WorldWideScience

Sample records for aldehydes acrolein crotonaldehyde

  1. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  2. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy

    OpenAIRE

    Ismahil, Mohamed Ameen; Hamid, Tariq; Haberzettl, Petra; Gu, Yan; Chandrasekar, Bysani; Srivastava, Sanjay; Bhatnagar, Aruni; Prabhu, Sumanth D.

    2011-01-01

    Environmental triggers of dilated cardiomyopathy are poorly understood. Acute exposure to acrolein, a ubiquitous aldehyde pollutant, impairs cardiac function and cardioprotective responses in mice. Here, we tested the hypothesis that chronic oral exposure to acrolein induces inflammation and cardiomyopathy. C57BL/6 mice were gavage-fed acrolein (1 mg/kg) or water (vehicle) daily for 48 days. The dose was chosen based on estimates of human daily unsaturated aldehyde consumption. Compared with ...

  3. Mercapturic Acids Derived from the Toxicants Acrolein and Crotonaldehyde in the Urine of Cigarette Smokers from Five Ethnic Groups with Differing Risks for Lung Cancer

    Science.gov (United States)

    Park, Sungshim L.; Carmella, Steven G.; Chen, Menglan; Patel, Yesha; Stram, Daniel O.; Haiman, Christopher A.; Le Marchand, Loic; Hecht, Stephen S.

    2015-01-01

    The Multiethnic Cohort epidemiology study has clearly demonstrated that, compared to Whites and for the same number of cigarettes smoked, African Americans and Native Hawaiians have a higher risk for lung cancer whereas Latinos and Japanese Americans have a lower risk. Acrolein and crotonaldehyde are two important constituents of cigarette smoke which have well documented toxic effects and could play a role in lung cancer etiology. Their urinary metabolites 3-hydroxypropylmercapturic acid (3-HPMA) and 3-hydroxy-1-methylpropylmercapturic acid (HMPMA), respectively, are validated biomarkers of acrolein and crotonaldehyde exposure. We quantified levels of 3-HPMA and HMPMA in the urine of more than 2200 smokers from these five ethnic groups, and also carried out a genome wide association study using blood samples from these subjects. After adjusting for age, sex, creatinine, and total nicotine equivalents, geometric mean levels of 3-HPMA and HMPMA were significantly different in the five groups (P<0.0001). Native Hawaiians had the highest and Latinos the lowest geometric mean levels of both 3-HPMA and HMPMA. Levels of 3-HPMA and HMPMA were 3787 and 2759 pmol/ml urine, respectively, in Native Hawaiians and 1720 and 2210 pmol/ml urine in Latinos. These results suggest that acrolein and crotonaldehyde may be involved in lung cancer etiology, and that their divergent levels may partially explain the differing risks of Native Hawaiian and Latino smokers. No strong signals were associated with 3-HPMA in the genome wide association study, suggesting that formation of the glutathione conjugate of acrolein is mainly non-enzymatic, while the top significant association with HMPMA was located on chromosome 12 near the TBX3 gene, but its relationship to HMPMA excretion is not clear. PMID:26053186

  4. Protein alkylation by the α,β-unsaturated aldehyde acrolein. A reversible mechanism of electrophile signaling?

    OpenAIRE

    Randall, Matthew J.; Hristova, Milena; van der Vliet, Albert

    2013-01-01

    Acrolein, a reactive aldehyde found in cigarette smoke, is thought to induce its biological effects primarily by irreversible adduction to cellular nucleophiles such as cysteine thiols. Here, we demonstrate that acrolein rapidly inactivates the seleno-enzyme thioredoxin reductase (TrxR) in human bronchiolar epithelial HBE1 cells, which recovered over 4-8 hrs by a mechanism depending on the presence of cellular GSH and thioredoxin 1 (Trx1), and corresponding with reversal of protein-acrolein a...

  5. Reactions of CH-acids with α,β-unsaturated aldehydes in ionic liquids

    DEFF Research Database (Denmark)

    Kryshtal, G. V.; Zhdankina, G. M.; Astakhova, Irina Kira;

    2004-01-01

    - methylimidazolium hexafluorophosphate [bmim][PF 6], and in a 1-butyl-3-methylimidazolium bromide ([bmim][Br]) - benzene system. The reactions with acrolein and crotonaldehyde afforded Michael addition products, those with citral resulted in Knoevenagel addition products. Sonication increased the yields of the...... Michael adducts. The ionic liquid [bmim][PF 6] can be recovered and repeatedly used in the reactions.......Metal carbonate-catalyzed reactions of CH-acids (diethyl malonate, ethyl acetoacetate, ethyl cyanoacetate, and ethyl 2-acetyl- and 2-ethoxycarbonyl-5,9- dimethyldeca-4,8-dienoates) with α,β-unsaturated aldehydes (acrolein, crotonaldehyde, citral) were studied in an ionic liquid, 1-butyl-3...

  6. UTILIZING THE PAKS METHOD FOR MEASURING ACROLEIN AND OTHER ALDEHYDES IN DEARS

    Science.gov (United States)

    Acrolein is a hazardous air pollutant of high priority due to its high irritation potency and other potential adverse health effects. However, a reliable method is currently unavailable for measuring airborne acrolein at typical environmental levels. In the Detroit Exposure and A...

  7. Inhalation of the reactive aldehyde acrolein promotes antigen sensitization to ovalbumin and enhances neutrophilic inflammation.

    Science.gov (United States)

    O'Brien, Edmund; Spiess, Page C; Habibovic, Aida; Hristova, Milena; Bauer, Robert A; Randall, Matthew J; Poynter, Matthew E; van der Vliet, Albert

    2016-01-01

    Acrolein (ACR), an α,β-unsaturated aldehyde and a major component of tobacco smoke, is a highly reactive electrophilic respiratory irritant implicated in asthma pathogenesis and severity. However, few studies have directly investigated the influence of ACR exposure on allergen sensitization and pulmonary inflammation. The present study was designed to examine the impact of ACR inhalation on allergic sensitization to the inhaled antigen ovalbumin (OVA), as well as pulmonary inflammation during subsequent OVA challenge. Adult male C57BL/6 mice were exposed to inhaled OVA (1%, 30 min/day, 4 days/week) and/or ACR (5 ppm, 4 h/day, 4 days/week) over 2 weeks and subsequently challenged with aerosolized OVA (1%, 30 min/day) over three consecutive days. Serum anti-OVA IgG1 levels were increased significantly in animals exposed to both OVA and ACR, compared to animals exposed to either OVA or ACR alone. In addition, differential cell counts and histological analysis revealed an increase in BAL neutrophils in animals exposed to both OVA and ACR. However, exposure to both OVA and ACR did not influence mRNA expression of the cytokines il5, il10, il13 or tnfa, but significantly increased mRNA expression of ccl20. Moreover, ACR exposure enhanced lung mRNA levels of il17f and tgfb1, suggesting development of enhanced inhalation tolerance to OVA. Overall, the findings indicate that ACR inhalation can promote airway-mediated sensitization to otherwise innocuous inhaled antigens, such as OVA, but also enhances immune tolerance, thereby favoring neutrophilic airway inflammation. PMID:25875327

  8. Acrolein induces selective protein carbonylation in synaptosomes

    OpenAIRE

    C.F. Mello; R. Sultana; Piroddi, M.; J. Cai; PIERCE, W. M; Klein, J.B.; D. A. Butterfield

    2007-01-01

    Acrolein, the most reactive of the α,β-unsaturated aldehydes, is endogenously produced by lipid peroxidation, and has been found increased in the brain of patients with Alzheimer's disease. Although it is known that acrolein increases total protein carbonylation and impairs the function of selected proteins, no study has addressed which proteins are selectively carbonylated by this aldehyde. In this study we investigated the effect of increasing concentrations of acrolein (0, 0.005, 0.05, 0.5...

  9. NMR investigation of acrolein stability in hydroalcoholic solution as a foundation for the valid HS-SPME/GC–MS quantification of the unsaturated aldehyde in beverages

    International Nuclear Information System (INIS)

    Highlights: • Acrolein in hydroalcoholic solution degrades to 1,3,3-propanetriol and 3-hydroxypropionaldehyde. • Hydroquinone (0.2%) at pH 3.0 stabilizes acrolein solutions. • Quantitative HS-SPME/GC–MS determination of acrolein in alcoholic beverages was developed (LOD 14 μg L−1). • 6 of 117 samples had acrolein levels above the WHO threshold (1500 μg L−1). - Abstract: Acrolein (propenal) is found in many foods and beverages and may pose a health hazard due to its cytotoxicity. Considerable knowledge gaps regarding human exposure to acrolein exist, and there is a lack of reliable analytical methods. Hydroalcoholic dilutions prepared for calibration purposes from pure acrolein show considerable degradation of the compound and nuclear magnetic resonance (NMR) spectroscopy showed that 1,3,3-propanetriol and 3-hydroxypropionaldehyde are formed. The degradation can be prevented by addition of hydroquinone as stabilizer to the calibration solutions, which then show linear concentration-response behaviour required for quantitative analysis. The stabilized calibration solutions were used for quantitative headspace solid-phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) determination of acrolein in alcoholic beverages with a detection limit of 14 μg L−1. Of 117 tested alcoholic beverages, 64 were tested positive with the highest incidence in grape marc spirits and whiskey (100%, mean 252 μg L−1), followed by fruit spirits (86%, mean 591 μg/L−1), tequila (86%, mean 404 μg L−1), Asian spirits (43%, mean 54 μg L−1) and wine (9%, mean 0.7 μg L−1). Acrolein could not be detected in beer, vodka, absinthe and bottled water. Six of the fruit and grape marc spirits had acrolein levels above the World Health Organization (WHO) provisional tolerable concentration of 1.5 mg L−1

  10. NMR investigation of acrolein stability in hydroalcoholic solution as a foundation for the valid HS-SPME/GC–MS quantification of the unsaturated aldehyde in beverages

    Energy Technology Data Exchange (ETDEWEB)

    Kächele, Martin [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe (Germany); Hochschule Mannheim, Paul-Wittsack-Strasse 10, D-68163 Mannheim (Germany); Monakhova, Yulia B. [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe (Germany); Bruker Biospin GmbH, Silbersteifen, 76287 Rheinstetten (Germany); Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov (Russian Federation); Kuballa, Thomas [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe (Germany); Lachenmeier, Dirk W., E-mail: lachenmeier@web.de [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe (Germany); Ministry of Rural Affairs and Consumer Protection, Kernerplatz 10, 70182 Stuttgart (Germany)

    2014-04-01

    Highlights: • Acrolein in hydroalcoholic solution degrades to 1,3,3-propanetriol and 3-hydroxypropionaldehyde. • Hydroquinone (0.2%) at pH 3.0 stabilizes acrolein solutions. • Quantitative HS-SPME/GC–MS determination of acrolein in alcoholic beverages was developed (LOD 14 μg L⁻¹. • 6 of 117 samples had acrolein levels above the WHO threshold (1500 μg L⁻¹). Abstract: Acrolein (propenal) is found in many foods and beverages and may pose a health hazard due to its cytotoxicity. Considerable knowledge gaps regarding human exposure to acrolein exist, and there is a lack of reliable analytical methods. Hydroalcoholic dilutions prepared for calibration purposes from pure acrolein show considerable degradation of the compound and nuclear magnetic resonance (NMR) spectroscopy showed that 1,3,3-propanetriol and 3-hydroxypropionaldehyde are formed. The degradation can be prevented by addition of hydroquinone as stabilizer to the calibration solutions, which then show linear concentration-response behaviour required for quantitative analysis. The stabilized calibration solutions were used for quantitative headspace solid-phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) determination of acrolein in alcoholic beverages with a detection limit of 14 μg L⁻¹. Of 117 tested alcoholic beverages, 64 were tested positive with the highest incidence in grape marc spirits and whiskey (100%, mean 252 μg L⁻¹), followed by fruit spirits (86%, mean 591 μg/L⁻¹), tequila (86%, mean 404 μg L⁻¹), Asian spirits (43%, mean 54 μg L⁻¹) and wine (9%, mean 0.7 μg L⁻¹). Acrolein could not be detected in beer, vodka, absinthe and bottled water. Six of the fruit and grape marc spirits had acrolein levels above the World Health Organization (WHO) provisional tolerable concentration of 1.5 mg L⁻¹.

  11. Protein-bound acrolein: Potential markers for oxidative stress

    OpenAIRE

    Uchida, Koji; Kanematsu, Masamichi; Sakai, Kensuke; Matsuda, Tsukasa; Hattori, Nobutaka; Mizuno, Yoshikuni; Suzuki, Daisuke; Miyata, Toshio; Noguchi, Noriko; Niki, Etsuo; Osawa, Toshihiko

    1998-01-01

    Acrolein (CH2=CH—CHO) is known as a ubiquitous pollutant in the environment. Here we show that this notorious aldehyde is not just a pollutant, but also a lipid peroxidation product that could be ubiquitously generated in biological systems. Upon incubation with BSA, acrolein was rapidly incorporated into the protein and generated the protein-linked carbonyl derivative, a putative marker of oxidatively modified proteins under oxidative stress. To verify the presence of protein-bound acrolein ...

  12. METHODS OF DETERMINATION OF CROTONALDEHYDE IN FOOD

    Directory of Open Access Journals (Sweden)

    Kushnereva E. V.

    2013-12-01

    Full Text Available The article presents a review of the existing methods for the determination of crotonaldehyde in food. The necessity of this component in the control of food products, including wine, is visible because of its toxicity and the probability of formation during microbial synthesis and chemical transformations. The article describes the developed qualitative method of determining the content of crotonaldehyde in table wines with spectrophotometry

  13. Acrolein-mediated injury in nervous system trauma and diseases

    OpenAIRE

    Shi, Riyi; Rickett, Todd; Sun, Wenjing

    2011-01-01

    Acrolein, an α,β-unsaturated aldehyde, is a ubiquitous pollutant that is also produced endogenously through lipid peroxidation. This compound is hundreds of times more reactive than other aldehydes such as 4-hydroxynonenal, is produced at much higher concentrations, and persists in solution for much longer than better known free radicals. It has been implicated in disease states known to involve chronic oxidative stress, particularly spinal cord injury and multiple sclerosis. Acrolein may ove...

  14. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage

    OpenAIRE

    Park, Jonghyuck; Zheng, Lingxing; Marquis, Andrew; Walls, Michael; Duerstock, Brad; Pond, Amber; Alvarez, Sascha Vega; He, Wang; Ouyang, Zheng; Shi, Riyi

    2013-01-01

    Acrolein, an α,β-unsaturated aldehyde and a reactive product of lipid peroxidation, has been suggested as a key factor in neural post-traumatic secondary injury in SCI, mainly based on in vitro and ex vivo evidence. Here we demonstrate an increase of acrolein up to 300%; the elevation lasted at least two weeks in a rat SCI model. More importantly, hydralazine, a known acrolein scavenger can provide neuroprotection when applied systemically. Besides effectively reducing acrolein, hydralazine t...

  15. Anti-acrolein treatment improves behavioral outcome and alleviates myelin damage in EAE mouse

    OpenAIRE

    Leung, Gary; Sun, WenJing; Zheng, Lingxing; Brookes, Sarah; Tully, Melissa; Shi, Riyi

    2010-01-01

    Oxidative stress is considered a major contributor in the pathology of multiple sclerosis (MS). Acrolein, a highly reactive aldehyde byproduct of lipid peroxidation, is thought to perpetuate oxidative stress. In this study, we aimed to determine the role of acrolein in an animal model of MS, experimental autoimmune enchephalomyelitis (EAE) mice. We have demonstrated a significant elevation of acrolein protein adduct levels in EAE mouse spinal cord. Hydralazine, a known acrolein scavenger, sig...

  16. Old Yellow Enzymes Protect against Acrolein Toxicity in the Yeast Saccharomyces cerevisiae

    OpenAIRE

    Trotter, Eleanor W; Collinson, Emma J.; Dawes, Ian W.; Grant, Chris M.

    2006-01-01

    Acrolein is a ubiquitous reactive aldehyde which is formed as a product of lipid peroxidation in biological systems. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to acrolein to identify cell functions involved in resistance to reactive aldehydes. We identified 128 mutants whose gene products are localized throughout the cell. Acrolein-sensitive mutants were distributed among most major biological processes but parti...

  17. Crystal structures of crotonaldehyde semicarbazone and crotonaldehyde thiosemicarbazone from X-ray powder diffraction data

    OpenAIRE

    Atef Arfan; Mwaffak Rukiah

    2015-01-01

    Crotonaldehyde semicarbazone {systematic name: (E)-2-[(E)-but-2-en-1-ylidene]hydrazinecarboxamide}, C5H9N3O, (I), and crotonaldehyde thiosemicarbazone {systematic name: (E)-2-[(E)-but-2-en-1-yldene]hydrazinecarbothioamide}, C5H9N3S, (II), show the same E conformation around the imine C=N bond. Compounds (I) and (II) were obtained by the condensation of crotonaldehyde with semicarbazide hydrochloride and thiosemicarbazide, respectively. Each molecule has an intramolecular N—H...N hydrogen bond...

  18. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  19. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-04-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  20. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  1. Acrolein consumption induces systemic dyslipidemia and lipoprotein modification

    International Nuclear Information System (INIS)

    Aldehydes such as acrolein are ubiquitous pollutants present in automobile exhaust, cigarette, wood, and coal smoke. Such aldehydes are also constituents of several food substances and are present in drinking water, irrigation canals, and effluents from manufacturing plants. Oral intake represents the most significant source of exposure to acrolein and related aldehydes. To study the effects of short-term oral exposure to acrolein on lipoprotein levels and metabolism, adult mice were gavage-fed 0.1 to 5 mg acrolein/kg bwt and changes in plasma lipoproteins were assessed. Changes in hepatic gene expression related to lipid metabolism and cytokines were examined by qRT-PCR analysis. Acrolein feeding did not affect body weight, blood urea nitrogen, plasma creatinine, electrolytes, cytokines or liver enzymes, but increased plasma cholesterol and triglycerides. Similar results were obtained with apoE-null mice. Plasma lipoproteins from acrolein-fed mice showed altered electrophoretic mobility on agarose gels. Chromatographic analysis revealed elevated VLDL cholesterol, phospholipids, and triglycerides levels with little change in LDL or HDL. NMR analysis indicated shifts from small to large VLDL and from large to medium-small LDL with no change in the size of HDL particles. Increased plasma VLDL was associated with a significant decrease in post-heparin plasma hepatic lipase activity and a decrease in hepatic expression of hepatic lipase. These observations suggest that oral exposure to acrolein could induce or exacerbate systemic dyslipidemia and thereby contribute to cardiovascular disease risk.

  2. Acrolein Inhalation Suppresses Lipopolysaccharide-Induced Inflammatory Cytokine Production but Does Not Affect Acute Airways Neutrophilia1

    OpenAIRE

    Kasahara, David Itiro; Poynter, Matthew E.; Othman, Ziryan; Hemenway, David; van der Vliet, Albert

    2008-01-01

    Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 μg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either befo...

  3. Fate and effects of acrolein.

    Science.gov (United States)

    Ghilarducci, D P; Tjeerdema, R S

    1995-01-01

    Acrolein is a highly toxic, reactive, and irritating aldehyde that occurs as a product of organic pyrolysis, as a metabolite of a number of compounds, and as a residue in water when used for the control of aquatic organisms. It is an intermediate in the production of acrylic acid, DL-methionine, and numerous other agents. Its major direct use is as a biocide for the control of aquatic flora and fauna. It is introduced to the environment from a variety of sources, including organic combustion such as automobile exhaust, cigarette smoke, and manufacturing and cooking emissions, as well as direct biocidal applications. Organic combustion from both fixed and mobile sources is the significant source of acrolein in the atmosphere; it represents up to 8% of the total aldehydes generated from vehicles and residential fireplaces and 13% of total atmospheric aldehydes. This reactive aldehyde also occurs in organisms as a metabolite of allyl alcohol, allylamine, spermine, spermidine, and the anticancer drug cyclophosphamide, and as a product of UV radiation of the skin lipid triolein. Furthermore, small amounts are found in foods; when animal or vegetable fats are overheated, however, large amounts are produced. Most human contact occurs during exposure to smoke from cigarettes, automobiles, industrial processes, and structural and vegetation fires. Besides cigarette smoke, occupational exposures are a common mode of human contact, particularly in industries that involve combustion of organic compounds. Firefighters, in particular, are exposed to extremely high levels during the extinguishment and overhaul phases of their work. Water may contain significant levels of the herbicide. It has been found in paper mill and municipal effluents at 20-200 micrograms/L, and at 30 micrograms/L as far as 64 km downstream from the point of application. The USEPA-recommended water quality criteria for freshwater are only 1.2 micrograms/L (24-hr avg) and 2.7 micrograms/L (maximum ceiling

  4. Effects of Acrolein on Leukotriene Biosynthesis in Human Neutrophils

    OpenAIRE

    Zemski Berry, Karin A.; Henson, Peter M.; Murphy, Robert C.

    2008-01-01

    Acrolein is a toxic, highly reactive α,β-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-LO products in addition to small amounts of COX produc...

  5. Kinetics and Mechanism of Protein Tyrosine Phosphatase 1B (PTP1B) Inactivation by Acrolein

    OpenAIRE

    Seiner, Derrick R.; LaButti, Jason N.; Gates, Kent S.

    2007-01-01

    Human cells are exposed to the electrophilic α,β-unsaturated aldehyde acrolein from a variety of sources. Reaction of acrolein with functionally critical protein thiol residues can yield important biological consequences. Protein tyrosine phosphatases (PTPs) are an important class of cysteine-dependent enzymes whose reactivity with acrolein previously has not been well characterized. These enzymes catalyze the dephosphorylation of phosphotyrosine residues on proteins via a phosphocysteine int...

  6. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

    OpenAIRE

    Jung Hoon Kang

    2013-01-01

    Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhib...

  7. Characterization of Acrolein-Glycerophosphoethanolamine Lipid Adducts Using Electrospray Mass Spectrometry

    OpenAIRE

    Zemski Berry, Karin A.; Murphy, Robert C.

    2007-01-01

    Acrolein is a toxic, highly reactive α,β-unsaturated aldehyde. In the current study, the products of acrolein after reaction with glycerophosphoethanolamine (GPEtn) lipids have been characterized using electrospray tandem mass spectrometry. The major product formed involves the addition of two acrolein molecules to the primary amine of GPEtn lipids and subsequent aldol condensation to form 1,2-diradyl-sn-glycero-3-phosphoethanol-(3-formyl-4-hydroxy)piperidine (FHP) lipids. Upon sodium borohyd...

  8. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury

    OpenAIRE

    Shi Riyi; Cho Youngnam; Ben Borgens Richard

    2010-01-01

    Abstract Background The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS) trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing...

  9. Acrolein detection: potential theranostic utility in multiple sclerosis and spinal cord injury

    OpenAIRE

    Tully, Melissa; Zheng, Lingxing; Shi, Riyi

    2014-01-01

    Oxidative stress has been implicated as a major pathological process underlying CNS disease and trauma. More specifically, acrolein, an unsaturated aldehyde, produced by way of lipid peroxidation, has been shown to play a crucial role in initiating and perpetuating detrimental effects associated with multiple sclerosis and spinal cord injury. In light of these findings, quantification of acrolein levels both systemically and locally could allow for the use of acrolein as a biomarker to aid in...

  10. Crystal structures of crotonaldehyde semicarbazone and crotonaldehyde thiosemicarbazone from X-ray powder diffraction data

    OpenAIRE

    Arfan, Atef; Rukiah, Mwaffak

    2015-01-01

    Crotonaldehyde semicarbazone {systematic name: (E)-2-[(E)-but-2-en-1-yl­idene]hydrazinecarboxamide}, C5H9N3O, (I), and crotonaldehyde thio­semi­carba­zone {systematic name: (E)-2-[(E)-but-2-en-1-yldene]hydra­zinecarbo­­thio­amide}, C5H9N3S, (II), show the same E conformation around the imine C=N bond. Compounds (I) and (II) were obtained by the condensation of crotonaldehyde with semicarbazide hydro­chloride and thio­semicarbazide, respectively. Each mol­ecule has an intra­molecular N—H⋯N hyd...

  11. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Rashedinia, Marzieh; Lari, Parisa [Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Abnous, Khalil, E-mail: Abnouskh@mums.ac.r [Pharmaceutical Research Center, Department of Medicinal Chemistry, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Hosseinzadeh, Hossein, E-mail: Hosseinzadehh@mums.ac.ir [Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-10-01

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased.

  12. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    International Nuclear Information System (INIS)

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased

  13. Crystal structures of crotonaldehyde semicarbazone and crotonaldehyde thiosemicarbazone from X-ray powder diffraction data.

    Science.gov (United States)

    Arfan, Atef; Rukiah, Mwaffak

    2015-02-01

    Crotonaldehyde semicarbazone {systematic name: (E)-2-[(E)-but-2-en-1-yl-idene]hydrazinecarboxamide}, C5H9N3O, (I), and crotonaldehyde thio-semi-carba-zone {systematic name: (E)-2-[(E)-but-2-en-1-yldene]hydra-zinecarbo--thio-amide}, C5H9N3S, (II), show the same E conformation around the imine C=N bond. Compounds (I) and (II) were obtained by the condensation of crotonaldehyde with semicarbazide hydro-chloride and thio-semicarbazide, respectively. Each mol-ecule has an intra-molecular N-H⋯N hydrogen bond, which generates an S(5) ring. In (I), the crotonaldehyde fragment is twisted by 2.59 (5)° from the semicarbazide mean plane, while in (II) the corresponding angle (with the thio-semicarbazide mean plane) is 9.12 (5)°. The crystal packing is different in the two compounds: in (I) inter-molecular N-H⋯O hydrogen bonds link the mol-ecules into layers parallel to the bc plane, while weak inter-molecular N-H⋯S hydrogen bonds in (II) link the mol-ecules into chains propagating in [110]. PMID:25878810

  14. Crystal structures of crotonaldehyde semicarbazone and crotonaldehyde thiosemicarbazone from X-ray powder diffraction data

    Directory of Open Access Journals (Sweden)

    Atef Arfan

    2015-02-01

    Full Text Available Crotonaldehyde semicarbazone {systematic name: (E-2-[(E-but-2-en-1-ylidene]hydrazinecarboxamide}, C5H9N3O, (I, and crotonaldehyde thiosemicarbazone {systematic name: (E-2-[(E-but-2-en-1-yldene]hydrazinecarbothioamide}, C5H9N3S, (II, show the same E conformation around the imine C=N bond. Compounds (I and (II were obtained by the condensation of crotonaldehyde with semicarbazide hydrochloride and thiosemicarbazide, respectively. Each molecule has an intramolecular N—H...N hydrogen bond, which generates an S(5 ring. In (I, the crotonaldehyde fragment is twisted by 2.59 (5° from the semicarbazide mean plane, while in (II the corresponding angle (with the thiosemicarbazide mean plane is 9.12 (5°. The crystal packing is different in the two compounds: in (I intermolecular N—H...O hydrogen bonds link the molecules into layers parallel to the bc plane, while weak intermolecular N—H...S hydrogen bonds in (II link the molecules into chains propagating in [110].

  15. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells

    OpenAIRE

    Yadav, Umesh CS; Ramana, KV; Srivastava, SK

    2013-01-01

    Aldose reductase (AR), a glucose metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30μM) than glucose. Acrolein, a major endogenous lipid peroxidation product as well as component of environmental pollutant and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders but the mechanism of acrolein-induced cytotoxicity is not clea...

  16. Structural Elucidation of a Carnosine-Acrolein Adduct and its Quantification in Human Urine Samples.

    Science.gov (United States)

    Bispo, Vanderson S; de Arruda Campos, Ivan P; Di Mascio, Paolo; Medeiros, Marisa H G

    2016-01-01

    Aldehydes accumulate in inflammation, during myocardial infarction and have been associated with pain symptoms. One pathway of aldehyde detoxification is the conjugation with carnosine. A 3-methylpyridinium carnosine adduct from the reaction of carnosine and acrolein was characterized using extensive spectroscopic measurements. The adduct with urinary concentrations of 1.82 ± 0.68 nmol/mg of creatinine is one of the most abundant acrolein metabolites in urine and opens promising therapeutic strategies for carnosine. PMID:26783107

  17. Structural Elucidation of a Carnosine-Acrolein Adduct and its Quantification in Human Urine Samples

    OpenAIRE

    Vanderson S. Bispo; Ivan P. de Arruda Campos; Paolo Di Mascio; Medeiros, Marisa H. G.

    2016-01-01

    Aldehydes accumulate in inflammation, during myocardial infarction and have been associated with pain symptoms. One pathway of aldehyde detoxification is the conjugation with carnosine. A 3-methylpyridinium carnosine adduct from the reaction of carnosine and acrolein was characterized using extensive spectroscopic measurements. The adduct with urinary concentrations of 1.82 ± 0.68 nmol/mg of creatinine is one of the most abundant acrolein metabolites in urine and opens promising therapeutic s...

  18. CROTONALDEHYDE HYDROGENATION ON Rh SUPPORTED CATALYSTS

    OpenAIRE

    Reyes, P.; M. Aguirre; Pecchi, G.; Fierro, J.L.G.

    2000-01-01

    The vapor-phase hydrogenation of crotonaldehyde on Rh supported catalysts has been studied. The effect of some variables of preparation in catalysts prepared by the sol-gel and impregnation methods on the surface and catalytic properties were analyzed. It was found, that the porosity of the support has a small effect on the selectivity to the unsaturated alcohol and the presence of partially reducible supports such as ZrO2 and TiO2, may increase the selectivity to crotyl alcohol via an enhanc...

  19. Effects of acrolein on the production of corticosterone in male rats.

    Science.gov (United States)

    Yeh, Yung-Hsing; Chou, Jou-Chun; Weng, Ting-Chun; Lieu, Fu-Kong; Lin, Jou-Yu; Yeh, Chii-Chang; Hu, Sindy; Wang, Paulus S; Idova, Galina; Wang, Shyi-Wu

    2016-07-01

    Acrolein, an α, β-unsaturated aldehyde, exists in a wide range of sources. Acrolein can be not only generated from all types of smoke but also produced endogenously from the metabolism by lipid peroxidation. The cellular influence of acrolein is due to its electrophilic character via binding to and depleting cellular nucleophiles. Although the toxicity of acrolein has been extensively studied, there is relatively little information about its impact on hormone release. This study aimed at the effect of acrolein on hypothalamic-pituitary-adrenal (H-P-A) axis. In an in vivo study, male rats were administrated with acrolein for 1 or 3days. The plasma corticosterone in response to a single injection of adrenocorticotropic hormone (ACTH) increased slowly in acrolein-pretreated rats than in control rats. Further investigating the steroidogenic pathway, the protein expressions of steroidogenic acute regulatory protein (StAR) and the upper receptor-melanocortin 2 receptor (MC2R) were attenuated in acrolein-treated groups. Another experiment using trilostane showed less activity of P450scc in zona fasciculata-reticularis (ZFR) cells in acrolein-treated groups. In addition to the suppressed ability of corticosterone production in ZFR cells, acrolein even had extended influence at higher concentrations. The lower ACTH was observed in the plasma from acrolein-pretreated rats. In an in vitro study, ZFR cells were incubated with acrolein and the results showed that corticosterone concentrations in media were decreased in a dose-dependent manner. Acrolein also desensitized the response of the ZFR cells to ACTH. These results suggested that acrolein decreased the releasing ability of corticosterone via an inhibition on the response of ZFR cells to ACTH and the reduction of protein expressions of StAR and MC2R as well as the activity of P450scc in rat ZFR cells. The present evidences showed that the H-P-A axis was affected by the administration of acrolein. PMID:26996390

  20. Toxicologically Relevant Aldehydes Produced during the Frying Process Are Trapped by Food Phenolics.

    Science.gov (United States)

    Zamora, Rosario; Aguilar, Isabel; Granvogl, Michael; Hidalgo, Francisco J

    2016-07-13

    The lipid-derived carbonyl trapping ability of phenolic compounds under common food processing conditions was studied by determining the presence of carbonyl-phenol adducts in both onions fried in the laboratory and commercially crispy fried onions. Four carbonyl-phenol adducts produced between quercetin and acrolein, crotonaldehyde, or (E)-2-pentenal were prepared and characterized by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS). The synthesized compounds were 2-(3,4-dihydroxyphenyl)-3,5,8-trihydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromen-4-one (4), 2-(3,4-dihydroxyphenyl)-3,5,8-trihydroxy-10-methyl-9,10-dihydro-4H,8H-pyrano[2,3-f]chromen-4-one (5), 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-8-methyl-4H,8H-pyrano[2,3-f]chromen-4-one (9), and 2-(3,4-dihydroxyphenyl)-8-ethyl-3,5-dihydroxy-4H,8H-pyrano[2,3-f]chromen-4-one (10). When onions were fried in fresh rapeseed oil spiked with acrolein, crotonaldehyde, and (E)-2-pentenal (2.7 μmol/g of oil), adduct 10 was the major compound produced, and trace amounts of adducts 4 and 5, but not of adduct 9, were also detected. In contrast, compound 4 was the major adduct present in commercially crispy fried onions. Compound 10 was also present to a lower extent, and trace amounts of compound 5, but not of compound 9, were also detected. These data suggested that lipid-derived carbonyl-phenol adducts are formed in food products under standard cooking conditions. They also pointed to a possible protective role of food polyphenols, which might contribute to the removal of toxicologically relevant aldehydes produced during deep-frying, assuming that the formed products are stable during food consumption in the human organism. PMID:27322490

  1. Mediating the potent ROS toxicity of acrolein in neurons with silica nanoparticles and a natural product approach

    OpenAIRE

    White-Schenk, Desiree; Shi, Riyi; Leary, James F

    2014-01-01

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in ...

  2. Acrolein inhalation causes myocardial strain delay and decreased cardiac performance as detected by high-frequency echocardiography in mice

    Science.gov (United States)

    Acrolein, an unsaturated aldehyde found in air pollution, impairs Ca2+ flux and contraction in cardiomyocytes in vitro. To better define direct and delayed functional cardiac effects, we hypothesized that a single exposure to acrolein would modify myocardial strain and performanc...

  3. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells

    OpenAIRE

    Lee, Seung Eun; Park, Yong Seek

    2013-01-01

    Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other α,β-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an α,β-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean...

  4. Acute effects of acrolein in human volunteers during controlled exposure

    Science.gov (United States)

    Dwivedi, Aishwarya M.; Johanson, Gunnar; Lorentzen, Johnny C.; Palmberg, Lena; Sjögren, Bengt; Ernstgård, Lena

    2015-01-01

    Abstract Context: Acrolein is a reactive aldehyde mainly formed by combustion. The critical effect is considered to be irritation of the eyes and airways; however, the scarce data available make it difficult to assess effect levels. Objective: The aim of the study was to determine thresholds for acute irritation for acrolein. Methods: Nine healthy volunteers of each sex were exposed at six occasions for 2 h at rest to: clean air, 15 ppm ethyl acetate (EA), and 0.05 ppm and 0.1 ppm acrolein with and without EA (15 ppm) to mask the potential influence of odor. Symptoms related to irritation and central nervous system effects were rated on 100-mm Visual Analogue Scales. Results: The ratings of eye irritation were slightly but significantly increased during exposure to acrolein in a dose-dependent manner (p acrolein alone but not during any of the other five exposure conditions. Conclusion: Based on subjective ratings, the present study showed minor eye irritation by exposure to 0.1 ppm acrolein. PMID:26635308

  5. Kinetic and mechanistic studies on the atmospheric oxidation of oxygenated Volatile Organic Compounds: aldehyde, ketones and esters (solvents or car emissions); Etudes des cinetiques et mecanismes de degradation atmospherique de composes organiques volatils oxygenes: aldehydes, cetones et esters (emissions automobiles et solvants)

    Energy Technology Data Exchange (ETDEWEB)

    Thevenet, R.

    2000-12-01

    The atmospheric fate of oxygenated Volatile Organic Compounds (VOCs), used as solvents or emitted by fuel car combustion, is reported in this thesis. Four saturated aldehydes (propanal, isobutyr-aldehyde, pivalaldehyde and valeraldehyde), two unsaturated aldehydes (acrolein and croton-aldehyde), three ketones (2-butanone, 2-methyl-4-pentanone, 2,4-dimethyl-3-pentanone) and three esters (methyl acrylate, methyl methacrylate and methyl pyruvate) have been studied. The rate coefficients of the OH reactions with the VOCs have been measured over the temperature range 233-372 K, using the Pulsed Laser Photolysis - Laser Induced Fluorescence (PLP-LIF) technique. The photo-reactor have been used to measure the reaction rate constants of these VOCs with Cl or O{sub 3} by the relative method. The obtained results are the first determinations for the most of the VOCs. In a second part, the atmospheric oxidation of the VOCs, initiated by OH, have been studied in smog chambers. Analysis have been performed by IRTF and GC-MS. Photo-reactors have been used, a laboratory photo-reactor in Orleans (160 L) and the European Photo-reactor EUPHORE (200 m{sup 3} with sunlight irradiation). The main oxidation pathways of the VOCs and the main products have been identified. For most of the VOCs, there are the first studies. These experimental results leaded to discuss the atmospheric fate of the VOCs in terms of lifetimes and oxidation products of the VOCs. The tropospheric ozone forming potential of the VOCs and their role in the photo-oxidant pollution have been evaluated. (author)

  6. Unilateral microinjection of acrolein into thoracic spinal cord produces acute and chronic injury and functional deficits.

    Science.gov (United States)

    Gianaris, Alexander; Liu, Nai-Kui; Wang, Xiao-Fei; Oakes, Eddie; Brenia, John; Gianaris, Thomas; Ruan, Yiwen; Deng, Ling-Xiao; Goetz, Maria; Vega-Alvarez, Sasha; Lu, Qing-Bo; Shi, Riyi; Xu, Xiao-Ming

    2016-06-21

    Although lipid peroxidation has long been associated with spinal cord injury (SCI), the specific role of lipid peroxidation-derived byproducts such as acrolein in mediating damage remains to be fully understood. Acrolein, an α-β unsaturated aldehyde, is highly reactive with proteins, DNA, and phospholipids and is considered as a second toxic messenger that disseminates and augments initial free radical events. Previously, we showed that acrolein increased following traumatic SCI and injection of acrolein induced tissue damage. Here, we demonstrate that microinjection of acrolein into the thoracic spinal cord of adult rats resulted in dose-dependent tissue damage and functional deficits. At 24h (acute) after the microinjection, tissue damage, motoneuron loss, and spinal cord swelling were observed on sections stained with Cresyl Violet. Luxol fast blue staining further showed that acrolein injection resulted in dose-dependent demyelination. At 8weeks (chronic) after the microinjection, cord shrinkage, astrocyte activation, and macrophage infiltration were observed along with tissue damage, neuron loss, and demyelination. These pathological changes resulted in behavioral impairments as measured by both the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and grid walking analysis. Electron microscopy further demonstrated that acrolein induced axonal degeneration, demyelination, and macrophage infiltration. These results, combined with our previous reports, strongly suggest that acrolein may play a critical causal role in the pathogenesis of SCI and that targeting acrolein could be an attractive strategy for repair after SCI. PMID:27058147

  7. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  8. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    International Nuclear Information System (INIS)

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  9. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Mohammad K. [Department of Medicine, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Avila, Diana [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Zhang, Jingwen [Department of Medicine, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Barve, Shirish [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Arteel, Gavin [Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); McClain, Craig [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Robley Rex VAMC, Louisville, KY (United States); Joshi-Barve, Swati, E-mail: s0josh01@louisville.edu [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States)

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  10. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat

    OpenAIRE

    Due, Michael R.; Park, Jonghyuck; Zheng, Lingxing; Walls, Michael; Allette, Yohance M.; White, Fletcher A; Shi, Riyi

    2013-01-01

    Growing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1-dependent mechanism. Here we report that there are enhanced levels of acrolein and increased neuronal sensitivity t...

  11. The Effects of Acrolein on Peroxiredoxins, Thioredoxins, and Thioredoxin Reductase in Human Bronchial Epithelial Cells

    OpenAIRE

    Myers, Charles R.; Myers, Judith M.

    2008-01-01

    Inhalation is a common form of exposure to acrolein, a toxic reactive volatile aldehyde that is a ubiquitous environmental pollutant. Bronchial epithelial cells would be directly exposed to inhaled acrolein. The thioredoxin (Trx) system is essential for the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, thioredoxin reductase (TrxR) maintains the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins in the reduced state, and the thioredoxins keep the...

  12. A Comparative 90 Day Toxicity Study of Allyl Acetate, Allyl Alcohol and Acrolein

    OpenAIRE

    Auerbach, Scott S.; Mahler, Joel; Travlos, Gregory S.; Irwin, Richard D

    2008-01-01

    Allyl acetate (AAC), allyl alcohol (AAL), and acrolein (ACR) are used in the manufacture of detergents, plastics, pharmaceuticals, and chemicals and as agricultural agents. A metabolic relationship exists between these chemicals in which allyl acetate is metabolized to allyl alcohol and subsequently to the highly reactive,α,β-unsaturated aldehyde, acrolein. Due to the weaker reactivity of the protoxicants, allyl acetate and allyl alcohol, relative to acrolien we hypothesized the protoxicants ...

  13. Acrolein as a novel therapeutic target for motor and sensory deficits in spinal cord injury

    OpenAIRE

    Park, Jonghyuck; Muratori, Breanne; Shi, Riyi

    2014-01-01

    In the hours to weeks following traumatic spinal cord injuries (SCI), biochemical processes are initiated that further damage the tissue within and surrounding the initial injury site: a process termed secondary injury. Acrolein, a highly reactive unsaturated aldehyde, has been shown to play a major role in the secondary injury by contributing significantly to both motor and sensory deficits. In particular, efforts have been made to elucidate the mechanisms of acrolein-mediated damage at the ...

  14. Acrolein Microspheres Are Bonded To Large-Area Substrates

    Science.gov (United States)

    Rembaum, Alan; Yen, Richard C. K.

    1988-01-01

    Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.

  15. Mechanisms of CDDO-imidazolide-mediated cytoprotection against acrolein-induced neurocytotoxicity in SH-SY5Y cells and primary human astrocytes.

    Science.gov (United States)

    Speen, Adam; Jones, Colton; Patel, Ruby; Shah, Halley; Nallasamy, Palanisamy; Brooke, Elizabeth A S; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is a ubiquitous unsaturated aldehyde has been implicated in the pathogenesis of various neurological disorders. However, limited study has been conducted into potential therapeutic protection and underlying mechanism against acrolein-induced cytotoxicity via upregulation of cellular aldehyde-detoxification defenses. In this study we have utilized RA-differentiated human SH-SY5Y cells and primary human astrocytes to investigate the induction of glutathione (GSH) by the synthetic triterpenoid 2-cyano-3,12-dixooleana-1,9-dien-28-imidazolide (CDDO-Im) and the protective effects CDDO-Im-mediated antioxidant defenses on acrolein toxicity. Acrolein exposure to RA-differentiated SH-SY5Y cells resulted in a significant time dependent depletion of cellular GSH preceding a reduction in cell viability and LDH release. Further, we demonstrated the predominance of cellular GSH in protection against acrolein-induced cytotoxicity. Buthionine sulfoximine (BSO) at 25μM dramatically depleted GSH and significantly potentiated acrolein-induced cytotoxicity. Pretreatment of the cells with 100nM CDDO-Im afforded a dramatic protection against acrolein-induced cytotoxicity. Pretreatment of BSO and CDDO was found to prevent the CDDO-Im-mediated GSH induction and partially reversed the cytoprotective effects of CDDO-Im against acrolein cytotoxicity. Overall, this study represents for the first time the CDDO-Im mediated upregulation of GSH is a predominant mechanism against acrolein-induced neurotoxicity. PMID:26200598

  16. Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism.

