WorldWideScience

Sample records for aldehyde oxidation level

  1. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  2. Oxidation of Aromatic Aldehydes Using Oxone

    Science.gov (United States)

    Gandhari, Rajani; Maddukuri, Padma P.; Thottumkara, Vinod K.

    2007-01-01

    The experiment demonstrating the feasibility of using water as a solvent for organic reactions which highlights the cost and environmental benefits of its use is presented. The experiment encourages students to think in terms of the reaction mechanism of the oxidation of aldehydes knowing that potassium persulfate is the active oxidant in Oxone…

  3. Reducing the Oxidation Level of Dextran Aldehyde in a Chitosan/Dextran-Based Surgical Hydrogel Increases Biocompatibility and Decreases Antimicrobial Efficacy

    Directory of Open Access Journals (Sweden)

    Maggie Chan

    2015-06-01

    Full Text Available A highly oxidized form of a chitosan/dextran-based hydrogel (CD-100 containing 80% oxidized dextran aldehyde (DA-100 was developed as a post-operative aid, and found to significantly prevent adhesion formation in endoscopic sinus surgery (ESS. However, the CD-100 hydrogel showed moderate in vitro cytotoxicity to mammalian cell lines, with the DA-100 found to be the cytotoxic component. In order to extend the use of the hydrogel to abdominal surgeries, reformulation using a lower oxidized DA (DA-25 was pursued. The aim of the present study was to compare the antimicrobial efficacy, in vitro biocompatibility and wound healing capacity of the highly oxidized CD-100 hydrogel with the CD-25 hydrogel. Antimicrobial studies were performed against a range of clinically relevant abdominal microorganisms using the micro-broth dilution method. Biocompatibility testing using human dermal fibroblasts was assessed via a tetrazolium reduction assay (MTT and a wound healing model. In contrast to the original DA-100 formulation, DA-25 was found to be non-cytotoxic, and showed no overall impairment of cell migration, with wound closure occurring at 72 h. However, the lower oxidation level negatively affected the antimicrobial efficacy of the hydrogel (CD-25. Although the CD-25 hydrogel’s antimicrobial efficacy and anti-fibroblast activity is decreased when compared to the original CD-100 hydrogel formulation, previous in vivo studies show that the CD-25 hydrogel remains an effective, biocompatible barrier agent in the prevention of postoperative adhesions.

  4. Reducing the Oxidation Level of Dextran Aldehyde in a Chitosan/Dextran-Based Surgical Hydrogel Increases Biocompatibility and Decreases Antimicrobial Efficacy.

    Science.gov (United States)

    Chan, Maggie; Brooks, Heather J L; Moratti, Stephen C; Hanton, Lyall R; Cabral, Jaydee D

    2015-06-16

    A highly oxidized form of a chitosan/dextran-based hydrogel (CD-100) containing 80% oxidized dextran aldehyde (DA-100) was developed as a post-operative aid, and found to significantly prevent adhesion formation in endoscopic sinus surgery (ESS). However, the CD-100 hydrogel showed moderate in vitro cytotoxicity to mammalian cell lines, with the DA-100 found to be the cytotoxic component. In order to extend the use of the hydrogel to abdominal surgeries, reformulation using a lower oxidized DA (DA-25) was pursued. The aim of the present study was to compare the antimicrobial efficacy, in vitro biocompatibility and wound healing capacity of the highly oxidized CD-100 hydrogel with the CD-25 hydrogel. Antimicrobial studies were performed against a range of clinically relevant abdominal microorganisms using the micro-broth dilution method. Biocompatibility testing using human dermal fibroblasts was assessed via a tetrazolium reduction assay (MTT) and a wound healing model. In contrast to the original DA-100 formulation, DA-25 was found to be non-cytotoxic, and showed no overall impairment of cell migration, with wound closure occurring at 72 h. However, the lower oxidation level negatively affected the antimicrobial efficacy of the hydrogel (CD-25). Although the CD-25 hydrogel's antimicrobial efficacy and anti-fibroblast activity is decreased when compared to the original CD-100 hydrogel formulation, previous in vivo studies show that the CD-25 hydrogel remains an effective, biocompatible barrier agent in the prevention of postoperative adhesions.

  5. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while oxi

  6. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.

    Science.gov (United States)

    Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente

    2016-01-27

    Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.

  7. Catalyst-Controlled Wacker-Type Oxidation: Facile Access to Functionalized Aldehydes

    OpenAIRE

    Wickens, Zachary K.; Skakuj, Kacper; Morandi, Bill; Grubbs, Robert H

    2014-01-01

    The aldehyde-selective oxidation of alkenes bearing diverse oxygen groups in the allylic and homoallylic position was accomplished with a nitrite-modified Wacker oxidation. Readily available oxygenated alkenes were oxidized in up to 88% aldehyde yield and as high as 97% aldehyde selectivity. The aldehyde-selective oxidation enabled the rapid, enantioselective synthesis of an important pharmaceutical agent, atomoxetine. Finally, the influence of proximal functional groups on this anti-Markovni...

  8. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  9. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  10. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  11. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress.

    Science.gov (United States)

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan

    2016-04-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE.

  12. β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water

    Institute of Scientific and Technical Information of China (English)

    Dong Po Shi; Hong Bing Ji

    2009-01-01

    A facile,efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaC10 catalyzed by β-cyclodextdn in water has been developed.A series of aldehydes which could form inclusion complex with β-cyclodextrin(β-CD)were oxidized selectively with excellent yields.

  13. Metal-Free Direct Oxidation of Aldehydes to Esters Using TCCA.

    Science.gov (United States)

    Gaspa, Silvia; Porcheddu, Andrea; De Luca, Lidia

    2015-08-07

    Aromatic and aliphatic aldehydes are simply converted into esters by an efficient oxidative esterification carried out under mild conditions. The aldehydes are converted in situ into their corresponding acyl chlorides, which are then reacted with primary and secondary aliphatic, benzylic, allylic, and propargylic alcohols and phenols. A variety of esters are obtained in high yields.

  14. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  15. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  16. Nitric Oxide Mediates the Stress Response Induced by Diatom Aldehydes in the Sea Urchin Paracentrotus lividus

    OpenAIRE

    Giovanna Romano; Maria Costantini; Isabella Buttino; Adrianna Ianora; Anna Palumbo

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadie...

  17. Directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes.

    Science.gov (United States)

    Zheng, Yong; Song, Wei-Bin; Xuan, Li-Jiang

    2015-11-28

    A directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes using TBHP as an oxidant was described. This methodology which showed the advantages of base, ligand free, short routes and functional group tolerance could be used as an alternative protocol for the classical esterification reactions.

  18. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes.

    Science.gov (United States)

    Vardi, Assaf; Bidle, Kay D; Kwityn, Clifford; Hirsh, Donald J; Thompson, Stephanie M; Callow, James A; Falkowski, Paul; Bowler, Chris

    2008-06-24

    Diatoms are unicellular phytoplankton accounting for approximately 40% of global marine primary productivity [1], yet the molecular mechanisms underlying their ecological success are largely unexplored. We use a functional-genomics approach in the marine diatom Phaeodactylum tricornutum to characterize a novel protein belonging to the widely conserved YqeH subfamily [2] of GTP-binding proteins thought to play a role in ribosome biogenesis [3], sporulation [4], and nitric oxide (NO) generation [5]. Transgenic diatoms overexpressing this gene, designated PtNOA, displayed higher NO production, reduced growth, impaired photosynthetic efficiency, and a reduced ability to adhere to surfaces. A fused YFP-PtNOA protein was plastid localized, distinguishing it from a mitochondria-localized plant ortholog. PtNOA was upregulated in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), a molecule previously shown to regulate intercellular signaling, stress surveillance [6], and defense against grazers [7]. Overexpressing cell lines were hypersensitive to sublethal levels of this aldehyde, manifested by altered expression of superoxide dismutase and metacaspases, key components of stress and death pathways [8, 9]. NOA-like sequences were found in diverse oceanic regions, suggesting that a novel NO-based system operates in diatoms and may be widespread in phytoplankton, providing a biological context for NO in the upper ocean [10].

  19. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient cond...... conditions; the reactions can be performed in an open flask and at room temperature. Benzaldehyde is even oxidised at a reasonable rate below -70 degrees C. Acrolein is oxidised to methyl acrylate in high yield using the same protocol....

  20. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  1. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies...

  2. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  3. [Health effect of volatile aldehyde compounds in photocatalytic oxidation of aromatics compounds].

    Science.gov (United States)

    Zhao, Wei-rong; Liao, Qiu-wen; Yang, Ya-nan; Dai, Jiu-song

    2013-05-01

    Photocatalytic oxidation (PCO) of toluene and benzaldehyde in indoor air by N doped TiO2 (N-TiO2) was conducted under UV irradiation of 254 nm. The intermediates were identified and monitored on real-time by proton transfer reaction-mass spectrometry. The health risks of PCO of toluene and benzaldehyde were assessed based on health risk influence index (eta). Results indicated that both the conversion rate and mineralization rate of toluene and benzaldehyde were relatively high, however, the volatile aldehyde compounds (VAs), including acetaldehyde and formaldehyde generated from ring-opening, significantly influenced the health risks of PCO of toluene and benzaldehyde. Acetaldehyde played a crucial role on health risks, which was inclined to desorb from the surface of catalysts, accumulate in gas-phase, and increase the health risks of PCO of the aromatic compounds. The concentration of formaldehyde kept stable at a relatively low level, however its impact cannot be neglected. In the PCO process of toluene and benzaldehyde, eta reached the maximum values of 8 499.68 and 21.43, with the eta(VAs), contribution of VAs to the health risk influence index of outlet, reaching 99.3% and 98.3%, respectively. The average values of eta in the PCO process of 30 min were 932.86 and 8.52, and for which eta(VAs), reached 98.5% and 98.0%, respectively. When PCO of toluene and benzaldehyde reached steady state, eta were 236.09 and 2.30, and eta(VAs) reached 97.9% and 97.8%, respectively. Hence, eta(VAs), can be taken as a characteristic parameter in assessment of health risks of PCO of aromatic compounds.

  4. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    Science.gov (United States)

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde).

  5. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  6. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN

    Science.gov (United States)

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272

  7. Oxidation of N-alkyl and N-aryl azaheterocycles by free and immobilized rabbit liver aldehyde oxidase

    NARCIS (Netherlands)

    Angelino, S.A.G.F.

    1984-01-01

    Aldehyde oxidase isolated from rabbit liver is studied in this thesis with regard to its application in organic synthesis. The enzyme has a broad substrate specificity towards azaheterocycles and therefore offers great potential for profitable use.The oxidation of 1-alkyl(aryl)-3-aminocarbonylpyridi

  8. Titanium superoxide--a stable recyclable heterogeneous catalyst for oxidative esterification of aldehydes with alkylarenes or alcohols using TBHP as an oxidant.

    Science.gov (United States)

    Dey, Soumen; Gadakh, Sunita K; Sudalai, A

    2015-11-21

    Titanium superoxide efficiently catalysed the oxidative esterification of aldehydes with alkylarenes or alcohols, under truly heterogeneous conditions, to afford the corresponding benzyl and alkyl esters in excellent yields. Mechanistic studies have established that this "one pot" direct oxidative esterification process proceeds through a radical pathway, proven by a FTIR spectral study of a titanium superoxide-aldehyde complex as well as spin trapping experiments with TEMPO. The intramolecular version of this protocol has been successfully demonstrated in the concise synthesis of 3-butylphthalide, an anti-convulsant drug.

  9. Aldehyde dehydrogenase 2 protects human umbilical vein endothelial cells against oxidative damage and increases endothelial nitric oxide production to reverse nitroglycerin tolerance.

