) reaction of β-keto esters provides a α-substituted γ-keto ester with an average syn:anti selectivity of 10:1. It is proposed that the reaction proceeds via a carbon-zinc bound organometallic intermediate potentially bearing mechanistic similarity to the Reformatsky reaction. Evidence, derived from control Reformatsky reactions and a study of the structure of the TCA intermediate utilizing DFT methods and NMR-spectroscopy, suggests the γ-keto group of the TCA intermediate plays a significant role in diastereoselectivity observed in this reaction. Such coordination effects have design implications for future zinc mediated reactions. PMID:22703563

  1. Lapachol inhibition of vitamin K epoxide reductase and vitamin K quinone reductase.

    Science.gov (United States)

    Preusch, P C; Suttie, J W

    1984-11-01

    Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] has been shown to be a potent inhibitor of both vitamin K epoxide reductase and the dithiothreitol-dependent vitamin K quinone reductase of rat liver microsomes in vitro. These observations explain the anticoagulant activity of lapachol previously observed in both rats and humans. Lapachol inhibition of the vitamin K epoxide and quinone reductases resembled coumarin anticoagulant inhibition, and was observed in normal strain but not in warfarin-resistant strain rat liver microsomes. This similarity of action suggests that the lactone functionality of the coumarins is not critical for their activity. The initial-velocity steady-state inhibition patterns for lapachol inhibition of the solubilized vitamin K epoxide reductase were consistent with tight binding of lapachol to the oxidized form of the enzyme, and somewhat lower affinity for the reduced form. It is proposed that lapachol assumes a 4-enol tautomeric structure similar to that of the 4-hydroxy coumarins. These structures are analogs of the postulated hydroxyvitamin K enolate intermediate bound to the oxidized form of the enzyme in the chemical reaction mechanism of vitamin K epoxide reductase, thus explaining their high affinity.

  2. VITAL (Vanguard Investigations of Therapeutic Approaches to Lung Cancer)

    Science.gov (United States)

    2009-01-01

    organotypic culture environment mimics lung stratified epithelium, complete with basal cells, ciliated columnar cells, and mucus - producing goblet...Yang SC, Luo J, et al. Cyclooxygenase-2-dependent regulation of E- cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in...5AC, oligomeric mucus /gel-forming XM_001130382 214385_s_at AKR1C2 3.3 4.2 3.5 3.5 0.0000 aldo-keto reductase family 1, member C2 NM_001354 209699_x_at

  3. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review

    Directory of Open Access Journals (Sweden)

    Cliff J. d C. Harvey

    2018-03-01

    Full Text Available Background Adaptation to a ketogenic diet (keto-induction can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase. Methods PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched online. Various purported ketogenic supplements were searched along with the terms “ketogenic diet”, “ketogenic”, “ketosis” and ketonaemia (/ ketonemia. Additionally, author names and reference lists were used for further search of the selected papers for related references. Results Evidence, from one mouse study, suggests that leucine doesn’t significantly increase beta-hydroxybutyrate (BOHB but the addition of leucine to a ketogenic diet in humans, while increasing the protein-to-fat ratio of the diet, doesn’t reduce ketosis. Animal studies indicate that the short chain fatty acids acetic acid and butyric acid, increase ketone body concentrations. However, only one study has been performed in humans. This demonstrated that butyric acid is more ketogenic than either leucine or an 8-chain monoglyceride. Medium-chain triglycerides (MCTs increase BOHB in a linear, dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous ketones promote ketonaemia but may inhibit ketogenesis. Conclusions There is a clear ketogenic effect of supplemental MCTs; however, it is unclear whether they independently improve time to NK and reduce symptoms of keto-induction. There is limited research on the potential for other supplements to improve time to NK and reduce symptoms of keto-induction. Few studies have specifically evaluated symptoms and adverse

  4. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review.

    Science.gov (United States)

    Harvey, Cliff J D C; Schofield, Grant M; Williden, Micalla

    2018-01-01

    Adaptation to a ketogenic diet (keto-induction) can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase. PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched online. Various purported ketogenic supplements were searched along with the terms "ketogenic diet", "ketogenic", "ketosis" and ketonaemia (/ ketonemia). Additionally, author names and reference lists were used for further search of the selected papers for related references. Evidence, from one mouse study, suggests that leucine doesn't significantly increase beta-hydroxybutyrate (BOHB) but the addition of leucine to a ketogenic diet in humans, while increasing the protein-to-fat ratio of the diet, doesn't reduce ketosis. Animal studies indicate that the short chain fatty acids acetic acid and butyric acid, increase ketone body concentrations. However, only one study has been performed in humans. This demonstrated that butyric acid is more ketogenic than either leucine or an 8-chain monoglyceride. Medium-chain triglycerides (MCTs) increase BOHB in a linear, dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous ketones promote ketonaemia but may inhibit ketogenesis. There is a clear ketogenic effect of supplemental MCTs; however, it is unclear whether they independently improve time to NK and reduce symptoms of keto-induction. There is limited research on the potential for other supplements to improve time to NK and reduce symptoms of keto-induction. Few studies have specifically evaluated symptoms and adverse effects of a ketogenic diet during the induction phase. Those that

  5. NADH-Ferricyanide Reductase of Leaf Plasma Membranes : Partial Purification and Immunological Relation to Potato Tuber Microsomal NADH-Ferricyanide Reductase and Spinach Leaf NADH-Nitrate Reductase.

    Science.gov (United States)

    Askerlund, P; Laurent, P; Nakagawa, H; Kader, J C

    1991-01-01

    Plasma membranes obtained by two-phase partitioning of microsomal fractions from spinach (Spinacea oleracea L. cv Medania) and sugar beet leaves (Beta vulgaris L.) contained relatively high NADH-ferricyanide reductase and NADH-nitrate reductase (NR; EC 1.6.6.1) activities. Both of these activities were latent. To investigate whether these activities were due to the same enzyme, plasma membrane polypeptides were separated with SDS-PAGE and analyzed with immunoblotting methods. Antibodies raised against microsomal NADH-ferricyanide reductase (tentatively identified as NADH-cytochrome b(5) reductase, EC 1.6.2.2), purified from potato (Solanum tuberosum L. cv Bintje) tuber microsomes, displayed one single band at 43 kilodaltons when reacted with spinach plasma membranes, whereas lgG produced against NR from spinach leaves gave a major band at 110 kilodaltons together with a few fainter bands of lower molecular mass. Immunoblotting analysis using inside-out and right-side-out plasma membrane vesicles strongly indicated that NR was not an integral protein but probably trapped inside the plasma membrane vesicles during homogenization. Proteins from spinach plasma membranes were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio] 1-propane-sulfonate and separated on a Mono Q anion exchange column at pH 5.6 with fast protein liquid chromatography. One major peak of NADH-ferricyanide reductase activity was found after separation. The peak fraction was enriched about 70-fold in this activity compared to the plasma membrane. When the peak fractions were analyzed with SDS-PAGE the NADH-ferricyanide reductase activity strongly correlated with a 43 kilodalton polypeptide which reacted with the antibodies against potato microsomal NADH-ferricyanide reductase. Thus, our data indicate that most, if not all, of the truly membrane-bound NADH-ferricyanide reductase activity of leaf plasma membranes is due to an enzyme very similar to potato tuber

  6. Characterization of human DHRS4: an inducible short-chain dehydrogenase/reductase enzyme with 3beta-hydroxysteroid dehydrogenase activity.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Endo, Satoshi; Maeda, Satoshi; Ishikura, Shuhei; Tajima, Kazuo; Tanaka, Nobutada; Nakamura, Kazuo T; Imamura, Yorishige; Hara, Akira

    2008-09-15

    Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.

  7. 1H-NMR study on H-D exchange in N,N-dimethylacetoacetamide coupled with keto-enol tautomerism in methanol-d

    International Nuclear Information System (INIS)

    Saito, Hide; Matsuo, Taku

    1979-01-01

    Keto-enol tautomerism and solute-solvent H-D exchange of N,N-dimethylacetoacetamide were followed by the change in 1 H-NMR spectra after dissolving it into methanol-d (8.3% (v/v)). The molar ratio of the keto form passed through a minimum before it approached a final equilibrium value, while the degree of deuterium substitution at the methylene group followed an ordinary first order reaction kinetics. A general reaction scheme (Scheme 2), which includes both keto-enol tautomerism and H-D exchange, was simplified by the use of the experimental conditions so that only five intermediate species were involved (Scheme 3). The experimental data were reasonably reproduced by the theoretical calculations (Eqs. 13 and 14) based on the simplified reaction scheme (Figs. 2 and 3). The keto-enol tautomerism of N,N-dimethylacetoacetamide in methanol was thus concluded to proceed via solute-solvent proton exchange reaction. (author)

  8. Evaluation of plasma and urinary levels of 6-keto-prostaglandin F1a as a marker for asymptomatic myxomatous mitral valve disease in dogs

    DEFF Research Database (Denmark)

    Rasmussen, Caroline Elisabeth; Sundqvist, Anna Vilhelmina; Kjempff, Christina Tirsdal

    2010-01-01

    Endothelial dysfunction might be involved in the pathogenesis of myxomatous mitral valve disease (MMVD). The aims of this study were (1) to validate an enzyme immunoassay (EIA) for canine 6-keto-prostaglandin (PG)F(1alpha) (prostacyclin metabolite and marker for endothelial function) and (2......) to compare plasma and urinary 6-keto-PGF(1alpha) in dogs with asymptomatic MMVD. The study included two breeds predisposed to MMVD and two control groups (Cairn terriers and dogs of different breeds). Echocardiography was used to estimate the severity of MMVD. The intra- and inter-assay coefficients...... of variation were between 3.1% and 24.5% in the assay range. No echocardiographic parameter was correlated with plasma or urinary 6-keto-PGF(1alpha) (P>0.05), but all control dogs had lower urinary 6-keto-PGF(1alpha) (Pketo-PGF(1alpha) (P

  9. Synthesis of gamma,delta-unsaturated-beta-keto lactones via sequential cross metathesis-lactonization: a facile entry to macrolide antibiotic (-)-A26771B.

    Science.gov (United States)

    Gebauer, Julian; Blechert, Siegfried

    2006-03-03

    A simple access to gamma,delta-unsaturated-beta-keto lactones is presented, allowing a rapid total synthesis of the naturally occurring 16-membered macrolide antibiotic (-)-A26771B via cross metathesis, asymmetric dihydroxylation, and lactonization as the key steps.

  10. β-Keto and β-hydroxyphosphonate analogs of biotin-5’-AMP are inhibitors of holocarboxylase synthetase

    Science.gov (United States)

    Sittiwong, Wantanee; Cordonier, Elizabeth L.; Zempleni, Janos; Dussault, Patrick H.

    2014-01-01

    Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin to cytoplasmic and mitochondrial carboxylases, nuclear histones, and over a hundred human proteins. Nonhydrolyzable ketophosphonate (β-ketoP) and hydroxyphosphonate (β-hydroxyP) analogs of biotin-5′-AMP inhibit holocarboxylase synthetase (HLCS) with IC50 values of 39.7 μM and 203.7 μM. By comparison, an IC50 value of 7 μM was observed with the previously reported biotinol-5'-AMP. The Ki values, 3.4 μM and 17.3 μM, respectively, are consistent with the IC50 results, and close to the Ki obtained for biotinol-5'-AMP (7 μM). The β-ketoP and β-hydroxyP molecules are competitive inhibitors of HLCS while biotinol-5'-AMP inhibited HLCS by a mixed mechanism. PMID:25466176

  11. β-Keto and β-hydroxyphosphonate analogs of biotin-5'-AMP are inhibitors of holocarboxylase synthetase.

    Science.gov (United States)

    Sittiwong, Wantanee; Cordonier, Elizabeth L; Zempleni, Janos; Dussault, Patrick H

    2014-12-15

    Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin to cytoplasmic and mitochondrial carboxylases, nuclear histones, and over a hundred human proteins. Nonhydrolyzable ketophosphonate (β-ketoP) and hydroxyphosphonate (β-hydroxyP) analogs of biotin-5'-AMP inhibit holocarboxylase synthetase (HLCS) with IC50 values of 39.7 μM and 203.7 μM. By comparison, an IC50 value of 7 μM was observed with the previously reported biotinol-5'-AMP. The Ki values, 3.4 μM and 17.3 μM, respectively, are consistent with the IC50 results, and close to the Ki obtained for biotinol-5'-AMP (7 μM). The β-ketoP and β-hydroxyP molecules are competitive inhibitors of HLCS while biotinol-5'-AMP inhibited HLCS by a mixed mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Baker's Yeast Reduction of Keto-Esters in Organic Solvents: A One Week Research Project for Undergraduate Students

    Science.gov (United States)

    North, Michael

    1998-05-01

    An experiment has been designed which allows final year undergraduate students to carry out a mini-research project in one week and thus get a flavour of the joys and tribulations of conducting chemical research before they undertake a major research project. The experiment is an investigation into the reduction of alpha- or beta-keto esters using non-fermenting Baker's yeast in petroleum ether. There are a number of advantages to this method of using Baker's yeast, including a reduction in the amount of organic solvent used, and a much simplified purification procedure. During the course of the mini-project, the substrate specificity of the yeast is investigated, and the conditions for the optimisation of a particular keto ester are determined. Each product is analysed by a variety of analytical techniques including polarimetry, IR, NMR, and GC. In addition, the use of correct stereochemical nomenclature to describe prochiral, and chiral compounds as well as chemical reactions are discussed.

  13. Synthesis and structure-activity relationship of α-keto amides as enterovirus 71 3C protease inhibitors.

    Science.gov (United States)

    Zeng, Debin; Ma, Yuying; Zhang, Rui; Nie, Quandeng; Cui, Zhengjie; Wang, Yaxin; Shang, Luqing; Yin, Zheng

    2016-04-01

    α-Keto amide derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. structure-activity relationship (SAR) study indicated that small moieties were primarily tolerated at P1' and the introduction of para-fluoro benzyl at P2 notably improved the potency of inhibitor. Inhibitors 8v, 8w and 8x exhibited satisfactory activity (IC50=1.32±0.26μM, 1.88±0.35μM and 1.52±0.31μM, respectively) and favorable CC50 values (CC50>100μM). α-Keto amide may represent a good choice as a warhead for EV71 3C(pro) inhibitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Changes of plasma TXB2 and 6-Keto-PGF1α concentrations and their relationship with pulmonary hypertension in patients with chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Luo Rong; Li Zhuocheng; Zhang Min

    2004-01-01

    Objective: To investigate the changes of plasma levels of thromboxone A 2 (TXA 2 ) and prostacyclin (PGI 2 ) and their relationship with pulmonary hypertension in patients with chronic obstructive pulmonary disease (COPD). Methods: The mean pulmonary arterial pressure (PaP) and plasma levels of thromboxone B 2 (TXB 2 ) and 6-Keto-PGF 1α (being the measurable stable metabolic product of TXA 2 and PGI 2 respectively) were measured in 30 COPD patients (with or without pulmonary hypertension) during remission and 37 controls. Besides, these variants were measured in 7 other COPD patients with acute exacerbation both at admission and after successful treatment. Results: During remission, the plasma TXB 2 levels were significantly higher and plasma 6-Keto-PGF 1α levels significantly lower with elevated TXB 2 /6-Keto-PGF 1α ration in COPD patients with pulmonary hypertension than those in patients without pulmonary hypertension (P 0.05). PaP and TxB 2 levels significantly decreased and 6-Keto-PGF 1α increased with lower TXB 2 /6-Keto-PGF 1α ratio after successful treatment in the 7 COPD patients with acute exacerbation (vs at admission, P 2 level and negatively correlated to 6-Keto-PGF 1α level (r=+0.46 and -0.39 respectively, P 2 and PGI 2 plays an important role in the development of pulmonary hypertension in patients with COPD

  15. N-Heterocyclic Carbene-Catalyzed Vinylogous Mukaiyama Aldol Reaction of α-Keto Esters and α-Trifluoromethyl Ketones

    KAUST Repository

    Du, Guang-Fen

    2015-11-05

    © Georg Thieme Verlag Stuttgart · New York · Synthesis 2016. N-Heterocyclic carbene (NHC)-catalyzed vinylogous Mukaiyama aldol reaction of ketones was developed. Under the catalysis of 5 mol% NHC, α-keto esters and α-trifluoromethyl ketones reacted with 2-(trimethysilyloxy)furan efficiently to produce γ-substituted butenolides containing adjacent quaternary and tertiary carbon centers in high yields with good diastereoselectivities.

  16. Rearrangement of beta,gamma-unsaturated esters with thallium trinitrate: synthesis of indans bearing a beta-keto ester moiety

    Directory of Open Access Journals (Sweden)

    Silva Jr. Luiz F.

    2006-01-01

    Full Text Available The rearrangement of beta,gamma-unsaturated esters, such as 2-(3,4-dihydronaphthalen-1-yl-propionic acid ethyl ester, with thallium trinitrate (TTN in acetic acid leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl ester in good yield, through a ring contraction reaction. The new indans thus obtained feature a beta-keto ester moiety, which would be useful for further functionalization.

  17. Observations on plasma levels of ET, TXB2, 6-Keto-PGF1α in patients with coronary heart disease

    International Nuclear Information System (INIS)

    Chi Liuying; Zhao Xin; Li Lusheng; Yang Xixiu; Mao Hongyu

    2006-01-01

    Objective: To explore the chinical significance of changes of plasma levels of ET, TXB 2 and 6-Keto-PGF 1α during attacks in patients with coronary heart disease (CHD). Methods: Plasma ET, TXB 2 and 6-Keto-PGF 1α levels were determined with RIA in 25 patients with unstable angina (UA) both during and after the angina attack, 22 patients with acute myocardial infarction (AMI) both before and after thrombolytic therapy and 35 controls. Results: Plasma levels of ET and TXB 2 in UA patients during angina attack and AMI patients before thrombolytic therapy were significantly higher than those in UA patients after attack and AMI patients after thrombolytic therapy respectively (P 1α i.e. significantly lower during attack and before thrombolytic therapy. Conclusion: Over secretion of ET during cardiac events would result in overactivation of platelets with increase of TXB 2 and decrease of 6-Keto-PGF 1α , which would potentiate coronary arterial spasm and thrombosis formation. (authors)

  18. The experience of the Use of Essential Amino Acids and Their Keto-analogs in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    S.V. Kushnirenko

    2013-02-01

    Full Text Available This article explored the possibility of prolonged use of low-protein diet, 0.8 g/kg/day in combination with essential keto-analogs of amino acids in children with chronic kidney disease stage 4 to maximize the predialysis period. Long-term low-protein diet in combination with amino acids keto-analogs hadn’t negative impact on laboratory indices of the nutritional status, as well as had favorable effect on the correction of metabolic acidosis and disorders of calcium-phosphorus metabolism. During intake of amino acids keto-analogs there had been marked a distinct tendency to preserve the level of creatinine and significant reduction in the level of urea in the blood serum, which helped to keep the current level of azotemia in 18 patients (90 %. In 2 patients (10 % dialysis program had been started. In the control group by the end of the study period, the need for renal replacement therapy occurred in 4 patients (23.5 %. Dynamics of glomerular filtration rate in the two treatment groups showed a decrease in this indicator in an average of 2 ml/min per year in patients treated with low-protein diet in combination with Ketosteril, and 6 ml/min per year in the control group.

  19. Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase.

    Science.gov (United States)

    Endo, Satoshi; Matsunaga, Toshiyuki; Kitade, Yukio; Ohno, Satoshi; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2008-12-26

    A protein encoded in the gene Cbr4 on human chromosome 4q32.3 belongs to the short-chain dehydrogenase/reductase family. Contrary to the functional annotation as carbonyl reductase 4 (CBR4), we show that the recombinant tetrameric protein, composed of 25-kDa subunits, exhibits NADPH-dependent reductase activity for o- and p-quinones, but not for other aldehydes and ketones. The enzyme was insensitive to dicumarol and quercetin, potent inhibitors of cytosolic quinone reductases. The 25-kDa CBR4 was detected in human liver, kidney and cell lines on Western blotting using anti-CBR4 antibodies. The overexpression of CBR4 in bovine endothelial cells reveals that the enzyme has a non-cleavable mitochondrial targeting signal. We further demonstrate that the in vitro quinone reduction by CBR4 generates superoxide through the redox cycling, and suggest that the enzyme may be involved in the induction of apoptosis by cytotoxic 9,10-phenanthrenequinone.

  20. Structure and mechanism of dimethylsulfoxide reductase, a molybdopterin-containing enzyme of DMSO reductase family

    International Nuclear Information System (INIS)

    McEwan, A.G.; Ridge, J.P.; McDevitt, C.A.; Hanson, G.R.

    2001-01-01

    Full text: Apart from nitrogenase, enzymes containing molybdenum are members of a superfamily, the molybdopterin-containing enzymes. Most of these enzymes catalyse an oxygen atom transfer and two electron transfer reaction. During catalysis the Mo at the active site cycles between the Mo(VI) and Mo(IV) states. The DMSO reductase family of molybdopterin-containing enzymes all contain a bis(molybdopterin guanine dinucleotide)Mo cofactor and over thirty examples have now been described. Over the last five years crystal structures of dimethylsulfoxide (DMSO) reductase and four other enzymes of the DMSO reductase family have revealed that enzymes of this family have a similar tertiary structure. The Mo atom at the active site is coordinated by four thiolate ligands provided by the dithiolene side chains of the two MGD molecules of the bis(MGD)Mo cofactor as well as a ligand provided by an amino acid side chain. In addition, an oxygen atom in the form of an oxo, hydroxo or aqua group is also coordinated to the Mo atom. In the case of dimethylsulfoxide reductase X-ray crystallography of the product-reduced species and Raman spectroscopy has demonstrated that the enzyme contains a single exchangeable oxo group that is H-bonded to W116

  1. Nitroreductase reactions of Arabidopsis thaliana thioredoxin reductase.

    Science.gov (United States)

    Miskiniene, V; Sarlauskas, J; Jacquot, J P; Cenas, N

    1998-09-07

    Arabidopsis thaliana NADPH:thioredoxin reductase (TR, EC 1.6.4.5) catalyzed redox cycling of aromatic nitrocompounds, including the explosives 2,4,6-trinitrotoluene and tetryl, and the herbicide 3,5-dinitro-o-cresol. The yield of nitro anion radicals was equal to 70-90%. Redox cycling of tetryl was accompanied by formation of N-methylpicramide. Bimolecular rate constants of nitroaromatic reduction (kcat/Km) and reaction catalytic constants (kcat) increased upon an increase in oxidant single-electron reduction potential (E(1)7). Using compounds with an unknown E(1)7 value, the reactivity of TR increased parallelly to the increase in reactivity of ferredoxin:NADP+ reductase of Anabaena PCC 7119 (EC 1.18.1.2). This indicated that the main factor determining reactivity of nitroaromatics towards TR was their energetics of single-electron reduction. Incubation of reduced TR in the presence of tetryl or 2,4-dinitrochlorobenzene resulted in a loss of thioredoxin reductase activity, most probably due to modification of reduced catalytic disulfide, whereas nitroreductase reaction rates were unchanged. This means that on the analogy of quinone reduction by TR (D. Bironaite, Z. Anusevicius, J.-P. Jacquot, N. Cenas, Biochim. Biophys. Acta 1383 (1998) 82-92), FAD and not catalytic disulfide of TR was responsible for the reduction of nitroaromatics. Tetryl, 2,4,6-trinitrotoluene and thioredoxin increased the FAD fluorescence intensity of TR. This finding suggests that nitroaromatics may bind close to the thioredoxin-binding site at the catalytic disulfide domain of TR, and induce a conformational change of enzymes (S.B. Mulrooney, C.H. Williams Jr., Protein Sci. 6 (1997) 2188-2195). Our data indicate that certain nitroaromatic herbicides, explosives and other classes of xenobiotics may interfere with the reduction of thioredoxin by plant TR, and confer prooxidant properties to this antioxidant enzyme.

  2. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    Science.gov (United States)

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy.

    Science.gov (United States)

    Chen, Xue; Facchini, Peter J

    2014-01-01

    The final step in the biosynthesis of the phthalideisoquinoline alkaloid noscapine involves a purported dehydrogenation of the narcotinehemiacetal keto moiety. A short-chain dehydrogenase/reductase (SDR), designated noscapine synthase (NOS), that catalyzes dehydrogenation of narcotinehemiacetal to noscapine was identified in opium poppy and functionally characterized. The NOS gene was isolated using an integrated transcript and metabolite profiling strategy and subsequently expressed in Escherichia coli. Noscapine synthase is highly divergent from other characterized members of the NADPH-dependent SDR superfamily involved in benzylisoquinoline alkaloid metabolism, and it exhibits exclusive substrate specificity for narcotinehemiacetal. Kinetic analyses showed that NOS exhibits higher catalytic efficiency with NAD+ as the cofactor compared with NADP+. Suppression of NOS transcript levels in opium poppy plants subjected to virus-induced gene silencing resulted in a corresponding reduction in the accumulation of noscapine and an increase in narcotinehemiacetal levels in the latex. Noscapine and NOS transcripts were detected in all opium poppy organs, but both were most abundant in stems. Unlike other putative biosynthetic genes clustered in the opium poppy genome, and their corresponding proteins, NOS transcripts and the cognate enzyme were abundant in latex, indicating that noscapine metabolism is completed in a distinct cell type compared with the rest of the pathway.

  4. Aroylhydrazone Cu(II Complexes in keto Form: Structural Characterization and Catalytic Activity towards Cyclohexane Oxidation

    Directory of Open Access Journals (Sweden)

    Manas Sutradhar

    2016-03-01

    Full Text Available The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene-2-hydroxybenzohydrazide (H3L with a copper(II salt of a base of a strong acid, i.e., nitrate, chloride or sulphate, yielded the mononuclear complexes [Cu(H2L(NO3(H2O] (1, [Cu(H2LCl]·2MeOH (2 and the binuclear complex [{Cu(H2L}2(µ-SO4]·2MeOH (3, respectively, with H2L− in the keto form. Compounds 1–3 were characterized by elemental analysis, Infrared (IR spectroscopy, Electrospray Ionisation Mass Spectrometry (ESI-MS and single crystal X-ray crystallography. All compounds act as efficient catalysts towards the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, under mild conditions. In the presence of an acid promoter, overall yields (based on the alkane up to 25% and a turnover number (TON of 250 (TOF of 42 h−1 after 6 h, were achieved.

  5. Cardiovascular and antihypertensive actions of 1-methyl-3-keto-4-phenylquinuclidinium bromide.

    Science.gov (United States)

    Vidrio, H; Hong, E

    1976-01-01

    The sympatholytic and norepinephrine depleting drug 1-methyl-3-keto-4-phenylquinuclidinium bromide (MA540) possessed significant chronic antihypertensive activity in mecamylamine- and renal-hypertensive dogs. The compound was approximately four times more potent than guanethidine in the former model and three times as potent in the latter. MA540 reduced orthostatic blood pressure responses in unanesthetized rabbits, but was approximately ten times less potent than guanethidine. The quinuclidine derivative did not affect cardiac output, heart rate or stroke volume in anesthetized open chest dogs and moderately increased mean blood pressure and total peripheral resistance. It produced diuresis and saluresis in anesthetized dogs, but did not influence water or electrolyte urinary excretion in conscious rats. In the latter test, guanethidine produced antidiuresis and antisaluresis. It was concluded that MA540 is a potent, orally effective antihypertensive agent acting through adrenergic neuron blockade, that it lacks undesirable effects on cardiac and renal functions, and that compared with guanethidine, it is more potent in lowering blood pressure but less so in interfering with orthostatic cardiovascular reflexes.

  6. Antimicrobial profile of some novel keto esters: Synthesis, crystal structures and structure-activity relationship studies.

    Science.gov (United States)

    Khan, Imtiaz; Saeed, Aamer; Arshad, Mohammad Ifzan; White, Jonathan Michael

    2016-01-01

    Rapid increase in bacterial resistance has become a major public concern by escalating alongside a lack of development of new anti-infective drugs. Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed. So, in this context, the present work is towards the investigation of antimicrobial efficacy of some novel keto ester derivatives, which are prepared by the condensation of substituted benzoic acids with various substituted phenacyl bromides in dimethylformamide at room temperature using triethylamine as a catalyst. The structural build-up of the target compounds was accomplished by spectroscopic techniques including FTIR, (1)H and (13)C NMR spectroscopy and mass spectrometry. The purity of the synthesized compounds was ascertained by elemental analysis. The molecular structures of compounds (4b) and (4l) were established by X-ray crystallographic analysis. The prepared analogues were evaluated for their antimicrobial activity against Gram-positive (Staphylococcus aureus, Micrococcus leuteus) and Gram-negative (Pseudomonas picketti, Salmonella setuball) bacteria and two fungal pathogenic strains (Aspergillus niger, Aspergillus flavus), respectively. Among the screened derivatives, several compounds were found to possess significant activity but (4b) and (4l) turned out to be lead molecules with remarkable antimicrobial efficacy. The structure-activity relationship analysis of this study also revealed that structural modifications on the basic skeleton affected the antimicrobial activity of the synthesized compounds.

  7. Electronic absorption study on hydration, solvation behavior for some keto and thioketo pyrimidine derivatives.

    Science.gov (United States)

    Kılıç, H

    2013-03-01

    In this study, the hydration and solvation properties of recently synthesized 5-benzoyl-1-(methylphenylmethyleneamino)-4-phenyl-1H-pyrimidine-2-one, (I) and 5-benzoyl-1-(methylphenylmethyleneamino)-4-phenyl-1H-pyrimidine-2-thione, (II), were studied with respect to pH and time by using UV-vis spectroscopy method in aqueous (95.0% v/v water) and methanol (95.0% v/v methanol) media. The roles of the keto oxygen of I and the thioketo sulfur of II on the hydration and solvation behavior were discussed. The experiments were performed at 25 °C and at pH values between 1.0 and 13.0. Compound I was found to undergo hydration best in strongly acidic solutions. However, compound II was found to undergo solvation best in basic solutions. The preferred hydration and solvation mechanisms were discussed based on UV-vis data and the related mechanisms undergoing in strongly acidic and basic regions were proposed for the each compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    Red blood cells (RBCs) possess methemoglobin reductase activity that counters the ongoing oxidation of hemoglobin (Hb) to methemoglobin (metHb), which in circulating blood is caused by Hb autoxidation or reactions with nitrite. We describe an assay for determining metHb reductase activity in intact...

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... reductase deficiency, or riboflavin deficiency. (b) Classification. Class II (performance standards). [45 FR...

  10. HPLC Determination of α-keto Acids in Human Serum and Urine after Derivatization with 4-Nitro-1,2-phenylenediamine

    Directory of Open Access Journals (Sweden)

    Shamroz Bano Sahito

    2013-06-01

    Full Text Available The determination of α-keto acids has clinical importance, because these are intermediates in a number of biochemical processes. This work reports the development of an HPLC procedure for the analysis α-keto acids in blood and urine samples after derivatization with 4-nitro-1,2-phenylenediamine (NPD. Nine α-keto acids: glyoxylic acid (GA, pyruvic acid (PYR, 2-oxobutyric acid (KB, 3-methyl-2-oxobutyric acid (MKBA, 3-methyl-2-oxovaleric acid (K3MVA, 2-oxoglutaric acid (KG, 4-methyl-2-oxovaleric acid (K4MVA, 2-oxohexanoic acid (KHA and phenylpyruvic acid (PPY were derivatized with (NPD at pH 3 and separated on a Zorbax 300 SB-C18 HPLC column (4.6x150mm id and photodiode array detection at 255 nm. The isocratic elution was performed with methanol: water: acetonitrile (42: 56:2, v/ v/ v with a flow rate 0.9 mL/min. The keto acids separated within 14 min. The method was repeatable with a relative standard deviation (RSD of 0.1-2.9% for each of the α-keto acids. The limits of detection and quantitation were obtained within the range 0.05-0.26 µg/ mL and 0.15-0.8 µg/ mL respectively. The method was applied for determination of α-keto acids from a pharmaceutical preparation, human serum and urine samples of healthy volunteers and diabetic patients. The results were further confirmed by standard addition technique. The method is rapid and simple and is suitable for the separation and determination of α-keto acids from clinical samples.

  11. Identification of keto- and hydroxy-dicarboxylic acids in remote marine aerosols from the western North Pacific: GC and GC/TOF-MS measurements

    Science.gov (United States)

    Vani, D.; Kawamura, K.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Dicarboxylic acids (diacids) are dominant components of organic aerosols in the atmosphere. They contribute significantly to the total aerosol mass and have a serious impacts on global climate changes. However, studies on keto- and hydroxy-diacids in marine aerosols are limited. Compare to diacids, keto- and hydroxy-diacids are more hygroscopic due to the additional polar groups (OH and CO) and, hence, acts as cloud condensation nuclei (CCN). Molecular characterization of these compounds provides insight into organic aerosols sources and transformation pathways. We collected marine aerosols from remote Chichijima Island in the western North Pacific from December 2010 to November 2011 and studied for water-soluble keto- and hydroxy-diacids. Carboxyl groups were derivatized to dibutyl esters with 14% boron trifluoride/n-butanol, whereas hydroxyl groups were derivatized to trimethylsilyl ethers using N,O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA). After two-step derivatization, samples were injected to GC, GC/MS and GC/TOF-MS. In the GC chromatogram, we detected several new peaks after BSTFA derivatization of dibutyl ester fraction. Based on mass spectral interpretation, we found these peaks as homologues series of hydroxy-diacids and keto-diacids. Some of these hydroxy-diacids have been individually reported in literature in the laboratory photo-oxidation experiments and forest environments samples. But, there are no evidences to prove their sources and formation mechanism in the atmosphere. Here, we report for the first time homologous series of hydroxy-diacids (hC3di-hC6di) and keto-diacid (oxaloacetic acid, enol and keto forms) in remote marine atmosphere. Molecular distributions of hydroxy-diacids generally showed the predominance of malic acid followed by tartronic acid. Both hydroxy- and keto-diacids show significant positive correlation with oxalic acid and SO42-, suggesting that they are generated in the atmosphere and play an important role in the

  12. Variant Cell Lines of Haplopappus gracilis with Disturbed Activities of Nitrate Reductase and Nitrite Reductase.

    Science.gov (United States)

    Gilissen, L J; Barneix, A J; van Staveren, M; Breteler, H

    1985-07-01

    Selected variant cell lines of Haplopappus gracilis (Nutt) Gray that showed disturbed growth after transfer from an alanine medium to NO(3) (-) medium were characterized. The in vivo NO(3) (-) reductase activity (NRA) was lower in these lines than in the wild type. In vitro NRA assays suggest that decreased in vivo NRA was not caused by a lower amount of active enzyme. Cells of the variant lines revealed up to 75% lower extractable activity of NO(2) (-) reductase as compared with the wild type. This coincided with higher accumulation of NO(2) (-) by the variant than by the wild type cells after transfer from alanine medium to NO(3) (-) medium. NO(2) (-) accumulation was transient or continuous, depending on cell line, metabolic state of the cells, and light conditions.