    Science.gov (United States)

    Shah, Halley; Speen, Adam M; Saunders, Christina; Brooke, Elizabeth A S; Nallasamy, Palanisamy; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity. PMID:25504014

  17. Determination of acrolein in serum by high-performance liquid chromatography with fluorescence detection after pre-column fluorogenic derivatization using 1,2-diamino-4,5-dimethoxybenzene.

    Science.gov (United States)

    Imazato, Takahiro; Kanematsu, Mariko; Kishikawa, Naoya; Ohyama, Kaname; Hino, Takako; Ueki, Yukitaka; Maehata, Eisuke; Kuroda, Naotaka

    2015-09-01

    Acrolein is a major unsaturated aldehyde that is generated during the lipid peroxidation process. The measurement of acrolein in biological samples should be useful to estimate the degree of lipid peroxidation and to evaluate the effect of hazardous properties of acrolein on human health. In this study, a highly sensitive and selective high-performance liquid chromatography with fluorescence detection method was developed for the determination of acrolein in human serum. The proposed method involves the pre-column fluorogenic derivatization of acrolein with 1,2-diamino-4,5-dimethoxybenzene (DDB) as a reagent. The fluorescent derivative of acrolein could be detected clearly without any interfering reagent blank peaks because DDB does not have intrinsic fluorescence itself, and the detection limit was 10 nM (signal-to-noise ratio = 3). The proposed method could selectively detect acrolein in human serum with a simple protein precipitation treatment. PMID:25620324

  18. Mediating the potent ROS toxicity of acrolein in neurons with silica nanoparticles and a natural product approach

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2014-03-01

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDAapproved hypotensive drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica particles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The current work exposes the potential of using silica nanoparticles as a delivery vehicle and EGCG's antioxidant capabilities in B35 neuroblastoma cells exposed to acrolein. We also measure nanotoxicity to individual rat neurons using high-throughput image scanning cytometry.

  19. Acrolein generation stimulates hypercontraction in isolated human blood vessels

    International Nuclear Information System (INIS)

    Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension-all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H2O2 exposure (1 μM-1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 μM), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca2+ to hypercontraction. Acrolein or allylamine but not H2O2, benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca2+-free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague-Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension

  20. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Inhalation is a common form of exposure to acrolein, a toxic reactive volatile aldehyde that is a ubiquitous environmental pollutant. Bronchial epithelial cells would be directly exposed to inhaled acrolein. The thioredoxin (Trx) system is essential for the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, thioredoxin reductase (TrxR) maintains the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins in the reduced state, and the thioredoxins keep the peroxiredoxins (Prx) reduced, thereby supporting their peroxidase function. The effects of acrolein on TrxR, Trx and Prx in human bronchial epithelial (BEAS-2B) cells were determined. A 30-min exposure to 5 μM acrolein oxidized both Trx1 and Trx2, although significant effects were noted for Trx1 at even lower acrolein concentrations. The effects on Trx1 and Trx2 could not be reversed by treatment with disulfide reductants. TrxR activity was inhibited 60% and >85% by 2.5 and 5 μM acrolein, respectively. The endogenous electron donor for TrxR, NADPH, could not restore its activity, and activity did not recover in cells during a 4-h acrolein-free period in complete medium. The effects of acrolein on TrxR and Trx therefore extend beyond the duration of exposure. While there was a strong correlation between TrxR inhibition and Trx1 oxidation, the irreversible effects on Trx1 suggest direct effects of acrolein rather than loss of reducing equivalents from TrxR. Trx2 did not become oxidized until ≥90% of TrxR was inhibited, but irreversible effects on Trx2 also suggest direct effects of acrolein. Prx1 (cytosolic) and Prx3 (mitochondrial) shifted to a largely oxidized state only when >90 and 100% of their respective Trxs were oxidized. Prx oxidation was readily reversed with a disulfide reductant, suggesting that Prx oxidation resulted from lack of reducing equivalents from Trx and not direct reaction with acrolein. The effects of acrolein on the thioredoxin system and

  1. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein

    International Nuclear Information System (INIS)

    Acrolein is a highly electrophilic α,β-unsaturated aldehyde that is present in cigarette smoke. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various such electrophilic compounds. In this study, the regulatory effects of acrolein upon the expression of HO-1 were investigated in endothelial cells (ECs). We demonstrate that acrolein induces the elevation of HO-1 protein levels, and subsequent enzyme activity, at non-cytotoxic concentrations. An additional α,β-unsaturated aldehyde, cinnamaldehyde, was also found to increase HO-1 expression and have less cytotoxicity than acrolein. Moreover, acrolein-mediated HO-1 induction is abrogated in the presence of actinomycin D and cycloheximide. Nrf2 is a transcription factor involved in the induction of HO-1 through an antioxidant response element (ARE) in the promoter region of the HO-1 gene. We show that acrolein induces Nrf2 translocation and ARE-luciferase reporter activity. Acrolein was also found to induce the production of both superoxide and H2O2 at levels greater than 100 μM. However, with the exception of NAC, no antioxidant generated any effect upon acrolein-dependent HO-1 expression in ECs. Our present findings suggest that reactive oxygen species (ROS) may not be a major modulator for HO-1 induction. Using buthionine sulfoximine to deplete the intracellular GSH levels further enhanced the effects of acrolein. We also found that cellular GSH level was rapidly reduced after both 10 and 100 μM acrolein treatment. However, after 6 h of exposure to ECs, only 10 μM acrolein treatment increases GSH level. In addition, only the JNK inhibitor SP600125 and tyrosine kinase inhibitor genistein had any significant inhibitory impact upon the upregulation of HO-1 by acrolein. Pretreatment with a range of other PI3 kinase inhibitors, including wortmannin and LY294002, showed no effects. Hence, we show in our current experiments that a sublethal concentration of acrolein is in fact a novel HO-1 inducer

  2. GSH-dependent regulation of Fas-mediated caspase-8 activation by acrolein.

    OpenAIRE

    Hristova, Milena; Heuvelmans, Sjanneke; van der Vliet, Albert

    2007-01-01

    Activation of the cysteine protease caspase-8 by the death receptor Fas (CD95/APO-1) in B lymphoblastoid SKW6.4 cells or Jurkat T cells is associated with GSH depletion. Conversely, GSH depletion by the aldehyde acrolein (3–30 μM) was associated with inhibition of Fas-induced caspase-8 activation, although GSH depletion by buthionine sulfoximine (BSO) did not affect caspase-8 activation. In contrast to BSO, acrolein caused a loss of caspase-8 cysteine content in association with direct alkyla...

  3. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  4. The dimers of glyoxal and acrolein with H 2O and HF: Negative intramolecular coupling and blue-shifted C-H stretch

    Science.gov (United States)

    Karpfen, Alfred; Kryachko, Eugene S.

    2010-04-01

    The structures and the vibrational spectra of the hydrogen-bonded complexes: glyoxal-H 2O, glyoxal-HF, acrolein-H 2O, and acrolein-HF, are investigated within the MP2/aug-cc-pVTZ computational approach. It is demonstrated that the calculated blue shifts of the C-H stretching frequencies in the glyoxal-H 2O complexes are only indirectly pertinent to hydrogen bonding to the C-H group. The comparison with the glyoxal-HF and the acrolein-HF complexes reveals that these blue shifts are a direct consequence of a negative intramolecular coupling between vicinal C dbnd O and C-H bonds in the aldehyde groups of isolated glyoxal and acrolein molecules. To support this interpretation, the halogen-bonded complexes glyoxal-BrF and acrolein-BrF are discussed.

  5. IRIS TOXICOLOGICAL REVIEW OF ACROLEIN (2003 Final)

    Science.gov (United States)

    EPA is announcing the release of the final report, Toxicological Review of Acrolein: in support of the Integrated Risk Information System (IRIS). The updated Summary for Acrolein and accompanying Quickview have also been added to the IRIS Database.

  6. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1 ☆ ☆☆

    OpenAIRE

    Randall, Matthew J.; Spiess, Page C; Milena Hristova; Hondal, Robert J.; Albert van der Vliet

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant impl...

  7. TO THE QUESTION OF BIOSYNTHESIS OF CROTONALDEHYDE OF WINE YEAST AND LACTIC ACID BACTERIA DURING VINIFICATION

    Directory of Open Access Journals (Sweden)

    Kushnereva E. V.

    2014-01-01

    Full Text Available The article investigates the possible pathways for the formation of crotonaldehyde in wine production in the result of the activity of wine yeast and lactic acid bacteria. It established that exposure to exhaust gases, noble rot, pathogens and pests on grape plant does not lead to the biosynthesis of crotonaldehyde in grape berry. The experimental data to identify probable pathways for the formation of crotonaldehyde during vinification has been presented. The effect of the test substance on the life of yeasts and lactic acid bacteria has been estimated

  8. Formation of a Vitamin C Conjugate of Acrolein and its Paraoxonase-mediated Conversion into 5,6,7,8-Tetrahydroxy-4-oxooctanal

    OpenAIRE

    Kesinger, Nicholas G.; Langsdorf, Brandi L.; Yokochi, Alexandre F.; Miranda, Cristobal L.; Stevens, Jan F.

    2010-01-01

    Vitamin C (ascorbic acid) has been reported to participate in Michael addition reactions in vitro to form vitamin C conjugates with α,β-unsaturated aldehydes, such as acrolein. This study shows evidence for the formation and metabolism of the vitamin C conjugate of acrolein (AscACR) in cultured human monocytic THP-1 cells exposed to acrolein diacetate. By using 18O and 13C labeling in combination with liquid chromatography–tandem mass spectrometry, AscACR was shown to undergo hydrolytic conve...

  9. Acrolein with an alpha, beta-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

    Science.gov (United States)

    Acrolein is a highly electrophilic a,ß-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear factor-kB (NF-kB) activation by lipopolysac...

  10. Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury.

    Science.gov (United States)

    Chen, Zhe; Park, Jonghyuck; Butler, Breanne; Acosta, Glen; Vega-Alvarez, Sasha; Zheng, Lingxing; Tang, Jonathan; McCain, Robyn; Zhang, Wenpeng; Ouyang, Zheng; Cao, Peng; Shi, Riyi

    2016-07-01

    Currently there are no effective therapies available for the excruciating neuropathic pain that develops after spinal cord injuries (SCI). As such, a great deal of effort is being put into the investigation of novel therapeutic targets that can alleviate this pain. One such target is acrolein, a highly reactive aldehyde produced as a byproduct of oxidative stress and inflammation that is capable of activating the transient receptor potential ankyrin 1 (TRPA1) cation channel, known to be involved in the transmission and propagation of chronic neuropathic pain. One anti-acrolein agent, hydralazine, has already been shown to reduce neuropathic pain behaviors and offer neuroprotection after SCI. This study investigates another acrolein scavenger, phenelzine, for its possible role of alleviating sensory hypersensitivity through acrolein suppression. The results show that phenelzine is indeed capable of attenuating neuropathic pain behaviors in acute, delayed, and chronic administration schedules after injury in a rat model of SCI. In addition, upon the comparison of hydralazine to phenelzine, both acrolein scavengers displayed a dose-dependent response in the reduction of acrolein in vivo. Finally, phenelzine proved capable of providing locomotor function recovery and neuroprotection of spinal cord tissue when administered immediately after injury for 2 weeks. These results indicate that phenelzine may be an effective treatment for neuropathic pain after SCI and likely a viable alternative to hydralazine. We have shown that phenelzine can attenuate neuropathic pain behavior in acute, delayed, and chronic administration in post-SCI rats. This was accompanied by a dose-dependent reduction in an acrolein metabolite in urine and an acrolein adduct in spinal cord tissue, and the suppression of TRPA1 over-expression in central and peripheral locations post-trauma. Acrolein scavenging might be a novel therapeutic strategy to reduce post-SCI neuropathic pain. PMID:27060873

  11. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury

    Directory of Open Access Journals (Sweden)

    Shi Riyi

    2010-01-01

    Full Text Available Abstract Background The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system. Results Hydralazine-loaded chitosan nanoparticles were prepared using different types of polyanions and characterized for particle size, morphology, zeta potential value, and the efficiency of hydralazine entrapment and release. Hydralazine-loaded chitosan nanoparticles ranged in size from 300 nm to 350 nm in diameter, and with a tunable, or adjustable, surface charge. Conclusions We evaluated the utility of chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC -12 cells. The particles effectively, and statistically, reduced damage to membrane integrity, secondary oxidative stress, and lipid peroxidation. This study suggests that a chitosan nanoparticle-based therapy to interfere with "secondary" injury may be possible.

  12. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation.

    Science.gov (United States)

    Noerager, Brett D; Xu, Xin; Davis, Virginia A; Jones, Caleb W; Okafor, Svetlana; Whitehead, Alicia; Blalock, J Edwin; Jackson, Patricia L

    2015-12-01

    Neutrophils (PMNs) are key mediators of inflammatory processes throughout the body. In this study, we investigated the role of acrolein, a highly reactive aldehyde that is ubiquitously present in the environment and produced endogenously at sites of inflammation, in mediating PMN-mediated degradation of collagen facilitating proline-glycine-proline (PGP) production. We treated peripheral blood neutrophils with acrolein and analyzed cell supernatants and lysates for matrix metalloproteinase-9 (MMP-9) and prolyl endopeptidase (PE), assessed their ability to break down collagen and release PGP, and assayed for the presence of leukotriene A4 hydrolase (LTA4H) and its ability to degrade PGP. Acrolein treatment induced elevated production and functionality of collagen-degrading enzymes and generation of PGP fragments. Meanwhile, LTA4H levels and triaminopeptidase activity declined with increasing concentrations of acrolein thereby sparing PGP from enzymatic destruction. These findings suggest that acrolein exacerbates the acute inflammatory response mediated by neutrophils and sets the stage for chronic pulmonary and systemic inflammation. PMID:26208604

  13. 1,N(2)-propanodeoxyguanosine adduct formation in aortic DNA following inhalation of acrolein.

    OpenAIRE

    A Penn; Nath, R.; Pan, J; Chen, L; Widmer, K; Henk, W; Chung, F L

    2001-01-01

    Recent reports indicate that many of the cytotoxic and health-threatening components of environmental tobacco smoke (ETS) reside in the vapor phase of the smoke. We have reported previously that inhalation of 1,3-butadiene, a prominent vapor phase component of ETS, accelerates arteriosclerotic plaque development in cockerels. In this study we asked whether inhaled acrolein, a reactive aldehyde that is also a prominent vapor-phase component of ETS, damages artery-wall DNA and accelerates plaqu...

  14. Acrolein Oxidizes the Cytosolic and Mitochondrial Thioredoxins in Human Endothelial Cells

    OpenAIRE

    Szadkowski, Adam; Myers, Charles R.

    2007-01-01

    Acrolein is a reactive aldehyde that is a widespread environmental pollutant and can be generated endogenously from lipid peroxidation. The thioredoxin (Trx) system in endothelial cells plays a major role in the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, cells maintain the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins largely in the reduced state. In human microvascular endothelial cells, Trx1 was more sensitive than Trx2 to oxidation by...

  15. In situ XAS-Untersuchungen zur Partialoxidation von Acrolein an Mischoxidkatalysatoren

    OpenAIRE

    Samuelis, Dominik

    2008-01-01

    Vanadium molybdenum mixed oxides have proven to be active and selective catalysts for the partial oxidation of unsaturated aldehydes. They are widely used in Megaton-scale industrial processes like the partial oxidation of acrolein to acrylic acid. The macroscopic reaction kinetics of vanadium molybdenum oxide catalysts for partial oxidation reactions are well established, and numerous promoters, e.g. tungsten, are available for improving performance and stability. However, little is known ab...

  16. Acrolein contributes to TRPA1 up-regulation in peripheral and central sensory hypersensitivity following spinal cord injury.

    Science.gov (United States)

    Park, Jonghyuck; Zheng, Lingxing; Acosta, Glen; Vega-Alvarez, Sasha; Chen, Zhe; Muratori, Breanne; Cao, Peng; Shi, Riyi

    2015-12-01

    Acrolein, an endogenous aldehyde, has been shown to be involved in sensory hypersensitivity after rat spinal cord injury (SCI), for which the pathogenesis is unclear. Acrolein can directly activate a pro-algesic transient receptor protein ankyrin 1 (TRPA1) channel that exists in sensory neurons. Both acrolein and TRPA1 mRNA are elevated post SCI, which contributes to the activation of TRPA1 by acrolein and consequently, neuropathic pain. In the current study, we further showed that, post-SCI elevation of TRPA1 mRNA exists not only in dorsal root ganglias but also in both peripheral (paw skin) and central endings of primary afferent nerves (dorsal horn of spinal cord). This is the first indication that pain signaling can be over-amplified in the peripheral skin by elevated expressions of TRPA1 following SCI, in addition over-amplification previously seen in the spinal cord and dorsal root ganglia. Furthermore, we show that acrolein alone, in the absence of physical trauma, could lead to the elevation of TRPA1 mRNA at various locations when injected to the spinal cord. In addition, post-SCI elevation of TRPA1 mRNA could be mitigated using acrolein scavengers. Both of these attributes support the critical role of acrolein in elevating TRPA1 expression through gene regulation. Taken together, these data indicate that acrolein is likely a critical causal factor in heightening pain sensation post-SCI, through both the direct binding of TRPA1 receptor, and also by boosting the expression of TRPA1. Finally, our data also further support the notion that acrolein scavenging may be an effective therapeutic approach to alleviate neuropathic pain after SCI. We propose that the trauma-mediated elevation of acrolein causes neuropathic pain through at least two mechanisms: acrolein stimulates the production of transient receptor protein ankyrin 1 (TRPA1) in both central and peripheral locations, and it activates TRPA1 channels directly. Therefore, acrolein appears to be a critical

  17. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    OpenAIRE

    J. C. Gong; Zhu, T.; M. Hu; L. W. Zhang; Cheng, H.; L. Zhang; Tong, J; Zhang, J.

    2010-01-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's...

  18. Reaction of tobacco smoke aldehydes with human hemoglobin.

    Science.gov (United States)

    Hoberman, H D; San George, R C

    1988-01-01

    Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, and acrolein, all of which are constituents of tobacco smoke, were reacted in 5 mM concentration with the purified major fraction of normal adult human hemoglobin (hemoglobin Ao) in 1 mM concentration. A cigarette smoke condensate, diluted to contain 5 mM total aldehydes, was also reacted with 1 mM hemoglobin Ao. Cationic exchange high-performance liquid chromatography (HPLC) showed that the products formed from simple aliphatic aldehydes, with the exception of formaldehyde, were analogues of those formed from acetaldehyde, earlier shown by us to be imidazolidinone derivatives, that is, cyclic addition products of the N-terminal aminoamide function of alpha and beta chains. Formaldehyde and acrolein produced a heterogeneous mixture of derivatives including cross-linked hemoglobin dimers. The greater proportion of modified hemoglobins produced by condensate aldehydes resembled those formed from acetaldehyde, the most abundant aldehyde in the condensate. A smaller fraction consisted of cross-linked hemoglobin dimers, presumably due to the action of formaldehyde. Mass spectrometric and HPLC analyses of the 2,4-dinitrophenylhydrazones precipitated from the condensate documented the presence of formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, furfural, and methylfurfural. The toxicity of aldehydes is briefly discussed in the context of the findings of this study. PMID:3236330

  19. A model of hemorrhagic cystitis induced with acrolein in mice

    OpenAIRE

    C.K.L.P. Batista; Brito, G A C; De Souza, M. L. P.; B.T.A. Leitão; Cunha, F.Q.; Ribeiro, R.A.

    2006-01-01

    Acrolein is a urinary metabolite of cyclophosphamide and ifosfamide, which has been reported to be the causative agent of hemorrhagic cystitis induced by these compounds. A direct cytotoxic effect of acrolein, however, has not yet been demonstrated. In the present study, the effects of intravesical injection of acrolein and mesna, the classical acrolein chemical inhibitor, were evaluated. Male Swiss mice weighing 25 to 35 g (N = 6 per group) received saline or acrolein (25, 75, 225 µg) intrav...

  20. Protein modification by acrolein: Formation and stability of cysteine adducts

    OpenAIRE

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2009-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to iden...

  1. Anthocyanins Protect SK-N-SH Cells Against Acrolein-Induced Toxicity by Preserving the Cellular Redox State.

    Science.gov (United States)

    Belkacemi, Abdenour; Ramassamy, Charles

    2016-02-01

    In Alzheimer's disease (AD) and in mild cognitive impairment (MCI) patients, by-products of lipid peroxidation such as acrolein accumulated in vulnerable regions of the brain. We have previously shown that acrolein is a highly reactive and neurotoxic aldehyde and its toxicity involves the alteration of several redox-sensitive pathways. Recently, protein-conjugated acrolein in cerebrospinal fluid has been proposed as a biomarker to distinguish between MCI and AD. With growing evidence of the early involvement of oxidative stress in AD etiology, one would expect that a successful therapy should prevent brain oxidative damage. In this regard, several studies have demonstrated that polyphenol-rich extracts exert beneficial effect on cognitive impairment and oxidative stress. We have recently demonstrated the efficacy of an anthocyanin formulation (MAF14001) against amyloid-β-induced oxidative stress. The aim of this study is to investigate the neuroprotective effect of MAF14001 as a mixture of anthocyanins, a particular class of polyphenols, against acrolein-induced oxidative damage in SK-N-SH neuronal cells. Our results demonstrated that MAF14001, from 5μM, was able to efficiently protect SK-N-SH cells against acrolein-induced cell death. MAF14001 was able to lower reactive oxygen species and protein carbonyl levels induced by acrolein. Moreover, MAF1401 prevented glutathione depletion and positively modulated, in the presence of acrolein, some oxidative stress-sensitive pathways including the transcription factors NF-κB and Nrf2, the proteins γ-GCS and GSK3β, and the protein adaptator p66Shc. Along with its proven protective effect against amyloid-β toxicity, these results demonstrate that MAF14001 could target multiple mechanisms and could be a promising agent for AD prevention. PMID:26890747

  2. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Mechanism of selective action of oxide catalysts (on the base of V2O4, MoO3) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  3. Update of the exploratory report Acrolein

    OpenAIRE

    Slooff W; Bont PFH; Janus JA; Pronk MEJ; Ros JPM; ECO; PPCbv; ACT; LAE

    1994-01-01

    The report is an update of the exploratory report acrolein (Slooff et al., 1991) that served as a basis for the discussion during the exploratory meeting on acrolein in March 1992. The meeting supported the conclusion that priority should be given to the compartment air and to the risks to humans. With respect to inhalation and dietary exposure of humans to acrolein, a maximum permissible concentration of 0.5 mug.m-3 and a tolerable daily intake of 0.5 mug.kg-1 bw. day-1 (equivalent to 30 mug...

  4. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1

    Directory of Open Access Journals (Sweden)

    Matthew J. Randall

    2013-01-01

    Full Text Available Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal. Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1, a critical enzyme involved in regulation of thioredoxin (Trx-mediated redox signaling, by alkylation at its selenocysteine (Sec residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1–30 μM resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases

  5. Pyrolysis of D-Glucose to Acrolein

    Science.gov (United States)

    Shen, Chong; Zhang, Igor Ying; Fu, Gang; Xu, Xin

    2011-06-01

    Despite of its great importance, the detailed molecular mechanism for carbohydrate pyrolysis remains poorly understood. We perform a density functional study with a newly developed XYG3 functional on the processes for D-glucose pyrolysis to acrolein. The most feasible reaction pathway starts from an isomerization from D-glucose to D-fructose, which then undergoes a cyclic Grob fragmentation, followed by a concerted electrocyclic dehydration to yield acrolein. This mechanism can account for the known experimental results.

  6. Pyrolysis of D-Glucose to Acrolein

    Institute of Scientific and Technical Information of China (English)

    Chong Shen; Igor Ying Zhang; Gang Fu; Xin Xu

    2011-01-01

    Despite of its great importance, the detailed molecular mechanism for carbohydrate pyrolysis remains poorly understood. We perform a density functional study with a newly developed XYG3 functional on the processes for D-glucose pyrolysis to acrolein. The most feasible reaction pathway starts from an isomerization from D-glucose to D-fructose, which then undergoes a cyclic Grob fragmentation, followed by a concerted electrocyclic dehydration to yield acrolein. This mechanism can account for the known experimental results.

  7. Catalyst for Gas Phase Hydrogenation of Aldehydes Successfully Developed by Daqing Chemical Research Center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A national invention patent has been granted to the method for preparation of the Cu-Zn-Al system catalyst for gas phase hydrogenation of aldehydes developed by the Daqing Chemi-cal Research Center (DCRC) under the PetroChina Petro-chemical Research Institute. This technology is mainly ap-plied to the gas phase process for hydrogenation of butanal/crotonaldehyde to manufacture butanol/octanol and has brought about hundreds of million RMB of economic ben-efits since its application.

  8. Activity of B(OEt)3-MCM-41 catalyst in the MPV reduction of crotonaldehyde

    Indian Academy of Sciences (India)

    Burcu Uysal

    2013-11-01

    Mesoporous silica materialMCM-41 was functionalized with boron tri-ethoxide (B(OEt)3) groups by the grafting method and denoted as `B(OEt)3-MCM-41’. With the use of TEM, X-ray diffraction, highresolution thermogravimetry (TGA) and N2 adsorption-desorption isotherms, it was shown that the initial hexagonal structure, the high specific surface area, and porosity are retained in the functionalized material. 29Si NMR- and 11B NMR- spectroscopies revealed that the surface of MCM-41 consists of boron alkoxide species. The Meerwein-Ponndorf-Verley (MPV) reduction of crotonaldehyde to but-2-en-1-ol was conducted in the presence of B(OEt)3-MCM-41 catalyst. MPV reduction of crotonaldehyde also showed that functionalization leads to the creation of Lewis acidic sites. A combination of mesoporous structure with Lewis acidic properties makes the MCM-41 functionalized with boron tri-ethoxide groups, useful as solid Lewis acid catalysts.

  9. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  10. Acrolein Induces Endoplasmic Reticulum Stress and Causes Airspace Enlargement

    OpenAIRE

    Kitaguchi, Yoshiaki; Taraseviciene-Stewart, Laimute; Hanaoka, Masayuki; Natarajan, Ramesh; Kraskauskas, Donatas; Norbert F. Voelkel

    2012-01-01

    Background Given the relative abundance and toxic potential of acrolein in inhaled cigarette smoke, it is surprising how little is known about the pulmonary and systemic effects of acrolein. Here we test the hypothesis whether systemic administration of acrolein could cause endoplasmic reticulum (ER) stress, and lung cell apoptosis, leading to the enlargement of the alveolar air spaces in rats. Methods Acute and chronic effects of intraperitoneally administered acrolein were tested. Mean alve...

  11. Acrolein metabolites, diabetes and insulin resistance.

    Science.gov (United States)

    Feroe, Aliya G; Attanasio, Roberta; Scinicariello, Franco

    2016-07-01

    Acrolein is a dietary and environmental pollutant that has been associated in vitro to dysregulate glucose transport. We investigated the association of urinary acrolein metabolites N-acetyl-S-(3-hydroxypropyl)-l-cysteine (3-HPMA) and N-acetyl-S-(carboxyethyl)-l-cysteine (CEMA) and their molar sum (∑acrolein) with diabetes using data from investigated 2027 adults who participated in the 2005-2006 National Health and Nutrition Examination Survey (NHANES). After excluding participants taking insulin or other diabetes medication we, further, investigated the association of the compounds with insulin resistance (n=850), as a categorical outcome expressed by the homeostatic model assessment (HOMA-IR>2.6). As secondary analyses, we investigated the association of the compounds with HOMA-IR, HOMA-β, fasting insulin and fasting plasma glucose. The analyses were performed using urinary creatinine as independent variable in the models, and, as sensitivity analyses, the compounds were used as creatinine corrected variables. Diabetes as well as insulin resistance (defined as HOMA-IR>2.6) were positively associated with the 3-HPMA, CEMA and ∑Acrolein with evidence of a dose-response relationship (p<0.05). The highest 3rd and 4th quartiles of CEMA compared to the lowest quartile were significantly associated with higher HOMA-IR, HOMA-β and fasting insulin with a dose-response relationship. The highest 3rd quartile of 3-HPMA and ∑Acrolein were positively and significantly associated with HOMA-IR, HOMA-β and fasting insulin. These results suggest a need of further studies to fully understand the implications of acrolein with type 2 diabetes and insulin. PMID:26991531

  12. Acrolein coupling on reduced TiO 2(1 1 0): The effect of surface oxidation and the role of subsurface defects

    Science.gov (United States)

    Benz, Lauren; Haubrich, Jan; Quiller, Ryan G.; Friend, Cynthia M.

    2009-04-01

    Reactions of acrolein, water, and oxygen with the vacuum-reduced surface of TiO 2(1 1 0) are reported in a temperature programmed reaction study of the interaction of an aldehydic pollutant with a reducible metal oxide. A total of 25% of the acrolein that binds to the surface is converted to products. Notably, carbon-carbon coupling occurs with 86% selectivity for formation of C 6 products: C 6H 8, identified as 1,3-cyclohexadiene, in a peak at 500 K and benzene immediately thereafter at 530 K. Acrolein is evolved from the surface in three peaks: a peak independent of coverage at 495 K, attributed to decomposition of an intermediate that is partly converted to C 6H 8; a coverage-dependent peak that shifts from 370 K (low coverage) to 260 K (high coverage), which is attributed to adsorption at 5-fold coordinated Ti sites; and a multilayer state at 160 K. Water and acrolein compete for 5-fold coordinated titanium sites when dosed sequentially. The addition of water also opens a new reaction pathway, leading to the hydrogenation of acrolein to form propanal. Water has no effect on the yield of 1,3-cyclohexadiene. Exposure of the surface to oxygen prior to acrolein dosing quenches the evolution of acrolein at 495 K and concurrently eliminates the coupling. From these results, we propose that reduced subsurface defects such as titanium ion interstitials play a role in the reactions observed here. The notion that subsurface defects may contribute to the reactivity of organic molecules over reducible oxide substrates may prove to be general.

  13. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Directory of Open Access Journals (Sweden)

    J. C. Gong

    2010-08-01

    Full Text Available Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein in a central Beijing site in the summer and early fall of 2008 (from June to October. Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions. In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5. These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  14. Threshold photoelectron spectroscopy of acetaldehyde and acrolein

    International Nuclear Information System (INIS)

    Highlights: •High-resolution threshold photoelectron spectrum of acetaldehyde. •High-resolution threshold photoelectron spectrum of acrolein. •High-resolution total photoion yield spectrum of acetaldehyde. •High-resolution total photoion yield spectrum of acrolein. •Determination of vertical ionization potentials in acetaldehyde and acrolein. -- Abstract: High-resolution (6 meV and 12 meV) threshold photoelectron (TPE) spectra of acetaldehyde and acrolein (2-propenal) have been recorded over the valence binding energy region 10–20 eV, employing synchrotron radiation and a penetrating-field electron spectrometer. These TPE spectra are presented here for the first time. All of the band structures observed in the TPE spectra replicate those found in their conventional HeI photoelectron (PE) spectra. However, the relative band intensities are found to be dramatically different in the two types of spectra that are attributed to the different dominant operative formation mechanisms. In addition, some band shapes and their vertical ionization potentials are found to differ in the two types of spectra that are associated with the autoionization of Rydberg states in the two molecules

  15. Threshold photoelectron spectroscopy of acetaldehyde and acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Yencha, Andrew J., E-mail: ayencha@albany.edu [Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222 (United States); Siggel-King, Michele R.F. [Cockcroft Institute, Sci-Tech Daresbury, Warrrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); King, George C. [Department of Physics and Astronomy and Photon Science Institute, Manchester University, Manchester M13 9PL (United Kingdom); Malins, Andrew E.R. [Cockcroft Institute, Sci-Tech Daresbury, Warrrington WA4 4AD (United Kingdom); Eypper, Marie [School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2013-04-15

    Highlights: •High-resolution threshold photoelectron spectrum of acetaldehyde. •High-resolution threshold photoelectron spectrum of acrolein. •High-resolution total photoion yield spectrum of acetaldehyde. •High-resolution total photoion yield spectrum of acrolein. •Determination of vertical ionization potentials in acetaldehyde and acrolein. -- Abstract: High-resolution (6 meV and 12 meV) threshold photoelectron (TPE) spectra of acetaldehyde and acrolein (2-propenal) have been recorded over the valence binding energy region 10–20 eV, employing synchrotron radiation and a penetrating-field electron spectrometer. These TPE spectra are presented here for the first time. All of the band structures observed in the TPE spectra replicate those found in their conventional HeI photoelectron (PE) spectra. However, the relative band intensities are found to be dramatically different in the two types of spectra that are attributed to the different dominant operative formation mechanisms. In addition, some band shapes and their vertical ionization potentials are found to differ in the two types of spectra that are associated with the autoionization of Rydberg states in the two molecules.

  16. Exposure to acrolein by inhalation causes platelet activation

    International Nuclear Information System (INIS)

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6 h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.

  17. EXPOSURE TO ACROLEIN BY INHALATION CAUSES PLATELET ACTIVATION

    OpenAIRE

    Sithu, Srinivas D.; Srivastava, Sanjay; Siddiqui, Maqsood A; Vladykovskaya, Elena; Riggs, Daniel W.; Conklin, Daniel J.; Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; D’Souza, Stanley E.

    2010-01-01

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected ...

  18. Proteomic profiling of acrolein adducts in human lung epithelial cells

    OpenAIRE

    Spiess, Page C; Deng, Bin; Hondal, Robert J.; Matthews, Dwight E.; van der Vliet, Albert

    2011-01-01

    Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway ep...

  19. Fumigant Action of Acrolein on Insects and Seed Viability

    OpenAIRE

    Ali Asghr Pourmirza

    2007-01-01

    In laboratory experiments toxicity of acrolein vapors was investigated against 4 species of stored-product insects. In empty-space trials, estimated of the median lethal dosages of acrolein against adults of Oryzaephilus surinamensis (L.), Sitophilus oryzae (L.), Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst), were 1.87, 2.35, 3.12 and 6.65 mg L-1, respectively. Penetration tests revealed that acrolein vapors could penetrate into the wheat mass and kill concealed insects in interk...

  20. Synthesis of Reactive Polymers for Acrolein Capture Using AGET ATRP.

    Science.gov (United States)

    Beringer, Laura T; Li, Shaohua; Gilmore, Gary; Lister, John; Averick, Saadyah

    2015-10-01

    Acrolein is a toxic metabolite of the anticancer agent cyclophosphamide (CP). Current strategies to mitigate acrolein toxicity are insufficient, and in this brief article, we report the synthesis of well-defined low molecular weight block copolymers using activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) capable of reacting with the cytotoxic small molecule acrolein. Acrolein reactivity was introduced into the block copolymers via incorporation of either (a) aminooxy or (b) sulfhydryl groups. The cytoprotective effect of the polymers was compared to sodium 2-sulfanylethanesulfonate (mesna) the current gold standard for protection from CP urotoxicity, and we found that the polymers bearing sulfhydryl moieties demonstrated superior cytoprotective activity. PMID:26355438

  1. The formation of rats' choroidal neovascularization induced by acrolein

    OpenAIRE

    Guan-Feng Wang; Xiu-Lan Zou; Dong-Hao Li; Chen Wang; Wen-Li Li; Rong-Biao Pi

    2016-01-01

    AIM:To investigate the formation of rats' choroidal neovascularization(CNV)induced by acrolein. METHODS:Twelve Sprague-Dawley rats were randomly divided into three groups. Acrolein 200μL(2.5 mg/kg/d)was poured into the rats' stomach for 4wk as acrolein 4wk and for 8wk as acrolein 8wk group. The same volume of fresh water was also done to the rats as the control group. Remove all eye balls and embed into paraffin with HE staining.RESLUTS:The RPE-Bruch membrane was intact with no obvious abnorm...

  2. New Insights in the Pathogenesis of Multiple Sclerosis—Role of Acrolein in Neuronal and Myelin Damage

    Directory of Open Access Journals (Sweden)

    Riyi Shi

    2013-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS characterized by an inappropriate inflammatory reaction resulting in widespread myelin injury along white matter tracts. Neurological impairment as a result of the disease can be attributed to immune-mediated injury to myelin, axons and mitochondria, but the molecular mechanisms underlying the neuropathy remain incompletely understood. Incomplete mechanistic knowledge hinders the development of therapies capable of alleviating symptoms and slowing disease progression in the long-term. Recently, oxidative stress has been implicated as a key component of neural tissue damage prompting investigation of reactive oxygen species (ROS scavengers as a potential therapeutic option. Despite the establishment of oxidative stress as a crucial process in MS development and progression, ROS scavengers have had limited success in animal studies which has prompted pursuit of an alternative target capable of curtailing oxidative stress. Acrolein, a toxic β-unsaturated aldehyde capable of initiating and perpetuating oxidative stress, has been suggested as a viable point of intervention to guide the development of new treatments. Sequestering acrolein using an FDA-approved compound, hydralazine, offers neuroprotection resulting in dampened symptom severity and slowed disease progression in experimental autoimmune encephalomyelitis (EAE mice. These results provide promise for therapeutic development, indicating the possible utility of neutralizing acrolein to preserve and improve neurological function in MS patients.

  3. Aldehydes in relation to air pollution sources: A case study around the Beijing Olympics

    Science.gov (United States)

    Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Ohman-Strickland, Pamela; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng

    2015-05-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3 ± 15.1 μg/m3, 27.1 ± 15.7 μg/m3 and 2.3 ± 1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants.

  4. Threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy of simple organic acids, aldehydes, ketones and amines

    International Nuclear Information System (INIS)

    We have initiated a research program to investigate the ionization behavior of some simple organic molecules containing the carboxyl group (R2C=O), where R could be H, OH, NH2, or CH3 or other aliphatic or aromatic carbon groups, using threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy. We report here on the simplest organic acid, formic acid, and two simple aldehydes: acetaldehyde and the simplest unsaturated aldehyde, 2-propenal (acrolein). The objective of this study was to characterize the valence cationic states of these molecules with vibrational structural resolution.

  5. Enhancing Metal-Support Interactions by Molybdenum Carbide: An Efficient Strategy toward the Chemoselective Hydrogenation of α,β-Unsaturated Aldehydes.

    Science.gov (United States)

    He, Sina; Shao, Zheng-Jiang; Shu, Yijin; Shi, Zhangping; Cao, Xiao-Ming; Gao, Qingsheng; Hu, Peijun; Tang, Yi

    2016-04-11

    Metal-support interactions are desired to optimize the catalytic turnover on metals. Herein, the enhanced interactions by using a Mo2 C nanowires support were utilized to modify the charge density of an Ir surface, accomplishing the selective hydrogenation of α,β-unsaturated aldehydes on negatively charged Ir(δ-) species. The combined experimental and theoretical investigations showed that the Ir(δ-) species derive from the higher work function of Ir (vs. Mo2 C) and the consequently electron transfer. In crotonaldehyde hydrogenation, Ir/Mo2 C delivered a crotyl alcohol selectivity as high as 80 %, outperforming those of counterparts (competitive for chemoselective hydrogenation. PMID:26934305

  6. Acrolein Induces Vasodilatation of Rodent Mesenteric Bed via an EDHF-Dependent Mechanism

    OpenAIRE

    Awe, S.O.; Adeagbo, A.S. O.; D’Souza, S.E.; Bhatnagar, A.; Conklin, D.J.

    2006-01-01

    Acrolein is generated endogenously during lipid peroxidation and inflammation and is an environmental pollutant. Protein adducts of acrolein are detected in atherosclerotic plaques and neurons of patients with Alzheimer’s disease. To understand vascular effects of acrolein exposure, we studied acrolein vasoreactivity in perfused rodent mesenteric bed. Acrolein induced endothelium-dependent vasodilatation that was more robust and more sensitive than dilation induced by 4-hydroxy-trans-2-nonena...

  7. Conjugation vs hyperconjugation in molecular structure of acrolein

    Science.gov (United States)

    Shishkina, Svitlana V.; Slabko, Anzhelika I.; Shishkin, Oleg V.

    2013-01-01

    Analysis of geometric parameters of butadiene and acrolein reveals the contradiction between the Csp2-Csp2 bond length in acrolein and classical concept of conjugation degree in the polarized molecules. In this Letter the reasons of this contradiction have been investigated. It is concluded that the Csp2-Csp2 bond length in acrolein is determined by influence of the bonding for it π-π conjugation and antibonding n → σ∗ hyperconjugation between the oxygen lone pair and the antibonding orbital of the single bond. It was shown also this bond length depends on the difference in energy of conjugative and hyperconjugative interactions.

  8. Prozessentwicklung zur biotechnologischen Produktion von Acrolein aus Nebenprodukten der Bioethanolherstellung

    OpenAIRE

    Oehmke, Sebastian

    2013-01-01

    Da fossile Quellen endlich sind, werden Chemikalien aus nachwachsenden Rohstoffen immer interessanter für die Forschung und Industrie. Zu den vielversprechenden Plattformchemikalien gehört das Stoffpaar 3-Hydroxypropionaldehyd/ Acrolein. Jedoch sind bisherige Ansätze für eine wirtschaftliche Produktion von 3-Hydroxypropionaldehyd/ Acrolein im industriellen Maßstab nicht ausreichend. Deshalb wurde in dieser Arbeit geprüft, inwieweit sich Schlempe, ein glycerinhaltiges Nebenprodukt der Bioethan...

  9. Synthetic smoke with acrolein but not HCl produces pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Hales, C.A.; Barkin, P.W.; Jung, W.; Trautman, E.; Lamborghini, D.; Herrig, N.; Burke, J.

    1988-03-01

    The chemical toxins in smoke and not the heat are responsible for the pulmonary edema of smoke inhalation. We developed a synthetic smoke composed of carbon particles (mean diameter of 4.3 microns) to which toxins known to be in smoke, such as HCl or acrolein, could be added one at a time. We delivered synthetic smoke to dogs for 10 min and monitored extravascular lung water (EVLW) accumulation thereafter with a double-indicator thermodilution technique. Final EVLW correlated highly with gravimetric values (r = 0.93, P less than 0.01). HCl in concentrations of 0.1-6 N when added to heated carbon (120 degrees C) and cooled to 39 degrees C produced airway damage but no pulmonary edema. Acrolein, in contrast, produced airway damage but also pulmonary edema, whereas capillary wedge pressures remained stable. Low-dose acrolein smoke (less than 200 ppm) produced edema in two of five animals with a 2- to 4-h delay. Intermediate-dose acrolein smoke (200-300 ppm) always produced edema at an average of 147 +/- 57 min after smoke, whereas high-dose acrolein (greater than 300 ppm) produced edema at 65 +/- 16 min after smoke. Thus acrolein but not HCl, when presented as a synthetic smoke, produced a delayed-onset, noncardiogenic, and peribronchiolar edema in a roughly dose-dependent fashion.

  10. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    OpenAIRE

    Mohammad, Mohammad K; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-01-01

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentration...