    Science.gov (United States)

    Hu, X Y; Fang, Q; Ma, D; Jiang, L; Yang, Y; Sun, J; Yang, C; Wang, J S

    2016-06-10

    Medical nitroglycerin (glyceryl trinitrate, GTN) use is limited principally by tolerance typified by a decrease in nitric oxide (NO) produced by biotransformation. Such tolerance may lead to endothelial dysfunction by inducing oxidative stress. In vivo studies have demonstrated that aldehyde dehydrogenase 2 (ALDH2) plays important roles in GTN biotransformation and tolerance. Thus, modification of ALDH2 expression represents a potentially effective strategy to prevent and reverse GTN tolerance and endothelial dysfunction. In this study, a eukaryotic expression vector containing the ALDH2 gene was introduced into human umbilical vein endothelial cells (HUVECs) by liposome-mediated transfection. An indirect immunofluorescence assay showed that ALDH2 expression increased 24 h after transfection. Moreover, real-time polymerase chain reaction and western blotting revealed significantly higher ALDH2 mRNA and protein expression in the gene-transfected group than in the two control groups. GTN tolerance was induced by treating HUVECs with 10 mM GTN for 16 h + 10 min, which significantly decreased NO levels in control cells, but not in those transfected with ALDH2. Overexpression of ALDH2 increased cell survival against GTN-induced cytotoxicity and conferred protection from oxidative damage resulting from nitrate tolerance, accompanied by decreased production of intracellular reactive oxygen species and reduced expression of heme oxygenase 1. Furthermore, ALDH2 overexpression promoted Akt phosphorylation under GTN tolerance conditions. ALDH2 gene transfection can reverse and prevent tolerance to GTN through its bioactivation and protect against oxidative damage, preventing the development of endothelial dysfunction.

  10. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid oxidation-derived aldehydes, and glucose

    OpenAIRE

    Adams, An; Kitrytė, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-01-01

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model...

  11. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation

    Directory of Open Access Journals (Sweden)

    Li Gao

    2016-12-01

    Full Text Available Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress and programmed cell death of renal tubular epithelial cells. All of which lead to higher mortality rates in patients. In this study we examined the protective effect of protocatechuic aldehyde (PA in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza. Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA largely blocked cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients with cisplatin treatment.

  12. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie

    2012-01-01

    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  13. The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae: The Involvement of Reactive Oxygen Species and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Alessandra A. Gallina

    2014-07-01

    Full Text Available Nitric oxide (NO and reactive oxygen species (ROS production was investigated in the marine diatom, Skeletonema marinoi (SM, exposed to 2E,4E/Z-decadienal (DECA, 2E,4E/Z-octadienal (OCTA, 2E,4E/Z-heptadienal (HEPTA and a mix of these last two (MIX. When exposed to polyunsaturated aldehydes (PUA, a decrease of NO was observed, proportional to the PUA concentration (85% of the initial level after 180 min with 66 µM DECA. Only OCTA, HEPTA and MIX induced a parallel increase of ROS, the highest (2.9-times the control with OCTA concentrations twice the EC50 for growth at 24 h (20 μM. The synthesis of carotenoids belonging to the xanthophyll cycle (XC was enhanced during exposure, suggesting their antioxidant activity. Our data provide evidence that specific pathways exist as a reaction to PUA and that they depend upon the PUA used and/or the diatom species. In fact, Phaeodactylum tricornutum (PT produces NO in response to DECA, but not to OCTA. We advance the hypothesis that SM perceives OCTA and HEPTA as intra-population infochemicals (as it produces PUA, while PT (non-PUA producing species perceives them as allelochemicals. The ability to produce and to use PUA as infochemicals may underlie ecological traits of different diatom species and modulate ecological success in natural communities.

  14. The effect of polyunsaturated aldehydes on Skeletonema marinoi (Bacillariophyceae): the involvement of reactive oxygen species and nitric oxide.

    Science.gov (United States)

    Gallina, Alessandra A; Brunet, Christophe; Palumbo, Anna; Casotti, Raffaella

    2014-07-14

    Nitric oxide (NO) and reactive oxygen species (ROS) production was investigated in the marine diatom, Skeletonema marinoi (SM), exposed to 2E,4E/Z-decadienal (DECA), 2E,4E/Z-octadienal (OCTA), 2E,4E/Z-heptadienal (HEPTA) and a mix of these last two (MIX). When exposed to polyunsaturated aldehydes (PUA), a decrease of NO was observed, proportional to the PUA concentration (85% of the initial level after 180 min with 66 µM DECA). Only OCTA, HEPTA and MIX induced a parallel increase of ROS, the highest (2.9-times the control) with OCTA concentrations twice the EC50 for growth at 24 h (20 μM). The synthesis of carotenoids belonging to the xanthophyll cycle (XC) was enhanced during exposure, suggesting their antioxidant activity. Our data provide evidence that specific pathways exist as a reaction to PUA and that they depend upon the PUA used and/or the diatom species. In fact, Phaeodactylum tricornutum (PT) produces NO in response to DECA, but not to OCTA. We advance the hypothesis that SM perceives OCTA and HEPTA as intra-population infochemicals (as it produces PUA), while PT (non-PUA producing species) perceives them as allelochemicals. The ability to produce and to use PUA as infochemicals may underlie ecological traits of different diatom species and modulate ecological success in natural communities.

  15. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress.

    Science.gov (United States)

    Altemose, Brent; Robson, Mark G; Kipen, Howard M; Ohman Strickland, Pamela; Meng, Qingyu; Gong, Jicheng; Huang, Wei; Wang, Guangfa; Rich, David Q; Zhu, Tong; Zhang, Junfeng

    2016-07-20

    Using data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.Journal of Exposure Science and Environmental Epidemiology advance online publication, 20 July 2016; doi:10.1038/jes.2016.38.

  16. Selective and Efficient Oxidation of Aldehydes to Their Corresponding Carboxylic Acids Using H2O2/HC1 in the Presence of Hydroxylamine Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    BAHRAMI,Kiumars; KHODAEI,Mohammad Mehdi; KAMALI,Shahab

    2008-01-01

    A wide variety of aldehydes were efficiently converted to their corresponding carboxylic acids in high yields using H2O2/HC1 in the presence of hydroxylamine hydrochloride.In addition,selective oxidation of aldehydes in the presence of other functional groups such as hydroxyl group,carbon-carbon double bond and other heteroatoms can be considered a noteworthy advantage of this method.

  17. Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance.

    Science.gov (United States)

    Wenzel, Philip; Hink, Ulrich; Oelze, Matthias; Schuppan, Swaantje; Schaeuble, Karin; Schildknecht, Stefan; Ho, Kwok K; Weiner, Henry; Bachschmid, Markus; Münzel, Thomas; Daiber, Andreas

    2007-01-05

    Chronic therapy with nitroglycerin results in a rapid development of nitrate tolerance, which is associated with an increased production of reactive oxygen species. We have recently shown that mitochondria are an important source of nitroglycerin-induced oxidants and that the nitroglycerin-bioactivating mitochondrial aldehyde dehydrogenase is oxidatively inactivated in the setting of tolerance. Here we investigated the effect of various oxidants on aldehyde dehydrogenase activity and its restoration by dihydrolipoic acid. In vivo tolerance in Wistar rats was induced by infusion of nitroglycerin (6.6 microg/kg/min, 4 days). Vascular reactivity was measured by isometric tension studies of isolated aortic rings in response to nitroglycerin. Chronic nitroglycerin infusion lead to impaired vascular responses to nitroglycerin and decreased dehydrogenase activity, which was corrected by dihydrolipoic acid co-incubation. Superoxide, peroxynitrite, and nitroglycerin itself were highly efficient in inhibiting mitochondrial and yeast aldehyde dehydrogenase activity, which was restored by dithiol compounds such as dihydrolipoic acid and dithiothreitol. Hydrogen peroxide and nitric oxide were rather insensitive inhibitors. Our observations indicate that mitochondrial oxidative stress (especially superoxide and peroxynitrite) in response to organic nitrate treatment may inactivate aldehyde dehydrogenase thereby leading to nitrate tolerance. Glutathionylation obviously amplifies oxidative inactivation of the enzyme providing another regulatory pathway. Furthermore, the present data demonstrate that the mitochondrial dithiol compound dihydrolipoic acid restores mitochondrial aldehyde dehydrogenase activity via reduction of a disulfide at the active site and thereby improves nitrate tolerance.

  18. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    Science.gov (United States)

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism.

  19. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid-oxidation-derived aldehydes, and glucose.

    Science.gov (United States)

    Adams, An; Kitryté, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-02-23

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model mixtures were carbonyl compounds, resulting essentially from amino-acid-catalyzed aldol condensation reactions. Several 2-alkylfurans were detected as well. Only a few azaheterocyclic compounds were identified, in particular 5-butyl-2-propylpyridine from (E)-2-hexenal model systems and 2-pentylpyridine from (2E,4E)-decadienal model reactions. Although few reaction products were found resulting from the condensation of an amino acid with a lipid-derived aldehyde, the amino acid plays an important role in catalyzing the degradation and further reaction of these carbonyl compounds. These results suggest that amino-acid-induced degradations and further reactions of lipid oxidation products may be of considerable importance in thermally processed foods.

  20. The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling.

    Science.gov (United States)

    Castellano, Immacolata; Ercolesi, Elena; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna

    2015-03-01

    Polyunsaturated aldehydes (PUAs) are fatty-acid-derived metabolites produced by some microalgae, including different diatom species. PUAs are mainly produced as a wound-activated defence mechanism against microalgal predators or released from senescent cells at the end of a bloom. PUAs, including 2,4-trans-decadienal (DD), induce deleterious effects on embryonic and larval development of several planktonic and benthic organisms. Here, we report on the effects of DD on larval development and metamorphosis of the ascidian Ciona intestinalis. Ciona larval development is regulated by the cross-talking of different molecular events, including nitric oxide (NO) production, ERK activation and caspase 3-dependent apoptosis. We report that treatment with DD at the competence larval stage results in a delay in metamorphosis. DD affects redox balance by reducing total glutathione and NO levels. By biochemical and quantitative gene expression analysis, we identify the NO-signalling network affected by DD, including the upregulation of ERK phosphatase mkp1 and consequent reduction of ERK phosphorylation, with final changes in the expression of downstream ERK target genes. Overall, these results give new insights into the molecular pathways induced in marine organisms after exposure to PUAs during larval development, demonstrating that this aldehyde affects key checkpoints of larval transition from the vegetative to the reproductive life stage.

  1. Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino-acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions.

    Science.gov (United States)

    Hazen, S L; Gaut, J P; Crowley, J R; Hsu, F F; Heinecke, J W

    2000-12-15

    Reactive aldehydes might have a pivotal role in the pathogenesis of atherosclerosis by covalently modifying low-density lipoprotein (LDL). However, the identities of the aldehyde adducts that form on LDL in vivo are not yet clearly established. We previously demonstrated that the haem protein myeloperoxidase oxidizes proteins in the human artery wall. We also have shown that p-hydroxyphenylacetaldehyde (pHA), the aldehyde that forms when myeloperoxidase oxidizes L-tyrosine, covalently modifies the N(epsilon)-lysine residues of proteins. The resulting Schiff base can be quantified as N(epsilon)-[2-(p-hydroxyphenyl)ethyl]lysine (pHA-lysine) after reduction with NaCNBH(3). Here we demonstrate that pHA-lysine is a marker for LDL that has been modified by myeloperoxidase, and that water-soluble, but not lipid-soluble, antioxidants inhibit the modification of LDL protein. To determine whether myeloperoxidase-generated aldehydes might modify LDL in vivo, we used a combination of isotope-dilution GC-MS to quantify pHA-lysine in aortic tissues at various stages of lesion evolution. We also analysed LDL isolated from atherosclerotic aortic tissue. Comparison of normal and atherosclerotic aortic tissue demonstrated a significant elevation (more than 10-fold) of the reduced Schiff base adduct in fatty streaks, intermediate lesions and advanced lesions compared with normal aortic tissue. Moreover, the level of pHA-lysine in LDL recovered from atherosclerotic aortic intima was 200-fold that in plasma LDL of healthy donors. These results indicate that pHA-lysine, a specific covalent modification of LDL, is generated in human atherosclerotic vascular tissue. They also raise the possibility that reactive aldehydes generated by myeloperoxidase have a role in converting LDL into an atherogenic lipoprotein.