  13. Structures of mammalian cytosolic quinone reductases.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Faig, M; Amzel, L M

    2000-08-01

    The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.

  14. Hydroxylated naphthoquinones as substrates for Escherichia coli anaerobic reductases.

    Science.gov (United States)

    Rothery, R A; Chatterjee, I; Kiema, G; McDermott, M T; Weiner, J H

    1998-01-01

    We have used two hydroxylated naphthoquinol menaquinol analogues, reduced plumbagin (PBH2, 5-hydroxy-2-methyl-1,4-naphthoquinol) and reduced lapachol [LPCH2, 2-hydroxy-3-(3-methyl-2-butenyl)-1, 4-naphthoquinol], as substrates for Escherichia coli anaerobic reductases. These compounds have optical, solubility and redox properties that make them suitable for use in studies of the enzymology of menaquinol oxidation. Oxidized plumbagin and oxidized lapachol have well resolved absorbances at 419 nm (epsilon=3.95 mM-1. cm-1) and 481 nm (epsilon=2.66 mM-1.cm-1) respectively (in Mops/KOH buffer, pH 7.0). PBH2 is a good substrate for nitrate reductase A (Km=282+/-28 microM, kcat=120+/-6 s-1) and fumarate reductase (Km=155+/-24 microM, kcat=30+/-2 s-1), but not for DMSO reductase. LPCH2 is a good substrate for nitrate reductase A (Km=57+/-35 microM, kcat=68+/-13 s-1), fumarate reductase (Km=85+/-27 microM, kcat=74+/-6 s-1) and DMSO reductase (Km=238+/-30 microM, kcat=191+/-21 s-1). The sensitivity of enzymic LPCH2 and PBH2 oxidation to 2-n-heptyl-4-hydroxyquinoline N-oxide inhibition is consistent with their oxidation occurring at sites of physiological quinol binding. PMID:9576848

  15. The cytochrome bd respiratory oxygen reductases.

    Science.gov (United States)

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. 2011 Elsevier B.V. All rights reserved.

  16. On The Regulation of Spinach Nitrate Reductase 1

    Science.gov (United States)

    Sanchez, Juan; Heldt, Hans W.

    1990-01-01

    A coupled assay has been worked out to study spinach (Spinacea oleracea L.) nitrate reductase under low, more physiological concentrations of NADH. In this assay the reduction of nitrate is coupled to the oxidation of malate catalyzed by spinach NAD-malate dehydrogenase. The use of this coupled system allows the assay of nitrate reductase activity at steady-state concentrations of NADH below micromolar. We have used this coupled assay to study the kinetic parameters of spinach nitrate reductase and to reinvestigate the putative regulatory role of adenine nucleotides, inorganic phosphate, amino acids, and calcium and calmodulin. PMID:16667335

  17. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    Science.gov (United States)

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  18. Catalytic Enantioselective Alkylation of β-Keto Esters with Xanthydrol in the Presence of Chiral Palladium Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Yeon; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-01-15

    Our research interest has been directed toward the development of synthetic methods for the enantioselective construction of stereogenic carbon centers. Recently, we explored the catalytic enantioselective functionalization of active methines in the presence of chiral palladium(II) complexes. In conclusion, we have accomplished the efficient catalytic enantioselective alkylation of β-keto esters 1 with xanthydrol 2 with high yields and excellent enantioselectivity (up to 98% ee). It should be noted that this alkyaltion reaction proceeds well using air- and moisture-stable chiral palladium com- plexes with low loading (1 mol%)

  19. β-Keto and β-hydroxyphosphonate analogs of biotin-5’-AMP are inhibitors of holocarboxylase synthetase

    OpenAIRE

    Sittiwong, Wantanee; Cordonier, Elizabeth L.; Zempleni, Janos; Dussault, Patrick H.

    2014-01-01

    Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin to cytoplasmic and mitochondrial carboxylases, nuclear histones, and over a hundred human proteins. Nonhydrolyzable ketophosphonate (β-ketoP) and hydroxyphosphonate (β-hydroxyP) analogs of biotin-5′-AMP inhibit holocarboxylase synthetase (HLCS) with IC50 values of 39.7 μM and 203.7 μM. By comparison, an IC50 value of 7 μM was observed with the previously reported biotinol-5'-AMP. The Ki values, 3.4 μM and 17.3 μM, r...

  20. P(NMe2)3-Mediated Umpolung Alkylation and Nonylidic Olefination of α-Keto Esters.

    Science.gov (United States)

    Wang, Sunewang Rixin; Radosevich, Alexander T

    2015-08-07

    A commercial phosphorus-based reagent (P(NMe2)3) mediates umpolung alkylation of methyl aroylformates with benzylic and allylic bromides, leading to either Barbier-type addition or ylide-free olefination products upon workup. The reaction sequence is initiated by a two-electron redox addition of the tricoordinate phosphorus reagent with an α-keto ester compound (Kukhtin-Ramirez addition). A mechanistic rationale is offered for the chemoselectivity upon which the success of this nonmetal mediated C-C bond forming strategy is based.

  1. Effect of alkyl chains length on properties of ferroelectric liquid crystals with the keto group attached to the molecule core

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Novotná, Vladimíra; Pociecha, D.; Hamplová, Věra; Kašpar, Miroslav

    2012-01-01

    Roč. 85, č. 10 (2012), s. 849-860 ISSN 0141-1594 R&D Projects: GA ČR(CZ) GAP204/11/0723 Grant - others:AV ČR(CZ) M100101211; AV ČR(CZ) M100101204 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric liquid crystal * keto group * lactic acid derivative * spontaneous quantities * SAXS * helix pitch Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.863, year: 2012 http://www.tandf.co.uk/journals/titles/01411594.asp

  2. Stereoselective ZrCl4-Catalyzed Mannich-type Reaction of β-Keto Esters with Chiral Trifluoromethyl Aldimines.

    Science.gov (United States)

    Parise, Luca; Pellacani, Lucio; Sciubba, Fabio; Trulli, Laura; Fioravanti, Stefania

    2015-08-21

    A method for the synthesis of fluorinated β'-amino β-dicarbonyl compounds using a Zr-catalyzed Mannich-type reaction has been developed, starting from N-protected trifluoromethyl aldimines and cyclic or acyclic β-keto esters bearing different ester residues. The in situ generated metallic complex reacted with optically pure trifluoromethyl aldimine derived from (R)-α-methylbenzylamine, giving a highly diastereoselective asymmetric Mannich-type addition with formation of a chiral quaternary center. The absolute configuration at the new chiral centers was assigned through two-dimensional nuclear Overhauser effect spectroscopic analysis coupled with computational studies.

  3. Molecular cloning of goat 20alpha-hydroxysteroid dehydrogenase cDNA.

    Science.gov (United States)

    Jayasekara, Walimuni Samantha Nilanthi; Yonezawa, Tomohiro; Ishida, Maho; Yamanouchi, Keitaro; Nishihara, Masugi

    2004-06-01

    20Alpha-hydroxysteroid dehydrogenase (20alpha-HSD), which catalyzes the conversion of progesterone to its inactive form 20alpha-dihydroprogesterone, is expressed in murine placenta and has been suggested to play roles in maintaining pregnancy. To understand the role of 20alpha-HSD during pregnancy in the goat, as a first step, cloning and sequencing of 20alpha-HSD cDNA were performed. The full nucleotide sequence of 20alpha-HSD cDNA was determined on samples obtained from the corpus luteum at the luteal phase of the estrous cycle and the placenta in late pregnancy by RT-PCR and 3' and 5' RACE systems. Cloned 20alpha-HSD cDNA consisted of 1124 bp and belonged to the aldo-keto reductase superfamily. From the start codon to stop codon there were 323 amino acids, the same as in other species. To verify whether the protein derived from goat 20alpha-HSD cDNA had 20alpha-HSD activity, the cDNA was expressed by bacteria. Bacterially expressed goat 20alpha-HSD protein showed 20alpha-HSD enzyme activity. A tissue distribution study demonstrated that 20alpha-HSD was expressed in the placenta, but not in the adrenal gland, liver and spleen during pregnancy. The present study suggests that goat 20alpha-HSD is another member of the aldo-keto reductase superfamily and that it plays a role in the placenta during pregnancy.

  4. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  5. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  6. Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima

    NARCIS (Netherlands)

    Loveridge, E Joel; Hroch, Lukas; Hughes, Robert L; Williams, Thomas; Davies, Rhidian L; Angelastro, Antonio; Luk, Louis Y P; Maglia, Giovanni; Allemann, Rudolf K

    2017-01-01

    Mammalian dihydrofolate reductases (DHFR) catalyse the reduction of folate more efficiently than the equivalent bacterial enzymes, despite typically having similar efficiencies for the reduction of their natural substrate dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic

  7. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes.

    Science.gov (United States)

    McSwiney, Fionn T; Wardrop, Bruce; Hyde, Parker N; Lafountain, Richard A; Volek, Jeff S; Doyle, Lorna

    2018-04-01

    Low-carbohydrate diets have recently grown in popularity among endurance athletes, yet little is known about the long-term (>4wk) performance implications of consuming a low-carbohydrate high fat ketogenic diet (LCKD) in well-trained athletes. Twenty male endurance-trained athletes (age 33±11y, body mass 80±11kg; BMI 24.7±3.1kg/m 2 ) who habitually consumed a carbohydrate-based diet, self-selected into a high-carbohydrate (HC) group (n=11, %carbohydrate:protein:fat=65:14:20), or a LCKD group (n=9, 6:17:77). Both groups performed the same training intervention (endurance, strength and high intensity interval training (HIIT)). Prior to and following successful completion of 12-weeks of diet and training, participants had their body composition assessed, and completed a 100km time trial (TT), six second (SS) sprint, and a critical power test (CPT). During post-intervention testing the HC group consumed 30-60g/h carbohydrate, whereas the LCKD group consumed water, and electrolytes. The LCKD group experienced a significantly greater decrease in body mass (HC -0.8kg, LCKD -5.9kg; P=0.006, effect size (ES): 0.338) and percentage body fat percentage (HC -0.7%, LCKD -5.2%; P=0.008, ES: 0.346). Fasting serum beta-hydroxybutyrate (βHB) significantly increased from 0.1 at baseline to 0.5mmol/L in the LCKD group (P=0.011, ES: 0.403) in week 12. There was no significant change in performance of the 100km TT between groups (HC -1.13min·s, LCKD -4.07min·s, P=0.057, ES: 0.196). SS sprint peak power increased by 0.8 watts per kilogram bodyweight (w/kg) in the LCKD group, versus a -0.1w/kg reduction in the HC group (P=0.025, ES: 0.263). CPT peak power decreased by -0.7w/kg in the HC group, and increased by 1.4w/kg in the LCKD group (P=0.047, ES: 0.212). Fat oxidation in the LCKD group was significantly greater throughout the 100km TT. Compared to a HC comparison group, a 12-week period of keto-adaptation and exercise training, enhanced body composition, fat oxidation during

  8. 3-Keto-5 alpha-steroid Delta'-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism

    NARCIS (Netherlands)

    Knol, Jan; Bodewits, Karin; Hessels, Gerda I.; Dijkhuizen, Lubbert; Van der Geize, Robert

    2008-01-01

    The Rhodococcus erythropolis SQ1 kstD3 gene was cloned, heterologously expressed and biochemically characterized as a KSTD3 (3-keto-5 alpha-steroid Delta'-dehydrogenase). Upstream of kstD3, an ORF (open reading frame) with similarity to Delta(4) KSTD (3-keto-5 alpha-steroid Delta(4)-dehydrogenase)

  9. Aldose reductase inhibitory activity and antioxidant capacity of pomegranate extracts

    OpenAIRE

    Karasu, Çimen; Cumaoğlu, Ahmet; Gürpinar, Ali Rifat; Kartal, Murat; Kovacikova, Lucia; Milackova, Ivana; Stefek, Milan

    2012-01-01

    The pomegranate, Punica granatum L., has been the subject of current interest as a medicinal agent with wide-ranging therapeutic indications. In the present study, pomegranate ethanolic seed and hull extracts were tested, in comparison with a commercial sample, for the inhibition of aldose reductase, an enzyme involved in the etiology of diabetic complications. In vitro inhibition of rat lens aldose reductase was determined by a conventional method. Pomegranate ethanolic hull extract and comm...

  10. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    Science.gov (United States)

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  11. Solvent dependency of the UV-Vis spectrum of indenoisoquinolines: role of keto-oxygens as polarity interaction probes.

    Directory of Open Access Journals (Sweden)

    Andrea Coletta

    Full Text Available Indenoisoquinolines are the most promising non-campthotecins topoisomerase IB inhibitors. We present an integrated experimental/computational investigation of the UV-Vis spectra of the IQNs parental compound (NSC314622 and two of its derivatives (NSC724998 and NSC725776 currently undergoing Phase I clinical trials. In all the three compounds a similar dependence of the relative absorption intensities at 270 nm and 290 nm on solvent polarity is found. The keto-oxygens in positions 5 and 11 of the molecular scaffold of the molecule are the principal chromophores involved in this dependence. Protic interactions on these sites are also found to give rise to absorptions at wavelength <250 nm observed in water solution, due to the stabilization of highly polarized tautomers of the molecule. These results suggest that the keto-oxygens are important polarizable groups that can act as useful interactors with the molecular receptor, providing at the same time an useful fingerprint for the monitoring of the drug binding to topoisomerase IB.

  12. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser

    2014-04-01

    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  13. Interactions between inhibitors of dihydrofolate reductase.

    Science.gov (United States)

    Bowden, K; Hall, A D; Birdsall, B; Feeney, J; Roberts, G C

    1989-03-01

    The binding of substrates and inhibitors to dihydrofolate reductase was studied by steady-state kinetics and high-field 1H-n.m.r. spectroscopy. A series of 5-substituted 2,4-diaminopyrimidines were examined and were found to be 'tightly binding' inhibitors of the enzyme (Ki less than 10(-9) M). Studies on the binding of 4-substituted benzenesulphonamides and benzenesulphonic acids also established the existence of a 'sulphonamide-binding site' on the enzyme. Subsequent n.m.r. experiments showed that there are two binding sites for the sulphonamides on the enzyme, one of which overlaps the coenzyme (NADPH) adenine-ring-binding site. An examination of the pH-dependence of the binding of sulphonamides to the enzyme indicated the influence of an ionizable group on the enzyme that was not directly involved in the sulphonamide binding. The change in pKa value from 6.7 to 7.2 observed on sulphonamide binding suggests the involvement of a histidine residue, which could be histidine-28.

  14. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  15. NADH-Ferricyanide Reductase of Leaf Plasma Membranes 1

    Science.gov (United States)

    Askerlund, Per; Laurent, Pascal; Nakagawa, Hiroki; Kader, Jean-Claude

    1991-01-01

    Plasma membranes obtained by two-phase partitioning of microsomal fractions from spinach (Spinacea oleracea L. cv Medania) and sugar beet leaves (Beta vulgaris L.) contained relatively high NADH-ferricyanide reductase and NADH-nitrate reductase (NR; EC 1.6.6.1) activities. Both of these activities were latent. To investigate whether these activities were due to the same enzyme, plasma membrane polypeptides were separated with SDS-PAGE and analyzed with immunoblotting methods. Antibodies raised against microsomal NADH-ferricyanide reductase (tentatively identified as NADH-cytochrome b5 reductase, EC 1.6.2.2), purified from potato (Solanum tuberosum L. cv Bintje) tuber microsomes, displayed one single band at 43 kilodaltons when reacted with spinach plasma membranes, whereas lgG produced against NR from spinach leaves gave a major band at 110 kilodaltons together with a few fainter bands of lower molecular mass. Immunoblotting analysis using inside-out and right-side-out plasma membrane vesicles strongly indicated that NR was not an integral protein but probably trapped inside the plasma membrane vesicles during homogenization. Proteins from spinach plasma membranes were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio] 1-propane-sulfonate and separated on a Mono Q anion exchange column at pH 5.6 with fast protein liquid chromatography. One major peak of NADH-ferricyanide reductase activity was found after separation. The peak fraction was enriched about 70-fold in this activity compared to the plasma membrane. When the peak fractions were analyzed with SDS-PAGE the NADH-ferricyanide reductase activity strongly correlated with a 43 kilodalton polypeptide which reacted with the antibodies against potato microsomal NADH-ferricyanide reductase. Thus, our data indicate that most, if not all, of the truly membrane-bound NADH-ferricyanide reductase activity of leaf plasma membranes is due to an enzyme very similar to potato tuber

  16. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    Directory of Open Access Journals (Sweden)

    Yeon Bok Kim

    2014-01-01

    Full Text Available Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  17. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  18. Purification and Properties of an NADPH-Aldose Reductase (Aldehyde Reductase) from Euonymus japonica Leaves

    Science.gov (United States)

    Negm, Fayek B.

    1986-01-01

    The enzyme aldose (aldehyde) reductase was partially purified (142-fold) and characterized from Euonymus japonica leaves. The reductase, a dimer, had an average molecular weight of 67,000 as determined by gel filtration on Sephadex G-100. The enzyme was NADPH specific and reduced a broad range of substrates including aldoses, aliphatic aldehydes, and aromatic aldehydes. Maximum activity was observed at pH 8 in phosphate and Tris-HCl buffers and at pH 8.6 to 9.0 in glycine-NaOH buffer using dl-glyceraldehyde or 3-pyridinecarboxaldehyde as substrate. NADP was a competitive inhibitor with respect to NADPH with a Ki of 60 micromolar. Glycerol was an uncompetitive inhibitor to dl-glyceraldehyde (K′i = 460 millimolar). The Euonymus enzyme was inhibited by sulfhydryl inhibitor, phenobarbital, and high concentrations of Li2SO4. Pyrazol and metal chelating agents inhibited the enzyme slightly. Enzyme activity was detected in the leaves and berries of Celastrus orbiculatus and several species of Euonymus. Probable function of this enzyme is to reduce d-galactose to galactitol, a characteristic metabolite in phloem sap of members of the Celastraceae family. Images Fig. 1 PMID:16664750

  19. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  20. Identification cloning and characterization of a branched-chain alpha-keto acid decarboxylase from Lactococcus lactis, involved in flavour formation

    NARCIS (Netherlands)

    Smit, B.A.; Meijer, L.; Engels, W.J.M.; Wouters, J.T.M.; Smit, G.

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain ¿-keto acid decarboxylase (KdcA). The activity of the latter enzyme has

  1. Metingen van de gehalten aan diaceton-keto-gulonzuur (dikegulac) in grensoverschrijdend rivierwater gedurende het tijdvak 1 oktober 1990 tot en met 30 juni 1994

    NARCIS (Netherlands)

    Brinkmann FJJ; Engelsman G den; Wammes JIJ; Willemsen WH; IEM.

    1995-01-01

    Medio 1989 werd binnen de Duitste Waterleidingbedrijfstak geconstateerd dat diaceton-keto-gulonzuur (dikegulac) in een concentratie van meerdere microgrammen per liter in het Rijnwater aanwezig was. De verbinding werd ook aangetoond in het Nederlandse Rijnwater alsmede in het drinkwater en/of

  2. Asymmetric organocatalytic decarboxylative Mannich reaction using β-keto acids: A new protocol for the synthesis of chiral β-amino ketones

    Science.gov (United States)

    Jiang, Chunhui; Zhong, Fangrui

    2012-01-01

    Summary The first decarboxylative Mannich reaction employing β-keto acids, catalyzed by cinchonine-derived bifunctional thiourea catalyst has been described. The desired β-amino ketones were obtained in excellent yields and with moderate to good enantioselectivities. PMID:23019459

  3. Asymmetric organocatalytic decarboxylative Mannich reaction using β-keto acids: A new protocol for the synthesis of chiral β-amino ketones

    Directory of Open Access Journals (Sweden)

    Chunhui Jiang

    2012-08-01

    Full Text Available The first decarboxylative Mannich reaction employing β-keto acids, catalyzed by cinchonine-derived bifunctional thiourea catalyst has been described. The desired β-amino ketones were obtained in excellent yields and with moderate to good enantioselectivities.

  4. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet.

    Science.gov (United States)

    Chacón-Ordóñez, Tania; Esquivel, Patricia; Jiménez, Víctor M; Carle, Reinhold; Schweiggert, Ralf M

    2016-03-09

    The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed.

  5. Pancreaticobiliary cancers with deficient methylenetetrahydrofolate reductase genotypes.

    Science.gov (United States)

    Matsubayashi, Hiroyuki; Skinner, Halcyon G; Iacobuzio-Donahue, Christine; Abe, Tadayoshi; Sato, Norihiro; Riall, Taylor Sohn; Yeo, Charles J; Kern, Scott E; Goggins, Michael

    2005-08-01

    Methyl group deficiency might promote carcinogenesis by inducing DNA breaks and DNA hypomethylation. We hypothesized that deficient methylenetetrahydrofolate reductase (MTHFR) genotypes could promote pancreatic cancer development. First, we performed a case-control study of germline MTHFR polymorphisms (C677T, A1298C) in 303 patients with pancreatic cancer and 305 matched control subjects. Pancreatic neoplasms frequently lose an MTHFR allele during tumorigenesis; we hypothesized that such loss could promote carcinogenesis. We therefore evaluated the cancer MTHFR genotypes of 82 patients with pancreaticobiliary cancers and correlated them to genome-wide measures of chromosomal deletion by using 386 microsatellite markers. Finally, MTHFR genotypes were correlated with global DNA methylation in 68 cancer cell lines. Germline MTHFR polymorphisms were not associated with an increased likelihood of having pancreatic cancer. Fractional allelic loss (a measure of chromosomal loss) trended higher in cancers with 677T genotypes than in cancers with other genotypes (P = .055). Among cancers with loss of an MTHFR allele, cancers with 677T MTHFR alleles had more deletions at folate-sensitive fragile sites (36.9%) and at tumor suppressor gene loci (68.5%) than 677C cancers (28.7% and 47.8%, P = .079 and .014, respectively). LINE1 methylation was lower in cancers with less functional 677T/TT genotypes (24.4%) than in those with 677CT (26.0%) and CC/C genotypes (32.5%) (P = .014). Cancers with defective MTHFR genotypes have more DNA hypomethylation and more chromosomal losses. Deficient MTHFR function due to loss of an MTHFR allele by an evolving neoplasm might, by promoting chromosomal losses, accelerate cancer development.

  6. Sulfite reductase protects plants against sulfite toxicity.

    Science.gov (United States)

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-02-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.

  7. Theoretical investigation on hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

    Science.gov (United States)

    Anithaa, V S; Vijayakumar, S; Sudha, M; Shankar, R

    2017-11-06

    The interaction of diketo and keto-enol form of thymine and uracil tautomers with acridine (Acr), phenazine (Phen), benzo[c]cinnoline (Ben), 1,10-phenanthroline (1,10-Phe), and 4,7-phenenthroline (4,7-Phe) intercalating drug molecules was studied using density functional theory at B3LYP/6-311++G** and M05-2×/6-311++G** levels of theory. From the interaction energy, it is found that keto-enol form tautomers have stronger interaction with intercalators than diketone form tautomers. On complex formation of thymine and uracil tautomers with benzo[c]cinnoline the drug molecules have high interaction energy values of -20.14 (BenT3) and -20.55 (BenU3) kcal mol -1 , while phenazine has the least interaction energy values of -6.52 (PhenT2) and -6.67 (PhenU2) kcal mol -1 . The closed shell intermolecular type interaction between the molecules with minimum elliptical value of 0.018 and 0.019 a.u at both levels of theory has been found from topological analysis. The benzo[c]cinnoline drug molecule with thymine and uracil tautomers has short range intermolecular N-H…N, C-H…O, and O-H...N hydrogen bonds (H-bonds) resulting in higher stability than other drug molecules. The proper hydrogen bonds N-H..N and O-H..N have the frequency shifted toward the lower side (red shifted) with the elongation in their bond length while the improper hydrogen bond C-H...O has the frequency shifted toward the higher side (blue shifted) of the spectral region with the contraction in their bond length. Further, the charge transfer between proton acceptor and donor along with stability of the bond is studied using natural bond orbital (NBO) analysis. Graphical abstract Hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

  8. Thermolabile defect of methylenetetrahydrofolate reductase in coronary artery disease.

    Science.gov (United States)

    Kang, S S; Passen, E L; Ruggie, N; Wong, P W; Sora, H

    1993-10-01

    To determine whether or not a moderate genetic defect of homocysteine metabolism is associated with the development of coronary artery disease, we studied the prevalence of thermolabile methylenetetrahydrofolate reductase, which is probably the most common genetic defect of homocysteine metabolism. Three hundred thirty-nine subjects who underwent coronary angiography were classified into three groups: (1) patients with severe coronary artery stenosis (> or = 70% occlusion in one or more coronary arteries or > or = 50% occlusion in the left main coronary artery), (2) patients with mild to moderate coronary artery stenosis (< 70% occlusion in one or more coronary arteries or < 50% occlusion in the left main coronary artery), and (3) patients with non-coronary heart disease or noncardiac chest pain (nonstenotic coronary arteries). The thermolability of methylenetetrahydrofolate reductase was prospectively determined in all subjects. Plasma homocyst(e)ine levels were then measured in those with thermolabile methylenetetrahydrofolate reductase. The traditional risk factors for coronary artery disease were thereafter ascertained by chart review of all subjects. The prevalence of thermolabile methylenetetrahydrofolate reductase was 18.1% in group 1, 13.4% in group 2, and 7.9% in group 3. There was a significant difference between the prevalence of thermolabile methylenetetrahydrofolate reductase in groups 1 and 3 (P < .04). All individuals with thermolabile methylenetetrahydrofolate reductase irrespective of their clinical grouping had higher plasma homocyst(e)ine levels than normal (group 1, 14.86 +/- 5.85; group 2, 15.36 +/- 5.70; group 3, 13.39 +/- 3.80; normal, 8.50 +/- 2.8 nmol/mL). Nonetheless, there was no statistically significant difference in the plasma homocyst(e)ine concentrations of these patients with or without coronary artery stenosis. Using discriminant function analysis, thermolabile methylenetetrahydrofolate reductase was predictive of angiographically

  9. The role of biliverdin reductase in colorectal cancer

    International Nuclear Information System (INIS)

    Bauer, M.

    2010-01-01

    In recent years, the effects of biliverdin and bilirubin have been studied extensively, and an inhibitory effect of bile pigments in cancer progression has been proposed. In this study we focused on the effects of biliverdin reductase, the enzyme that converts biliverdin to bilirubin, in colorectal cancer. For in vitro experiments we used a human colorectal carcinoma cell line and transfected it with an expression construct of shRNA specific for biliverdin reductase, to create cells with stable knock-down of enzyme expression. Cell proliferation was analyzed using the CASY model TT cell counting device. Western blot protein analysis was performed to study intracellular signaling cascades. Samples of human colorectal cancer were analyzed using immunohistochemistry. We were able to confirm the antiproliferative effects of bile pigments on cancer cells in vitro. However, this effect was attenuated in biliverdin reductase knock down cells. ERK and Akt activation seen under biliverdin and bilirubin treatment was also reduced in biliverdin reductase deficient cells. Immunohistochemical analysis of tumor samples from patients with colorectal cancer showed elevated biliverdin reductase levels. High enzyme expression was associated with lower overall and disease free patient survival. We conclude that BVR is required for bile pigment mediated effects regarding cancer cell proliferation and modulation of intracellular signaling cascades. The role of BVR overexpression in vivo and its exact influence on cancer progression and patient survival need to be further investigated. (author) [de

  10. Renoprotective Effects of Low-protein Diet with the Use of Keto-analogues of Essential Amino Acids Using

    Directory of Open Access Journals (Sweden)

    O.I. Romadanova

    2013-10-01

    Full Text Available The article discusses the role of low-protein diet and keto-analogues of essential amino acids in patients with impaired renal function. On the basis of results of the study on regularities of monocyte chemoattractant protein level (MCP-1, depending on the origin of glomerular damage and stage of chronic kidney disease and the dynamics of its changes under the influence of different approaches in complex treatment, it is concluded that administration of low-protein diet with inclusion of Ketosteril is necessary already at the early stages of the diseases for renoprotective action. Use of Ketosteril should be prolonged and continuous in order to increase the predialysis period and improve the quality of life in patients with chronic kidney disease.

  11. Synthesis, spectral studies, antimicrobial, antioxidant and insect antifeedant activities of some 9 H-fluorene-2-yl keto-oxiranes

    Science.gov (United States)

    Thirunarayanan, G.; Vanangamudi, G.

    2011-10-01

    Thirteen ee (α S, β R) 9 H-fluorene-2-yl keto-oxiranes (2-(9 H)-fluorene-4-yl[3-(substituted phenyl)oxiran-2-yl]methanones) have been synthesized by phase transfer catalysed epoxidation of 9 H-fluorene-2-yl chalcones. The yields of oxiranes are more than 95%. The synthesized oxiranes have been characterized by IR, 1H, 13C and GC-MS spectral data. The spectral data are correlated with Hammett substituent constants and Swain-Lupton parameters. From the regression analysis, the effect of substituents on the group frequencies has been predicted. The antimicrobial, antioxidant and insect antifeedant activities of all the synthesized oxiranes have been studied.

  12. Iodine-Catalyzed Regioselective Synthesis of Multisubstiuted Pyrrole Polyheterocycles Free from Rotamers and Keto-Enol Tautomers.

    Science.gov (United States)

    Sharma, Nitika; Peddinti, Rama Krishna

    2017-09-15

    A highly regioselective iodine-mediated cascade reaction for the synthesis of multifunctional polyheterocyclic systems is developed by employing 3-(2-oxo-2-arylethylidene)oxindoles and 1,4-benzoxazinone as starting materials. The polyheterocycles are skillfully embraced with oxindole, pyrrole, and coumarin scaffolds, which are well-known for their enriched biological activity. The current approach worked under mild reaction conditions. The reaction afforded a single product, and no rotameric and keto-enol isomeric products are formed. The method is environmentally benign and atom-economical, and the only side product of this reaction is water. This protocol obviates the purification techniques such as column chromatography for the isolation of the products. The products were isolated by decantation of the solvent or by recrystallization. The reaction proceeds through inter- and intramolecular C-C and C-N bond formation.

  13. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa...... nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d(1) hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity...... is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion...

  14. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  15. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  16. Expression and site-directed mutagenesis of human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-05-17

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 ..-->.. Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by ..cap alpha..-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme.

  17. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...... diacetyl (acetoin) reductase activity with NADH as coenzyme, but not with NADPH as coenzyme, suggesting the presence of another diacetyl (acetoin)-reducing activity in L. pseudomesenteroides. Plasmid-curing experiments demonstrated that the butA gene is carried on a 20-kb plasmid in L. pseudomesenteroides....

  18. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase

    Science.gov (United States)

    Van Alst, Nadine E.; Sherrill, Lani A.; Iglewski, Barbara H.; Haidaris, Constantine G.

    2009-01-01

    Nitrate serves as a terminal electron acceptor under anaerobic conditions in Pseudomonas aeruginosa. Reduction of nitrate to nitrite generates a transmembrane proton motive force allowing ATP synthesis and anaerobic growth. Inner membrane-bound nitrate reductase NarGHI is encoded within the narK1K2GHJI operon and the periplasmic nitrate reductase NapAB is encoded within the napEFDABC operon. The role of the two dissimilatory nitrate reductases in anaerobic growth, and the regulation of their expression were examined by using a set of deletion mutants in P. aeruginosa PAO1. NarGHI mutants were unable to grow anaerobically, but plate cultures remained viable up to 120 hr. In contrast, nitrate sensor-response regulator mutant ΔnarXL displayed growth arrest initially, but resumed growth after 72 hr and reached early stationary phase in liquid culture after 120 hr. Genetic, transcriptional, and biochemical studies demonstrated that anaerobic growth recovery by the NarXL mutant was the result of NapAB periplasmic nitrate reductase expression. A novel transcriptional start site for napEFDABC expression was identified in the NarXL mutant grown anaerobically. Furthermore, mutagenesis of a consensus NarL-binding site monomer upstream of the novel transcriptional start site restored anaerobic growth recovery in the NarXL mutant. The data suggest that during anaerobic growth of wild type P. aeruginosa PAO1, nitrate response regulator NarL directly represses expression of periplasmic nitrate reductase, while inducing maximal expression of membrane nitrate reductase. PMID:19935885

  19. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    Conditions of nitrate reductase extraction and activity measurement should be adapted to plant species, and to the organs of the same plant, because of extreme weaknesses and instabilities of the enzyme. Different extraction and reaction media have been compared in order to define the best conditions for cotton callus ...

  20. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... in prostate cancer patients: a potential factor implicated in 5-alpha-reductase inhibitor treatment. LUIS ALBERTO HENRÍQUEZ-HERNÁNDEZ1,2,3∗, ALMUDENA VALENCIANO2, PALMIRA FORO-ARNALOT4,. MARÍA JESÚS ÁLVAREZ-CUBERO5,6, JOSÉ MANUEL COZAR7, JOSÉ FRANCISCO ...

  1. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... Herrera-Ramos E., Rodríguez-Gallego C. and Lara P. C. 2015 Intraethnic variation in steroid-5-alpha-reductase polymorphisms in prostate ... generation. This study was approved by the Research and. Ethics Committee of each institution participant in the study. DNA was isolated from 300 µL of ...

  2. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    ... 5 alpha helices and 8 beta-strands. Twelve binding site residues were predicted in KCA1_1610 relative to the template protein 2zzaA in protein database (PDB). The predicted structure of KCA1_1610 dihydrofolate reductase can serve as a new template as an addition to structural genomics and generation of models for ...

  3. Dizygotic twinning is not associated with methylenetetrahydrofolate reductase haplotypes

    NARCIS (Netherlands)

    Montgomery, GW; Zhao, Z.Z.; Morley, K.I.; Marsh, A.J.; Boomsma, D.I.; Martin, N.G.; Duffy, DL

    2003-01-01

    Background: Folate metabolism is critical to embryonic development, influencing neural tube defects (NTD) and recurrent early pregnancy loss. Polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) have been associated with dizygotic (DZ) twinning through pregnancy loss. Methods: The C677T

  4. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    GREGO

    mM of glutamine in the extraction buffer stimulates significantly, in vitro, the reduction of nitrate. Enzyme activity is moreover optimal when 1 M of exogenous nitrate, as substrate, is added to the reaction medium. At these optimum conditions of nitrate reductase activity determination, the substrate was completely reduced ...