  11. Soluble aldehyde dehydrogenase and metabolism of aldehydes by soybean bacteroids.

    OpenAIRE

    Peterson, J. B.; LaRue, T A

    1982-01-01

    A soluble aldehyde dehydrogenase (EC 1.2.1.3) was partially purified from Rhizobium japonicum bacteroids and from free-living R. japonicum 61A76. The enzyme was activated by NAD+, NADH, and dithiothreitol, and it reduced NAD(P)+. Acetaldehyde, propionaldehyde, butyraldehyde, benzaldehyde, and succinic semialdehyde were substrates. The Km for straight-chain aldehydes decreased with increasing carbon chain length. The aldehyde dehydrogenase was inhibited by 6-cyanopurine, but not by metronidazo...

  12. Acute and long-term ocular effects of acrolein vapor on the eyes and potential therapies.

    Science.gov (United States)

    Ilhan, Abdullah; Yolcu, Umit; Uzun, Salih

    2016-03-01

    Acrolein is an important agent in chemical ocular burns. With regard to the results of the study reported by Dachir et al.; we discuss the particular role of acrolein in chemical warfare and the beneficial effects of proanthocyanidins on the acrolein-induced ocular injuries. PMID:25694172

  13. Determination of aliphatic aldehydes by liquid chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Casella, Innocenzo G; Contursi, Michela

    2005-01-21

    An electrochemical detection method for short-chain saturated and unsaturated aliphatic aldehydes separated by liquid chromatography in moderately acidic medium is described. A triple-step waveform of the potentials applied to the polycrystalline platinum electrode, is proposed for sensitive detection of aliphatic aldehydes in flowing streams avoiding tedious pre- or post-column derivatization and/or cleanup procedures. The influences of the perchloric acid concentration and dissolved oxygen in the mobile phase, on the amperometric and chromatographic performance were evaluated and considered in terms of sensitivity and selectivity. Under the optimised experimental conditions (i.e., deoxygenated 50mM HClO4) the proposed analytical method allowed detection limits between 0.2 microM for acrolein and 2.5 microM for valeraldehyde. Regression analysis of calibration data indicates that responses for all investigated compounds are linear over about 2 orders of magnitude above the LOD, with correlation coefficients >0.990. The method was successfully applied to the determination of formaldehyde, acetaldehyde, propionaldehyde and acrolein in real matrices such as spiked water and red wines with good mean recoveries (81-97%). PMID:15700464

  14. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    Science.gov (United States)

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods. PMID:27128101

  15. Studies on the polymerization of acrolein oxime, 6

    International Nuclear Information System (INIS)

    Radiation-induced polymerization and copolymerization of acrolein oxime are investigated in different solvents and at a wide range of temperature for obtaining information on the reaction mechanism. Acrolein oxime is polymerized ionically, irrespective of dryness of the sample. Arrhenius plots for the polymerization rate, which do not yield a linear relation, can be adequately approximated by two straight lines. An anionic mechanism is operative above the room temperature, while a cationic mechanism predominates below -230C. The reaction in the intermediate temperature range proceeds by a competitive mechanism, and the rate of the anionic and cationic polymerizations becomes equal at the temperature near -50C. The reaction rate is proportional to the square root of dose rate at room temperature and -230C. On the basis of these data, it is proposed that the polymerization of acrolein oxime by γ-irradiation proceeds by free-ionic mechanisms. (author)

  16. The Uremic Toxin Acrolein Promotes Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Mohamed Siyabeldin E. Ahmed

    2013-05-01

    Full Text Available Background: Anemia is a major complication of end stage renal disease. The anemia is mainly the result of impaired formation of erythrocytes due to lack of erythropoietin and iron deficiency. Compelling evidence, however, points to the contribution of accelerated erythrocyte death, which decreases the life span of circulating erythrocytes. Erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i. Erythrocytes could be sensitized to cytosolic Ca2+ by ceramide. In end stage renal disease, eryptosis may possibly be stimulated by uremic toxins. The present study explored, whether the uremic toxin acrolein could trigger eryptosis. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ceramide from fluorescent antibodies. Results: A 48 h exposure to acrolein (30 - 50 µM did not significantly modify [Ca2+]i but significantly decreased forward scatter and increased annexin-V-binding. Acrolein further triggered slight, but significant hemolysis and increased ceramide formation in erythrocytes. Acrolein (50 µM induced annexin-V-binding was significantly blunted in the nominal absence of extracellular Ca2+. Acrolein augmented the annexin-V-binding following treatment with Ca2+ ionophore ionomycin (1 µM. Conclusion: Acrolein stimulates suicidal erythrocyte death or eryptosis, an effect at least in part due to stimulation of ceramide formation with subsequent sensitisation of the erythrocytes to cytosolic Ca2+.

  17. Determination of Urine 3-HPMA, a Stable Acrolein Metabolite in a Rat Model of Spinal Cord Injury

    OpenAIRE

    Zheng, Lingxing; Park, Jonghyuck; Walls, Michael; Tully, Melissa; Jannasch, Amber; Cooper, Bruce; Shi, Riyi

    2013-01-01

    Acrolein has been suggested to be involved in a variety of pathological conditions. The monitoring of acrolein is of significant importance in delineating the pathogenesis of various diseases. Aimed at overcoming the reactivity and volatility of acrolein, we describe a specific and stable metabolite of acrolein in urine, N-acetyl-S-3-hydroxypropylcysteine (3-HPMA), as a potential surrogate marker for acrolein quantification. Using the LC/MS/MS method, we demonstrated that 3-HPMA was significa...

  18. Effect of acrolein and glutathione depleting agents on thioredoxin

    International Nuclear Information System (INIS)

    Acrolein is a widespread environmental pollutant that reacts rapidly with nucleophiles, especially cellular thiols. In addition to glutathione (GSH), thioredoxin (Trx) and thioredoxin reductase (TR) contain thiol groups and may react with electrophiles. In the present study, A549 cells treated with 5-25 μM acrolein for 30 min lost cellular Trx activity in a dose-dependent fashion. Over 90% of Trx activity was lost at concentrations of 25 μM or greater. In contrast, Trx protein content, as assessed by western blotting, was not altered immediately after the 30 min acrolein treatment. Both Trx activity and protein levels increased 4 h after the acrolein treatment. However, Trx activity remained below control levels at 24 h. A similar dose-response relationship was seen with TR in A549 cells exposed to acrolein. There was, however, a rapid recovery of TR activity such that it attained normal levels by 4 h after doses ≤75 μM acrolein. Diethyl maleate (DEM), a common but not highly specific, agent used to deplete GSH, also inactivated Trx. A 2 h exposure of A549 cells to 1 mM DEM depleted cellular GSH by ∼50% and diminished Trx activity by over 67%. Lower DEM doses (0.125 mM and 0.25 mM) for 1 h had no significant effect on GSH but significantly decreased Trx activity 12 and 23%, respectively. Similar to immediately after acrolein exposure, DEM did not affect Trx protein levels. A Trx-1-GFP fusion protein was transfected into A549 cells. While the fusion protein was expressed, the Trx component was inactive by the insulin reducing assay. In summary, Trx and TR are inactivated by acrolein. In addition, the GSH depleting agent DEM inactivates Trx somewhat more effectively than it depletes GSH. The Trx-1-GFP fusion protein, while readily expressed, appears to have little or no activity, perhaps because the small size of Trx-1 (12 kDa) is affected by the larger GFP

  19. Selective Enzymatic Reduction of Aldehydes

    Directory of Open Access Journals (Sweden)

    Patrizia Di Gennaro

    2006-05-01

    Full Text Available Highly selective enzymatic reductions of aldehydes to the corresponding alcohols was performed using an E. coli JM109 whole cell biocatalyst. A selective enzymatic method for the reduction of aldehydes could provide an eco-compatible alternative to chemical methods. The simplicity, fairly wide scope and the very high observed chemoselectivity of this approach are its most unique features.

  20. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  1. Evaluation of dementia by acrolein, amyloid-β and creatinine.

    Science.gov (United States)

    Igarashi, Kazuei; Yoshida, Madoka; Waragai, Masaaki; Kashiwagi, Keiko

    2015-10-23

    Plasma, urine and cerebrospinal fluid (CSF) were examined for biochemical markers of dementia. Protein-conjugated acrolein (PC-Acro) and the amyloid-β (Aβ)40/42 ratio in plasma can be used to detect mild cognitive impairment (MCI) and Alzheimer's disease (AD). In plasma, PC-Acro and the Aβ40/42 ratio in MCI and AD were significantly higher relative to non-demented subjects. Furthermore, urine acrolein metabolite, 3-hydroxypropyl mercapturic acid (3-HPMA)/creatinine (Cre) and amino acid-conjugated acrolein (AC-Acro)/Cre in AD were significantly lower than MCI. It was also shown that reduced urine 3-HPMA/Cre correlated with increased plasma Aβ40/42 ratio in dementia. The Aβ40/PC-Acro ratio in CSF, together with Aβ40 and Aβ40/42 ratio, was lower in AD than MCI. Increased plasma PC-Acro and Aβ40/42 ratio and decreased urine 3-HPMA/Cre correlated with cognitive ability (MMSE). These results indicate that the measurements of acrolein derivatives together with Aβ and Cre in biologic fluids is useful to estimate severity of dementia. PMID:26196945

  2. The tobacco smoke component acrolein induces glucocorticoid resistant gene expression via inhibition of histone deacetylase.

    Science.gov (United States)

    Randall, Matthew J; Haenen, Guido R M M; Bouwman, Freek G; van der Vliet, Albert; Bast, Aalt

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is the leading cause of cigarette smoke-related death worldwide. Acrolein, a crucial reactive electrophile found in cigarette smoke mimics many of the toxic effects of cigarette smoke-exposure in the lung. In macrophages, cigarette smoke is known to hinder histone deacetylases (HDACs), glucocorticoid-regulated enzymes that play an important role in the pathogenesis of glucocorticoid resistant inflammation, a common feature of COPD. Thus, we hypothesize that acrolein plays a role in COPD-associated glucocorticoid resistance. To examine the role of acrolein on glucocorticoid resistance, U937 monocytes, differentiated with PMA to macrophage-like cells were treated with acrolein for 0.5h followed by stimulation with hydrocortisone for 8h, or treated simultaneously with LPS and hydrocortisone for 8h without acrolein. GSH and nuclear HDAC activity were measured, or gene expression was analyzed by qPCR. Acrolein-mediated TNFα gene expression was not suppressed by hydrocortisone whereas LPS-induced TNFα expression was suppressed. Acrolein also significantly inhibited nuclear HDAC activity in macrophage-like cells. Incubation of recombinant HDAC2 with acrolein led to the formation of an HDAC2-acrolein adduct identified by mass spectrometry. Therefore, these results suggest that acrolein-induced inflammatory gene expression is resistant to suppression by the endogenous glucocorticoid, hydrocortisone. PMID:26481333

  3. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott A.

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  4. Acrolein-Exposed Normal Human Lung Fibroblasts in Vitro: Cellular Senescence, Enhanced Telomere Erosion, and Degradation of Werner’s Syndrome Protein

    OpenAIRE

    Jang, Jun-Ho; Bruse, Shannon; Huneidi, Salam; Schrader, Ronald M; Monick, Martha M.; Lin, Yong; Carter, A. Brent; Klingelhutz, Aloysius J.; Nyunoya, Toru

    2014-01-01

    Background: Acrolein is a ubiquitous environmental hazard to human health. Acrolein has been reported to activate the DNA damage response and induce apoptosis. However, little is known about the effects of acrolein on cellular senescence. Objectives: We examined whether acrolein induces cellular senescence in cultured normal human lung fibroblasts (NHLF). Methods: We cultured NHLF in the presence or absence of acrolein and determined the effects of acrolein on cell proliferative capacity, sen...

  5. Acrolein induces vasodilatation of rodent mesenteric bed via an EDHF-dependent mechanism

    International Nuclear Information System (INIS)

    Acrolein is generated endogenously during lipid peroxidation and inflammation and is an environmental pollutant. Protein adducts of acrolein are detected in atherosclerotic plaques and neurons of patients with Alzheimer's disease. To understand vascular effects of acrolein exposure, we studied acrolein vasoreactivity in perfused rodent mesenteric bed. Acrolein induced endothelium-dependent vasodilatation that was more robust and more sensitive than dilation induced by 4-hydroxy-trans-2-nonenal, trans-2-hexenal, or propionaldehyde. Acrolein-induced vasodilatation was mediated by K+-sensitive components, e.g., it was abolished in 0 [K+]o buffer or in 3 mM tetrabutylammonium, inhibited 75% in 50 μM ouabain, and inhibited 64% in 20 mM K+ buffer. Moreover, combined treatment with the Ca2+-activated K+ channel inhibitors 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34, 100 nM) and apamin (5 μM) significantly reduced vasodilatation without altering sensitivity to acrolein. However, acrolein-induced % dilation was unaffected by L-NAME or indomethacin pretreatment indicating mechanistic independence of NO and prostaglandins. Moreover, acrolein induced vasodilatation in cirazoline-precontracted mesenteric bed of eNOS-null mice confirming eNOS independence. Pretreatment with 6-(2-propargyloxyphenyl) hexanoic acid (PPOH 50 μM), an epoxygenase inhibitor, or the superoxide dismutase mimetic Tempol (100 μM) significantly attenuated acrolein-induced vasodilatation. Collectively, these data indicate that acrolein stimulates mesenteric bed vasodilatation due to endothelium-derived signal(s) that is K+-, ouabain-, PPOH-, and Tempol-sensitive, and thus, a likely endothelium-derived hyperpolarizing factor (EDHF). These data indicate that low level acrolein exposure associated with vascular oxidative stress or inflammation stimulates vasodilatation via EDHF release in medium-sized arteries - a novel function

  6. Acrolein Decreases Endothelial Cell Migration and Insulin Sensitivity Through Induction of let-7a

    OpenAIRE

    O'Toole, Timothy E.; Abplanalp, Wesley; Li, Xiaohong; Cooper, Nigel; Conklin, Daniel J.; Haberzettl, Petra; Bhatnagar, Aruni

    2014-01-01

    Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for these effects is unknown. Moreover, the effects of acrolein on microRNA (miRNA) have not been studied....

  7. Intrathecal cannabinoid-1 receptor agonist prevents referred hyperalgesia in acute acrolein-induced cystitis in rats

    OpenAIRE

    Jones, Marsha Ritter; Wang, Zun-Yi; Bjorling, Dale E

    2015-01-01

    We investigated the capacity of intrathecal arachidonyl-2’-chloroethylamide (ACEA), a cannabinoid-1 receptor (CB1R) agonist, to inhibit referred hyperalgesia and increased bladder contractility resulting from acute acrolein-induced cystitis in rats. 24 female rats were divided into 4 groups: 1) intrathecal vehicle/intravesical saline; 2) intrathecal vehicle/intravesical acrolein; 3) intrathecal ACEA/intravesical saline; and 4) intrathecal ACEA/intravesical acrolein. Bladder catheters were pla...

  8. Effects of cyclophosphamide and a metabolite, acrolein, on Naegleria fowleri in vitro and in vivo.

    OpenAIRE

    Zhang, L.; Marciano-Cabral, F; Bradley, S G

    1988-01-01

    Mice challenged intranasally with Naegleria fowleri died of primary amoebic meningoencephalitis. Mice given 30 mg of cyclophosphamide per kg of body weight daily for 10 days starting 2 days before challenge were protected. Neither cyclophosphamide nor serum from cyclophosphamide-treated mice inhibited N. fowleri in vitro. A metabolic product of cyclophosphamide, acrolein, inhibited growth and enflagellation of N. fowleri. Acrolein at 40 microM was amoebicidal. Acrolein injured starved cells a...

  9. ACROLEIN ACTIVATES MATRIX METALLOPROTEINASES BY INCREASING REACTIVE OXYGEN SPECIES IN MACROPHAGES

    OpenAIRE

    O’Toole, Timothy E.; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinas...

  10. Quantification of Carnosine-Aldehyde Adducts in Human Urine.

    Science.gov (United States)

    da Silva Bispo, Vanderson; Di Mascio, Paolo; Medeiros, Marisa

    2014-10-01

    Lipid peroxidation generates several reactive carbonyl species, including 4-hydroxy-2-nonenal (HNE), acrolein (ACR), 4-hydroxy-2-hexenal (HHE) and malondialdehyde. One major pathwayof aldehydes detoxification is through conjugation with glutathione catalyzed by glutathione-S-transferases or, alternatively, by conjugation with endogenous histidine containing dipeptides, such as carnosine (CAR). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of CAR- ACR, CAR-HHE and CAR-HNE adducts in human urinary samples from non-smokers young adults. Standard adducts were prepared and isolated by HPLC. The results showed the presence of a new product from the reaction of CAR with ACR. This new adduct was completely characterized by HPLC/MS-MSn, 1H RMN, COSY and HSQC. The new HPLC/MS/MS methodology employing stable isotope-labeled internal standards (CAR-HHEd5 and CAR-HNEd11) was developed for adducts quantification. This methodology permits quantification of 10pmol CAR-HHE and 1pmol of CAR-ACR and CAR-HNE. Accurate determinations in human urine sample were performed and showed 4.65±1.71 to CAR-ACR, 5.13±1.76 to CAR-HHE and 5.99±3.19nmol/mg creatinine to CAR-HNE. Our results indicate that carnosine pathways can be an important detoxification route of a, ß -unsaturated aldehydes. Moreover, carnosine adducts may be useful as redox stress indicator. PMID:26461323

  11. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    International Nuclear Information System (INIS)

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B4 (LTB4) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB4 production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB4. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB4, subsequent MMP-9 production and plaque rupture.

  12. A single exposure to acrolein causes arrhythmogenesis, cardiac electrical dysfunction and decreased heart rate variability in hypertensive rats

    Science.gov (United States)

    Epidemiological studies demonstrate an association between cardiovascular morbidity, arrhythmias, and exposure to air toxicants such as acrolein. We hypothesized that a single exposure to acrolein would increase arrhythmias and cause changes in the electrocardiogram (ECG) of hype...

  13. Mass spectrometry-based quantification of myocardial protein adducts with acrolein in an in vivo model of oxidative stress

    OpenAIRE

    Wu, Jianyong; Stevens, Jan F.; Maier, Claudia S.

    2011-01-01

    Acrolein exposure leads to the formation of protein-acrolein adducts. Protein modification by acrolein has been associated with various chronic diseases including cardiovascular and neurodegenerative diseases. Here we report an analytical strategy that enables the quantification of Michael-type protein adducts of acrolein in mitochondrial proteome samples using liquid chromatography in combination with tandem mass spectrometry and selected ion monitoring (LC-MS/MS SRM) analysis. Our approach ...

  14. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR ACROLEIN (EXTERNAL REVIEW DRAFT)

    Science.gov (United States)

    Acrolein is a colorless to yellowish flammable liquid with a disagreeable, choking odor. The principal use of acrolein is as an intermediate in the synthesis of acrylic acid, which is used to make acrylates, and of DL-methionine, an essential amino acid used as an animal feed su...

  15. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    International Nuclear Information System (INIS)

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+]i), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+]I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+]I, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  16. Nanocarbons as catalyst for selective oxidation of acrolein to acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Frank, B.; Blume, R.; Rinaldi, A.; Trunschke, A.; Schloegl, R. [Fritz Haber Institute of the Max Planck Society, Berlin (Germany). Dept. of Inorganic Chemistry

    2011-07-01

    Selective oxidations are key steps of industrial oil and gas processing for the synthesis of high-value chemicals. Mixed metal oxides based on redox active V or Mo are frequently used for oxidative C-H bond activation. However, multiple processes require precious metals or suffer from low product selectivity demanding an ongoing search for cost-effective alternatives. Recently, the nanostructured carbon was reported to catalyze the metal-free selective alkane activation by oxidative dehydrogenation (ODH). Electron-rich surface carbonyls coordinate this reaction and mimic the active oxygen species in metal oxide catalysts. Here we show that the graphitic carbon, beyond ODH, has the potential to selectively mediate the insertion of an oxygen atom into an organic molecule, i.e., acrolein. Multi-step atom rearrangements considerably exceed the mechanistic complexity of hydrogen abstraction and were so far believed to be the exclusive domain of metal (oxide) catalysis. In the carbon catalyzed process, the nucleophilic oxygen atoms terminating the graphite (0001) surface abstract the formyl hydrogen and the activated aldehyde gets oxidized by epoxide-type mobile oxygen, thus the sp{sup 2} carbon acts as a bifunctional catalyst. Substantial similarities between the metal oxide- and carbon-catalyzed reactions could be identified. Our results shed light on a rarely known facet of applications of nanostructured carbon materials being decorated with diverse oxygen functionalities to coordinate complex catalytic processes. We could successfully transfer the results obtained from the graphite model to carbon nanotubes (CNTs) providing a higher surface area, defect density, and intrinsic activity, to substantially increase the reactivity per catalyst volume. Indeed, low dimensional nanostructured carbon is a highly flexible and robust material which can be modified in a multiple manner to optimize its properties with respect to the intended application. The exploration of

  17. Promoting effect of Ir on the catalytic property of Ru/ZnO catalysts for selective hydrogenation of crotonaldehyde

    International Nuclear Information System (INIS)

    A series of ZnO supported Ru–Ir bimetal catalysts were prepared and tested for vapor-phase selective hydrogenation of crotonaldehyde. The addition of Ir could effectively promote the catalytic performance, especially the catalyst stability. A Ru–0.5Ir/ZnO catalyst showed the highest activity (a conversion of 63.3%) and selectivity to crotyl alcohol (94.4%) after 30 h reaction. The enhanced stability was attributed to the modified electronic property of Ru by the formation of RuIr alloy as the X-ray photoelectron spectroscopy results showed charge transfer from Ru to Ir, as well as the weakened surface acidity in the Ru–Ir/ZnO catalyst as evidenced by NH3 temperature-programmed desorption technique. Besides, the deactivation of the catalysts was due to the strong chemisorption of CO on the metal surface via decarbonylation reaction and deposition of organic compounds on the catalyst surface, which was characterized by CO poisoning experiment, CO temperature-programmed desorption and temperature-programmed oxidation methods.

  18. Role of endoplasmic reticulum stress in acrolein-induced endothelial activation

    International Nuclear Information System (INIS)

    Acrolein is a ubiquitous environmental pollutant and an endogenous product of lipid peroxidation. It is also generated during the metabolism of several drugs and amino acids. In this study, we examined the effects of acrolein on endothelial cells. Treatment of human umbilical vein endothelial cells (HUVECs) with 2 to 10 μM acrolein led to an increase in the phosphorylation of eIF-2α within 10 to 30 min of exposure. This was followed by alternate splicing of XBP-1 mRNA and an increase in the expression of the endoplasmic reticulum (ER) chaperone genes Grp78 and Herp. Within 2-4 h of treatment, acrolein also increased the abundance and the nuclear transport of the transcription factors ATF3, AFT4, and CHOP. Acrolein-induced increase in ATF3 was prevented by treating the cells with the chemical chaperone - phenylbutyric acid (PBA). Treatment with acrolein increased phosphorylation of ERK1/2, p38, and JNK. The increase in JNK phosphorylation was prevented by PBA. Acrolein treatment led to activation and nuclear translocation of the transcription factor NF-κB and an increase in TNF-α, IL-6 and IL-8, but not MCP-1, mRNA. Increased expression of cytokine genes and NF-κB activation were not observed in cells treated with PBA. These findings suggest that exposure to acrolein induces ER stress and triggers the unfolded protein response and that NF-κB activation and stimulation of cytokine production by acrolein could be attributed, in part, to ER stress. Chemical chaperones of protein-folding may be useful in treating toxicological and pathological states associated with excessive acrolein exposure or production

  19. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    International Nuclear Information System (INIS)

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across

  20. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  1. Studies on the polymerization of acrolein oxime, 13

    International Nuclear Information System (INIS)

    The radiation-induced polymerization of acrolein oxime was carried out at temperatures ranging from room temperature to -780C, and the resulting low molecular products were analyzed by gas chromatography-mass spectrometry. Acetaldoxime, propionaldoxime, propenylhydroxylamines, dioximes etc. were obtained. Initial processes of the polymerization are discussed on the basis of these reaction products. The present work offers further corroborating evidence for the already-described postulation that an anionic mechanism is operative above room temperature, and a cationic mechanism is predominant below -230C. (author)

  2. HPLC analysis of aldehydes in automobile exhaust gas: Comparison of exhaust odor and irritation in different types of gasoline and diesel engines

    International Nuclear Information System (INIS)

    This study investigated high performance liquid chromatography (HPLC) to identify and measure aldehydes from automobile exhaust gas. Four aldehydes: formaldehyde (HCHO), acetaldehyde (CH3CHO), acrolein (H2C=CHCHO) and propionaldehyde (CH3CH2CHO) and one ketone, acetone (CH3)2CO are separated. The other higher aldehydes in exhaust gas are very small and cannot be separated. A new method of gas sampling, hereafter called bag sampling in HPLC is introduced instead of the trapping gas sampling method. The superiority of the bag sampling method is its transient gas checking capability. In the second part of this study, HPLC results are applied to compare exhaust odor and irritation of exhaust gases in different types of gasoline and diesel engines. Exhaust odor, irritation and aldehydes are found worst in direct injection (DI) diesel engines and best in some good multi-point injection (MPI) gasoline and direct injection gasoline (DIG) engines. Indirect injection (IDI) diesel engines showed odor, irritation and aldehydes in between the levels of MPI gasoline, DIG and DI diesel engines

  3. Scavenging of Toxic Acrolein by Resveratrol and Hesperetin and Identification of Adducts.

    Science.gov (United States)

    Wang, Weixin; Qi, Yajing; Rocca, James R; Sarnoski, Paul J; Jia, Aiqun; Gu, Liwei

    2015-11-01

    The objective of this study was to investigate the ability of resveratrol and hesperetin to scavenge acrolein at pH 7.4 and 37 °C. About 6.4 or 5.2% of acrolein remained after reaction with resveratrol or hesperetin for 12 h at equimolar concentrations. An acrolein-resveratrol adduct and two acrolein-hesperetin adducts were isolated. Their structures were elucidated using mass and NMR spectroscopy. Acrolein reacted with resveratrol at the C-2 and C-3 positions through nucleophilic addition and formed an additional heterocyclic ring. Two similar monoacrolein-conjugated adducts were identified for hesperetin. Spectroscopic data suggested each acrolein-hesperetin adduct was a mixture of four stereoisomers due to the existence of two chiral carbon atoms. Yield of adducts was low at pH 5.4 but increased at pH 7.4 and 8.4. Higher pH also promoted the formation of diacrolein adducts. Results suggest that resveratrol and hesperetin exert health benefits in part through neutralizing toxic acrolein in vivo. PMID:26457480

  4. Synthesis of 5'-Aldehyde Oligonucleotide.

    Science.gov (United States)

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  5. ROLE OF ENDOPLASMIC RETICULUM STRESS IN ACROLEIN-INDUCED ENDOTHELIAL ACTIVATION

    OpenAIRE

    Haberzettl, Petra; Vladykovskaya, Elena; Srivastava, Sanjay; Bhatnagar, Aruni

    2008-01-01

    Acrolein is a ubiquitous environmental pollutant and an endogenous product of lipid peroxidation. It is also generated during the metabolism of several drugs and amino acids. In this study, we examined the effects of acrolein on endothelial cells. Treatment of human umbilical vein endothelial cells (HUVECs) with 2 to 10 μM acrolein led to an increase in the phosphorylation of eIF-2α within 10 to 30 min of exposure. This was followed by alternate splicing of XBP-1 mRNA and an increase in the e...

  6. Theoretical studies of acrolein hydrogenation on Au20 nanoparticle

    Science.gov (United States)

    Li, Zhe; Chen, Zhao-Xu; He, Xiang; Kang, Guo-Jun

    2010-05-01

    Gold nanoparticles play a key role in catalytic processes. We investigated the kinetics of stepwise hydrogenation of acrolein on Au20 cluster model and compared with that on Au(110) surface. The rate-limiting step barrier of CC reduction is about 0.5 eV higher than that of CO hydrogenation on Au(110) surface. On Au20 nanoparticle, however, the energy barrier of the rate-determining step for CC hydrogenation turns out to be slightly lower than the value for the CO reduction. The selectivity difference on the two substrate models are attributed to different adsorption modes of acrolein: via the CC on Au20, compared to through both CC and CO on Au(110). The preference switch implies that the predicted selectivity of competitive hydrogenation depends on substrate model sensitively, and particles with more low-coordinated Au atoms than flat surfaces are favorable for CC hydrogenation, which is in agreement with experimental result.

  7. Process for producing furan from furfural aldehyde

    Science.gov (United States)

    Diebold, James P.; Evans, Robert J.

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  8. Microsphere coated substrate containing reactive aldehyde groups

    Science.gov (United States)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  9. Acrolein: unwanted side product or contribution to antiangiogenic properties of metronomic cyclophosphamide therapy?

    OpenAIRE

    Günther, M; Wagner, E.; Ogris, M.

    2008-01-01

    Tumour therapy with cyclophosphamide (CPA), an alkylating chemotherapeutic agent, has been associated with reduced tumour blood supply and antiangiogenic effects when applied in a continuous, low-dose metronomic schedule. Compared to conventional high-dose scheduling, metronomic CPA therapy exhibits antitumoural activity with reduced side effects. We have studied potential antiangiogenic properties of acrolein which is released from CPA after hydroxylation. Acrolein adducts were found in tumo...

  10. Two-color fluorescence labeling in acrolein-fixed brain tissue

    OpenAIRE

    Luquin, E. (Esther); Perez-Lorenzo, E. (Eva); Aymerich, M.S. (María S.); Mengual, E. (Elisa)

    2009-01-01

    Acrolein is a potent fixative that provides both excellent preservation of ultrastructural morphology and retention of antigenicity, thus it is frequently used for immunocytochemical detection of antigens at the electron microscopic level. However, acrolein is not commonly used for fluorescence microscopy because of concerns about possible autofluorescence and destruction of the luminosity of fluorescent dyes. Here we describe a simple protocol that allows fine visualization of two fluorescen...

  11. Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease

    OpenAIRE

    Stevens, Jan F.; Maier, Claudia S.

    2008-01-01

    Acrolein (2-propenal) is ubiquitously present in (cooked) foods and in the environment. It is formed from carbohydrates, vegetable oils and animal fats, amino acids during heating of foods, and by combustion of petroleum fuels and biodiesel. Chemical reactions responsible for release of acrolein include heat-induced dehydration of glycerol, retro-aldol cleavage of dehydrated carbohydrates, lipid peroxidation of polyunsaturated fatty acids, and Strecker degradation of methionine and threonine....

  12. Determination of acrolein, ethanol, volatile acidity, and copper in different samples of sugarcane spirits

    OpenAIRE

    José Masson; Maria das Graças Cardoso; Lidiany Mendonça Zacaroni; Jeancarlo Pereira dos Anjos; Adelir Aparecida Sackz; Ana Maria de Resende Machado; David Lee Nelson

    2012-01-01

    Seventy-one samples of sugarcane spirits from small and average size stills produced in the northern and southern Minas Gerais (Brazil) were analyzed for acrolein using HPLC (High Performance Liquid Chromatography). Ethanol and copper concentrations and volatile acidity were also determined according to methods established by the Ministry of Agriculture, Livestock and Supply (MAPA). A total of 9.85% of the samples tested showed levels of acrolein above the legal limits, while the copper conce...

  13. Glycerol valorization: dehydration to acrolein over silica-supported niobia catalysts

    OpenAIRE

    Shiju, N.R.; Brown, D R; Wilson, K.; Rothenberg, G.

    2010-01-01

    The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV-Vis, XPS, N2 adsorption), as well as with ammonia adsorption microcalorimetry. Good results are obtained with initial glycerol conversions of over 70% and with 50-70% selectivity to acrolein. We investigate the influence of...

  14. Identification of alpha-beta unsaturated aldehydes as sources of toxicity to activated sludge biomass in polyester manufacturing wastewater.

    Science.gov (United States)

    Caffaro-Filho, R A; Wagner, R; Umbuzeiro, G A; Grossman, M J; Durrant, L R

    2010-01-01

    Wastewater generated in industrial production processes are often contaminated by hazardous chemicals. Characterization by means of toxicity-directed analysis is useful for identifying which fractions of a waste stream possess the most toxicity. We applied this approach to evaluate toxic components of a polyester manufacturing wastewater. Using the reduction in oxygen uptake rate of activated sludge as an indicator of toxicity, it was determined that increasing the pH from 3 to 11 followed by air stripping significantly reduced the toxicity of the wastewater. Comparative headspace GC/MS analysis of wastewater at different pHs selected a group of Volatile Organic Compounds (VOCs) associated with the observed effect of air stripping at pH 11. Ten of these compounds were identified as alpha,beta unsaturated aldehydes (acrolein (2-propenal) congeners); these compounds are known to be toxic as well as mutagenic. Confirmation that these compounds were a cause of toxicity was achieved by demonstrating that removal of these compounds by air stripping significantly reduced the wastewater mutagenic potency in a Salmonella mutagenicity assay. Formation of these volatile compounds by base catalyzed aldol condensation at pH 11 may account for the effectiveness of air stripping in reducing toxicity. To date there is no record in the literature about the toxicity and presence of acrolein congeners in polyester manufacturing wastewater. PMID:20418629

  15. Acrolein and Asthma Attack Prevalence in a Representative Sample of the United States Adult Population 2000 – 2009

    OpenAIRE

    deCastro, B. Rey

    2014-01-01

    Background Acrolein is an air toxic and highly potent respiratory irritant. There is little epidemiology available, but US EPA estimates that outdoor acrolein is responsible for about 75 percent of non-cancer respiratory health effects attributable to air toxics in the United States, based on the Agency's 2005 NATA (National-Scale Air Toxics Assessment) and acrolein's comparatively potent inhalation reference concentration of 0.02 µg/m3. Objectives Assess the association between estimated out...

  16. Studies on the Toxicity of Acetone, Acrolein and Carbon Dioxide on Stored-Product Insects and Wheat Seed

    OpenAIRE

    Ali Asghar Pourmirza; Mehdie Tajbakhsh

    2008-01-01

    In laboratory experiments toxicity of acetone, acrolein and carbon dioxide were investigated against 4 species of stored-product insects. In all experiments, acrolein was the most toxic compound to the tested insects. In empty-space trials, estimated LD50 values of acrolein for adults of Tribolium castaneum (Herbst) (Tenebrionidae), Rhizopertha dominica (F.) (Bostrychidae), Sitophilus oryzae L. (Curculionidae) and Oryzaephilus surinamensis L. (Silvanidae) were 7.26, 6.09, 6.37 and 5.65...

  17. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    OpenAIRE

    Yang Sun; Sachiko Ito; Naomi Nishio; Yuriko Tanaka; Nana Chen; Lintao Liu; Ken-ichi Isobe

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing...

  18. Inhibition of acrolein-stimulated MUC5AC expression by Platycodon grandiflorum root-derived saponin in A549 cells.

    Science.gov (United States)

    Choi, Jae Ho; Hwang, Yong Pil; Han, Eun Hee; Kim, Hyung Gyun; Park, Bong Hwan; Lee, Hyun Sun; Park, Byung Keun; Lee, Young Chun; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Mucin overproduction is a hallmark of chronic airway diseases such as chronic obstructive pulmonary disease. In this study, we investigated the inhibition of acrolein-induced expression of mucin 5, subtypes A and C (MUC5AC) by Changkil saponin (CKS) in A549 cells. Acrolein, a known toxin in tobacco smoke and an endogenous mediator of oxidative stress, increases the expression of airway MUC5AC, a major component of airway mucus. CKS, a Platycodon grandiflorum root-derived saponin, inhibited acrolein-induced MUC5AC expression and activity, through the suppression of NF-κB activation. CKS also repressed acrolein-induced phosphorylation of ERK1/2, JNK1/2, and p38MAPK, which are upstream signaling molecules that control MUC5AC expression. In addition, the MAPK inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2), and SB203580 (p38 MAPK), and a PKC delta inhibitor (rottlerin; PKCδ) inhibited acrolein-induced MUC5AC expression and activity. CKS repressed acrolein-induced phosphorylation of PKCδ. Moreover, a reactive oxygen species (ROS) inhibitor, N-acetylcysteine, inhibited acrolein-induced MUC5AC expression and activity through the suppression of PKCδ and MAPK activation, and CKS repressed acrolein-induced ROS production. These results suggest that CKS suppresses acrolein-induced MUC5AC expression by inhibiting the activation of NF-κB via ROS-PKCδ-MAPK signaling. PMID:21664222

  19. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Directory of Open Access Journals (Sweden)

    Medina-Navarro Rafael

    2011-11-01

    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  20. POTENTIATION OF PULMONARY REFLEX RESPONSE TO CAPSAICIN 24 HOURS FOLLOWING WHOLE-BODY ACROLEIN EXPOSURE IS MEDIATED BY TRPV1

    Science.gov (United States)

    Pulmonary C-fibers are stimulated by irritant air pollutants producing apnea, bronchospasm, and decrease in HR. C-fiber chemoreflex activation is mediated by TRPV1 and release of substance P. While acrolein has been shown to stimulate C-fibers, the persistence of acrolein effect...

  1. Implications for the formation of abasic sites following modification of polydeoxycytidylic acid by acrolein in vitro

    International Nuclear Information System (INIS)

    Polydeoxycytidylic acid (poly dC) was incubated with excess acrolein. A Nensorb 20 nucleic acid purification cartridge was used to bind the polymeric material in the poly dC/acrolein reaction mixture. The non-polymeric material eluted from this column had a UV absorbance four times higher than that of the control. The flourescence spectrum of the eluted material did not correspond to that of unmodified cytosine. Separate aliquots of the reaction mixture were digested to deoxynucleotide 3'-monophosphates by incubation with micrococcal nuclease and spleen phosphodiesterase. The products were converted to 32P-labelled deoxynucleotide 3',5-biphosphates by incubation with T4 polynucleotide kinase and excess [γ-32P]ATP. The '-monophosphate was selectively removed by incubation with nuclease P1. Two dimensional thin-layer chromatography (TLC) on polyethyleneimine cellulose (PEI)-cellulose and detection of 32P-labeled deoxynucleotide 5'-monophosphates by autoradiography failed to provide evidence for the formation of an acrolein adduct of deoxycytidine 5'-monophosphate. When acrolein-modified deoxycytidine 5'-monophosphate, was detected. These data show that acrolein-modified deoxycytidine 3'-monophosphates are substrates for 32P labeling by T4 polynucleotide kinase and are stable under the assay conditions employed

  2. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation

    International Nuclear Information System (INIS)

    Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels

  3. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  4. Spectators Control Selectivity in Surface Chemistry: Acrolein Partial Hydrogenation Over Pd.

    Science.gov (United States)

    Dostert, Karl-Heinz; O'Brien, Casey P; Ivars-Barceló, Francisco; Schauermann, Swetlana; Freund, Hans-Joachim

    2015-10-28

    We present a mechanistic study on selective hydrogenation of acrolein over model Pd surfaces--both single crystal Pd(111) and Pd nanoparticles supported on a model oxide support. We show for the first time that selective hydrogenation of the C═O bond in acrolein to form an unsaturated alcohol is possible over Pd(111) with nearly 100% selectivity. However, this process requires a very distinct modification of the Pd(111) surface with an overlayer of oxopropyl spectator species that are formed from acrolein during the initial stages of reaction and turn the metal surface selective toward propenol formation. By applying pulsed multimolecular beam experiments and in situ infrared reflection-absorption spectroscopy, we identified the chemical nature of the spectator and the reactive surface intermediate (propenoxy species) and experimentally followed the simultaneous evolution of the reactive intermediate on the surface and formation of the product in the gas phase. PMID:26481220

  5. Quantitative analysis of acrolein in heated vegetable oils by liquid chromatography with pulsed electrochemical detection.

    Science.gov (United States)

    Casella, Innocenzo G; Contursi, Michela

    2004-09-22

    A sensitive and selective analytical method for the determination of acrolein in heated vegetable oils by liquid chromatographic separation with pulsed electrochemical detection is described. An optimized triple-step pulsed waveform, based on the formation/inhibition of PtOH species on the electrode surface, a consequence of the absence/presence of adsorbing analytes, is described for the sensitive detection of acrolein in acidic medium. Under these optimized experimental conditions the proposed analytical method allowed detection limits of 0.15 microM without pre- or postcolumn derivatization or tedious cleanup procedures. The proposed analytical method was successfully employed for the sensitive determination of acrolein in fresh and heated vegetable oils with good mean recoveries, selectivity, and analytical reproducibility. PMID:15366826

  6. Multiple aldehyde reductases of human brain.

    Science.gov (United States)

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-01-01

    Human brain contains four forms of aldehyde reducing enzymes. One major activity, designated AR3, has properties indicating its identity with the NADPH-dependent aldehyde reductase, EC 1.1.1.2. The other major form of human brain enzyme, AR1, which is also NADPH-dependent, reduces both aldehyde and ketone-containing substrates, including vitamin K3 (menadione) and daunorubicin, a cancer chemotherapeutic agent. This enzyme is very sensitive to inhibition by the flavonoids quercitrin and quercetine, and may be analogous to a daunorubicin reductase previously described in liver of other species. One minor form of human brain aldehyde reductase, AR2, demonstrates substrate specificity and inhibitor sensitivity which suggest its similarity to aldose reductases found in lens and other tissues of many species. This enzyme, which can also use NADH as cofactor to some extent, is the most active in reducing the aldehyde derivatives of the biogenic amines. The fourth human brain enzyme ("SSA reductase") differs from the other forms in its ability to use NADH as well as or better than NADPH as cofactor, and in its molecular weight, which is nearly twice that of the other forms. It is quite specific for succinic semialdehyde (SSA) as substrate, and was found to be significantly inhibited only by quercetine and quercitrin. AR3 can also reduce SSA, and both enzymes may contribute to the production of gamma-hydroxybutyric acid in vivo. These results indicate that the human brain aldehyde reductases can play relatively specific physiologic roles. PMID:7424738

  7. Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells.

    Science.gov (United States)

    Bittencourt, Leonardo da Silva; Zeidán-Chuliá, Fares; Yatsu, Francini Kiyono Jorge; Schnorr, Carlos Eduardo; Moresco, Karla Suzana; Kolling, Eduardo Antônio; Gelain, Daniel Pens; Bassani, Valquiria Linck; Moreira, José Cláudio Fonseca

    2014-11-01

    Advanced glycation end-products (AGEs) are considered potent molecules capable of promoting neuronal cell death and participating in the development of neurodegenerative disorders such as Alzheimer's disease (AD). Previous studies have shown that AGEs exacerbate β-amyloid (Aβ) aggregation and AGE-related cross-links are also detected in senile plaques. Acrolein (ACR) is an α, β-unsaturated aldehyde found in the environment and thermally processed foods, which can additionally be generated through endogenous metabolism. The role of ACR in AD is widely accepted in the literature. Guarana (Paullinia cupana Mart.) is popularly consumed by the population in Brazil, mainly for its stimulant activity. In the present study, we showed that guarana (10, 100, and 1000 µg/mL) is able to prevent protein glycation, β-amyloid aggregation, in vitro methylglyoxal, glyoxal, and ACR (20 μM)-induced toxicity on neuronal-like cells (SH-SY5Y). Since these are considered typical AD pathological hallmarks, we propose that guarana may deserve further research as a potential therapeutic agent in such a neurodegenerative disease. PMID:24840232

  8. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols.