  2. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles

    DEFF Research Database (Denmark)

    Knott, Heather M; Brown, Bronwyn E; Davies, Michael Jonathan;

    2003-01-01

    the nature, time course, and extent of LDL modifications induced by glucose and two aldehydes, methylglyoxal and glycolaldehyde. It has been shown that these agents modify Arg, Lys and Trp residues of the apoB protein of LDL, with the extent of modification induced by the two aldehydes being more rapid than...... or methylglyoxal in the presence of copper ions, whereas glycolaldehyde stimulated such reactions to a modest extent. These results suggest that the earliest significant events in this system are metal ion-independent glycation (modification) of the protein component of LDL, whilst oxidative events (glycoxidation...

  3. Acrolein, a highly toxic aldehyde generated under oxidative stress in vivo, aggravates the mouse liver damage after acetaminophen overdose.

    Science.gov (United States)

    Arai, Tomoya; Koyama, Ryo; Yuasa, Makoto; Kitamura, Daisuke; Mizuta, Ryushin

    2014-01-01

    Although acetaminophen-induced liver injury in mice has been extensively studied as a model of human acute drug-induced hepatitis, the mechanism of liver injury remains unclear. Liver injury is believed to be initiated by metabolic conversion of acetaminophen to the highly reactive intermediate N-acetyl p-benzoquinoneimine, and is aggravated by subsequent oxidative stress via reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). In this study, we found that a highly toxic unsaturated aldehyde acrolein, a byproduct of oxidative stress, has a major role in acetaminophen-induced liver injury. Acetaminophen administration in mice resulted in liver damage and increased acrolein-protein adduct formation. However, both of them were decreased by treatment with N-acetyl-L-cysteine (NAC) or sodium 2-mercaptoethanesulfonate (MESNA), two known acrolein scavengers. The specificity of NAC and MESNA was confirmed in cell culture, because acrolein toxicity, but not H2O2 or •OH toxicity, was inhibited by NAC and MESNA. These results suggest that acrolein may be more strongly correlated with acetaminophen-induced liver injury than ROS, and that acrolein produced by acetaminophen-induced oxidative stress can spread from dying cells at the primary injury site, causing damage to the adjacent cells and aggravating liver injury.

  4. CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-04-01

    Full Text Available Furfural was oxidized to furoic acid by molecular oxygen under catalysis by 150nm-sized Ag2O/CuO (92% or simply CuO (86.6%. When 30 nm-size catalyst was used,the main product was a furfural Diels-Alder adduct. Detailed reaction conditions andregeneration of catalysts were investigated. Under optimal conditions, a series of aromaticand aliphatic aldehydes were oxidized to the corresponding acids in good yields.

  5. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    Directory of Open Access Journals (Sweden)

    Andrew Bogdan

    2009-04-01

    Full Text Available We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity.

  6. Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation

    Science.gov (United States)

    Su, Li; Ye, Xiangju; Meng, Sugang; Fu, Xianliang; Chen, Shifu

    2016-10-01

    A series of ternary chalcogenides, zinc indium sulphide (ZnIn2S4), were synthesized by a simple solvothermal method with different solvents. The structure, textural, and optical properties of the resulting materials were thoroughly characterized by several techniques. The as-prepared ZnIn2S4 samples could all be employed as excellent photocatalysts to activate O2 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light illumination. The results showed that ZnIn2S4 prepared in ethanol solvent (ZIS-EtOH) exhibited the highest photocatalytic activity among the screened samples. The differences of photocatalytic performance for ZnIn2S4 samples prepared in different media were mainly attributed to the different levels of exposed {0001} special facets caused by the exposure extent of the basic crystal plane. In addition, rad O2- and positive holes were proved to be the main active species during the photocatalytic process. Combined with the previous reports, a possible photocatalytic mechanism for the selective oxidation of benzyl alcohol to benzaldehyde over ZnIn2S4 sample was proposed.

  7. Efficient Copper-bisisoquinoline-based Catalysts for Selective Aerobic Oxidation of Alcohols to Aldehydes and Ketones

    Directory of Open Access Journals (Sweden)

    Zaher M. A. Judeh

    2007-06-01

    Full Text Available The selective oxidation of alcohols with molecular oxygen was efficientlycompleted in high conversion and selectivity using copper-bisisoquinoline-based catalystsunder mild reaction condition. The effects of various parameters such as reactiontemperature, reaction time, oxidant, ligands, etc, were studied. Solvent effect has been aswell studied in ionic liquids [bmim]PF6, [omim]BF4 and [hmim]BF4, comparing totraditional volatile organic solvent. The use of ionic liquids was found to enhance thecatalytic properties of the catalysts used.

  8. Enzyme-inspired functional surfactant for aerobic oxidation of activated alcohols to aldehydes in water

    KAUST Repository

    Chen, Batian

    2015-02-06

    We describe an enzyme-inspired catalytic system based on a rationally designed multifunctional amphiphile. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically.

  9. Kinetics and Mechanistic Approach to the Benzimidazolium fluorochromate Oxidation of Indole-2-aldehyde in various percentages of Acetic acid and Water mixture

    Directory of Open Access Journals (Sweden)

    V. Saleem Malik

    2015-03-01

    Full Text Available The kinetics of benzimidazolium fluorochromate (BIFC catalysed oxidation of indole-2-aldehyde (2-InA with perchloric acid in 50% acetic acid–50% water solvent mixture at 303 K has been followed spectrophotometrically. The reaction is first order with respect to [BIFC], [2-InA] and [H+] and the reaction is catalyzed by hydrogen ions. A suitable mechanism has been proposed.

  10. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  11. Isolation of an aldehyde dehydrogenase involved in the oxidation of fluoroacetaldehyde to fluoroacetate in Streptomyces cattleya.

    Science.gov (United States)

    Murphy, C D; Moss, S J; O'Hagan, D

    2001-10-01

    Streptomyces cattleya is unusual in that it produces fluoroacetate and 4-fluorothreonine as secondary metabolites. We now report the isolation of an NAD(+)-dependent fluoroacetaldehyde dehydrogenase from S. cattleya that mediates the oxidation of fluoroacetaldehyde to fluoroacetate. This is the first enzyme to be identified that is directly involved in fluorometabolite biosynthesis. Production of the enzyme begins in late exponential growth and continues into the stationary phase. Measurement of kinetic parameters shows that the enzyme has a high affinity for fluoroacetaldehyde and glycoaldehyde, but not acetaldehyde.

  12. Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2009-07-01

    Full Text Available The perovskite-type oxide catalyst LaFe1-xCuxO3 (x=0, 0.1, 0.2 was prepared by the sol–gel method, and tested as a catalyst in the wet aerobic oxidation (WAO of lignin into aromatic aldehydes. The lignin conversion and the yield of each aromatic aldehyde were significantly enhanced in the catalytic process, compared with the non-catalyzed process. Moreover, it was shown that the stability of activity and structure of LaFe1-xCuxO3 (x=0, 0.1, 0.2 remained nearly unchanged after a series of successive recyclings of the catalytic reactions, indicating it was an efficient and recyclable heterogeneous catalyst for the conversion of lignin into aromatic aldehydes in the WAO process.

  13. Novel oxidation of aromatic aldehydes catalyzed by Preyssler's anion, [NaP{sub 5}W{sub 30}O{sub 110}]{sup 14-}

    Energy Technology Data Exchange (ETDEWEB)

    Bamoharram, F.F.; Roshani, M.; Moghayadi, M. [Islamic Azad University-Mashhad Branch, Mashhad (Iran, Islamic Republic of). Dept. of Chemistry]. E-mail: abamoharram@yahoo.com; Alizadeh, M.H. [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of). Dept. of Chemistry; Razavi, H. [Georgetown University, Washington, DC (United States). Dept. of Chemistry

    2006-05-15

    Preyssler's anion, with formula [NaP{sub 5}W{sub 30}O{sub 110}]{sup 14-}, catalyzes the oxidation of aromatic aldehydes to related carboxylic acids by hydrogen peroxide as oxidizing agent, under microwave irradiation, or at 70 deg C. Both homogeneous and heterogeneous Preyssler's catalysts (as H{sub 14}[NaP{sub 5}W{sub 30}O{sub 110}]) were used and had their activity compared with those of some Keggin structures. Our data indicate that Sodium30-tungsto pentaphosphate, the so-called Preyssler's anion, with high hydrolytic (pH=0-12) and thermal stability is the best catalyst with high yield and good selectivity. Under microwave irradiation, this polyanion supported on SiO{sub 2} was found to be an excellent catalyst for aldehydes with low loss factor in 1-2 min (the loss factor is a measure of the ability of the material to dissipate energy). The effects of various parameters, including catalyst type, nature of the substituent in the aldehyde and temperature, on the yield of the carboxylic acids were studied. (author)

  14. Metabolite production and kinetics of branched-chain aldehyde oxidation in Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, A.M.; Lauritsen, F.R.

    2002-01-01

    The metabolite production of the gram positive bacterium Staphylococcus xylosus when cultivated in a defined medium containing 18 amino acids, 6 vitamins and 2 purines was characterised. Several compounds not previously reported as metabolites of this organism were identified including 2......,5-methylpyrazine, 2-phenylethylacetate, 2-methyltetrahydrothiophen-3-one, 3-(methylthio)-propanoic acid and 3-(methylthio)-propanal. The organoleptic metabolites derived from branched-chain amino acid catabolism; 2-methylpropanal from valine, 2-methylbutanal from isoleucine and 3-methylbutanal from leucine were...... detected at levels ranging from 0.4 to 2.0μM. The concentrations of the corresponding carboxy acids were 963, 858 and 1486μM respectively. We demonstrated that α-ketoisocaproic acid was biotransformed to 3-methylbutanal which immediately was oxidised into 3-methylbutanoic acid. Kinetic studies...

  15. Pd/C-catalyzed aerobic oxidative esterification of alcohols and aldehydes: a highly efficient microwave-assisted green protocol

    Directory of Open Access Journals (Sweden)

    Marina Caporaso

    2014-06-01

    Full Text Available We herein describe an environmentally friendly microwave-assisted oxidative esterification of alcohols and aldehydes in the presence of molecular oxygen and a heterogeneous catalysis (Pd/C, 5 mol %. This efficient and ligandless conversion procedure does not require the addition of an organic hydrogen acceptor. The reaction rate is strongly enhanced by mild dielectric heating. Furthermore, it is a versatile green procedure which generally enables the isolation of esters to be carried out by simple filtration in almost quantitative yields.

  16. Solvent-free oxidation of aldehydes to acids by TBHP using environmental-friendly MnO$^{−1}_{4}$-exchanged Mg-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    Vasant R Choudhary; Deepa K Dumbre; Vijay S Narkhede

    2012-07-01

    A number of hydrotalcite (Mg-Al, Mn-Al, Co-Al, Ni-Al, Mg-Fe, Mg-Cr and Cu-Al) catalysts, with or without MnO$^{−1}_{4}$-exchange, were evaluated for their performance in the solvent-free oxidation of benzaldehyde to benzoic acid by tert-butyl hydroperoxide under reflux in the absence of any solvent. The MnO$^{−1}_{4}$-exchanged Mg-Al-hydrotalcite (Mg/Al = 10) showed high activity in the oxidation of different aromatic and aliphatic aldehydes to their corresponding acids and also showed excellent reusability in the oxidation process which is environmental-friendly.

  17. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  18. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Science.gov (United States)

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  19. Monounsaturated Fatty Acids Are Substrates for Aldehyde Generation in Tellurite-Exposed Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gonzalo A. Pradenas

    2013-01-01

    Full Text Available Reactive oxygen species (ROS damage macromolecules and cellular components in nearly all kinds of cells and often generate toxic intracellular byproducts. In this work, aldehyde generation derived from the Escherichia coli membrane oxidation as well as membrane fatty acid profiles, protein oxidation, and bacterial resistance to oxidative stress elicitors was evaluated. Studies included wild-type cells as well as cells exhibiting a modulated monounsaturated fatty acid (MUFA ratio. The hydroxyaldehyde 4-hydroxy 2-nonenal was found to be most likely produced by E. coli, whose levels are dependent upon exposure to oxidative stress elicitors. Aldehyde amounts and markers of oxidative damage decreased upon exposure to E. coli containing low MUFA ratios, which was paralleled by a concomitant increase in resistance to ROS-generating compounds. MUFAs ratio, lipid peroxidation, and aldehyde generation were found to be directly related; that is, the lower the MUFAs ratio, the lower the peroxide and aldehyde generation levels. These results provide additional evidence about MUFAs being targets for membrane lipid oxidation and their relevance in aldehyde generation.