  5. Cloning and expression analysis of dihydroxyflavonol 4-reductase ...

    African Journals Online (AJOL)

    Southern blot analysis indicate that DFR is presented as a single copy in the Ascocenda spp. genome. The AscoDFR gene was highly expressed in the flower stages 2 and 3 of development as well as in the sepal and petal of the orchid flower. Keywords: Orchid, dihydroxyflavonol 4-reductase, anthocyanins, gene cloning ...

  6. Crystallographic analysis of tricolosan bound to enoyl reductase.

    NARCIS (Netherlands)

    Roujeinikova, A.; Levy, C.W.; Rowsell, S.; Sedelnikova, S.; Baker, P.J.; Minshull, C.A.; Mistry, A.; Colls, J.G.; Camble, R.; Stuitje, A.R.; Slabas, A.R.; Rafferty, J.B.; Pauptit, R.A.; Viner, A; Rice, D.W.

    1999-01-01

    Molecular genetic studies with strains of Escherichia coli resistant to triclosan, an ingredient of many anti-bacterial household goods, have suggested that this compound works by acting as an inhibitor of enoyl reductase (ENR) and thereby blocking lipid biosynthesis. We present structural analyses

  7. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr). Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and ...

  8. Aldose reductase inhibitory activity and antioxidant capacity of pomegranate extracts.

    Science.gov (United States)

    Karasu, Cimen; Cumaoğlu, Ahmet; Gürpinar, Ali Rifat; Kartal, Murat; Kovacikova, Lucia; Milackova, Ivana; Stefek, Milan

    2012-03-01

    The pomegranate, Punica granatum L., has been the subject of current interest as a medicinal agent with wide-ranging therapeutic indications. In the present study, pomegranate ethanolic seed and hull extracts were tested, in comparison with a commercial sample, for the inhibition of aldose reductase, an enzyme involved in the etiology of diabetic complications. In vitro inhibition of rat lens aldose reductase was determined by a conventional method. Pomegranate ethanolic hull extract and commercial pomegranate hull extract exhibited similar aldose reductase inhibitory activity characterized by IC(50) values ranging from 3 to 33.3 μg/ml. They were more effective than pomegranate ethanolic seed extract with IC(50) ranging from 33.3 to 333 μg/ml. Antioxidant action of the novel compounds was documented in a DPPH test and in a liposomal membrane model, oxidatively stressed by peroxyl radicals. All the plant extracts showed considerable antioxidant potential in the DPPH assay. Pomegranate ethanolic hull extract and commercial pomegranate hull extract executed similar protective effects on peroxidatively damaged liposomal membranes characterized by 10ethanolic seed extract showed significantly lower antioxidant activity compared to both hull extracts studied. Pomegranate extracts are thus presented as bifunctional agents combining aldose reductase inhibitory action with antioxidant activity and with potential therapeutic use in prevention of diabetic complications.

  9. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the.

  10. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  11. Evaluation of the conserve flavin reductase gene from three ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... means of PCR technique. The nucleic acid sequences of the PCR primers were designed using conserved nucleic acid sequences of the flavin reductase enzyme from. Rhodococcus sp. strain IGTS8. The oligonucleotide primers were as follows: 5'-GAA TTC ATG TCT GAC. AAG CCG AAT GCC-3' (forward) ...

  12. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    Science.gov (United States)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  13. The intramolecular electron transfer between copper sites of nitrite reductase

    DEFF Research Database (Denmark)

    Farver, O; Eady, R R; Abraham, Z H

    1998-01-01

    The intramolecular electron transfer (ET) between the type 1 Cu(I) and the type 2 Cu(II) sites of Alcaligenes xylosoxidans dissimilatory nitrite reductase (AxNiR) has been studied in order to compare it with the analogous process taking place in ascorbate oxidase (AO). This internal process is in...

  14. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  15. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    Science.gov (United States)

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  16. Sub anno domini 1465... In casa de’ figliuoli di Aldo. Origin and advancements of the printing press in Italy through the exemplars of the Bagnacavallo ‘Giuseppe Taroni’ library

    Directory of Open Access Journals (Sweden)

    Federica Fabbri

    2016-11-01

    Full Text Available The paper contains the descriptions of the ancient books owned by the Public Library ‘Giuseppe Taroni’ in Bagnacavallo, which were selected for the exhibition Sub anno domini 1465... In casa de’ figliuoli di Aldo to celebrate the printing of the first book in Italy by Konrad Sweynheym and Arnold Pannartz with datation included in the colophon (Subiaco, 1465 and the fifth centenary of Aldus Manutius’ death, the major Italian printer and publisher of the Renaissance age (1449-52?-1515. Among the exhibited copies the one belonging to the Roman edition of 1470 of the work of the Christian scholar Lactantius, the only one copy printed by Sweynheym and Pannartz owned by the Library in Bagnacavallo, and a selection of books printed by Aldus Manutius and his heirs, among which the only copy found in this library of a book printed by Aldus The Elder, belonging to Institutiones Grammaticae of 1514.

  17. Identification of 5α-reductase isoenzymes in canine skin.

    Science.gov (United States)

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  18. Del dicho al hecho: El "modelo integrado y abierto" de Aldo Ferrer y la política económica en la Argentina de la segunda posguerra

    Directory of Open Access Journals (Sweden)

    Marcelo N. Rougier Voilláz

    2012-04-01

    Full Text Available Este artículo tiene el propósito de reflexionar sobre los conceptos de Aldo Ferrer, sus aportes al pensamiento económico latinoamericano y los impactos que tuvieron sus ideas cuando se pusieron en práctica, al ser designado ministro en 1970. Analizamos el "modelo integrado y abierto" que Ferrer elaboró en los sesenta como la estrategia para superar el subdesarrollo y la dependencia de Argentina. Comenzamos presentando la evolución de sus ideas previas sobre los problemas de la economía argentina, en particular industriales, para analizar luego los supuestos y principales variables de su propuesta. En tercer lugar, consideramos el amplio debate entre economistas locales que suscitó su postura, que en parte guió la aplicación de políticas económicas hasta 1976. Por último, señalamos el efecto perdurable que tuvo la aplicación de sus ideas sobre la estructura empresaria e industrial del país.This article intends to reflect on the ideas of Aldo Ferrer, its contributions to Latin American economic thought and the impacts they had when they were implemented, after his author were appointed Minister in 1970. We analyze the "integrated and open model" that Ferrer developed in the sixties as the strategy to overcome the underdevelopment and dependence of Argentina. We start by presenting the evolution of his previous ideas in relation to the problems of the Argentine economy, particularly industrial ones, to analyze then the assumptions and main variables of his proposal. Thirdly, we shall consider the broad debate between local economists that his position gave rise, and that in part guided economic policies until 1976. Finally, we indicate the lasting effect that the implementation of his ideas had on the business and industrial structure of the country.

  19. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    Science.gov (United States)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; hide

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  20. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase.

    Science.gov (United States)

    Chen, Baosong; Tian, Jin; Zhang, Jinjin; Wang, Kai; Liu, Li; Yang, Bo; Bao, Li; Liu, Hongwei

    2017-07-01

    Seven new compounds including four lanostane triterpenoids, lucidenic acids Q-S (1-3) and methyl ganoderate P (4), and three triterpene-farnesyl hydroquinone conjugates, ganolucinins A-C (5-7), one new natural product ganomycin J (8), and 73 known compounds (9-81) were isolated from fruiting bodies of Ganoderma lucidum. The structures of the compounds 1-8 were determined by spectroscopic methods. Bioactivities of compounds isolated were assayed against HMG-CoA reductase, aldose reductase, α-glucosidase, and PTP1B. Ganolucidic acid η (39), ganoderenic acid K (44), ganomycin J (8), and ganomycin B (61) showed strong inhibitory activity against HMG-CoA reductase with IC 50 of 29.8, 16.5, 30.3 and 14.3μM, respectively. Lucidumol A (67) had relatively good effect against aldose reductase with IC 50 of 19.1μM. Farnesyl hydroquinones ganomycin J (8), ganomycin B (61), ganomycin I (62), and triterpene-farnesyl hydroquinone conjugates ganoleuconin M (76) and ganoleuconin O (79) possessed good inhibitory activity against α-glucosidase with IC 50 in the range of 7.8 to 21.5μM. This work provides chemical and biological evidence for the usage of extracts of G. lucidum as herbal medicine and food supplements for the control of hyperglycemic and hyperlipidemic symptoms. Copyright © 2017. Published by Elsevier B.V.

  1. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  2. Synthesis of Novel β-Keto-Enol Derivatives Tethered Pyrazole, Pyridine and Furan as New Potential Antifungal and Anti-Breast Cancer Agents

    Directory of Open Access Journals (Sweden)

    Smaail Radi

    2015-11-01

    Full Text Available Recently, a new generation of highly promising inhibitors bearing β-keto-enol functionality has emerged. Reported herein is the first synthesis and use of novel designed drugs based on the β-keto-enol group embedded with heterocyclic moieties such as pyrazole, pyridine, and furan, prepared in a one-step procedure by mixed Claisen condensation. All the newly synthesized compounds were characterized by FT-IR, 1H-NMR, 13C-NMR, ESI/LC-MS, elemental analysis, and evaluated for their in vitro antiproliferative activity against breast cancer (MDA-MB241 human cell lines and fungal strains (Fusarium oxysporum f.sp albedinis FAO. Three of the synthesized compounds showed potent activity against fungal strains with IC50 values in the range of 0.055–0.092 µM. The results revealed that these compounds showed better IC50 values while compared with positive controls.

  3. Theoretical and experimental investigation of (E)-2-([3,4-dimethylphenyl)imino]methyl)-3-methoxyphenol: Enol-keto tautomerism, spectroscopic properties, NLO, NBO and NPA analysis

    Science.gov (United States)

    Demircioğlu, Zeynep; Albayrak, Çiğdem; Büyükgüngör, Orhan

    2014-05-01

    The molecular structure and spectroscopic properties of (E)-2-([3,4-dimethylphenyl)imino]methyl)-3-methoxyphenol were investigated by X-ray diffraction, FT-IR and UV-vis spectroscopy. The vibrational frequencies calculatedusing DFT/B3LYP/6-31G(d,p) method. Results showed better agreement with the experimental values. The electronic properties was studied and the most prominent transition corresponds to π → π* and n → π*. Two types of intramolecular hydrogen bonds are strong OH⋯N interactions in enol-imine form and NH⋯O interactions in keto-amine form are compared by using density functional theory (DFT) method with B3LYP applying 6-31G(d,p) basis set. Both enol-keto tautomers engender six-membered ring due to intramolecular hydrogen bonded interactions.

  4. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Jung; Son, Hyeoncheol Francis [Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701 (Korea, Republic of); Kim, Sangwoo [Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701 (Korea, Republic of); School of Nono-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Ahn, Jae-Woo [Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701 (Korea, Republic of); Kim, Kyung-Jin, E-mail: kkim@knu.ac.kr [Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701 (Korea, Republic of)

    2014-02-14

    Highlights: • We determined a crystal structure of β-keto thiolase from Ralstonia eutropha H16 (ReBktB). • Distinct substrate binding mode ReBktB was elucidated. • Enzymatic kinetic parameters of ReBktB were revealed. - Abstract: ReBktB is a β-keto thiolase from Ralstonia eutropha H16 that catalyzes condensation reactions between acetyl-CoA with acyl-CoA molecules that contains different numbers of carbon atoms, such as acetyl-CoA, propionyl-CoA, and butyryl-CoA, to produce valuable bioproducts, such as polyhydroxybutyrate, polyhydroxybutyrate-hydroxyvalerate, and hexanoate. We solved a crystal structure of ReBktB at 2.3 Å, and the overall structure has a similar fold to that of type II biosynthetic thiolases, such as PhbA from Zoogloea ramigera (ZrPhbA). The superposition of this structure with that of ZrPhbA complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of ReBktB. The catalytic site of ReBktB contains three conserved residues, Cys90, His350, and Cys380, which may function as a covalent nucleophile, a general base, and second nucleophile, respectively. For substrate binding, ReBktB stabilized the ADP moiety of CoA in a distinct way compared to ZrPhbA with His219, Arg221, and Asp228 residues, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar between these two enzymes. Kinetic study of ReBktB revealed that K{sub m}, V{sub max}, and K{sub cat} values of 11.58 μM, 1.5 μmol/min, and 102.18 s{sup −1}, respectively, and the catalytic and substrate binding sites of ReBktB were further confirmed by site-directed mutagenesis experiments.

  5. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  6. Diastereo- and enantioselective anti-selective hydrogenation of α-amino-β-keto ester hydrochlorides and related compounds using transition-metal-chiral-bisphosphine catalysts.

    Science.gov (United States)

    Hamada, Yasumasa

    2014-04-01

    This review describes our recent works on the diastereo- and enantioselective synthesis of anti-β-hydroxy-α-amino acid esters using transition-metal-chiral-bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh), iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti-selective asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides, yielding anti-β-hydroxy-α-amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo- and enantioselectivities. The Ru-catalyzed asymmetric hydrogenation of α-amino-β-ketoesters via DKR is the first example of generating anti-β-hydroxy-α-amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni-chiral-bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides in an anti-selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α-aminoketones using a Ni catalyst via DKR is also described. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Low-Protein Diet Supplemented with Keto Acids Is Associated with Suppression of Small-Solute Peritoneal Transport Rate in Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Na Jiang

    2011-01-01

    Full Text Available Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6–0.8 g/kg/d, keto-acid-supplemented low- (sLP: 0.6–0.8 g/kg/d with 0.12 g/kg/d of keto acids, or high- (HP: 1.0–1.2 g/kg/d protein diet and lasted for one year. In this study, the variations of peritoneal transport rate were assessed. Results. While baseline D/Pcr (dialysate-to-plasma concentration ratio for creatinine at 4 hour and D/D0glu (dialysate glucose at 4 hour to baseline dialysate glucose concentration ratio were similar, D/Pcr in group sLP was lower, and D/D0glu was higher than those in the other two groups (P<0.05 at 12th month. D/D0glu increased (P<0.05, and D/Pcr tended to decrease, (P=0.071 in group sLP. Conclusions. Low-protein diet with keto acids may benefit PD patients by maintaining peritoneum at a lower transport rate.

  8. HPLC Determination of α-Keto Acids from Human Serum Using 2, 3-Diamino-2, 3- Dimethyl Butane as Derivatizing Reagent

    International Nuclear Information System (INIS)

    Mahar, K.P.; Shar, G.Q.; Khuhawar, M.Y.; Abbasi, K.U.; Azmat, R.; Jameel Ahmed Biag, J.A.

    2013-01-01

    Seven α-keto acids, pyruvic acid (PYR), 2-oxobutyric acid (KB), 3-methyl-2-oxobutyric acid (MKBA), 3-methyl-2-oxovaleric acid (K3MVA), 4-methyl-2-oxovaleric acid (K4MVA), 2-oxoglutaric acid (KG) and Phenyl pyruvic acid (PPY) as derivatives of 2,3-diamino-2,3-dimethybutane (DDB) were separated by HPLC column Zorbax C-18 (4.6x150 mm-id). The compounds were eluted with methanol-water-acetonitrile (40:58:2 V/V/V) with flow rate 1 ml/min. UV detection was carried out by photodiode array at 255 nm. Linear calibration plots were obtained with 0.1 to 60 μg/ml with limits of detection (LoD) within 0.04-0.4 μg/ml. The method was applied for the analysis of α-keto acids from serum of diabetic patients with blood glucose level 430-458 mg/dl and healthy volunteers. The amounts of α-keto acids observed 3.24-9.71 μg/ml with RSD 1.1-1.9 percentage in diabetic patients were higher than healthy volunteer's 0.11-1.3 μg/ml with RSD 0.9-2.6 percentage. (author)

  9. Low-Protein Diet Supplemented with Keto Acids Is Associated with Suppression of Small-Solute Peritoneal Transport Rate in Peritoneal Dialysis Patients

    Science.gov (United States)

    Jiang, Na; Qian, Jiaqi; Lin, Aiwu; Fang, Wei; Zhang, Weiming; Cao, Liou; Wang, Qin; Ni, Zhaohui; Yao, Qiang

    2011-01-01

    Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD) patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6–0.8 g/kg/d), keto-acid-supplemented low- (sLP: 0.6–0.8 g/kg/d with 0.12 g/kg/d of keto acids), or high- (HP: 1.0–1.2 g/kg/d) protein diet and lasted for one year. In this study, the variations of peritoneal transport rate were assessed. Results. While baseline D/Pcr (dialysate-to-plasma concentration ratio for creatinine at 4 hour) and D/D0glu (dialysate glucose at 4 hour to baseline dialysate glucose concentration ratio) were similar, D/Pcr in group sLP was lower, and D/D0glu was higher than those in the other two groups (P < 0.05) at 12th month. D/D0glu increased (P < 0.05), and D/Pcr tended to decrease, (P = 0.071) in group sLP. Conclusions. Low-protein diet with keto acids may benefit PD patients by maintaining peritoneum at a lower transport rate. PMID:21747999

  10. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats.

    Science.gov (United States)

    Lahbib, Karima; Aouani, Iyadh; Cavalier, Jean-François; Touil, Soufiane

    2015-09-01

    Obesity has become a leading global health problem owing to its strong association with a high incidence of oxidative stress. Many epidemiologic studies showed that an antioxidant supplementation decreases the state of oxidative stress. In the present work, a HFD-induced rat obesity and oxidative stress were used to investigate the link between fat deposition and serum-oxidative stress markers. We also studied the effect of a chronic administration of 3-keto-1,5-bisphosphonates 1 (a & b) (40 μg/kg/8 weeks/i.p.). Exposure of rats to HFD during 16 weeks induced fat deposition, weight gain and metabolic disruption characterized by an increase in cholesterol, triglyceride and glycemia levels, and a decrease in ionizable calcium and free iron concentrations. HFD also induced serum-oxidative stress status vocalized by an increase in ROS (H2 O2 ), MDA and PC levels, with a decrease in antioxidant enzyme activity (CAT, GPx, SOD). Importantly, 3-keto-1,5-bisphosphonates corrected all the deleterious effects of HFD treatment in vivo, but it failed to inhibit lipases in vitro and in vivo. These studies suggest that 3-keto-1,5-bisphosphonates 1 could be considered as safe antioxidant agents that should also find other potential biological applications. © 2014 John Wiley & Sons A/S.

  11. The supportive effect of supplementation with α-keto acids on physical training in type 2 diabetes mellitus.

    Science.gov (United States)

    Liu, Y; Spreng, T; Lehr, M; Yang, B; Karau, A; Gebhardt, H; Steinacker, J M

    2015-07-01

    The maintenance of physical activity is crucial for the prevention and management of type 2 diabetes (T2D), and exercise induced changes including production of metabolites like ammonia can result in fatigue and exercise intolerance. Nutritional supplements may serve as an effective measure in supporting patients undergoing physical training by acting on their metabolism. This study investigates the effects of supplementation with α-keto acids (KAS) on exercise tolerance and glucose control in T2D patients. In a double-blind, placebo-controlled, randomized study 28 T2D patients underwent 6 weeks training on a cycle ergometer while they were supplemented with either a placebo or KAS (0.2 g kg(-1) body weight each day). The weekly training volume, power output at maximum and lactic threshold, leg muscle torque, the plasma concentration and 8 h urinary discharge of glucose, ammonia and urea were determined before and after the training as well as after one week of recovery. With KAS the patients did significantly more voluntary exercise (213 vs. 62 min, P physical training along with a prolonged benefit in glucose control in T2D patients.

  12. Recent structural insights into the function of copper nitrite reductases.

    Science.gov (United States)

    Horrell, Sam; Kekilli, Demet; Strange, Richard W; Hough, Michael A

    2017-11-15

    Copper nitrite reductases (CuNiR) carry out the first committed step of the denitrification pathway of the global nitrogen cycle, the reduction of nitrite (NO 2 - ) to nitric oxide (NO). As such, they are of major agronomic and environmental importance. CuNiRs occur primarily in denitrifying soil bacteria which carry out the overall reduction of nitrate to dinitrogen. In this article, we review the insights gained into copper nitrite reductase (CuNiR) function from three dimensional structures. We particularly focus on developments over the last decade, including insights from serial femtosecond crystallography using X-ray free electron lasers (XFELs) and from the recently discovered 3-domain CuNiRs.

  13. The evolution of the ribonucleotide reductases: much ado about oxygen.

    Science.gov (United States)

    Poole, Anthony M; Logan, Derek T; Sjöberg, Britt-Marie

    2002-08-01

    Ribonucleotide reduction is the only known biological means for de novo production of deoxyribonucleotides, the building blocks of DNA. These are produced from ribonucleotides, the building blocks of RNA, and the direction of this reaction has been taken to support the idea that, in evolution, RNA preceded DNA as genetic material. However, an understanding of the evolutionary relationships among the three modern-day classes of ribonucleotide reductase and how the first reductase arose early in evolution is still far off. We propose that the diversification of this class of enzymes is inherently tied to microbial colonization of aerobic and anaerobic niches. The work is of broader interest, as it also sheds light on the process of adaptation to oxygenic environments consequent to the evolution of atmospheric oxygen.

  14. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    in prostate cancer patients: a potential factor implicated in. 5-alpha-reductase inhibitor treatment. Luis Alberto Henríquez-Hernández, Almudena Valenciano, Palmira Foro-Arnalot, María Jesús Álvarez-Cubero,. José Manuel Cozar, José Francisco Suárez-Novo, Manel Castells-Esteve, Pablo Fernández-Gonzalo,.

  15. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... BL21 (DE3) strain with the recombinant expression vector pET-28A-GhNiR. NiR activity assay showed that the crude GhNiR protein had obvious activity to NaNO2 substrate. Key words: Cotton, nitrite reductase, prokaryotic expression, semi-quantitative RT-PCR, GenBank Accession. No: GQ389691.

  16. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    action of xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) is required to convert D-xylose to D-xylulose and all enzymes of the D-xylose pathway can be used in the L-arabinose pathway, where arabitol is oxidized by NAD+-dependent arabitol dehydrogenase (EC. 1.1.1.12) producing L-xylulose. This is ...

  17. DIHYDROFOLATE REDUCTASE AS A VERSATILE DRUG TARGET IN HEALTHCARE

    Directory of Open Access Journals (Sweden)

    Naira Rashid

    2016-09-01

    Full Text Available Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis. It has been used as a drug target for treatment of various diseases. A large number of pharmaceutical drugs have been designed to inhibit the activity of dihydrofolate reductase. However, over the period of time some organisms have developed resistance against some of these drugs. There is also a chance of cross reactivity for these drugs, as they may target the dihydrofolate reductase enzyme of other organisms. Although using NMR spectroscopy, phylogenetic sequence analysis, comparative sequence analysis between dihydrofolate enzymes of various organisms and molecular modeling studies, a lot has been unraveled about the difference in the structure of this enzyme in various organisms, yet there is a need for deeper understanding of these differences so as to design drugs that are specific to their targets and reduce the chance for cross reactivity. The dihydrofolate enzyme can also be explored for treatment of various other diseases that are associated with the folate cycle.

  18. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  19. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  20. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  1. Immunological comparison of the NADH:nitrate reductase from different cucumber tissues

    Directory of Open Access Journals (Sweden)

    Jolanta Marciniak

    2014-01-01

    Full Text Available Soluble nitrate reductase from cucumber roots (Cucumis sativus L. was isolated and purified with blue-Sepharose 4B. Specific antibodies against the NR protein were raised by immunization of a goat. Using polyclonal antibodies anti-NR properties of the nitrate reductase from various cucumber tissues were examined. Experiments showed difference in immuno-logical properties of nitrate reductase (NR from cotyledon roots and leaves.

  2. Histochemical localization of glutathione dependent NBT-reductase in mouse skin.

    Science.gov (United States)

    Shukla, Y

    2001-09-01

    Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. The fresh frozen tissue sections (8 m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  3. Improved training tolerance by supplementation with α-Keto acids in untrained young adults: a randomized, double blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Liu Yuefei

    2012-08-01

    Full Text Available Abstract Background Exercise causes a variety of physiological and metabolic changes that can in turn reduce exercise tolerance. One of the potential mechanisms responsible for fatigue is “exercise-induced hyperammonemia”. Previous studies have shown that supplementation with amino acids can increase training tolerance. The α-keto acids are biochemical analogs of amino acids and can be converted to amino acids through transamination, thus reducing the cellular ammonia level. This double blind, placebo-controlled study was designed to investigate the effects of α-keto acid supplementation (KAS on training tolerance, training effect, and stress-recovery state. Methods Thirty-three untrained young male adults underwent four weeks of training (5 sessions/week; 30 minutes running at the individual anaerobic threshold followed by 3 x 3 minute sprints/each session. Throughout the 4 weeks of training and one week of recovery, subjects took α-ketoglutarate (AKG group, 0.2 g/kg/d, n = 9, branched-chain keto acids (BCKA group, 0.2 g/kg/d, n = 12 or isocaloric placebo (control group, n = 12 daily. Results The 4th week training volume, maximum power output and muscle torque were higher in the AKG group (175 ± 42 min, 412 ± 49 Watts and 293 ± 58 Newton meters, respectively, Prd week of training increased significantly in the control group (P Conclusions Under KAS, subjects could bear a higher training volume and reach a higher power output and peak muscle torque, accompanied by a better stress-recovery-state. Thus, KAS improves exercise tolerance and training effects along with a better stress-recovery state. Whether the improved training tolerance by KAS is associated with effects on ammonia homeostasis requires further observation.

  4. Uso de cetoanálogo na terapia da insuficiência renal canina Use of keto analogues in therapy of the renal failure in dogs

    Directory of Open Access Journals (Sweden)

    J.C.C. Veado

    2002-10-01

    Full Text Available The efficacy of keto acids and essential amino acids on a two-year-old female dog, Labrador, suffering from Leishmaniasis and acute renal failure was evaluated by clinical and laboratorial analyses based on urea and creatinine dosages. An improving in the animal general condition and an increasing in the appetite, activity and weight gain, were observed and favorably contributed to the treatment of the primary disease. Ketoanalogueswere oraly administered during 76 days and the levels of urea and creatinine remained within acceptable limits, even after this period of time. Ketoanaloguescontributed positively for the treatment of acute renal failure and appears to be an important alternative for the leishmaniasis treatment.

  5. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy

    Science.gov (United States)

    Li, Li; Hu, Feng; Chang, Yu-Qiang; Zhou, Yan; Wang, Peng; Zhang, Jian-Ping

    2015-07-01

    Siphonaxanthin and siphonein are two keto-carotenoids. Upon anthracene-sensitizing, triplet excitation dynamics of these two carotenoids were studied in n-hexane and in methanol, respectively, by ns flash photolysis spectroscopy. In n-hexane, bleaching of the ground state absorption (GSB) and the excitation triplet (3Car*) absorption were observed. In methanol, upon the decay of the 3Car*, the cation dehydrodimer of carotenoid, #[Car]2+, generated by the same rate, while an additional GSB generated synchronously, a polar solvent assisted and anthracene-sensitized mechanism was addressed based on the discussion. The environment-sensitive triplet excitation dynamics imply their potential role in photo-protection in vivo.

  6. Methylenetetrahydrofolate reductase (MTHFR) deficiency presenting as a rash.

    LENUS (Irish Health Repository)

    Crushell, Ellen

    2012-09-01

    We report on the case of a 2-year-old girl recently diagnosed with Methylenetetrahydrofolate reductase (MTHFR) deficiency who originally presented in the neonatal period with a distinctive rash. At 11 weeks of age she developed seizures, she had acquired microcephaly and developmental delay. The rash deteriorated dramatically following commencement of phenobarbitone; both rash and seizures abated following empiric introduction of pyridoxine and folinic acid as treatment of possible vitamin responsive seizures. We postulate that phenobarbitone in combination with MTHFR deficiency may have caused her rash to deteriorate and subsequent folinic acid was helpful in treating the rash and preventing further acute neurological decline as commonly associated with this condition.

  7. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  8. Crystal structures of four δ-keto esters and a Cambridge Structural Database analysis of cyano-halogen interactions.

    Science.gov (United States)

    Kamal, Kulsoom; Maurya, Hardesh K; Gupta, Atul; Vasudev, Prema G

    2015-10-01

    The revived interest in halogen bonding as a tool in pharmaceutical cocrystals and drug design has indicated that cyano-halogen interactions could play an important role. The crystal structures of four closely related δ-keto esters, which differ only in the substitution at a single C atom (by H, OMe, Cl and Br), are compared, namely ethyl 2-cyano-5-oxo-5-phenyl-3-(piperidin-1-yl)pent-2-enoate, C19H22N2O3, (1), ethyl 2-cyano-5-(4-methoxyphenyl)-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C20H24N2O4, (2), ethyl 5-(4-chlorophenyl)-2-cyano-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C19H21ClN2O3, (3), and the previously published ethyl 5-(4-bromophenyl)-2-cyano-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C19H21BrN2O3, (4) [Maurya, Vasudev & Gupta (2013). RSC Adv. 3, 12955-12962]. The molecular conformations are very similar, while there are differences in the molecular assemblies. Intermolecular C-H...O hydrogen bonds are found to be the primary interactions in the crystal packing and are present in all four structures. The halogenated derivatives have additional aromatic-aromatic interactions and cyano-halogen interactions, further stabilizing the molecular packing. A database analysis of cyano-halogen interactions using the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53, 662-671] revealed that about 13% of the organic molecular crystals containing both cyano and halogen groups have cyano-halogen interactions in their packing. Three geometric parameters for the C-X...N[triple-bond]C interaction (X = F, Cl, Br or I), viz. the N...X distance and the C-X...N and C-N...X angles, were analysed. The results indicate that all the short cyano-halogen contacts in the CSD can be classified as halogen bonds, which are directional noncovalent interactions.

  9. Functions of Flavin Reductase and Quinone Reductase in 2,4,6-Trichlorophenol Degradation by Cupriavidus necator JMP134▿

    OpenAIRE

    Belchik, Sara Mae; Xun, Luying

    2007-01-01

    The tcpRXABCYD operon of Cupriavidus necator JMP134 is involved in the degradation of 2,4,6-trichlorophenol (2,4,6-TCP), a toxic pollutant. TcpA is a reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase that converts 2,4,6-TCP to 6-chlorohydroxyquinone. It has been implied via genetic analysis that TcpX acts as an FAD reductase to supply TcpA with FADH2, whereas the function of TcpB in 2,4,6-TCP degradation is still unclear. In order to provide direct biochemical evidence for t...

  10. Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply

    OpenAIRE

    Gholamreza Kavoosi; Sadegh Balotf; Homeira Eshghi; Hasan Hasani

    2014-01-01

    Nitrate is one of the major sources of nitrogen for the growth of plants. It is taken up by plant roots and transported to the leaves where it is reduced to nitrite in the. The main objective of this research was to investigate stimulatory effects of sodium nitrate, potassium nitrate, ammonia and urea on the production/generation of the nitrate reductase mRNA in Triticum aestivum plants. The plants were grown in standard nutrient solution for 21 days and then starved in a media without nitrat...

  11. THE EFFECTS OF AN ALDOSE REDUCTASE INHIBITOR ON THE PROGRESSION OF DIABETIC-RETINOPATHY

    NARCIS (Netherlands)

    TROMP, A; HOOYMANS, JMM; BARENDSEN, BC; VONDOORMAAL, JJ

    1991-01-01

    The polyol pathway has long been associated with diabetic retinopathy. Glucose is converted to sorbitol with the aid of the enzyme aldose reductase. Aldose reductase inhibitors can prevent changes induced by diabetes. A total of 30 patients with minimal background retinopathy were randomly divided

  12. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from L...

  13. HMG-CoA-reductase inhibitors and neuropathy : reports to the Netherlands Pharmacovigilance Centre

    NARCIS (Netherlands)

    de Langen, J J; van Puijenbroek, E P

    2006-01-01

    The number of patients taking HMG-CoA-reductase inhibitors for hypercholesterolaemia is growing rapidly. Treatment with HMG-CoA-reductase inhibitors significantly reduces the risk of cardiovascular morbidity and mortality, but may rarely cause serious adverse drug reactions (ADRs). The most serious

  14. Bioactivation of lapachol responsible for DNA scission by NADPH-cytochrome P450 reductase.

    Science.gov (United States)

    Kumagai, Y; Tsurutani, Y; Shinyashiki, M; Homma-Takeda, S; Nakai, Y; Yoshikawa, T; Shimojo, N

    1997-09-01

    The reduction of the naphthoquinone derivative, lapachol, which is responsible for its bioactivation was examined using microsomal preparations and NADPH-cytochrome P450 reductase (P450 reductase). Phenobarbital (PB) pretreatment resulted in an induction of enzyme activities for cytochrome c reduction (1.54 times) and lapachol reduction (1.20 times) by hepatic microsomal preparation of rats. The specific activity of lapachol reduction by purified P450 reductase showed 56-fold higher than that by untreated liver microsomes. Addition of antibody against P450 reductase (2 mg of IgG/mg of protein) to the microsomal incubation mixture caused an immunoinhibition of cytochrome c (32%) and lapachol (19%) reduction activities, suggesting that P450 reductase catalyzes lapachol reduction. Generation of superoxide anion radical (1321 nmol/mg per min) in approximately equivalent amounts of with NADPH consumption (941 nmol/mg per min) was detected during metabolism of lapachol by P450 reductase. Electron spin resonance (ESR) experiments confirmed generation of superoxide anion radical and hydroxyl radical as these 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) adducts. Incubation of lapachol with P450 reductase caused a cleavage of DNA which was reduced in the presence of Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase(1), and hydroxyl radical scavengers such as dimethyl sulfoxide (DMSO) and thiourea. Taken together, these results indicate that lapachol is bioactivated by P450 reductase to reactive species, which promote DNA scission through the redox cycling based generation of superoxide anion radical.

  15. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  16. Reduced mRNA expression of PTGDS in peripheral blood mononuclear cells of rapid-cycling bipolar disorder patients compared with healthy control subjects

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, Lone; Kessing, Lars Vedel

    2015-01-01

    BACKGROUND: Disturbances related to the arachidonic acid cascade and prostaglandin metabolism may be involved in the pathophysiology of bipolar disorder, as supported by a recent genome-wide association study meta-analysis; however, evidence from clinical studies on a transcriptional level...... is lacking. Two enzymes in the arachidonic acid cascade are the prostaglandin D synthase (PTGDS), which catalyzes the conversion of prostaglandin H2 to prostaglandin D2 (PGD2), and the aldo-keto reductase family 1 member C3 (AKR1C3), which catalyzes the reduction of PGD2. We aimed to test the hypothesis...... that mRNA expression of PTGDS and AKR1C3 is deregulated in rapid-cycling disorder patients in a euthymic or current affective state compared with healthy control subjects, and that expression alters with affective states. METHODS: PTGDS and AKR1C3 mRNA expression in peripheral blood mononuclear cells...