    Science.gov (United States)

    Gillman, I G; Kistler, K A; Stewart, E W; Paolantonio, A R

    2016-03-01

    The study objective was to determine the effect of variable power applied to the atomizer of refillable tank based e-cigarette (EC) devices. Five different devices were evaluated, each at four power levels. Aerosol yield results are reported for each set of 25 EC puffs, as mass/puff, and normalized for the power applied to the coil, in mass/watt. The range of aerosol produced on a per puff basis ranged from 1.5 to 28 mg, and, normalized for power applied to the coil, ranged from 0.27 to 1.1 mg/watt. Aerosol samples were also analyzed for the production of formaldehyde, acetaldehyde, and acrolein, as DNPH derivatives, at each power level. When reported on mass basis, three of the devices showed an increase in total aldehyde yield with increasing power applied to the coil, while two of the devices showed the opposite trend. The mass of formaldehyde, acetaldehyde, and acrolein produced per gram of total aerosol produced ranged from 0.01 to 7.3 mg/g, 0.006 to 5.8 mg/g, and aerosols from specific devices, and were compared to estimated exposure from consumption of cigarettes, to occupational and workplace limits, and to previously reported results from other researchers. PMID:26743740

  9. Determination of acrolein, ethanol, volatile acidity, and copper in different samples of sugarcane spirits

    Directory of Open Access Journals (Sweden)

    José Masson

    2012-09-01

    Full Text Available Seventy-one samples of sugarcane spirits from small and average size stills produced in the northern and southern Minas Gerais (Brazil were analyzed for acrolein using HPLC (High Performance Liquid Chromatography. Ethanol and copper concentrations and volatile acidity were also determined according to methods established by the Ministry of Agriculture, Livestock and Supply (MAPA. A total of 9.85% of the samples tested showed levels of acrolein above the legal limits, while the copper concentrations of 21.00% of the samples and the volatile acidity of 8.85% of the samples were higher than the limits established by the Brazilian legislation. The concentration of acrolein varied from 0 to 21.97 mg.100 mL-1 of ethanol. However, no significant difference at 5% of significance was observed between the samples produced in the northern and southern Minas Gerais. The method used for determination of acrolein in sugarcane spirits involved the formation of a derivative with 2,4-dinitrophenylhydrazine (2,4-DNPH and subsequent analysis by HPLC.

  10. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin;

    2014-01-01

    of nitric acid during hydrothermal synthesis enhanced both propylene conversion and acrolein yield, possibly due to a change in morphology. Formation of β-Bi2Mo2O9 was not observed under the applied conditions. In general, the catalytic performance of all samples decreased notably after calcination...

  11. Iron-tellurium-selenium mixed oxide catalysts for the selective oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    This paper reports on iron-tellurium-selenium mixed oxide catalysts prepared by coprecipitation from aqueous solution investigated for the propylene to acrolein reaction in the temperature range 543-773 K. Infrared spectroscopy, electron dispersive X-ray analysis, X-ray diffraction, and isotopic tracer techniques have also been employed to characterize this catalytic system. Properties of the Fe-Te-Se mixed oxide catalysts have been compared with Fe-Te mixed oxides in an effort to deduce the functionality of Se. The selenium in the Fe-Te-Se-O catalyst has been found to be the hydrocarbon activating site. The activation energies for the acrolein and carbon dioxide formation are 71 and 54 kJ/mol, respectively. Reactions carried out with 18O2 have shown lattice oxygen to be primarily responsible for the formation of both acrolein and carbon dioxide. The initial and rate-determining step for acrolein formation is hydrogen abstraction as determined by an isotope effect associated with the C3D6 reaction. No isotope effect is observed for carbon dioxide formation from C3D6 suggesting that CO2 is formed by parallel, not consecutive, oxidation of propylene

  12. Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts

    DEFF Research Database (Denmark)

    Duc, Duc Truong; Ha, Hanh Nguyen; Fehrmann, Rasmus;

    2011-01-01

    Silica-supported bismuth molybdate catalysts have been prepared by impregnation, structurally characterized and examined as improved catalysts for the selective oxidation of propylene to acrolein. Catalysts with a wide range of loadings (from 10 to 90 wt%) of beta bismuth molybdate (β-Bi2Mo2O9) w...

  13. Evans-Tishchenko coupling of heteroaryl aldehydes.

    Science.gov (United States)

    Dorgan, Philip D; Durrani, Jamie; Cases-Thomas, Manuel J; Hulme, Alison N

    2010-11-01

    The low-temperature Evans-Tishchenko coupling of a range of functionalized heteroaryl aldehydes with β-hydroxy ketones in the presence of a Sm(III) catalyst has been achieved with high yields (90-99%) and good to excellent diastereoselectivity (90:10 → 95:5 dr). However, at room temperature a retro-aldol aldol-Tishchenko reaction was found to compete with the desired Evans-Tishchenko reaction. Identification of these byproducts has allowed the corresponding aldol-Tishchenko reaction to be optimized for several heteroaryl aldehydes. PMID:20929205

  14. Effects of acrolein and other pesticides on water quality and aquatic biota in Tule Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of this study was to evaluate the potential impacts of acrolein and other pesticides on water quality and aquatic invertebrates and fish, with a...

  15. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer’s disease (PCAD)

    OpenAIRE

    Bradley, M. A.; Markesbery, W. R.; Lovell, M A

    2010-01-01

    Previous studies demonstrate increased levels of 4-hydroxynonenal (HNE) and acrolein in vulnerable brain regions of subjects with mild cognitive impairment (MCI) and late-stage Alzheimer’s disease (AD). Recently preclinical AD (PCAD) subjects, who demonstrate normal antemortem neuropsychological test scores but abundant AD pathology at autopsy, have become the focus of increased study. Levels of extractable HNE and acrolein were quantified by gas chromatography mass spectrometry with negative...

  16. Nonredundant Functions of αβ and γδ T Cells in Acrolein-Induced Pulmonary Pathology

    OpenAIRE

    Borchers, Michael T.; Wesselkamper, Scott C.; Eppert, Bryan L.; Motz, Gregory T.; Sartor, Maureen A; Tomlinson, Craig R.; Medvedovic, Mario; Tichelaar, Jay W.

    2008-01-01

    Acrolein exposure represents a significant human health hazard. Repeated acrolein exposure causes the accumulation of monocytes/macrophages and lymphocytes, mucous cell metaplasia, and epithelial injury. Currently, the mechanisms that control these events are unclear, and the relative contribution of T-cell subsets to pulmonary pathologies following repeated exposures to irritants is unknown. To examine whether lymphocyte subpopulations regulate inflammation and epithelial cell pathology, we ...

  17. The Tobacco Smoke Component, Acrolein, Suppresses Innate Macrophage Responses by Direct Alkylation of c-Jun N-Terminal Kinase

    OpenAIRE

    Hristova, Milena; Spiess, Page C; Kasahara, David I.; Randall, Matthew J.; Deng, Bin; van der Vliet, Albert

    2012-01-01

    The respiratory innate immune system is often compromised by tobacco smoke exposure, and previous studies have indicated that acrolein, a reactive electrophile in tobacco smoke, may contribute to the immunosuppressive effects of smoking. Exposure of mice to acrolein at concentrations similar to those in cigarette smoke (5 ppm, 4 h) significantly suppressed alveolar macrophage responses to bacterial LPS, indicated by reduced induction of nitric oxide synthase 2, TNF-α, and IL-12p40. Mechanisti...

  18. Acute systemic accumulation of acrolein in mice by inhalation at a concentration similar to that in cigarette smoke

    OpenAIRE

    Tully, Melissa; Zheng, Lingxing; Acosta, Glen; Tian, Ran; Shi, Riyi

    2014-01-01

    Cigarette smoke is an important environmental factor associated with a wide array of public health concerns. Acrolein, a component of tobacco smoke and a known toxin to various cell types, may be a key pathological factor mediating the adverse effects linked with tobacco smoke. Although acrolein is known to accumulate in the respiratory system after acute nasal exposure, it is not clear if it accumulates systemically, and less is known in the nervous system. The aim of this study was to asses...

  19. Aldehyde dehydrogenase protein superfamily in maize.

    Science.gov (United States)

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement. PMID:22983498

  20. Volatile aldehydes in libraries and archives

    Science.gov (United States)

    Fenech, Ann; Strlič, Matija; Kralj Cigić, Irena; Levart, Alenka; Gibson, Lorraine T.; de Bruin, Gerrit; Ntanos, Konstantinos; Kolar, Jana; Cassar, May

    2010-06-01

    Volatile aldehydes are produced during degradation of paper-based materials. This may result in their accumulation in archival and library repositories. However, no systematic study has been performed so far. In the frame of this study, passive sampling was carried out at ten locations in four libraries and archives. Despite the very variable sampling locations, no major differences were found, although air-filtered repositories were found to have lower concentrations while a non-ventilated newspaper repository exhibited the highest concentrations of volatile aldehydes (formaldehyde, acetaldehyde, furfural and hexanal). Five employees in one institution were also provided with personal passive samplers to investigate employees' exposure to volatile aldehydes. All values were lower than the presently valid exposure limits. The concentration of volatile aldehydes, acetic acid, and volatile organic compounds (VOCs) in general was also compared with that of outdoor-generated pollutants. It was evident that inside the repository and particularly inside archival boxes, the concentration of VOCs and acetic acid was much higher than the concentration of outdoor-generated pollutants, which are otherwise more routinely studied in connection with heritage materials. This indicates that further work on the pro-degradative effect of VOCs on heritage materials is necessary and that monitoring of VOCs in heritage institutions should become more widespread.

  1. Tricarbonylchrom-Komplexe aromatischer Aldehyde und Ketone

    OpenAIRE

    Effenberger, Franz; Schöllkopf, Klaus

    1985-01-01

    Tricarbonylchrom (TCC)-Komplexe 2, 3 aromatischer Aldehyde und Ketone werden einmal durch basekatalysierte Carbodesilylierung von TCC-Aryltrimethylsilan-Komplexen 1 mit Dime-thylformamid bzw. Benzoylfluorid, zum anderen durch selektive Oxidation von TCC-Phenyl-methanol-Komplexen 5 mit speziell präpariertem Mangandioxid in Ether dargestellt.

  2. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  3. Cooking-related PM2.5 and acrolein measured in grocery stores and comparison with other retail types.

    Science.gov (United States)

    Chan, W R; Sidheswaran, M; Sullivan, D P; Cohn, S; Fisk, W J

    2016-06-01

    We measured particulate matter (PM), acrolein, and other indoor air contaminants in eight visits to grocery stores in California. Retail stores of other types (hardware, furniture, and apparel) were also sampled on additional visits. Based on tracer gas decay data, most stores had adequate ventilation according to minimum ventilation rate standards. Grocery stores had significantly higher concentrations of acrolein, fine and ultrafine PM, compared to other retail stores, likely attributable to cooking. Indoor concentrations of PM2.5 and acrolein exceeded health guidelines in all tested grocery stores. Acrolein emission rates to indoors in grocery stores had a mean estimate about 30 times higher than in other retail store types. About 80% of the indoor PM2.5 measured in grocery stores was emitted indoors, compared to only 20% for the other retail store types. Calculations suggest a substantial increase in outdoor air ventilation rate by a factor of three from current level is needed to reduce indoor acrolein concentrations. Alternatively, acrolein emission to indoors needs to be reduced 70% by better capturing of cooking exhaust. To maintain indoor PM2.5 below the California annual ambient standard of 12 μg/m(3) , grocery stores need to use air filters with an efficiency rating higher than the MERV 8 air filters commonly used today. PMID:25939855

  4. Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein.

    Science.gov (United States)

    Pan, Jishen; Sinclair, Elizabeth; Xuan, Zhuoli; Dyba, Marcin; Fu, Ying; Sen, Supti; Berry, Deborah; Creswell, Karen; Hu, Jiaxi; Roy, Rabindra; Chung, Fung-Lung

    2016-07-01

    The acrolein derived cyclic 1,N(2)-propanodeoxyguanosine adduct (Acr-dG), formed primarily from ω-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) under oxidative conditions, while proven to be mutagenic, is potentially involved in DHA-induced apoptosis. The latter may contribute to the chemopreventive effects of DHA. Previous studies have shown that the levels of Acr-dG are correlated with apoptosis induction in HT29 cells treated with DHA. Because Acr-dG is shown to be repaired by the nucleotide excision repair (NER) pathway, to further investigate the role of Acr-dG in apoptosis, in this study, NER-deficient XPA and its isogenic NER-proficient XAN1 cells were treated with DHA. The Acr-dG levels and apoptosis were sharply increased in XPA cells, but not in XAN1 cells when treated with 125μM of DHA. Because DHA can induce formation of various DNA damage, to specifically investigate the role of Acr-dG in apoptosis induction, we treated XPA knockdown HCT116+ch3 cells with acrolein. The levels of both Acr-dG and apoptosis induction increased significantly in the XPA knockdown cells. These results clearly demonstrate that NER deficiency induces higher levels of Acr-dG in cells treated with DHA or acrolein and sensitizes cells to undergo apoptosis in a correlative manner. Collectively, these results support that Acr-dG, a ubiquitously formed mutagenic oxidative DNA adduct, plays a role in DHA-induced apoptosis and suggest that it could serve as a biomarker for the cancer preventive effects of DHA. PMID:27036235

  5. Deodorants: an experimental provocation study with cinnamic aldehyde

    DEFF Research Database (Denmark)

    Bruze, Magnus; Johansen, Jeanne Duus; Andersen, Klaus Ejner; Frosch, P; Lepoittevin, J-P; Rastogi, S; Wakelin, S; White, I; Menné, T

    2003-01-01

    of axillary dermatitis when used by individuals with and without contact allergy to cinnamic aldehyde. METHODS: Patch tests with deodorants and ethanol solutions with cinnamic aldehyde, and repeated open application tests with roll-on deodorants without and with cinnamic aldehyde at different...... concentrations, were performed in 37 patients with dermatitis, 20 without and 17 with contact allergy to cinnamic aldehyde. RESULTS: A repeated open application test with positive findings was noted only in patients hypersensitive to cinnamic aldehyde (P <.001) and only in the axilla to which the deodorants...

  6. A theoretical investigation of valence and Rydberg electronic states of acrolein

    International Nuclear Information System (INIS)

    The main features of the ultraviolet spectrum of acrolein have been studied by a multireference perturbative treatment and by a time dependent density functional approach. The valence and Rydberg transition energies have been calculated and the assignment of the experimental bands has been clarified. The different relaxation trends of the three lowest singlet and triplet excited states have been analyzed by unconstrained geometry optimizations. This has allowed, in particular, the characterization of a twisted 3(ππ*) state, which is crucial for the interesting photophysics and photochemistry of the acrolein molecule and, more generally, of the α,β-enones. Solvatochromic shifts in aqueous solution have been investigated using a combined discrete/continuum approach based on the so called polarizable continuum model. The experimental trends are well reproduced by this approach and a closer degeneracy in the triplet manifold has been detected in solution with respect to gas phase

  7. Detection of acrolein and acrylonitrile with a pulsed room temperature quantum cascade laser

    Science.gov (United States)

    Manne, J.; Jäger, W.; Tulip, J.

    2010-06-01

    We investigated the use of a pulsed, distributed feedback quantum cascade laser centered at 957 cm-1 in combination with an astigmatic Herriot cell with 250 m path length for the detection of acrolein and acrylonitrile. These molecules have been identified as hazardous air-pollutants because of their adverse health effects. The spectrometer utilizes the intra-pulse method, where a linear frequency down-chirp, that is induced when a top-hat current pulse is applied to the laser, is used for sweeping across the absorption line. Up to 450 ns long pulses were used for these measurements which resulted in a spectral window of ~2.2 cm-1. A room temperature mercury-cadmium-telluride detector was used, resulting in a completely cryogen free spectrometer. We demonstrated detection limits of ~3 ppb for acrylonitrile and ~6 ppb for acrolein with ~10 s averaging time. Laser characterization and optimization of the operational parameters for sensitivity improvement are discussed.

  8. CRITICAL ROLE OF ACROLEIN IN SECONDARY INJURY FOLLOWING EX VIVO SPINAL CORD TRAUMA

    OpenAIRE

    Hamann, Kristin; Durkes, Abigail; Ouyang, Hui; Pond, Amber; Shi, Riyi

    2008-01-01

    The pathophysiology of spinal cord injury (SCI) is characterized by the initial, primary injury followed by secondary injury processes in which oxidative stress is a critical component. Secondary injury processes not only exacerbate pathology at the site of primary injury, but also result in spreading of injuries to the adjacent, otherwise healthy tissue. The lipid peroxidation byproduct acrolein has been implicated as one potential mediator of secondary injury. In order to further and rigoro...

  9. An enantioselective organocatalyzed aza-Morita-Baylis-Hillman reaction of isatin-derived ketimines with acrolein.

    Science.gov (United States)

    Yoshida, Yasushi; Sako, Makoto; Kishi, Kenta; Sasai, Hiroaki; Hatakeyama, Susumi; Takizawa, Shinobu

    2015-09-14

    A highly enantioselective aza-Morita-Baylis-Hillman (aza-MBH) reaction of isatin-derived ketimines with acrolein was established using β-isocupreidine (β-ICD) or α-isocupreine (α-ICPN) as a chiral acid-base organocatalyst. The present protocol readily furnished (S) or (R)-aza-MBH adducts with a chiral tetrasubstituted carbon stereogenic center in up to 98% ee. PMID:26214279

  10. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan, Pethan N.; Kumar Balla, Putra; Chary Komandur, V.R., E-mail: kvrchary@iict.res.in

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO{sub 3}) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH{sub 3} TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  11. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Science.gov (United States)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan N., Pethan; Kumar Balla, Putra; Chary Komandur, V. R.

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol-gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO3) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV-vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  12. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    International Nuclear Information System (INIS)

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO3) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  13. Air pollution source apportionment before, during, and after the 2008 Beijing Olympics and association of sources to aldehydes and biomarkers of blood coagulation, pulmonary and systemic inflammation, and oxidative stress in healthy young adults

    Science.gov (United States)

    Altemose, Brent A.

    Based on principal component analysis (PCA) of air pollution data collected during the Summer Olympic Games held in Beijing, China during 2008, the five source types of air pollution identified -- natural soil/road dust, vehicle and industrial combustion, vegetative burning, oil combustion, and secondary formation, were all distinctly lower during the Olympics. This was particularly true for vehicle and industrial combustion and oil combustion, and during the main games period between the opening and closing ceremonies. The reduction in secondary formation was reflective of a reduction in nitrogen oxides, but this also contributed to increased ozone concentrations during the Olympic period. Among three toxic aldehydes measured in Beijing during the same time period, only acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Accordingly, acetaldehyde was significantly correlated with primary emission sources including vegetative burning and oil combustion, and with several pollutants emitted mainly from primary sources. In contrast, formaldehyde and acrolein increased during the Olympic air pollution control period; accordingly both were significantly correlated with ozone and with the secondary formation source type. These findings indicate primary sources may dominate for acetaldehyde while secondary sources may dominate for formaldehyde and acrolein. Biomarkers for pulmonary inflammation (exhaled breath condensate (EBC) pH, exhaled nitric oxide, and EBC nitrite) and hemostasis and blood coagulation (vWF and sCD62p) were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The systemic inflammation biomarker 8-OHdG was most consistently associated with vehicle and industrial combustion. In contrast, the associations between the biomarkers and the aldehydes were generally not significant or in the hypothesized direction, although

  14. Chiral allyl silane additions to chiral α-substituted aldehydes

    International Nuclear Information System (INIS)

    Chiral allyl silane 3 reacted with chiral α-methyl-β-siloxy-aldehydes to afford the corresponding 1,4-syn-products with good diastereo-selectivities independent of the absolute stereochemistry of these aldehydes. The best selectivities are observed when the reactions are carried out by trans metallation of the allyl silane 3 using Tin (IV) Chloride in CH2 CL2 at -78 deg C, before addition of the aldehydes. (author)

  15. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    OpenAIRE

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2012-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophili...

  16. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Soumabha; Hendricks, P.I. [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Reynolds, J.C. [Centre for Analytical Science, Loughborough University, Loughborough, Leicestershire (United Kingdom); Cooks, R.G., E-mail: cooks@purdue.edu [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)

    2015-02-20

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.

  17. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer

  18. Cyclodextrin Aldehydes are Oxidase Mimics

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Bjerre, Jeannette; Bols, Mikael

    2009-01-01

    Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin...... aldehydes were prepared containing one, two or more aldehydes at the primary rim (6-positions) or a ethoxy-2-al or propoxy-3-al at the secondary rim. 2-O-ethoxy-2-al- -cyclodextrin was found to be the best catalyst. The aldehydes are in many cases better catalysts than the ketones, because of their powerful...

  19. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    Science.gov (United States)

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. PMID:27070284

  20. Effective VTeO/SBA-15 Catalyst Prepared by Precursor Method for the Selective Oxidation of Propane to Acrolein

    Institute of Scientific and Technical Information of China (English)

    FENG Mao-ying; HUANG Chuan-jing; WENG Wei-zheng; WAN Hui-lin; XU Qin; ZHOU Zhao-hui

    2008-01-01

    Precursor decomposition was used for the preparation of VTeO/SBA-15 catalyst for the selective oxidation of propane to acrolein.The catalyst shows a better performance compared with those prepared by conventional impregnant method.A yield of 9.3% of acrolein was achieved with 2% V Ioadings at 500℃.XRD,N2-adsorption,H2-TPR,Py-IR and XPS measurements were used to unclose the relationship between the structure and performance of the catalyst.

  1. Olfactory responses of blowflies to aliphatic aldehydes.

    Science.gov (United States)

    DETHIER, V G

    1954-07-20

    The response of the blowfly Phormia regina to stimulation by aldehydes in the vapor phase has been studied by means of a specially designed olfactometer. The median rejection threshold and the maximum acceptance threshold were selected as criteria of response. For both acceptance and rejection the distribution of thresholds in the population is normal with respect to the logarithm of concentration. When thresholds are expressed as molar concentrations, the values decrease progressively as chain length is increased. There is no attraction beyond decanal and no rejection beyond dodecanal. When thresholds are expressed as activities, most members of the aldehyde series are approximately equally stimulating at rejection and equally stimulating at acceptance. The relationship is most exact over the middle range of chain lengths. There is a tendency for the terminal members to stimulate at higher activities. These relationships are in close agreement with those which were found earlier to apply to the normal aliphatic alcohols. The similarity between the relative actions of the members of the two series suggests that the relation of equal olfactory stimulation at equal thermodynamic activities by homologous aliphatic compounds at least for homologues of intermediate chain length may be of rather general application in olfaction. PMID:13174780

  2. Acrolein-mediated conduction loss is partially restored by K+ channel blockers.

    Science.gov (United States)

    Yan, Rui; Page, Jessica C; Shi, Riyi

    2016-02-01

    Acrolein-mediated myelin damage is thought to be a critical mechanism leading to conduction failure following neurotrauma and neurodegenerative diseases. The exposure and activation of juxtaparanodal voltage-gated K(+) channels due to myelin damage leads to conduction block, and K(+) channel blockers have long been studied as a means for restoring axonal conduction in spinal cord injury (SCI) and multiple sclerosis (MS). In this study, we have found that 100 μM K(+) channel blockers 4-aminopyridine-3-methanol (4-AP-3-MeOH), and to a lesser degree 4-aminopyridine (4-AP), can significantly restore compound action potential (CAP) conduction in spinal cord tissue following acrolein-mediated myelin damage using a well-established ex vivo SCI model. In addition, 4-AP-3-MeOH can effectively restore CAP conduction in acrolein-damaged axons with a range of concentrations from 0.1 to 100 μM. We have also shown that while both compounds at 100 μM showed no preference of small- and large-caliber axons when restoring CAP conduction, 4-AP-3-MeOH, unlike 4-AP, is able to augment CAP amplitude while causing little change in axonal responsiveness measured in refractory periods and response to repetitive stimuli. In a prior study, we show that 4-AP-3-MeOH was able to functionally rescue mechanically injured axons. In this investigation, we conclude that 4-AP-3-MeOH is an effective K(+) channel blocker in restoring axonal conduction following both primary (physical) and secondary (chemical) insults. These findings also suggest that 4-AP-3-MeOH is a viable alternative of 4-AP for treating myelin damage and improving function following central nervous system trauma and neurodegenerative diseases. PMID:26581866

  3. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    International Nuclear Information System (INIS)

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of [chloroethyl-3H]cyclophosphamide [( chloroethyl-3H]CP) and [4-14C]cyclophosphamide [( 4-14C]CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of [14C]acrolein, a metabolite of [4-14C]CP, were also investigated. The metabolism of [chloroethyl-3H]CP and [4-14C]CP to polar metabolites was found to depend on the presence of NADPH and showed concentration dependence with respect to cytochrome P-450 and NADPH:cytochrome P-450 reductase. Km and Vmax values were essentially similar. The patterns of inhibition by microsomal mixed-function oxidase inhibitors, anti-cytochrome P-450 antibody, and heat denaturation of the cytochrome P-450 were essentially similar, with subtle differences between [4-14C]CP and [chloroethyl-3H]CP metabolism. The in vitro metabolic activation of CP in the reconstituted system demonstrated predominant binding of [chloroethyl-3H]CP to nucleic acids and almost exclusive binding of [4-14C]CP to proteins. Gel electrophoresis-fluorography of the proteins in the reconstituted system treated with [4-14C]CP demonstrated localization of the 14C label in the cytochrome P-450 region. To examine this association further, hepatic microsomes were modified with [14C]acrolein in the presence and the absence of NADPH. The results confirmed covalent association between [14C]acrolein and cytochrome P-450 in the microsomes and also demonstrated further metabolism of [14C]acrolein, apparently to an epoxide, which is capable of binding covalently to proteins. The results of these investigations not only confirm the significance of primary metabolism but also emphasize the potential role of the secondary metabolism of cyclophosphamide in some of its toxic manifestations

  4. The active component of vanadium-molybdenum catalysts for the oxidation of acrolein to acrylic acid

    International Nuclear Information System (INIS)

    The catalytic properties of the vanadium-molybdenum oxide system were investigated in the oxidation of acrolein to acrylic acid. The active component of the catalyst is the compound VMo3O11, the maximum amount of which is observed at a content of 7-15 mole% V2O4. The compound VMo3O11 is formed in the thermodecomposition of silicomolybdovanadium heteropoly acids or isopoly compounds, reduced with respect to vanadium, and contains V4+ and Mo6+. The optimum treatment for the formation of this compound is treatment in the reaction mixture at 400 degrees C

  5. Cooperative properties of single phases of complex oxide catalyst for oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    Synergetic effect of increase of acrolein yield during propylene oxidation on mechanical mixture of (α + β)CoMoO4 and MoO3, as well as CO and CO2 yield on mixture of CoMoO4 and Bi2O3·2MoO3 was revealed. It is shown that CoMoO4 generates allyl radicals, desorption of these radicals to gaseous phase is not practically observed with MoO3, bismuth molybdates and Fe2O3· Fe2O3·3MoO3

  6. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while oxi

  7. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells

    OpenAIRE

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Hu, Yu; Chen, Wei-Sheng; Chou, David; Yan LIU; Donin, Nicholas; Huang, William C; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A.; Tang, Moon-shong

    2014-01-01

    Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutag...

  8. Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser

    Science.gov (United States)

    Manne, J.; Lim, A.; Tulip, J.; Jäger, W.

    2012-05-01

    We report on spectroscopic measurements of acrolein and acrylonitrile at atmospheric pressure using a pulsed distributed feedback quantum-cascade laser in combination with intra- and inter-pulse techniques and compare the results. The measurements were done in the frequency region around 957 cm-1. In the inter-pulse technique, the laser is excited with short current pulses (5-10 ns), and the pulse amplitude is modulated with an external current ramp resulting in a ˜2.3 cm-1 frequency scan. In the intra-pulse technique, a linear frequency down-chirp during the pulse is used for sweeping across the absorption line. Long current pulses up to 500 ns were used for these measurements which resulted in a spectral window of ˜2.2 cm-1 during the down-chirp. These comparatively wide spectral windows facilitated the measurements of the relatively broad absorption lines (˜1 cm-1) of acrolein and acrylonitrile. The use of a room-temperature mercury-cadmium-telluride detector resulted in a completely cryogen-free spectrometer. We demonstrate ppb level detection limits within a data acquisition time of ˜10 s with these methodologies.

  9. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.

    Science.gov (United States)

    Kang, Tae Hun; Choi, Jung Ho; Choi, Jun Seon; Song, In Kyu

    2015-10-01

    A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance. PMID:26726511

  10. Aggravation of brain infarction through an increase in acrolein production and a decrease in glutathione with aging.

    Science.gov (United States)

    Uemura, Takeshi; Watanabe, Kenta; Ishibashi, Misaki; Saiki, Ryotaro; Kuni, Kyoshiro; Nishimura, Kazuhiro; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2016-04-29

    We previously reported that tissue damage during brain infarction was mainly caused by inactivation of proteins by acrolein. This time, it was tested why brain infarction increases in parallel with aging. A mouse model of photochemically induced thrombosis (PIT) was studied using 2, 6, and 12 month-old female C57BL/6 mice. The size of brain infarction in the mouse PIT model increased with aging. The volume of brain infarction in 12 month-old mice was approximately 2-fold larger than that in 2 month-old mice. The larger brain infarction in 12 month-old mice was due to an increase in acrolein based on an increase in the activity of spermine oxidase, together with a decrease in glutathione (GSH), a major acrolein-detoxifying compound in cells, based on the decrease in one of the subunits of glutathione biosynthesizing enzymes, γ-glutamylcysteine ligase modifier subunit, with aging. The results indicate that aggravation of brain infarction with aging was mainly due to the increase in acrolein production and the decrease in GSH in brain. PMID:27037020

  11. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    Science.gov (United States)

    Pirillo, S.; López-Corral, I.; Germán, E.; Juan, A.

    2012-12-01

    The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new moleculesbnd surface formed bonds after adsorption. We found that Ptsbnd Pt bonds interacting with the molecule and acrolein Cdbnd O and Cdbnd C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained Csbnd Pt and Osbnd Pt OP values suggest that the most stable adsorption modes are η3-cis and η4-trans, while the η1-trans is the less favored configuration. We also found that C pz orbital and Pt pz and d orbitals participate strongly in the adsorption process.

  12. Acrolein Causes TRPA1-Mediated Sensory Irritation and Indirect Potentiation of TRPV1-Mediated Pulmonary Chemoreflex Response

    Science.gov (United States)

    We previously demonstrated that acute exposure to acrolein causes immediate sensory irritation, with rapid decrease in heart rate (HR) and increase in inspiratory time (Ti), and potentiation of pulmonary chemoreflex response 24hrs later; of these effects only the latter is mediat...

  13. Simultaneous exposure to concentrated ambient particles and acrolein causes cardiac effects mediated by parasympathetic modulation in mice

    Science.gov (United States)

    This study shows that exposure to CAPs and acrolein causes an increase in HRV that is mediated by the parasympathetic nervous system. Numerous studies show that short-term air pollution exposure modulates heart rate variability (HRV), which is an indicator of autonomic influence...

  14. Analysis of reactive aldehydes formed from the irradiated skin lipid, triolein

    International Nuclear Information System (INIS)

    One of the major skin lipids, triolein, was irradiated by 300 nm uv light under conditions approximately those at the skin surface exposed to sunlight for different periods of time. Irradiated samples were analyzed for acrolein, formaldehyde, and acetaldehyde by gas chromatography. Acrolein formed was derivatized to more stable 1-methyl-2-pyrazoline with N-methylhydrazine and analyzed by a nitrogen-phosphorus specific detector. Formaldehyde and acetaldehyde formed were reacted with cysteamine to give thiazolidine and 2-methylthiazolidine, respectively and analyzed by a flame photometric sulfur specific detector. The maximum amount of acrolein (1.05 nmol/mg triolein) was formed after 6 hr irradiation. The maximum quantities of formaldehyde (6 nmol/mg triolein) and acetaldehyde (2.71 nmol/mg triolein) were formed after 12 hr irradiation. Both formaldehyde and acrolein have been known to cause skin irritation in the levels of 1 ppM

  15. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry.

    Science.gov (United States)

    Bag, Soumabha; Hendricks, P I; Reynolds, J C; Cooks, R G

    2015-02-20

    Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer. PMID:25682245

  16. Aldehyde concentrations in wet deposition and river waters

    International Nuclear Information System (INIS)

    The process of pollutants removal from the atmosphere can be responsible for the appearance of aldehydes in surface waters. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in precipitations as well as in surface water samples, while semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. Particularly high level of carbonyls concentration was noted after periods of drought and at the beginning of rainy periods. We estimated that ca. 40% of aldehydes from wet precipitations were delivered into river waters. The level of carbonyl concentration in river was positively correlated with specific local meteorological conditions such as solar radiation and ozone concentration, in contrast, there was negative correlation between aldehyde concentration in the river samples and the precipitation intensity. - Highlights: ► Atmosphere pollutants are responsible for the appearance of aldehydes in surface waters. ► Volatile aldehydes are commonly present in precipitations as well as in surface waters. ► Semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. ► High concentration of carbonyls were noted after periods of drought and at the beginning of rain. ► Carbonyl concentration in river is correlated to meteorological conditions

  17. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates acrolein-induced airway mucus hypersecretion in rats

    International Nuclear Information System (INIS)

    Background: Peroxisome proliferator-activated receptor-γ (PPAR-γ), a member of the ligand-activated nuclear receptor superfamily, has been shown to be implicated in anti-inflammatory and immunomodulatory responses, but its role in airway mucus hypersecretion remains not clear. Objective: To investigate the role of PPAR-γ in airway mucus hypersecretion, we used an acrolein-exposed rat model treated with rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist. Methods: Rats were exposed to acrolein (3.0 ppm, 6 h/day, 7 days/week) and orally administered with rosiglitazone (2, 4, 8 mg/kg) once daily for up to 2 weeks. The expressions of Muc5ac protein and mRNA, and infiltration of inflammatory cells and levels of inflammatory cytokines (interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α) in bronchoalveolar lavage fluid (BALF) were detected with real-time PCR, Western blot, cell counting and ELISA. In addition, the role of nuclear factor (NF)-κB pathway in this process was also explored. Results: Acrolein exposure significantly induced goblet cell hyperplasia in bronchial epithelium and Muc5ac mRNA and protein expressions in rat lungs, as well as the associated airway inflammation evidenced by the increased numbers of inflammatory cells and levels of inflammatory cytokines in BALF, which were attenuated with rosiglitazone treatment in a dose-dependent manner (P < 0.05). Simultaneously, the increased expression of NF-κB and decreased expression of cytoplasmic IκB in acrolein-exposed lungs were reversed by rosiglitazone treatment. Conclusions: These findings suggest that PPAR-γ activation by its ligands can attenuate acrolein-induced airway mucus hypersecretion in rats, which may be involved in inhibition of NF-κB pathway.

  18. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Pirillo, S.; Lopez-Corral, I. [Instituto de Quimica del Sur (INQUISUR, UNS-CONICET) and Departamento de Quimica, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahia Blanca (Argentina); German, E. [Instituto de Fisica del Sur (IFISUR, UNS-CONICET) and Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahia Blanca (Argentina); Juan, A., E-mail: cajuan@uns.edu.ar [Instituto de Fisica del Sur (IFISUR, UNS-CONICET) and Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahia Blanca (Argentina)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Study of acrolein/Pt (1 1 1) adsorption using ab-initio and semiempirical methods. Black-Right-Pointing-Pointer Geometry optimization and DOS curves were carried out using VASP code. Black-Right-Pointing-Pointer Study of chemical bonding evolution using COOP and OP analysis. Black-Right-Pointing-Pointer After adsorption Pt-Pt, C=O and C=C bonds are weakened. Black-Right-Pointing-Pointer {eta}{sub 3}-cis and {eta}{sub 4}-trans most stable adsorption modes, {eta}{sub 1}-trans less favored one. - Abstract: The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new molecule-surface formed bonds after adsorption. We found that Pt-Pt bonds interacting with the molecule and acrolein C=O and C=C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained C-Pt and O-Pt OP values suggest that the most stable adsorption modes are {eta}{sub 3}-cis and {eta}{sub 4}-trans, while the {eta}{sub 1}-trans is the less favored configuration. We also found that C p{sub z} orbital and Pt p{sub z} and d{sub z{sup 2}} orbitals participate strongly in the adsorption process.

  19. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    International Nuclear Information System (INIS)

    Highlights: ► Study of acrolein/Pt (1 1 1) adsorption using ab-initio and semiempirical methods. ► Geometry optimization and DOS curves were carried out using VASP code. ► Study of chemical bonding evolution using COOP and OP analysis. ► After adsorption Pt-Pt, C=O and C=C bonds are weakened. ► η3-cis and η4-trans most stable adsorption modes, η1-trans less favored one. - Abstract: The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new molecule-surface formed bonds after adsorption. We found that Pt-Pt bonds interacting with the molecule and acrolein C=O and C=C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained C-Pt and O-Pt OP values suggest that the most stable adsorption modes are η3-cis and η4-trans, while the η1-trans is the less favored configuration. We also found that C pz orbital and Pt pz and dz2 orbitals participate strongly in the adsorption process.

  20. Cytotoxicity of Thirdhand Smoke and Identification of Acrolein as a Volatile Thirdhand Smoke Chemical That Inhibits Cell Proliferation.

    Science.gov (United States)

    Bahl, Vasundhra; Weng, Nikki J-H; Schick, Suzaynn F; Sleiman, Mohamad; Whitehead, Jacklyn; Ibarra, Allison; Talbot, Prue

    2016-03-01

    Thirdhand smoke (THS) is a mixture of chemicals that remain on indoor surfaces after smoking has ceased. These chemicals can be inhaled, ingested, or absorbed dermally, and thus could impact human health. We evaluated the cytotoxicity and mode of action of fresh and aged THS, the toxicity of volatile organic chemicals (VOCs) in THS, and the molecular targets of acrolein, a VOC in THS. Experiments were done using mouse neural stem cells (mNSC), human pulmonary fibroblasts (hPF), and lung A549 epithelial cells. THS-exposed cotton cloth was extracted in Dulbecco's Eagle Medium and caused cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. THS extracts induced blebbing, immotility, vacuolization, cell fragmentation, severing of microfilaments and depolymerization of microtubules in mNSC. Cytotoxicity was inversely related to headspace volume in the extraction container and was lost upon aging, suggesting that VOCs in THS were cytotoxic. Phenol, 2',5'-dimethyl furan and acrolein were identified as the most cytotoxic VOCs in THS, and in combination, their cytotoxicity increased. Acrolein inhibited proliferation of mNSC and hPF and altered expression of cell cycle regulatory genes. Twenty-four hours of treatment with acrolein decreased expression of transcription factor Dp-1, a factor needed for the G1 to S transition in the cell cycle. At 48 h, WEE1 expression increased, while ANACP1 expression decreased consistent with blocking entry into and completion of the M phase of the cell cycle. This study identified acrolein as a highly cytotoxic VOC in THS which killed cells at high doses and inhibited cell proliferation at low doses. PMID:26719373

  1. Polyphenol extract from Phellinus igniarius protects against acrolein toxicity in vitro and provides protection in a mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Papawee Suabjakyong

    Full Text Available The basidiomycetous mushroom Phellinus igniarius (L. Quel. has been used as traditional medicine in various Asian countries for many years. Although many reports exist on its anti-oxidative and anti-inflammatory activities and therapeutic effects against various diseases, our current knowledge of its effect on stroke is very limited. Stroke is a neurodegenerative disorder in which oxidative stress is a key hallmark. Following the 2005 discovery by Igarashi's group that acrolein produced from polyamines in vivo is a major cause of cell damage by oxidative stress, we now describe the effects of anti-oxidative extracts from P. igniarius on symptoms of experimentally induced stroke in mice. The toxicity of acrolein was compared with that of hydrogen peroxide in a mouse mammary carcinoma cell line (FM3A. We found that the complete inhibition of FM3A cell growth by 5 μM acrolein could be prevented by crude ethanol extract of P. igniarius at 0.5 μg/ml. Seven polyphenol compounds named 3,4-dihydroxybenzaldehyde, 4-(3,4-dihydroxyphenyl-3-buten-2one, inonoblin C, phelligridin D, inoscavin C, phelligridin C and interfungin B were identified from this ethanolic extract by LCMS and 1H NMR. Polyphenol-containing extracts of P. igniarius were then used to prevent acrolein toxicity in a mouse neuroblastoma (Neuro-2a cell line. The results suggested that Neuro-2a cells were protected from acrolein toxicity at 2 and 5 μM by this polyphenol extract at 0.5 and 2 μg/ml, respectively. Furthermore, in mice with experimentally induced stroke, intraperitoneal treatment with P. igniarius polyphenol extract at 20 μg/kg caused a reduction of the infarction volume by 62.2% compared to untreated mice. These observations suggest that the polyphenol extract of P. igniarius could serve to prevent ischemic stroke.

  2. Polyphenol extract from Phellinus igniarius protects against acrolein toxicity in vitro and provides protection in a mouse stroke model.

    Science.gov (United States)

    Suabjakyong, Papawee; Saiki, Ryotaro; Van Griensven, Leo J L D; Higashi, Kyohei; Nishimura, Kazuhiro; Igarashi, Kazuei; Toida, Toshihiko

    2015-01-01

    The basidiomycetous mushroom Phellinus igniarius (L.) Quel. has been used as traditional medicine in various Asian countries for many years. Although many reports exist on its anti-oxidative and anti-inflammatory activities and therapeutic effects against various diseases, our current knowledge of its effect on stroke is very limited. Stroke is a neurodegenerative disorder in which oxidative stress is a key hallmark. Following the 2005 discovery by Igarashi's group that acrolein produced from polyamines in vivo is a major cause of cell damage by oxidative stress, we now describe the effects of anti-oxidative extracts from P. igniarius on symptoms of experimentally induced stroke in mice. The toxicity of acrolein was compared with that of hydrogen peroxide in a mouse mammary carcinoma cell line (FM3A). We found that the complete inhibition of FM3A cell growth by 5 μM acrolein could be prevented by crude ethanol extract of P. igniarius at 0.5 μg/ml. Seven polyphenol compounds named 3,4-dihydroxybenzaldehyde, 4-(3,4-dihydroxyphenyl-3-buten-2one, inonoblin C, phelligridin D, inoscavin C, phelligridin C and interfungin B were identified from this ethanolic extract by LCMS and 1H NMR. Polyphenol-containing extracts of P. igniarius were then used to prevent acrolein toxicity in a mouse neuroblastoma (Neuro-2a) cell line. The results suggested that Neuro-2a cells were protected from acrolein toxicity at 2 and 5 μM by this polyphenol extract at 0.5 and 2 μg/ml, respectively. Furthermore, in mice with experimentally induced stroke, intraperitoneal treatment with P. igniarius polyphenol extract at 20 μg/kg caused a reduction of the infarction volume by 62.2% compared to untreated mice. These observations suggest that the polyphenol extract of P. igniarius could serve to prevent ischemic stroke. PMID:25811373

  3. Turn on Fluorescent Probes for Selective Targeting of Aldehydes

    Directory of Open Access Journals (Sweden)

    Ozlem Dilek

    2016-03-01

    Full Text Available Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP fluorophore and a xanthene-derived fluorophore (rosamine were prepared. Model compounds of their product with an aldehyde were prepared using salicylaldehyde. Both amino boron dipyrromethene and rosamine derivatives are almost non-fluorescent in polar and apolar solvent. However, imine formation with salicylaldehyde on each fluorophore increases the fluorescence quantum yield by almost a factor of 10 (from 0.05 to 0.4. These fluorophores are therefore suitable candidates for development of fluorescence-based sensors for aldehydes.