  20. Periodontal treatment decreases plasma oxidized LDL level and oxidative stress.

    Science.gov (United States)

    Tamaki, Naofumi; Tomofuji, Takaaki; Ekuni, Daisuke; Yamanaka, Reiko; Morita, Manabu

    2011-12-01

    Periodontitis induces excessive production of reactive oxygen species in periodontal lesions. This may impair circulating pro-oxidant/anti-oxidant balance and induce the oxidation of low-density lipoprotein (LDL) in blood. The purpose of this study was to monitor circulating oxidized LDL and oxidative stress in subjects with chronic periodontitis following non-surgical periodontal treatment. Plasma levels of oxidized LDL and oxidative stress in 22 otherwise healthy non-smokers with chronic periodontitis (mean age 44.0 years) were measured at baseline and at 1 and 2 months after non-surgical periodontal treatment. At baseline, chronic periodontitis patients had higher plasma levels of oxidized LDL and oxidative stress than healthy subjects (p surgical periodontal treatment were effective in decreasing oxLDL, which was positively associated with a reduction in circulating oxidative stress.

  1. Alcohol, Aldehydes, Adducts and Airways.

    Science.gov (United States)

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  2. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters.

    Science.gov (United States)

    Kaizuka, Kosuke; Miyamura, Hiroyuki; Kobayashi, Shū

    2010-11-01

    Selective oxidation of alcohols catalyzed by novel carbon-stabilized polymer-incarcerated bimetallic nanocluster catalysts using molecular oxygen has been developed. The reactivity and the selectivity were strongly dependent on the combination of metals and solvent systems; aldehydes and ketones were obtained by the gold/platinum catalyst in benzotrifluoride, and esters were formed by the gold/palladium catalyst in methanol. To the best of our knowledge, this is the first example that the reaction pathway has been changed dramatically in gold catalysis by combining with a second metal. The differences in the activity and the selectivity are considered to be derived from the difference in the structure of the bimetallic clusters.

  3. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture.

    Science.gov (United States)

    Shah, Amisha D; Dai, Ning; Mitch, William A

    2013-03-19

    Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although capture synergies between UV and ozone treatments.

  4. Aldehyde-induced xanthine oxidase activity in raw milk.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  5. Air-Stable Gold Nanoparticles Ligated by Secondary Phosphine Oxides as Catalyst for the Chemoselective Hydrogenation of Substituted Aldehydes: a Remarkable Ligand Effect.

    Science.gov (United States)

    Cano, Israel; Huertos, Miguel A; Chapman, Andrew M; Buntkowsky, Gerd; Gutmann, Torsten; Groszewicz, Pedro B; van Leeuwen, Piet W N M

    2015-06-24

    Air-stable and homogeneous gold nanoparticles (AuNPs, 1a-5a) ligated by various secondary phosphine oxides (SPOs), [R(1)R(2)P(O)H] (R(1) = Naph, R(2) = (t)Bu, L1; R(1) = R(2) = Ph, L2; R(1) = Ph, R(2) = Naph, L3; R(1) = R(2) = Et, L4; R(1) = R(2) = Cy, L5; R(1) = R(2) = (t)Bu, L6), with different electronic and steric properties were synthesized via NaBH4 reduction of the corresponding Au(I)-SPO complex. These easily accessible ligands allow the formation of well dispersed and small nanoparticles (size 1.2-2.2 nm), which were characterized by the use of a wide variety of techniques, such as transmission electron microscopy, thermogravimetric analysis, UV-vis, energy-dispersive X-ray, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), and cross polarization magic angle spinning (CP MAS) NMR spectroscopy. A pronounced ligand effect was found, and CP MAS NMR experiments enabled us to probe important differences in the polarity of the P-O bond of the SPOs coordinated to the nanoparticle surface depending on the type of substituents in the ligand. AuNPs containing aryl SPOs carry only SPO anions and are highly selective for aldehyde hydrogenation. AuNPs of similar size made with alkyl SPOs contain also SPOH, hydrogen bonded to SPO anions. As a consequence they contain less Au(I) and more Au(0), as is also evidenced by XPS. They are less selective and active in aldehyde hydrogenation and now show the typical activity of Au(0)NPs in nitro group hydrogenation.

  6. Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: kinetics, mechanism, and effect of ozone.

    Science.gov (United States)

    Kolar, Praveen; Kastner, James R

    2010-02-01

    Poultry rendering emissions contain volatile organic compounds (VOCs) that are nuisance, odorous, and smog and particulate matter precursors. Present treatment options, such as wet scrubbers, do not eliminate a significant fraction of the VOCs emitted including, 2-methylbutanal (2-MB), 3-methylbutanal, and hexanal. This research investigated the low-temperature (25-160 degrees C) catalytic oxidation of 2-MB and hexanal vapors in a differential, plug flow reactor using wood fly ash (WFA) as a catalyst and oxygen and ozone as oxidants. The oxidation rates of 2-MB and hexanal ranged between 3.0 and 3.5 x 10(-9)mol g(-1)s(-1) at 25 degrees C and the activation energies were 2.2 and 1.9 kcal mol(-1), respectively. The catalytic activity of WFA was comparable to other commercially available metal and metal oxide catalysts. We theorize that WFA catalyzed a free radical reaction in which 2-butanone and CO(2) were formed as end products of 2-MB oxidation, while CO(2), pentanal, and butanal were formed as end products of hexanal oxidation. When tested as a binary mixture at 25 and 160 degrees C, no inhibition was observed. Additionally, when ozone was tested as an oxidant at 160 degrees C, 100% removal was achieved within a 2-s reaction time. These results may be used to design catalytic oxidation processes for VOC removal at poultry rendering facilities and potentially replace energy and water intensive air pollution treatment technologies currently in use.

  7. Formation of Nitric Oxide by Aldehyde Dehydrogenase-2 Is Necessary and Sufficient for Vascular Bioactivation of Nitroglycerin*

    Science.gov (United States)

    Opelt, Marissa; Eroglu, Emrah; Waldeck-Weiermair, Markus; Russwurm, Michael; Koesling, Doris; Malli, Roland; Graier, Wolfgang F.; Fassett, John T.; Schrammel, Astrid; Mayer, Bernd

    2016-01-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN), resulting in activation of soluble guanylate cyclase (sGC) and cGMP-mediated vasodilation. We have previously shown that a minor reaction of ALDH2-catalyzed GTN bioconversion, accounting for about 5% of the main clearance-based turnover yielding inorganic nitrite, results in direct NO formation and concluded that this minor pathway could provide the link between vascular GTN metabolism and activation of sGC. However, lack of detectable NO at therapeutically relevant GTN concentrations (≤1 μm) in vascular tissue called into question the biological significance of NO formation by purified ALDH2. We addressed this issue and used a novel, highly sensitive genetically encoded fluorescent NO probe (geNOp) to visualize intracellular NO formation at low GTN concentrations (≤1 μm) in cultured vascular smooth muscle cells (VSMC) expressing an ALDH2 mutant that reduces GTN to NO but lacks clearance-based GTN denitration activity. NO formation was compared with GTN-induced activation of sGC. The addition of 1 μm GTN to VSMC expressing either wild-type or C301S/C303S ALDH2 resulted in pronounced intracellular NO elevation, with maximal concentrations of 7 and 17 nm, respectively. Formation of GTN-derived NO correlated well with activation of purified sGC in VSMC lysates and cGMP accumulation in intact porcine aortic endothelial cells infected with wild-type or mutant ALDH2. Formation of NO and cGMP accumulation were inhibited by ALDH inhibitors chloral hydrate and daidzin. The present study demonstrates that ALDH2-catalyzed NO formation is necessary and sufficient for GTN bioactivation in VSMC. PMID:27679490

  8. Alcohol Dehydrogenase-1B (rs1229984 and Aldehyde Dehydrogenase-2 (rs671 Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Directory of Open Access Journals (Sweden)

    Akira Yokoyama

    Full Text Available Elevated serum triglyceride (TG and high-density-lipoprotein cholesterol (HDL-C levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics.The population consisted of 1806 Japanese alcoholic men (≥40 years who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission.High serum levels of TG (≥150 mg/dl, HDL-C (>80 mg/dl, and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively, and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively. The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]. The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl and HDL-C (≥100 mg/dl.The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  9. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS.

    Science.gov (United States)

    Poli, Diana; Goldoni, Matteo; Corradi, Massimo; Acampa, Olga; Carbognani, Paolo; Internullo, Eveline; Casalini, Angelo; Mutti, Antonio

    2010-10-01

    A number of volatile organic compounds (VOCs) have been identified and used in preliminary clinical studies of the early diagnosis of lung cancer. The aim of this study was to evaluate the potential of aldehydes (known biomarkers of oxidative stress) in the diagnosis of patients with non-small cell lung cancer (NSCLC). We used an on-fiber-derivatisation SPME sampling technique coupled with GC/MS analysis to measure straight aldehydes C3-C9 in exhaled breath. Linearity was established over two orders of magnitude (range: 3.3-333.3×10(-12) M); the LOD and LOQ of all the aldehydes were respectively 1×10(-12) M and 3×10(-12) M. Accuracy was within 93% and precision calculated as % RSD was 7.2-15.1%. Aldehyde stability in a Bio-VOC(®) tube stored at +4°C was 10-17 h, but this became >10 days using a specific fiber storage device. Finally, exhaled aldehydes were measured in 38 asymptomatic non-smokers (controls) and 40 NSCLC patients. The levels of all of the aldehydes were increased in the NSCLC patients without any significant effect of smoking habits and little effect of age. The good discriminant power of the aldehyde pattern (90%) was confirmed by multivariate analysis. These results show that straight aldehydes may be promising biomarkers associated with NSCLC, and increase the sensitivity and specificity of previously identified VOC patterns.

  10. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C

    1996-01-01

    tests and 6-week graded use tests with 0.02, 0.1 and 0.8% cinnamic aldehyde in ethanol was studied in a group of cinnamic-aldehyde-sensitive eczema patients. The minimum effect level demonstrated was 0.02% cinnamic aldehyde on patch testing and 0.1% cinnamic aldehyde on use testing, which are allowed...... exposure information is needed to evaluate more fully the consequences of cinnamic aldehyde sensitivity....

  11. The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling

    OpenAIRE

    Castellano, Immacolata; Ercolesi, Elena; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna

    2015-01-01

    Polyunsaturated aldehydes (PUAs) are fatty-acid-derived metabolites produced by some microalgae, including different diatom species. PUAs are mainly produced as a wound-activated defence mechanism against microalgal predators or released from senescent cells at the end of a bloom. PUAs, including 2,4-trans-decadienal (DD), induce deleterious effects on embryonic and larval development of several planktonic and benthic organisms. Here, we report on the effects of DD on larval development and m...

  12. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa).

    Science.gov (United States)

    Tang, Wei; Sun, Jiaqi; Liu, Jia; Liu, Fangfang; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2014-11-01

    As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.

  13. Expired nitric oxide levels in adult asthmatics

    Directory of Open Access Journals (Sweden)

    Chiharu Okada

    1996-01-01

    Full Text Available The expired nitric oxide (NO concentration is known to be higher in asthmatic subjects than in normal subjects. To elucidate the role of NO in asthma, we examined the expired NO concentrations in relation to the type (atopic, mixed, non- atopic, and severity (mild, moderate, severe of asthmatics, as well as the influence of steroid treatment. Twenty-seven normal subjects, 48 asthmatics, 8 subjects with allergic rhinitis, and 13 subjects with pulmonary emphysema participated in the study. The expired NO concentration was significantly higher in asthmatics and patients with allergic rhinitis than in normal subjects (P<0.01. No significant difference was observed between the expired NO concentration in patients with pulmonary emphysema and that of normal subjects. The expired NO concentrations were significantly lower in non- atopic asthma than in atopic asthma. Nitric oxide levels were significantly lower in severe asthma than in mild asthma. High doses of steroid treatment are often used in severe asthma. The dose of inhaled beclomethasone and expired NO concentrations showed a negative correlation (r= −0.51587, P<0.004. Drip infusion of hydrocortisone tended to increase the exhaled NO concentration just after drip infusion, however, it decreased after 24 h. These results suggest that steroid treatment decreases the expired NO concentrations in asthmatics, although it cannot be concluded that NO increases the severity of asthma. The measurement of expired NO concentrations is an easy, non-invasive test, which may be a useful tool for monitoring the condition of asthmatics.