  17. A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of L-lactic acid.

    Science.gov (United States)

    Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping

    2014-12-01

    The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571 ± 117, 1,281 ± 231 and 904 ± 127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress.

  18. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system

    Directory of Open Access Journals (Sweden)

    Okada Futoshi

    2005-09-01

    Full Text Available Abstract Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.

  19. The role of thioredoxin reductases in brain development.

    Directory of Open Access Journals (Sweden)

    Jonna Soerensen

    Full Text Available The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS-specific deletion of cytosolic (Txnrd1 and mitochondrial (Txnrd2 thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells.

  20. Interspecific variation for thermal dependence of glutathione reductase in sainfoin.

    Science.gov (United States)

    Kidambi, S P; Mahan, J R; Matches, A G

    1990-05-01

    Understanding the biochemical and physiological consequences of species variation would expedite improvement in agronomically useful genotypes of sainfoin (Onobrychis spp.) Information on variation among sainfoin species is lacking on thermal dependence of glutathione reductase (B.C. 1.6.4.2.), which plays an important role in the protection of plants from both high and low temperature stresses by preventing harmful oxidation of enzymes and membranes. Our objective was to investigate the interspecific variation for thermal dependency of glutathione reductase in sainfoin. Large variation among species was found for: (i) the minimum apparent Km (0.4-2.5 μM NADPH), (ii) the temperature at which the minimum apparent Km was observed (15°-5°C), and (iii) the thermal kinetic windows (2°-30°C width) over a 15°-45°C temperature gradient. In general, tetraploid species had narrower (≤17°C) thermal kinetic windows than did diploid species (∼30°C), with one exception among the diploids. Within the tetraploid species, the cultivars of O. viciifolia had a broader thermal kinetic window (≥7°C) than the plant introduction (PI 212241, >2 °C) itself.

  1. Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles.

    Science.gov (United States)

    Khodashenas, Bahareh; Ghorbani, Hamid Reza

    2016-06-01

    Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO(3)) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet -visible (UV-Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV-Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405-420 nm for 1 mM metal precursor solution (AgNO(3)) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO(3) with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO(3) concentration and the size of produced Ag NPs.

  2. A ferric-chelate reductase for iron uptake from soils.

    Science.gov (United States)

    Robinson, N J; Procter, C M; Connolly, E L; Guerinot, M L

    1999-02-25

    Iron deficiency afflicts more than three billion people worldwide, and plants are the principal source of iron in most diets. Low availability of iron often limits plant growth because iron forms insoluble ferric oxides, leaving only a small, organically complexed fraction in soil solutions. The enzyme ferric-chelate reductase is required for most plants to acquire soluble iron. Here we report the isolation of the FRO2 gene, which is expressed in iron-deficient roots of Arabidopsis. FRO2 belongs to a superfamily of flavocytochromes that transport electrons across membranes. It possesses intramembranous binding sites for haem and cytoplasmic binding sites for nucleotide cofactors that donate and transfer electrons. We show that FRO2 is allelic to the frd1 mutations that impair the activity of ferric-chelate reductase. There is a nonsense mutation within the first exon of FRO2 in frd1-1 and a missense mutation within FRO2 in frd1-3. Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants. The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron-deficient soils.

  3. Crystal structure of human quinone reductase type 2, a metalloflavoprotein.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Zhao, Q; Amzel, L M

    1999-08-03

    In mammals, two separate but homologous cytosolic quinone reductases have been identified: NAD(P)H:quinone oxidoreductase type 1 (QR1) (EC 1.6.99.2) and quinone reductase type 2 (QR2). Although QR1 and QR2 are nearly 50% identical in protein sequence, they display markedly different catalytic properties and substrate specificities. We report here two crystal structures of QR2: in its native form and bound to menadione (vitamin K(3)), a physiological substrate. Phases were obtained by molecular replacement, using our previously determined rat QR1 structure as the search model. QR2 shares the overall fold of the major catalytic domain of QR1, but lacks the smaller C-terminal domain. The FAD binding sites of QR1 and QR2 are very similar, but their hydride donor binding sites are considerably different. Unexpectedly, we found that QR2 contains a specific metal binding site, which is not present in QR1. Two histidine nitrogens, one cysteine thiol, and a main chain carbonyl group are involved in metal coordination. The metal binding site is solvent-accessible, and is separated from the FAD cofactor by a distance of about 13 A.

  4. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  5. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself.

    Science.gov (United States)

    Gachhui, R; Presta, A; Bentley, D F; Abu-Soud, H M; McArthur, R; Brudvig, G; Ghosh, D K; Stuehr, D J

    1996-08-23

    Rat neuronal NO synthase (nNOS) is comprised of a flavin-containing reductase domain and a heme-containing oxygenase domain. Calmodulin binding to nNOS increases the rate of electron transfer from NADPH into its flavins, triggers electron transfer from flavins to the heme, activates NO synthesis, and increases reduction of artificial electron acceptors such as cytochrome c. To investigate what role the reductase domain plays in calmodulin's activation of these functions, we overexpressed a form of the nNOS reductase domain (amino acids 724-1429) in the yeast Pichia pastoris that for the first time exhibits a complete calmodulin response. The reductase domain was purified by 2',5'-ADP affinity chromatography yielding 25 mg of pure protein per liter of culture. It contained 1 FAD and 0.8 FMN per molecule. Most of the protein as isolated contained an air-stable flavin semiquinone radical that was sensitive to FeCN6 oxidation. Anaerobic titration of the FeCN6-oxidized reductase domain with NADPH indicated the flavin semiquinone re-formed after addition of 1-electron equivalent and the flavins could accept up to 3 electrons from NADPH. Calmodulin binding to the recombinant reductase protein increased its rate of NADPH-dependent flavin reduction and its rate of electron transfer to cytochrome c, FeCN6, or dichlorophenolindophenol to fully match the rate increases achieved when calmodulin bound to native full-length nNOS. Calmodulin's activation of the reductase protein was associated with an increase in domain tryptophan and flavin fluorescence. We conclude that many of calmodulin's actions on native nNOS can be fully accounted for through its interaction with the nNOS reductase domain itself.

  6. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study

    Energy Technology Data Exchange (ETDEWEB)

    Adriano Junior, L.; Fonseca, T. L.; Castro, M. A. [Instituto de Física, Universidade Federal de Goiás, CEP 74.690-900, Goiânia, GO (Brazil)

    2016-06-21

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller–Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.

  7. Keto-supplemented Low Protein Diet: A Valid Therapeutic Approach for Patients with Steroid-resistant Proteinuria during Early-stage Chronic Kidney Disease.

    Science.gov (United States)

    Zhang, J; Xie, H; Fang, M; Wang, K; Chen, J; Sun, W; Yang, L; Lin, H

    2016-04-01

    Low protein diets supplemented with keto acid (sLPD) are recommended for patients with stage 3-5 chronic kidney disease (CKD). This study assessed whether sLPD is beneficial for patients with steroid-resistant proteinuria during early-stage CKD. A 1-year randomized controlled trial was conducted from 2010 to 2012. In this study, 108 proteinuric patients who were steroid-resistant were assigned to a sLPD group (0.6 g/kg/d with 0.09 g/kg/d keto acids) or a normal protein diet group (NPD, 1.0 g/kg/d). Estimated dietary protein intake, urinary protein excretion, remission rate, renal function, nutritional status, and blood pressure were measured. Baseline characteristics were comparable between the sLPD group (47 patients) and the NPD group (49 patients). Urinary protein excretion significantly decreased in sLPD compared to NPD in months 6, 9, and 12 (Ppatients with steroid-resistant proteinuria.

  8. Individualized supplementation of folic acid according to polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) reduced pregnant complications.

    Science.gov (United States)

    Li, Xiujuan; Jiang, Jing; Xu, Min; Xu, Mei; Yang, Yan; Lu, Wei; Yu, Xuemei; Ma, Jianlin; Pan, Jiakui

    2015-01-01

    This study aimed to detect the genotype distributions and allele frequencies of methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and methionine synthase reductase (MTRR) A66G polymorphisms of pregnant women in Jiaodong region in China, and to investigate whether folic acid supplementation affect the pregnancy complications. A total of 7,812 pregnant women from the Jiaodong region in Shandong province in China. By using Taqman-MGB, 2,928 pregnant women (case group) were tested for the genotype distributions and allele frequencies of MTHFR C677T, A1298C and MTRR A66G polymorphisms. Folic acid metabolism ability was ranked at four levels and then pregnant women in different rank group were supplemented with different doses of folic acid. Their pregnancy complications were followed up and compared with 4,884 pregnant women without folic acid supplementation (control group) in the same hospital. The allele frequencies of MTHFR C677T were 49.1 and 50.9%; those of MTHFR A1298C were 80.2 and 19.8%, and those of MTRR A66G were 74.1 and 25.9%. After supplemented with folic acid, the complication rates in different age groups were significantly reduced, especially for gestational diabetes mellitus and hypertension. Periconceptional folic acid supplementation and healthcare following gene polymorphism testing may be a powerful measure to decrease congenital malformations. © 2015 S. Karger AG, Basel.

  9. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    Science.gov (United States)

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  10. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    Science.gov (United States)

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.

  11. Profiling adrenal 11β-hydroxyandrostenedione metabolites in prostate cancer cells, tissue and plasma: UPC2-MS/MS quantification of 11β-hydroxytestosterone, 11keto-testosterone and 11keto-dihydrotestosterone.

    Science.gov (United States)

    du Toit, Therina; Bloem, Liezl M; Quanson, Jonathan L; Ehlers, Riaan; Serafin, Antonio M; Swart, Amanda C

    2017-02-01

    Adrenal C 19 steroids serve as precursors to active androgens in the prostate. Androstenedione (A4), 11β-hydroxyandrostenedione (11OHA4) and 11β-hydroxytestosterone (11OHT) are metabolised to potent androgen receptor (AR) agonists, dihydrotestosterone (DHT), 11-ketotestosterone (11KT) and 11-ketodihydrotestosterone (11KDHT). The identification of 11OHA4 metabolites, 11KT and 11KDHT, as active androgens has placed a new perspective on adrenal C11-oxy C 19 steroids and their contribution to prostate cancer (PCa). We investigated adrenal androgen metabolism in normal epithelial prostate (PNT2) cells and in androgen-dependent prostate cancer (LNCaP) cells. We also analysed steroid profiles in PCa tissue and plasma, determining the presence of the C 19 steroids and their derivatives using ultra-performance liquid chromatography (UHPLC)- and ultra-performance convergence chromatography tandem mass spectrometry (UPC 2 -MS/MS). In PNT2 cells, sixty percent A4 (60%) was primarily metabolised to 5α-androstanedione (5αDIONE) (40%), testosterone (T) (10%), and androsterone (AST) (10%). T (30%) was primarily metabolised to DHT (10%) while low levels of A4, 5αDIONE and 3αADIOL (≈20%) were detected. Conjugated steroids were not detected and downstream products were present at <0.05μM. Only 20% of 11OHA4 and 11OHT were metabolised with the former yielding 11keto-androstenedione (11KA4), 11KDHT and 11β-hydroxy-5α-androstanedione (11OH-5αDIONE) and the latter yielding 11OHA4, 11KT and 11KDHT with downstream products <0.03μM. In LNCaP cells, A4 (90%) was metabolised to AST-glucuronide via the alternative pathway while T was detected as T-glucuronide with negligible conversion to downstream products. 11OHA4 (80%) and 11OHT (60%) were predominantly metabolised to 11KA4 and 11KT and in both assays more than 50% of 11KT was detected in the unconjugated form. In tissue, we detected C11-oxy C 19 metabolites at significantly higher levels than the C 19 steroids, with

  12. Effect of keto amino acids on asymmetric dimethyl arginine, muscle and fat tissue in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Vladimir Teplan

    2012-06-01

    Full Text Available Levels of endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA are elevated in chronic kidney disease (CKD and may contribute to vascular complications. In this study we tested the hypothesis that elevated ADMA can be reduced in CKD patients by long-term administration of low-protein diet (LPD supplemented with keto amino acids (KA. In a long-term prospective double blind placebo controlled randomized trial, we evaluated a total of 120 CKD patients (62/58F aged 22-76 yrs with creatinine clearance 22-40mL/min/1.73m2 for a period of 36 months. All patients were on low-protein diet containing 0.6 protein/kg/IBW/day and 120-125/kJ/kg/IBW/day. LPD was randomly supplemented with KA at dosage of 100 mg/kg/IBW/day (61 patients, Group I while 59 patients (Group II received placebo. During the study period, glomerular filtration rate (GFR slightly decreased (Ccr from 34.2±11.6 to 29.9±9.2 mL/min and 33.5±11.6 to 22.2±10.4 mL/min in Group I and II, respectively; this however was more marked in Group II (p<0.01. Fat in muscle measured by MR spectroscopy (MRS, m.tibialis anterior significantly decreased in Group I and was linked to reduced volume of visceral fat measured by MRI (p<0.01. Reduction of fat in Group II was not significant. In Group I, there was a significant decrease in the plasma level of ADMA (from 2.4±0.4 to 1.2±0.3 μmol/L, p<0.01, but ADMA remained unchanged in Group II. A further remarkable finding was reduction in the plasma concentration of pentosidine (from 486±168 to 325±127 μg/L, p<0.01 and decrease of proteinuria (from 3.7±2.20 to 1.6±1.2 g/24hrs, p<0.01 in Group I. Plasma adiponectin (ADPN in Group I rose (p<0.01. Analysis of lipid spectrum revealed a mild yet significant decrease in total cholesterol and LPD-cholesterol (p<0.01, more pronounced in Group I. In Group I, there was a decrease in plasma triglycerides (from 3.8±1.5 down to 2.3±0.5 mmol/L, p<0.01, whereas glycated hemoglobin (HbAc1

  13. Purification and characterization of a 15-ketoprostaglandin d-reductase from bovine lung

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1979-01-01

    was estimated at pH 7.8. Molecular weights of 56 000 and 39 500 were found by the use of gel filtration and SDS-polyacrylamide gel electrophoresis, respectively. The enzyme was found to be specific for the 15-keto group, thus 15-ketoprostaglandin E (apparent K = 10 µm) is a substrate, in contrast...... to prostaglandin E. The enzyme was active with both NADH (apparent K = 88-94 µM) and NADH (apparent K = 5-9 µM) as coenzyme, but the V max with NADH was more than twice that obtained with NADPH. The enzyme did not catalyze the reversed reaction: 13,14-dihydro-15-keto-prostaglandin E to 15-ketoprostaglandin E...

  14. Thermolabile methylenetetrahydrofolate reductase in patients with coronary artery disease.

    Science.gov (United States)

    Kang, S S; Wong, P W; Zhou, J M; Sora, J; Lessick, M; Ruggie, N; Grcevich, G

    1988-07-01

    Thermostability of lymphocyte methylenetetrahydrofolate reductase (MTHFR) was determined in 21 patients aged less than 50 years with proven coronary artery disease, and in 21 age- and sex-matched controls without clinical evidence of vascular disease. The mean +/- SD of residual activity after heat inactivation at 46 degrees C for five minutes was 37.6% +/- 5.6% in the controls. In contrast, patients with coronary artery disease could be divided into two subgroups. Fifteen of them had 38.1 +/- 5.9% residual activity which was similar to that of the controls. In six of them the mean +/- SD residual activity after heat inactivation was 13.6% +/- 5.1% which was below 2 SD of the normal mean. These observations suggested that thermolabile MTHFR was associated with development of coronary artery disease.

  15. Diterpenoids with thioredoxin reductase inhibitory activities from Jatropha multifida.

    Science.gov (United States)

    Zhu, Jian-Yong; Zhang, Chun-Yang; Dai, Jing-Jing; Rahman, Khalid; Zhang, Hong

    2017-12-01

    Chemical investigation of the Jatropha multifida has led to the isolation of nine diterpenoids (1-9), including a new jatromulone A, four podocarpane diterpenoids (2-5), two lathyrane-type diterpenoids (6 and 7) and two dinorditerpenoids (8 and 9). Their structures were elucidated by spectroscopic analysis, and the absolute configurations of 1 were determined by CD analysis. All of the diterpenoids were screened for inhibitory activity against thioredoxin reductase (TrxR), which is a potential target for cancer chemotherapy with redox balance and antioxidant functions. Compounds 6 and 7 exhibited stronger activity (IC 50 : 23.4 and 10.6 μM, respectively) than the positive control, curcumin (IC 50  = 25.0 μM). Compounds 2-9 were isolated from J. multifida for the first time.

  16. Methylenetetrahydrofolate reductase polymorphisms in myeloid leukemia patients from Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Cynara Gomes Barbosa

    2008-01-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR: EC 1.5.1.20 polymorphisms are associated to acute lymphoid leukemia in different populations. We used the polymerase chain reaction and the restriction fragment length polymorphism method (PCR-RFLP to investigate MTHFR C677T and A1298C polymorphism frequencies in 67 patients with chronic myeloid leukemia (CML, 27 with acute myeloid leukemia FAB subtype M3 (AML-M3 and 100 apparently healthy controls. The MTHFR mutant allele frequencies were as follows: CML = 17.2% for C677T, 21.6% for A1298C; AML-M3 = 22.2% for C677T, 24.1% for A1298C; and controls = 20.5% for C677T, 21% for A1298C. Taken together, our results provide evidence that MTHFR polymorphisms have no influence on the development of CML or AML-M3.

  17. Aldose reductase inhibitors from the fruiting bodies of Ganoderma applanatum.

    Science.gov (United States)

    Lee, Sanghyun; Shim, Sang Hee; Kim, Ju Sun; Shin, Kuk Hyun; Kang, Sam Sik

    2005-06-01

    The isolation and characterization of rat lens aldose reductase (RLAR) inhibitors from the fruiting bodies of Ganoderma applanatum were conducted. Among the extracts and fractions from G. applanatum tested, the MeOH extract and EtOAc fraction were found to exhibit potent RLAR inhibition in vitro, their IC50 being 1.7 and 0.8 microg/ml, respectively. From the active EtOAc fraction, seven compounds with diverse structural moieties were isolated and identified as D-mannitol (1), 2-methoxyfatty acids (2), cerebrosides (3), daucosterol (4), 2,5-dihydroxyacetophenone (5), 2,5-dihydroxybenzoic acid (6), and protocatechualdehyde (7). Among them, protocatechualdehyde (7) was found to be the most potent RLAR inhibitor (IC50=0.7 microg/ml), and may be useful for the prevention and/or treatment of diabetic complications.

  18. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism......Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...

  19. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  20. Lactococcus lactis Thioredoxin Reductase Is Sensitive to Light Inactivation

    DEFF Research Database (Denmark)

    Björnberg, Olof; Viennet, Thibault; Skjoldager, Nicklas

    2015-01-01

    enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar kcat values (∼25 s-1) with their cognate thioredoxin. Remarkably, however, the L. lactis enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than E. coli Trx......R. The rate of light inactivation under standardized conditions (λmax = 460 nm and 4 °C) was reduced at lowered oxygen concentrations and in the presence of iodide. Inactivation was accompanied by a distinct spectral shift of the flavin adenine dinucleotide (FAD) that remained firmly bound. High......-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass...

  1. Aspects of ribonucleotide reductase regulation and genome stability

    DEFF Research Database (Denmark)

    Nielsen, Helena Berner Nedergaard

    yeast, and Sml1, Hug1, and Dif1 in budding yeast. An elevated, as well as a reduced dNTP pool is shown to lead to an increase in spontaneous mutation rates, hence regulation of RNR is very important in order to maintain genomic stability. No human inhibitory proteins have yet been identified to regulate......In all living cells, synthesis of the DNA building blocks, deoxyribonucleoside triphosphates (dNTPs), is tightly regulated to ensure a precise DNA replication to maintain genomic stability. Ribonucleotide reductase (RNR) is the enzyme responsible for reducing ribonucleotides to their deoxy forms...... the human RNR enzyme. In this study regulation of human RNR was investigated using a fission yeast strain that depended solely on the human genes of R1 and R2 for dNTP synthesis. Even though this strain could grow like wild-type fission yeast it was hypersensitive to hydroxyurea (HU) and depended...

  2. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...... disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism...

  3. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  4. Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a ne, secreted metabolite serving as a temporary redox sink.

    NARCIS (Netherlands)

    Ward, D.E.; van der Weijden, C.C.; van der Merwe, M.J.; Westerhoff, H.V.; Claiborne, A.; Snoep, J.L.

    2000-01-01

    Recently the bkd gene cluster from Enterococcus faecalis was sequenced, and it was shown that the gene products constitute a pathway for the catabolism of branched-chain α-keto acids. We have now investigated the regulation and physiological role of this pathway. Primer extension analysis identified

  5. ANTI-INFLAMMATORY EFFECTS OF LOW PROTEIN DIET SUPPLEMENTED WITH KETO-AMINO ACID IN THE TREATMENT OF TYPE 2 DIABETIC NEPHROPATHY

    Directory of Open Access Journals (Sweden)

    Nan Chen

    2012-06-01

    Full Text Available Recent clinical research strongly approves that low-protein diet supplemented with keto-amino acid can effectively delay progression of type 2 diabetic nephropathy (DN. Anti-inflammation is one of these effects, but the mechanism is still controversial. This study is designed to further explore roles of ketogenic diets in regulation of inflammation status of type 2 DN. Twenty-one patients with type 2 DN (mean age at 65.14±7.34 years, were followed-up for 52 weeks in this study. All patients were in CKD stages 3–4 with glomerular filtration rates 26–55 ml/min/1.73 m2 and were all on a low-protein diet containing 0.8 g protein/kg BW per day and 30–35 Kcal /kg BW per day. The diet was randomly supplemented with keto-amino acids at a dosage of 100 mg/kg BW per day in 10 patients, who were assigned into Group II. Other 11 patients were assigned into Group I. At the end of this study, related clinical data showed there was a significant increase in the serum level of TNF-α which could mediate inflammation systemically in Group I (from 230.25±54.34 to 332.11 pg/ml, P 0.05. The level of CRP, which is produced in response to inflammation, rose greatly in Group I (from 7.5±1.07 to 20.4±3.72 ug/ml, P 0.05. Nutritional markers including serum albumin, hemoglobin and basal metabolic index showed no malnutrition happened during the follow-up period. In conclusion, low-protein diet supplemented with keto-amino acids contribute to ameliorate inflammation in the progression of type 2 diabetic nephropathy through regulating inflammatory factors production, including TNF-α, CRP and adiponectin.

  6. Photooxidative Destruction of Chloroplasts Leads to Reduced Expression of Peroxisomal NADH-Dependent Hydroxypyruvate Reductase in Developing Cucumber Cotyledons 1

    Science.gov (United States)

    Schwartz, Brain W.; Daniel, Steven G.; Becker, Wayne M.

    1992-01-01

    Photooxidative destruction of chloroplasts by exposure of norflurazon-treated cucumber (Cucumis sativus L.) seedlings to white light leads to reduced levels of the nuclear-encoded, peroxisomal enzyme hydroxypyruvate reductase. The partial reduction in hydroxypyruvate reductase activity under photooxidative conditions is accompanied by reductions in levels of hydroxypyruvate reductase protein and transcript. The low level of hydroxypyruvate reductase gene expression in the dark is not affected by norflurazon, and nonphotooxidizing far-red light is able to induce significant increases in hydroxypyruvate reductase expression even in the presence of norflurazon. We conclude that intact plastids are required for maximal expression of hydroxypyruvate reductase in the light and that the plastids affect hydroxypyruvate reductase gene expression at a pretranslational level. ImagesFigure 2Figure 3Figure 4 PMID:16668940

  7. Comparison of the Stereospecificity and Immunoreactivity of NADH-Ferricyanide Reductases in Plant Membranes.

    Science.gov (United States)

    Fredlund, K. M.; Struglics, A.; Widell, S.; Askerlund, P.; Kader, J. C.; Moller, I. M.

    1994-11-01

    The substrate stereospecificity of NADH-ferricyanide reductase activities in the inner mitochondrial membrane and peroxisomal membrane of potato (Solanum tuberosum L.) tubers, spinach (Spinacea oleracea L.) leaf plasma membrane, and red beetroot (Beta vulgaris L.) tonoplast were all specific for the [beta]-hydrogen of NADH, whereas the reductases in wheat root (Triticum aestivum L.) endoplasmic reticulum and potato tuber outer mitochondrial membrane were both [alpha]-hydrogen specific. In all isolated membrane fractions one or several polypeptides with an apparent size of 45 to 55 kD cross-reacted with antibodies raised against a microsomal NADH-ferricyanide reductase on western blots.

  8. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    OpenAIRE

    Pegan, Scott D; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A; Mesecar, Andrew D

    2011-01-01

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identi...

  9. Subtle trade-off existing between (anti)aromaticity, push-pull interaction, keto-enol tautomerism, and steric hindrance when defining the electronic properties of conjugated structures.

    Science.gov (United States)

    Kleinpeter, Erich; Bölke, Ute; Koch, Andreas

    2010-07-22

    The spatial magnetic properties (through space NMR shieldings, TSNMRS) of conjugated structures (benzenoid/quinonoid keto/enol tautomers, 1,3-dihydroxyaryl-2-aldehydes, Don-pi-Acc chromophores with trade-off existing push-pull vs aromatic behavior) have been calculated by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept, and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values, thus obtained, can be successfully employed to quantify and visualize (anti)aromaticity and to identify readily hereby zwitterionic structures due to push-pull behavior of the compounds studied. In addition, the push-pull behavior was quantified by the quotient (pi*/pi) approach of the central partial C=C double bond.

  10. Evaluation of net antioxidant activity of mono- and bis-Mannich base hydrochlorides and 3-keto-1,5-bisphosphonates from their ProAntidex parameter

    Science.gov (United States)

    Lahbib, Karima; Tarhouni, Mohamed; Touil, Soufiane

    2015-07-01

    A series of mono- and bis-Mannich base hydrochlorides and of 3-keto-1,5-bisphosphonates were prepared and characterized on the basis of their infrared (IR), 1H, 13C and 31P NMR spectral data. All the title compounds were tested for their in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH), H2O2, hydroxyl radical and Ferric Reducing Power (FRP) methods. The antioxidant activity of these compounds was analyzed simultaneously with their pro-oxidant capacity. The ratio of pro-oxidant to the antioxidant activity (ProAntidex) represents a useful index of the net free radical scavenging potential of the synthesized compounds. Ferrous, calcium and magnesium ion chelating abilities were also evaluated. All the tested compounds showed significant antioxidant activity and high ProAntidex.

  11. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.

    Science.gov (United States)

    Moura, José J G; Brondino, Carlos D; Trincão, José; Romão, Maria João

    2004-10-01

    Molybdenum and tungsten are second- and third-row transition elements, respectively, which are found in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen atom transfer reactions. Mononuclear Mo-containing enzymes have been classified into three families: xanthine oxidase, DMSO reductase, and sulfite oxidase. The proteins of the DMSO reductase family present the widest diversity of properties among its members and our knowledge about this family was greatly broadened by the study of the enzymes nitrate reductase and formate dehydrogenase, obtained from different sources. We discuss in this review the information of the better characterized examples of these two types of Mo enzymes and W enzymes closely related to the members of the DMSO reductase family. We briefly summarize, also, the few cases reported so far for enzymes that can function either with Mo or W at their active site.

  12. Survival and Psychomotor Development With Early Betaine Treatment in Patients With Severe Methylenetetrahydrofolate Reductase Deficiency

    NARCIS (Netherlands)

    Diekman, Eugene F.; de Koning, Tom J.; Verhoeven-Duif, Nanda M.; Rovers, Maroeska M.; van Hasselt, Peter M.

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  13. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency

    NARCIS (Netherlands)

    Diekman, E.F.; Koning, T.J. de; Verhoeven-Duif, N.M.; Rovers, M.M.; Hasselt, P.M. van

    2014-01-01

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  14. Bioinformatics analysis of the predicted polyprenol reductase genes in higher plants

    Science.gov (United States)

    Basyuni, M.; Wati, R.

    2018-03-01

    The present study evaluates the bioinformatics methods to analyze twenty-four predicted polyprenol reductase genes from higher plants on GenBank as well as predicted the structure, composition, similarity, subcellular localization, and phylogenetic. The physicochemical properties of plant polyprenol showed diversity among the observed genes. The percentage of the secondary structure of plant polyprenol genes followed the ratio order of α helix > random coil > extended chain structure. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide in plant polyprenol reductase genes. The possibility of the potential transit peptide showed variation among the plant polyprenol reductase, suggested the importance of understanding the variety of peptide components of plant polyprenol genes. To clarify this finding, a phylogenetic tree was drawn. The phylogenetic tree shows several branches in the tree, suggested that plant polyprenol reductase genes grouped into divergent clusters in the tree.

  15. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A

    1997-01-01

    cellular distribution of enzymic activity was investigated after differential centrifugation of Trypanosoma cell extracts. Reductase activity was primarily associated with the cellular soluble fraction because 95% of the total cellular activity was recovered in the supernatant and was particularly...

  16. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  17. The Importance of Homozygous Polymorphisms of Methylenetetrahydrofolate Reductase Gene in Romanian Patients with Idiopathic Venous Thromboembolism

    OpenAIRE

    Hotoleanu, Cristina; Trifa, Adrian; Popp, Radu; Fodor, Daniela

    2013-01-01

    Background: Methylenetetrahydrofolate reductase (MTHFR) polymorphisms have recently raised the interest as a possible thrombophilic factors. Aims: We aimed to assess the frequency of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in idiopathic venous thromboembolism (VTE) in a Romanian population and the associated risk of VTE. Study Design: We performed a case-control transversal study including 90 patients diagnosed with VTE and 75 sex- an...

  18. Aldose Reductase Inhibitory Activity of Compounds from??Zea mays L.

    OpenAIRE

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1?7) and 5 anthocyanins (compound 8?12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reducta...

  19. Genome sequence analysis of predicted polyprenol reductase gene from mangrove plant kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Sagami, H.; Baba, S.; Oku, H.

    2018-03-01

    It has been previously reported that dolichols but not polyprenols were predominated in mangrove leaves and roots. Therefore, the occurrence of larger amounts of dolichol in leaves of mangrove plants implies that polyprenol reductase is responsible for the conversion of polyprenol to dolichol may be active in mangrove leaves. Here we report the early assessment of probably polyprenol reductase gene from genome sequence of mangrove plant Kandelia obovata. The functional assignment of the gene was based on a homology search of the sequences against the non-redundant (nr) peptide database of NCBI using Blastx. The degree of sequence identity between DNA sequence and known polyprenol reductase was confirmed using the Blastx probability E-value, total score, and identity. The genome sequence data resulted in three partial sequences, termed c23157 (700 bp), c23901 (960 bp), and c24171 (531 bp). The c23157 gene showed the highest similarity (61%) to predicted polyprenol reductase 2- like from Gossypium raimondii with E-value 2e-100. The second gene was c23901 to exhibit high similarity (78%) to the steroid 5-alpha-reductase Det2 from J. curcas with E-value 2e-140. Furthermore, the c24171 gene depicted highest similarity (79%) to the polyprenol reductase 2 isoform X1 from Jatropha curcas with E- value 7e-21.The present study suggested that the c23157, c23901, and c24171, genes may encode predicted polyprenol reductase. The c23157, c23901, c24171 are therefore the new type of predicted polyprenol reductase from K. obovata.

  20. Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers of Dahlia variabilis.

    Science.gov (United States)

    Fischer, D; Stich, K; Britsch, L; Grisebach, H

    1988-07-01

    Individual flowers from inflorescences of Dahlia variabilis (cv Scarlet Star) in young developmental stages contained relatively high activity of (+)-dihydroflavonol (DHF) 4-reductase. The DHF reductase was purified from such flowers to apparent homogeneity by a five-step procedure. This included affinity adsorption on Blue Sepharose and elution of the enzyme with NADP+. By gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis it was shown that DHF reductase contains only one polypeptide chain with a Mr of about 41,000. The reductase required NADPH as cofactor and catalyzed transfer of the pro-S hydrogen of NADPH to the substrate. Flavanones and dihydroflavonols (3-hydroxyflavanones) were substrates for DHF reductase with pH optima of about 6.0 for flavanones and of about 6.8 for dihydroflavonols. Flavanones were reduced to the corresponding flavan-4-ols and (+)-dihydroflavonols to flavan-3,4-cis-diols. Apparent Michaelis constants determined for (2S)-naringenin, (2S)-eriodicytol, (+)-dihydrokaempferol, (+)-dihydroquercetin, and NADPH were, respectively, 2.3, 2, 10, 15, and 42 microM. V/Km values were higher for dihydroflavonols than for flavanones. Conversion of dihydromyricetin to leucodelphinidin was also catalyzed by the enzyme at a low rate, whereas flavones and flavonols were not accepted as substrates. DHF reductase was not inhibited by metal chelators.

  1. Association study between methylenetetrahydrofolate reductase gene polymorphisms and Graves' disease.

    Science.gov (United States)

    Mao, Renfang; Fan, Yihui; Zuo, Lulu; Geng, Dongfeng; Meng, Fantao; Zhu, Jing; Li, Qiang; Qiao, Hong; Jin, Yan; Bai, Jing; Fu, Songbin

    2010-10-01

    5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the metabolism of folate and nucleotides, which are essential for DNA synthesis and methylation. It is highly polymorphic, and its variant genotypes result in lower enzymatic activity and higher plasma homocysteine. Previous studies have provided evidence that a high prevalence of MTHFR gene polymorphisms is frequently detected in patients with autoimmune disease, suggesting a novel genetic association with autoimmune disorders. However, the genetic association between MTHFR and Graves' disease (GD), one of the most common autoimmune diseases, has not been studied. Here, we designed a clinic-based case-control study including 199 GD cases and 235 healthy controls to examine the associations between three common MTHFR polymorphisms (i.e., C677T, A1298C, and G1793A) and GD. Surprisingly, logistic regression analysis shows MTHFR 677CT + TT genotypes are associated with an approximately 42% reduction in the risk of GD in women (adjusted OR = 0.58, 95% CI = 0.3-0.9), compared to the CC genotype, indicating a significant protective effect of 677CT + TT genotypes. Our result provides epidemiological evidence that MTHFR mutation (C677T) protects women from GD. The protective effect, possibly obtained by influencing DNA methylation, should be confirmed in a large number of cohorts. Copyright © 2010 John Wiley & Sons, Ltd.

  2. A second target of benzamide riboside: dihydrofolate reductase.

    Science.gov (United States)

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  3. Old and new inhibitors of quinone reductase 2.