  4. Transient receptor potential cation channel A1 (TRPA1) mediates changes in heart rate variability following a single exposure to acrolein in mice

    Science.gov (United States)

    The data show that a single exposure to acrolein causes autonomic imbalance in mice through the TRPA1 sensor and subsequent cardiac dysfunction. Human and animal studies have shown that short-term air pollution exposure causes...

  5. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Hoon [Cheongju Univ., Cheongju (Korea, Republic of)

    2013-11-15

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD.

  6. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    International Nuclear Information System (INIS)

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD

  7. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    International Nuclear Information System (INIS)

    We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π* case and also improve considerably the shift for the π → π* transition

  8. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    Science.gov (United States)

    Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio

    2014-01-01

    We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π* case and also improve considerably the shift for the π → π* transition.

  9. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    Energy Technology Data Exchange (ETDEWEB)

    Floris, Franca Maria, E-mail: floris@dcci.unipi.it; Amovilli, Claudio [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy); Filippi, Claudia [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2014-01-21

    We investigate here the vertical n → π{sup *} and π → π{sup *} transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π{sup *} case and also improve considerably the shift for the π → π{sup *} transition.

  10. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C;

    1996-01-01

    tests and 6-week graded use tests with 0.02, 0.1 and 0.8% cinnamic aldehyde in ethanol was studied in a group of cinnamic-aldehyde-sensitive eczema patients. The minimum effect level demonstrated was 0.02% cinnamic aldehyde on patch testing and 0.1% cinnamic aldehyde on use testing, which are allowed...... exposure information is needed to evaluate more fully the consequences of cinnamic aldehyde sensitivity....

  11. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets.

    Science.gov (United States)

    Xie, Ming-Zhang; Shoulkamy, Mahmoud I; Salem, Amir M H; Oba, Shunya; Goda, Mizuki; Nakano, Toshiaki; Ide, Hiroshi

    2016-04-01

    Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage. PMID:26917342

  12. Aldehyde oxidase activity in fresh human skin.

    Science.gov (United States)

    Manevski, Nenad; Balavenkatraman, Kamal Kumar; Bertschi, Barbara; Swart, Piet; Walles, Markus; Camenisch, Gian; Schiller, Hilmar; Kretz, Olivier; Ling, Barbara; Wettstein, Reto; Schaefer, Dirk J; Pognan, Francois; Wolf, Armin; Litherland, Karine

    2014-12-01

    Human aldehyde oxidase (AO) is a molybdoflavoenzyme that commonly oxidizes azaheterocycles in therapeutic drugs. Although high metabolic clearance by AO resulted in several drug failures, existing in vitro-in vivo correlations are often poor and the extrahepatic role of AO practically unknown. This study investigated enzymatic activity of AO in fresh human skin, the largest organ of the body, frequently exposed to therapeutic drugs and xenobiotics. Fresh, full-thickness human skin was obtained from 13 individual donors and assayed with two specific AO substrates: carbazeran and zoniporide. Human skin explants from all donors metabolized carbazeran to 4-hydroxycarbazeran and zoniporide to 2-oxo-zoniporide. Average rates of carbazeran and zoniporide hydroxylations were 1.301 and 0.164 pmol⋅mg skin(-1)⋅h(-1), resulting in 13 and 2% substrate turnover, respectively, after 24 hours of incubation with 10 μM substrate. Hydroxylation activities for the two substrates were significantly correlated (r(2) = 0.769), with interindividual variability ranging from 3-fold (zoniporide) to 6-fold (carbazeran). Inclusion of hydralazine, an irreversible inhibitor of AO, resulted in concentration-dependent decrease of hydroxylation activities, exceeding 90% inhibition of carbazeran 4-hydroxylation at 100 μM inhibitor. Reaction rates were linear up to 4 hours and well described by Michaelis-Menten enzyme kinetics. Comparison of carbazeran and zoniporide hydroxylation with rates of triclosan glucuronidation and sulfation and p-toluidine N-acetylation showed that cutaneous AO activity is comparable to tested phase II metabolic reactions, indicating a significant role of AO in cutaneous drug metabolism. To our best knowledge, this is the first report of AO enzymatic activity in human skin. PMID:25249692

  13. Sorption Behavior of an Aliphatic Series of Aldehydes in the Presence of Poly(ethylene terephthalate) Blends Containing Aldehyde Scavenging Agents

    OpenAIRE

    Suloff, Eric Charles

    2002-01-01

    The quality of many beverages and food products is compromised by the presence of low molecular weight aldehydes. Aldehydes are commonly formed during storage by the oxidation of lipids or are introduced as migrants from polymeric packaging material. The objective of this project was to evaluate the effectiveness of three aldehyde scavenging agents, blended into poly(ethylene terephthalate) (PET) films, in removing an aliphatic series of aldehydes from an acidified aqueous model solution (p...

  14. Structure and dynamics of acrolein in 1,3(π,π *) excited electronic states: A quantum-chemical study

    Science.gov (United States)

    Bokareva, O. S.; Bataev, V. A.; Pupyshev, V. I.; Godunov, I. A.

    2009-08-01

    The geometrical structure, conformer energy differences, and conformational and vibrational dynamics of acrolein in 1,3(π,π *) electronic states were investigated using a number of single- and multi-reference quantum-chemical methods. Peculiarities of acrolein in the 1(π,π *) state were described with both conformers being significantly non-planar. A Valence Focal-Point Analysis of the conformer energy difference in the 3(π,π *) state was performed. The coupling of the internal rotation about C sbnd C and C dbnd C bonds with large amplitude molecular motions, such as non-planar distortions of carbonyl, methylene, and methyne fragments was also investigated. The corresponding two-dimensional PES sections were constructed.

  15. On the performance of quantum chemical methods to predict solvatochromic effects. The case of acrolein in aqueous solution

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Møgelhøj, Andreas; Nilsson, Elna Johanna Kristina; Johnson, Matthew Stanley; Mikkelsen, Kurt Valentin; Christiansen, Ove; Söderhjelm, Pär; Kongsted, Jacob

    2008-01-01

    The performance of the Hartree–Fock method and the three density functionals B3LYP, PBE0, and CAM-B3LYP is compared to results based on the coupled cluster singles and doubles model in predictions of the solvatochromic effects on the vertical n¿* and ¿* electronic excitation energies of acrolein....... All electronic structure methods employed the same solvent model, which is based on the combined quantum mechanics/molecular mechanics approach together with a dynamical averaging scheme. In addition to the predicted solvatochromic effects, we have also performed spectroscopic UV measurements of...... acrolein in vapor phase and aqueous solution. The gas-to-aqueous solution shift of the n¿* excitation energy is well reproduced by using all density functional methods considered. However, the B3LYP and PBE0 functionals completely fail to describe the ¿* electronic transition in solution, whereas the...

  16. Protective Effect of Pycnogenol® in Human Neuroblastoma SH-SY5Y Cells Following Acrolein Induced Cytotoxicity

    OpenAIRE

    Ansari, Mubeen A.; Keller, Jeffrey N.; Scheff, Stephen W.

    2008-01-01

    Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer’s disease (AD). Considerable attention has focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol® (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione (GSH) levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-S...

  17. Acrolein, a ubiquitous pollutant and lipid hydroperoxide, inhibits antiviral activity of interferon-alpha: relevance to Hepatitis C

    OpenAIRE

    Joshi-Barve, Swati; Amancherla, Kiranmayi; Patil, Madhuvanti; Bhatnagar, Aruni; Mathews, Stephanie; Gobejishvili, Leila; Cave, Matthew; McClain, Craig; Barve, Shirish

    2009-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and can lead to hepatocellular carcinoma and end-stage liver disease. The current FDA-approved treatment for HCV (pegylated interferon-alpha (IFNα) with ribavirin) is effective only in about 50% of patients. Epidemiological evidence suggests that obesity, alcohol, smoking and environmental pollutants may contribute to resistance to IFNα therapy in HCV. Acrolein, a ubiquitous environmental pollutant and major component...

  18. Hypoxia Stress Test Reveals Exaggerated Cardiovascular Effects in Hypertensive Rats After Exposure to the Air Pollutant Acrolein

    OpenAIRE

    Perez, Christina M.; Ledbetter, Allen D.; Hazari, Mehdi S.; Haykal-Coates, Najwa; Carll, Alex P.; Winsett, Darrell W.; Costa, Daniel L.; Farraj, Aimen K.

    2013-01-01

    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in susceptible populations. Despite increased risk, adverse responses are often delayed and require additional stress tests to reveal latent effects of exposure. The goal of this study was to use an episode of “transient hypoxia” as an extrinsic stressor to uncover latent susceptibility to environmental pollutants in a rodent model of hypertension. We hypothesized that exposure to acrolein, an u...

  19. Evaluation of N-acetylcysteine and methylprednisolone as therapies for oxygen and acrolein-induced lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Critchley, J.A.J.H. (Univ. of Edinburgh (England)); Beeley, J.M.; Clark, R.J.; Buchanan, J.D. (Royal Naval Hospital Hoslar, Gosport (England)); Summerfield, M.; Bell, S. (Admiralty Research Establishment, Alverstoke (England)); Spurlock, M.S.; Edginton, J.A.G. (Chemical Defence Establishment, Porton Down (England))

    1990-04-01

    Reactive oxidizing species are implicated in the etiology of a range of inhalational pulmonary injuries. Consequently, various free radical scavengers have been tested as potential prophylactic agents. The sulfydryl compound, N-acetylcysteine (NAC) is the only such compound clinically available for use in realistic dosages, and it is well established as an effective antidote for the hepatic and renal toxicity of paracetamol. Another approach in pulmonary injury prophylaxis is methylprednisolone therapy. The authors evaluated NAC and methylprednisolone in two rats models of inhalation injury: 40-hr exposure to >97% oxygen at 1.1 bar and 15-min exposure to acrolein vapor (210 ppm). The increases in lung wet/dry weight ratios, seen with both oxygen and acrolein toxicity were reduced with both treatments. However, with oxygen, NAC therapy was associated with considerably increased mortality and histological changes. Furthermore, IP NAC administration resulted in large volumes of ascitic fluid. With acrolein, IV, NAC had no significant effect on mortality or pulmonary histological damage. Methylprednisolone had no beneficial effects on either the mortality or histological damage observed in either toxicity model. They caution against the ad hoc use of NAC in the management of inhalational pulmonary injury.

  20. Maternal aldehyde elimination during pregnancy preserves the fetal genome.

    Science.gov (United States)

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J

    2014-09-18

    Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611

  1. Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans.

    Science.gov (United States)

    Huang, Chao; Wu, Hong; Liu, Qiu-ping; Li, Yuan-yuan; Zong, Min-hua

    2011-05-11

    The effects of five representative aldehydes in lignocellulosic hydrolysates on the growth and the lipid accumulation of oleaginous yeast Trichosporon fermentans were investigated for the first time. There was no relationship between the hydrophobicity and the toxicity of aldehyde, and 5-hydroxymethylfurfural was less toxic than aromatic aldehydes and furfural. Binary combination of aromatic aldehydes caused a synergistic inhibitory effect, but combination of furan and aromatic aldehydes reduced the inhibition instead. A longer lag phase was found due to the presence of aldehydes and the decrease of sugar consumption rate, but more xylose was utilized by T. fermentans in the presence of aldehydes, especially at their low concentrations. The variation of malic enzyme activity was not related to the delay of lipid accumulation. Furthermore, the inhibition of aldehydes on cell growth was more dependent on inoculum size, temperature, and initial pH than that on lipid content. PMID:21443267

  2. Vibrationally specific photoionization cross sections of acrolein leading to the Χ~A' ionic state

    International Nuclear Information System (INIS)

    The vibrational branching ratios in the photoionization of acrolein for ionization leading to the Χ~A' ion state were studied. Computed logarithmic derivatives of the cross section and the corresponding experimental data derived from measured vibrational branching ratios for several normal modes (ν9, ν10, ν11, and ν12) were found to be in relatively good agreement, particularly for the lower half of the 11–100 eV photon energy range considered. Two shape resonances have been found near photon energies of 15.5 and 23 eV in the photoionization cross section and have been demonstrated to originate from the partial cross section of the A′ scattering symmetry. The wave functions computed at the resonance complex energies are delocalized over the whole molecule. By looking at the dependence of the cross section on the different normal mode displacements together with the wave function at the resonant energy, a qualitative explanation is given for the change of the cross sections with respect to changing geometry

  3. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    OpenAIRE

    Rizzo, William B.

    2013-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize...

  4. Tandem Aldol Condensation – Platinacycle-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids

    OpenAIRE

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2012-01-01

    Tandem aldol condensation of aldehydes with methyl ketones followed by anionic four-electron donor-based (Type I) platinacycle-catalyzed addition reactions of arylboronic acids to form β-arylated ketones is described. Good to excellent yields of β-arylated ketones were obtained for the tandem reactions of aromatic/aliphatic aldehydes, methyl ketones and arylboronic acids, and moderate yields were observed for the tandem reaction with α, β-unsaturated aldehydes as the aldehyde source.

  5. Changes in nonpolar aldehydes in bean cotyledons during ageing

    Czech Academy of Sciences Publication Activity Database

    Wilhelmová, Naděžda; Domingues, P.; Srbová, M.; Fuksová, H.; Wilhelm, J.

    2006-01-01

    Roč. 50, č. 4 (2006), s. 559-564. ISSN 0006-3134 R&D Projects: GA ČR GA522/03/0312 Institutional research plan: CEZ:AV0Z50380511 Keywords : Ageing * aldehydes * lipid peroxidation * lipofuscin-like pigments (LFP) Subject RIV: CE - Biochemistry Impact factor: 1.198, year: 2006

  6. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  7. A thermostable transketolase evolved for aliphatic aldehyde acceptors.

    Science.gov (United States)

    Yi, Dong; Saravanan, Thangavelu; Devamani, Titu; Charmantray, Franck; Hecquet, Laurence; Fessner, Wolf-Dieter

    2015-01-11

    Directed evolution of the thermostable transketolase from Geobacillus stearothermophilus based on a pH-based colorimetric screening of smart libraries yielded several mutants with up to 16-fold higher activity for aliphatic aldehydes and high enantioselectivity (>95% ee) in the asymmetric carboligation step. PMID:25415647

  8. Copepod reproduction is unaffected by diatom aldehydes or lipid composition

    DEFF Research Database (Denmark)

    Dutz, Jörg; Koski, Marja; Jonasdottir, Sigrun

    2008-01-01

    production of Temora longicornis were measured for six different diatom species as well as for a nondiatom control diet (Rhodomonas sp.). The experiments were accompanied by determinations of fatty acids, sterols, and polyunsaturated aldehydes (PUA) in the food. Although diatoms were generally ingested at...

  9. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    Directory of Open Access Journals (Sweden)

    Rodríguez-García Ignacio

    2007-02-01

    Full Text Available Abstract Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans.

  10. A SUBCHRONIC INHALATION STUDY OF FISCHER 344 RATS EXPOSED TO 0, 0.4, 1.4 OR 4.0 PPM ACROLEIN

    International Nuclear Information System (INIS)

    Fischer 344 rats were exposed to 0.0, 0.4, 1.4, or 4.0 ppm acrolein for 62 days. The major objective of the study was to relate the results of a series of pulmonary function tests to biochemical and pathological alterations observed in the lung. Cytological and reproductive potential endpoints were also assessed after acrolein exposure. Rats were exposed to acrolein for 6 hours/day, 5 days/week for 62 days. Mortality was observed only in the 4.0 ppm chamber where 32 of 57 exposed males died; however, none of the 8 exposed females died. Most of the mortality occurred within the first 10 exposure days. Histologic examination indicated that the animals died of acute bronchopneumonia. The surviving males and females exposed to 4.0 ppm acrolein gained weight at a significantly slower rate than control animals. The growth of both sexes in the 0.4 and 1.4 ppm groups was similar to that of their respective controls. Histopathologic examination of animals after 62 days of exposure revealed bronchiolar epithelial necrosis and sloughing, bronchiolar edema with macrophages, and focal pulmonary edema in the 4.0 ppm group. These lesions were, in some cases, associated with edema of the trachea and peribronchial lymph nodes, and acute rhinitis which indicated an upper respiratory tract effect of acrolein. Of particular interest was the variability of response between rats in the 4.0 ppm group, some not affected at all while others were moderately affected. Intragroup variability in toxicity was also apparent in the 1.4 ppm exposure group where only 3 of 31 animals examined had lesions directly related to acrolein exposure. Extra respiratory organs appeared unaffected

  11. A SUBCHRONIC INHALATION STUDY OF FISCHER 344 RATS EXPOSED TO 0, 0.4, 1.4 OR 4.0 PPM ACROLEIN.

    Energy Technology Data Exchange (ETDEWEB)

    KUTZMAN,R.S.

    1981-10-01

    Fischer 344 rats were exposed to 0.0, 0.4, 1.4, or 4.0 ppm acrolein for 62 days. The major objective of the study was to relate the results of a series of pulmonary function tests to biochemical and pathological alterations observed in the lung. Cytological and reproductive potential endpoints were also assessed after acrolein exposure. Rats were exposed to acrolein for 6 hours/day, 5 days/week for 62 days. Mortality was observed only in the 4.0 ppm chamber where 32 of 57 exposed males died; however, none of the 8 exposed females died. Most of the mortality occurred within the first 10 exposure days. Histologic examination indicated that the animals died of acute bronchopneumonia. The surviving males and females exposed to 4.0 ppm acrolein gained weight at a significantly slower rate than control animals. The growth of both sexes in the 0.4 and 1.4 ppm groups was similar to that of their respective controls. Histopathologic examination of animals after 62 days of exposure revealed bronchiolar epithelial necrosis and sloughing, bronchiolar edema with macrophages, and focal pulmonary edema in the 4.0 ppm group. These lesions were, in some cases, associated with edema of the trachea and peribronchial lymph nodes, and acute rhinitis which indicated an upper respiratory tract effect of acrolein. Of particular interest was the variability of response between rats in the 4.0 ppm group, some not affected at all while others were moderately affected. Intragroup variability in toxicity was also apparent in the 1.4 ppm exposure group where only 3 of 31 animals examined had lesions directly related to acrolein exposure. Extra respiratory organs appeared unaffected.

  12. Unsaturated aldehydes as alkene equivalents in the Diels-Alder reaction

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Robert

    2008-01-01

    A one-pot procedure is described for using alpha,beta-unsaturated aldehydes as olefin equivalents in the Diels-Alder reaction. The method combines the normal electron demand cycloaddition with aldehyde dienophiles and the rhodium-catalyzed decarbonylation of aldehydes to afford cyclohexenes with no...

  13. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J. [Univ. of California, Berkeley, CA (United States)

    2009-06-30

    ,β-unsaturated aldehydes acrolein, crotonaldehyde, and prenal were investigated over Pt(111) and Pt(100). The selectivity for the hydrogenation of the C=C bond was found to depend on the number of methyl groups added to the bond. The adsorption modes of the three aldehydes were determined. The hydrogenation of crotonaldehyde was found to be nearly structure insensitive as the TOF and selectivity were very close to the same over Pt(111) and Pt(100). SFG-VS indicated identical surface intermediates over the two crystal faces during crotonaldehyde hydrogenation.

  14. Effects of Switching to Electronic Cigarettes with and without Concurrent Smoking on Exposure to Nicotine, Carbon Monoxide, and Acrolein.

    Science.gov (United States)

    McRobbie, Hayden; Phillips, Anna; Goniewicz, Maciej L; Smith, Katie Myers; Knight-West, Oliver; Przulj, Dunja; Hajek, Peter

    2015-09-01

    Concern has been raised about the presence of toxicants in electronic cigarette (EC) aerosol, particularly carbonyl compounds (e.g., acrolein) that can be produced by heating glycerol and glycols used in e-liquids. We investigated exposure to carbon monoxide (CO), nicotine (by measuring cotinine in urine), and to acrolein (by measuring its primary metabolite, S-(3-hydroxypropyl)mercapturic acid (3-HPMA) in urine) before and after 4 weeks of EC (green smoke, a "cig-a-like" EC, labeled 2.4% nicotine by volume) use, in 40 smokers. Thirty-three participants were using EC at 4 weeks after quitting, 16 (48%) were abstinent (CO-validated) from smoking during the previous week (EC only users), and 17 (52%) were "dual users." A significant reduction in CO was observed in EC-only users [-12 ppm, 95% confidence interval (CI), -16 to -7, 80% decrease) and dual users (-12 ppm, 95%CI, -19 to -6, 52% decrease). Cotinine levels also declined, but to a lesser extent (EC-only users: -184 ng/mg creatinine; 95% CI, -733 to -365, 17% decrease; and dual users: -976 ng/mg creatinine; 95%CI, -1,682 to -270, 44% decrease). Mean 3-HPMA levels had decreased at 4 weeks by 1,280 ng/mg creatinine (95%CI, -1,699 to -861, 79% decrease) in EC-only users and by 1,474 ng/mg creatinine (95%CI, -2,101 to -847, 60% decrease) in dual users. In dual users, EC use significantly reduced exposure to CO and acrolein because of a reduction in smoke intake. EC may reduce harm even in smokers who continue to smoke, but long-term follow-up studies are needed to confirm this. PMID:26333731

  15. [Synthesis, structures, and acute toxicity of gossypol nonsymmetrical aldehyde derivatives].

    Science.gov (United States)

    Tiliabaev, K Z; Kamaev, F G; Vypova, N L; Iuldashev, A M; Ibragimov, B T; Talipov, S A

    2010-01-01

    Nonsymmetrical aldehyde derivatives of gossypol, a yellow polyphenolic pigment of cottonseed, were synthesized by reactions with ammonia, aniline, 4-aminoantipyrine, and barbituric acid. Their structures were determined by UV spectrophotometry and IR and (1)H NMR spectroscopy methods. Their acute toxicities in white mice were compared with those of gossypol and the corresponding symmetrical analogues. It was demonstrated that in general, the fewer free aldehyde groups that contained the gossypol derivative, the lower its acute toxicity. Only in the case of a nonsymmetrical gossypol derivative bearing a 4-aminoantipyrine residue did we observe a deviation from the above correlation: its symmetrical counterpart was even more toxic, but still less toxic than gossypol. PMID:20644599

  16. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    OpenAIRE

    Ma YM; Zhao S

    2016-01-01

    Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, th...

  17. Characterization of the rat Class 3 aldehyde dehydrogenase gene promoter.

    OpenAIRE

    Xie, Y Q; Takimoto, K; Pitot, H. C.; Miskimins, W K; Lindahl, R

    1996-01-01

    The Class 3 aldehyde dehydrogenase gene (ALDH-3) is differentially expressed. Expression is either constitutive or xenobiotic inducible via an aromatic hydrocarbon (Ah) receptor-mediated pathway, depending upon the tissue. A series of studies were performed to examine the regulation of rat ALDH-3 basal expression. DNase I footprint analysis identified four DNA regions within the proximal 1 kb of the 5' flanking region of rat ALDH-3 which interact with regulatory proteins. Reporter gene and ge...

  18. An efficient and versatile synthesis of aromatic nitriles from aldehydes

    Institute of Scientific and Technical Information of China (English)

    Maryam Hajjami; Arash Ghorbani-Choghamarani; Mohammad Ali Zolfigol; Fatemeh Gholamian

    2012-01-01

    A simple and direct method has been developed for synthesis of nitriles based on one-pot reaction of aromatic aldehydes with three different kind of reagents:CeCl3·7H2O/KI/H2O2,CeCl3·7H2O/KI/UHP and (NH4)2Ce(NO3)6/KI/H2O2 in aqueous ammonia.

  19. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease

    OpenAIRE

    Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Lulla, Aaron; Murphy, Niall P.; Lam, Hoa A.; O’Donnell, Kelley C.; Barnhill, Lisa; Casida, John E.; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C.; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff. M.

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the...

  20. Comparative analysis of the vibrational structure of the absorption spectra of acrolein in the excited ( S 1) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2012-04-01

    The assignments of absorption bands of the vibrational structure of the UV spectrum are compared with the assignments of bands obtained by the CRDS method in a supersonic jet from the time of laser radiation damping for the trans isomer of acrolein in the excited ( S 1) electronic state. The ν00 trans = 25861 cm-1 values and fundamental frequencies, including torsional vibration frequency, obtained by the two methods were found to coincide in the excited electronic state ( S 1) for this isomer. The assignments of several absorption bands of the vibrational structure of the spectrum obtained by the CRDS method were changed. Changes in the assignment of (0-v') transition bands of the torsional vibration of the trans isomer in the Deslandres table from the ν00 trans trans origin allowed the table to be extended to high quantum numbers v'. The torsional vibration frequencies up to v' = 5 were found to be close to the frequencies found by analyzing the vibrational structure of the UV spectrum and calculated quantum-mechanically. The coincidence of the barrier to internal rotation (the cis-trans transition) in the one-dimensional model with that calculated quantum-mechanically using the two-dimensional model corresponds to a planar structure of the acrolein molecule in the excited ( S 1) electronic state.

  1. Characterization and reactivity of 11-molybdo-1-vanadophosphoric acid catalyst supported on zirconia for dehydration of glycerol to acrolein

    Indian Academy of Sciences (India)

    Balaga Viswanadham; Amirineni Srikanth; Komandur V R Chary

    2014-03-01

    A series of vanadium-substituted phosphomolybdic acid (HPA) catalysts supported on zirconia were prepared by impregnation method with varying the HPA active phase content from 10 to 50 wt% on the support. The calcined catalysts were characterized by X-ray diffraction, Raman spectroscopy, temperatureprogrammed desorption of NH3, FT-IR spectra of pyridine adsorption and surface area measurements. XRD results suggest that the active phase of heteropolyacid is present in a highly dispersed state at lower loadings and as a crystalline phase at higher HPA loadings and these findings are well-supported by the results of FT-IR and Raman spectra. Calcination of the samples did not affect the Keggin ion structure of HPA. The ammonia TPD results suggest that acidity of the catalysts was found to increase with increase of HPA loading up to 40 wt% and decreases at higher loadings. FT-IR spectra of pyridine adsorption show that the Brønsted acidic sites increase with increase of HPA loadings up to 40 wt% catalyst. However, Lewis acid sites decrease with increase ofHPA loading. Catalytic properties were evaluated during vapour phase dehydration of glycerol to acrolein. The catalyst with 40 wt% HPA has exhibited excellent selectivity towards acrolein formation with complete conversion of glycerol at 225°C under atmospheric pressure. Catalytic performances during dehydration of glycerol are well-correlated with acidity of the catalysts.

  2. γ-Unsaturated aldehydes as potential Lilial replacers.

    Science.gov (United States)

    Schroeder, Martin; Mathys, Marion; Ehrensperger, Nadja; Büchel, Michelle

    2014-10-01

    A series of Claisen rearrangements was undertaken in order to find a replacement for Lilial (=3-(4-(tert-butyl)phenyl)-2-methylpropanal), a high-tonnage perfumery ingredient with a lily-of-the-valley odour, which is a CMR2 material [1]. 5,7,7-Trimethyl-4-methyleneoctanal (10), the synthesis of which is described, became the main lead. It possesses an odour which is very close to that of Lilial but lacks its substantivity. Aldehydes with higher molecular weights than that of 10 were, therefore, synthesised in order to boost substantivity and to understand the structural requirements for a 'Lilial' odour. The aldehydes were obtained via Claisen rearrangements of 'exo-methylidene' vinyl ethers, allenyl vinyl ethers, or allenyl allyl ethers. Alternatively, coupling of terminal alkynes with allyl alcohols led to the desired aldehydes. Derivatives of 10 and their sila analogues were also synthesised. The olfactory properties of all synthesised molecules were evaluated for possible structure-odour relationships (SOR). PMID:25329790

  3. Acrolein Exposure Blocks Down-Regulation of Cytokines and IgE Antibody in a Mucosal Tolerance Model but does not Alter Phenotypic Markers of Allergic Lung Disease

    Science.gov (United States)

    Acrolein (ACR) is a highly reactive upper airway toxicant that humans are exposed in a variety of environmental situations. Here we examined the effect of ACR exposure on development of immune tolerance in mice. To induce tolerance, female BALB/C mice were intranasally inoculate...

  4. DFT-Based Explanation of the Effect of Simple Anionic Ligands on the Regioselectivity of the Heck Arylation of Acrolein Acetals

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Tanner, David Ackland; Cacchi, Sandro;

    2009-01-01

    The Heck arylation of acrolein acetal has been studied computationally and compared to the corresponding reaction with allyl ethers. The reaction can be controlled to give either cinnamaldehydes or arylpropanoic esters by addition of different coordinating anions, acetate, or chloride. The comput...

  5. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    Science.gov (United States)

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass. PMID:27003269

  6. Expression, crystallization and preliminary X-ray crystallographic analysis of aldehyde dehydrogenase (ALDH) from Bacillus cereus

    International Nuclear Information System (INIS)

    Aldehyde dehydrogenase (ALDH) catalyses the oxidation of aldehydes using NAD(P)+ as a cofactor. The aldh gene from B. cereus was cloned; the protein was expressed, purified and crystallized, and a preliminary X-ray crystallography analysis was performed. Aldehyde dehydrogenase (ALDH) catalyses the oxidation of aldehydes using NAD(P)+ as a cofactor. Most aldehydes are toxic at low levels. ALDHs are used to regulate metabolic intermediate aldehydes. The aldh gene from Bacillus cereus was cloned and the ALDH protein was expressed, purified and crystallized. A crystal of the ALDH protein diffracted to 2.6 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 83.5, b = 93.3, c = 145.5 Å, β = 98.05°. Four protomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å3 Da−1 and a solvent content of 51.8%

  7. Computational Approaches to the Determination of the Molecular Geometry of Acrolein in its T_1(n,π*) State

    Science.gov (United States)

    McAnally, Michael O.; Hlavacek, Nikolaus C.; Drucker, Stephen

    2012-06-01

    The spectroscopically derived inertial constants for acrolein (propenal) in its T_1(n,π*) state were used to test predictions from a variety of computational methods. One focus was on multiconfigurational methods, such as CASSCF and CASPT2, that are applicable to excited states. We also examined excited-state methods that utilize single reference configurations, including EOM-EE-CCSD and TD-PBE0. Finally, we applied unrestricted ground-state techniques, such as UCCSD(T) and the more economical UPBE0 method, to the T_1(n,π*) excited state under the constraint of C_s symmetry. The unrestricted ground-state methods are applicable because at a planar geometry, the T_1(n,π*) state of acrolein is the lowest-energy state of its spin multiplicity. Each of the above methods was used with a triple zeta quality basis set to optimize the T_1(n,π*) geometry. This procedure resulted in the following sets of inertial constants: Inertial constants (cm-1) of acrolein in its T_1(n,π*) state Method A B C Method A B C CASPT2(6,5) 1.667 0.1491 0.1368 UCCSD(T)^b 1.668 0.1480 0.1360 CASSCF(6,5) 1.667 0.1491 0.1369 UPBE0 1.699 0.1487 0.1367 EOM-EE-CCSD 1.675 0.1507 0.1383 TD-PBE0 1.719 0.1493 0.1374 Experiment^a 1.662 0.1485 0.1363 The two multiconfigurational methods produce the same inertial constants, and those constants agree closely with experiment. However the sets of computed bond lengths differ significantly for the two methods. In the CASSCF calculation, the lengthening of the C=O and C=C bonds and the shortening of the C--C bond are more pronounced than in CASPT2. O. S. Bokareva et al., Int. J. Quant. Chem. {108}, 2719 (2008).

  8. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    OpenAIRE

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2013-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptid...

  9. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    OpenAIRE

    Ramin Rezaei; Mohammadi, Mohammad K; Tahereh Ranjbar

    2011-01-01

    Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  10. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    Science.gov (United States)

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited. PMID:26591999

  11. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    OpenAIRE

    Phillips, T. K.; Clarke, Stuart M.; Castro Arroyo, Miguel Ángel; Millán, Carmen; Medina, Santiago

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7, C 9 and C 11) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue...

  12. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C7, C9 and C11) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C7 homologue the p2 plane group is preferred.

  13. Piperidine Promoted Regioselective Synthesis of α, β-unsaturated Aldehydes

    Directory of Open Access Journals (Sweden)

    *A. H. Banday

    2013-03-01

    Full Text Available An efficient, facile and regioselective synthesis of α,β-unsaturated aldehydes from β-hydroxynitriles is reported. The reaction is carried out using DIBAL-H and promoted by piperidine under dry conditions at a temperature of -78 oC and can be described as a concomitant reduction-elimination reaction. The same reaction if carried out in the absence of piperidine gives mainly the uneliminated reduction product. The products formed are of immense importance as synthons in a large number of chemical reactions and biological processes.

  14. Piperidine Promoted Regioselective Synthesis of α, β-unsaturated Aldehydes

    OpenAIRE

    *A. H. Banday

    2013-01-01

    An efficient, facile and regioselective synthesis of α,β-unsaturated aldehydes from β-hydroxynitriles is reported. The reaction is carried out using DIBAL-H and promoted by piperidine under dry conditions at a temperature of -78 oC and can be described as a concomitant reduction-elimination reaction. The same reaction if carried out in the absence of piperidine gives mainly the uneliminated reduction product. The products formed are of immense importance as synthons in a large number of chemi...

  15. DNA-Templated Introduction of an Aldehyde Handle in Proteins

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager; Kodal, Anne Louise Bank; Mortensen, Michael Rosholm; Rosen, Christian Bech; Tørring, Thomas

    2016-01-01

    Many medical and biotechnological applications rely on labeling of proteins, but one key challenge is the production of homogeneous and site-specific conjugates. This can rarely be achieved by mere residue-specific random labeling, but requires genetic engineering. Using site-selective DNA......-binding site. Here, we demonstrate DNA-templated reductive amination for His6-tagged proteins and native metal-binding proteins, including IgG1 antibodies. We also use a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde to proteins. This functions as a handle...

  16. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Science.gov (United States)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  17. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 850 and 1020 cm-1

    Science.gov (United States)

    McKellar, A. R. W.; Billinghurst, B. E.; Xu, Li-Hong; Lees, R. M.

    2015-11-01

    Using spectra obtained at the Canadian Light Source synchrotron radiation facility, a previously unobserved out-of-plane vibration of trans-acrolein (propenal) is reliably assigned for the first time. Its origin is at 1002.01 cm-1, which is about 20 cm-1 higher than usually quoted in the past. This mode is thus labelled as v14, leaving the label v15 for the known vibration at 992.66 cm-1. Weak combination bands 171182 ← 182, 171131 ← 131, 121182 ← 181, and 171182 ← 181 are studied for the first time, and assignments in the known v11, v16, and v15 fundamental bands are also extended. The seven excited vibrations involved in these bands are analyzed, together with five more unobserved vibrations in the same region (850-1020 cm-1), in a large 12-state simultaneous fit which accounts for most of the many observed perturbations in the spectra.

  18. First Principles Calculations for Hydrogenation of Acrolein on Pd and Pt: Chemoselectivity Depends on Steric Effects on the Surface.

    Science.gov (United States)

    Tuokko, Sakari; Pihko, Petri M; Honkala, Karoliina

    2016-01-01

    The chemoselective hydrogenation of acrolein on Pt(111) and Pd(111) surfaces is investigated employing density functional theory calculations. The computed potential energy surfaces together with the analysis of reaction mechanisms demonstrate that steric effects are an important factor that governs chemoselectivity. The reactions at the C=O functionality require more space than the reactions at the C=C functionality. Therefore the formation of allyl alcohol is more favorable at low coverage, while the reduction of the C=C bond and the formation of propanal becomes kinetically more favorable at higher coverage. The elementary reaction steps are found to follow different reaction mechanisms, which are identified according to terminology typically used in organometallic catalysis. The transition state scaling (TSS) relationship is demonstrated and the origin of multiple TSS lines is linked to variation of an internal electronic structure of a carbon skeleton. PMID:26791881

  19. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein.

    Science.gov (United States)

    Schuh, K; Kleist, W; Høj, M; Trouillet, V; Jensen, A D; Grunwaldt, J-D

    2014-12-18

    Flame spray pyrolysis (FSP) of Bi(III)- and Mo(VI)-2-ethylhexanoate dissolved in xylene resulted in various nanocrystalline bismuth molybdate phases depending on the Bi/Mo ratio. Besides α-Bi2Mo3O12 and γ-Bi2MoO6, FSP gave direct access to the metastable β-Bi2Mo2O9 phase with high surface area (19 m(2) g(-1)). This phase is normally only obtained at high calcination temperatures (>560 °C) resulting in lower surface areas. The β-phase was stable up to 400 °C and showed superior catalytic performance compared to α- and γ-phases in selective oxidation of propylene to acrolein at temperatures relevant for industrial applications (360 °C). PMID:25350295

  20. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  1. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    Science.gov (United States)

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  2. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim-3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  3. Co-exposure to inhaled ambient particulate matter and acrolein alters myocardial synchrony in mice: evidence for TRPA1 involvement

    Science.gov (United States)

    Because air pollution is a complex mixture of constituents, often including particulates and aldehydes, attributing health effects to air pollutants in a given ambient air shed can be difficult when pollutants are studied in isolation. The purpose of this study was to examine the...

  4. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Science.gov (United States)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  5. Structure and stability of acrolein and allyl alcohol networks on Ag(111) from density functional theory based calculations with dispersion corrections

    Science.gov (United States)

    Ferullo, Ricardo M.; Branda, Maria Marta; Illas, Francesc

    2013-11-01

    The interaction of acrolein and allyl alcohol with the Ag(111) surface has been studied by means of periodic density functional theory based calculations including explicitly dispersion terms. Different coverage values have been explored going from isolated adsorbed molecules to isolated dimers, interacting dimers or ordered overlayers. The inclusion of the dispersion terms largely affects the calculated values of the adsorption energy and also the distance between adsorbed molecule and the metallic surface but much less the adsorbate-adsorbate interactions. Owing to the large dipole moment of acrolein, the present calculations predict that at high coverage this molecule forms a stable extensive two-dimensional network on the surface, caused by the alignment of the adsorbate dipoles. For the case of allyl alcohol, dimers and complex networks exhibit similar stability.

  6. Oxidation of fatty aldehydes to fatty acids by Escherichia coli cells expressing the Vibrio harveyi fatty aldehyde dehydrogenase (FALDH).

    Science.gov (United States)

    Buchhaupt, Markus; Guder, Jan; Sporleder, Fenja; Paetzold, Melanie; Schrader, Jens

    2013-03-01

    Fatty acids represent an important renewable feedstock for the chemical industry. To enable biotechnological one carbon truncations of fatty acids, the enzymes α-dioxygenase and fatty aldehyde dehydrogenase (FALDH) have to be combined in a two-step process. We expressed an FALDH from V. harveyi in E. coli and characterized its substrate spectrum with a focus on the number and position of double bonds in the fatty aldehyde molecules. Synthesis of the expected fatty acid products was proven by analysis of whole cell biotransformation products. Coexpression of a H(2)O-forming NADPH oxidase (NOX) from Lactobacillus sanfranciscensis led to the implementation of a cofactor regeneration cycle in in vitro oxidation experiments. The presence of NOX in whole cell biotransformations improved reaction velocity but did not result in higher product yields. We could further demonstrate that at least part of the endogenous NAD(P)(+) regeneration capacity in the resting cells results from the respiratory chain. The whole cell catalyst with the high broad range FALDH activity described here is an important biotechnological module for lipid biotransformation processes, especially the shortening of fatty acids. PMID:23180547

  7. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    International Nuclear Information System (INIS)

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, [3H](Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes

  8. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

    Czech Academy of Sciences Publication Activity Database

    Končitíková, R.; Vigouroux, A.; Kopečná, M.; Andree, T.; Bartoš, Jan; Šebela, M.; Moréra, S.; Kopečný, D.

    2015-01-01

    Roč. 468, Part: 1 (2015), s. 109-123. ISSN 0264-6021 R&D Projects: GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : aldehyde dehydrogenase 2 (ALDH2) * aldehyde dehydrogenase 7 (ALDH7) * benzaldehyde Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.396, year: 2014

  9. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    OpenAIRE

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism.

  10. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8.

    Science.gov (United States)

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensisACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  11. Wirkung des Ballastwasser-Biozids Acrolein auf verschiedene pathogene Bakterienstämme in Meer-, Brack- und Süßwasser

    OpenAIRE

    Fuchs, Andrea

    2008-01-01

    Diese Diplomarbeit beschäftigt sich mit der Frage, welche Wirkung das Biozid Acrolein auf verschiedene pathogene Bakterien hat. Vor dem Hintergrund der IMORichtlinie 125 [53] wurde im Ballastwasser-Übereinkommen von 2004 fest gelegt, dass Schiffe ihr Ballastwasser vorbehandeln müssen, bevor es ausgepumpt werden darf. Diese Anordnung beruht auf der Tatsache, dass durch Ballastwasser jedes Jahr Millionen von Organismen verschleppt werden und die heimische Flora und Fauna der Zielhäfen aus dem G...

  12. Synthesis of bio-based aldehyde from seaweed polysaccharide and its interaction with bovine serum albumin.

    Science.gov (United States)

    Kholiya, Faisal; Chaudhary, Jai Prakash; Vadodariya, Nilesh; Meena, Ramavatar

    2016-10-01

    Here, we demonstrate a successful synthesis of bio-based aldehyde namely dialdehyde-carboxymethylagarose (DCMA) using carboxymethyagarose (CMA). Further reaction parameters (i.e. reaction temperature, pH and periodate concentration) were optimized to achieve maximum aldehyde content and product yield. The synthesis of DCMA was confirmed by employing FTIR, (1)H NMR, XRD, SEM, AFM, TGA, DSC, EA and GPC techniques. To investigate the aldehyde functionality, DCMA was allowed to interact with BSA and obtained results were found to be comparable with that of synthetic aldehyde (Formaldehyde). Further interaction of DCMA with BSA was confirmed by using UV-vis, FTIR, fluorescent spectroscopy, CD and DLS analysis. Results of this study revealed that bio-based aldehyde behaves like formaldehyde. This study adds value to abundant marine biopolymers and opens the new research area for polymer researchers. PMID:27312639

  13. Flavour release of aldehydes and diacetyl in oil/water systems

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Bredie, W. L. P.; Stahnke, Louise Heller; Jensen, B.; Refsgaard, Hanne

    2000-01-01

    The concentration- and time-dependent release of three C-6-aldehydes, six C-9-aldehydes and diacetyl was studied in model systems. The systems were water, rapeseed oil and oil-in-water emulsions. Dynamic headspace sampling was used to collect the volatile compounds. In the concentration......-dependent release experiment, the C-6-aldehydes were released in equal proportions from the aqueous and the emulsion systems, but in lower amounts from the pure oil. The amounts of C-9-aldehydes released decreased with increasing oil content. All aldehydes were released more rapidly from the aqueous system than...... from the pure oil. The release over time for diacetyl and (E,E)-2,4-hexadienal showed a linear relationship in all systems. The other compounds followed an exponential relationship between the time and the fraction released in the aqueous systems. It was demonstrated that the release of the volatile...

  14. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products.

    Directory of Open Access Journals (Sweden)

    Brett K Kaiser

    Full Text Available We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.