  14. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  15. Air pollution source apportionment before, during, and after the 2008 Beijing Olympics and association of sources to aldehydes and biomarkers of blood coagulation, pulmonary and systemic inflammation, and oxidative stress in healthy young adults

    Science.gov (United States)

    Altemose, Brent A.

    Based on principal component analysis (PCA) of air pollution data collected during the Summer Olympic Games held in Beijing, China during 2008, the five source types of air pollution identified -- natural soil/road dust, vehicle and industrial combustion, vegetative burning, oil combustion, and secondary formation, were all distinctly lower during the Olympics. This was particularly true for vehicle and industrial combustion and oil combustion, and during the main games period between the opening and closing ceremonies. The reduction in secondary formation was reflective of a reduction in nitrogen oxides, but this also contributed to increased ozone concentrations during the Olympic period. Among three toxic aldehydes measured in Beijing during the same time period, only acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Accordingly, acetaldehyde was significantly correlated with primary emission sources including vegetative burning and oil combustion, and with several pollutants emitted mainly from primary sources. In contrast, formaldehyde and acrolein increased during the Olympic air pollution control period; accordingly both were significantly correlated with ozone and with the secondary formation source type. These findings indicate primary sources may dominate for acetaldehyde while secondary sources may dominate for formaldehyde and acrolein. Biomarkers for pulmonary inflammation (exhaled breath condensate (EBC) pH, exhaled nitric oxide, and EBC nitrite) and hemostasis and blood coagulation (vWF and sCD62p) were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The systemic inflammation biomarker 8-OHdG was most consistently associated with vehicle and industrial combustion. In contrast, the associations between the biomarkers and the aldehydes were generally not significant or in the hypothesized direction, although

  16. Analysis of endogenous aldehydes in human urine by static headspace gas chromatography-mass spectrometry.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2016-03-11

    Endogenous aldehydes (EAs) generated during oxidative stress and cell processes are associated with many pathogenic and toxicogenic processes. The aim of this research was to develop a solvent-free and automated analytical method for the determination of EAs in human urine using a static headspace generator sampler coupled with gas chromatography-mass spectrometry (HS-GC-MS). Twelve significant EAs used as markers of different biochemical and physiological processes, namely short- and medium-chain alkanals, α,β-unsaturated aldehydes and dicarbonyl aldehydes have been selected as target analytes. Human urine samples (no dilution is required) were derivatized with O-2,3,4,5,6-pentafluorobenzylhydroxylamine in alkaline medium (hydrogen carbonate-carbonate buffer, pH 10.3). The HS-GC-MS method developed renders an efficient tool for the sensitive and precise determination of EAs in human urine with limits of detection from 1 to 15ng/L and relative standard deviations, (RSDs) from 6.0 to 7.9%. Average recoveries by enriching urine samples ranged between 92 and 95%. Aldehydes were readily determined at 0.005-50μg/L levels in human urine from healthy subjects, smokers and diabetic adults.

  17. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    Science.gov (United States)

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  18. Aldehyde concentrations in wet deposition and river waters

    Energy Technology Data Exchange (ETDEWEB)

    Dąbrowska, Agata, E-mail: agatadab@amu.edu.pl; Nawrocki, Jacek

    2013-05-01

    The process of pollutants removal from the atmosphere can be responsible for the appearance of aldehydes in surface waters. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in precipitations as well as in surface water samples, while semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. Particularly high level of carbonyls concentration was noted after periods of drought and at the beginning of rainy periods. We estimated that ca. 40% of aldehydes from wet precipitations were delivered into river waters. The level of carbonyl concentration in river was positively correlated with specific local meteorological conditions such as solar radiation and ozone concentration, in contrast, there was negative correlation between aldehyde concentration in the river samples and the precipitation intensity. - Highlights: ► Atmosphere pollutants are responsible for the appearance of aldehydes in surface waters. ► Volatile aldehydes are commonly present in precipitations as well as in surface waters. ► Semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. ► High concentration of carbonyls were noted after periods of drought and at the beginning of rain. ► Carbonyl concentration in river is correlated to meteorological conditions.

  19. Effect of commonly used organic solvents on aldehyde oxidase-mediated vanillin, phthalazine and methotrexate oxidation in human, rat and mouse liver subcellular fractions.

    Science.gov (United States)

    Behera, Dayanidhi; Pattem, Rambabu; Gudi, Girish

    2014-08-01

    1. Aldehyde oxidase (AOX) is a cytosolic molybdoflavoprotein enzyme widely distributed across many tissues. In this study, we report the effect of commonly used organic solvents such as dimethyl sulfoxide (DMSO), acetonitrile (ACN), methanol and ethanol on AOX activity in human, rat and mouse liver S9 fractions using vanillin, phthalazine and methotrexate as probe substrates. 2. Methanol was found to be the most potent solvent in inhibiting vanillic acid and 1-phthalazinone formation in comparison to DMSO, ACN and ethanol across the species tested, except 7-hydroxy methotrexate. 3. Treatment with these solvents at approximate IC50 (% v/v) concentrations showed significant reduction in Clint and Vmax of the probe substrates and also resulted in different effects on Km across the species. 4. Marked differences in the activity and affinity towards AOX were observed with different probe substrates with methotrexate showing least activity and affinity as compared to vanillin and phthalazine. 5. Overall, AOX activity seemed to be more resilient to the presence of organic solvents at higher concentrations in human and rodent species. These results suggest that low concentrations of organic solvents are acceptable for in vitro incubations involving AOX-mediated metabolism.

  20. Chilling Stress Upregulates α-Linolenic Acid-Oxidation Pathway and Induces Volatiles of C6 and C9 Aldehydes in Mango Fruit.

    Science.gov (United States)

    Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam

    2017-01-25

    Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C6 and C9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.

  1. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  2. Fast and Green Microwave-Assisted Conversion of Essential Oil Allylbenzenes into the Corresponding Aldehydes via Alkene Isomerization and Subsequent Potassium Permanganate Promoted Oxidative Alkene Group Cleavage

    DEFF Research Database (Denmark)

    Luu, Thi Xuan Thi; Lam, Trinh To; Le, Thach Ngoc;

    2009-01-01

    oxidation of the latter to the corresponding benzaldehyde by KMnO4/CuSO4 center dot 5H(2)O. The assistance by microwave irradiation results in very short reaction times (eugenol (4-allyl-2-methoxyphenol) into vanillin (4-hydroxy-3-methoxybenzaldehyde) has been carried...

  3. Cyclodextrin Aldehydes are Oxidase Mimics

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Bjerre, Jeannette; Bols, Mikael

    2009-01-01

    Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin...

  4. Fermi level stabilization energy in cadmium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Speaks, D. T.; Mayer, M. A.; Yu, K. M.; Mao, S. S.; Haller, E. E.; Walukiewicz, W.

    2010-04-08

    We have studied the effects of high concentrations of native point defects on the electrical and optical properties of CdO. The defects were introduced by irradiation with high energy He+, Ne+, Ar+ and C+ ions. Increasing the irradiation damage with particles heavier than He+ increases the electron concentration until a saturation level of 5x1020 cm-3 is reached. In contrast, due to the ionic character and hence strong dynamic annealing of CdO, irradiation with much lighter He+ stabilizes the electron concentration at a much lower level of 1.7x1020 cm-3. A large shift of the optical absorption edge with increasing electron concentration in irradiated samples is explained by the Burstein-Moss shift corrected for electron-electron and electron-ion interactions. The saturation of the electron concentration and the optical absorption edge energy are consistent with a defect induced stabilization of the Fermi energy at 1 eV above the conduction band edge. The result is in a good agreement with previously determined Fermi level pinning energies on CdO surfaces. The results indicate that CdO shares many similarities with InN, as both materials exhibit extremely large electron affinities and an unprecedented propensity for n-type conductivity.

  5. Fast and Green Microwave-Assisted Conversion of Essential Oil Allylbenzenes into the Corresponding Aldehydes via Alkene Isomerization and Subsequent Potassium Permanganate Promoted Oxidative Alkene Group Cleavage

    Directory of Open Access Journals (Sweden)

    Thi X. Thi Luu

    2009-09-01

    Full Text Available Essential oil allylbenzenes from have been converted quickly and efficiently into the corresponding benzaldehydes in good yields by a two-step “green” reaction pathway based on a solventless alkene group isomerization by KF/Al2O3 to form the corresponding 1-arylpropene and a subsequent solventless oxidation of the latter to the corresponding benzaldehyde by KMnO4/CuSO4·5H2O. The assistance by microwave irradiation results in very short reaction times (<15 minutes. The green conversion of eugenol (4-allyl-2-methoxyphenol into vanillin (4-hydroxy-3-methoxybenzaldehyde has been carried out in a similar way, requiring however two additional microwave-assisted synthetic steps for acetylation of the hydroxy group prior to the oxidation reaction, and for the final deacetylation of vanillin acetate (4-acetoxy-3-methoxybenzaldehyde by KF/Al2O3 under solvent-free conditions, respectively.

  6. Fast and green microwave-assisted conversion of essential oil allylbenzenes into the corresponding aldehydes via alkene isomerization and subsequent potassium permanganate promoted oxidative alkene group cleavage.

    Science.gov (United States)

    Luu, Thi X Thi; Lam, Trinh To; Le, Thach Ngoc; Duus, Fritz

    2009-09-03

    Essential oil allylbenzenes from have been converted quickly and efficiently into the corresponding benzaldehydes in good yields by a two-step "green" reaction pathway based on a solventless alkene group isomerization by KF/Al(2)O(3) to form the corresponding 1-arylpropene and a subsequent solventless oxidation of the latter to the corresponding benzaldehyde by KMnO(4)/CuSO(4).5H(2)O. The assistance by microwave irradiation results in very short reaction times (<15 minutes). The green conversion of eugenol (4-allyl-2-methoxyphenol) into vanillin (4-hydroxy-3-methoxybenzaldehyde) has been carried out in a similar way, requiring however two additional microwave-assisted synthetic steps for acetylation of the hydroxy group prior to the oxidation reaction, and for the final deacetylation of vanillin acetate (4-acetoxy-3-methoxybenzaldehyde) by KF/Al(2)O(3) under solvent-free conditions, respectively.

  7. PPRODUCTION OF AROMATIC ALDEHYDE BY MICROWAVE CATALYTIC OXIDATION OF A LIGNIN MODEL COMPOUND WITH La-CONTAINING SBA-15/H2O2 SYSTEMS

    Directory of Open Access Journals (Sweden)

    Xiaoli Gu

    2010-07-01

    Full Text Available A convenient and efficient application of heterogeneous La-containing SBA-15 systems for the microwave assisted oxidation of a lignin model phenolic monomer, 4-hydroxy-1-phenylpropane, is reported. Low-cost and environmentally friendly H2O2 was used as the oxygen atom donor. The catalyst was prepared by immobilizing lanthanum species on the periodic mesoporous channels of siliceous SBA-15. Powder X-ray diffraction data and ICP-AES revealed that the host retains its hexagonal mesoporous structure after immobilization and most of the lanthanum species are better dispersed in the calcined materials. The surface area and pore size of La/SBA-15 was considerably decreased, indicating the intrapore confinement of the Lanthanum species. The activity of the La/SBA-15 was investigated in the oxidation of 4-hydroxy-1-phenylpropane in the presence of hydrogen peroxide as oxidant. 70.5% conversion of 4-hydroxy-1-phenylpropane was obtained after 30 min of reaction under 200W microwave irradiation, compared to a poor 28.1% degradation after 24h under conventional heating. The possibility of recycling the catalyst was studied.

  8. Direct preparation of copper organometallics bearing an aldehyde function via an iodine-copper exchange.

    Science.gov (United States)

    Yang, Xiaoyin; Knochel, Paul

    2006-06-21

    The iodine-copper exchange reaction allows the direct preparation of various aryl, heteroaryl and alkenyl cuprates bearing a formyl group, thus allowing a direct synthesis of polyfunctional aldehydes without the need of protecting groups or an additional oxidation step.