    Science.gov (United States)

    Ferry, Gilles; Hecht, Sabrina; Berger, Sylvie; Moulharat, Natacha; Coge, Francis; Guillaumet, Gérald; Leclerc, Véronique; Yous, Saïd; Delagrange, Philippe; Boutin, Jean A

    2010-07-30

    Quinone reductase 2 is a cytosolic enzyme which catalyses the reduction of quinones, such as menadione and coenzymes Q. Despite a relatively close sequence-based resemblance to NAD(P)H:quinone oxidoreductase 1 (QR1), it has many different features. QR2 is the third melatonin binding site (MT3). It is inhibited in the micromolar range by melatonin, and does not accept conventional phosphorylated nicotinamides as hydride donors. QR2 has a powerful capacity to activate quinones leading to unexpected toxicity situations. In the present paper, we report the characterization of three QR2 modulators: melatonin, resveratrol and S29434. The latter compound inhibits QR2 activity with an IC(50) in the low nanomolar range. The potency of the modulators ranged as follows, from the least to the most potent: melatonin

  4. Antiproliferative and quinone reductase-inducing activities of withanolides derivatives.

    Science.gov (United States)

    García, Manuela E; Nicotra, Viviana E; Oberti, Juan C; Ríos-Luci, Carla; León, Leticia G; Marler, Laura; Li, Guannan; Pezzuto, John M; van Breemen, Richard B; Padrón, José M; Hueso-Falcón, Idaira; Estévez-Braun, Ana

    2014-07-23

    Two new and five known withanolides (jaborosalactones 2, 3, 4, 5, and 24) were isolated from the leaves of Jaborosa runcinata Lam. We also obtained some derivatives from jaborosalactone 5, which resulted to be the major isolated metabolite. The natural compounds as well as derivatives were evaluated for their antiproliferative activity and the induction of quinone reductase 1 (QR1; NQ01) activity. Structure-activity relationships revealed valuable information on the pharmacophore of withanolide-type compounds. Three compounds of this series showed significantly higher antiproliferative activity than jaborosalactone 5. The effect of these compounds on the cell cycle was determined. Furthermore, the ability of major compounds to induce QR1 was evaluated. It was found that all the active test compounds are monofunctional inducers that interact with Keap1. The most promising derivatives prepared from jaborosalactone 5 include (23R)-4β,12β,21-trihydroxy-1,22-dioxo-12,23-cycloergostan-2,5,17,24-tetraen-26,23-olide (18) and (23R)-21-acetoxy-12β-hydroxy-1,22-dioxo-12,23-cycloergostan-2,5,17,24-tetraen-26,23-lactame (20). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Structure, function, and mechanism of cytosolic quinone reductases.

    Science.gov (United States)

    Bianchet, Mario A; Erdemli, Sabri Bora; Amzel, L Mario

    2008-01-01

    Quinone reductases type 1 (QR1) are FAD-containing enzymes that catalyze the reduction of many quinones, including menadione (Vit K3), to hydroquinones using reducing equivalents provided by NAD(P)H. The reaction proceeds with a ping-pong mechanism in which the NAD(P)H and the substrate occupy alternatively overlapping regions of the same binding site and participate in a double hydride transfer: one from NAD(P)H to the FAD of the enzyme, and one from the FADH(2) of the enzyme to the quinone substrate. The main function of QR1 is probably the detoxification of dietary quinones but it may also contribute to the reduction of vitamin K for its involvement in blood coagulation. In addition, the same reaction that QR1 uses in the detoxification of quinones, activates some compounds making them cytotoxic. Since QR1 is elevated in many tumors, this property has encouraged the development of chemotherapeutic compounds that become cytotoxic after reduction by QR1. The structures of QR1 alone, and in complexes with substrates, inhibitors, and chemotherapeutic prodrugs, combined with biochemical and mechanistic studies have provided invaluable insight into the mechanism of the enzyme as well as suggestions for the improvements of the chemotherapeutic prodrugs. Similar information is beginning to accumulate about another related enzyme, QR2.

  6. 5 alpha-reductase inhibitors and prostatic disease.

    Science.gov (United States)

    Schröder, F H

    1994-08-01

    5 alpha-Reductase inhibitors are a new class of substances with very specific effects on type I and type II 5 alpha R which may be of use in the treatment of skin disease, such as male pattern baldness, male acne and hirsutism, as well as prostatic hyperplasia and prostate cancer. At least two types of 5 alpha R inhibitors with a different pH optimum have been described. cDNA encoding for both the type I and the type II enzyme has been cloned. Most of the orally effective 5 alpha R inhibitors belong to the class of 4-azasteroids. The radical substituted in the 17 position of the steroid ring seems to be related to species specific variations and to the types of 5 alpha R enzymes in different species and organ systems. 5 alpha R inhibitors lead to a decrease of plasma DHT by about 65% while there is a slight rise in plasma testosterone. The decrease of tissue DHT in the ventral prostate of the intact rat, the dog and in humans is more pronounced and amounts to about 85%. There is a reciprocal rise of tissue T in these systems. The application of an inhibitor of 5 alpha R type II leads to a shrinkage of BPH in men by about 30%. In the rat a similar shrinkage accompanied by a significant decrease of total organ DNA occurs. This decrease, however, is not as pronounced as can be achieved with castration.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Increased 5α-reductase activity in idiopathic hirsutism

    International Nuclear Information System (INIS)

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5α-reductase activity (5α-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5α-RA. In vitro 5α-RA was assessed by incubations of skin with 14 C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5α-androstane 3α-17β-estradiol (3α-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3α-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3α-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5α-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5α-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5α-RA

  8. Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Sonam Gaba

    2014-01-01

    Full Text Available Schistosomiasis is a neglected tropical disease caused by a parasite Schistosoma mansoni and affects over 200 million annually. There is an urgent need to discover novel therapeutic options to control the disease with the recent emergence of drug resistance. The multifunctional protein, thioredoxin glutathione reductase (TGR, an essential enzyme for the survival of the pathogen in the redox environment has been actively explored as a potential drug target. The recent availability of small-molecule screening datasets against this target provides a unique opportunity to learn molecular properties and apply computational models for discovery of activities in large molecular libraries. Such a prioritisation approach could have the potential to reduce the cost of failures in lead discovery. A supervised learning approach was employed to develop a cost sensitive classification model to evaluate the biological activity of the molecules. Random forest was identified to be the best classifier among all the classifiers with an accuracy of around 80 percent. Independent analysis using a maximally occurring substructure analysis revealed 10 highly enriched scaffolds in the actives dataset and their docking against was also performed. We show that a combined approach of machine learning and other cheminformatics approaches such as substructure comparison and molecular docking is efficient to prioritise molecules from large molecular datasets.

  9. Determination of Nitrate Reductase Assay Depending on the Microbial Growth

    International Nuclear Information System (INIS)

    El-Kabbany, H.M.

    2012-01-01

    A rapid micro-dilution assay for determination of the antimicrobial susceptibility of different bacterial isolates was developed. This assay is based on the ability of the most of viable organisms to reduce nitrates. The MIC or MBC could be determined by nitrate reductase (NR) only after 30 to 90 min of incubation depending on the behaviour of microbial growth. Bacterial viability is detected by a positive nitrite reduction rather than visible turbidity. The nitrate reduction assay was compared with standard micro-assay using 250 isolates of different taxa against 10 antibiotics belonging to different classes. An excellent agreement of 82.5 % was found between the two methods and only 17.5 % of 1794 trials showed difference in the determined MIC by tow-dilution interval above or below the MIC determined by the turbidimetric method under the same test conditions. However, the nitrate reduction assay was more rapid and sensitive in detecting viable bacteria and so, established an accurate estimate of the minimal inhibitory concentration (MIC) or the minimal bacterial concentration (MBC). The nitrate reduction assay offers the additional advantage that it could be used to determine the MBC without having to subculture the broth. 232 cases of resistance were detected by NR and 4 different media were tested for susceptibility test. The bacterial isolates were exposed to ultra violet (UV) light for different period

  10. Nitrate reductase from Spinacea oleracea. FAD and the reactivation of the enzyme treated with p-Hydroxymercuribenzoate.

    Science.gov (United States)

    Castillo, F; de la Rosa, F F; Palacián, E

    1977-12-01

    Spinach nitrate reductase complex previously inactivated by treatment with mercurials p-hydroxymercuribenzoate or p-hydroxymercuriphenyl sulphonate can be reactivated by incubation with dithioerythritol. The reactivation of NADH-diaphorase seems to be FAD-dependent, whereas that of FNH2-nitrate reductase is not. The requirement of FAD for NADH-inactivation of nitrate reductase treated with p-hydroxymercuribenzoate disappears after treatment with dithioerythritol.

  11. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl.

    OpenAIRE

    Bagnasco, S M; Uchida, S; Balaban, R S; Kador, P F; Burg, M B

    1987-01-01

    Aldose reductase [aldehyde reductase 2; alditol:NAD(P)+ 1-oxidoreductase, EC 1.1.1.21] catalyzes conversion of glucose to sorbitol. Although its activity is implicated in the progression of ocular and neurological complications of diabetes, the normal function of the enzyme in most cells is unknown. Both aldose reductase activity and substantial levels of sorbitol were previously reported in renal inner medullary cells. In this tissue, the extracellular NaCl concentration normally is high and...

  12. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Huilan; Li, Lihua; Du, Juan; Yuan, Youxi; Cheng, Xudong; Ling, Hong-Qing

    2005-09-01

    Iron chelate reductase is required for iron acquisition from soil and for metabolism in plants. In the genome of Arabidopsis thaliana there are eight genes classified into the iron chelate reductase gene family (AtFROs) based on sequence homology with AtFRO2 (a ferric chelate reductase in Arabidopsis). They are localized on chromosome 1 (three AtFROs) and chromosome 5 (five AtFROs) of Arabidopsis and show a high level of amino acid sequence similarity to each other. An assay for ferric chelate reductase activity revealed that AtFRO2, AtFRO3, AtFRO4, AtFRO5, AtFRO7 and AtFRO8 conferred significantly increased iron reduction activity compared with the control when expressed in yeast cells, indicating that the six AtFROs encode iron chelate reductases functioning in iron homeostasis in Arabidopsis. AtFRO2 displayed the highest iron reduction activity among the AtFROs investigated, further demonstrating that AtFRO2 is a major iron reductase gene in Arabidopsis. AtFRO2 and AtFRO3 were mainly expressed in roots of Arabidopsis, AtFRO5 and AtFRO6 in shoots and flowers, and AtFRO7 in cotyledons and trichomes, whereas the transcription of AtFRO8 was specific for leaf veins. Considering the tissue-specific expression profiles of AtFRO genes, we suggest that AtFRO2 and AtFRO3 are two Fe(III) chelate reductases mainly functioning in iron acquisition and metabolism in Arabidopsis roots, while AtFRO5, AtFRO6, AtFRO7 and AtFRO8 are required for iron homeostasis in different tissues of shoots.

  13. Production and Characterization of Monoclonal Antibodies against NADPH-Cytochrome P-450 Reductases from Helianthus tuberosus1

    Science.gov (United States)

    Lesot, Agnès; Benveniste, Irène; Hasenfratz, Marie-Paule; Durst, Francis

    1992-01-01

    Monoclonal antibodies (mAbs) against a plant NADPH-cytochrome P-450 (Cyt P-450) reductase from Jerusalem artichoke (Helianthus tuberosus) tuber were prepared. These antibodies were produced by hybridoma resulting from the fusion of spleen cells from a rat immunized with a purified preparation of the reductase and mouse myeloma cells. The mAbs thus obtained were screened for their interaction with the reductases, first in western dots and then in blots, and for their ability to inhibit the NADPH-cytochrome c (Cyt c) reductase activity from Jerusalem artichoke microsomes. Among the 11 clones giving a positive response on western blots, only 6 were also able to inhibit microsomal NADPH-Cyt c reductase activity, and the microsomal Cyt P-450 monooxygenase activities dependent upon electrons transferred by the reductase. Thus, two families of mAbs were characterized: a family of mAbs that interact with epitopes of the reductase implicated in the reduction of Cyt P-450 by NADPH (binding sites for NADPH, flavin mononucleotide, flavin adenine dinucleotide, and Cyt P-450), and a structural family, whose members recognize epitopes outside the active site of the reductases. These mAbs specifically recognize the reductase, and all of them interact with all of the isoforms, indicating that important primary or secondary structural analogies exist between the isoforms, not only at the active site, but also at the level of epitopes not directly associated with catalytic activity. Images Figure 1 Figure 2 Figure 3 PMID:16653138

  14. Methylenetetrahydrofolate reductase genotype association with the risk of follicular lymphoma.

    Science.gov (United States)

    Ismail, Said I; Ababneh, Nida A; Khader, Yousef; Abu-Khader, Ahmad A; Awidi, Abdullah

    2009-12-01

    The metabolism of folate is essential in DNA synthesis, and polymorphisms of genes involved in such metabolism have been implicated in many types of cancer. Among these, the methylene tetrahydrofolate reductase gene (MTHFR) encodes an enzyme that converts folate to a methyl donor used for DNA methylation. We studied the association between the different genotypes of the two most common MTHFR polymorphisms, C677T and A1298C, and the risk of follicular lymphoma (FL). For this purpose, 55 previously diagnosed FL patients and 170 normal control subjects were examined using polymerase chain reaction followed by restriction fragment length polymorphism. The frequency of the A1298C CC homozygous mutant genotype was significantly higher in patients with FL than in control subjects (OR = 3.51, 95% CI = 1.39-8.86, P = 0.008). No such association was found for the heterozygous A1298C AC genotype (OR = 1.08, 95% CI = 0.55-2.12, P = 0.83). On the other hand, no significant association was found for either the C677T CT heterozygous genotype (OR = 0.79, 95% CI = 0.42-1.51, P = 0.49) or the C677T TT homozygous mutant genotype (OR = 0.55, 95% CI = 0.12-2.65, P = 0.46). The present findings add to the very few reports suggesting a link between the A1298C CC homozygous MTHFR genotype and a higher risk of developing FL, and the first such in a Jordanian population.

  15. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  16. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Directory of Open Access Journals (Sweden)

    Ji Hun Paek

    2013-01-01

    Full Text Available The ethyl acetate (EtOAc soluble fraction of methanol extracts of Perilla frutescens (P. frutescens inhibits aldose reductase (AR, the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR. The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2 (IC50 = 3.16 μM, rosmarinic acid (4 (IC50 = 2.77 μM, luteolin (5 (IC50 = 6.34 μM, and methyl rosmarinic acid (6 (IC50 = 4.03 μM.

  17. Methylenetetrahydrofolate Reductase gene polymorphism in children with allergic rhinitis.

    Science.gov (United States)

    Dogru, M; Aydin, H; Aktas, A; Cırık, A A

    2015-01-01

    Methylenetetrahydrofolate Reductase (MTHFR) polymorphisms by impairing folate metabolism may influence the development of allergic diseases. The results of studies evaluating the relationship between MTHFR polymorphisms and atopic disease are controversial. The aim of this study was to investigate the association between the polymorphisms of C677T and A1298C for MTHFR gene and allergic rhinitis (AR) in children. Ninety patients followed up with diagnosis of allergic rhinitis in our clinic and 30 children with no allergic diseases were included in the study. All participants were genotyped for the MTHFR (C677T) and (A1298C) polymorphisms. Vitamin b12, folate and homocysteine levels were measured. The mean age of patients was 9.2±2.9 years; 66.7% of the patients were male. There was no significant difference between patient and control groups regarding gender, age and atopy history of the family (p>0.05). The frequency of homozygotes for MTHFR C677T polymorphism in the patient and control groups was 3.3% and 10%, respectively. The frequency of homozygotes for MTHFR A1298C polymorphism among groups was 26.7% and 16.7%, respectively. The association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene was not statistically significant in patients compared with controls (p>0.05). There were no statistically significant differences between the patients and the control group in terms of serum vitamin b12, folate and homocysteine levels (p>0.05). We found no evidence for an association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene in children. Further studies investigating the relationship between MTHFR polymorphism and AR are required. Copyright © 2014 SEICAP. Published by Elsevier Espana. All rights reserved.

  18. Methylenetetrahydrofolate reductase gene polymorphisms in Egyptian Turner Syndrome patients.

    Science.gov (United States)

    Ismail, Manal F; Zarouk, Waheba A; Ruby, Mona O; Mahmoud, Wael M; Gad, Randa S

    2015-01-01

    Folate metabolism dysfunctions can result in DNA hypomethylation and abnormal chromosome segregation. Two common polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) encoding gene (C677T and A1298C) reduce MTHFR activity, but when associated with aneuploidy, the results are conflicting. Turner Syndrome (TS) is an interesting model for investigating the association between MTHFR gene polymorphisms and nondisjunction because of the high frequency of chromosomal mosaicism in this syndrome. To investigate the association of MTHFR gene C677T and A1298C polymorphisms in TS patients and their mothers and to correlate these polymorphisms with maternal risk of TS offspring. MTHFR C677T and A1298C polymorphisms were genotyped in 33 TS patients, their mothers and 15 healthy females with their mothers as controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing technique. Genotype and allele frequencies of both C677T and A1298C were not significantly different between TS cases and controls. There were no significant differences in C677T genotype distribution between the TS mothers and controls (p=1). The MTHFR 1298AA and 1298AC genotypes were significantly increased in TS mothers Vs. control mothers (p=0.002). The C allele frequency of the A1298C polymorphism was significantly different between the TS mothers and controls (p=0.02). The association of A1298C gene polymorphism in TS patients was found to increase with increasing age of both mothers (p=0.026) and fathers (p=0.044) of TS cases. Our findings suggest a strong association between maternal MTHFR A1298C and risk of TS in Egypt.

  19. The Reaction Mechanism of Methyl-Coenzyme M Reductase

    Science.gov (United States)

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-01-01

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB7SH) to CH4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM) is productive whereas the other (MCR·CoB7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB7SH complex is highly disfavored (Kd = 56 mm). However, binding of CoB7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB7SH·MCR(NiI)·CH3SCoM) is highly favored (Kd = 79 μm). Only then can the chemical reaction occur (kobs = 20 s−1 at 25 °C), leading to rapid formation and dissociation of CH4 leaving the binary product complex (MCR(NiII)·CoB7S−·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. This first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates. PMID:25691570

  20. Methylenetetrahy-drofolate Reductase Gene Polymorphism in Patients Receiving Hemodialysis

    Directory of Open Access Journals (Sweden)

    Ermina Kiseljaković

    2010-04-01

    Full Text Available Methylenetetrahydrofolate Reductase (MTHFR is key enzyme in metabolism of homocysteine. Homozygotes for mutation (TT genotype have hyperhomocysteinemia, risk factor for atherosclerosis development. The aim of the study was to find out distribution of genotype frequencies of C677T MTHFR among patients on maintenance hemodialysis. Possible association of alleles and genotypes of C677T polymorphism of the MTHFR gene with age of onset, duration of dialysis and cause of kidney failure was studied also. Cross-sectional study includes 80 patients from Clinic of Hemodialysis KUCS in Sarajevo. In order to perform genotyping, isolated DNA was analyzed by RFLP-PCR and gel-electrophoresis. From total of 80 patients, 42.5% (n=24 were female, 57.5% (n=46 were male, mean age 54.59±1.78 years and duration of dialysis 79.92±6.32 months. Genotype distribution was: CC 51.2% (n=41, CT 37.5% (n=30 and TT 11.2% (n=9. Patients with wild-type genotype have longer duration of dialysis in month (87.1 ± 63.93 comparing to TT genotype patients (67.06 ± 39.3, with no statistical significance. T allele frequency was significantly higher in group of vascular and congenital cause of kidney failure (Pearson X2 =6.049, P<0.05 comparing to inflammation etiology group. Genotype distribution results are within the results other studies in Europe. Obtained results indicate that C677T polymorphism is not associated with onset, duration and cause of kidney failure in our hemodialysis population. There is an association of T allele of the MTHFR gene and vascular and congenital cause kidney failure.

  1. Hyperhomocysteinaemia, methylenetetrahydrofolate reductase polymorphism and risk of coronary artery disease.

    Science.gov (United States)

    Kerkeni, Mohsen; Addad, Faouzi; Chauffert, Maryline; Myara, Anne; Gerhardt, Marie; Chevenne, Didier; Trivin, François; Farhat, Mohamed Ben; Miled, Abdelhedi; Maaroufi, Khira

    2006-05-01

    Hyperhomocysteinaemia is an independent, graded risk factor for coronary artery disease (CAD). The methylenetetrahydrofolate reductase (MTHFR) polymorphism is associated with hyperhomcysteinaemia and may therefore influence individual susceptibility to CAD. We have investigated this risk factor in a Tunisian Arab population. Polymerase chain reaction-restriction fragment length polymorphism analysis was used to detect the C677T and A1298C variants of the MTHFR gene in 100 patients with CAD and 120 healthy controls. The severity of CAD was expressed as the number of affected vessels. Plasma total homocysteine (tHcy) concentration was determined using a direct chemiluminescence assay. MTHFR CC, CT and TT genotype frequencies in the CAD group were significantly different from those observed in the control group (49%, 35% and 16% versus 48.3%, 45.8% and 5.8%, respectively; P = 0.031). However, MTHFR AA, AC and CC genotypes frequencies in the CAD group were not significantly different from the control group ( P = 0.568). Patients with CAD showed higher plasma tHcy concentrations than patients without CAD (15.86 +/- 8.63 micromol/L versus 11.90 +/- 3.25 micromol/L, P MTHFR polymorphisms and the number of stenosed vessels. Patients with the MTHFR TT genotype had higher plasma tHcy, serum creatinine, cholesterol and triglyceride concentrations than patients with the MTHFR CC genotype. The C677T polymorphism of the MTHFR gene is associated with hyperhomocysteinaemia, lipid dysregulation and the presence of CAD in this Tunisian Arab population.

  2. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  3. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Science.gov (United States)

    Paek, Ji Hun; Shin, Kuk Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2013-01-01

    The ethyl acetate (EtOAc) soluble fraction of methanol extracts of Perilla frutescens (P. frutescens) inhibits aldose reductase (AR), the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC) isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR). The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2) (IC50 = 3.16 μM), rosmarinic acid (4) (IC50 = 2.77 μM), luteolin (5) (IC50 = 6.34 μM), and methyl rosmarinic acid (6) (IC50 = 4.03 μM). PMID:24308003

  4. Association of Suicidality and Depression With 5α-Reductase Inhibitors.

    Science.gov (United States)

    Welk, Blayne; McArthur, Eric; Ordon, Michael; Anderson, Kelly K; Hayward, Jade; Dixon, Stephanie

    2017-05-01

    There have been concerns raised by patients and regulatory agencies regarding serious psychiatric adverse effects associated with 5α-reductase inhibitors. To determine if there is an increased risk of suicide, self-harm, or depression among older men starting a 5α-reductase inhibitor for prostatic enlargement. A population-based, retrospective, matched cohort study using linked administrative data for 93 197 men ages 66 years or older (median [IQR] age, 75 [70-80] years) in Ontario, Canada, who initiated a new prescription for a 5α-reductase inhibitor during the study period (2003 through 2013). Participants were matched (using a propensity score that included 44 of our 96 covariates that included medical comorbidities, medication usage, and health care system utilization) to an equal number of men not prescribed a 5α-reductase inhibitor. Duration of finasteride or dutasteride usage. Suicide. Secondary outcomes were self-harm and depression. Men who used 5α-reductase inhibitors were not at a significantly increased risk of suicide (HR, 0.88; 95% CI, 0.53-1.45). Risk of self-harm was significantly increased during the initial 18 months after 5α-reductase inhibitor initiation (HR, 1.88; 95% CI, 1.34-2.64), but not thereafter. Incident depression risk was elevated during the initial 18 months after 5α-reductase inhibitor initiation (HR, 1.94; 95% CI, 1.73-2.16), and continued to be elevated, but to a lesser degree, for the remainder of the follow-up period (HR, 1.22; 95% CI, 1.08-1.37). The absolute increases in the event rates for these 2 outcomes were 17 per 100 000 patient-years and 237 per 100 000 patient-years, respectively. The type of 5α-reductase inhibitor (finasteride or dutasteride) did not significantly modify the observed associations with suicide, self-harm, and depression. In a large cohort of men ages 66 years or older, we did not demonstrate an increased risk of suicide associated with 5α-reductase inhibitor use. However, the risk of

  5. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions.

    Science.gov (United States)

    Fujita, M; Gang, D R; Davin, L B; Lewis, N G

    1999-01-08

    Although the heartwood of woody plants represents the main source of fiber and solid wood products, essentially nothing is known about how the biological processes leading to its formation are initiated and regulated. Accordingly, a reverse transcription-polymerase chain reaction-guided cloning strategy was employed to obtain genes encoding pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) as a means to initiate the study of its heartwood formation. (+)-Pinoresinol-(+)-lariciresinol reductase from Forsythia intermedia was used as a template for primer construction for reverse transcription-polymerase chain reaction amplifications, which, when followed by homologous hybridization cloning, resulted in the isolation of two distinct classes of putative pinoresinol-lariciresinol reductase cDNA clones from western red cedar. A representative of each class was expressed as a fusion protein with beta-galactosidase and assayed for enzymatic activity. Using both deuterated and radiolabeled (+/-)-pinoresinols as substrates, it was established that each class of cDNA encoded a pinoresinol-lariciresinol reductase of different (opposite) enantiospecificity. Significantly, the protein from one class converted (+)-pinoresinol into (-)-secoisolariciresinol, whereas the other utilized the opposite (-)-enantiomer to give the corresponding (+)-form. This differential substrate specificity raises important questions about the role of each of these individual reductases in heartwood formation, such as whether they are expressed in different cells/tissues or at different stages during heartwood development.

  6. Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases

    International Nuclear Information System (INIS)

    Andersson, S.; Russell, D.W.

    1990-01-01

    The microsomal enzyme steroid 5α-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5α-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5α-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5α-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5α-reductases

  7. INHIBITORY ACTIVITY OF FLAVONOIDS ON THE LENS ALDOSE REDUCTASE OF HEALTHY AND DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    M. T. Goodarzi

    2006-05-01

    Full Text Available Aldose reductase is a critical enzyme in the polyol pathway that plays an important role in diabetes mellitus. Inhibition of the activity of this enzyme can prevent cataract in diabetic patients’lenses. In this study the inhibitory effect of two flavonoids, quercetin and naringin, in the activity of aldose reductase in streptozotocin-induced diabetic and healthy rats were investigated. Thirty male rats were divided in six groups. The first, second and third group were healthy rats that received water,quercetin and naringin, respectively. The fourth, fifth and sixth groups were streptozocin-induced diabetic rats that received water, quercetin and naringin, respectively. These rats were fed orally in a definite dose from each substance for 12 days. After this period rats were scarified and their lenses were separated and homogenized. The activity of aldose reductase was measured in each homogenized sample separately. The effect of feeding of these substances in blood sugar was also determined. Aldose reductase activity was reduced 73 and 69 percent in diabetic rats fed by quercetin and naringin, respectively, and the difference compared to control group was significant. In healthy rats this reduction was 63 and 59 percent, respectively, and the difference was significant compared to those who did not receive flavonoids. It was concluded that these substances were effective in reduction of aldose reductase activity in vivo and consequently could delay the progress of cataract.

  8. A Single Mutation Increases the Activity and Stability of Pectobacterium carotovorum Nitrile Reductase.

    Science.gov (United States)

    Zhou, Zheng; Li, Min; Xu, Jian-He; Zhang, Zhi-Jun

    2018-03-02

    Nitrile reductases are considered to be promising and environmentally benign nitrile-reducing biocatalysts to replace traditional metal catalysts. Unfortunately, the catalytic efficiencies of the nitrile reductases reported so far are very low. To date, all attempts to increase the catalytic activity of nitrile reductases by protein engineering have failed. In this work, we successfully increased the specific activity of a nitrile reductase from Pectobacterium carotovorum from 354 to 526 U g prot -1 by engineering the substrate binding pocket; moreover, the thermostability was also improved (≈2-fold), showing half-lives of 140 and 32 h at 30 and 40 °C, respectively. In the bioreduction of 2-amino-5-cyanopyrrolo[2,3-d]pyrimidin-4-one (preQ 0 ) to 2-amino-5-aminomethylpyrrolo[2,3-d]pyrimidin-4-one (preQ 1 ), the variant was advantageous over the wild-type enzyme with a higher reaction rate and complete conversion of the substrate within a shorter period. Homology modeling and docking analysis revealed some possible origins of the increased activity and stability. These results establish a solid basis for future engineering of nitrile reductases to increase the catalytic efficiency further, which is a prerequisite for applying these novel biocatalysts in synthetic chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  10. Assessment of the degree of oxidative stress injury, renin-angiotensin system activity and podocyte loss after combined treatment of keto acid with low protein diet for patients with diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Yuan-Hua Xu

    2016-03-01

    Full Text Available Objective: To analyze the degree of oxidative stress injury, RAS activity and podocyte loss after patients with diabetic nephropathy received keto acid combined with low protein diet. Methods: A total of 106 cases of patients with diabetic nephropathy who received hospital treatment in our hospital from September 2012 to July 2015 were selected as research subjects and randomly divided into observation group and control group according to different treatment, each group with 53 cases. Control group received low protein diet treatment alone, observation group received keto acid combined with low protein diet treatment, and then the degree of oxidative stress injury, RAS activity and podocyte loss of two groups were compared. Results: Serum MDA and AOPP levels of observation group after treatment were lower than those of control group, and levels of SOD and T-AOC were higher than those of control group; PRA, Ang栻 and Aldosterone levels of observation group after treatment were lower than those of control group; mRNA expression levels of podocin and synaptopodin in urine sediment of observation group after treatment were lower than those of control group. Conclusion: Keto acid combined with low protein diet treatment for patients with diabetic nephropathy can reduce the degree of oxidative stress injury and RAS activity, decrease podocyte loss and optimize patients’ condition.

  11. Overexpression of Nitrate Reductase in Tobacco Delays Drought-Induced Decreases in Nitrate Reductase Activity and mRNA1

    Science.gov (United States)

    Ferrario-Méry, Sylvie; Valadier, Marie-Hélène; Foyer, Christine H.

    1998-01-01

    Transformed (cauliflower mosaic virus 35S promoter [35S]) tobacco (Nicotiana plumbaginifolia L.) plants constitutively expressing nitrate reductase (NR) and untransformed controls were subjected to drought for 5 d. Drought-induced changes in biomass accumulation and photosynthesis were comparable in both lines of plants. After 4 d of water deprivation, a large increase in the ratio of shoot dry weight to fresh weight was observed, together with a decrease in the rate of photosynthetic CO2 assimilation. Foliar sucrose increased in both lines during water stress, but hexoses increased only in leaves from untransformed controls. Foliar NO3− decreased rapidly in both lines and was halved within 2 d of the onset of water deprivation. Total foliar amino acids decreased in leaves of both lines following water deprivation. After 4 d of water deprivation no NR activity could be detected in leaves of untransformed plants, whereas about 50% of the original activity remained in the leaves of the 35S-NR transformants. NR mRNA was much more stable than NR activity. NR mRNA abundance increased in the leaves of the 35S-NR plants and remained constant in controls for the first 3 d of drought. On the 4th d, however, NR mRNA suddenly decreased in both lines. Rehydration at d 3 caused rapid recovery (within 24 h) of 35S-NR transcripts, but no recovery was observed in the controls. The phosphorylation state of the protein was unchanged by long-term drought. There was a strong correlation between maximal extractable NR activity and ambient photosynthesis in both lines. We conclude that drought first causes increased NR protein turnover and then accelerates NR mRNA turnover. Constitutive NR expression temporarily delayed drought-induced losses in NR activity. 35S-NR expression may therefore allow more rapid recovery of N assimilation following short-term water deficit. PMID:9576799

  12. The esg locus of Myxococcus xanthus encodes the E1 alpha and E1 beta subunits of a branched-chain keto acid dehydrogenase.

    Science.gov (United States)

    Toal, D R; Clifton, S W; Roe, B A; Downard, J

    1995-04-01

    The esg locus of Myxococcus xanthus appears to control the production of a signal that must be transmitted between cells for the completion of multicellular development. DNA sequence analysis suggested that the esg locus encodes the E1 decarboxylase (composed of E1 alpha and E1 beta subunits) of a branched-chain keto acid dehydrogenase (BCKAD) that is involved in branched-chain amino acid (BCAA) metabolism. The properties of an esg::Tn5 insertion mutant supported this conclusion. These properties include: (i) the growth yield of the mutant was reduced with increasing concentrations of the BCAAs in the medium while the growth yield of wild-type cells increased, (ii) mutant extracts were deficient in BCKAD activity, and (iii) growth of the mutant in media with short branched-chain fatty acids related to the expected products of the BCKAD helped to correct the mutant defects in growth, pigmentation and development. The esg BCKAD appears to be involved in the synthesis of long branched-chain fatty acids since the mutant contained reduced levels of this class of compounds. Our results are consistent with a model in which the esg-encoded enzyme is involved in the synthesis of branched-chain fatty acids during vegetative growth, and these compounds are used later in cell-cell signalling during development.

  13. Carotenoid to bacteriochlorophyll energy transfer in the RC-LH1-PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin.

    Science.gov (United States)

    Šlouf, Václav; Keşan, Gürkan; Litvín, Radek; Swainsbury, David J K; Martin, Elizabeth C; Hunter, C Neil; Polívka, Tomáš

    2018-03-01

    RC-LH1-PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC-LH1-PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S 2 -Q x pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC-LH1-PufX we observe an additional, minor energy transfer pathway associated with the S 1 state of diketospirilloxanthin. By comparing the spectral properties of the S 1 state of diketospirilloxanthin in solution, in LH2, and in RC-LH1-PufX, we propose that the carotenoid-binding site in RC-LH1-PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S 1 /ICT-mediated energy transfer channel.

  14. Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2016-09-17

    This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015, 119, 7361–7374] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450–1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

  15. The Peroxisomal 3-keto-acyl-CoA thiolase B Gene Expression Is under the Dual Control of PPARα and HNF4α in the Liver

    Directory of Open Access Journals (Sweden)

    J. Chamouton

    2010-01-01

    Full Text Available PPARα and HNF4α are nuclear receptors that control gene transcription by direct binding to specific nucleotide sequences. Using transgenic mice deficient for either PPARα or HNF4α, we show that the expression of the peroxisomal 3-keto-acyl-CoA thiolase B (Thb is under the dependence of these two transcription factors. Transactivation and gel shift experiments identified a novel PPAR response element within intron 3 of the Thb gene, by which PPARα but not HNF4α transactivates. Intriguingly, we found that HNF4α enhanced PPARα/RXRα transactivation from TB PPRE3 in a DNA-binding independent manner. Coimmunoprecipitation assays supported the hypothesis that HNF4α was physically interacting with RXRα. RT-PCR performed with RNA from liver-specific HNF4α-null mice confirmed the involvement of HNF4α in the PPARα-regulated induction of Thb by Wy14,643. Overall, we conclude that HNF4α enhances the PPARα-mediated activation of Thb gene expression in part through interaction with the obligate PPARα partner, RXRα.