  15. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T.K. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Clarke, S.M., E-mail: stuart@bpi.cam.ac.u [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Bhinde, T. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Castro, M.A.; Millan, C. [Instituto Ciencia de los Materiales de Sevilla, Departamento de Quimica Inorganica (CSIC-Universidad de Sevilla) (Spain); Medina, S. [Centro de Investigacion, Tecnologia e Innovacion de la Universidad de Sevilla (CITIUS), Sevilla (Spain)

    2011-03-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C{sub 7}, C{sub 9} and C{sub 11}) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C{sub 11} homologue is determined to have a plane group of either p2, pgb or pgg, and for the C{sub 7} homologue the p2 plane group is preferred.

  16. Reduction of Aldehydes and Ketones with Potassium Borohydride as Reductant

    Institute of Scientific and Technical Information of China (English)

    罗慧谋; 李毅群

    2005-01-01

    A series of aldehydes and ketones were reduced by potassium borohydride in an ionic liquid/water ([bmim]PF6/H2O) biphasic system to afford corresponding alcohol with high purity in excellent yields. The ionic liquid/water biphasic system could promote the chemoselectivity and the substituents such as nitro group and chlorine remained intact. Aromatic ketones were not as active as aromatic aldhydes and cyclic ketones owing to their higher steric hindrance. The ionic liquid could be recycled and reused. This protocol has notable advantages of no need of phase transfer catalyst and organic solvents, mild conditions, simple operation, short reaction time, ease work-up, high yields and recycling of the ionic liquid.

  17. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    Science.gov (United States)

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages. PMID:25340465

  18. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  19. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    International Nuclear Information System (INIS)

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [125I]FMIC and [125I]DEIBA were 70±5% and 47±14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  20. [Effects of panthenol and carnitine on aldehyde metabolic enzymes in rats with tetrachloromethane-induced liver injury].

    Science.gov (United States)

    Satanovskaia, V I; Pron'ko, P S; Gaĭshmanova, A V; Miskevich, D A

    2009-01-01

    Tetrachloromethane (2 g/kg, intragastric) produced a decrease in the activity of NAD- and NADH- dependent aldehyde dehydrogenases with high Km for aldehydes in rat liver. Panthenol and L-carnitine administered separately normalized the activity of aldehyde dehydrogenases, while a combination of the drugs did not produce any significant effect. PMID:19441727

  1. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    OpenAIRE

    Yi, Xia; Gu, Hanqi; Gao, Qiuqiang; Liu, Z. Lewis; Bao, Jie

    2015-01-01

    Background Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenolic aldehyde inhibitors are rare. For ethanologenic strains, Zymomonas mobilis ZM4 is high in ethanol productivity and genetic manipulation feasibility, but sensitive to phenolic aldehyde inhibitors....

  2. α,β-Unsaturated aldehyde of hyaluronan--Synthesis, analysis and applications.

    Science.gov (United States)

    Buffa, Radovan; Šedová, Petra; Basarabová, Ivana; Moravcová, Martina; Wolfová, Lucie; Bobula, Tomáš; Velebný, Vladimír

    2015-12-10

    Hyaluronic acid (HA) modified with an aldehyde group (HA-CHO or HA-aldehyde) has been extensively used for various biomedical applications. The main advantage of the aldehyde moieties is the ability to react with a wide range of amino compounds under physiological conditions. Reactions of aldehydes with primary amines in water are reversible and equilibrium is thoroughly shifted towards starting aldehyde and amine. This work presents an unique modification of HA: α,β-unsaturated aldehyde of HA (4,5-anhydro-6(GlcNAc)-oxo HA or ΔHA-CHO), which allows the primary amines to be attached to HA more effectively in comparison to the saturated HA-CHO. Higher hydrolytic stability is caused by the conjugation of imine with an adjacent --C=C-- double bond. Two strategies for the preparation of unsaturated HA-aldehyde were developed and chemical structures were studied in details. Cross-linked materials prepared from this precursor are biocompatible and suitable for applications in drug delivery and regenerative medicine. PMID:26428127

  3. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism

    International Nuclear Information System (INIS)

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: (i) a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9 fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and (ii) a constitutive, NAD-dependent, membrane-localized FALDH. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobacter sp. strain HO1-N

  4. Human brain aldehyde reductases: relationship to succinic semialdehyde reductase and aldose reductase.

    Science.gov (United States)

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-08-01

    Human brain contains multiple forms of aldehyde-reducing enzymes. One major form (AR3), as previously shown, has properties that indicate its identity with NADPH-dependent aldehyde reductase isolated from brain and other organs of various species; i.e., low molecular weight, use of NADPH as the preferred cofactor, and sensitivity to inhibition by barbiturates. A second form of aldehyde reductase ("SSA reductase") specifically reduces succinic semialdehyde (SSA) to produce gamma-hydroxybutyrate. This enzyme form has a higher molecular weight than AR3, and uses NADH as well as NADPH as cofactor. SSA reductase was not inhibited by pyrazole, oxalate, or barbiturates, and the only effective inhibitor found was the flavonoid quercetine. Although AR3 can also reduce SSA, the relative specificity of SSA reductase may enhance its in vivo role. A third form of human brain aldehyde reductase, AR2, appears to be comparable to aldose reductases characterized in several species, on the basis of its activity pattern with various sugar aldehydes and its response to characteristic inhibitors and activators, as well as kinetic parameters. This enzyme is also the most active in reducing the aldehyde derivatives of biogenic amines. These studies suggest that the various forms of human brain aldehyde reductases may have specific physiological functions. PMID:6778961

  5. Antimony(v) cations for the selective catalytic transformation of aldehydes into symmetric ethers, α,β-unsaturated aldehydes, and 1,3,5-trioxanes.

    Science.gov (United States)

    Arias Ugarte, Renzo; Devarajan, Deepa; Mushinski, Ryan M; Hudnall, Todd W

    2016-07-01

    1-Diphenylphosphinonaphthyl-8-triphenylstibonium triflate ([][OTf]) was prepared in excellent yield by treating 1-lithio-8-diphenylphosphinonaphthalene with dibromotriphenylstiborane followed by halide abstraction with AgOTf. This antimony(v) cation was found to be stable toward oxygen and water, and exhibited exceptional Lewis acidity. The Lewis acidity of [][OTf] was exploited in the catalytic reductive coupling of a variety of aldehydes into symmetric ethers of type in good to excellent yields under mild conditions using Et3SiH as the reductant. Additionally, [][OTf] was found to selectively catalyze the Aldol condensation reaction to afford α-β unsaturated aldehydes () when aldehydes with 2 α-hydrogen atoms were used. Finally, [][OTf] catalyzed the cyclotrimerization of aliphatic and aromatic aldehydes to afford the industrially-useful 1,3,5 trioxanes () in good yields, and with great selectivity. This phosphine-stibonium motif represents one of the first catalytic systems of its kind that is able to catalyze these reactions with aldehydes in a controlled, efficient manner. The mechanism of these processes has been explored both experimentally and theoretically. In all cases the Lewis acidic nature of the antimony(v) cation was found to promote these reactions. PMID:27326797

  6. The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction

    Science.gov (United States)

    Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.

    1991-12-01

    MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.

  7. Error prone translesion synthesis past gamma-hydroxypropano deoxyguanosine, the primary acrolein-derived adduct in mammalian cells.

    Science.gov (United States)

    Kanuri, Manorama; Minko, Irina G; Nechev, Lubomir V; Harris, Thomas M; Harris, Constance M; Lloyd, R Stephen

    2002-05-24

    8-Hydroxy-5,6,7,8-tetrahydropyrimido[1,2-a]purin- 10(3H)-one,3-(2'-deoxyriboside) (1,N(2)-gamma-hydroxypropano deoxyguanosine, gamma-HOPdG) is a major DNA adduct that forms as a result of exposure to acrolein, an environmental pollutant and a product of endogenous lipid peroxidation. gamma-HOPdG has been shown previously not to be a miscoding lesion when replicated in Escherichia coli. In contrast to those prokaryotic studies, in vivo replication and mutagenesis assays in COS-7 cells using single stranded DNA containing a specific gamma-HOPdG adduct, revealed that the gamma-HOPdG adduct was significantly mutagenic. Analyses revealed both transversion and transition types of mutations at an overall mutagenic frequency of 7.4 x 10(-2)/translesion synthesis. In vitro gamma-HOPdG strongly blocks DNA synthesis by two major polymerases, pol delta and pol epsilon. Replicative blockage of pol delta by gamma-HOPdG could be diminished by the addition of proliferating cell nuclear antigen, leading to highly mutagenic translesion bypass across this adduct. The differential functioning and processing capacities of the mammalian polymerases may be responsible for the higher mutation frequencies observed in this study when compared with the accurate and efficient nonmutagenic bypass observed in the bacterial system. PMID:11889127

  8. Concerns regarding 24-h sampling for formaldehyde, acetaldehyde, and acrolein using 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents

    Science.gov (United States)

    Herrington, Jason S.; Hays, Michael D.

    2012-08-01

    There is high demand for accurate and reliable airborne carbonyl measurement methods due to the human and environmental health impacts of carbonyls and their effects on atmospheric chemistry. Standardized 2,4-dinitrophenylhydrazine (DNPH)-based sampling methods are frequently applied for measuring gaseous carbonyls in the atmospheric environment. However, there are multiple short-comings associated with these methods that detract from an accurate understanding of carbonyl-related exposure, health effects, and atmospheric chemistry. The purpose of this brief technical communication is to highlight these method challenges and their influence on national ambient monitoring networks, and to provide a logical path forward for accurate carbonyl measurement. This manuscript focuses on three specific carbonyl compounds of high toxicological interest—formaldehyde, acetaldehyde, and acrolein. Further method testing and development, the revision of standardized methods, and the plausibility of introducing novel technology for these carbonyls are considered elements of the path forward. The consolidation of this information is important because it seems clear that carbonyl data produced utilizing DNPH-based methods are being reported without acknowledgment of the method short-comings or how to best address them.

  9. Study of ternary-component bismuth molybdate catalysts by 18O2 tracer in the oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    Participation of lattice oxide ions of ternary-component bismuth molybdate catalysts M-Bi-Mo-O (M = Ni, Co, Mg, Mn, Ca, Sr, Ba, and Pb) was investigated using the 18O2 tracer in the selective oxidation of propylene to acrolein. The participation of the lattice oxide ions in the oxidation is prominent on every catalyst but the extent of the participation varies significantly depending on the structure of the catalyst. Only lattice oxide ions in the bismuth molybdate phase are incorporated into the oxidized products on the catalysts (M = Ni, Co, Mg, and Mn) where M have smaller ionic radius than Bi3+; catalyst particles are composed of a shell of bismuth molybdates and a core of MMoO4. On the other hand, whole oxide ions in the active particles are involved in the oxidation on catalysts having a scheelite-type structure (M = Ca, Sr, Ba, and Pb) where M has a comparable ionic radius to Bi3+

  10. Vibrationally specific photoionization cross sections of acrolein leading to the tilde{X} {}^2 A^' } ionic state

    Science.gov (United States)

    López-Domínguez, Jesús A.; Lucchese, Robert R.; Fulfer, K. D.; Hardy, David; Poliakoff, E. D.; Aguilar, A. A.

    2014-09-01

    The vibrational branching ratios in the photoionization of acrolein for ionization leading to the tilde{X} {}^2 A^' } ion state were studied. Computed logarithmic derivatives of the cross section and the corresponding experimental data derived from measured vibrational branching ratios for several normal modes (ν9, ν10, ν11, and ν12) were found to be in relatively good agreement, particularly for the lower half of the 11-100 eV photon energy range considered. Two shape resonances have been found near photon energies of 15.5 and 23 eV in the photoionization cross section and have been demonstrated to originate from the partial cross section of the A' scattering symmetry. The wave functions computed at the resonance complex energies are delocalized over the whole molecule. By looking at the dependence of the cross section on the different normal mode displacements together with the wave function at the resonant energy, a qualitative explanation is given for the change of the cross sections with respect to changing geometry.

  11. Quantum Monte Carlo calculations of electronic excitation energies: the case of the singlet $n \\to \\pi^*$ (CO) transition in acrolein

    CERN Document Server

    Toulouse, Julien; Reinhardt, Peter; Hoggan, Philip E; Umrigar, C J

    2010-01-01

    We report state-of-the-art quantum Monte Carlo calculations of the singlet $n \\to \\pi^*$ (CO) vertical excitation energy in the acrolein molecule, extending the recent study of Bouab\\c{c}a {\\it et al.} [J. Chem. Phys. {\\bf 130}, 114107 (2009)]. We investigate the effect of using a Slater basis set instead of a Gaussian basis set, and of using state-average versus state-specific complete-active-space (CAS) wave functions, with or without reoptimization of the coefficients of the configuration state functions (CSFs) and of the orbitals in variational Monte Carlo (VMC). It is found that, with the Slater basis set used here, both state-average and state-specific CAS(6,5) wave functions give an accurate excitation energy in diffusion Monte Carlo (DMC), with or without reoptimization of the CSF and orbital coefficients in the presence of the Jastrow factor. In contrast, the CAS(2,2) wave functions require reoptimization of the CSF and orbital coefficients to give a good DMC excitation energy. Our best estimates of ...

  12. Vibrationally specific photoionization cross sections of acrolein leading to the Χ{sup ~}A{sup '} ionic state

    Energy Technology Data Exchange (ETDEWEB)

    López-Domínguez, Jesús A.; Lucchese, Robert R., E-mail: lucchese@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Fulfer, K. D.; Hardy, David; Poliakoff, E. D. [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Aguilar, A. A. [Advanced Light Source, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2014-09-07

    The vibrational branching ratios in the photoionization of acrolein for ionization leading to the Χ{sup ~}A{sup '} ion state were studied. Computed logarithmic derivatives of the cross section and the corresponding experimental data derived from measured vibrational branching ratios for several normal modes (ν{sub 9}, ν{sub 10}, ν{sub 11}, and ν{sub 12}) were found to be in relatively good agreement, particularly for the lower half of the 11–100 eV photon energy range considered. Two shape resonances have been found near photon energies of 15.5 and 23 eV in the photoionization cross section and have been demonstrated to originate from the partial cross section of the A{sup ′} scattering symmetry. The wave functions computed at the resonance complex energies are delocalized over the whole molecule. By looking at the dependence of the cross section on the different normal mode displacements together with the wave function at the resonant energy, a qualitative explanation is given for the change of the cross sections with respect to changing geometry.

  13. Ambient Ionic Liquids Used in the Reduction ofAldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Dan Qian XU; Shu Ping LUO; Bao You LIU; Zhen Yuan XU; Yin Chu SHEN

    2004-01-01

    The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.

  14. Uncatalyzed Condensation Reactions between Aromatic Aldehydes and Thiobarbituric Acid in Water

    Institute of Scientific and Technical Information of China (English)

    Bing Qin YANG; Jun LU; Min TIAN

    2003-01-01

    A series of 5-arylidene thiobarbituric acids were prepared from aromatic aldehydes and thiobarbituric acid in water without catalyst conditions in good yields. The structures were characterized by elemental analysis, IR and 1H NMR spectra.

  15. Synthesis of vinyl boronates from aldehydes by a practical boron-Wittig reaction.

    Science.gov (United States)

    Coombs, John R; Zhang, Liang; Morken, James P

    2015-04-01

    A highly stereoselective boron-Wittig reaction between stable and readily accessible 1,1-bis(pinacolboronates) and aldehydes furnishes a variety of synthetically useful di- and trisubstituted vinyl boronate esters. PMID:25799147

  16. Study on physico-chemical properties of dialdehyde yam starch with different aldehyde group contents

    International Nuclear Information System (INIS)

    Dialdehyde yam starches (DASs) are prepared and characterized. Compared with native starch, viscosity average molecular weight of DASs decreases, and the extent of degradation depends on content of the aldehyde groups. Fourier transform infrared (FT-IR) spectra confirm that the characteristic peak for C=O group at 1732 cm-1 is enhanced with the increasing of content of the aldehyde groups. Scanning electron microscopy (SEM) micrographs show that the surface of starch granules becomes wrinkled. X-ray diffraction (XRD) patterns clearly indicate that their crystallinity decreases with the increasing content of the aldehyde groups before they become amorphous at higher oxidation states. The experimental results of thermogravimetric analysis (TGA) show that DASs have poor stability as compared to native starch. With the increase in content of the aldehyde groups, the thermal stability of DAS declines gradually. According to the results of differential scanning calorimetry (DSC), gelatinization temperature (To and Tp) of DASs are increased, whereas the gelatinization enthalpy decreased.

  17. Organocatalytic enantioselective Michael addition reactions of fluoromalonates with α,β-unsaturated aldehydes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new organocatalytic enantioselective Michael addition of α-fluoromalonate to enals has been developed.The process is efficiently catalyzed by readily available chiral diphenylpyrolinol TES ether under mild reaction conditions to afford versatile highly enantioenriched fluorinated aldehydes.

  18. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: A combined experimental and theoretical study

    DEFF Research Database (Denmark)

    Fristrup, Peter; Kreis, Michael; Palmelund, Anders; Norrby, Per-Ola; Madsen, Robert

    2008-01-01

    The mechanism for the rhodium-catalyzed decarbonylation of aldehydes was investigated by experimental techniques (Hammett studies and kinetic isotope effects) and extended by a computational study (DFT calculations). For both benzaldehyde and phenyl acetaldehyde derivatives, linear Hammett plots...

  19. Tetrabutylammonium fluoride promoted regiospecific reactions of trimethylsilyl-o-carborane with aldehydes

    International Nuclear Information System (INIS)

    Trimethylsilyl-o-carborane serves as o-carborane carbanion upon fluoride ion promoted reaction with carbonyl compounds. Thus, in the presence of tetrabutylammonium fluoride, trimethylsilyl-o-carborane undergoes facile, unprecedented, carbodesilylation with aromatic and aliphatic aldehydes. (author)

  20. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.

    Science.gov (United States)

    Fitzmaurice, Arthur G; Rhodes, Shannon L; Lulla, Aaron; Murphy, Niall P; Lam, Hoa A; O'Donnell, Kelley C; Barnhill, Lisa; Casida, John E; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff M

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis. PMID:23267077

  1. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    International Nuclear Information System (INIS)

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy

  2. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  3. Does acute exposure to aldehydes impair pulmonary function and structure?

    Science.gov (United States)

    Abreu, Mariana de; Neto, Alcendino Cândido; Carvalho, Giovanna; Casquillo, Natalia Vasconcelos; Carvalho, Niedja; Okuro, Renata; Ribeiro, Gabriel C Motta; Machado, Mariana; Cardozo, Aléxia; Silva, Aline Santos E; Barboza, Thiago; Vasconcellos, Luiz Ricardo; Rodrigues, Danielle Araujo; Camilo, Luciana; Carneiro, Leticia de A M; Jandre, Frederico; Pino, Alexandre V; Giannella-Neto, Antonio; Zin, Walter A; Corrêa, Leonardo Holanda Travassos; Souza, Marcio Nogueira de; Carvalho, Alysson R

    2016-07-15

    Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1β, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group. PMID:27102012

  4. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. PMID:26342346

  5. Garner’s aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

    Directory of Open Access Journals (Sweden)

    Mikko Passiniemi

    2013-11-01

    Full Text Available Since its introduction to the synthetic community in 1984, Garner’s aldehyde has gained substantial attention as a chiral intermediate for the synthesis of numerous amino alcohol derivatives. This review presents some of the most successful carbon chain elongation reactions, namely carbonyl alkylations and olefinations. The literature is reviewed with particular attention on understanding how to avoid the deleterious epimerization of the existing stereocenter in Garner’s aldehyde.

  6. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    OpenAIRE

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl a...

  7. Chromatographic Methods for the Analyses of 2-Halofatty Aldehydes and Chlorohydrin Species of Lysophosphatidylcholine

    OpenAIRE

    Albert, Carolyn J; Anbukumar, Dhanalakshmi S.; Messner, Maria C.; Ford, David A.

    2008-01-01

    Plasmalogens are targeted by hypohalous acids resulting in the production of 2-chlorofatty aldehydes, 2-bromofatty aldehydes and chlorohydrin species of lysophosphatidylcholine. These novel lipids have required the development of techniques for their purification and quantification. Thin layer chromatography, high performance liquid chromatography and gas chromatography of these lipids and their derivatives have provided a battery of tools for their analyses. These lipids have been quantified...

  8. Garner’s aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

    OpenAIRE

    Mikko Passiniemi; Koskinen, Ari M P

    2013-01-01

    Since its introduction to the synthetic community in 1984, Garner’s aldehyde has gained substantial attention as a chiral intermediate for the synthesis of numerous amino alcohol derivatives. This review presents some of the most successful carbon chain elongation reactions, namely carbonyl alkylations and olefinations. The literature is reviewed with particular attention on understanding how to avoid the deleterious epimerization of the existing stereocenter in Garner’s aldehyde.

  9. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.

    Science.gov (United States)

    Frömmel, Jan; Tarkowski, Petr; Kopečný, David; Šebela, Marek

    2016-09-25

    Plant NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases. They participate in the metabolism of polyamines or osmoprotectants. The enzymes are characterized by their broad substrate specificity covering ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The isoenzyme 1 from tomato (Solanum lycopersicum; SlAMADH1) oxidizes aliphatic aldehydes very efficiently and converts also furfural, its derivatives or benzaldehyde, which are present at low concentrations in alcoholic distillates such as fruit brandy. In this work, SlAMADH1 was examined as a bioanalytical tool for their detection. These aldehydes arise from fermentation processes or thermal degradation of sugars and their presence is related to health complications after consumption including nausea, emesis, sweating, decrease in blood pressure, hangover headache, among others. Sixteen samples of slivovitz (plum brandy) from local producers in Moravia, Czech Republic, were analyzed for their aldehyde content using a spectrophotometric activity assay with SlAMADH1. In all cases, there were oxidative responses observed when monitoring NADH production in the enzymatic reaction. Aldehydes in the distillate samples were also subjected to a standard determination using reversed-phase HPLC with spectrophotometric and tandem mass spectrometric detection after a derivatization with 2,4-dinitrophenylhydrazine. Results obtained by both methods were found to correlate well for a majority of the analyzed samples. The possible applicability of SlAMADH1 for the evaluation of aldehyde content in food and beverages has now been demonstrated. PMID:26703808

  10. Formation of Aldehyde and Ketone Compounds during Production and Storage of Milk Powder

    OpenAIRE

    Weijun Wang; Lanwei Zhang; Yanhua Li

    2012-01-01

    Certain aldehyde and ketone compounds can be used as indicators, at a molecular level, of the oxidized flavor of milk powder instead of sensory evaluation. This study investigated the formation of aldehyde and ketone compounds as affected by the heat-related processing and storage of milk powder. The compounds were extracted by solid phase microextraction fiber and determined using gas chromatography-mass spectrometry. In the results, higher contents of hexanal, 2-heptanone, octanal and 3-oct...

  11. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    OpenAIRE

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2008-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We obs...

  12. Aldehyde-Tagged Zirconium Metal-Organic Frameworks: a Versatile Platform for Postsynthetic Modification.

    Science.gov (United States)

    Xi, Fu-Gui; Liu, Hui; Yang, Ning-Ning; Gao, En-Qing

    2016-05-16

    Aldehyde-tagged UiO-67-type metal-organic frameworks (MOFs) have been synthesized via the direct solvothermal method or postsynthetic ligand exchange. Various functionalities have been introduced into the MOFs via postsynthetic modification (PSM) employing C-N and C-C coupling reactions of the aldehyde tag. Tandem PSM has also been demonstrated. An amino-functionalized MOF obtained by PSM is shown to be an efficient, heterogeneous, and recyclable catalyst for Knoevenagel condensation. PMID:27136395

  13. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  14. Group X Aldehyde Dehydrogenases of Pseudomonas aeruginosa PAO1 Degrade Hydrazones

    OpenAIRE

    Taniyama, Kosuke; Itoh, Hideomi; Takuwa, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Toyofuku, Masanori; Nomura, Nobuhiko; Takaya, Naoki

    2012-01-01

    Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD+- or NADP+-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological...

  15. Investigation of aldehyde oxidase and xanthine oxidoreductase in rainbow trout (Oncorhynchus mykiss)

    OpenAIRE

    Aburas, Omaro A Emhmed

    2014-01-01

    Molybdo-flavoenzymes (MFEs), aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR) are involved in the oxidation of N-heterocyclic compounds and aldehydes, many of which are environmental pollutants, drugs and vitamins. This biotransformation generally generates more polar compounds that are more easily excreted, thus MFEs have been classed as detoxication enzymes. To date there has been scant study of the properties, substrate and inhibitor specificities of MFEs in non-mammalian vert...

  16. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Directory of Open Access Journals (Sweden)

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  17. Substrate-Directed Hydroacylation: Rh-Catalyzed Coupling of Vinyl Phenols and Non-Chelating Aldehydes

    OpenAIRE

    Murphy, Stephen K.; Bruch, Achim; Dong, Vy M.

    2014-01-01

    We report a protocol for branched-selective hydroacylation of vinylphenols with aryl, alkenyl and alkyl aldehydes. This cross-coupling yields α-aryl ketones that can be cyclized to benzofurans, and it enables access to eupomatenoid natural products in four steps or less from eugenol. Excellent reactivity and high levels of branched regioselectivity are obtained. We propose that aldehyde decarbonylation is overcome by using an anionic directing group on the olefin and a small bite-angle diphos...

  18. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zaldivar, J.; Ingram, L.O. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science; Martinez, A. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science]|[Univ. Nacional Autonoma de Mexico (Mexico). Inst. de Biotecnologia

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  19. [Fatty aldehydes of the plasmalogenic form of phosphatidylethanolamine in the vertebrate brain].

    Science.gov (United States)

    Kruglova, E E

    1979-01-01

    Studies have been made on the composition of fatty aldehydes of plasmalogen form of ethanolamine phospholipid in the brain of 28 fish species (13 cartilaginous and 15 teleost species, exhibiting different level of organization of the nervous system, marine and freshwater, dwelling in different habitats), as well as in the brain of other vertebrates. It was found that in all primitive species of cartilaginous fish high degree of unsaturation of fatty aldehydes is observed; in higher species the degree of unsaturation is much lower. The highest degree of unsaturation of fatty aldehydes was demonstrated for abyssal species of cartilaginous and teleost fishes. In warm-water species which dwell in the upper layers, unlike all other fishes investigated, almost all fatty aldehydes are saturated. The ratio of unsaturated and saturated fatty aldehydes in fish brain depends on the entity of phylogenetic and ecological factors. Studies on other vertebrates show that in warm-blooded animals saturated fatty aldehydes predominate, whereas in cold-blooded-unsaturated ones are more abundant. PMID:314210

  20. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    Science.gov (United States)

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed. PMID:24411140

  1. Lowest triplet (n, π*) electronic state of acrolein: Determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods

    Science.gov (United States)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2013-02-01

    The cavity ringdown absorption spectrum of acrolein (propenal, CH2=CH—CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0^0_0 band of the T1(n, π*) ← S0 system. We analyzed the 0^0_0 rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], 10.1063/1.470569, which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T1(n, π*) inertial constants to the room-temperature contour. The determined values (cm-1), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T1(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T1(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)], 10.1002/qua.21803 used a triple zeta-quality basis set to optimize the T1(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial

  2. Cavity Ringdown Absorption Spectrum of the T_1(n,π*) ← S_0 Transition of Acrolein: Analysis of the 0^0_0 Band Rotational Contour

    Science.gov (United States)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2012-06-01

    Acrolein (propenal, CH_2=CH---CH=O) is the simplest conjugated enal molecule and serves as a prototype for investigating the photochemical properties of larger enals and enones. Acrolein has a coplanar arrangement of heavy atoms in its ground electronic state. Much of the photochemistry is mediated by the T_1(π,π*) state, which has a CH_2--twisted equilibrium structure. In solution, the T_1(π,π*) state is typically accessed via intersystem crossing from an intially prepared planar S_1(n,π*) state. An intermediate in this photophysical transformation is the lowest ^3 (n,π*) state, a planar species with adiabatic excitation energy below S_1 and above T_1(π,π*). The present work focuses on this ^3 (n,π*) intermediate state; it is designated T_1(n,π*) as the lowest-energy triplet state of acrolein having a planar equilibrium structure. The T_1(n,π*) ← S_0 band system, with origin near 412 nm, was first recorded in the 1970s at medium (0.5 cm-1) resolution using a long-path absorption cell. Here we report the cavity ringdown spectrum of the 0^0_0 band, recorded using a pulsed dye laser with 0.1 cm-1 spectral bandwidth. The spectrum was measured under both bulk-gas (room-temperature) and jet-cooled conditions. The band contour in each spectrum was analyzed by using a computer program developed for simulating and fitting the rotational structure of singlet-triplet transitions. The assignment of several resolved sub-band heads in the room-temperature spectrum permitted approximate fitting of the inertial constants for the T_1(n,π*) state. The determined values (cm-1) are A=1.662, B=0.1485, C=0.1363. For the parameters A and (B+C)/2, estimated uncertainties of ± 0.003 cm-1 and ± 0.0004 cm-1, respectively, correspond to a range of values that produce qualitatively satisfactory global agreement with the observed room-temperature contour. The fitted inertial constants were used to simulate the rotational contour of the 0^0_0 band under jet-cooled conditions

  3. Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea

    Directory of Open Access Journals (Sweden)

    Vanisree Mulabagal

    2011-01-01

    Full Text Available Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO and cyclooxygenase (COX-1 and COX-2 enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 g/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 g/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50 at 9.7 g/mL. The analogs showed only marginal LPO activity at 6.25 g/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 g/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 g/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 g/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities.

  4. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.

    Science.gov (United States)

    Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J

    2014-08-20

    Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates. PMID:25076127

  5. Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI

    Science.gov (United States)

    Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.

    Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental

  6. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  7. [Aldehyde dehydrogenase activity and level of dopamine in certain sections of the brain of rats preferring and refusing ethanol].

    Science.gov (United States)

    Kharchenko, N K

    2000-01-01

    Aldehyde dehydrogenase activity (KF 1.2.1.3) of cytosol fractions of brain structures (hypothalamus, midbrain and new cortex) as well as dophamine content in these structures were studied in comparative aspect in rats preferring and rejection ethanol. It has been shown that there were two isoforms of aldehyde dehydrogenases (aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2) in cytosol fractions of all investigated brain structures of animals preferring ethanol while only aldehyde dehydrogenase 2 has been found in the new cotex of rats rejecting ethanol. Thus, aldehyde-dehydrogenase activity is higher in the animals preferring ethanol than in those ones rejecting ethanol. Content of dophamine in the rats preferring ethanol is higher than in those ones rejecting ethanol both in the hypothalamus and new cortex. Differences between the studied groups of animals can underlie the pathologic attraction to alcohol. PMID:10979563

  8. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity

    Directory of Open Access Journals (Sweden)

    Rodriguez Gabriel M

    2012-06-01

    Full Text Available Abstract Background Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde. Results We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD600 (isobutanol vs 0.14 g/L/OD600 (isobutyraldehyde. Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD600 and decreased isobutanol production (0.4 g/L/OD600. By assessing production by

  9. Toxicity of polyunsaturated aldehydes of diatoms to Indo-Pacific bioindicator organism Echinometra mathaei.

    Science.gov (United States)

    Sartori, Davide; Gaion, Andrea

    2016-01-01

    Although it is well known suitability of early developmental stages of sea urchin as recommended model for pollutant toxicity testing, little is known about the sensitivity of Indo-Pacific species Echinometra mathaei to polyunsaturated aldehydes. In this study, the effect of three short chain aldehydes, 2,4-decadienal (DD), 2,4-octadienal (OD) and 2,4-heptadienal (HD), normally found in many diatoms, such as Skeletonema costatum, Skeletonema marinoi and Thalassiosira rotula, was evaluated on larval development of E. mathaei embryos. Aldehydes affected larval development in a dose-dependent manner, in particular HD>OD>DD; the results of this study highlighted the higher sensitivity of this species toward aldehydes compared with data registered for other sea urchin species. In comparison with studies reported in the literature, contrasting results were observed during our tests; therefore, an increasing toxic effect was registered with decreasing the chain length of aldehydes. This work could provide new insights in the development of new toxicological assays toward most sensitive species. PMID:25945412

  10. Surviving environmental stress: the role of betaine aldehyde dehydrogenase in marine crustaceans

    Directory of Open Access Journals (Sweden)

    NA Stephens-Camacho

    2015-02-01

    Full Text Available Betaine aldehyde dehydrogenase (BADH belongs to the aldehyde dehydrogenases (ALDH family, an ancestral group of enzymes responsible for aldehyde detoxification in several organisms. The BADH enzyme catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB an important osmoptrotector and osmoregulator accumulated in response to cellular osmotic stress. The BADH enzymes have been extensively described in terrestrial organisms, but information in marine crustaceans remains scarce. Research on crustacean stress-adaptive capacity to environmental stressors relates GB accumulation in response to salinity variations. Although GB de novo synthesis is confirmed on crustaceans, its metabolic pathways and regulation mechanism are unexplored. In this work, the state of the knowledge of betaine aldehyde dehydrogenase enzymes in marine crustaceans is summarized, as a mechanism to overcome the deleterious effects of changes in temperature, salinity and dissolved oxygen concentration in seawater. The purpose of this review is to provide a more comprehensive overview to set the basis for exploring novel functions and properties of BADHs on the response of crustaceans to environmental stress.

  11. Upper-airway inflammation in relation to dust spiked with aldehydes or glucan

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Stridh, G; Sigsgaard, T.;

    2006-01-01

    Objectives Organic dust is associated with adverse effects on human airways. This study was done to investigate whether the addition of β-(1,3)-D glucan or aldehydes to office dust causes enhanced inflammation in human airways. Methods Thirty-six volunteers were exposed randomly to clean air, off...... concentration increased after exposure to dust spiked with glucan (P=0.045). Conclusions β-(1,3)-D glucan and aldehydes in office dust enhance the inflammatory effects of dust on the upper airways.......Objectives Organic dust is associated with adverse effects on human airways. This study was done to investigate whether the addition of β-(1,3)-D glucan or aldehydes to office dust causes enhanced inflammation in human airways. Methods Thirty-six volunteers were exposed randomly to clean air...

  12. Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involved in antennal pheromone degradation.

    Science.gov (United States)

    Pelletier, Julien; Bozzolan, Françoise; Solvar, Marthe; François, Marie-Christine; Jacquin-Joly, Emmanuelle; Maïbèche-Coisne, Martine

    2007-12-01

    Signal inactivation is a crucial step in the dynamic of olfactory process and involves various Odorant-Degrading Enzymes. In the silkworm Bombyx mori, one of the best models for studying olfaction in insects, the involvement of an antennal-specific aldehyde oxidase in the degradation of the sex pheromone component bombykal has been demonstrated over the three past decades by biochemical studies. However, the corresponding enzyme has never been characterized at the molecular level. Bioinformatic screening of B. mori genome and molecular approaches have been used to isolate several candidate sequences of aldehyde oxidases. Two interesting antennal-expressed genes have been further characterized and their putative functions are discussed in regard to their respective expression pattern and to our knowledge on aldehyde oxidase properties. Interestingly, one gene appeared as specifically expressed in the antennae of B. mori and associated in males with the bombykal-sensitive sensilla, strongly suggesting that it could encode for the previously biochemically characterized enzyme. PMID:17904312

  13. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes

    International Nuclear Information System (INIS)

    The generation and characterization of ubiquitin (Ub)-aldehyde, a potent inhibitor of Ub-C-terminal hydrolase, has previously been reported. The authors examine the action of this compound on the Ub-mediated proteolytic pathway using the system derived from rabbit reticulocytes. Addition of Ub-aldehyde was found to strongly inhibit breakdown of added 125I-labeled lysozyme, but inhibition was overcome by increasing concentrations of Ub. The following evidence shows the effect of Ub-aldehyde on protein breakdown to be indirectly caused by its interference with the recycling of Ub, leading to exhaustion of the supply of free Ub: (i) Ub-aldehyde markedly increased the accumulation of Ub-protein conjugates coincident with a much decreased rate of conjugate breakdown; (ii) release of Ub from isolated Ub-protein conjugates in the absence of ATP (and therefore not coupled to protein degradation) is markedly inhibited by Ub-aldehyde. On the other hand, the ATP-dependent degradation of the protein moiety of Ub conjugates, which is an integral part of the proteolytic process, is not inhibited by this agent; (iii) direct measurement of levels of free Ub showed a rapid disappearance caused by the inhibitor. The Ub is found to be distributed in derivatives of a wide range of molecular weight classes. It thus seems that Ub-aldehyde, previously demonstrated to inhibit the hydrolysis of Ub conjugates of small molecules, also inhibits the activity of a series of enzymes that regenerate free Ub from adducts with proteins and intermediates in protein breakdown

  14. Nephelauxetic and hypersensitive nature of neodymium(III) complexes with α-pyridyl-thiosemicarbazide and its furfural-2-aldehyde and thiophene-2-aldehyde derivatives

    International Nuclear Information System (INIS)

    A new series of octahedral Nd(III) complexes with recently synthesised α-pyridylthiosemicarbazide (C6H8N4S or 'PT'), N-(α-pyridyl)furfural-2-aldehyde-thiosemicarbazone (C11H10N4SO or 'PFT') and N-(α-pyridyl)thiophene-2-aldehyde-thiosemicarbazone (C11H10N4S2 or 'PTT'), have been isolated and characterised on the basis of their elemental analysis, magnetic and reflectance and ir spectral data revealing 'PT' as bidentate (pyridinic-N and thioketo-S) and 'PFT' and 'PTT' as tetradentate with pyridinic-N, thioketo-S, imine-N and furfuryl-O/thiophenyl-S as donor sites. Isolation and characterisation of Nd(III) complexes with 'PT', 'PFT' and 'PTT' and their nephelauxetic and hypersensitive nature are studied in order to evaluate the stereochemistry of the ligands around Nd(III) ion. (author). 12 refs., 2 tables

  15. Development of analytical methods for the gas chromatographic determination of 1,2-epoxy-3-butene, 1,2:3,4-diepoxybutane, 3-butene-1,2-diol, 3,4-epoxybutane-1,2-diol and crotonaldehyde from perfusate samples of 1,3-butadiene exposed isolated mouse and rat livers

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, S.; Schuster, A.; Filser, J.G.

    2003-07-01

    Mutagenicity and carcinogenicity of 1,3-butadiene (BD) highly probably results from epoxide metabolites as 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB) and 3,4-epoxybutane-1,2-diol (EBD). A further metabolite crotonaldehyde (CA) has also been discussed to be relevant. So far, in BD exposed rodents only EB and DEB concentrations had been quantified. However, the methods used were either not very sensitive or instrumentally expensive. Therefore, the goal of the present work was to establish simple analytical methods selective and sensitive enough to determine all of these compounds and a further secondary BD intermediate, 3-butene-1,2-diol (B-diol), in BD exposed rodent livers. The once-through perfused liver system was chosen for testing the applicability of the methods to be developed, since it enables BD exposures of this quantitatively most relevant metabolising organ near to the in-vivo situation. All the metabolites were extracted from the aqueous perfusion medium and analysed using a gas chromatograph equipped with a mass selective detector (GC/MS) in the PCI mode. (orig.)

  16. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592.

    OpenAIRE

    Yan, R T; Chen, J S

    1990-01-01

    Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol...

  17. Aryl-aldehyde formation in fungal polyketides: Discovery and characterization of a distinct biosynthetic mechanism

    OpenAIRE

    Wang, Meng; Beissner, Mirko; Zhao, Huimin

    2014-01-01

    Aryl-aldehydes are a common feature in fungal polyketides, which are considered to be exclusively generated by the R domain of non-reducing polyketide synthases (NR-PKSs). However, by cloning and heterologous expression of two cryptic NR-PKS and non-ribosomal peptide synthase (NRPS)-like genes from Aspergillus terreus in Saccharomyces cerevisiae, we discovered a distinct mechanism for aryl-aldehyde formation in which a NRPS-like protein activates and reduces an aryl-acid produced by the accom...

  18. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde OxidaseS

    OpenAIRE

    Hartmann, Tobias; Terao, Mineko; Garattini, Enrico; Teutloff, Christian; Alfaro, Joshua F.; Jones, Jeffrey P.; Leimkühler, Silke

    2012-01-01

    Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 co...

  19. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    Science.gov (United States)

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  20. Aldehyde Selective Wacker Oxidations of Phthalimide Protected Allylic Amines : A New Catalytic Route to beta(3)-Amino Acids

    NARCIS (Netherlands)

    Weiner, Barbara; Baeza Garcia, Alejandro; Jerphagnon, Thomas; Feringa, Ben L.

    2009-01-01

    A new method for the synthesis of B-3-amino acids is presented. Phthalimide protected allylic amines are oxidized under Wacker conditions selectively to aldehydes using PdCl2 and CuCl or Pd(MeCN)(2)Cl(NO2) and CuCl2 as complementary catalyst systems. The aldehydes are produced in excellent yields an

  1. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  2. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis.

    Science.gov (United States)

    Wang, Le; Tang, Pingwah; Fan, Xiaoguang; Yuan, Qipeng

    2013-01-01

    The effects of four aldehydes (furfural, 5-hydroxymethylfurfural, vanillin and syringaldehyde), which were found in the corncob hemicellulose hydrolysate, on the growth and xylitol fermentation of Candida tropicalis were investigated. The results showed that vanillin was the most toxic aldehyde for the xylitol fermentation, followed by syringaldehyde, furfural and 5-hydroxymethylfurfural. Moreover, the binary combination tests revealed that furfural amplified the toxicity of other aldehydes and the toxicities of other binary combinations without furfural were simply additive. Based on the fermentation experiments, it was demonstrated that the inhibition of aldehydes could be alleviated by prolonging the fermentation incubation, increasing the initial cell concentration, enhancing the initial pH value and minimizing the furfural levels in the hydrolysate evaporation process. The strategies that we proposed to suppress the inhibitory effects of the aldehydes successfully avoided the complicated and costly detoxifications. Our findings could be potentially adopted for the industrial xylitol fermentation from hydrolysates. PMID:23843370

  3. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  4. 1,2-disubstituted cyclohexane derived tripeptide aldehydes as novel selective thrombin inhibitors.

    Science.gov (United States)

    Harmat, N J; Di Bugno, C; Criscuoli, M; Giorgi, R; Lippi, A; Martinelli, A; Monti, S; Subissi, A

    1998-05-19

    A series of tripeptide arginine aldehydes was synthesized by replacement of proline with 1,2-disubstituted cyclohexane derivatives in the sequence of D-MePhe-Pro-Arg-H. Based on molecular modeling, further modification of the D-MePhe residue resulted in a potent and selective thrombin inhibitor. PMID:9871744

  5. The Condensation of Aromatic Aldehydes with Acidic Methylene Compounds in Water

    Institute of Scientific and Technical Information of China (English)

    Da Qing SHI; Jing CHEN; Qi Ya ZHUANG; Xiang Shan WANG; Hong Wen HU

    2003-01-01

    The condensation of aromatic aldehydes with acidic methylene compounds such as malononitrile, methyl cyanoacetate, cyanoacetamide, 5,5-dimethyl-1,3-cyclohexanedione, bartbituric acid and 2-thiobarbituric acid proceeded very efficiently in water in the presence of triethylbenzylammonium chloride (TEBA) and the products were isolated simply by filtration.