  9. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals

    KAUST Repository

    Trautmann, Danika

    2013-07-05

    Oxidative cleavage of carotenoids and peroxidation of lipids lead to apocarotenals and aliphatic aldehydes called alkanals, which react with vitally important compounds, promoting cytotoxicity. Although many enzymes have been reported to deactivate alkanals by converting them into fatty acids, little is known about the mechanisms used to detoxify apocarotenals or the enzymes acting on them. Cyanobacteria and other photosynthetic organisms must cope with both classes of aldehydes. Here we report that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids. Using a crude lysate of SynAlh1-expressing Escherichia coli cells, we show that SynAlh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate for SynAlh1, making involvement in Synechocystis retinoid metabolism unlikely. The transcript level of SynAlh1 is induced by high light and cold treatment, indicating a role in the stress response, and the corresponding gene is a constituent of a stress-related operon. The assumptions regarding the function of SynAlh are further supported by the surprisingly high homology to human and plant aldehyde dehydrogenase that have been assigned to aldehyde detoxification. SynAlh1 is the first aldehyde dehydrogenase that has been shown to form both apocarotenoic and fatty acids. This dual function suggests that its eukaryotic homologs may also be involved in apocarotenal metabolism, a function that has not been considered so far. Aldehyde dehydrogenases play an important role in detoxification of reactive aldehydes. Here, we report on a cyanbacterial enzyme capable in converting two classes of lipid-derived aldehydes, apocaotenals and alkanals. The corresponding gene is a

  10. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    Science.gov (United States)

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  11. Oxidative stress level and tyrosinase activity in vitiligo patients

    Directory of Open Access Journals (Sweden)

    Eskandani M

    2010-01-01

    Full Text Available Background: Vitiligo is an acquired pigmentary disorder of the skin. Genetic factors, oxidative stress, autoimmunity, and neurochemical agents might be contributing factors for the development of the disease. Aims: To evaluate the oxidative stress level and tyrosinase activity in vitiligo patients and to compare them with healthy volunteers. Materials and Methods: We used Comet assay to evaluate DNA strand breaks in peripheral blood cells of active vitiligo patients. We then extracted total protein from lesional and nonlesional skin of ten selected patients. Tyrosinase activity was found to play a crucial role in melanogenesis. Results: The basal level of systemic oxidative DNA strand breaks in leukocytes increased in vitiligo patients compared to healthy participants. We observed that tyrosinase activity in lesional skin was lower than in nonlesional skin. Conclusion: Our finding suggests that increased levels of oxidative stress might impact tyrosinase activity and eumelanin synthesis via anabolism pathway of melanin synthesis. In sum, we observed a negative correlation between levels of systemic oxidative stress and of tyrosinase activity.

  12. Aldehydic acids in frying oils: formation, toxicological significance and analysis

    Directory of Open Access Journals (Sweden)

    Kamal-Eldin, Afaf

    1996-10-01

    Full Text Available Aldehydic acids are generated in oxidized lipids as a result of decomposition of hydroperoxides by (β-scission reactions. Aldehydes are known to interact with proteins and DNA and to impair enzymatic functions. Aldehydic esters from oxidized lipids were reabsorbed to a significant extent in rats. This paper reviews the mechanism of formation of esterified aldehydic acids in frying oils and their physiological/toxicological effects. The paper also gives an overview of relevant basic analytical techniques that needs to be improved to establish reliable quantitative method (s.

    Ácidos aldehídicos son producidos en lípidos oxidados como resultado de la descomposición de hidroperóxidos por reacciones de (β-escición. Es conocido que los aldehídos interaccionan con las proteínas y el ADN y debilitan las funciones enzimáticas. Los esteres aldehídicos de lípidos oxidados fueron reabsorbidos en una cantidad significativa en ratas. Este artículo revisa los mecanismos de formación de ácidos aldehídicos esterificados en aceites de fritura y sus efectos fisiológicos/toxicológicos. El artículo también ofrece una visión de conjunto de las técnicas analíticas básicas que necesitan ser mejoradas para establecer métodos cuantitativos fiables.

  13. Anti-oxidative role of quercetin derived from Allium cepa on aldehyde oxidase (OX-LDL) and hepatocytes apoptosis in streptozotocin-induced diabetic rat

    Institute of Scientific and Technical Information of China (English)

    Mina Bakhshaeshi; Arash Khaki; Fatemeh Fathiazad; Amir Afshin Khaki; Elham Ghadamkheir

    2012-01-01

    Objective:To study the role of Quercetin in streptozotocin-induced diabetes in rats. Methods:Wistar male rat (n=40) were allocated into three groups, control group (n=10) and Quercetin (QR) group received 15 mg/kg (IP) QR, (n=10), and diabetic group that received 55 mg/kg (IP) streptozotocin (STZ) (n=20) which was subdivided to two groups of 10; STZ group and treatment group. Treatment group received 55 mg/kg (IP) STZ plus 15 mg/kg QR, daily for 4 weeks, respectively;however, the control group just received an equal volume of distilled water daily (IP). Diabetes was induced by a single (IP) injection of streptozotocin (55 mg/kg). Animals were kept in standard condition. Twenty-eight days after inducing diabetic, 5 mL blood were collected for TAC, MDA and Ox-LDL levels and liver tissues of rat in whole groups were removed then prepared for apoptosis analysis by Tunel method. Results:Apoptotic cells significantly decreased in group that has received 15 mg/kg (IP) Quercetin (P<0.05) in comparison to experimental groups (P<0.05). Conclusions:Since in our study 15 mg/kg (IP) Quercetin have significantly Preventive effect on liver cells damages by reducing number of apoptotic cells in Liver, so it seems that using it can be effective for treatment in diabetic rat.

  14. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.

    Science.gov (United States)

    Rathinasabapathi, B; McCue, K F; Gage, D A; Hanson, A D

    1994-01-01

    Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline-->betaine aldehyde-->glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and Km for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.

  15. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  16. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    Science.gov (United States)

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  17. Kinetics of forming aldehydes in frying oils and their distribution in French fries revealed by LC-MS-based chemometrics

    Science.gov (United States)

    Aldehydes are major secondary lipid oxidation products (LOPs) from heating vegetable oils and deep frying. The routes and reactions that generate aldehydes have been extensively investigated, but the sequences and kinetics of their formation in oils are poorly defined. In this study, a platform comb...

  18. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  19. Oxidative Stress in Autism: Elevated Cerebellar 3-nitrotyrosine Levels

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Sajdel-Sulkowska

    2008-01-01

    Full Text Available It has been suggested that oxidative stress and/or mercury compounds play an important role in the pathophysiology of autism. This study compared for the first time the cerebellar levels of the oxidative stress marker 3-nitrotyrosine (3-NT, mercury (Hg and the antioxidant selenium (Se levels between control and autistic subjects. Tissue homogenates were prepared in the presence of protease inhibitors from the frozen cerebellar tissue of control (n=10; mean age, 15.5 years; mean PMI, 15.5 hours and autistic (n=9; mean age 12.1 years; mean PMI, 19.3 hours subjects. The concentration of cerebellar 3-NT, determined by ELISA, in controls ranged from 13.69 to 49.04 pmol g-1 of tissue; the concentration of 3-NT in autistic cases ranged from 3.91 to 333.03 pmol g-1 of tissue. Mean cerebellar 3-NT was elevated in autism by 68.9% and the increase was statistically significant (p=0.045. Cerebellar Hg, measured by atomic absorption spectrometry ranged from 0.9 to 35 pmol g-1 tissue in controls (n=10 and from 3.2 to 80.7 pmol g-1 tissue in autistic cases (n=9; the 68.2% increase in cerebellar Hg was not statistically significant. However, there was a positive correlation between cerebellar 3-NT and Hg levels (r=0.7961, p=0.0001. A small decrease in cerebellar Se levels in autism, measured by atomic absorption spectroscopy, was not statistically significant but was accompanied by a 42.9% reduction in the molar ratio of Se to Hg in the autistic cerebellum. While preliminary, the results of the present study add elevated oxidative stress markers in brain to the growing body of data reflecting greater oxidative stress in autism.

  20. Distinct roles of jasmonates and aldehydes in plant-defense responses.

    Directory of Open Access Journals (Sweden)

    E Wassim Chehab

    Full Text Available BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs, C(6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS and hydroperoxide lyase (HPL branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae, an insect herbivore (leafminers: Liriomyza trifolii, and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola. We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani, a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic

  1. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise.

    Science.gov (United States)

    de Lucas, Ricardo Dantas; Caputo, Fabrizio; Mendes de Souza, Kristopher; Sigwalt, André Roberto; Ghisoni, Karina; Lock Silveira, Paulo Cesar; Remor, Aline Pertile; da Luz Scheffer, Débora; Guglielmo, Luiz Guilherme Antonacci; Latini, Alexandra

    2014-01-01

    The purpose of the present investigation was to identify muscle damage, inflammatory response and oxidative stress blood markers in athletes undertaking the ultra-endurance MultiSport Brazil race. Eleven well-trained male athletes (34.3 ± 3.1 years, 74.0 ± 7.6 kg; 172.2 ± 5.1 cm) participated in the study and performed the race, which consisted of about 90 km of alternating off-road running, mountain biking and kayaking. Twelve hours before and up to 15 minutes after the race a 10 mL blood sample was drawn in order to measure the following parameters: lactate dehydrogenase and creatine kinase activities, lipid peroxidation, catalase activity, protein carbonylation, respiratory chain complexes I, II and IV activities, oxygen consumption and neopterin concentrations. After the race, plasma lactate dehydrogenase and creatine kinase activities were significantly increased. Erythrocyte TBA-RS levels and plasma protein carbonylation were markedly augmented in post-race samples. Additionally, mitochondrial complex II activity and oxygen consumption in post-race platelet-rich plasma were also increased. These altered biochemical parameters were accompanied by increased plasma neopterin levels. The ultra-endurance event provoked systemic inflammation (increased neopterin) accompanied by marked oxidative stress, likely by increasing oxidative metabolism (increased oxidative mitochondrial function). This might be advantageous during prolonged exercise, mainly for efficient substrate oxidation at the mitochondrial level, even when tissue damage is induced.

  2. Brain and Liver Headspace Aldehyde Concentration Following Dietary Supplementation with n-3 Polyunsaturated Fatty Acids.

    Science.gov (United States)

    Ross, Brian M; Babay, Slim; Malik, Imran

    2015-11-01

    Reactive oxygen species react with unsaturated fatty acids to form a variety of metabolites including aldehydes. Many aldehydes are volatile enough to be detected in headspace gases of blood or cultured cells and in exhaled breath, in particular propanal and hexanal which are derived from omega-3 and omega-6 polyunsaturated fatty acids, respectively. Aldehydes are therefore potential non-invasive biomarkers of oxidative stress and of various diseases in which oxidative stress is thought to play a role including cancer, cardiovascular disease and diabetes. It is unclear, however, how changes in the abundance of the fatty acid precursors, for example by altered dietary intake, affect aldehyde concentrations. We therefore fed male Wistar rats diets supplemented with either palm oil or a combination of palm oil plus an n-3 fatty acid (alpha-linolenic, eicosapentaenoic, or docosahexaenoic acids) for 4 weeks. Fatty acid analysis revealed large changes in the abundance of both n-3 and n-6 fatty acids in the liver with smaller changes observed in the brain. Despite the altered fatty acid abundance, headspace concentrations of C1-C8 aldehydes, and tissue concentrations of thiobarbituric acid reactive substances, did not differ between the 4 dietary groups. Our data suggest that tissue aldehyde concentrations are independent of fatty acid abundance, and further support their use as volatile biomarkers of oxidative stress.