  16. Elevated concentrations of 13,14-dihydro-15-keto-prostaglandin F-2 alpha in maternal plasma during prepartum luteolysis and parturition in dogs (Canis familiaris).

    Science.gov (United States)

    Concannon, P W; Isaman, L; Frank, D A; Michel, F J; Currie, W B

    1988-09-01

    Concentrations of progesterone and of 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM) were measured in plasma collected from 6 bitches every 3 h starting 2.8-4.6 days before parturition (birth of first pup) and continuing until 0.4-0.8 days post partum, and in additional samples collected less frequently. Progesterone concentrations at 48, 24, 12 and 3 h pre partum averaged 2.8 +/- 0.3, 2.2 +/- 0.4, 1.0 +/- 0.3 and 0.7 +/- 0.2 ng/ml. At those times PGFM values averaged 380 +/- 80, 800 +/- 220, 1450 +/- 450 and 1930 +/- 580 pg/ml, respectively. Mean concentrations of PGFM increased about 2.5-fold between 48 and 15 h pre partum in association with the onset of luteolysis, and then increased another 2.5 times before parturition as progesterone fell to nadir values. Peak levels of PGFM ranged from 1060 to 7150 pg/ml (2100 +/- 600 pg/ml) and occurred within 1-9 h after the birth of the first pup and before the birth of the last pup. These results suggest that prepartum luteolysis in dogs is initiated by increases in maternal concentrations of PGF, and that progesterone withdrawal causes a further increase in PGF which completes luteolysis and provides a major portion of the uterotonic activity causing expulsion of pups.

  17. Adsorption kinetics, isotherm, and thermodynamics studies of acetyl-11-keto-β-boswellic acids (AKBA) from Boswellia serrata extract using macroporous resin.

    Science.gov (United States)

    Niphadkar, Sonali S; Rathod, Virendra K

    2017-09-14

    An acetyl-11-keto-β-boswellic acid (AKBA) is potent anti-inflammatory agent found in Boswellia serrata oleogum resin. Adsorption characteristics of AKBA from B. serrata were studied using macroporous adsorbent resin to understand separation and adsorption mechanism of targeted molecules. Different macroporous resins were screened for adsorption and desorption of AKBA and Indion 830 was screened as it showed higher adsorption capacity. The kinetic equations were studied and results showed that the adsorption of AKBA on Indion 830 was well fitted to the pseudo first-order kinetic model. The influence of two parameters such as temperature (298, 303, and 308 K) and pH (5-8) on the adsorption process was also studied. The experimental data was further investigated using Langmuir, Freundlich, and Temkin isotherm models. It was observed that Langmuir isotherm model was found to be the best fit for AKBA adsorption by Indion 830 and highest adsorption capacity (50.34 mg/g) was obtained at temperature of 303 K. The values of thermodynamic parameters such as the change of Gibbs free energy (ΔG*), entropy (ΔS*), and enthalpy (ΔH*), indicated that the process of adsorption was spontaneous, favourable, and exothermic.

  18. Synthesis, characterization, X-ray crystallography, and cytotoxicity of a cymantrene keto carboxylic acid for IR labelling of bioactive peptides on a solid support.

    Science.gov (United States)

    Peindy N'Dongo, Harmel W; Neundorf, Ines; Merz, Klaus; Schatzschneider, Ulrich

    2008-12-01

    Cym-CO-CH2-CH2-COOH was prepared in good yield by Friedel-Crafts reaction of cymantrene (Cym, CpMn(CO)3) with succinic anhydride for the IR labelling of peptides and fully characterized, including an X-ray structure analysis (monoclinic space group P2(1)/n, a=5.727(3)A, b=19.865(9)A, c=10.518(5)A, beta=91.211(9) degrees). The compound was isolated in pure form without the need for chromatographic work-up and subsequently used for solution-phase synthesis of a bioconjugate with phenylalanine methyl ester to allow a complete spectroscopic characterization of this model system. The cymantrene keto carboxylic acid also turned out to be a very robust marker in automated microwave-assisted solid phase peptide synthesis (SPPS). [Leu5]-enkephalin (Tyr-Gly-Gly-Phe-Leu) was prepared on a Wang resin and labelled with the cymantrene derivative on the solid support under microwave irradiation in all steps. The metal-carbonyl marker stayed intact during cleavage from the resin with concentrated trifluoroacetic acid. After simple precipitation and lyophilization, the cymantrene-enkephalin bioconjugate could be obtained in analytically pure form without the need of HPLC purification. As required, the compound is non-cytotoxic against MCF-7 cells at up to 100 microM. This protocol thus allows one to introduce organometallic IR spectroscopic labels to peptides in a very straightforward way.

  19. Effective Strategy for Conformer-Selective Detection of Short-Lived Excited State Species: Application to the IR Spectroscopy of the N1H Keto Tautomer of Guanine.

    Science.gov (United States)

    Asami, Hiroya; Tokugawa, Munefumi; Masaki, Yoshiaki; Ishiuchi, Shun-Ichi; Gloaguen, Eric; Seio, Kohji; Saigusa, Hiroyuki; Fujii, Masaaki; Sekine, Mitsuo; Mons, Michel

    2016-04-14

    The ultrafast deactivation processes in the excited state of biomolecules, such as the most stable tautomers of guanine, forbid any state-of-the-art gas phase spectroscopic studies on these species with nanosecond lasers. This drawback can be overcome by grafting a chromophore having a long-lived excited state to the molecule of interest, allowing thus a mass-selective detection by nanosecond R2PI and therefore double resonance IR/UV conformer-selective spectroscopic studies. The principle is presently demonstrated on the keto form of a modified 9-methylguanine, for which the IR/UV double resonance spectrum in the C═O stretch region, reported for the first time, provides evidence for extensive vibrational couplings within the guanine moiety. Such a successful strategy opens up a route to mass-selective IR/UV spectroscopic investigations on molecules exhibiting natural chromophores having ultrashort-lived excited states, such as DNA bases, their complexes as well as peptides containing short-lived aromatic residues.

  20. Sexual side effects of 5-α-reductase inhibitors finasteride and dutasteride: A comprehensive review.

    Science.gov (United States)

    Fertig, Raymond M; Gamret, A Caresse; Darwin, Evan; Gaudi, Sudeep

    2017-11-11

    The 5-α-reductase inhibitors finasteride and dutasteride are frequently used in the treatment of androgenetic alopecia and benign prostatichyperplasia. These drugs are effective at reducing levels of dihydrotestosterone, the primary androgen responsible for the pathogenesis of both these conditions. However, finasteride and dutasteride have also been shown to produce an increase in the incidence of sexual dysfunction, namely, impotence, decreased libido, and ejaculation disorder. The purpose of this study is to review the existing medical literature with regard to the sexual side effects of 5-α-reductase inhibitor therapy. This review is an extensive look at the sexual effects of 5-α-reductase inhibitors and compares outcomes for finasteride versus dutasteride in addition to comparing sexualside effects for each of the different dosages prescribed of finasteride and dutasteride.

  1. Atorvastatin calcium: an addition to HMG-CoA reductase inhibitors.

    Science.gov (United States)

    Chong, P H; Seeger, J D

    1997-01-01

    Atorvastatin calcium is an HMG-coenzyme A (CoA) reductase inhibitor that was approved by the Food and Drug Administration on December 17, 1996. Like other such agents, it inhibits the action of HMG-CoA reductase and thereby decreases endogenous cholesterol synthesis, leading to a decrease in circulating low-density lipoprotein cholesterol. In addition to its effect on lipoprotein profile, atorvastatin reduces triglycerides to a greater extent than other HMG-CoA reductase inhibitors. These actions occur in a dose-dependent fashion. The adverse effect profile is similar to that of other agents in this class. Indications for atorvastatin include primary hypercholesterolemia as well as other lipid disorders.

  2. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  3. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Leonora F Ciufo

    Full Text Available Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C(29 and C(28 yielding cholesterol (C(27. The final step of this dealkylation pathway involves desmosterol reductase (DHCR24-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735. Following PCR-based cloning of the cDNA (1.6 kb and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD-dependent reaction.Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250 kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation.

  4. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    International Nuclear Information System (INIS)

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-01-01

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC 50 - and K i -values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin reductases.

  5. The electron transfer reactions of NADPH: cytochrome P450 reductase with nonphysiological oxidants.

    Science.gov (United States)

    Cénas, N; Anusevicius, Z; Bironaité, D; Bachmanova, G I; Archakov, A I; Ollinger, K

    1994-12-01

    The steady-state kinetics of oxidation of rat liver NADPH: cytochrome P450 reductase (EC 1.6.2.4) by quinones, aromatic nitrocompounds, ferricyanide, Fe(EDTA)-, and cytochrome c has been studied. The logarithms of bimolecular rate constants of reduction (kcat/Km) of quinones and nitrocompounds increase with the increase in their single-electronreduction potential (E1(7)), reaching a maximum value at E1(7) > -0.15 V. The reactivities of nitroaromatics are about by an order of magnitude lower than the reactivities of quinones. For a series of nitroaromatics including the compounds with previously undetermined E1(7) values, an orthogonality was found between their reactivities toward cytochrome P450 reductase, flavocytochrome b2 (EC 1.1.2.3), and the NADPH: adrenodoxin reductase (EC 1.18.1.2)-adrenodoxin system. This indicates the absence of significant specific interactions during these reactions. The effects of ionic strength on reaction kinetics and the character of inhibition by a product of reaction, NADP+, are in accordance with the reduction of oxidants at the negatively charged site in the surroundings of FMN of P450 reductase. Quinones inactivate oxidized reductase modifying the NADP(H) binding site. The redox cycling of quinones markedly slows the inactivation. The kinetic data presented are consistent with an outer-sphere electron transfer mechanism. The analysis of kinetics of reduction of cytochrome c, ferricyanide, and Fe(EDTA)- using the model of Mauk et al. (A. G. Mauk, R. A. Scott, and H. B. Gray (1980) J. Am. Chem. Soc. 102, 4360-4363) gives calculated distances of FMN from the surface of protein globule, 0.33-0.63 nm. The data from nitroreductase reactions of cytochrome P450 reductase, flavocytochrome b2, and adrenodoxin were used for approximate evaluation of previously unknown E1(7) of nitrocompounds.

  6. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  7. Structure of diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase from Acinetobacter baumannii.

    Science.gov (United States)

    Dawson, Alice; Trumper, Paul; Chrysostomou, Georgios; Hunter, William N

    2013-06-01

    The bifunctional diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase (RibD) represents a potential antibacterial drug target. The structure of recombinant Acinetobacter baumannii RibD is reported in orthorhombic and tetragonal crystal forms at 2.2 and 2.0 Å resolution, respectively. Comparisons with orthologous structures in the Protein Data Bank indicated close similarities. The tetragonal crystal form was obtained in the presence of guanosine monophosphate, which surprisingly was observed to occupy the adenine-binding site of the reductase domain.

  8. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions

    OpenAIRE

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L.; Guerinot, Mary Lou

    2008-01-01

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloropla...

  9. Why Is Mammalian Thioredoxin Reductase 1 So Dependent upon the Use of Selenium?

    OpenAIRE

    Lothrop, Adam P.; Snider, Gregg W.; Ruggles, Erik L.; Hondal, Robert J.

    2014-01-01

    Cytosolic thioredoxin reductase 1 (TR1) is the best characterized of the class of high-molecular weight (M r) thioredoxin reductases (TRs). TR1 is highly dependent upon the rare amino acid selenocysteine (Sec) for the reduction of thioredoxin (Trx) and a host of small molecule substrates, as mutation of Sec to cysteine (Cys) results in a large decrease in catalytic activity for all substrate types. Previous work in our lab and others has shown that the mitochondrial TR (TR3) is much less depe...

  10. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-01-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP + reductase. Ferredoxin-NADP + reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source

  11. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Alessandro S.; Ferrarezi, Thiago [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil); Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A. [Facultad de Ciencias Bioquímicas y Farmacéuticas, Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario (Argentina); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil)

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  12. Is decreased libido associated with the use of HMG-CoA-reductase inhibitors?

    Science.gov (United States)

    de Graaf, L; Brouwers, A H P M; Diemont, W L

    2004-09-01

    To describe patients with decreased libido during use of a HMG-CoA-reductase-inhibitor, and to discuss causality and pharmacological hypotheses for this association by analysis of the adverse drug reactions (ADR) database of the Netherlands Pharmacovigilance Centre Lareb. Eight patients were identified as having decreased libido during use of statins. In two of these cases testosterone levels were determined and appeared to be decreased. Decreased libido is a probable adverse drug reaction of HMG-CoA-reductase-inhibitors and is reversible. The ADR may be caused by low serum testosterone levels, mainly due to intracellular cholesterol depletion.

  13. Alpha 1-blockers vs 5 alpha-reductase inhibitors in benign prostatic hyperplasia. A comparative review

    DEFF Research Database (Denmark)

    Andersen, J T

    1995-01-01

    During recent years, pharmacological treatment of symptomatic benign prostatic hyperplasia (BPH) has become the primary treatment choice for an increasing number of patients. The 2 principal drug classes employed are alpha 1-blockers and 5 alpha-reductase inhibitors. Current information from...... of patients who will respond well to alpha 1-blockers have yet to be identified, and data concerning the long term effects of these drugs are not yet available. 5 alpha-Reductase inhibitors have a slow onset of effect, but treatment leads to improvement in symptoms, reduction of the size of the prostate gland...... or unwilling to undergo surgical resection of the prostate will benefit from such therapy....

  14. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.

    Science.gov (United States)

    Takeda, Kouji; Sato, Junichi; Goto, Kazuyuki; Fujita, Takanori; Watanabe, Toshihiro; Abo, Mitsuru; Yoshimura, Etsuro; Nakagawa, Junichi; Abe, Akira; Kawasaki, Shinji; Niimura, Youichi

    2010-08-01

    Two free flavin-independent enzymes were purified by detecting the NAD(P)H oxidation in the presence of Fe(III)-EDTA and t-butyl hydroperoxide from E. coli. The enzyme that requires NADH or NADPH as an electron donor was a 28 kDa protein, and N-terminal sequencing revealed it to be oxygen-insensitive nitroreductase (NfnB). The second enzyme that requires NADPH as an electron donor was a 30 kDa protein, and N-terminal sequencing revealed it to be ferredoxin-NADP(+) reductase (Fpr). The chemical stoichiometry of the Fenton activities of both NfnB and Fpr in the presence of Fe(III)-EDTA, NAD(P)H and hydrogen peroxide was investigated. Both enzymes showed a one-electron reduction in the reaction forming hydroxyl radical from hydrogen peroxide. Also, the observed Fenton activities of both enzymes in the presence of synthetic chelate iron compounds were higher than their activities in the presence of natural chelate iron compounds. When the Fenton reaction occurs, the ferric iron must be reduced to ferrous iron. The ferric reductase activities of both NfnB and Fpr occurred with synthetic chelate iron compounds. Unlike NfnB, Fpr also showed the ferric reductase activity on an iron storage protein, ferritin, and various natural iron chelate compounds including siderophore. The Fenton and ferric reductase reactions of both NfnB and Fpr occurred in the absence of free flavin. Although the k(cat)/K(m) value of NfnB for Fe(III)-EDTA was not affected by free flavin, the k(cat)/K(m) value of Fpr for Fe(III)-EDTA was 12-times greater in the presence of free FAD than in the absence of free FAD.

  15. Involvement of an octose ketoreductase and two acyltransferases in the biosynthesis of paulomycins

    Science.gov (United States)

    Li, Jine; Wang, Min; Ding, Yong; Tang, Yue; Zhang, Zhiguo; Chen, Yihua

    2016-02-01

    C-4 hydroxyethyl branched octoses have been observed in polysaccharides of several genera of gram negative bacteria and in various antibiotics produced by gram positive bacteria. The C-4 hydroxyethyl branch was proposed to be converted from C-4 acetyl branch by an uncharacterized ketoreduction step. Paulomycins (PAUs) are glycosylated antibiotics with potent inhibitory activity against gram positive bacteria and are structurally defined by its unique C-4‧ hydroxyethyl branched paulomycose moiety. A novel aldo-keto-reductase, Pau7 was characterized as the enzyme catalyzing the stereospecific ketoreduction of 7‧-keto of PAU E (1) to give the C-4‧ hydroxyethyl branched paulomycose moiety of PAU F (2). An acyltransferase Pau6 further decorates the C-4‧ hydroxyethyl branch of paulomycose moiety of 2 by attaching various fatty acyl chains to 7‧-OH to generate diverse PAUs. In addition, another acyltransferase Pau24 was proposed to be responsible for the 13-O-acetylation of PAUs.

  16. Hypothesis onSerenoa repens(Bartram) small extract inhibition of prostatic 5α-reductase through anin silicoapproach on 5β-reductase x-ray structure.

    Science.gov (United States)

    Governa, Paolo; Giachetti, Daniela; Biagi, Marco; Manetti, Fabrizio; De Vico, Luca

    2016-01-01

    Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α -adrenoreceptor antagonists and 5 α -reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5 α -reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5 β -reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets.

  17. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions.

    Science.gov (United States)

    Douglas, P; Pigaglio, E; Ferrer, A; Halfords, N G; MacKintosh, C

    1997-07-01

    In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported

  18. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are required by reversible phosphorylation and/or Ca2+ ions.

    Science.gov (United States)

    Douglas, P; Pigaglio, E; Ferrer, A; Halfords, N G; MacKintosh, C

    1997-01-01

    In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported

  19. Differential stress-induced regulation of two quinone reductases in the brown rot Basidiomycete Gloeophyllum trabeum

    Science.gov (United States)

    Roni Cohen; Melissa R. Suzuki; Kenneth E. Hammel

    2004-01-01

    Quinone reductases (QRDs) have two important functions in the basidiomycete Gloeophyllum trabeum, which causes brown rot of wood. First, a QRD is required to generate biodegradative hydroxyl radicals via redox cycling between two G. trabeum extracellular metabolites, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 2,5-dimethoxy-1,4-benzoquinone (2,5- DMBQ). Second, because 2,...

  20. A Rational Approach to Identify Inhibitors of Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase

    Czech Academy of Sciences Publication Activity Database

    Chhabria, M. T.; Parmar, K. B.; Brahmkshatriya, Pathik

    2013-01-01

    Roč. 19, č. 21 (2013), s. 3878-3883 ISSN 1381-6128 Institutional support: RVO:61388963 Keywords : mycobacterium tuberculosis * enoyl acyl carrier protein reductase * pharmacophore modeling * molecular docking * binding interactions Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.288, year: 2013

  1. Studies on the kinetic mechanism of nitrate reductase from spinach (Spinacea oleracea).

    Science.gov (United States)

    de la Rosa, F F; Palacián, E; Castillo, F

    1980-09-01

    Based on Lineweaver-Burk plots of the initial velocities, at different concentrations of NADH and nitrate, and product inhibition patterns, an Iso Ping Pong Bi Bi steady state kinetic mechanism is proposed for the spinach nitrate reductase. This mechanism incorporates the concept that the oxidized enzyme is present in two isomeric forms.

  2. Differential antioxidant and quinone reductase inducing activity of American, Asian, and Siberian ginseng

    Science.gov (United States)

    The antioxidant and quinone reductase (QR) inducing activities of American, Asian, and Siberian ginseng have been reported using various plant materials, solvents, and assays. To directly establish their comparative bioactivity, the effects of extracts obtained from acidified methanol (MeOH), a gas...

  3. Purification and properties of a NADPH-dependent erythrose reductase from the newly isolated Torula corallina.

    Science.gov (United States)

    Lee, Jung-Kul; Hong, Kwang-Won; Kim, Sang-Yong

    2003-01-01

    Torula corallina (KCCM-10171) is a yeast strain that is currently used for the industrial production of erythritol and has the highest erythritol yield ever reported for an erythritol-producing microorganism. Production of erythritol in T. corallina is catalyzed by erythrose reductase, an enzyme that converts erythrose to erythritol using NADPH as a cofactor. In this study, NADPH-dependent erythrose reductase was purified to homogeneity from the newly isolated T. corallina. The relative molecular weight of the erythrose reductase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography was 35.4 and 71.0 kDa, respectively, indicating that the enzyme is dimeric. This enzyme catalyzed both erythrose reduction and erythritol oxidation; both enzyme activities required NADP(H). The pH and temperature optima for erythrose reduction and erythritol oxidation were 6.0, 40 degrees C and 8.0, 45 degrees C, respectively. The sequence of the first 10 amino acids of this enzyme was N-V-K-N-F-Y-Q-P-N-D. The affinity (K(m)( )()= 7.12 mM) of the enzyme for erythrose was comparable to that of other known erythrose reductases, and the specificity for erythrose was very high, resulting in no production of other polyols, which may explain the high erythritol yield observed in this strain.

  4. Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina.

    Science.gov (United States)

    Lee, Jung-Kul; Koo, Bong-Seong; Kim, Sang-Yong

    2002-09-01

    Torula corallina, a strain presently being used for the industrial production of erythritol, has the highest erythritol yield ever reported for an erythritol-producing microorganism. The increased production of erythritol by Torula corallina with trace elements such as Cu(2+) has been thoroughly reported, but the mechanism by which Cu(2+) increases the production of erythritol has not been studied. This study demonstrated that supplemental Cu(2+) enhanced the production of erythritol, while it significantly decreased the production of a major by-product that accumulates during erythritol fermentation, which was identified as fumarate by instrumental analyses. Erythrose reductase, a key enzyme that converts erythrose to erythritol in T. corallina, was purified to homogeneity by chromatographic methods, including ion-exchange and affinity chromatography. In vitro, purified erythrose reductase was significantly inhibited noncompetitively by increasing the fumarate concentration. In contrast, the enzyme activity remained almost constant regardless of Cu(2+) concentration. This suggests that supplemental Cu(2+) reduced the production of fumarate, a strong inhibitor of erythrose reductase, which led to less inhibition of erythrose reductase and a high yield of erythritol. This is the first report that suggests catabolite repression by a tricarboxylic acid cycle intermediate in T. corallina.

  5. Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians

    DEFF Research Database (Denmark)

    Andersen, Helle Raun; Jeune, B; Nybo, H

    1998-01-01

    aged between 60 and 79 years. MEASUREMENTS: enzyme activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase, catalase and glutathione reductase (GR) in erythrocytes. Functional capacity among the centenarians was evaluated by Katz' index of activities of daily living, the Physical...

  6. The Activities of NADH-MethB Reductase and Glucose-6 ...

    African Journals Online (AJOL)

    The activities of NADH-MetHB reductase and G-6-PD were investigated in malaria patients in Calabar, Nigeria. Seventy malaria patients were selected for this study. Sixty-two age, sex – matched apparently healthy children were used as controls. Ages of subjects ranged from 6 months to 12 years (Mean = 5±1.3 years).

  7. Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency

    NARCIS (Netherlands)

    Banka, S.; Blom, H.J.; Walter, J.; Aziz, M.; Urquhart, J.; Clouthier, C.M.; Rice, G.I.; Brouwer, A.P.M. de; Hilton, E.; Vassallo, G.; Will, A.; Smith, D.E.; Smulders, Y.M.; Wevers, R.A.; Steinfeld, R.; Heales, S.; Crow, Y.J.; Pelletier, J.N.; Jones, S.; Newman, W.G.

    2011-01-01

    Dihydrofolate reductase (DHFR) is a critical enzyme in folate metabolism and an important target of antineoplastic, antimicrobial, and antiinflammatory drugs. We describe three individuals from two families with a recessive inborn error of metabolism, characterized by megaloblastic anemia and/or

  8. Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase.

    NARCIS (Netherlands)

    Berg, van den P.A.W.; Hoek, van A.; Visser, A.J.W.G.

    2004-01-01

    Time-resolved flavin fluorescence anisotropy studies on glutathione reductase (GR) have revealed a remarkable new phenomenon: wild-type GR displays a rapid process of fluorescence depolarization, that is absent in mutant enzymes lacking a nearby tyrosine residue that blocks the NADPH-binding cleft.

  9. Aldose reductase activity and glucose-related opacities in incubated lenses from dogs and cats.

    Science.gov (United States)

    Richter, Marianne; Guscetti, Franco; Spiess, Bernhard

    2002-11-01

    To determine responses of canine and feline lenses to incubation in a medium with a high glucose concentration. Lenses from 35 dogs and 26 cats. Glucose concentrations were measured in paired lenses from 25 dogs and 17 cats after incubation for 14 days in high-glucose (30 mmol of glucose/L) or control (6 mmol of glucose/L) medium. Aldose reductase activity was measured spectrophotometrically in the incubated lenses and in freshly frozen lenses from 10 dogs and 9 cats. Two lenses of each group were studied histologically. Canine and feline lenses in high-glucose medium developed glucose-specific opacities of variable localization and extent. Canine lenses developed equatorial vacuoles, but severity of the lesions was not associated with the age of the dog. Lenses from young cats (cats (> 4 years old) did not. Glucose concentrations were similar in all lenses incubated in high-glucose medium; however aldose reductase activity was significantly lower in lenses from older cats, compared with lenses from young cats and from dogs. High aldose reductase activity and glucose-related opacities suggest a central role for this enzyme in the pathogenesis of diabetic cataracts in dogs and cats. Because onset of diabetes mellitus usually occurs in cats > 7 years of age, low activity of aldose reductase in lenses of older cats may explain why diabetic cataracts are rare in this species despite hyperglycemia.

  10. The Bradyrhizobium japonicum frcB Gene Encodes a Diheme Ferric Reductase ▿†

    Science.gov (United States)

    Small, Sandra K.; O'Brian, Mark R.

    2011-01-01

    Iron utilization by bacteria in aerobic environments involves uptake as a ferric chelate from the environment, followed by reduction to the ferrous form. Ferric iron reduction is poorly understood in most bacterial species. Here, we identified Bradyrhizobium japonicum frcB (bll3557) as a gene adjacent to, and coregulated with, the pyoR gene (blr3555) encoding the outer membrane receptor for transport of a ferric pyoverdine. FrcB is a membrane-bound, diheme protein, characteristic of eukaryotic ferric reductases. Heme was essential for FrcB stability, as were conserved histidine residues in the protein that likely coordinate the heme moieties. Expression of the frcB gene in Escherichia coli conferred ferric reductase activity on those cells. Furthermore, reduced heme in purified FrcB was oxidized by ferric iron in vitro. B. japonicum cells showed inducible ferric reductase activity in iron-limited cells that was diminished in an frcB mutant. Steady-state levels of frcB mRNA were strongly induced under iron-limiting conditions, but transcript levels were low and unresponsive to iron in an irr mutant lacking the global iron response transcriptional regulator Irr. Thus, Irr positively controls the frcB gene. FrcB belongs to a family of previously uncharacterized proteins found in many proteobacteria and some cyanobacteria. This suggests that membrane-bound, heme-containing ferric reductase proteins are not confined to eukaryotes but may be common in bacteria. PMID:21705608

  11. The Bradyrhizobium japonicum frcB gene encodes a diheme ferric reductase.

    Science.gov (United States)

    Small, Sandra K; O'Brian, Mark R

    2011-08-01

    Iron utilization by bacteria in aerobic environments involves uptake as a ferric chelate from the environment, followed by reduction to the ferrous form. Ferric iron reduction is poorly understood in most bacterial species. Here, we identified Bradyrhizobium japonicum frcB (bll3557) as a gene adjacent to, and coregulated with, the pyoR gene (blr3555) encoding the outer membrane receptor for transport of a ferric pyoverdine. FrcB is a membrane-bound, diheme protein, characteristic of eukaryotic ferric reductases. Heme was essential for FrcB stability, as were conserved histidine residues in the protein that likely coordinate the heme moieties. Expression of the frcB gene in Escherichia coli conferred ferric reductase activity on those cells. Furthermore, reduced heme in purified FrcB was oxidized by ferric iron in vitro. B. japonicum cells showed inducible ferric reductase activity in iron-limited cells that was diminished in an frcB mutant. Steady-state levels of frcB mRNA were strongly induced under iron-limiting conditions, but transcript levels were low and unresponsive to iron in an irr mutant lacking the global iron response transcriptional regulator Irr. Thus, Irr positively controls the frcB gene. FrcB belongs to a family of previously uncharacterized proteins found in many proteobacteria and some cyanobacteria. This suggests that membrane-bound, heme-containing ferric reductase proteins are not confined to eukaryotes but may be common in bacteria.

  12. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A

    1997-01-01

    of the splice acceptor sites clearly indicated that the corresponding mRNA apparently lacks sequences encoding a membrane N-terminal domain. The reductase gene is a single copy and is located on a chromosome of 1.36 Mb as determined by contour-clamped homogeneous electric field electrophoresis. The overall...

  13. The role of quinone reductase (NQO1) and quinone chemistry in quercetin cytotoxicity

    NARCIS (Netherlands)

    Gliszczynska-Swiglo, A.; Woude, van der H.; Haan, de L.H.J.; Tyrakowska, B.; Aarts, J.M.M.J.G.; Rietjens, I.M.C.M.

    2003-01-01

    The effects of quercetin on viability and proliferation of Chinese Hamster Ovary (CHO) cells and CHO cells overexpressing human quinone reductase (CHO+NQO1) were studied to investigate the involvement of the pro-oxidant quinone chemistry of quercetin. The toxicity of menadione was significantly

  14. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight

    DEFF Research Database (Denmark)

    Swerdlow, Daniel I; Preiss, David; Kuchenbaecker, Karoline B

    2015-01-01

    BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR...

  15. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower...

  16. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    Two aldose (xylose) reductases (ARI and ARII) from Fusarium oxysporum were purified and characterized. The native ARI was a monomer with M-r 41000, pI 5.2 and showed a 52-fold preference for NADPH over NADH, while ARII was homodimeric with a subunit of M-r 37000, pI 3.6 and a 60-fold preference...

  17. Inherited glutathione reductase deficiency and Plasmodium falciparum malaria--a case study

    NARCIS (Netherlands)

    Gallo, Valentina; Schwarzer, Evelin; Rahlfs, Stefan; Schirmer, R. Heiner; van Zwieten, Rob; Roos, Dirk; Arese, Paolo; Becker, Katja

    2009-01-01

    In Plasmodium falciparum-infected red blood cells (RBCs), the flavoenzyme glutathione reductase (GR) regenerates reduced glutathione, which is essential for antioxidant defense. GR utilizes NADPH produced in the pentose phosphate shunt by glucose-6-phosphate dehydrogenase (G6PD). Thus, conditions

  18. Cloning, expression and antigenicity of the L. donovani reductase

    DEFF Research Database (Denmark)

    Jensen, A T; Kemp, K; Theander, T G

    2001-01-01

    . We have cloned the reductase gene from L donovani and have shown that it differs in only one nucleotide from the L. major homologue, resulting in one amino acid change. A cytosine (C) to guanine (G) transposition in the coding sequence leads to a nonconserved substitution of asparagine (N) for lysine...

  19. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    OpenAIRE

    Macedo, Ma?ra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB.

  20. Intramolecular electron transfer in cytochrome cd(1) nitrite reductase from Pseudomonas stutzeri; kinetics and thermodynamics

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G

    2002-01-01

    Cytochrome cd(1) nitrite reductase from Pseudomonas stutzeri catalyzes the one electron reduction of nitrite to nitric oxide. It is a homodimer, each monomer containing one heme-c and one heme-d(1), the former being the electron uptake site while the latter is the nitrite reduction site. Hence, i...

  1. CLONING AND MOLECULAR ANALYSIS OF THE DIHYDROFOLATE-REDUCTASE GENE FROM LACTOCOCCUS-LACTIS

    NARCIS (Netherlands)

    LESZCZYNSKA, K; BOLHUIS, A; LEENHOUTS, K; VENEMA, G; CEGLOWSKI, P

    The Lactococcus lactis gene encoding trimethoprim resistance has been cloned and expressed in Escherichia coli and Bacillus subtilis. Several lines of evidence indicate that the cloned gene encodes dihydrofolate reductase (DHFR). (i) It fully complements the fol ''null'' mutation in E. coli. (ii)

  2. Cloning, expression and antigenicity of the L. donovani reductase

    DEFF Research Database (Denmark)

    Jensen, A T; Kemp, K; Theander, T G

    2001-01-01

    (K). Only 2 of 22 plasma samples from patients with visceral leishmaniasis were found to have detectable anti-reductase antibodies and peripheral blood mononuclear cells (PBMC) from one of three individuals previously infected with visceral leishmaniasis proliferated in the presence of recombinant...

  3. Pharmaco-economic assessment of the HMG- CoA reductase ...

    African Journals Online (AJOL)

    Objective. To perform a comparative pharmaco-economic assessment of two HMG-CoA reductase inhibitors. Design. A cost-effectiveness analysis was employed using comparative'efficacy data from selected clinical trials. A comprehensive international literature search formed the basis for this selection. Criteria for ...

  4. Field Observation of Heterogeneous Formation of Dicarboxylic acids, Keto-carboxylic acids, α-Dicarbonyls and Nitrate in Xi'an, China during Asian dust storm periods

    Science.gov (United States)

    Wang, G.; Wang, J.; Ren, Y.; Li, J.

    2015-12-01

    To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids (C2-C11), keto-carboxylic acids (C3-C7), α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, China during the nondust storm and dust storm periods of 2009 and 2011. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1μm), and oxalic acid well correlated with NO3- (R2=0.72, pfine particles and a strong correlation of oxalic acid with SO42-. Our results further demonstrate that NO3- in the dust periods in Xi'an was mostly derived from secondary oxidation, whereas SO42- during the events was largely derived from surface soil of Gobi deserts. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of Asian dust.

  5. Detection and Identification of the Keto-Hydroperoxide (HOOCH 2 OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2015-07-16

    In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF. © 2015 American Chemical Society.

  6. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    International Nuclear Information System (INIS)

    Nakai, Naoya; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-01-01

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  7. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  8. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.

    Science.gov (United States)

    Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen

    2017-06-01

    The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.