  6. Catalytic asymmetric allylation of aliphatic aldehydes by chiral bipyridine N,N'-dioxides

    Czech Academy of Sciences Publication Activity Database

    Hrdina, R.; Boyd, T.; Valterová, Irena; Hodačová, Jana; Kotora, Martin

    -, č. 20 (2008), s. 3141-3144. ISSN 0936-5214 Grant ostatní: GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40550506 Keywords : allylations * aldehydes * Lewis base * asymmetric catalysis * solvent effect Subject RIV: CC - Organic Chemistry Impact factor: 2.659, year: 2008

  7. Fructose derived pyridyl alcohol ligands: synthesis and application in the asymmetric diethylzinc addition to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Yong-Gui; DAI, Li-Xin; HOU, Xue-Long

    2000-01-01

    Easily available chiral ketones were employed for the synthesis of optically active pyridyl alcohols, which were applied in the asymmetric diethylzinc addition to aldehydes, up to 89.4%e.e. was obtained using D-fructose-derived pyridyl alcohol.

  8. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David;

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient...

  9. Perfluoroalkanesulfonamide Organocatalysts for Asymmetric Conjugate Additions of Branched Aldehydes to Vinyl Sulfones

    Directory of Open Access Journals (Sweden)

    Kosuke Nakashima

    2013-11-01

    Full Text Available Asymmetric conjugate additions of branched aldehydes to vinyl sulfones promoted by sulfonamide organocatalyst 6 or 7 have been developed, allowing facile synthesis of the corresponding adducts with all-carbon quaternary stereocenters in excellent yields with up to 95% ee.

  10. An Improved Protocol for the Pd-catalyzed α-Arylation of Aldehydes with Aryl Halides

    OpenAIRE

    Martín, Rubén; Buchwald, Stephen L.

    2008-01-01

    An improved protocol for the Pd-catalyzed α-arylation of aldehydes with aryl halides has been developed. The new catalytic system allows for the coupling of an array of substrates including challenging electron-rich aryl bromides and less reactive aryl chlorides. The utility of this method has been demonstrated in a new total synthesis of (±)-sporochnol.

  11. STUDY ON THE CARDANOL-ALDEHYDE CONDENSATION POLYMER CONTAINING BORON-NITROGEN COORDINATE BOND

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Cardanol-aldehyde condensation polymer containing boron-nitrogen coordinate bond (CFBN) has been synthesized and characterized by IR, XPS, HPLC and DTA-TG. Its properties were also investigated. The results show that the coating film of CFBN has excellent physico-mechanical properties, good anticorrosive properties and stable at high temperature.

  12. Phosphite Ligand Modified Supported Rhodium Catalyst for Hydroformylation of Internal Olefins to Linear Aldehydes

    Institute of Scientific and Technical Information of China (English)

    LI Xian-ming; DING Yun-jie; JIAO Gui-ping; LI Jing-wei; YAN Li; ZHU He-jun

    2009-01-01

    A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.

  13. Integrated quantification and identification of aldehydes and ketones in biological samples

    NARCIS (Netherlands)

    Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer

    2014-01-01

    The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by

  14. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    Science.gov (United States)

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  15. Phenyl versus Ethyl Transfer in the Addition of Organozincs to Aldehydes: A Theoretical Study

    DEFF Research Database (Denmark)

    Rudolph, Jens; Rasmussen, Torben; Bolm, Carsten; Norrby, Per-Ola

    2003-01-01

    The dramatic improvement in diphenylzinc addition to aldehydes that is obtained by adding diethylzinc was investigated by DFT methods. The strong preference for phenyl over ethyl transfer can be understood in terms of overlap with the phenyl 31 system in the transition state (see picture). Reason...... for the high ee value in the presence of Et$-2$/Zn are discussed....

  16. Study on physico-chemical properties of dialdehyde yam starch with different aldehyde group contents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming, E-mail: zhanglmd@yahoo.com.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457 (China); Liu, Peng; Wang, Yugao [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Gao, Wenyuan [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2011-01-10

    Dialdehyde yam starches (DASs) are prepared and characterized. Compared with native starch, viscosity average molecular weight of DASs decreases, and the extent of degradation depends on content of the aldehyde groups. Fourier transform infrared (FT-IR) spectra confirm that the characteristic peak for C=O group at 1732 cm{sup -1} is enhanced with the increasing of content of the aldehyde groups. Scanning electron microscopy (SEM) micrographs show that the surface of starch granules becomes wrinkled. X-ray diffraction (XRD) patterns clearly indicate that their crystallinity decreases with the increasing content of the aldehyde groups before they become amorphous at higher oxidation states. The experimental results of thermogravimetric analysis (TGA) show that DASs have poor stability as compared to native starch. With the increase in content of the aldehyde groups, the thermal stability of DAS declines gradually. According to the results of differential scanning calorimetry (DSC), gelatinization temperature (T{sub o} and T{sub p}) of DASs are increased, whereas the gelatinization enthalpy decreased.

  17. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum.

    Science.gov (United States)

    Asiimwe, Theodore; Krause, Katrin; Schlunk, Ines; Kothe, Erika

    2012-08-01

    We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats. PMID:22159964

  18. Syntheses of a Flobufen Metabolite and Dapoxetine Based on Enantioselective Allylation of Aromatic Aldehydes

    Czech Academy of Sciences Publication Activity Database

    Hessler, F.; Korotvička, A.; Nečas, D.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 2014, č. 12 (2014), s. 2543-2548. ISSN 1434-193X Grant ostatní: GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : synthetic methods * asymmetric catalysis * organocatalysis * allylation * aldehydes * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  19. NaBH4/C: A Convenient System for Reductive Amination of Aldehydes

    Directory of Open Access Journals (Sweden)

    Sajjad Taie Hasanloie

    2014-03-01

    Full Text Available In this context, NaBH4 in the presence of activated charcoal has been used for thereductive aminationofa varietyof aldehydes withanilines. The reductive amination reactions have been performed within 60-100 min in THFunder reflux conditionsin high to excellent yields of products (85-90%.

  20. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren;

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies that the...

  1. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie; Engelbrekt, Christian; Riisager, Anders

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  2. A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes

    DEFF Research Database (Denmark)

    Kreis, Michael; Palmelund, Anders; Bunch, Lennart; Madsen, Robert

    2006-01-01

    A practical protocol for the decarbonylation of a wide range of aldehydes has been developed by using commercially available RhCl3x3H2O and dppp in a diglyme solution. This method gives rise to decarbonylated products in good to high yield and is particularly useful because of its experimental si...

  3. APPLICATION OF MULTISPECTRAL TECHNIQUES TO THE PRECISE IDENTIFICATION OF ALDEHYDES IN THE ENVIRONMENT

    Science.gov (United States)

    By using gas chromatography coupled with low- and high-resolution electron impact mass spectrometry, low- and high-resolution chemical ionization mass spectrometry, and Fourier transform infrared spectroscopy, eight straight-chain aldehydes were identified in a water sample taken...

  4. Cu(I)-NHC-catalyzed silylation of allenes: diastereoselective three-component coupling with aldehydes.

    Science.gov (United States)

    Rae, James; Hu, Ya Chu; Procter, David J

    2014-10-01

    Copper-catalyzed silylation of aryl allenes using a silylborane reagent affords vinyl silane building blocks with high efficiency. The use of a seven-membered NHC ligand proved crucial for high regioselectivity. The catalytically generated allylcoppper intermediates were intercepted by aldehydes in a diastereoselective three-component coupling to furnish homoallylic alcohols. PMID:25146221

  5. 40 CFR Appendix - Tables to Part 132

    Science.gov (United States)

    2010-07-01

    ... Acenaphthylene Acrolein; 2-propenal Acrylonitrile Aldrin Aluminum Anthracene Antimony Arsenic Asbestos 1,2... Endrin aldehyde Ethylbenzene Fluoranthene Fluorene; 9H-fluorene Fluoride Guthion Heptachlor...

  6. 40 CFR 132.6 - Application of part 132 requirements in Great Lakes States and Tribes.

    Science.gov (United States)

    2010-07-01

    ... Acenaphthylene Acrolein; 2-propenal Acrylonitrile Aldrin Aluminum Anthracene Antimony Arsenic Asbestos 1,2... Endrin aldehyde Ethylbenzene Fluoranthene Fluorene; 9H-fluorene Fluoride Guthion Heptachlor...

  7. Aldehyde Dehydrogenase Type 2 Activation by Adenosine and Histamine Inhibits Ischemic Norepinephrine Release in Cardiac Sympathetic Neurons: Mediation by Protein Kinase Cε

    OpenAIRE

    Robador, Pablo A.; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-01-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sym...

  8. Analysis of methods for calculating the transition frequencies of the torsional vibration of acrolein isomers in the ground ( S 0) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2013-05-01

    B3LYP, MP2, CCSD(T), and MP4/MP2 in the 6-311G( d, p), 6-311++G( d, p), cc-pVTZ, aug-cc-pVTZ bases used to calculate the transition frequencies of torsional vibration of trans- and cis-isomers of acrolein in the ground electronic state ( S 0) are analyzed. It is found that for trans-isomers, all methods of calculation except for B3LYP in the cc-pVTZ basis yield good agreement between the calculated and experimental values. It is noted that for the cis-isomer of acrolein, no method of calculation confirms the experimental value of the frequency of torsional vibration (138 cm-1). It is shown that the calculated and experimental values for obertones at 273.0 cm-1 and other transitions of torsional vibration are different for this isomer in particular. However, it is established that in some calculation methods (B3LYP, MP2), the frequency of the torsional vibration of the cis-isomer coincides with another experimental value of this frequency (166.5 cm-1). It is concluded that in analyzing the vibrational structure of the UV spectrum, the calculated and experimental values of its obertone (331.3 cm-1) coincide, along with its frequency. It is also noted that the frequency of torsional vibration for the cis-isomer (166.5 cm-1) can also be found in other experimental works if we change the allocation of torsional transition 18{1/1}.

  9. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States); Totah, Rheem A., E-mail: rtotah@u.washington.edu [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  10. Redox catalysts for the oxidative functionalisation of alkanes and methyl aromatics. Part project: Oxidation and ammoxidation of propane to acrolein and acrylonitride. Final report; Redox-Katalysatoren fuer die oxidative Funktionalisierung von Alkanen und Methylaromaten. Teilprojekt: Oxidation und Ammoxidation von Propan zu Acrolein und Acrylnitril. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Baerns, M.

    1996-04-01

    Acrolein (ACRO) and acrylonitrile (ACN) yields obtained by direct conversion of propane using any of the hitherto known catalysts are too low for technical applications (Y{sub ACRO,max}=13%, Y{sub ACN,max}=58%). The purpose of the present project was therefore to provide the groundwater for a mechanistically based development of a suitable catalyst. This was to be done by identifying elementary reaction steps and determining the desired properties of the catalyst. This was to be done by identifying elementary reaction steps and determining the desired properties of the catalyst. Candidate catalytic solids were characterised by various physicochemical methods and examined with regard to their catalytic mechanism under both transient and steady conditions. (orig./SR) [Deutsch] Die direkte Umsetzung von Propan zu Acrolein (ACRO) bzw. Acrylnitril (ACN) ist an bislang bekannten Katalysatoren nur mit Ausbeuten (Y{sub ACRO,max}=13%, Y{sub ACN,max}=58%) moeglich, die fuer technische Anwendungen zu gering sind. In diesem Projekt sollten deshalb als Basis fuer eine mechanistisch begruendete Katalysatorentwicklung, elementare Reaktionsschritte identifiziert und notwendige Katalysatoreigenschaften ermittelt werden. Hierzu wurden geeignet erscheinende katalytische Feststoffe mit unterschiedlichen physikalisch-chemischen Methoden charakterisiert und auf ihre katalytische Wirkungsweise mit Transientenmethoden und unter stationaeren Bedingungen untersucht. (orig./SR)

  11. Technical Note: Concerns regarding 24-h sampling for formaldehyde, acetaldehyde, and acrolein using 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents

    Science.gov (United States)

    A wide variety of natural and anthropogenic sources emit airborne carbonyls such as aldehydes (RCHO) and ketones (R1COR2). Vegetation, food, forest fires, fossil fuel combustion, disinfectants, fumigants, preservatives, and resins are a few examples of primary carbonyl sources. T...

  12. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Directory of Open Access Journals (Sweden)

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  13. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H2O2) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS4)) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS4). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS4)/H2O2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS4)/H2O2 system

  14. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    Science.gov (United States)

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes. PMID:26752344

  15. The concise synthesis of chiral tfb ligands and their application to the rhodium-catalyzed asymmetric arylation of aldehydes

    OpenAIRE

    Nishimura, Takahiro; Kumamoto, Hana; Nagaosa, Makoto; Hayashi, Tamio

    2009-01-01

    New C2-symmetric tetrafluorobenzobarrelene ligands were prepared and applied successfully to the rhodium-catalyzed asymmetric addition of arylboronic acids to aromatic aldehydes giving chiral diarylmethanols in high yield with high enantioselectivity.

  16. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    Science.gov (United States)

    Background: Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenol...

  17. Enantioselective Pinacol Coupling of Aromatic Aldehydes Mediated by TiCl4(THF)2/Zn with Tartaric Ester

    Institute of Scientific and Technical Information of China (English)

    LI You-Gui李有桂; JIANG Chen江辰; ZHAO Jun赵俊; TIAN Qing-Shan田青杉; YOU Tian-Pa尤田耙

    2004-01-01

    Asymmetric pinacol coupling of aromatic aldehydes mediated by low valent titanium complexes of chiral ligands derived from natural tartaric acid provided corresponding pinacols in good yields with excellent diastereoselectivities and moderate enantioselectivities.

  18. New Aldehyde Reductase Genes of Saccharomyces cerevisiae Contribute In Situ Detoxification of Lignocellulose-to-Ethanol Conversion Inhibitiors

    Science.gov (United States)

    Furfural and 5-hydroxymethylfurfural (HMF) are inhibitory compounds commonly encountered during lignocellulose-to-ethanol conversion for cleaner transportation fuels. It is possible to in situ detoxify the aldehyde inhibitors by tolerant ethanologenic yeast strains. Multiple gene-mediated reductio...

  19. Synthesis of chiral N-ferrocenylmethylaminoalcohols and their applica-tion in enantioselective addition of diethylzinc to aldehydes

    Institute of Scientific and Technical Information of China (English)

    Jian Feng GE; Zong Xuan SHEN; Ya Wen ZHANG

    2004-01-01

    Three chiral N-ferrocenylmethylaminoalcohols were synthesized from readily available natural L-valine, leucine and phenylanine, and used as chiral ligands in the enantioselective addition of diethylzinc to aldehydes.

  20. Therapeutic potential of targeting lipid aldehydes and lipoxidation end-products in the treatment of ocular disease.

    Science.gov (United States)

    McDowell, Rosemary E; McGeown, J Graham; Stitt, Alan W; Curtis, Tim M

    2013-02-01

    Lipoxidation reactions and the subsequent accumulation of advanced lipoxidation end products (ALEs) have been implicated in the pathogenesis of many of the leading causes of visual impairment. Here, we begin by outlining some of the major lipid aldehydes produced through lipoxidation reactions, the ALEs formed upon their reaction with proteins, and the endogenous aldehyde metabolizing enzymes involved in protecting cells against lipoxidation mediated damage. Discussions are subsequently focused on the clinical and experimental evidence supporting the contribution of lipid aldehydes and ALEs in the development of ocular diseases. From these discussions, it is clear that inhibition of lipoxidation reactions and ALE formation could represent a new therapeutic avenue for the treatment of a broad range of ocular disorders. Current and emerging pharmacological strategies to prevent or neutralize the effects of lipid aldehydes and ALEs are therefore considered, with particular emphasis on the potential of these drugs for treatment of diseases of the eye. PMID:23360143

  1. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants

    OpenAIRE

    Edenberg, Howard J

    2007-01-01

    The primary enzymes involved in alcohol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Both enzymes occur in several forms that are encoded by different genes; moreover, there are variants (i.e., alleles) of some of these genes that encode enzymes with different characteristics and which have different ethnic distributions. Which ADH or ALDH alleles a person carries influence his or her level of alcohol consumption and risk of alcoholism. Researchers to date pri...

  2. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer

    OpenAIRE

    Liu, Shu-Yan; Zheng, Peng-Sheng

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity characterizes a subpopulation of cells with cancer stem cell (CSC) properties in several malignancies. To clarify whether ALDH can be used as a marker of cervical cancer stem cells (CCSCs), ALDHhigh and ALDHlow cells were sorted from 4 cervical cancer cell lines and 5 primary tumor xenografts and examined for CSC characteristics. Here, we demonstrate that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs: (1) ALD...

  3. Aldehyde Dehydrogenase 1 Is a Tumor Stem Cell-Associated Marker in Lung Cancer

    OpenAIRE

    Jiang, Feng; Qiu, Qi; Khanna, Abha; Todd, Nevins W.; Deepak, Janaki; Xing, Lingxiao; Wang, Huijun; Liu, Zhenqiu; Su, Yun; Stass, Sanford A.; Katz, Ruth L

    2009-01-01

    Tumor contains small population of cancer stem cells (CSC) that are responsible for its maintenance and relapse. Analysis of these CSCs may lead to effective prognostic and therapeutic strategies for the treatment of cancer patients. We report here the identification of CSCs from human lung cancer cells using Aldefluor assay followed by fluorescence-activated cell sorting analysis. Isolated cancer cells with relatively high aldehyde dehydrogenase 1 (ALDH1) activity display in vitro features o...

  4. Aqueous DMSO Mediated Conversion of (2-(Arylsulfonyl)vinyl)iodonium Salts to Aldehydes and Vinyl Chlorides.

    Science.gov (United States)

    Zawia, Eman; Moran, Wesley J

    2016-01-01

    Vinyl(aryl)iodonium salts are useful compounds in organic synthesis but they are under-utilized and their chemistry is under-developed. Herein is described the solvolysis of some vinyl(phenyl)iodonium salts, bearing an arylsulfonyl group, in aqueous DMSO leading to aldehyde formation. This unusual process is selective and operates under ambient conditions. Furthermore, the addition of aqueous HCl and DMSO to these vinyl(aryl)iodonium salts allows their facile conversion to vinyl chlorides. PMID:27537866

  5. Alcohol and Aldehyde Dehydrogenases: Retinoid Metabolic Effects in Mouse Knockout Models

    OpenAIRE

    Kumar, Sandeep; Sandell, Lisa L.; Trainor, Paul A; Koentgen, Frank; Duester, Gregg

    2011-01-01

    Retinoic acid (RA) is the active metabolite of vitamin A (retinol) that controls growth and development. The first step of RA synthesis is controlled by enzymes of the alcohol dehydrogenase (ADH) and retinol dehydrogenase (RDH) families that catalyze oxidation of retinol to retinaldehyde. The second step of RA synthesis is controlled by members of the aldehyde dehydrogenase (ALDH) family also known as retinaldehyde dehydrogenase (RALDH) that further oxidize retinaldehyde to produce RA. RA fun...

  6. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function.

    Science.gov (United States)

    Garaycoechea, Juan I; Crossan, Gerry P; Langevin, Frederic; Daly, Maria; Arends, Mark J; Patel, Ketan J

    2012-09-27

    Haematopoietic stem cells (HSCs) regenerate blood cells throughout the lifespan of an organism. With age, the functional quality of HSCs declines, partly owing to the accumulation of damaged DNA. However, the factors that damage DNA and the protective mechanisms that operate in these cells are poorly understood. We have recently shown that the Fanconi anaemia DNA-repair pathway counteracts the genotoxic effects of reactive aldehydes. Mice with combined inactivation of aldehyde catabolism (through Aldh2 knockout) and the Fanconi anaemia DNA-repair pathway (Fancd2 knockout) display developmental defects, a predisposition to leukaemia, and are susceptible to the toxic effects of ethanol-an exogenous source of acetaldehyde. Here we report that aged Aldh2(-/-) Fancd2(-/-) mutant mice that do not develop leukaemia spontaneously develop aplastic anaemia, with the concomitant accumulation of damaged DNA within the haematopoietic stem and progenitor cell (HSPC) pool. Unexpectedly, we find that only HSPCs, and not more mature blood precursors, require Aldh2 for protection against acetaldehyde toxicity. Additionally, the aldehyde-oxidizing activity of HSPCs, as measured by Aldefluor stain, is due to Aldh2 and correlates with this protection. Finally, there is more than a 600-fold reduction in the HSC pool of mice deficient in both Fanconi anaemia pathway-mediated DNA repair and acetaldehyde detoxification. Therefore, the emergence of bone marrow failure in Fanconi anaemia is probably due to aldehyde-mediated genotoxicity restricted to the HSPC pool. These findings identify a new link between endogenous reactive metabolites and DNA damage in HSCs, and define the protective mechanisms that counteract this threat. PMID:22922648

  7. "Dopamine-first" mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile

    OpenAIRE

    Lichman, B. R.; Gershater, M. C.; Lamming, E. D.; Pesnot, T.; Sula, A.; Keep, N.H.; Hailes, H. C.; Ward, J. M.

    2015-01-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet-Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two propo...

  8. Three-Component Halo Aldol Condensation of Thioacrylates with Aldehydes Mediated by Titanium (IV Halide

    Directory of Open Access Journals (Sweden)

    Guigen Li

    2002-01-01

    Full Text Available a,b-Ethyl thioacrylate was difuctionalized by a tandem X-C/C=C bond formation reaction. The new system uses Ti (IV halide as both the Lewis acidic promoter and the halogen source for the Michael-type addition onto the thioacrylate. The titanium enolate species resulting from Michael-type addition react with aldehydes followed by dehydration to afford trisubstituted olefin products. Complete geometric selectivity (>95% and up to 72% yield have been obtained for 7 examples.

  9. Three-Component Halo Aldol Condensation of Thioacrylates with Aldehydes Mediated by Titanium (IV) Halide

    OpenAIRE

    Guigen Li; Gao, Joe J.; Han-Xun Wei; Sun Hee Kim

    2002-01-01

    a,b-Ethyl thioacrylate was difuctionalized by a tandem X-C/C=C bond formation reaction. The new system uses Ti (IV) halide as both the Lewis acidic promoter and the halogen source for the Michael-type addition onto the thioacrylate. The titanium enolate species resulting from Michael-type addition react with aldehydes followed by dehydration to afford trisubstituted olefin products. Complete geometric selectivity (>95%) and up to 72% yield have been obtained for 7 examples.

  10. Primary Amine–2-Aminopyrimidine Chiral Organocatalysts for the Enantioselective Conjugate Addition of Branched Aldehydes to Maleimides

    OpenAIRE

    Vizcaíno-Milla, Pascuala; Sansano Gil, José Miguel; Nájera Domingo, Carmen; Fiser, Béla; Gómez Bengoa, Enrique

    2015-01-01

    Chiral primary amines containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a pyrimidin-2-yl unit are synthesized and used as general organocatalysts for the Michael reaction of α-branched aldehydes to maleimides. The reaction takes place with 10 mol% organocatalyst loading and hexanedioic acid as cocatalyst in aqueous N,N-dimethylformamide at 10 °C affording the corresponding succinimides in good yields and enantioselectivities. DFT calculations support the stereochemica...

  11. Phenolic Acids, Phenolic Aldehydes and Furanic Derivatives in Oak Chips: American vs. French Oaks

    OpenAIRE

    Cabrita, M.J.; Barrocas Dias, C.; Costa Freitas, A.M.

    2011-01-01

    Phenolic acids (gallic, vanillic, syringic and ellagic acids), phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and furanic derivatives (furfural, 5-methylfurfural and 5-hydroxymethylfurfural) were quantified in commercial American and French oak chips. Chips with different sizes and toast degrees were used. Compounds were extracted directly from the wood samples in order to determine possible differences among woods as well as toast degree. Likewise, the compo...

  12. Revisiting the Reaction Between Diaminomaleonitrile and Aromatic Aldehydes: a Green Chemistry Approach

    OpenAIRE

    Francisco León; Jaime Ríos-Motta Ríos-Motta; Augusto Rivera

    2006-01-01

    The reaction between diaminomaleonitrile (DAMN) and aldehydes and the resulting monoimines are well known. Since the standard reaction conditions involve the use of toxic solvents (typically methanol), we have sought to apply green chemistry principles to this reaction by either using water as the solvent without any catalysts or employing “solvent-free†conditions. The monoimines derived from DAMN are of interest as precursors for obtaining different heterocyclic systems and linear ...

  13. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line

    OpenAIRE

    Wang, Yi; Jiang, Yang; IKEDA, JUN-ICHIRO; TIAN, TIAN; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-01-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, mi...

  14. Reaction of arylsulfonylhydrazones of aldehydes with alpha-magnesio sulfones. A novel olefin synthesis.

    Science.gov (United States)

    Kurek-Tyrlik, A; Marczak, S; Michalak, K; Wicha, J; Zarecki, A

    2001-10-19

    Reactions of representative tosylhydrazones of aldehydes and ketones with alpha-metalated sulfones were examined in order to develop a practical olefination method. Treatment of aldehyde tosylhydrazone 2 with an excess of alpha-lithiated methyl phenyl or dimethyl sulfones yielded 3a. The reaction of 2 with sterically unhindered lithiated alkyl sulfones gave mixtures of the respective olefination products 3b-d along with the Shapiro fragmentation product 4. Sterically hindered lithiated sulfones afforded Shapiro products exclusively. In contrast, aldehyde tosylhydrazones 2 or 6 in reactions with a variety of alpha-magnesio primary or secondary alkyl sulfones gave olefination products 3a-j and 7a-c in high yields (Tables 1 and 2). beta-Branched alkyl sulfones afforded predominantly (E)-alkenes, whereas unhindered primary sulfones gave mixtures of (E)- and (Z)-alkenes with low selectivity. Reaction of the 2,4,6-triisopropylbenzenesulfonylhydrazone (trisylhydrazone) of cyclodecanone 11c with alpha-magnesio methyl phenyl sulfone afforded the methylidene derivative 12a contaminated with the Shapiro product 13. Tosylhydrazone 2 resisted reaction with i-PrMgCl and gave only a small amount of the addition product in reaction with Bu(2)Mg. Some mechanistic aspects of the reaction of tosylhydrazones with organomagnesium compounds are discussed. PMID:11597219

  15. Aldehydes, hydrogen peroxide, and organic radicals as mediators of ozone toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A.; Church, D.F. (Biodynamics Institute, Louisiana State University, Baton Rouge (United States))

    1991-01-01

    It is generally agreed that unsaturated fatty acids (UFA) are an important class of target molecule for reaction with ozone when polluted air is inhaled. Most discussions have implicated the UFA in cell membranes, but lung lining fluids also contain fatty acids that are from 20 to 40% unsaturated. Since UFA in lung lining fluids exist in a highly aquated environment, ozonation would be expected to produce aldehydes and hydrogen peroxide, rather than the Criegee ozonide. In agreement with this expectation, the authors find that ozonations of emulsions of fatty acids containing from one to four double bonds give one mole of H2O2 for each mole of ozone reacted. Ozonation of oleic acid emulsions and dioleoyl phosphatidyl choline gives similar results, with two moles of aldehydes and one mole of H2O2 formed per mole of ozone reacted. The net reaction that occurs when ozone reacts with pulmonary lipids is suggested to be given by equation 1. (formula: see text). From 5 to 10% yields of Criegee ozonides also appear to be formed. In addition, a direct reaction of unknown mechanism occurs between ozone and UFA in homogeneous organic solution, in homogeneous solutions in water, in aqueous emulsions, and in lipid bilayers to give organic radicals that can be spin trapped. These radicals are suggested to be responsible for initiating lipid peroxidation of polyunsaturated fatty acids. Thus, aldehydes, hydrogen peroxide, and directly produced organic radicals are suggested to be mediators of ozone-induced pathology.39 references.

  16. Hydrazide and hydrazine reagents as reactive matrices for MALDI-MS to detect gaseous aldehydes.

    Science.gov (United States)

    Shigeri, Yasushi; Ikeda, Shinya; Yasuda, Akikazu; Ando, Masanori; Sato, Hiroaki; Kinumi, Tomoya

    2014-08-01

    The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to detect gaseous aldehydes. Among them, two hydrazide (2-hydroxybenzohydrazide and 3-hydroxy-2-naphthoic acid hydrazide) and two hydrazine reagents [2-hydrazinoquinoline and 2,4-dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI-MS. Results from accurate mass measurements by JMS-S3000 Spiral-TOF suggested that protonated ion peaks corresponding to [M + H](+) from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time-dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI-MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI-MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. PMID:25044902

  17. Pulsed corona discharge oxidation of aqueous lignin: decomposition and aldehydes formation.

    Science.gov (United States)

    Panorel, Iris; Kaijanen, Laura; Kornev, Iakov; Preis, Sergei; Louhi-Kultanen, Marjatta; Sirén, Heli

    2014-01-01

    Lignin is the mass waste product of pulp and paper industry mostly incinerated for energy recovery. Lignin is, however, a substantial source of raw material for derivatives currently produced in costly wet oxidation processes. The pulsed corona discharge (PCD) for the first time was applied to lignin oxidation aiming a cost-effective environmentally friendly lignin removal and transformation to aldehydes. The experimental research into treatment of coniferous kraft lignin aqueous solutions was undertaken to establish the dependence of lignin oxidation and aldehyde formation on the discharge parameters, initial concentration of lignin and gas phase composition. The rate and the energy efficiency of lignin oxidation increased with increasing oxygen concentration reaching up to 82 g kW-1 h-1 in 89% vol. oxygen. Oxidation energy efficiency in PCD treatment exceeds the one for conventional ozonation by the factor of two under the experimental conditions. Oxidation at low oxygen concentrations showed a tendency of the increasing aldehydes and glyoxylic acid formation yield. PMID:24600854

  18. A new aldehyde oxidase catalyzing the conversion of glycolaldehyde to glycolate from Burkholderia sp. AIU 129.

    Science.gov (United States)

    Yamada, Miwa; Adachi, Keika; Ogawa, Natsumi; Kishino, Shigenobu; Ogawa, Jun; Kataoka, Michihiko; Shimizu, Sakayu; Isobe, Kimiyasu

    2015-04-01

    We found a new aldehyde oxidase (ALOD), which catalyzes the conversion of glycolaldehyde to glycolate, from Burkholderia sp. AIU 129. The enzyme further oxidized aliphatic aldehydes, an aromatic aldehyde, and glyoxal, but not glycolate or alcohols. The molecular mass of this enzyme was 130 kDa, and it was composed of three different subunits (αβγ structure), in which the α, β, and γ subunits were 76 kDa, 36 kDa, and 14 kDa, respectively. The N-terminal amino acid sequences of each subunit showed high similarity to those of putative subunits of xanthine dehydrogenase. Metals (copper, iron and molybdenum) and chelating reagents (α,α'-dipyridyl and 8-hydroxyquinoline) inhibited the ALOD activity. The ALOD showed highest activity at pH 6.0 and 50°C. Twenty mM glycolaldehyde was completely converted to glycolate by incubation at 30°C for 3 h, suggesting that the ALOD found in this study would be useful for enzymatic production of glycolate. PMID:25283808

  19. Crystallization and preliminary X-ray analysis of aldehyde dehydrogenase from Vibrio harveyi.

    Science.gov (United States)

    Croteau, N.; Vedadi, M.; Delarge, M.; Meighen, E.; Abu-Abed, M.; Howell, P. L.; Vrielink, A.

    1996-01-01

    Aldehyde dehydrogenase from Vibrio harveyi catalyzes the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique among the family of aldehyde dehydrogenases in that it exhibits much higher specificity for the cofactor NADP+ than for NAD+. The sequence of this form of the enzyme varies significantly from the NAD+ dependent forms, suggesting differences in the three-dimensional structure that may be correlated to cofactor specificity. Crystals of the enzyme have been grown both in the presence and absence of NADP+ using the hanging drop vapor diffusion technique. In order to improve crystal size and quality, iterative seeding techniques were employed. The crystals belong to space group P2(1), with unit cell dimensions a = 79.4 A, b = 131.1 A, c = 92.2 A, and beta = 92.4 degrees. Freezing the crystal to 100 K has enabled a complete set of data to be collected using a rotating anode source (lambda = 1.5418 A). The crystals diffract to a minimum d-spacing of 2.6 A resolution. Based on density calculations, two homodimers of molecular weight 110 kDa are estimated to be present in the asymmetric unit. Self-rotation functions show the presence of 3 noncrystallographic twofold symmetry axes. PMID:8897616

  20. Overriding Felkin Control: A General Method for Highly Diastereoselective Chelation-Controlled Additions to α-Silyloxy Aldehydes

    OpenAIRE

    Stanton, Gretchen R.; Johnson, Corinne N.; Walsh, Patrick J.

    2010-01-01

    According to the Felkin-Anh and Cram-chelation models, nucleophilic additions to α-silyloxy aldehydes procees through a non-chelation pathway due to the steric and electronic properties of the silyl group, giving rise to Felkin addition products. Herein we describe a general method to promote chelation-control in additions to α-silyloxy aldehydes. Dialkylzincs, functionalized dialkylzincs, and (E)-disubstituted, (E)-trisubstituted, and (Z)-disubstituted vinylzinc reagents add to silyl-protect...

  1. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    OpenAIRE

    Nicholas, H B; Persson, B; Jörnvall, H; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same c...

  2. SnAP-eX Reagents for the Synthesis of Exocyclic 3-Amino- and 3-Alkoxypyrrolidines and Piperidines from Aldehydes.

    Science.gov (United States)

    Luescher, Michael U; Bode, Jeffrey W

    2016-06-01

    SnAP-eX (tin amine protocol, exocyclic heteroatoms) reagents allow the single-step transformation of aldehydes and ketones into 2,3-disubstituted pyrrolidines and piperidines containing exocyclic amine or alkoxy groups. These saturated N-heterocycles are of importance in modern drug discovery approaches and are prepared in moderate yields using an operationally simple protocol that is compatible with a range of functional groups and heterocyclic aldehydes. PMID:27192447

  3. A unified approach for the synthesis of symmetrical and unsymmetrical dibenzyl ethers from aryl aldehydes through reductive etherification

    Directory of Open Access Journals (Sweden)

    J. Sembian Ruso

    2016-05-01

    Full Text Available In this paper, we describe a simple and convenient conversion of aryl aldehydes to symmetrical dibenzyl ethers through reductive etherification. Similarly, unsymmetrical dibenzyl ether was obtained from aryl aldehyde and TES-protected benzyl alcohol. Triethyl silane with catalytic amount of InCl3 was found to be an efficient condition for the reductive etherification. Moreover, it exhibits remarkable functional group compatibility with yield ranging from good to excellent.

  4. Identification and Quantification of Aldehydes in Mezcal by Solid Phase Microextraction with On-fiber Derivatization - Gas Cromatography

    OpenAIRE

    Guadalupe Medina Valtierra; Rocío Juárez Ciprés; Araceli Peña Álvarez

    2011-01-01

    A headspace solid phase microextraction with on fiber derivatization procedure followed by gas chromatography and flame ionization detection was applied for the determination of aldehydes in mezcal. A derivatization agent o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed onto a Polydimethylsiloxane/ divinyl benzene (PDMS/DVB, 65 ¿m) fiber and exposed to the headspace of a vial with a mezcal sample. The aldehydes selectively reacted with PFBHA, and the oximes were desorbed int...

  5. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Rebecca L. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: r.l.taylor@ncl.ac.uk; Caldwell, Gary S. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Bentley, Matthew G. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD{sub 50} values of 7 and 20 {mu}M for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 {mu}M of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD{sub 50} of decadienal by approximately a third for both species. 1 {mu}M of copper chloride in solutions of decadienal reduced the 24 h LD{sub 50} of decadienal to A. salina nauplii by approximately 11% and 1 {mu}M zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 {mu}M copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  6. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    International Nuclear Information System (INIS)

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD50 values of 7 and 20 μM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 μM of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD50 of decadienal by approximately a third for both species. 1 μM of copper chloride in solutions of decadienal reduced the 24 h LD50 of decadienal to A. salina nauplii by approximately 11% and 1 μM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 μM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed

  7. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    Science.gov (United States)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  8. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation.

    Science.gov (United States)

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N; Chen, Lung-Chi; Tang, Moon-shong

    2015-10-20

    Second-hand smoke (SHS) is associated with 20-30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers. PMID:26431382

  9. A new kinetic model based on the remote control mechanism to fit experimental data in the selective oxidation of propene into acrolein on biphasic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Abdeldayem, H.M.; Ruiz, P.; Delmon, B. [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Thyrion, F.C. [Unite des Procedes Faculte des Sciences Appliquees, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)

    1998-12-31

    A new kinetic model for a more accurate and detailed fitting of the experimental data is proposed. The model is based on the remote control mechanism (RCM). The RCM assumes that some oxides (called `donors`) are able to activate molecular oxygen transforming it to very active mobile species (spillover oxygen (O{sub OS})). O{sub OS} migrates onto the surface of the other oxide (called `acceptor`) where it creates and/or regenerates the active sites during the reaction. The model contains tow terms, one considering the creation of selective sites and the other the catalytic reaction at each site. The model has been tested in the selective oxidation of propene into acrolein (T=380, 400, 420 C; oxygen and propene partial pressures between 38 and 152 Torr). Catalysts were prepared as pure MoO{sub 3} (acceptor) and their mechanical mixtures with {alpha}-Sb{sub 2}O{sub 4} (donor) in different proportions. The presence of {alpha}-Sb{sub 2}O{sub 4} changes the reaction order, the activation energy of the reaction and the number of active sites of MoO{sub 3} produced by oxygen spillover. These changes are consistent with a modification in the degree of irrigation of the surface by oxygen spillover. The fitting of the model to experimental results shows that the number of sites created by O{sub SO} increases with the amount of {alpha}-Sb{sub 2}O{sub 4}. (orig.)

  10. Integrated quantification and identification of aldehydes and ketones in biological samples.

    Science.gov (United States)

    Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer

    2014-05-20

    The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by adding chemical information to MS data. Our strategy is based on rapid autosampler-in-needle-derivatization with p-toluenesulfonylhydrazine (TSH). The resulting TSH-hydrazones are separated by ultrahigh-performance liquid chromatography (UHPLC) and detected by electrospray ionization-quadrupole-time-of-flight (ESI-QqTOF) mass spectrometry using a SWATH (Sequential Window Acquisition of all Theoretical Fragment-Ion Spectra) data-independent high-resolution mass spectrometry (HR-MS) approach. Derivatization makes small, poorly ionizable or retained analytes amenable to reversed phase chromatography and electrospray ionization in both polarities. Negatively charged TSH-hydrazone ions furthermore show a simple and predictable fragmentation pattern upon collision induced dissociation, which enables the chemo-selective screening for unknown aldehydes and ketones via a signature fragment ion (m/z 155.0172). By means of SWATH, targeted and nontargeted application scenarios of the suggested derivatization route are enabled in the frame of a single UHPLC-ESI-QqTOF-HR-MS workflow. The method's ability to simultaneously quantify and identify molecules containing aldehyde and ketone groups is demonstrated using 61 target analytes from various compound classes and a (13)C labeled yeast matrix. The identification of unknowns in biological samples is detailed using the example of indole-3-acetaldehyde. PMID:24745975

  11. The effects of using oxygenated fuels on the concentrations of Aldehydes in Denver

    International Nuclear Information System (INIS)

    The State of Colorado has mandated the winter use of oxygenated fuels in motor vehicles since January 1988. The purpose of using oxygenated fuels is to reduce the emissions of carbon monoxide (CO), and hence the ambient concentration of carbon monoxide. The use of oxygenated fuels is known to increase the emissions of aldehydes. Formaldehyde emissions increase when methyl tertiary butyl ether (MTBE) blended fuels are used, while acetaldehyde emissions also increase when ethanol blended fuels are used. Early in the program, MTBE blended fuels constituted about 95% of the fuels used. The market penetration of the ethanol blended fuels is believed to have increased to about 20% in recent years. Our research group has been collecting four-hour averaged aldehyde samples, 24 hours a day in Denver for much of the time since December 1987. This has included six seasons during which oxygenated fuels were used. In this paper, the diurnal and seasonal variability in the aldehyde concentrations are discussed. These data suggest that motor vehicles are a major source of formaldehyde during the winter. Other sources of formaldehyde, including photochemical sources, are of greater importance during the summer. These data will be analyzed to try to evaluate the impact of using oxygenated fuels on the atmospheric concentration of formaldehyde in Denver. The 1990 Clean Air requires the use of oxygenated fuels in over forty metropolitan areas with carbon monoxide problems. It must be verified that one is not causing new problems by the use of oxygenated fuels in an attempt to reduce carbon monoxide concentrations

  12. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study.

    Science.gov (United States)

    Siah, Maryam; Farzaei, Mohammad Hosein; Ashrafi-Kooshk, Mohammad Reza; Adibi, Hadi; Arab, Seyed Shahriar; Rashidi, Mohammad Reza; Khodarahmi, Reza

    2016-02-01

    Aldehyde oxidase (AO), a cytosolic molybdenum-containing hydroxylase, is predominantly active in liver and other tissues of mammalian species and involved in the metabolism of extensive range of aldehydes and nitrogen-containing compounds. A wide range of natural components including polyphenols are able to interfere with AO-catalyzed reactions. Polyphenols and flavonoids are one of the extensive secondary plant metabolites ubiquitously present in plants considered an important part of the human diet. The aim of the present study was to investigate inhibitory effect of selected phenolic compounds from three subclasses of aurone, flavanone and phenolic lactone compounds on the activity of AO, spectrophotometrically. AO enzyme was partially purified from liver of guinea pig. Then, inhibitory effects of 10 flavonoid compounds including 8 derivatives of 2-benzylidenebenzofuran-3(2H)-ones, as well as naringenin and ellagic acid on the activity of aldehyde oxidase were assessed compared with the specific inhibitor of AO, menadione. Among the phenolic compounds with inhibitory effects on the enzyme, ellagic acid (IC50=14.47μM) was the most potent agent with higher inhibitory action than menadione (IC50=31.84μM). The mechanisms by which flavonoid compounds inhibit AO activity have been also determined. The inhibitory process of the assessed compounds occurs via either a non-competitive or mixed mode. Although flavonoid compounds extensively present in the nature, mainly in dietary regimen, aurones with promising biological properties are not widely distributed in nature, so synthesis of aurone derivatives is of great importance. Additionally, aurones seem to provide a promising scaffold in medicinal chemistry for the skeleton of new developing drugs, so the results of the current study can be valuable in order to better understanding drug-food as well as drug-drug interaction and also appears to be worthwhile in drug development strategies. PMID:26722818

  13. Clean Synthesis in Water:Darzens Condensation Reaction of Aromatic Aldehydes with Phenacyl Chloride

    Institute of Scientific and Technical Information of China (English)

    史达清; 张姝; 庄启亚; 王香善; 屠树江; 胡宏纹

    2003-01-01

    The Darzens condensation reaction of aromatic aldehydes with phenacyl chloride proceeded very efficiently in a water suspension medium in the presence of triethylbenzylammonium chloride and only trans-2,3-epoxy-1,3-diaryl-1-propanones were formed which can be isolated simply by filtration.The structures of these compounds were confirmed by elemental analysis,IR and 1H NMR spectra.Therir configurations are in agreement with that of the same compounds reported in the literature.Compared to the classical Darzens condensation,this new method has the advantages of good yields,high stereoselectivity,low running cost inexpensive and environmentally benign procedure.