  3. The effect of high altitude on nasal nitric oxide levels.

    Science.gov (United States)

    Altundag, Aytug; Salihoglu, Murat; Cayonu, Melih; Cingi, Cemal; Tekeli, Hakan; Hummel, Thomas

    2014-09-01

    The aim of the present study was to investigate whether nasal nitric oxide (nNO) levels change in relation to high altitude in a natural setting where the weather conditions were favorable. The present study included 41 healthy volunteers without a history of acute rhinosinusitis within 3 weeks and nasal polyposis. The study group consisted of 31 males (76 %) and 10 females (24 %) and the mean age of the study population was 38 ± 10 years. The volunteers encamped for 2 days in a mountain village at an altitude of 1,500 m above sea level (masl) and proceeded to highlands at an altitude of 2,200 masl throughout the day. The measurements of nNO were done randomly, either first at the mountain village or at sea level. Each participant had nNO values both at sea level and at high altitude at the end of the study. The nNO values of sea level and high altitude were compared to investigate the effect of high altitude on nNO levels. The mean of average nNO measurements at the high altitude was 74.2 ± 41 parts-per-billion (ppb) and the mean of the measurements at sea level was 93.4 ± 45 ppb. The change in nNO depending on the altitude level was statistically significant (p high altitude even if the weather conditions were favorable, such as temperature, humidity, and wind.

  4. Colorimetric monitoring of solid-phase aldehydes using 2,4-dinitrophenylhydrazine.

    Science.gov (United States)

    Shannon, Simon K; Barany, George

    2004-01-01

    A simple and rapid method to achieve colorimetric monitoring of resin-bound aldehydes, based on ambient temperature reaction with 2,4-dinitrophenylhydrazine (DNPH) in the presence of dilute acid, has been developed as an adjunct to solid-phase organic synthesis and combinatorial chemistry. By this test, the presence of aldehydes is indicated by a red to dark-orange appearance, within a minute. Alternatively, resins that are free of aldehydes or in which aldehyde functions have reacted completely retain their original color. The DNPH test was demonstrated for poly(ethylene glycol)-polystyrene (PEG-PS), aminomethyl polystyrene (AMP), cross-linked ethoxylate acrylate resin (CLEAR), and acryloylated O,O'-bis(2-aminopropyl)poly(ethylene glycol) (PEGA) supports and gave results visible to the naked eye at levels as low as 18 micromol of aldehyde per gram of resin.

  5. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eun Ju [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Choi, Inho, E-mail: inhochoi@ynu.ac.kr [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  6. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  7. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers.

    Science.gov (United States)

    Liou, Saou-Hsing; Chen, Yu-Cheng; Liao, Hui-Yi; Wang, Chien-Jen; Chen, Jhih-Sheng; Lee, Hui-Ling

    2016-11-01

    This study assessed oxidatively damaged DNA and antioxidant enzyme activity in workers occupational exposure to metal oxides nanomaterials. Exposure to TiO2, SiO2, and ITO resulted in significant lower antioxidant enzymes (glutathione peroxidase and superoxide dismutase) and higher oxidative biomarkers 8-hydroxydeoxyguanosine (8-oxodG) than comparison workers. Statistically significant correlations were noted between plasma and urine 8-oxodG, between white blood cells (WBC) and urine 8-oxodG, and between WBC and plasma 8-oxodG. In addition, there were significant negative correlations between WBC 8-oxodG and SOD and between urinary 8-oxodG and GPx levels. The results showed that urinary 8-oxodG may be considered to be better biomarker.

  8. Gaseous aliphatic aldehydes in Chinese incense smoke

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.M.; Wang, L.H. (National Taiwan Univ., Taipei (China))

    1994-09-01

    Aliphatic aldehydes were found during the combustion of materials. Tobacco smoke contains aldehydes. Fire fighters were exposed to aldehydes when they conducted firefighting. Aldehydes in ambient air come mainly from the incomplete combustion of hydrocarbons and from photochemical reaction. Most aldehydes in ambient air are formaldehyde and acetaldehyde. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde were found in the atmosphere in Los Angeles. Burning Chinese incense for worshipping deities is a Chinese daily routine. It was suspected to be a factor causing nasopharynegeal cancer. Epidemiological studies correlated it with the high risk of childhood brain tumor and the high risk of childhood leukemia. Ames test identified the mutagenic effect of the smoke from burning Chinese incense. The smoke had bee proved to contain polycyclic aromatic hydrocarbons and aromatic aldehydes. Suspicion about formaldehyde and other alphatic aldehydes was evoked, when a survey of indoor air pollution was conducted in Taipei city. This study determined the presence of aliphatic aldehydes in the smoke from burning Chinese incense under a controlled atmosphere. 12 refs., 5 figs., 2 tabs.

  9. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  10. Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food.

    Science.gov (United States)

    Giebułtowicz, Joanna; Dziadek, Marta; Wroczyński, Piotr; Woźnicka, Katarzyna; Wojno, Barbara; Pietrzak, Monika; Wierzchowski, Jacek

    2010-01-01

    Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (r(s) ~0.27; p=0.004 and r(s) =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in

  11. Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide

    Science.gov (United States)

    Yang, Changyuan; Li, Huichu; Chen, Renjie; Xu, Wenxi; Wang, Cuicui; Tse, Lap Ah; Zhao, Zhuohui; Kan, Haidong

    2016-07-01

    Nitrogen dioxide and ozone are two interrelated oxidative pollutants in the atmosphere. Few studies have evaluated the health effects of combined oxidant capacity (O x ). We investigated the short-term effects of O x on fractional exhaled nitric oxide (FeNO), a well-established biomarker for airway inflammation, in a group of chronic obstructive pulmonary disease patients. Real-time concentrations of O x were obtained by calculating directly the sum of nitrogen dioxide and ozone. Linear mixed-effect models were applied to explore the acute effects of O x on FeNO levels. Short-term exposure to Ox was significantly associated with elevated FeNO. This effect was strongest in the first 24 h after exposure, and was robust to the adjustment of PM2.5. A 10 μg m-3 increase in 24 h average concentrations of O x was associated with 4.28% (95% confidence interval: 1.19%, 7.37%) increase in FeNO. The effect estimates were statistically significant only among males, elders, and those with body mass index ≥24 kg m-2, a comorbidity, higher educational attainment, or moderate airflow limitation. This analysis demonstrated an independent effect of O x on respiratory inflammation, and suggested that a single metric O x might serve as a preferable indicator of atmospheric oxidative capacity in further air pollution epidemiological studies.

  12. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  13. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    Science.gov (United States)

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.

  14. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  15. Role of the Molybdoflavoenzyme Aldehyde Oxidase Homolog 2 in the Biosynthesis of Retinoic Acid: Generation and Characterization of a Knockout Mouse▿ †

    Science.gov (United States)

    Terao, Mineko; Kurosaki, Mami; Barzago, Maria Monica; Fratelli, Maddalena; Bagnati, Renzo; Bastone, Antonio; Giudice, Chiara; Scanziani, Eugenio; Mancuso, Alessandra; Tiveron, Cecilia; Garattini, Enrico

    2009-01-01

    The mouse aldehyde oxidase AOH2 (aldehyde oxidase homolog 2) is a molybdoflavoenzyme. Harderian glands are the richest source of AOH2, although the protein is detectable also in sebaceous glands, epidermis, and other keratinized epithelia. The levels of AOH2 in the Harderian gland and skin are controlled by genetic background, being maximal in CD1 and C57BL/6 and minimal in DBA/2, CBA, and 129/Sv strains. Testosterone is a negative regulator of AOH2 in Harderian glands. Purified AOH2 oxidizes retinaldehyde into retinoic acid, while it is devoid of pyridoxal-oxidizing activity. Aoh2−/− mice, the first aldehyde oxidase knockout animals ever generated, are viable and fertile. The data obtained for this knockout model indicate a significant role of AOH2 in the local synthesis and biodisposition of endogenous retinoids in the Harderian gland and skin. The Harderian gland's transcriptome of knockout mice demonstrates overall downregulation of direct retinoid-dependent genes as well as perturbations in pathways controlling lipid homeostasis and cellular secretion, particularly in sexually immature animals. The skin of knockout mice is characterized by thickening of the epidermis in basal conditions and after UV light exposure. This has correlates in the corresponding transcriptome, which shows enrichment and overall upregulation of genes involved in hypertrophic responses. PMID:18981221

  16. Nasal nitric oxide levels in healthy pre-school children.

    Science.gov (United States)

    Piacentini, G L; Bodini, A; Peroni, D G; Sandri, M; Brunelli, M; Pigozzi, R; Boner, A L

    2010-12-01

    The evaluation of nasal nitric oxide (nNO) has been proposed as a screening tool in children with clinically suspectable primary ciliary dyskinesia. Nevertheless, normal values have been reported for school-aged children. This study was designed to identify normal nNO levels in pre-school children. nNO was assessed in 300 healthy children aged between 1.5 and 7.2. Two hundred and fifty of them were unable to fulfill the guideline requirements for nNO measurement and were assessed by sampling the nasal air continuously with a constant trans-nasal aspiration flow for 30 s during tidal breathing. For those children who were able to cooperate, the average nNO concentration was calculated according to guidelines. A statistically significant relationship between nNO level and age was demonstrated in this study group of pre-school children (p < 0.001). An increase in nNO of about 100 ppb was observed in children older than 6 yr vs. those aged < 3. This study presents a description of normal nNO values in pre-school children. The effect of the age and the eventual presence of rhinitis and snoring need to be considered whenever nNO is evaluated in the clinical practice, in particular in non-cooperative children.

  17. Increased hepatic fatty acids uptake and oxidation by LRPPRC-driven oxidative phosphorylation reduces blood lipid levels

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2016-07-01

    Full Text Available Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc. Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, oxidative phosphorylation, and lipid metabolism. Increased oxidative phosphorylation in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic oxidative phosphorylation could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels.

  18. Chemoenzymatic Fc Glycosylation via Engineered Aldehyde Tags

    OpenAIRE

    2014-01-01

    Glycoproteins with chemically defined glycosylation sites and structures are important biopharmaceutical targets and critical tools for glycobiology. One approach toward constructing such molecules involves chemical glycosylation of aldehyde-tagged proteins. Here, we report the installation of a genetically encoded aldehyde tag at the internal glycosylation site of the crystallizable fragment (Fc) of IgG1. We replaced the natural Fc N-glycosylation sequon with a five amino-acid sequence that ...

  19. Cough and exhaled nitric oxide levels: what happens with exercise?

    Science.gov (United States)

    Petsky, Helen L; Kynaston, Jennifer Anne; McElrea, Margaret; Turner, Catherine; Isles, Alan; Chang, Anne B

    2013-01-01

    Cough associated with exertion is often used as a surrogate marker of asthma. However, to date there are no studies that have objectively measured cough in association with exercise in children. Our primary aim was to examine whether children with a pre-existing cough have an increase in cough frequency during and post-exercise. We hypothesized that children with any coughing illness will have an increase in cough frequency post-exercise regardless of the presence of exercise-induced broncho-constriction (EIB) or atopy. In addition, we hypothesized that Fractional exhaled nitric oxide (FeNO) levels decreases post-exercise regardless of the presence of EIB or atopy. Children with chronic cough and a control group without cough undertook an exercise challenge, FeNO measurements and a skin prick test, and wore a 24-h voice recorder to objectively measure cough frequency. The association between recorded cough frequency, exercise, atopy, and presence of EIB was tested. We also determined if the change in FeNO post exercise related to atopy or EIB. Of the 50 children recruited (35 with cough, 15 control), 7 had EIB. Children with cough had a significant increase in cough counts (median 7.0, inter-quartile ranges, 0.5, 24.5) compared to controls (2.0, IQR 0, 5.0, p = 0.028) post-exercise. Presence of atopy or EIB did not influence cough frequency. FeNO level was significantly lower post-exercise in both groups but the change was not influenced by atopy or EIB. Cough post-exertion is likely a generic response in children with a current cough. FeNO level decreases post-exercise irrespective of the presence of atopy or EIB. A larger study is necessary confirm or refute our findings.

  20. Dissolved organic carbon (DOC and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2013-05-01

    used to contrast two scenarios, i.e., an anthropogenically vs. a more biogenically impacted one as being representative for Davis and Whistler, respectively. Since the simplicity of the box model prevents a fully quantitative prediction of the observed aldehyde concentrations, we rather use the model results to compare trends in aldehyde partitioning and ratios. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas phase levels significantly by two orders of magnitude due to a weaker net source of HO2 production from aldehyde photolysis in the gas phase. Despite the high solubility of dicarbonyl compounds (glyoxal, methylglyoxal, their impact on the HO2 budget by scavenging is < 10% of that of formaldehyde. The overview of DOC and aldehyde measurements presented here reveals that clouds and fogs can be efficient sinks for organics, with increasing importance in aged air masses. Even though aldehydes, specifically formaldehyde, only comprise ~ 1% of DOC, their scavenging and processing in the aqueous phase might translate into significant effects in the oxidation capacity of the atmosphere.