  9. The Fungal Pathogen Candida glabrata Does Not Depend on Surface Ferric Reductases for Iron Acquisition

    Directory of Open Access Journals (Sweden)

    Franziska Gerwien

    2017-06-01

    Full Text Available Iron acquisition is a crucial virulence determinant for many bacteria and fungi, including the opportunistic fungal pathogens Candida albicans and C. glabrata. While the diverse strategies used by C. albicans for obtaining iron from the host are well-described, much less is known about the acquisition of this micronutrient from host sources by C. glabrata – a distant relative of C. albicans with closer evolutionary ties to Saccharomyces cerevisiae, which nonetheless causes severe clinical symptoms in humans. Here we show that C. glabrata is much more restricted than C. albicans in using host iron sources, lacking, for example, the ability to grow on transferrin and hemin/hemoglobin. Instead, C. glabrata is able to use ferritin and non-protein-bound iron (FeCl3 as iron sources in a pH-dependent manner. As in other fungal pathogens, iron-dependent growth requires the reductive high affinity (HA iron uptake system. Typically highly conserved, this uptake mechanism normally relies on initial ferric reduction by cell-surface ferric reductases. The C. glabrata genome contains only three such putative ferric reductases, which were found to be dispensable for iron-dependent growth. In addition and in contrast to C. albicans and S. cerevisiae, we also detected no surface ferric reductase activity in C. glabrata. Instead, extracellular ferric reduction was found in this and the two other fungal species, which was largely dependent on an excreted low-molecular weight, non-protein ferric reductant. We therefore propose an iron acquisition strategy of C. glabrata which differs from other pathogenic fungi, such as C. albicans, in that it depends on a limited set of host iron sources and that it lacks the need for surface ferric reductases. Extracellular ferric reduction by a secreted molecule possibly compensates for the loss of surface ferric reductase activity in the HA iron uptake system.

  10. Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids.

    Science.gov (United States)

    Liang, T; Liao, S

    1992-01-01

    Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells. PMID:1637346

  11. Characterization of FRO1, a Pea Ferric-Chelate Reductase Involved in Root Iron Acquisition1

    Science.gov (United States)

    Waters, Brian M.; Blevins, Dale G.; Eide, David J.

    2002-01-01

    To acquire iron, many plant species reduce soil Fe(III) to Fe(II) by Fe(III)-chelate reductases embedded in the plasma membrane of root epidermal cells. The reduced product is then taken up by Fe(II) transporter proteins. These activities are induced under Fe deficiency. We describe here the FRO1 gene from pea (Pisum sativum), which encodes an Fe(III)-chelate reductase. Consistent with this proposed role, FRO1 shows similarity to other oxidoreductase proteins, and expression of FRO1 in yeast conferred increased Fe(III)-chelate reductase activity. Furthermore, FRO1 mRNA levels in plants correlated with Fe(III)-chelate reductase activity. Sites of FRO1 expression in roots, leaves, and nodules were determined. FRO1 mRNA was detected throughout the root, but was most abundant in the outer epidermal cells. Expression was detected in mesophyll cells in leaves. In root nodules, mRNA was detected in the infection zone and nitrogen-fixing region. These results indicate that FRO1 acts in root Fe uptake and they suggest a role in Fe distribution throughout the plant. Characterization of FRO1 has also provided new insights into the regulation of Fe uptake. FRO1 expression and reductase activity was detected only in Fe-deficient roots of Sparkle, whereas both were constitutive in brz and dgl, two mutants with incorrectly regulated Fe accumulation. In contrast, FRO1 expression was responsive to Fe status in shoots of all three plant lines. These results indicate differential regulation of FRO1 in roots and shoots, and improper FRO1 regulation in response to a shoot-derived signal of iron status in the roots of the brz and dgl mutants. PMID:12011340

  12. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition.

    Science.gov (United States)

    Waters, Brian M; Blevins, Dale G; Eide, David J

    2002-05-01

    To acquire iron, many plant species reduce soil Fe(III) to Fe(II) by Fe(III)-chelate reductases embedded in the plasma membrane of root epidermal cells. The reduced product is then taken up by Fe(II) transporter proteins. These activities are induced under Fe deficiency. We describe here the FRO1 gene from pea (Pisum sativum), which encodes an Fe(III)-chelate reductase. Consistent with this proposed role, FRO1 shows similarity to other oxidoreductase proteins, and expression of FRO1 in yeast conferred increased Fe(III)-chelate reductase activity. Furthermore, FRO1 mRNA levels in plants correlated with Fe(III)-chelate reductase activity. Sites of FRO1 expression in roots, leaves, and nodules were determined. FRO1 mRNA was detected throughout the root, but was most abundant in the outer epidermal cells. Expression was detected in mesophyll cells in leaves. In root nodules, mRNA was detected in the infection zone and nitrogen-fixing region. These results indicate that FRO1 acts in root Fe uptake and they suggest a role in Fe distribution throughout the plant. Characterization of FRO1 has also provided new insights into the regulation of Fe uptake. FRO1 expression and reductase activity was detected only in Fe-deficient roots of Sparkle, whereas both were constitutive in brz and dgl, two mutants with incorrectly regulated Fe accumulation. In contrast, FRO1 expression was responsive to Fe status in shoots of all three plant lines. These results indicate differential regulation of FRO1 in roots and shoots, and improper FRO1 regulation in response to a shoot-derived signal of iron status in the roots of the brz and dgl mutants.

  13. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato.

    Science.gov (United States)

    Kong, Danyu; Chen, Chunlin; Wu, Huilan; Li, Ye; Li, Junming; Ling, Hong-Qing

    2013-11-20

    Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1(MM), LeFRO1(Ailsa) and LeFRO1(Monita)) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1(Ailsa) > LeFRO1(MM) > LeFRO1(Monita)). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato. Copyright © 2013. Published by Elsevier Ltd.

  14. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols

    Energy Technology Data Exchange (ETDEWEB)

    Panini, S.R.; Sexton, R.C.; Gupta, A.K.; Parish, E.J.; Chitrakorn, S.; Rudney, H.

    1986-11-01

    Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-(2-(diethylamino)-ethoxy)androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy(/sup 3/H)anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase. In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. (Abstract Truncated)

  15. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol.

    Science.gov (United States)

    Smeriglio, Antonella; Giofrè, Salvatore V; Galati, Enza M; Monforte, Maria T; Cicero, Nicola; D'Angelo, Valeria; Grassi, Gianpaolo; Circosta, Clara

    2018-02-07

    Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important. The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications. Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes. Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro. A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions. The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors. The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity. These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. FQR1, a Novel Primary Auxin-Response Gene, Encodes a Flavin Mononucleotide-Binding Quinone Reductase1

    Science.gov (United States)

    Laskowski, Marta J.; Dreher, Kate A.; Gehring, Mary A.; Abel, Steffen; Gensler, Arminda L.; Sussex, Ian M.

    2002-01-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress. PMID:11842161

  17. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase.

    Science.gov (United States)

    Laskowski, Marta J; Dreher, Kate A; Gehring, Mary A; Abel, Steffen; Gensler, Arminda L; Sussex, Ian M

    2002-02-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.

  18. Synthesis and Activity of a New Series of(Z-3-Phenyl-2-benzoylpropenoic Acid Derivatives as Aldose Reductase Inhibitors

    Directory of Open Access Journals (Sweden)

    Shao-Jie Wang

    2007-04-01

    Full Text Available During the course of studies directed towards the discovery of novel aldose reductase inhibitors for the treatment of diabetic complications, we synthesized a series of new (Z-3-phenyl-2-benzoylpropenoic acid derivatives and tested their in vitro inhibitory activities on rat lens aldose reductase. Of these compounds, (Z-3-(3,4-dihydroxyphenyl-2-(4-methylbenzoylpropenoicacid(3k was identified as the most potent inhibitor, with an IC50 of 0.49μM. The theoretical binding mode of 3k was obtained by simulation of its docking into the active site of the human aldose reductase crystal structure.

  19. Subcellular distribution of nitroblue tetrazolium reductase (NBT-R) in human polymorphonuclear leukocytes (PMN).

    Science.gov (United States)

    Baehner, R L

    1975-11-01

    Subcellular distribution study of cytoplasmic organelles was performed on human polymorphonuclear leukocytes after homogenization in 0.34 molar sucrose by differential centrifugation and sucrose density gradient centrifugation of the homogenate. The whole homogenate and each fraction was assayed for nitroblue tetrazolium (NBT)-reductase with and without 1 mM potassium cyanide, and the distribution of this enzyme was compared to the distribution of lysozyme, peroxidase, beta-glucuronidase, and acid and alkaline phosphatase. Enzyme recovery was 97 per cent and ranged between 74 and 124 per cent. Latent activity of all enzymes except NBT-reductase, acid, and alkaline phosphatase was demonstrated by observing a four- to sixfold increase in activity after the addition of Triton-X 100. Maximal relative specific activity using either DPNH or without cyanide for NBT-reductase was found in the 100,000 x g differential centrifugation fraction and was concentrated in the less dense top fraction of the sucrose density gradient. The distribution pattern was similar to acid and alkaline phosphatase. In contrast, the maximal concentration of beta-glucuronidase and peroxidase was found in the heavier 7,200 x g granule fraction and in the more dense bottom fractions of the sucrose density gradient. Maximal lysozyme activity was concentrated in the 30,000 x g granule fraction and in the fractions located between the heaviest and lightest fractions of the sucrose density gradient. The lack of latent activity and the similarity of subcellular distribution of NBT-reductase to acid and alkaline phosphatase, two enzymes associated with microsomes and plasmalemal membranes in human polymorphonuclear leukocytes (PMN), indicates that NBT-reductase is also a nonlysosomal enzyme located in microsomes or in plasmalemal membranes. These findings support the previously described histochemical observations that initial reduction of NBT to formazan occurs on the PMN plasmalemal surface membrane at

  20. Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors.

    Science.gov (United States)

    Metwally, Kamel; Pratsinis, Harris; Kletsas, Dimitris; Quattrini, Luca; Coviello, Vito; Motta, Concettina La; El-Rashedy, Ahmed A; Soliman, Mahmoud Es

    2017-12-01

    Targeting aldose reductase enzyme with 2,4-thiazolidinedione-3-acetic acid derivatives having a bulky hydrophobic 3-arylquinazolinone residue. All the target compounds were structurally characterized by different spectroscopic methods and microanalysis, their aldose reductase inhibitory activities were evaluated, and binding modes were studied by molecular modeling. All the synthesized compounds proved to inhibit the target enzyme potently, exhibiting IC 50 values in the nanomolar/low nanomolar range. Compound 5i (IC 50  = 2.56 nM), the most active of the whole series, turned out to be almost 70-fold more active than the only marketed aldose reductase inhibitor epalrestat. This work represents a promising matrix for developing new potential therapeutic candidates for prevention of diabetic complications through targeting aldose reductase enzyme. [Formula: see text].

  1. EFFECTS OF A KETO/AMINO ACID SUPPLEMENTED LOW PROTEIN DIET ON THE DELAY OF PROGRESSIEVE RENAL FAILURE IN CHRONIC KIDNEY DISEASE

    Directory of Open Access Journals (Sweden)

    Hoon Young Choi

    2012-06-01

    Full Text Available A protein-restricted diet with keto/amino acids (KA supplement showed favorable effects on delayed renal replacement therapy in patients with chronic kidney disease. This is an open, prospective, randomized, and multi-center study. A total of 67 patients were randomly assigned into two groups. LPD+KA group was advised to take less than 0.6 g/kg/day of protein with KAs. LPD group was advised to consume less than 0.6 g/kg/day protein. Nutritional and clinical parameters were evaluated at baseline, 3 and 6 months. Nutritional status represented as body mass index, mid-arm circumference and triceps skin-fold thickness was not different between the two groups at 3months and 6 months. Ca×P product level measured at 3 months was lower in the LPD+KA group than in the LPD group (LPD+KA group: 33.5±5.0 vs. LPD group: 36.9±7.9 mg2/dL2, p<0.05. The slope of the glomerular filtration rate (GFR slope and the percentage of the GFR slope (GFR slope % at 3 months were more preserved in the LPD+KA group than in the LPD group. The GFR slope and GFR slope % at 6 months were not significantly different. In the entire subjects, the GFR slope was negatively correlated with Ca×P product levels at 3 months, total cholesterol at baseline, and urine protein-creatinine ratio at baseline and 6 months (r=−0.255, r=−0.296, r =−0.412, r=−0.371, p<0.05. A multiple regression analysis revealed Ca×P product at 3 months was the only independent factor affecting the GFR slope at 3 months. The present study suggests that a low protein diet supplemented with KA had a beneficial effect on preserving renal function and improving calcium and phosphorus disturbances in patients with chronic kidney disease.

  2. Structure of constituents isolated from the flower buds of Cananga odorata and their inhibitory effects on aldose reductase.

    Science.gov (United States)

    Matsumoto, Takahiro; Nakamura, Seikou; Fujimoto, Katsuyoshi; Ohta, Tomoe; Ogawa, Keiko; Yoshikawa, Masayuki; Matsuda, Hisashi

    2014-10-01

    Three new terpenoid derivatives, canangaterpenes IV-VI, were isolated from the flower buds of Cananga odorata, cultivated in Thailand, together with eight known flavonoids. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. The inhibitory effects of the isolated compounds on aldose reductase were also investigated. Several terpenoid derivatives and flavonoids were shown to inhibit aldose reductase.

  3. ELEVATED LIPID PEROXIDATION AND DNA OXIDATION IN NERVE FROM DIABETIC RATS: EFFECTS OF ALDOSE REDUCTASE INHIBITION, INSULIN AND NEUROTROPHIC FACTORS

    OpenAIRE

    Cunha, Joice M.; Jolivalt, Corinne G.; Ramos, Khara M.; Gregory, Joshua A.; Calcutt, Nigel A.; Mizisin, Andrew P.

    2008-01-01

    We investigated the effect of treatment with an aldose reductase inhibitor, insulin or select neurotrophic factors on the generation of oxidative damage in peripheral nerve. Rats were either treated with streptozotocin (STZ) to induce insulin-deficient diabetes or fed with a diet containing 40% D-galactose to promote hexose metabolism by aldose reductase. Initial time-course studies showed that lipid peroxidation and DNA oxidation were significantly elevated in sciatic nerve after 1 week or 2...

  4. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas; Bang, Maria Blanner; Rykær, Martin

    2017-01-01

    The NADPH-dependent homodimeric flavoenzyme thioredoxin reductase (TrxR) provides reducing equivalents to thioredoxin, a key regulator of various cellular redox processes. Crystal structures of photo-inactivated thioredoxin reductase (TrxR) from the Gram-positive bacterium Lactococcus lactis have...... been determined. These structures reveal novel molecular features that provide further insight into the mechanisms behind the sensitivity of this enzyme toward visible light. We propose that a pocket on the si-face of the isoalloxazine ring accommodates oxygen that reacts with photo-excited FAD...... thus be a widespread feature among bacterial TrxR with the described characteristics, which affords applications in clinical photo-therapy of drug-resistant bacteria....

  5. Normal bone density in male pseudohermaphroditism due to 5a- reductase 2 deficiency

    Directory of Open Access Journals (Sweden)

    Costa Elaine Maria Frade

    2001-01-01

    Full Text Available Bone is an androgen-dependent tissue, but it is not clear whether the androgen action in bone depends on testosterone or on dihydrotestosterone. Patients with 5alpha-reductase 2 deficiency present normal levels of testosterone and low levels of dihydrotestosterone, providing an in vivo human model for the analysis of the effect of testosterone on bone. OBJECTIVE: To analyze bone mineral density in 4 adult patients with male pseudohermaphroditism due to 5alpha-reductase 2 deficiency. RESULTS: Three patients presented normal bone mineral density of the lumbar column (L1-L4 and femur neck, and the other patient presented a slight osteopenia in the lumbar column. CONCLUSION: Patients with dihydrotestosterone deficiency present normal bone mineral density, suggesting that dihydrotestosterone is not the main androgen acting in bone.

  6. MTD–CoMSIA modelling of HMG-CoA reductase inhibitors

    Directory of Open Access Journals (Sweden)

    DANIEL M. DUDA-SEIMAN

    2011-01-01

    Full Text Available The 3D quantitative structure–activity relationship for a series of hydroxymethylglutaryl-CoA (HMG-CoA reductase inhibitors based on the pyrrolylethyl-tetrahydropyranone scaffold was examined using the Minimal Topological Difference (MTD method and comparative molecular similarity index analysis (CoMSIA. The studied compounds were of the tetrahydro-4-hydroxy-6-[2-(1H-pyrrol-1-ylethyl]-2H-pyran-2-one type. In clinical practice, HMG-CoA reductase inhibitors are usually referred to by the generic name statins. The analysis performed using the MTD method showed that voluminous substituents produce a significant biological activity (= 0.677 > 0.5; SEECV = 0.319, while the CoMSIA method added useful information regarding the influence of the steric, electrostatic, hydrophobic, hydrogen bond donor, and acceptor properties on biological activity (= 0.60; r2 = 0.98.

  7. Nitroreductase reactions of the NADPH: adrenodoxin reductase and the adrenodoxin complex.

    Science.gov (United States)

    Marcinkeviciene, J; Cenas, N; Kulys, J; Usanov, S A; Sukhova, N M; Selezneva, I S; Gryazev, V F

    1990-01-01

    NADPH: adrenodoxin reductase (E.C. 1.18.1.2) and its complex with adrenodoxin catalyze the aerobic oxidation of NADPH by a number of substituted 2-nitrofurans, 5-nitroimidazoles and p-derivatives of nitrobenzene. The nitrocompounds are reduced via an initial single-electron transfer. Under anaerobic conditions nitrofurans are reduced to the corresponding amines. The rate constants of adrenodoxin oxidation by nitrocompounds vary from 4 x 10(5) to 3 x 10(2) M-1 s-1. A linear correlation between the rate constant logarithm and the single-electron reduction potential at pH 7.0 (E7(1)) of nitrocompounds was observed. The relation between the reactivity and the polarographic half-wave potential (E7(1/2)) is distorted. The reactivity of adrenodoxin reductase is two orders of magnitude lower than that of adrenodoxin.

  8. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.

    Science.gov (United States)

    Sasaki, Mari; Shinozaki, Shohei; Shimokado, Kentaro

    2016-03-25

    Dihydrotestosterone (DHT) causes the regression of human hair follicles in the parietal scalp, leading to androgenic alopecia (AGA). Sulforaphane (SFN) increases the expression of DHT degrading enzymes, such as 3α-hydroxysteroid dehydrogenases (3α-HSDs), and, therefore, SFN treatment may improve AGA. To determine the effects of SFN on hair growth, we administered SFN (10 mg/kg BW, IP) or vehicle (DMSO) to ob/ob mice for six weeks and examined hair regeneration and the plasma levels of testosterone and DHT. We also tested the effects of SFN on the expression of two forms of 3α-HSD, aldo-keto reductase 1c21 and dehydrogenase/reductase (SDR family) member 9, both in vitro and in vivo. SNF significantly enhanced hair regeneration in ob/ob mice. The mice treated with SFN showed lower plasma levels of testosterone and DHT than those treated with vehicle. SFN increased the mRNA and protein levels of the two forms of 3α-HSD in the liver of the mice and in cultured murine hepatocyte Hepa1c1c7 cells. These results suggest that SFN treatment increases the amount of 3α-HSDs in the liver, accelerates the degradation of blood DHT, and subsequently blocks the suppression of hair growth by DHT. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.

    Science.gov (United States)

    Beseli, Aydin; Goulart da Silva, Marilia; Daub, Margaret E

    2015-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides and plant pathogenic fungus Cercospora nicotianae have been used as models for understanding resistance to singlet oxygen ((1)O(2)), a highly toxic reactive oxygen species. In Rhodobacter and Cercospora, (1)O(2) is derived, respectively, from photosynthesis and from the (1)O(2)-generating toxin cercosporin which the fungus produces to parasitize plants. We identified common genes recovered in transcriptome studies of putative (1)O(2)-resistance genes in these two systems, suggesting common (1)O(2)-resistance mechanisms. To determine if the Cercospora homologs of R. sphaeroides (1)O(2)-resistance genes are involved in resistance to cercosporin, we expressed the genes in the cercosporin-sensitive fungus Neurospora crassa and assayed for increases in cercosporin resistance. Neurospora crassa transformants expressing genes encoding aldo/keto reductase, succinyl-CoA ligase, O-acetylhomoserine (thiol) lyase, peptide methionine sulphoxide reductase and glutathione S-transferase did not have elevated levels of cercosporin resistance. Several transformants expressing aldehyde dehydrogenase were significantly more resistant to cercosporin. Expression of the transgene and enzyme activity did not correlate with resistance, however. We conclude that although the genes tested in this study are important in (1)O(2) resistance in R. sphaeroides, their Cercospora homologs are not involved in resistance to (1)O(2) generated from cercosporin. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Biotransformation and bioactivation reactions - 2015 literature highlights.

    Science.gov (United States)

    Baillie, Thomas A; Dalvie, Deepak; Rietjens, Ivonne M C M; Cyrus Khojasteh, S

    2016-05-01

    Since 1972, Drug Metabolism Reviews has been recognized as one of the principal resources for researchers in pharmacological, pharmaceutical and toxicological fields to keep abreast of advances in drug metabolism science in academia and the pharmaceutical industry. With a distinguished list of authors and editors, the journal covers topics ranging from relatively mature fields, such as cytochrome P450 enzymes, to a variety of emerging fields. We hope to continue this tradition with the current compendium of mini-reviews that highlight novel biotransformation processes that were published during the past year. Each review begins with a summary of the article followed by our comments on novel aspects of the research and their biological implications. This collection of highlights is not intended to be exhaustive, but rather to be illustrative of recent research that provides new insights or approaches that advance the field of drug metabolism. Abbreviations NAPQI N-acetyl-p-benzoquinoneimine ALDH aldehyde dehydrogenase AO aldehyde oxidase AKR aldo-keto reductase CES carboxylesterase CSB cystathionine β-synthase CSE cystathionine γ-lyase P450 cytochrome P450 DHPO 2,3-dihydropyridin-4-one ESI electrospray FMO flavin monooxygenase GSH glutathione GSSG glutathione disulfide ICPMS inductively coupled plasma mass spectrometry i.p. intraperitoneal MDR multidrug-resistant NNAL 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol NNK 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone oaTOF orthogonal acceleration time-of-flight PBK physiologically based kinetic PCP pentachlorophenol SDR short-chain dehydrogenase/reductase SULT sulfotransferase TB tuberculosis.

  11. Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Meyer, Markus R; Wilhelm, Jens; Peters, Frank T; Maurer, Hans H

    2010-06-01

    In recent years, a new class of designer drugs has appeared on the drugs of abuse market in many countries, namely, the so-called beta-keto (bk) designer drugs such as mephedrone (bk-4-methylmethamphetamine), butylone (bk-MBDB), and methylone (bk-MDMA). The aim of the present study was to identify the metabolites of mephedrone in rat and human urine using GC-MS techniques and to include mephedrone, butylone, and methylone within the authors' systematic toxicological analysis (STA) procedure. Six phase I metabolites of mephedrone were detected in rat urine and seven in human urine suggesting the following metabolic steps: N-demethylation to the primary amine, reduction of the keto moiety to the respective alcohol, and oxidation of the tolyl moiety to the corresponding alcohols and carboxylic acid. The STA procedure allowed the detection of mephedrone, butylone, methylone, and their metabolites in urine of rats treated with doses corresponding to those reported for abuse of amphetamines. Besides macro-based data evaluation, an automated evaluation using the automated mass spectral deconvolution and identification system was performed. Mephedrone and butylone could be detected also in human urine samples submitted for drug testing. Assuming similar kinetics in humans, the described STA procedure should be suitable for proof of an intake of the bk-designer drugs in human urine.

  12. Estimation of boswellic acids from market formulations of Boswellia serrata extract and 11-keto beta-boswellic acid in human plasma by high-performance thin-layer chromatography.

    Science.gov (United States)

    Shah, Shailesh A; Rathod, Ishwarsinh S; Suhagia, Bhanubhai N; Patel, Dharmesh A; Parmar, Vijay K; Shah, Bharat K; Vaishnavi, Vikas M

    2007-04-01

    A rapid and sensitive high-performance thin-layer chromatographic (HPTLC) method was developed and validated for the quantitative estimation of boswellic acids in formulation containing Boswellia serrata extract (BSE) and 11-keto beta-boswellic acid in human plasma. Simple extraction method was used for isolation of boswellic acid from formulation sample and acidified plasma sample. The isolated samples were chromatographed on silica gel 60F(254)-TLC plates, developed using ternary-solvent system (hexane-chloroform-methanol, 5:5:0.5, v/v) and scanned at 260 nm. The linearity range for 11-KBA spiked in 1 ml of plasma was 29.15-145.75 ng with average recovery of 91.66%. The limit of detection and limit of quantification for 11-KBA in human plasma were found to be 8.75 ng/ml and 29.15 ng/ml. The developed method was successfully applied for the assay of market formulations containing BSE and to determine plasma level of 11-keto beta-boswellic acid in a clinical pilot study.

  13. Molecular structure, vibrational and electronic properties of 4-Phenyl-3H-1,3-thiazol-2-ol using density functional theory and comparison of drug efficacy of keto and enol forms by QSAR analysis.

    Science.gov (United States)

    Sachan, Alok K; Pathak, Shilendra K; Chand, Satish; Srivastava, Ruchi; Prasad, Onkar; Belaidi, Salah; Sinha, Leena

    2014-11-11

    4-Phenyl-3H-1,3-thiazol-2-ol can exist in two tautomeric forms - keto and enol. Comprehensive investigation of molecular geometry and electronic structure in ground as well as in the first excited state of 4-Phenyl-3H-1,3-thiazol-2-ol (enol) has been carried out. To determine lowest-energy molecular conformation of the title molecule, the selected torsion angles were varied in steps of 10° and molecular energy profile was calculated from -180° to +180°. Experimental FT-IR and FT-Raman spectra of title compound were compared with the spectral data obtained by DFT/B3LYP method. Dipole moment, polarizability, first static hyperpolarizability and molecular electrostatic potential surface map have been calculated to get a better insight of the properties of title molecule. Natural bond orbital (NBO) analysis has been done to study the stability of the molecule arising from charge delocalization. UV-Vis spectrum of the title compound was also recorded and electronic properties such as frontier orbitals and band gap energies were calculated by TD-DFT approach. To compare the drug efficacy of enolic and keto forms, QSAR properties of both forms have also been computed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease.

    OpenAIRE

    Kang, S S; Wong, P W; Susmano, A; Sora, J; Norusis, M; Ruggie, N

    1991-01-01

    Severe methylenetetrahydrofolate reductase (MTHFR) deficiency with less than 2% of normal enzyme activity is characterized by neurological abnormalities, atherosclerotic changes, and thromboembolism. We have discovered a "new" variant of MTHFR deficiency which is characterized by the absence of neurological abnormalities, an enzyme activity of about 50% of the normal value, and distinctive thermolability under specific conditions of heat inactivation. In this study, lymphocyte MTHFR specific ...

  15. Identification of new potent inhibitor of aldose reductase from Ocimum basilicum.

    Science.gov (United States)

    Bhatti, Huma Aslam; Tehseen, Yildiz; Maryam, Kiran; Uroos, Maliha; Siddiqui, Bina S; Hameed, Abdul; Iqbal, Jamshed

    2017-12-01

    Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6'-hydroxyhex-3'-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC 50 value of 2.095±0.77µM compare to standard sorbinil (IC 50 =3.14±0.02µM). Moreover, the compound (1) also showed multifolds higher activity (IC 50 =0.783±0.07µM) against AKR1A1 as compared to standard valproic acid (IC 50 =57.4±0.89µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC 50 =4.324±1.25µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Systemic and ocular pharmacokinetics of N-4-benzoylaminophenylsulfonylglycine (BAPSG), a novel aldose reductase inhibitor

    OpenAIRE

    Sunkara, Gangadhar; Ayalasomayajula, Surya P.; Rao, Cheruku S.; Vennerstrom, Jonathan L.; DeRuiter, Jack; Kompella, Uday B.

    2004-01-01

    To better develop N-[4-(benzoylamino)phenylsulfonyl]glycine (BAPSG), a potent and selective aldose reductase inhibitor capable of delaying the progression of ocular diabetic complications, the objective of this study was to assess its pharmacokinetics. The plasma pharmacokinetics of BASPG was assessed in male Sprague-Dawley rats following intravenous, intraperitoneal and oral routes of administration and its distribution to various tissues including those of the eye was studied following intr...

  17. Phenotypic classification of male pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sinnecker, G.H.G; Hiort, O.; Kruse, K.; Dibbelt, L. [Medical Univ. of Luebeck (Germany)] [and others

    1996-05-03

    Conversion of testosterone (T) to dihydrotestosterone (DHT) in genital tissue is catalysed by the enzyme 5{alpha}-reductase 2, which is encoded by the SRD5A2 gene. The potent androgen DHT is required for full masculinization of the external genitalia. Mutations of the SRD5A2 gene inhibit enzyme activity, diminish DHT formation, and hence cause masculinization defects of varying degree. The classical syndrome, formerly described as pseudovaginal perineoscrotal hypospadias, is characterized by a predominantly female phenotype at birth and significant virilization without gynecomastia at puberty. We investigated nine patients with steroid 5{alpha}-reductase 2 deficiency (SRD). T/DHT-ratios were highly increased in the classical syndrome, but variable in the less severe affected patients. Mutations in the SRD5A2 gene had been characterized using PCR-SSCP analysis and direct DNA sequencing. A small deletion was encountered in two patients, while all other patients had single base mutations which result in amino acid substitutions. We conclude that phenotypes may vary widely in patients with SRD5A2 gene mutations spanning the whole range from completely female to normal male without distinctive clinical signs of the disease. Hence, steroid 5{alpha}-reductase deficiency should be considered not only in sex reversed patients with female or ambiguous phenotypes, but also in those with mild symptoms of undermasculinization as encountered in patients with hypospadias and/or micropenis. A classification based on the severity of the masculinization defect may be used for correlation of phenotypes with enzyme activities and genotypes, and for comparisons of phenotypes between different patients as the basis for clinical decisions to be made in patients with pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency. 22 refs., 2 figs., 2 tabs.

  18. Ferrisiderophore reductase activity associated with an aromatic biosynthetic enzyme complex in Bacillus subtilis.

    OpenAIRE

    Gaines, C G; Lodge, J S; Arceneaux, J E; Byers, B R

    1981-01-01

    The cytoplasmic fractions obtained from Bacillus subtilis strains W168 and WB2802 catalyzed reductive release of iron from the ferric chelate of 2,3-dihydroxybenzoic acid (ferri-DHB), the ferrisiderophore produced by B. subtilis. Ferrisiderophore reductase activity may insert iron into metabolism. This activity required a reductant (reduced nicotinamide adenine dinucleotide phosphate was preferred), was oxygen sensitive, and was stimulated by flavin mononucleotide plus certain divalent cation...

  19. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better...

  20. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of delta(1)-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  1. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  2. Isolation and characterization of mercuric reductase by newly isolated halophilic bacterium, Bacillus firmus MN8

    Directory of Open Access Journals (Sweden)

    M. Noroozi

    2017-12-01

    Full Text Available The current study was aimed at isolating and identifying the halophilic and halotolerant bacteria which can produce mercuric reductase in Gavkhuni wetland in Iran. Moreover, tracking and sequencing merA gene and kinetic properties of mercuric reductase in the selected strain were performed in this study. Soil samples were taken from Gavkhuni wetland and cultured in nutrient agar medium with 5% NaCl. To examine the tolerance of purified colonies to mercury, agar dilution method was administered. Similarly, the phylogenetic analysis based on 16SrRNA gene sequencing was conducted. To investigate enzyme activity of kinetic parameters, a spectrophotometer was used to measure the NADPH oxidation decrease at 340 n.m. The results showed that among the 21 halophilic and halotolerant strains isolated from Gavkhuni wetland, 4 were resistant to mercuric chloride. A strain designated MN8 was selected for further studies because it showed the highest resistance to mercury. According to phylogenetic sequencing of 16S rRNA gene and phenotypic characteristics, the strain was categorized in the Bacillus genus and nearly related to Bacillus firmus. This strain had merA gene. The mercuric reductase showed Vmax and Km values of 0.106 U/mg and 24.051 µM, respectively. Evaluation of different concentrations of NaCl at 37°C and pH=7.5 in mercuric reductase enzyme activity indicated that the enzyme shows 50% activity in concentration of 1.5 M. Optimum pH and temperature of  enzyme activity were 7.5 and 35 °C, respectively. The results suggested that MN8 strain could be a proper candidate for bioremediation of mercury-contaminated environments such as industrial wastewaters.

  3. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant Under Water Deficit Conditions

    OpenAIRE

    N. Aliasgharzad, N. Aliasgharzad; Heydaryan, Zahra; Sarikhani, M.R

    2014-01-01

    Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA). In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari) were inoculated with...

  4. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity

    OpenAIRE

    Châtelain, Emilie; Satour, Pascale; Laugier, Edith; Ly Vu, Benoit; Payet, Nicole; Rey, Pascal; Montrichard, Françoise

    2013-01-01

    Seeds are in a natural oxidative context leading to protein oxidation. Although inevitable for proper progression from maturation to germination, protein oxidation at high levels is detrimental and associated with seed aging. Oxidation of methionine to methionine sulfoxide is a common form of damage observed during aging in all organisms. This damage is reversible through the action of methionine sulfoxide reductases (MSRs), which play key roles in lifespan control in yeast and animal cells. ...

  5. Heterozygous methylene tetrahydrofolate reductase mutation with mild hyperhomocysteinemia associated with deep vein thrombosis.

    Science.gov (United States)

    Pathare, Anil; al Kindi, Salam; al Belushi, Talal; Bayoumi, Riad; Dennison, David; Murlitharan, S

    2002-01-01

    Hyperhomocysteinemia is known to be associated with arterial occlusive vascular disease and venous thrombosis. Here we report a young ethnic Omani patient with recurrent venous thrombosis who was found to be heterozygous for the C677T mutation in the enzyme methyltetrahydrofolate reductase (MTHFR). Moderate hyperhomocysteinemia was also documented in the presence of normal red cell folate and serum B12 levels. No other marker usually associated with hereditary thrombophilia could be demonstrated in the patient, despite extensive investigations on multiple occasions.

  6. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Giuseppe Forlani

    2017-08-01

    Full Text Available In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C catalyzed by P5C reductase (EC 1.5.1.2. In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  7. Molecular Characteristics and Serodiagnostic Potential of Dihydrofolate Reductase from Echinococcus granulosus

    OpenAIRE

    Xingju Song; Dandan Hu; Min Yan; Yu Wang; Ning Wang; Xiaobin Gu; Guangyou Yang

    2017-01-01

    The larval stage of Echinococcus granulosus causes cystic echinococcosis (CE), a neglected tropical disease that leads to morbidity and mortality in humans and livestock worldwide. Here, we identified and characterized dihydrofolate reductase (Eg-DHFR) from E. granulosus, and evaluated its potential as a diagnostic antigen for sheep CE. Comparison between mammalian (host) DHFR and Eg-DHFR indicates that 45.7% of the 35 active site residues are different. Immunolocalisation analysis showed tha...