  14. From ribonucleoside 5'-aldehydes to ribonucleoside 5'-C-phosphpnates as building blocks for oligonucleotide synthesis

    Czech Academy of Sciences Publication Activity Database

    Petrová, Magdalena; Králíková, Šárka; Buděšínský, Miloš; Rosenberg, Ivan

    -, č. 52 (2008), s. 591-592. ISSN 0261-3166. [Joint Symposium of the International Roundtable on Nucleosides, Nucleotides and Nucleic Acids /18./ and the International Symposium on Nucleic Acid Chemistry /35./. Kyoto, 08.09.2008-12.09.2008] R&D Projects: GA MŠk(CZ) LC06061; GA MŠk(CZ) LC06077 Grant ostatní: EMIL-FP6(XE) 503569 Institutional research plan: CEZ:AV0Z40550506 Keywords : 5'-aldehydes * 5'-C-phosphonates Subject RIV: CC - Organic Chemistry

  15. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH4CN, CH3CN, and C2H4CN, that had received multikilogray doses of 60Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  16. Photocycloaddition of aromatic and aliphatic aldehydes to isoxazoles: Cycloaddition reactivity and stability studies

    Directory of Open Access Journals (Sweden)

    Hidehiro Kotaka

    2011-01-01

    Full Text Available The first photocycloadditions of aromatic and aliphatic aldehydes to methylated isoxazoles are reported. The reactions lead solely to the exo-adducts with high regio- and diastereoselectivities. Ring methylation of the isoxazole substrates is crucial for high conversions and product stability. The 6-arylated bicyclic oxetanes 9a–9c were characterized by X-ray structure analyses and showed the highest thermal stabilities. All oxetanes formed from isoxazoles were highly acid-sensitive and also thermally unstable. Cleavage to the original substrates is dominant and the isoxazole derived oxetanes show type T photochromism.

  17. Benzazole derivatives. IV. Reaction of 1,2,3-trimethylbenzimidazolium salts with aromatic aldehydes

    Directory of Open Access Journals (Sweden)

    CORINA CERNATESCU

    2005-12-01

    Full Text Available 1,2,3-Trimethylbenzimidazolium iodide and its analogue salts with one or two substituents on benzene ring (X = NO2, Br,Cl, CH3 are, due to the reactivity of the 2-methyl group, able to react with para-substituted aromatic aldehydes (X = OH, OCH3, CH3, NMe2, NO2 using piperidine as a catalyst. 1-Methyl-2-styrylbenzimidazole iodomethylates were obtained and their structure elucidated by means of NMR and IR spectroscopy. The compounds are interesting as hemicyanine dyes. They lend themselves to studies based on electronic absorption spectroscopy and they have potential practical applications linked to their photosensitive properties.

  18. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  19. Aldehyde Dehydrogenase 2 Knockout Accentuates Ethanol-Induced Cardiac Depression: Role of Protein Phosphatases

    OpenAIRE

    Ma, Heng; Byra, Emily A.; Yu, Lu; Hu, Nan; Kitagawa, Kyoko; Nakayama, Keiichi I.; Kawamoto, Toshihiro; Ren, Jun

    2010-01-01

    Alcohol consumption leads to myocardial contractile dysfunction possibly due to the toxicity of ethanol and its major metabolite acetaldehyde. This study was designed to examine the influence of mitochondrial aldehyde dehydrogenase-2 (ALDH2) knockout (KO) on acute ethanol exposure-induced cardiomyocyte dysfunction. Wild-type (WT) and ALDH2 KO mice were subjected to acute ethanol (3 g/kg, i.p.) challenge and cardiomyocyte contractile function was assessed 24 hrs later using an IonOptix® edge-d...

  20. Facile Aldol Reaction Between Unmodified Aldehydes and Ketones in Bronsted Acid Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-you; ZHAO Di-shun; XU Dan-qian; XU Zhen-yuan

    2007-01-01

    A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α ,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs) was explored. 1-Butyl-3-methylimidazolium hydrogen sulphate( BMImHSO4 ) acting as an effective media and catalyst in aldol reactions was compared with other BAILs, with the advantages of high conversion and selectivity. The product was easily isolated andthe left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency. The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated.

  1. Chiral phenoxyimino-amido aluminum complexes for the asymmetric cyanation of aldehydes.

    Science.gov (United States)

    Ternel, J; Agbossou-Niedercorn, F; Gauvin, R M

    2014-03-21

    The reactivity of triethylaluminum towards salicylaldimine sulfonamides was probed, affording well-defined complexes through consecutive protonolysis of two Al-C bonds by the proligand. These complexes, when combined with an achiral anilinic N-oxide, catalyze the asymmetric addition of trimethylsilylcyanide to a wide range of aldehydes, with good activity and enantioselectivity (up to 91% ee). Insertion of the benzaldehyde substrate into the Al-N amido bond was observed, bringing elements for discussion around the nature of the actual active species. PMID:24434893

  2. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR DETERMINATION OF AROMATIC ALDEHYDES IN WINE DISTILLATES

    Directory of Open Access Journals (Sweden)

    Elena Nezalzova

    2011-06-01

    Full Text Available Quality control of alcoholic beverages, coming into the market, is a defining element in preventing the production and supplying of defective products. One of the main criteria for quality control of wine distillates is to estimate their age, and more precisely the period of maturation as the dominant factor in determining the quality of cognacs and, consequently, their market price. On the opinion of majority scientists, one of the main factors, which determines the age of wine distillates, is the content of aromatic aldehydes, mostly vanillin, and their ratio.

  3. Revisiting the Reaction Between Diaminomaleonitrile and Aromatic Aldehydes: a Green Chemistry Approach

    Directory of Open Access Journals (Sweden)

    Francisco León

    2006-11-01

    Full Text Available The reaction between diaminomaleonitrile (DAMN and aldehydes and the resulting monoimines are well known. Since the standard reaction conditions involve the use of toxic solvents (typically methanol, we have sought to apply green chemistry principles to this reaction by either using water as the solvent without any catalysts or employing “solvent-free” conditions. The monoimines derived from DAMN are of interest as precursors for obtaining different heterocyclic systems and linear polymers. The methodologies used have significant advantages with regards to cost and environmental considerations.

  4. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  5. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans.

    Science.gov (United States)

    Sobreira, Tiago J P; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S L; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification. PMID:21169504

  6. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans

    Science.gov (United States)

    Sobreira, Tiago J. P.; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C.; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J.; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S. L.; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification. PMID:21169504

  7. The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri.

    Science.gov (United States)

    van Niel, Ed W J; Larsson, Christer U; Lohmeier-Vogel, Elke M; Rådström, Peter

    2012-01-16

    Previous work on the metabolism of Lactobacillus reuteri ATCC 55730 anticipated a variability in the use of organic electron acceptors as a means to relieve metabolic redox problems. Therefore, investigations focusing on this unique metabolism of L. reuteri may reveal a basis for new probiotic properties. For instance, L. reuteri may use reactive aldehydes and ketones as electron acceptors to balance their redox metabolism, which opens the possibility to exploit this bacterium for in vivo bioreduction of deleterious compounds in the gastrointestinal tract (GIT). Herein we demonstrate that L. reuteri ATCC 55730 cultures on glucose are able to use furfural (1g/L), and hydroxymethylfurfural (HMF) (0.5g/L), as electron acceptors. The former enhances the growth rate by about 25% and biomass yield by 15%, whereas the latter is inhibitory. Furfural is stoichiometrically reduced to furfuryl alcohol by the culture. The conversion of furfural had no effect on the flux distribution between the simultaneously operating phosphoketolase and Embden-Meyerhof pathways, but initiated a flux to acetate production. In addition to furfural and HMF, cellular extracts showed potential to reoxidize NADH and/or NADPH with acrolein, crotonaldehyde, and diacetyl, indicating that conversion reactions take place intracellularly, however, utilization mechanisms for the latter compounds may not be present in this strain. The strain did not reduce other GIT-related reactive compounds, including acrylamide, glyoxal, and furan. PMID:22071286

  8. Amino acid-catalysed retroaldol condensation: the production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, van der M.J.

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other alpha,beta-unsaturated aldehydes. In the presence of glycine and an elevated pH, six other alpha,beta-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as i

  9. Amino acid-catalysed retroaldol condensation: The production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, M.J. van der

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other α,β -unsaturated aldehydes. In the presence of glycine and an elevated pH, six other α,β-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as its proposed i

  10. Amino acid-catalysed retroaldol condensation : the production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, WAM; Tramper, J; van der Werf, MJ

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other alpha,beta-unsaturated aldehydes. In the presence of glycine and an elevated pH, six other alpha,beta-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as i

  11. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  12. Antisickling activity evaluation of 4 aromatic aldehydes using proton magnetic relaxation

    International Nuclear Information System (INIS)

    The formation of a Shiff base aduct hemoglobin-aromatic aldehyde, has been reported as inhibitor of the hemoglobin S polymerization. Using the Proton Magnetic Resonance methodology, the polymerization kinetics can be studied and the delay time can be determined. Our studies in vitro show the inhibitor effect of the isovanillin, o-vanillin, m-hydroxybenzaldehyde and the p-hydroxybenzaldehyde, using molar ratio (hemoglobin S/compound) 1:1, 1:4 and 1:8. The td increment (expressed in percents) obtained for each one of the molar ratio was the following: isovanillin: 34±6% (1:1), 68±16% (1:4), ovanillin: 26±10% (1:1), 63±20% (1:4), m-hydroxybelzaldehyde: 16±4% (1:1), 44±12% (1:4) and the phydroxybenzaldehyde: 10±3% (1:1), 32±8% (1:4). In the case of 1:8, the characteristic kinetics curve was not obtained. At the used concentrations, hemolytic activity was not found on the red blood cell. These results confirm the antisickling activity of these aromatic aldehydes, for a technique different to that reported in literature that also allows the quantification of concentration effect. The same ones will facilitate the study of the therapeutic usefulness of these compounds in the sickle cell anemia treatment. (author)

  13. The roles of aldehyde dehydrogenases (ALDHs in the PDH bypass of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lin Ming

    2009-03-01

    Full Text Available Abstract Background Eukaryotic aldehyde dehydrogenases (ALDHs, EC 1.2.1, which oxidize aldehydes into carboxylic acids, have been classified into more than 20 families. In mammals, Family 2 ALDHs detoxify acetaldehyde. It has been hypothesized that plant Family 2 ALDHs oxidize acetaldehyde generated via ethanolic fermentation, producing acetate for acetyl-CoA biosynthesis via acetyl-CoA synthetase (ACS, similar to the yeast pathway termed the "pyruvate dehydrogenase (PDH bypass". Evidence for this pathway in plants has been obtained from pollen. Results To test for the presence of the PDH bypass in the sporophytic tissue of plants, Arabidopsis plants homozygous for mutant alleles of all three Family 2 ALDH genes were fed with 14C-ethanol along with wild type controls. Comparisons of the incorporation rates of 14C-ethanol into fatty acids in mutants and wild type controls provided direct evidence for the presence of the PDH bypass in sporophytic tissue. Among the three Family 2 ALDHs, one of the two mitochondrial ALDHs (ALDH2B4 appears to be the primary contributor to this pathway. Surprisingly, single, double and triple ALDH mutants of Arabidopsis did not exhibit detectable phenotypes, even though a Family 2 ALDH gene is required for normal anther development in maize. Conclusion The PDH bypass is active in sporophytic tissue of plants. Blocking this pathway via triple ALDH mutants does not uncover obvious visible phenotypes.

  14. Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol.

    Science.gov (United States)

    Goldszer, F; Tindell, G L; Walle, U K; Walle, T

    1981-11-01

    Propranolol is N-dealkylated to N-desisopropylpropranolol (DIP) by microsomal enzymes. DIP was shown in this study to be rapidly deaminated by monoamine oxidase (MAO). Thus, incubation of DIP (10(-4) M) with rat liver mitochondria for 90 min demonstrated 74.8 +/- 4.1% metabolism which was almost completely blocked by the MAO inhibitor pargyline (10(-5) M). The end products of this deamination were 3-(alpha-naphthoxy)-1,2-propylene glycol (Glycol) and 3-(alpha-naphthoxy)lactic acid (NLA). In the presence of excess NADH the Glycol was the major product whereas NLA was the major product in the presence of excess NAD+. The intermediate aldehyde in this deamination reaction, 3-(alpha-naphthoxy)-2-hydroxypropanal (Ald), was extremely labile and decomposed quantitatively to alpha-naphthol when removed from the incubates. However, the addition of methoxyamine hydrochloride directly to the incubates made it possible to chemically trap the intact Ald as an O-methyloxime and prove its structure by gas chromatography-mass spectrometry. The deamination of the primary amine of oxprenolol also gave rise to a labile aldehyde which could be trapped and identified as its O-methyloxime. PMID:7335950

  15. Pressure- and light-induced luminescence of several aldehydes dissolved in polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Dreger, Z.A.; Lang, J.M.; Drickamer, H.G. [Univ. of Illinois, Urbana, IL (United States)

    1996-03-14

    The pressure- and light-induced emissions of four aldehydes - benzaldehyde (BA), 4-(dimethylamino)-benzaldehyde (DMABA), 4-(dibutylamino)-benzaldehyde (DBABA), and 4-(dimethylamino)-1-naphthaldehyde (DMANA) - dissolved in solid polymers have been investigated. All compounds studied exhibit under pressure as well as under continuous irradiation a significant enhancement of the luminescence emission. In the case of substituted aldehydes, both the fluorescence and phosphorescence increase markedly when pressure increases. For BA only increasing phosphorescence is observed. These changes are explained in terms of a model which takes a mixing of the lowest triplet state character as a controlling factor of the pressure effect. Thus, the pressure-induced emission arises from a decrease of the n,{pi}{sup *} character of the lowest triplet state and as a result an increase of its radiative rate and decrease of the intersystem crossing. The lowest triplet state is also assumed to be a precursor for the light-induced effect. In this case, the emission is proposed to occur as a result of the triplet reactivity and consequently the creation of a light-emitting species. 17 refs., 20 figs.

  16. Preparation and evaluation of 61Cu-thiophene-2-aldehyde thiosemicarbazone for PET studies

    International Nuclear Information System (INIS)

    Background: [61Cu]Thiophene-2-aldehyde thiosemicarbazone (61CuTATS) was prepared according to an analogy of carrier copper compound with antitumor activity, for eventual use in PET. Material and Methods: [61Cu]TATS was prepared using copper-61 acetate and in-house made ligand (TATS) in one step. 61Cu was produced via the natZn(p,x)61Cu nuclear reaction (180 eA, 22 MeV, 3.2 h) followed by a two-step chromatography method (222 GBq of 61Cu2+). 61Cu TATS preparation was optimized for reaction conditions (buffer concentration and temperature). The tracer was finally administered to normal rats for biodistribution studies. Results: Total radiolabelling of the tracer took 30 minutes with a radiochemical purity of more than 90% (using HPLC and RTLC) and specific activity of about 250-300 Ci/mmol. The complex was stable in the presence of human serum for an hour. The biodistribution of copper cation and the tracer was checked in wild-type rats for up to 2 hours with significant spleen and lung uptake of the tracer. Preparation and evaluation of 61Cu-thiophene-2-aldehyde thiosemicarbazone for PET studies. Conclusion: The production of 61Cu via the natZn(p,x)61Cu is an efficient and reproducible method with high specific activity leading to the production and preliminary evaluation of 61Cu TATS, a potential PET tracer, was reported. (authors)

  17. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  18. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-06-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds. PMID:26980678

  19. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    Science.gov (United States)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  20. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    International Nuclear Information System (INIS)

    Highlights: • Mo2C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η2(C,O)-propanal). • Mo2C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds

  1. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    Science.gov (United States)

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  2. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  3. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation.

    Science.gov (United States)

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2010-07-01

    Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest. PMID:20540589

  4. Metabolism of ent-Kaurene to Gibberellin A(12)-Aldehyde in Young Shoots of Normal Maize.

    Science.gov (United States)

    Suzuki, Y; Yamane, H; Spray, C R; Gaskin, P; Macmillan, J; Phinney, B O

    1992-02-01

    Young shoots of normal maize (Zea mays L.) were used to determine both the stepwise metabolism of ent-kaurene to gibberellin A(12)-aldehyde and the endogenous presence of the members in this series. Each of the five steps in the sequence was established by feeds of 17-(13)C, (3)H-labeled kauranoids to cubes from the cortex of elongating internodes, to homogenates from the cortex of elongating internodes, and/or to homogenates from dark-grown seedlings. The (13)C-metabolites were identified by Kovats retention indices (KRI) and full-scan capillary gas chromatography-mass spectrometry (GC-MS). Five substrates and the final product in this sequence were shown to be native by the isotopic dilution of 17-(13)C, (3)H-labeled substrates added as internal standards to extracts obtained from elongating internodes. Evidence for the isotopic dilution was obtained by KRI and full-scan capillary GC-MS. Thus, we document the presence in young maize shoots of the metabolic steps, ent-kaurene --> ent-kaurenol --> ent-kaurenal --> ent-kaurenoic acid --> ent-7 alpha-hydroxykaurenoic acid --> gibberellin A(12)-aldehyde. PMID:16668684

  5. Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi' an Jiaotong University, Xi' an (China); Zou, Xuan [Center for Translational Medicine, FIST, Xi' an Jiaotong University, Xi' an (China); Cao, Ke; Xu, Jie; Yue, Tingting [Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi' an Jiaotong University, Xi' an (China); Dai, Fang; Zhou, Bo [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou (China); Lu, Wuyuan [Center for Translational Medicine, FIST, Xi' an Jiaotong University, Xi' an (China); Feng, Zhihui, E-mail: zhfeng@mail.xjtu.edu.cn [Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi' an Jiaotong University, Xi' an (China); Liu, Jiankang, E-mail: j.liu@mail.xjtu.edu.cn [Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi' an Jiaotong University, Xi' an (China)

    2013-11-01

    Curcumin, a phytochemical agent in the spice turmeric, has received increasing attention for its anticancer, anti-inflammatory and antioxidant properties. However, application of curcumin has been limited due to its insolubility in water and poor bioavailability both clinically and experimentally. In addition, the protective effects and mechanisms of curcumin in eye diseases have been poorly studied. In the present study, we synthesized a curcumin analog, 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one (C3), which displayed improved protective effect against acrolein-induced toxicity in a human retinal pigment epithelial cell line (ARPE-19). At 5 μM, curcumin completely protected against acrolein-induced cell oxidative damage and preserved GSH levels and mitochondrial function. Surprisingly, C3 displayed a complete protective effect at 0.5 μM, which was much more efficient than curcumin. Both 0.5 μM C3 and 5 μM curcumin induced Nrf2 nuclear translocation and Nrf2 target genes transcription similarly. Experiments using Nrf2 siRNA showed that the protective effects of curcumin and C3 were eliminated by Nrf2 knockdown. Additionally, both curcumin and C3 activated the PI3/Akt pathway, however, Nrf2 activation was independent of this pathway, and therefore, we hypothesized that both curcumin and C3 activated phase II enzymes via directly disrupting the Nrf2/Keap1 complex and promoting Nrf2's nuclear translocation. Since acrolein challenge of ARPE-19 cells has been used as a model of smoking and age-related macular degeneration (AMD), we concluded that the curcumin analog, C3, may be a more promising drug candidate for its potential application for the prevention and treatment of eye diseases, such as AMD. - Highlights: • We examine toxicity effects of cigarette smoking component acrolein in retina cells. • We report a more efficient curcumin analog (C3) protecting cellular function. • Mitochondrial function and phase II enzyme activation are the

  6. Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity

    International Nuclear Information System (INIS)

    Curcumin, a phytochemical agent in the spice turmeric, has received increasing attention for its anticancer, anti-inflammatory and antioxidant properties. However, application of curcumin has been limited due to its insolubility in water and poor bioavailability both clinically and experimentally. In addition, the protective effects and mechanisms of curcumin in eye diseases have been poorly studied. In the present study, we synthesized a curcumin analog, 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one (C3), which displayed improved protective effect against acrolein-induced toxicity in a human retinal pigment epithelial cell line (ARPE-19). At 5 μM, curcumin completely protected against acrolein-induced cell oxidative damage and preserved GSH levels and mitochondrial function. Surprisingly, C3 displayed a complete protective effect at 0.5 μM, which was much more efficient than curcumin. Both 0.5 μM C3 and 5 μM curcumin induced Nrf2 nuclear translocation and Nrf2 target genes transcription similarly. Experiments using Nrf2 siRNA showed that the protective effects of curcumin and C3 were eliminated by Nrf2 knockdown. Additionally, both curcumin and C3 activated the PI3/Akt pathway, however, Nrf2 activation was independent of this pathway, and therefore, we hypothesized that both curcumin and C3 activated phase II enzymes via directly disrupting the Nrf2/Keap1 complex and promoting Nrf2's nuclear translocation. Since acrolein challenge of ARPE-19 cells has been used as a model of smoking and age-related macular degeneration (AMD), we concluded that the curcumin analog, C3, may be a more promising drug candidate for its potential application for the prevention and treatment of eye diseases, such as AMD. - Highlights: • We examine toxicity effects of cigarette smoking component acrolein in retina cells. • We report a more efficient curcumin analog (C3) protecting cellular function. • Mitochondrial function and phase II enzyme activation are the major

  7. Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi: structural implications for cofactor specificity and affinity.

    Science.gov (United States)

    Ahvazi, B; Coulombe, R; Delarge, M; Vedadi, M; Zhang, L; Meighen, E; Vrielink, A

    2000-01-01

    Aldehyde dehydrogenase from the bioluminescent bacterium, Vibrio harveyi, catalyses the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique compared with other forms of aldehyde dehydrogenase in that it exhibits a very high specificity and affinity for the cofactor NADP(+). Structural studies of this enzyme and comparisons with other forms of aldehyde dehydrogenase provide the basis for understanding the molecular features that dictate these unique properties and will enhance our understanding of the mechanism of catalysis for this class of enzyme. The X-ray structure of aldehyde dehydrogenase from V. harveyi has been solved to 2.5-A resolution as a partial complex with the cofactor NADP(+) and to 2. 1-A resolution as a fully bound 'holo' complex. The cofactor preference exhibited by different forms of the enzyme is predominantly determined by the electrostatic environment surrounding the 2'-hydroxy or the 2'-phosphate groups of the adenosine ribose moiety of NAD(+) or NADP(+), respectively. In the NADP(+)-dependent structures the presence of a threonine and a lysine contribute to the cofactor specificity. In the V. harveyi enzyme an arginine residue (Arg-210) contributes to the high cofactor affinity through a pi stacking interaction with the adenine ring system of the cofactor. Further differences between the V. harveyi enzyme and other aldehyde dehydrogenases are seen in the active site, in particular a histidine residue which is structurally conserved with phosphorylating glyceraldehyde-3-phosphate dehydrogenase. This may suggest an alternative mechanism for activation of the reactive cysteine residue for nucleophilic attack. PMID:10903148

  8. Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Heemstra, John R

    2006-02-01

    N,O-Silyl dienyl ketene acetals derived from unsaturated morpholine amides have been developed as highly useful reagents for vinylogous aldol addition reactions. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-3, N,O-silyl dienyl ketene acetal 8 undergoes high-yielding and highly site-selective addition to a wide variety of aldehydes with excellent enantioselectivity. Of particular note is the high yields and selectivities obtained from aliphatic aldehydes. Low catalyst loadings (2-5 mol %) can be employed. The morpholine amide serves as a useful precursor for further synthetic manipulation. PMID:16433495

  9. Enantioselective construction of quaternary stereogenic carbons by the Lewis base catalyzed additions of silyl ketene imines to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T; Heemstra, John R

    2007-12-01

    Silyl ketene imines derived from a variety of alpha-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-5, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note is the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. The nitrile function serves as a useful precursor for further synthetic manipulation. PMID:17988135

  10. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein

    International Nuclear Information System (INIS)

    Mice fed diets containing 3% or 6% coffee for 5 days had increased levels of mRNA for NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase class Alpha 1 (GSTA1) of between 4- and 20-fold in the liver and small intestine. Mice fed 6% coffee also had increased amounts of mRNA for UDP-glucuronosyl transferase 1A6 (UGT1A6) and the glutamate cysteine ligase catalytic (GCLC) subunit of between 3- and 10-fold in the small intestine. Up-regulation of these mRNAs was significantly greater in mice possessing Nrf2 (NF-E2 p45 subunit-related factor 2) than those lacking the transcription factor. Basal levels of mRNAs for NQO1, GSTA1, UGT1A6 and GCLC were lower in tissues from nrf2-/- mice than from nrf2+/+ mice, but modest induction occurred in the mutant animals. Treatment of mouse embryonic fibroblasts (MEFs) from nrf2+/+ mice with either coffee or the coffee-specific diterpenes cafestol and kahweol (C + K) increased NQO1 mRNA up to 9-fold. MEFs from nrf2-/- mice expressed less NQO1 mRNA than did wild-type MEFs, but NQO1 was induced modestly by coffee or C + K in the mutant fibroblasts. Transfection of MEFs with nqo1-luciferase reporter constructs showed that induction by C + K was mediated primarily by Nrf2 and required the presence of an antioxidant response element in the 5'-upstream region of the gene. Luciferase reporter activity did not increase following treatment of MEFs with 100 μmol/l furan, suggesting that this ring structure within C + K is insufficient for gene induction. Priming of nrf2+/+ MEFs, but not nrf2-/- MEFs, with C + K conferred 2-fold resistance towards acrolein

  11. Characterization of the Aldehydes and Their Transformations Induced by UV Irradiation and Air Exposure of White Guanxi Honey Pummelo (Citrus Grandis (L.) Osbeck) Essential Oil.

    Science.gov (United States)

    Li, Li Jun; Hong, Peng; Chen, Feng; Sun, Hao; Yang, Yuan Fan; Yu, Xiang; Huang, Gao Ling; Wu, Li Ming; Ni, Hui

    2016-06-22

    Aldehydes are key aroma contributors of citrus essential oils. White Guanxi honey pummelo essential oil (WPEO) was investigated in its aldehyde constituents and their transformations induced by UV irradiation and air exposure by GC-MS, GC-O, and sensory evaluation. Nine aldehydes, i.e., octanal, nonanal, citronellal, decanal, trans-citral, cis-citral, perilla aldehyde, dodecanal, and dodecenal, were detected in WPEO. After treatment, the content of citronellal increased, but the concentrations of other aldehydes decreased. The aliphatic aldehydes were transformed to organic acids. Citral was transformed to neric acid, geranic acid, and cyclocitral. Aldehyde transformation caused a remarkable decrease in the minty, herbaceous, and lemon notes of WPEO. In fresh WPEO, β-myrcene, d-limonene, octanal, decanal, cis-citral, trans-citral, and dodecenal had the highest odor dilution folds. After the treatment, the dilution folds of decanal, cis-citral, trans-citral, and dodecenal decreased dramatically. This result provides information for the production and storage of aldehyde-containing products. PMID:27226192

  12. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization.

    Science.gov (United States)

    Lin, Yi-Liang; Wang, Po-Yen; Hsieh, Ling-Ling; Ku, Kuan-Hsuan; Yeh, Yun-Tai; Wu, Chien-Hou

    2009-09-01

    A simple and sensitive method is described for the determination of picomolar amounts of C(1)-C(9) linear aliphatic aldehydes in waters containing heavy metal ions. In this method, aldehydes were first derivatized with 2,4-dinitrophenylhydrazine (DNPH) at optimized pH 1.8 for 30 min and analyzed by HPLC with UV detector at 365 nm. Factors affecting the derivatization reaction of aldehydes and DNPH were investigated. Cupric ion, an example of heavy metals, is a common oxidative reagent, which may oxidize DNPH and greatly interfere with the determination of aldehydes. EDTA was used to effectively mask the interferences by heavy metal ions. The method detection limits for direct injection of derivatized most aldehydes except formaldehyde were of the order of 7-28 nM. The detection limit can be further lowered by using off-line C(18) adsorption cartridge enrichment. The recoveries of C(1)-C(9) aldehydes were 93-115% with a relative standard deviation of 3.6-8.1% at the 0.1 microM level for aldehydes. The HPLC-DNPH method has been applied for determining aldehyde photoproducts from Cu(II)-amino acid complex systems. PMID:19643424

  13. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes.

    Science.gov (United States)

    Ramdzan, Adlin N; Almeida, M Inês G S; McCullough, Michael J; Kolev, Spas D

    2016-05-01

    A low cost, disposable and easy to use microfluidic paper-based analytical device (μPAD) was developed for simple and non-invasive determination of total aldehydes in saliva with a potential to be used in epidemiological studies to assess oral cancer risk. The μPAD is based on the colour reaction between aldehydes (e.g. acetaldehyde, formaldehyde), 3-methyl-2-benzothiazolinone hydrazone (MBTH) and iron(III) to form an intense blue coloured formazan dye. The newly developed μPAD has a 3D design with two overlapping paper layers. The first layer comprises 15 circular detection zones (8 mm in diameter), each impregnated with 8 μL of MBTH, while the second layer contains 15 reagent zones (4 mm in diameter). Two μL of iron(III) chloride are added to each one of the second layer zones after the addition of sample to the detection zones in the first layer. All hydrophilic zones of the μPAD are defined by wax printing using a commercial wax printer. Due to the 2-step nature of the analytical reaction, the two paper layers are separated by a cellulose acetate interleaving sheet to allow for the reaction between the aldehydes in the saliva sample with MBTH to proceed first with the formation of an azine, followed by a blue coloured reaction between the azine and the oxidized by iron(III) form of MBTH, produced after the removal of the interleaving sheet. After obtaining a high resolution image of the detection side zone of the device using a flatbed scanner, the intensity of the blue colour within each detection zone is measured with Image J software. Under optimal conditions, the μPAD is characterised by a working range of 20.4-114.0 μM, limit of detection of 6.1 μM, and repeatability, expressed as RSD, of less than 12.7% (n = 5). There is no statistically significant difference at the 95% confidence level between the results obtained by the μPAD and the reference method (Student's t-test: 0.090 < 0.38). The optimized μPAD is stable for more than 41 days

  14. QSTR with extended topochemical atom (ETA) indices. 14. QSAR modeling of toxicity of aromatic aldehydes to Tetrahymena pyriformis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India); Das, Rudra Narayan [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India)

    2010-11-15

    Aldehydes are a toxic class of chemicals causing severe health hazards. In this background, quantitative structure-toxicity relationship (QSTR) models have been developed in the present study using Extended Topochemical Atom (ETA) indices for a large group of 77 aromatic aldehydes for their acute toxicity against the protozoan ciliate Tetrahymena pyriformis. The ETA models have been compared with those developed using various non-ETA topological indices. Attempt was also made to include the n-octanol/water partition coefficient (log K{sub o/w}) as an additional descriptor considering the importance of hydrophobicity in toxicity prediction. Thirty different models were developed using different chemometric tools. All the models have been validated using internal validation and external validation techniques. The statistical quality of the ETA models was found to be comparable to that of the non-ETA models. The ETA models have shown the important effects of steric bulk, lipophilicity, presence of electronegative atom containing substituents and functionality of the aldehydic oxygen to the toxicity of the aldehydes. The best ETA model (without using log K{sub o/w}) shows encouraging statistical quality (Q{sub int}{sup 2}=0.709,Q{sub ext}{sup 2}=0.744). It is interesting to note that some of the topological models reported here are better in statistical quality than previously reported models using quantum chemical descriptors.

  15. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD+-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  16. Ionic liquids as recyclable and separable reaction media in Rh-catalyzed decarbonylation of aromatic and aliphatic aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    Ionic liquids (ILs) have been applied as recyclable reaction media in the decarbonylation of aldehydes in the presence of a rhodium-phosphine complex catalyst. The performance of several new catalytic systems based on imidazolium-based ILs and [Rh(dppp)2]Cl (dppp: 1,3-diphenylphosphinopropane) we...... biphasic system with the product allowing recovery and reuse of the employed catalyst....

  17. Fish larval deformity caused by aldehydes and unknown byproducts in ozonated effluents from municipal wastewater treatment systems.

    Science.gov (United States)

    Yan, Zhiming; Zhang, Yu; Yuan, Hongying; Tian, Zhe; Yang, Min

    2014-12-01

    Ozonated secondary effluents (SEs) from municipal wastewater treatment plants (MWTPs) have been found to cause developmental retardation of fish embryos. This study explored the potential cause of the embryo toxicity formed in ozonated SEs by exposing Japanese medaka (Oryzias latipes) (d-rR) embryos to ozonated SE from a MWTP in Tianjin, China. The increase of ozone dose from 0.26 to 0.96 mg O3/mg DOC0 (consumed ozone per initial DOC), which produced total aldehyde (mixture of formaldehyde, acetaldehyde, propionaldehyde, and glyoxal) from 41.5 to 114.7 μg/L, resulted in an increase in the percentage of deformed larvae from 2.2% to 24.1%. Increases in larval deformity and embryo mortality were also observed in ozonated SEs from other MWTPs. The exposure experiment using the mixture aldehyde solution showed that the production of aldehydes could explain approximately 13.6% of larval deformity caused by ozonation of SEs. Pilot experimental results in Tianjin and Beijing, China showed that biofiltration as a post-treatment technology was effective in removing the aldehydes as well as reducing embryo toxicity caused by ozonation. PMID:25243655

  18. Aerobic oxidation of benzylic aldehydes to acids catalyzed by iron (Ⅲ) meso-tetraphenylporphyrin chloride under ambient conditions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Highly efficient aerobic oxidation of benzylic aldehydes to the corresponding acids catalyzed by iron (Ⅲ) meso-tetraphenylporphyrin chloride (Fe(TPP)Cl) under ambient conditions was developed. The catalyst has been proved to be an excellent catalyst for the system in the presence of molecular oxygen and isobutryaldehyde at room temperature.

  19. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  20. InCl3.4H2O Catalyzed Aldol Condensation of Cycloalkanones with Aromatic Aldehydes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    InCl3·4H2O catalyzes the cross-aldol condensation of cycloalkanones with aromatic aldehydes in sealed tube under solvent free condition to afford an efficient method for the synthesis of α, α-bis(substituted)benzylidenecycloalkanones.

  1. Targeted LC-MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA

    NARCIS (Netherlands)

    Eggink, M.; Wijtmans, M.; Kretschmer, A.; Kool, J.; Lingeman, H.; Esch, de I.J.P.; Niessen, W.M.A.; Irth, H.

    2010-01-01

    Based on the template of a recently introduced derivatization reagent for aldehydes, 4-(2-(trimethylammonio)ethoxy)benzeneaminium dibromide (4-APC), a new derivatization agent was designed with additional features for the analysis and screening of biomarkers of lipid peroxidation. The new derivatiza

  2. Lewis base activation of Lewis acids. Catalytic enantioselective addition of silyl enol ethers of achiral methyl ketones to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Heemstra, John R

    2003-06-26

    A highly enantioselective addition of silyl enol ethers derived from simple methyl ketones is described. The catalyst system of silicon tetrachloride activated by a chiral bisphosphoramide (R,R)-7 effectively promotes the addition of a variety of unsubstituted silyl enol ethers to aromatic, olefinic, and heteroaromatic aldehydes in excellent yield. [reaction: see text] PMID:12816434

  3. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  4. Ru/Me-BIPAM-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes and α-Ketoesters

    Directory of Open Access Journals (Sweden)

    Momoko Watanabe

    2011-06-01

    Full Text Available A ruthenium-catalyzed asymmetric arylation of aliphatic aldehydes and α-ketoesters with arylboronic acids has been developed, giving chiral alkyl(arylmethanols and α-hydroxy esters in good yields. The use of a chiral bidentate phosphoramidite ligand (Me-BIPAM achieved excellent enantioselectivities.

  5. Dicyano-Functionalized MCM-41-Supported Palladium Complex as An Efficient Catalyst for Allylation of Aldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; CAI Ming-Zhong

    2006-01-01

    Dicyano-functionalized MCM-41-supported palladium complex was prepared from dicyano-functionalized MCM-41 and palladium chloride. This complex exhibited high catalytic activity in the allylation of aldehydes and ketones with allylic chlorides in the presence of SnCl2. This polymeric palladium complex can be recovered and reused without noticeable loss of activity.

  6. Oxidation of N-alkyl and N-aryl azaheterocycles by free and immobilized rabbit liver aldehyde oxidase

    NARCIS (Netherlands)

    Angelino, S.A.G.F.

    1984-01-01

    Aldehyde oxidase isolated from rabbit liver is studied in this thesis with regard to its application in organic synthesis. The enzyme has a broad substrate specificity towards azaheterocycles and therefore offers great potential for profitable use.The oxidation of 1-alkyl(aryl)-3-aminocarbonylpyridi

  7. Enantioselective addition of diethylzinc to aryl aldehydes catalyzed by 1,2,3,4-tetrahydroisoquinoline β-amino alcohol

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly effective,new chiral 1,2,3,4-tetrahydroisoquinoline catalyst 1 for the diethylzinc addition to aryl aldehydes has been investigated.Using 10 mol%of this chiral catalyst,secondary alcohols can be obtained in up to 87%yield and 99.5%ee under mild conditions.

  8. Hydrogenation of aromatic ketones, aldehydes, and epoxides with hydrogen and Pd(0)EnCat™ 30NP

    OpenAIRE

    Perni Remedios H; Pears David; Stewart-Liddon Angus JP; Ley Steven V; Treacher Kevin

    2006-01-01

    Abstract Aromatic aldehydes and ketones as well as aromatic epoxides are selectively reduced to the corresponding alcohols under mild conditions using conventional hydrogen in the presence of Pd(0)EnCat™ 30NP catalyst. The reactions were performed at room temperature during 16 hours with high to excellent conversions of the corresponding products.

  9. Fluoride-promoted rearrangement of organo silicon compounds : A new synthesis of 2-(arylmethyl)aldehydes from 1-alkynes

    NARCIS (Netherlands)

    Aronica, LA; Raffa, P; Caporusso, AM; Salvadori, P

    2003-01-01

    A new approach to 2-(arylmethyl)aldehydes 4 based upon a 1,2-anionotropic rearrangement of an aryl group is presented. The synthetic sequence begins with a silylformylation reaction of terminal acetylenes 5 with aryl and heteroaryl silanes 6, followed by treatment of the products (Z)-1 with TBAF. Th

  10. Synthesis of Aldehyde-Linked Nucleotides and DNA and Their Bioconjugations with Lysine and Peptides through Reductive Amination

    Czech Academy of Sciences Publication Activity Database

    Raindlová, Veronika; Pohl, Radek; Hocek, Michal

    2012-01-01

    Roč. 18, č. 13 (2012), s. 4080-4087. ISSN 0947-6539 R&D Projects: GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleotides * aldehydes * DNA * reductive amination * bioconjugations Subject RIV: CC - Organic Chemistry Impact factor: 5.831, year: 2012

  11. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    Science.gov (United States)

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels. PMID:24027980

  12. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    Energy Technology Data Exchange (ETDEWEB)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-08-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH/sub 4/CN, CH/sub 3/CN, and C/sub 2/H/sub 4/CN, that had received multikilogray doses of /sup 60/Co ..gamma.. radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond.

  13. Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes.

    Science.gov (United States)

    Elangovan, Saravanakumar; Topf, Christoph; Fischer, Steffen; Jiao, Haijun; Spannenberg, Anke; Baumann, Wolfgang; Ludwig, Ralf; Junge, Kathrin; Beller, Matthias

    2016-07-20

    Hydrogenations constitute fundamental processes in organic chemistry and allow for atom-efficient and clean functional group transformations. In fact, the selective reduction of nitriles, ketones, and aldehydes with molecular hydrogen permits access to a green synthesis of valuable amines and alcohols. Despite more than a century of developments in homogeneous and heterogeneous catalysis, efforts toward the creation of new useful and broadly applicable catalyst systems are ongoing. Recently, Earth-abundant metals have attracted significant interest in this area. In the present study, we describe for the first time specific molecular-defined manganese complexes that allow for the hydrogenation of various polar functional groups. Under optimal conditions, we achieve good functional group tolerance, and industrially important substrates, e.g., for the flavor and fragrance industry, are selectively reduced. PMID:27219853

  14. Characterization of zinc–nickel alloy electrodeposits obtained from sulphamate bath containing substituted aldehydes

    Indian Academy of Sciences (India)

    Visalakshi Ravindran; V S Muralidharan

    2006-06-01

    Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical characterization of zinc-nickel electrodeposits obtained from sulphamate bath containing substituted aldehydes was carried out using hardness testing, X-ray diffraction, and corrosion resistance measurements. The corrosion behaviour of these samples in a 3.5% NaCl solution was examined. The decrease in corr and high charge transfer resistance indicated the improved corrosion resistance of these deposits.

  15. Biological Evaluation and 3D-QSAR Studies of Curcumin Analogues as Aldehyde Dehydrogenase 1 Inhibitors

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-05-01

    Full Text Available Aldehyde dehydrogenase 1 (ALDH1 is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship of curcumin analogues (CAs against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor.

  16. Human Aldehyde Dehydrogenase Genes: Alternatively-Spliced Transcriptional Variants and Their Suggested Nomenclature

    Science.gov (United States)

    Black, William J.; Stagos, Dimitrios; Marchitti, Satori A.; Nebert, Daniel W.; Tipton, Keith F.; Bairoch, Amos; Vasiliou, Vasilis

    2011-01-01

    OBJECTIVE The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)+-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer’s disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes. METHODS Data-mining methods were used to retrieve all human ALDH sequences. Alternatively-spliced transcriptional variants were determined based upon: a) criteria for sequence integrity and genomic alignment; b) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and c) if available, empirical evidence of variants from the literature. RESULTS AND CONCLUSION Alternatively-spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. In order to avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database (www.aldh.org) has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily. PMID:19823103

  17. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  18. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Ikeda

    Full Text Available Hypoglycemic encephalopathy (HE is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE, a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl-2,6-dichlorobenzamide (Alda-1, a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg or vehicle (dimethyl sulfoxide; DMSO was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020. Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.

  19. Optimization of the Expression of Human Aldehyde Oxidase for Investigations of Single-Nucleotide Polymorphisms.

    Science.gov (United States)

    Foti, Alessandro; Hartmann, Tobias; Coelho, Catarina; Santos-Silva, Teresa; Romão, Maria João; Leimkühler, Silke

    2016-08-01

    Aldehyde oxidase (AOX1) is an enzyme with broad substrate specificity, catalyzing the oxidation of a wide range of endogenous and exogenous aldehydes as well as N-heterocyclic aromatic compounds. In humans, the enzyme's role in phase I drug metabolism has been established and its importance is now emerging. However, the true physiologic function of AOX1 in mammals is still unknown. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified in human AOX1. SNPs are a major source of interindividual variability in the human population, and SNP-based amino acid exchanges in AOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. For the reliable analysis of the effect of amino acid exchanges in human proteins, the existence of reproducible expression systems for the production of active protein in ample amounts for kinetic, spectroscopic, and crystallographic studies is required. In our study we report an optimized expression system for hAOX1 in Escherichia coli using a codon-optimized construct. The codon-optimization resulted in an up to 15-fold increase of protein production and a simplified purification procedure. The optimized expression system was used to study three SNPs that result in amino acid changes C44W, G1269R, and S1271L. In addition, the crystal structure of the S1271L SNP was solved. We demonstrate that the recombinant enzyme can be used for future studies to exploit the role of AOX in drug metabolism, and for the identification and synthesis of new drugs targeting AOX when combined with crystallographic and modeling studies. PMID:26842593

  20. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    International Nuclear Information System (INIS)

    Highlights: ► Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. ► PCA inhibits proliferation and migration in PDGF-induced VSMCs. ► PCA has anti-platelet effects in ex vivo rat whole blood. ► We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2′-deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 μM). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA’s antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.