  8. Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration.

    Science.gov (United States)

    Bardon, Clément; Poly, Franck; Piola, Florence; Pancton, Muriel; Comte, Gilles; Meiffren, Guillaume; Haichar, Feth el Zahar

    2016-05-01

    Recently, it has been shown that procyanidins from Fallopia spp. inhibit bacterial denitrification, a phenomenon called biological denitrification inhibition (BDI). However, the mechanisms involved in such a process remain unknown. Here, we investigate the mechanisms of BDI involving procyanidins, using the model strain Pseudomonas brassicacearum NFM 421. The aerobic and anaerobic (denitrification) respiration, cell permeability and cell viability of P. brassicacearum were determined as a function of procyanidin concentration. The effect of procyanidins on the bacterial membrane was observed using transmission electronic microscopy. Bacterial growth, denitrification, NO3- and NO2-reductase activity, and the expression of subunits of NO3- (encoded by the gene narG) and NO2-reductase (encoded by the gene nirS) under NO3 or NO2 were measured with and without procyanidins. Procyanidins inhibited the denitrification process without affecting aerobic respiration at low concentrations. Procyanidins also disturbed cell membranes without affecting cell viability. They specifically inhibited NO3- but not NO2-reductase.Pseudomonas brassicacearum responded to procyanidins by over-expression of the membrane-bound NO3-reductase subunit (encoded by the gene narG). Our results suggest that procyanidins can specifically inhibit membrane-bound NO3-reductase inducing enzymatic conformational changes through membrane disturbance and that P. brassicacearum responds by over-expressing membrane-bound NO3-reductase. Our results lead the way to a better understanding of BDI. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency.

    Science.gov (United States)

    Yi, Y; Guerinot, M L

    1996-11-01

    Reduction of Fe(III) to Fe(II) by Fe(III) chelate reductase is thought to be an obligatory step in iron uptake as well as the primary factor in making iron available for absorption by all plants except grasses. Fe(III) chelate reductase has also been suggested to play a more general role in the regulation of cation absorption. In order to experimentally address the importance of Fe(III) chelate reductase activity in the mineral nutrition of plants, three Arabidopsis thaliana mutans (frd1-1, frd1-2 and frd1-3), that do not show induction of Fe(III) chelate reductase activity under iron-deficient growth conditions, have been isolated and characterized. These mutants are still capable of acidifying the rhizosphere under iron-deficiency and accumulate more Zn and Mn in their shoots relative to wild-type plants regardless of iron status. frd1 mutants do not translocate radiolabeled iron to the shoots when roots are presented with a tightly chelated form of Fe(III). These results: (1) confirm that iron must be reduced before it can be transported, (2) show that Fe(III) reduction can be uncoupled from proton release, the other major iron-deficiency response, and (3) demonstrate that Fe(III) chelate reductase activity per se is not necessarily responsible for accumulation of cations previously observed in pea and tomato mutants with constitutively high levels of Fe(III) chelate reductase activity.

  10. [Manganese-dependent ribonucleotide reductase of Propionibacterium freudenreichii subsp. shermanii: partial purification, characterization, and role in DNA biosynthesis].

    Science.gov (United States)

    Iordan, E P; Bryukhanov, A L; Dunaevskiĭ, Ia E; Pryanishnikova, N I; Danilova, I V

    2000-01-01

    Like Lactobacillus leichmanii, Rhizobium meliloti, and Euglena gracilis, P. freudenreichii implicates cobalamin in DNA anabolism via adenosylcobalamin-dependent ribonucleotide reductase. However, in the absence of corrinoids, P. freudenreichii is able to synthesize DNA with the involvement of an alternative ribonucleotide reductase, which is independent of adenosylcobalamin. This enzyme is localized in both the cytoplasm (80% of activity) and the cytoplasmic membrane (20% of activity), being loosely bound to the latter. Experiments with crude ribonucleotide reductase isolated from extracts of corrinoid-deficient cells showed that manganese specifically stimulates this enzyme and that it is composed of two protein subunits, a feature that is typical of all metal-containing reductases activated by molecular oxygen. Low concentrations of manganese ions enhanced DNA synthesis in corrinoid-deficient manganese-limited cells. This effect was prevented by the addition of 80 mM hydroxyurea, a specific inhibitor of metal-containing aerobic ribonucleotide reductases. It was concluded that, in adenosylcobalamin-deficient P. freudenreichii cells, DNA synthesis is provided with deoxyribosyl precursors through the functioning of manganese-dependent aerobic ribonucleotide reductase composed of two subunits.

  11. EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774.

    Science.gov (United States)

    González, Pablo J; Rivas, María G; Brondino, Carlos D; Bursakov, Sergey A; Moura, Isabel; Moura, José J G

    2006-07-01

    Nitrate reductases are enzymes that catalyze the conversion of nitrate to nitrite. We report here electron paramagnetic resonance (EPR) studies in the periplasmic nitrate reductase isolated from the sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774. This protein, belonging to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes, comprises a single 80-kDa subunit and contains a Mo bis(molybdopterin guanosine dinucleotide) cofactor and a [4Fe-4S] cluster. EPR-monitored redox titrations, carried out with and without nitrate in the potential range from 200 to -500 mV, and EPR studies of the enzyme, in both catalytic and inhibited conditions, reveal distinct types of Mo(V) EPR-active species, which indicates that the Mo site presents high coordination flexibility. These studies show that nitrate modulates the redox properties of the Mo active site, but not those of the [4Fe-4S] center. The possible structures and the role in catalysis of the distinct Mo(V) species detected by EPR are discussed.

  12. ECTO-NOX (ENOX) proteins of the cell surface lack thioredoxin reductase activity.

    Science.gov (United States)

    Bosneaga, Elena; Kim, Chinpal; Shen, Bernard; Watanabe, Takahiro; Morre, Dorothy M; Morré, D James

    2008-01-01

    This study was to determine if ENOX proteins of the cell surface act as cell surface thioredoxin reductases. To measure formation of thiols a turbimetric insulin assay was used. No turbidity was observed with insulin alone or with insulin plus DTT. However, the combination of insulin +DTT + recombinant his-tagged ENOX2 (tNOX) did result in increased turbidity. An ENOX1 (CNOX) preparation also resulted in turbidity changes. In contrast, we were unable to demonstrate ENOX2-dependent insulin reduction by high density SDS-PAGE. Inclusion of reduced serum albumin as a source of free thiols for the protein disulfide interchange activity catalyzed by ENOX2 failed to result in insulin reduction in the presence of ENOX2. A direct effect of ENOX2 on thioredoxin reduction in the presence of NADPH also was not observed. The DTNB assay for thioredoxin reductase activity also failed to reveal activity. Thus, ENOX proteins appear not to function as thioredoxin reductases at the cell surface nor do they appear to recognize reduced insulin as a substrate for protein disulfide-thiol interchange. The enhanced turbidity of insulin solutions resulting from ENOX presence was traced to ENOX-catalyzed insulin fibrillation either through nucleation enhancement or some other mechanism. Fibrillation was determined using Thioflavin T fluorescence which paralleled the turbimetric results and the formation of multimers (polymerization) observed on SDS-PAGE.

  13. Atomic Structure of Salutaridine Reductase from the Opium Poppy (Papaver somniferum)

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yasuhiro; Kutchan, Toni M.; Smith, Thomas J. (Danforth)

    2011-11-18

    The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of {approx}1.9 {angstrom} in the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265-279), on top of which lies a large 'flap'-like domain (residues 105-140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.

  14. Inhibition of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (Ex Vivo by Morus indica (Mulberry

    Directory of Open Access Journals (Sweden)

    Vanitha Reddy Palvai

    2014-01-01

    Full Text Available Phytochemicals are the bioactive components that contribute to the prevention of cardiovascular and other degenerative diseases. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA reductase would be an effective means of lowering plasma cholesterol in humans. The present study explores the HMG CoA reductase inhibitory effect of extracts from leaves of Morus indica varieties, M5, V1, and S36, compared with the statin, using an ex vivo method. The assay is based on the stoichiometric formation of coenzyme A during the reduction of microsomal HMG CoA to mevalonate. Dechlorophyllised extract of three varieties was studied at 300 µg. The coenzyme A released at the end of assay in control (100.31 nmoles and statins (94.46 nm was higher than the dechlorphyllised extracts of the samples. The coenzyme A released during the reduction of HMG CoA to mevalonate in dechlorophyllised extracts of the samples was as follows: S36 < M5 < V1. The results indicated that the samples were highly effective in inhibiting the enzyme compared to statins (standard drug. The results indicate the role of Morus varieties extracts in modulating the cholesterol metabolism by inhibiting the activity of HMG CoA reductase. These results provide scope for designing in vivo animal studies to confirm their effect.

  15. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations.

    Science.gov (United States)

    Steinkellner, Georg; Gruber, Christian C; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Lyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-06-23

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites ('catalophores'). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C-C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts.

  16. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  17. Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase.

    Science.gov (United States)

    Li, Hong Mei; Hwang, Seung Hwan; Kang, Beom Goo; Hong, Jae Seung; Lim, Soon Sung

    2014-08-27

    The goal of this study was to determine the rat lens aldose reductase-inhibitory effects of 95% ethanol extracts from the leaves of C. esculenta and, its organic solvent soluble fractions, including the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH) and water (H2O) layers, using dl-glyceraldehyde as a substrate. Ten compounds, namely tryptophan (1), orientin (2), isoorientin (3), vitexin (4), isovitexin (5), luteolin-7-O-glucoside (6), luteolin-7-O-rutinoside (7), rosmarinic acid (8), 1-O-feruloyl-d-glucoside (9) and 1-O-caffeoyl-d-glucoside (10) were isolated from the EtOAc and BuOH fractions of C. esculenta. The structures of compounds 1-10 were elucidated by spectroscopic methods and comparison with previous reports. All the isolates were subjected to an in vitro bioassay to evaluate their inhibitory activity against rat lens aldose reductase. Among tested compounds, compounds 2 and 3 significantly inhibited rat lens aldose reductase, with IC50 values of 1.65 and 1.92 μM, respectively. Notably, the inhibitory activity of orientin was 3.9 times greater than that of the positive control, quercetin (4.12 μM). However, the isolated compounds showed only moderate ABTS+ [2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] activity. These results suggest that flavonoid derivatives from Colocasia esculenta (L.) Schott represent potential compounds for the prevention and/or treatment of diabetic complications.

  18. A DFT-based QSAR study on inhibition of human dihydrofolate reductase.

    Science.gov (United States)

    Karabulut, Sedat; Sizochenko, Natalia; Orhan, Adnan; Leszczynski, Jerzy

    2016-11-01

    Diaminopyrimidine derivatives are frequently used as inhibitors of human dihydrofolate reductase, for example in treatment of patients whose immune system are affected by human immunodeficiency virus. Forty-seven dicyclic and tricyclic potential inhibitors of human dihydrofolate reductase were analyzed using the quantitative structure-activity analysis supported by DFT-based and DRAGON-based descriptors. The developed model yielded an RMSE deviation of 1.1 a correlation coefficient of 0.81. The prediction set was characterized by R 2 =0.60 and RMSE=3.59. Factors responsible for inhibition process were identified and discussed. The resulting model was validated via cross validation and Y-scrambling procedure. From the best model, we found several mass-related descriptors and Sanderson electronegativity-related descriptors that have the best correlations with the investigated inhibitory concentration. These descriptors reflect results from QSAR studies based on characteristics of human dihydrofolate reductase inhibitors. Copyright © 2016. Published by Elsevier Inc.

  19. Purification, crystallization and preliminary X-ray analysis of adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki F

    International Nuclear Information System (INIS)

    Ogata, Hideaki; Goenka Agrawal, Aruna; Kaur, Amrit Pal; Goddard, Richard; Gärtner, Wolfgang; Lubitz, Wolfgang

    2008-01-01

    The crystallization of adenylylsulfate reductase isolated from the sulfate-reducing bacterium D. vulgaris Miyazaki F is described. The crystals diffracted to 1.7 Å resolution. Sulfur in its various oxidation states is used for energy conservation in many microorganisms. Adenylylsulfate reductase is a key enzyme in the sulfur-reduction pathway of sulfate-reducing bacteria. The adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki F has been purified and crystallized at 277 K using the vapour-diffusion method with ammonium sulfate as the precipitating agent. A data set was collected to 1.7 Å resolution from a single crystal at 100 K using synchrotron radiation. The crystal belonged to space group P3 1 , with unit-cell parameters a = b = 125.93, c = 164.24 Å. The crystal contained two molecules per asymmetric unit, with a Matthews coefficient (V M ) of 4.02 Å 3 Da −1 ; the solvent content was estimated to be 69.4%

  20. Leishmania chagasi: uptake of iron bound to lactoferrin or transferrin requires an iron reductase.

    Science.gov (United States)

    Wilson, Mary E; Lewis, Troy S; Miller, Melissa A; McCormick, Michael L; Britigan, Bradley E

    2002-03-01

    Leishmania chagasi can utilize iron bound to transferrin, lactoferrin, or other chelates. We investigated the mechanism of iron uptake. Promastigotes preferentially took up iron in a reduced rather than an oxidized form, suggesting that extracellular iron must be reduced prior to internalization. Similar to literature reports, a 70-kDa protein in promastigote membrane-containing microsomes bound to [125I]-labeled transferrin. However, [125I]lactoferrin and [125I]albumin also bound a similar 70-kDa protein, suggesting that binding might not be specific. Both total and fractionated promastigotes exhibited an NADPH-dependent iron reductase activity. In contrast to trypanosomes, which take up transferrin through a specific receptor, these data support a model in which a parasite-associated or secreted reductase reduces ferric to ferrous iron, decreasing its affinity for the extracellular chelate and allowing it to be readily internalized by the parasite. This could account for the ability of the parasite to utilize iron from multiple sources in diverse host environments. Index Descriptors and Abbreviations. Index descriptors: Cryptococcus neoformans, Histoplasma capsulatum, iron, iron reductase, lactoferrin, L. chagasi, leishmaniasis, nutrient acquisition, protozoan, Saccharomyces cerevisiae, Trypanosoma brucei, Trypanosoma cruzi, transferrin; Abbreviations used: DNA, deoxyribonucleic acid; DTT, dithiothreitol; HBSS, Hanks' balanced salt solution; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NEM, N-ethylmaleimide; RNA, ribonucleic acid.

  1. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions.

    Science.gov (United States)

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L; Guerinot, Mary Lou

    2008-07-29

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloroplast. Chloroplasts prepared from fro7 loss-of-function mutants have 75% less Fe(III) chelate reductase activity and contain 33% less iron per microgram of chlorophyll than wild-type chloroplasts. This decreased iron content is presumably responsible for the observed defects in photosynthetic electron transport. When germinated in alkaline soil, fro7 seedlings show severe chlorosis and die without setting seed unless watered with high levels of soluble iron. Overall, our results provide molecular evidence that FRO7 plays a role in chloroplast iron acquisition and is required for efficient photosynthesis in young seedlings and for survival under iron-limiting conditions.

  2. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil.

    Science.gov (United States)

    Ishimaru, Yasuhiro; Kim, Suyeon; Tsukamoto, Takashi; Oki, Hiroyuki; Kobayashi, Takanori; Watanabe, Satoshi; Matsuhashi, Shinpei; Takahashi, Michiko; Nakanishi, Hiromi; Mori, Satoshi; Nishizawa, Naoko K

    2007-05-01

    Iron (Fe) deficiency is a worldwide agricultural problem on calcareous soils with low-Fe availability due to high soil pH. Rice plants use a well documented phytosiderophore-based system (Strategy II) to take up Fe from the soil and also possess a direct Fe2+ transport system. Rice plants are extremely susceptible to low-Fe supply, however, because of low phytosiderophore secretion and low Fe3+ reduction activity. A yeast Fe3+ chelate-reductase gene refre1/372, selected for better performance at high pH, was fused to the promoter of the Fe-regulated transporter, OsIRT1, and introduced into rice plants. The transgene was expressed in response to a low-Fe nutritional status in roots of transformants. Transgenic rice plants expressing the refre1/372 gene showed higher Fe3+ chelate-reductase activity and a higher Fe-uptake rate than vector controls under Fe-deficient conditions. Consequently, transgenic rice plants exhibited an enhanced tolerance to low-Fe availability and 7.9x the grain yield of nontransformed plants in calcareous soils. This report shows that enhancing the Fe3+ chelate-reductase activity of rice plants that normally have low endogenous levels confers resistance to Fe deficiency.

  3. Crystal structure of quinone reductase 2 in complex with cancer prodrug CB1954.

    Science.gov (United States)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2005-10-14

    CB1954 is a cancer pro-drug that can be activated through reduction by Escherichia coli nitro-reductases and quinone reductases. Human quinone reductase 2 is very efficient in the activation of CB1954, approximately 3000 times more efficient than human QR1 in terms of k(cat)/K(m). We have solved the three-dimensional structure of QR2 in complex with CB1954 to a nominal resolution of 1.5A. The complex structure indicates the essentiality of the two nitro groups: one nitro group forms hydrogen bonds with the side-chain of Asn161 of QR2 to hold the other nitro group in position for the reduction. We further conclude that residue 161, an Asn in QR2 and a His in QR1, is critical in differentiating the substrate specificities of these two enzymes. Mutation of Asn161 to His161 in QR2 resulted in the total loss of the enzymatic activity towards activation of CB1954, whereas the rates of reduction towards menadione are not altered.

  4. Differential regulation of wheat quinone reductases in response to powdery mildew infection.

    Science.gov (United States)

    Greenshields, David L; Liu, Guosheng; Selvaraj, Gopalan; Wei, Yangdou

    2005-11-01

    At least two types of quinone reductases are present in plants: (1) the zeta-crystallin-like quinone reductases (QR1, EC 1.6.5.5) that catalyze the univalent reduction of quinones to semiquinone radicals, and (2) the DT-diaphorase-like quinone reductases (QR2, EC 1.6.99.2) that catalyze the divalent reduction of quinones to hydroquinones. QR2s protect cells from oxidative stress by making the quinones available for conjugation, thereby releasing them from the superoxide-generating one electron redox cycling, catalyzed by QR1s. Two genes, putatively encoding a QR1 and a QR2, respectively, were isolated from an expressed sequence tag collection derived from the epidermis of a diploid wheat Triticum monococcum L. 24 h after inoculation with the powdery mildew fungus Blumeria graminis (DC) EO Speer f. sp. tritici Em. Marchal. Northern analysis and tissue-specific RT-PCR showed that TmQR1 was repressed while TmQR2 was induced in the epidermis during powdery mildew infection. Heterologous expression of TmQR2 in Escherichia coli confirmed that the gene encoded a functional, dicumarol-inhibitable QR2 that could use either NADH or NADPH as an electron donor. The localization of dicumarol-inhibitable QR2 activity around powdery mildew infection sites was accomplished using a histochemical technique, based on tetrazolium dye reduction.

  5. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    Science.gov (United States)

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  6. Expression of steroid 5α-reductase isozymes in prostate of adult rats after environmental stress.

    Science.gov (United States)

    Sánchez, Pilar; Torres, Jesús M; Castro, Beatriz; Olmo, Asunción; del Moral, Raimundo G; Ortega, Esperanza

    2013-01-01

    The elevated incidence of prostate cancer and benign prostatic hypertrophy is a cause of increasing public health concern in the Western world. The normal and pathological growth of the prostate are both dependent on stimulation by dihydrotestosterone, which is synthesized from circulating testosterone by two 5α-reductase (5α-R) isozymes, 5α-reductase type 1 (5α-R1) and 5α-reductase type 2 (5α-R2). Both isozymes have been implicated in prostate disease. We used quantitative RT-PCR and immunohistochemistry, respectively, to quantify mRNA and protein levels of 5α-R isozymes in the ventral prostate of adult rats under environmental stress conditions analogous to those found in some common workplace situations, i.e. artificial light, excessive heat, and the sensation of immobility in a small space. Transcription and expression levels of both 5α-R isozymes were significantly higher in environmentally stressed rats than in unstressed rats. Increased 5α-R isozyme levels may play a role in the development or maintenance of prostate disease. Further research is warranted to explore these effects of environmental stress on human health and their implications for environmental and occupational health policies. © 2012 The Authors Journal compilation © 2012 FEBS.

  7. 5α-Reductase Type 2 Regulates Glucocorticoid Action and Metabolic Phenotype in Human Hepatocytes.

    Science.gov (United States)

    Nasiri, Maryam; Nikolaou, Nikolaos; Parajes, Silvia; Krone, Nils P; Valsamakis, George; Mastorakos, George; Hughes, Beverly; Taylor, Angela; Bujalska, Iwona J; Gathercole, Laura L; Tomlinson, Jeremy W

    2015-08-01

    Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glucocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are regulated at a prereceptor level by the enzyme 5α-reductase type 2 (SRD5A2), which inactivates glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, glucocorticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treatment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2 overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost following transfection with an inactive mutant construct. Conversely, pharmacological inhibition using the 5α-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepatocytes in vitro. This may have significant clinical implications for those patients prescribed 5α-reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic lipid flux.

  8. Targeting the Thioredoxin Reductase-Thioredoxin System from Staphylococcus aureus by Silver Ions.

    Science.gov (United States)

    Liao, Xiangwen; Yang, Fang; Li, Hongyan; So, Pui-Kin; Yao, Zhongping; Xia, Wei; Sun, Hongzhe

    2017-12-18

    The thioredoxin system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin (Trx), is one of the major disulfide reductase systems used by bacteria against oxidative stress. In particular, this reductase system is crucial for the survival of the pathogenic bacterium Staphylococcus aureus, which lacks a natural glutathione/glutaredoxin (Grx) system. Although silver ions and silver-containing materials have been used as antibacterial agents for centuries, the antibacterial mechanism of silver is not well-understood. Herein, we demonstrate that silver ions bind to the active sites of S. aureus TrxR and Trx with dissociation constants of 1.4 ± 0.1 μM and 15.0 ± 5.0 μM and stoichiometries of 1 and 2 Ag + ions per protein, respectively. Importantly, silver ion binding leads to oligomerization and functional disruption of TrxR as well as Trx. Silver also depleted intracellular thiol levels in S. aureus, disrupting bacterial thiol-redox homeostasis. Our study provides new insights into the antibacterial mechanism of silver ions. Moreover, the Trx and TrxR system might serve as a feasible target for the design of antibacterial drugs.

  9. Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF

    Directory of Open Access Journals (Sweden)

    Röder Anja

    2008-06-01

    Full Text Available Abstract Background Pichia stipitis xylose reductase (Ps-XR has been used to design Saccharomyces cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S. cerevisiae strain USM21. Results In this study, we demonstrate that strain TMB3400 not only converts xylose, but also displays higher tolerance to lignocellulosic hydrolysate during anaerobic batch fermentation as well as 3 times higher in vitro HMF and furfural reduction activity than the control strain USM21. Using laboratory strains producing various levels of Ps-XR, we confirm that Ps-XR is able to reduce HMF both in vitro and in vivo. Ps-XR overexpression increases the in vivo HMF conversion rate by approximately 20%, thereby improving yeast tolerance towards HMF. Further purification of Ps-XR shows that HMF is a substrate inhibitor of the enzyme. Conclusion We demonstrate for the first time that xylose reductase is also able to reduce the furaldehyde compounds that are present in undetoxified lignocellulosic hydrolysates. Possible implications of this newly characterized activity of Ps-XR on lignocellulosic hydrolysate fermentation are discussed.

  10. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Salusjärvi, Laura; Kaunisto, Sanna; Holmström, Sami; Vehkomäki, Maija-Leena; Koivuranta, Kari; Pitkänen, Juha-Pekka; Ruohonen, Laura

    2013-12-01

    Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.

  11. Reactions of lipoamide dehydrogenase and glutathione reductase with arsonic acids and arsonous acids.

    Science.gov (United States)

    Knowles, F C

    1985-10-01

    Lipoamide dehydrogenase reacts irreversibly with arsonous acids, RAs(OH)2, and arsonic acids, RAs(O)(OH)2, to form enzyme-inhibitor complexes. The formation of inactive enzyme requires NADH and is kinetically first order in the presence of excess arsonous acid. The second-order rate constant for formation of the enzyme-inhibitor complex was 545 min-1 M-1 for phenylarsonous acid, C6H5As(OH)2, and 5640 min-1 M-1 for methanearsonous acid, CH3As(OH)2. The kinetics of formation of inactive enzyme in the presence of arsonic acids was found to obey a rate law predicted by a two-step mechanism in which a rate-limiting reduction of an arsonic acid to the corresponding arsonous acid by reduced enzyme, E(SH)2, preceded formation of an inactive binary complex of reduced enzyme and arsonous acid: ES2 + NADH + H+ = E(SH)2 + NAD+; E(SH)2 + RAs(O)(OH)2 = ES2 + RAs(OH)2 + H2O; and E(SH)2 + RAs(OH)2 = ES2AsR + 2H2O. GSSG reductase reacts reversibly with C6H5As(OH)2 to form an inactive binary addition compound in the presence of NADPH. The value of the association constant for formation of enzyme inhibitor complex at pH 7.0 was 119 M-1. The initial rate of the GSSG reductase-catalyzed oxidation of NADPH by GSSG was insensitive to MeAs(OH)2. The kinetics of inhibition of GSSG reductase by arsenite and C6H5As(O)(OH)2 were found to obey the rate law described for lipoamide dehydrogenase and arsonic acids. GSSG reductase catalyzed the oxidation of NADPH by p-arsanilic acid. The initial rate of oxidation of NADPH was linearly dependent on enzyme concentration. The turnover number for GSSG reductase with p-arsanilic acid as an oxidant was 0.13 mol NADPH mol FAD-1 min-1.

  12. Characterization of the osmotic response element of the human aldose reductase gene promoter.

    Science.gov (United States)

    Ruepp, B; Bohren, K M; Gabbay, K H

    1996-08-06

    Aldose reductase (EC 1.1.1.21) catalyzes the NADPH-mediated conversion of glucose to sorbitol. The hyperglycemia of diabetes increases sorbitol production primarily through substrate availability and is thought to contribute to the pathogenesis of many diabetic complications. Increased sorbitol production can also occur at normoglycemic levels via rapid increases in aldose reductase transcription and expression, which have been shown to occur upon exposure of many cell types to hyperosmotic conditions. The induction of aldose reductase transcription and the accumulation of sorbitol, an organic osmolyte, have been shown to be part of the physiological osmoregulatory mechanism whereby renal tubular cells adjust to the intraluminal hyperosmolality during urinary concentration. Previously, to explore the mechanism regulating aldose reductase levels, we partially characterized the human aldose reductase gene promoter present in a 4.2-kb fragment upstream of the transcription initiation start site. A fragment (-192 to +31 bp) was shown to contain several elements that control the basal expression of the enzyme. In this study, we examined the entire 4.2-kb human AR gene promoter fragment by deletion mutagenesis and transfection studies for the presence of osmotic response enhancer elements. An 11-bp nucleotide sequence (TGGAAAATTAC) was located 3.7 kb upstream of the transcription initiation site that mediates hypertonicity-responsive enhancer activity. This osmotic response element (ORE) increased the expression of the chloramphenicol acetyltransferase reporter gene product 2-fold in transfected HepG2 cells exposed to hypertonic NaCl media as compared with isoosmotic media. A more distal homologous sequence is also described; however, this sequence has no osmotic enhancer activity in transfected cells. Specific ORE mutant constructs, gel shift, and DNA fragment competition studies confirm the nature of the element and identify specific nucleotides essential for enhancer

  13. Sterol-induced Dislocation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase from Endoplasmic Reticulum Membranes into the Cytosol through a Subcellular Compartment Resembling Lipid Droplets*

    Science.gov (United States)

    Hartman, Isamu Z.; Liu, Pingsheng; Zehmer, John K.; Luby-Phelps, Katherine; Jo, Youngah; Anderson, Richard G. W.; DeBose-Boyd, Russell A.

    2010-01-01

    Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets. PMID:20406816

  14. Triclosan Resistance of Pseudomonas aeruginosa PAO1 Is Due to FabV, a Triclosan-Resistant Enoyl-Acyl Carrier Protein Reductase

    OpenAIRE

    Zhu, Lei; Lin, Jinshui; Ma, Jincheng; Cronan, John E.; Wang, Haihong

    2009-01-01

    Triclosan, a very widely used biocide, specifically inhibits fatty acid synthesis by inhibition of enoyl-acyl carrier protein (ACP) reductase. Escherichia coli FabI is the prototypical triclosan-sensitive enoyl-ACP reductase, and E. coli is extremely sensitive to the biocide. However, other bacteria are resistant to triclosan, because they encode triclosan-resistant enoyl-ACP reductase isozymes. In contrast, the triclosan resistance of Pseudomonas aeruginosa PAO1 has been attributed to active...

  15. Síntese de β-cetoésteres cíclicos: novo procedimento para ciclizações de Dieckmann empregando ALCL3 e trietilamina Synthesis of β-keto esters: new easy procedure for dieckmann cyclization employing aluminum chloride and triethylamine

    OpenAIRE

    Emerson P. Peçanha; Eliezer J. Barreiro; Carlos A. M. Fraga

    1997-01-01

    In this communication we describe a new methodology to Dieckmann cyclization of diethyl adipate (1) and diethyl pimelate (3) applying "push-pull" strategy using anhydrous aluminium trichloride and triethylamine in dichloromethane at room temperature. This method is very efficient, simple, safe and reproducible, giving the corresponding cyclic β-keto ester derivatives in 84% and 71% yield, respectively.

  16. Síntese de β-cetoésteres cíclicos: novo procedimento para ciclizações de Dieckmann empregando ALCL3 e trietilamina Synthesis of β-keto esters: new easy procedure for dieckmann cyclization employing aluminum chloride and triethylamine

    Directory of Open Access Journals (Sweden)

    Emerson P. Peçanha

    1997-08-01

    Full Text Available In this communication we describe a new methodology to Dieckmann cyclization of diethyl adipate (1 and diethyl pimelate (3 applying "push-pull" strategy using anhydrous aluminium trichloride and triethylamine in dichloromethane at room temperature. This method is very efficient, simple, safe and reproducible, giving the corresponding cyclic β-keto ester derivatives in 84% and 71% yield, respectively.

  17. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    Full Text Available Abstract Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells-1 h-1 compared with 0.01 g (g cells-1 h-1

  18. Inhibitory effects of Ganoderma applanatum on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues.

    Science.gov (United States)

    Jung, Sang Hoon; Lee, Yeon Sil; Shim, Sang Hee; Lee, Sanghyun; Shin, Kuk Hyun; Kim, Ju Sun; Kim, Yeong Shik; Kang, Sam Sik

    2005-06-01

    Aldose reductase, the key enzyme of the polyol pathway, is known to play important roles in diabetic complications. Therefore, inhibitors of aldose reductase would be potential agents for the prevention of diabetic complications. To evaluate the inhibitory potential of aldose reductase from Ganoderma applanatum (Polyporaceae), methanol (MeOH) and water extracts were tested for their effects on rat lens aldose reductase (RLAR). The effects of both extracts on streptozotocin (STZ)-induced diabetes in rats were also investigated. The MeOH extract exhibited a potent rat lens aldose reductase (RLAR) inhibition in vitro, and showed a significant inhibition, of not only serum glucose concentrations, but also of sorbitol accumulations in the lens, red blood cells (RBC) and sciatic nerves in STZ-induced diabetic rats. Associated with a reduction in serum glucose concentration in STZ-induced diabetic rats, this extract was found to cause a significant glucose tolerance effect. These results suggested that G. applanatum might possess constituents with antidiabetic and inhibitory effects on diabetic complications. Copyright (c) 2005 John Wiley & Sons, Ltd.

  19. Cloning, purification and characterization of novel Cu-containing nitrite reductase from the Bacillus firmus GY-49.

    Science.gov (United States)

    Gao, Haofeng; Li, Caiqing; Ramesh, Bandikari; Hu, Nan

    2017-12-18

    Nitrite is generated from the nitrogen cycle and its accumulation is harmful to environment and it can be reduced to nitric oxid by nitrite reductase. A novel gene from Bacillus firmus GY-49 is identified as a nirK gene encoding Cu-containing nitrite reductase by genome sequence. The full-length protein included a putative signal peptide of 26 amino acids and shown 72.73% similarity with other Cu-containing nitrite reductase whose function was verified. The 993-bp fragment encoding the mature peptide of NirK was cloned into pET-28a (+) vector and overexpressed as an active protein of 36.41 kDa in the E.coli system. The purified enzyme was green in the oxidized state and displayed double gentle peaks at 456 and 608 nm. The specific activity of purified enzyme was 98.4 U/mg toward sodium nitrite around pH 6.5 and 35 °C. The K m and K cat of NirK on sodium nitrite were 0.27 mM and 0.36 × 10 3  s -1 , respectively. Finally, homology model analysis of NirK indicated that the enzyme was a homotrimer structure and well conserved in Cu-binding sites for enzymatic functions. This is a first report for nitrite reductase from Bacillus firmus, which augment the acquaintance of nitrite reductase.

  20. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction.

    Science.gov (United States)

    Takeda, Kouji; Iizuka, Mayumi; Watanabe, Toshihiro; Nakagawa, Junichi; Kawasaki, Shinji; Niimura, Youichi

    2007-03-01

    In order to identify an enzyme capable of Fenton reaction in Synechocystis, we purified an enzyme catalyzing one-electron reduction of t-butyl hydroperoxide in the presence of FAD and Fe(III)-EDTA. The enzyme was a 26 kDa protein, and its N-terminal amino acid sequencing revealed it to be DrgA protein previously reported as quinone reductase [Matsuo M, Endo T and Asada K (1998) Plant Cell Physiol39, 751-755]. The DrgA protein exhibited potent quinone reductase activity and, furthermore, we newly found that it contained FMN and highly catalyzed nitroreductase, flavin reductase and ferric reductase activities. This is the first demonstration of nitroreductase activity of DrgA protein previously identified by a drgA mutant phenotype. DrgA protein strongly catalyzed the Fenton reaction in the presence of synthetic chelate compounds, but did so poorly in the presence of natural chelate compounds. Its ferric reductase activity was observed with both natural and synthetic chelate compounds with a better efficiency with the latter. In addition to small molecular-weight chemical chelators, an iron transporter protein, transferrin, and an iron storage protein, ferritin, turned out to be substrates of the DrgA protein, suggesting it might play a role in iron metabolism under physiological conditions and possibly catalyze the Fenton reaction under hyper-reductive conditions in this microorganism.