  1. Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    Science.gov (United States)

    Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, W. R.; Macdonald, A. M.; Valsaraj, K. T.; Herckes, P.

    2013-05-01

    scenarios, i.e., an anthropogenically vs. a more biogenically impacted one as being representative for Davis and Whistler, respectively. Since the simplicity of the box model prevents a fully quantitative prediction of the observed aldehyde concentrations, we rather use the model results to compare trends in aldehyde partitioning and ratios. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas phase levels significantly by two orders of magnitude due to a weaker net source of HO2 production from aldehyde photolysis in the gas phase. Despite the high solubility of dicarbonyl compounds (glyoxal, methylglyoxal), their impact on the HO2 budget by scavenging is < 10% of that of formaldehyde. The overview of DOC and aldehyde measurements presented here reveals that clouds and fogs can be efficient sinks for organics, with increasing importance in aged air masses. Even though aldehydes, specifically formaldehyde, only comprise ~ 1% of DOC, their scavenging and processing in the aqueous phase might translate into significant effects in the oxidation capacity of the atmosphere.

  2. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans

    OpenAIRE

    Zhong-Cheng Luo; Jean-François Bilodeau; Anne Monique Nuyt; Fraser, William D; Pierre Julien; Francois Audibert; Lin Xiao; Carole Garofalo; Emile Levy

    2015-01-01

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24–28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), p...

  3. The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease

    Science.gov (United States)

    Oniki, K; Morita, K; Watanabe, T; Kajiwara, A; Otake, K; Nakagawa, K; Sasaki, Y; Ogata, Y; Saruwatari, J

    2016-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies toxic aldehydes and has a key role in protecting the liver. An elevated gamma-glutamyl transferase (GGT) level is related to oxidative stress and nonalcoholic fatty liver disease (NAFLD). We herein investigated the association between inactive ALDH2*2 allele (rs671) and the risk of NAFLD, including the relationship to the GGT level. A retrospective follow-up study (mean 5.4±1.1 years) was conducted among 341 Japanese health screening program participants. The receiver operating characteristic curve indicated that the GGT level predicted the development of NAFLD (area under the curve: 0.65, P<0.05) with a cutoff value of 25.5 IUl−1. The longitudinal risk of NAFLD was higher in the ALDH2*2 allele carriers than in the noncarriers (odds ratio (OR): 2.30, 95% confidence interval (CI): 1.21–4.40), and the risk was further increased among the *2 allele carriers with GGT values ⩾25.5 IUl−1 (OR: 4.28, 95% CI: 1.80–10.19). On the other hand, there were no significant changes in the subjects' body weight and body mass index during observation period. The ALDH2*2 allele, in relation to the GGT level, may potentially be a novel risk factor for NAFLD. PMID:27214654

  4. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Directory of Open Access Journals (Sweden)

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  5. Macro Level Modeling of a Tubular Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Farshid Zabihian

    2010-11-01

    Full Text Available This paper presents a macro-level model of a solid oxide fuel cell (SOFC stack implemented in Aspen Plus® for the simulation of SOFC system. The model is 0-dimensional and accepts hydrocarbon fuels such as reformed natural gas, with user inputs of current density, fuel and air composition, flow rates, temperature, pressure, and fuel utilization factor. The model outputs the composition of the exhaust, work produced, heat available for the fuel reformer, and electrochemical properties of SOFC for model validation. It was developed considering the activation, concentration, and ohmic losses to be the main over-potentials within the SOFC, and mathematical expressions for these were chosen based on available studies in the literature. The model also considered the water shift reaction of CO and the methane reforming reaction. The model results were validated using experimental data from Siemens Westinghouse. The results showed that the model could capture the operating pressure and temperature dependency of the SOFC performance successfully in an operating range of 1–15 atm for pressure and 900 °C–1,000 °C for temperature. Furthermore, a sensitivity analysis was performed to identify the model constants and input parameters that impacted the over-potentials.

  6. Aldehyde dehydrogenases in Arabidopsis thaliana: Biochemical requirements, metabolic pathways and functional analysis

    Directory of Open Access Journals (Sweden)

    Naim eStiti

    2011-10-01

    Full Text Available Aldehyde dehydrogenases (ALDHs are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  7. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  8. Aldehydes in Artic Snow at Barrow (AK) during the Barrow 2009 Field Campaign

    Science.gov (United States)

    Barret, Manuel; Houdier, Stephan; Gallet, Jean-Charles; Domine, Florent; Beine, Harry; Jacobi, Hans-Werner; Weibring, Petter; Walega, James; Fried, Alan; Richter, Dirk

    2010-05-01

    Aldehydes (RCHO) are key reactive intermediates in hydrocarbon oxidation and in OH cycling. They are also emitted and taken up by the snowpack and a combination of both physical and photochemical processes are likely involved. Since the photolysis of aldehydes is a source of HOx radicals, these exchanges can modify the oxidative capacity of the overlying air. Formaldehyde (HCHO), acetaldehyde (MeCHO), glyoxal (CHOCHO) and methylglyoxal (MeCOCHO) concentrations were measured in over 250 snow samples collected during the Barrow 2009 campaign between late February and mid April 2009. Both continental and marine snowpacks were studied as well as frost flowers on sea ice. We found that HCHO was the most abundant aldehyde (1 to 9 µg/L), but significant concentrations of dicarbonyls glyoxal and methylglyoxal were also measured for the first time in Arctic snow. Similar concentrations were measured for the continental and marine snowpacks but some frost flowers exhibited HCHO concentrations as high as 150 µg/L. Daily cycles in the surface snow were observed for HCHO and CH3CHO but also for the dicarbonyls and we concluded to a photochemical production of these species from organic precursors. Additional data such as gas phase concentrations for the measured aldehydes and snow physical properties (specific surface area, density …) will be used to discuss on the location of aldehydes in the snow. This is essential to identify and quantify the physical processes that occur during the exchange of trace gases between the snow and the atmosphere.

  9. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels

    Science.gov (United States)

    Rosamond, Madeline S.; Thuss, Simon J.; Schiff, Sherry L.

    2012-10-01

    Nitrous oxide is a potent greenhouse gas, and it destroys stratospheric ozone. Seventeen per cent of agricultural nitrous oxide emissions come from the production of nitrous oxide in streams, rivers and estuaries, in turn a result of inorganic nitrogen input through leaching, runoff and sewage. The Intergovernmental Panel on Climate Change and global nitrous oxide budgets assume that riverine nitrous oxide emissions increase linearly with dissolved inorganic nitrogen loads, but data are sparse and conflicting. Here we report measurements over two years of nitrous oxide emissions in the Grand River, Canada, a seventh-order temperate river that is affected by agricultural runoff and outflow from a waste-water treatment plant. Emissions were disproportionately high in urban areas and during nocturnal summer periods. Moreover, annual emission estimates that are based on dissolved inorganic nitrogen loads overestimated the measured emissions in a wet year and underestimated them in a dry year. We found no correlations of nitrous oxide emissions with nitrate or dissolved inorganic nitrogen, but detected negative correlations with dissolved oxygen, suggesting that nitrate concentrations did not limit emissions. We conclude that future increases in nitrate export to rivers will not necessarily lead to higher nitrous oxide emissions, but more widespread hypoxia most likely will.

  10. Significance of Lipid-Derived Reactive Aldehyde-Specific Immune Complexes in Systemic Lupus Erythematosus

    Science.gov (United States)

    Wang, Gangduo; Pierangeli, Silvia S.; Willis, Rohan; Gonzalez, Emilio B.; Petri, Michelle; Khan, M. Firoze

    2016-01-01

    Even though systemic lupus erythematosus (SLE) is associated with high morbidity and mortality rates among young and middle-aged women, the molecular mechanisms of disease pathogenesis are not fully understood. Previous studies from our laboratory suggested an association between oxidative stress and SLE disease activity (SLEDAI). To further assess the role of reactive oxygen species (ROS) in SLE, we examined the contribution of lipid-derived reactive aldehydes (LDRAs)-specific immune complexes in SLE. Sera from 60 SLE patients with varying SLEDAI and 32 age- and gender- matched healthy controls were analyzed for oxidative stress and related markers. Patients were divided into two groups based on their SLEDAI scores (<6 and ≥ 6). Both SLEDAI groups showed higher serum 4-hydroxynonenal (HNE)-/malondialdehyde (MDA)-protein adducts and their specific immune complexes (HNE-/MDA-specific ICs) together with IL-17 than the controls, but the levels were significantly greater in the high SLEDAI (≥ 6) group. Moreover, the serum levels of anti-oxidant enzymes Cu/Zn superoxide dismutase (SOD) and catalase (CAT) were significantly reduced in both patient groups compared to controls. Remarkably, for the first time, our data show that increased HNE-/MDA-specific ICs are positively associated with SLEDAI and elevated circulating immune complexes (CICs), suggesting a possible causal relationship among oxidative stress, LDRA-specific ICs and the development of SLE. Our findings, apart from providing firm support to an association between oxidative stress and SLE, also suggest that these oxidative stress markers, especially the HNE-/MDA-specific ICs, may be useful in evaluating the prognosis of SLE as well as in elucidating the mechanisms of disease pathogenesis. PMID:27749917

  11. The effect of upper gastrointestinal system endoscopy process on serum oxidative stress levels.

    Science.gov (United States)

    Turan, Mehmet Nuri; Aslan, Mehmet; Bolukbas, Filiz Fusun; Bolukbas, Cengiz; Selek, Sahbettin; Sabuncu, Tevfik

    2016-12-01

    Some authors have investigated the effects of oxidative stress in some process such as undergoing laparoscopic. However, the effect of upper gastrointestinal system endoscopy process on oxidative stress is unclear. We evaluated the short-term effect of upper gastrointestinal system endoscopy process on oxidative stress. Thirty patients who underwent endoscopy process and 20 healthy controls were enrolled in the prospective study. Serum total antioxidant capacity and total oxidant status measurements were measured before and after endoscopy process. The ratio percentage of total oxidant status to total antioxidant capacity was regarded as oxidative stress index. Before endoscopy process, serum total antioxidant capacity levels were higher, while serum total oxidant status levels and oxidative stress index values were lower in patients than controls, but this difference was not statistically significant (all, p > 0.05). After endoscopy process, serum total antioxidant capacity and total oxidant status levels were significantly higher in patients than before endoscopy process (both, p oxidative stress index values were slight higher in patients but this difference was not statistically significant (p > 0.05). We observed that serum TAC and TOS levels were increased in patients who underwent endoscopy process after endoscopy process. However, short-time upper gastrointestinal system endoscopy process did not cause an important change in the oxidative stress index. Further studies enrolling a larger number of patients are required to clarify the results obtained here.

  12. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    Science.gov (United States)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; Biener, Monika M.; Biener, Juergen; Friend, Cynthia M.; Madix, Robert J.

    2016-10-01

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. Here we report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates that block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. Significant improvements in yield can be achieved by operating at higher temperatures, which render the site-blocking acrylates unstable.

  13. Transcriptional Regulation of Expression of the Maize Aldehyde Dehydrogenase 7 Gene (ZmALDH7B6) in Response to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    GU Ri-liang

    2014-01-01

    Aldehyde dehydrogenases (ALDHs) represent a large protein family, which includes several members that catalyze the oxidation of an aldehyde to its corresponding carboxylic acid in plants. Genes encoding members of theALDH7 subfamily have been suggested to play important roles in various stress adaptations in plants. In this study, quantitative RT-PCR analysis revealed that a maizeALDH7 subfamily member (ZmALDH7B6) was constitutively expressed in various organs, including roots, leaves, immature ears, tassels, and developing seeds. The abundance ofZmALDH7B6 mRNA transcripts in maize roots was increased by ammonium, NaCl, and mannitol treatments. To further analyze tissue-speciifc and stress-induced expression patterns, the 1.5-kb 5´-lfankingZmALDH7B6 promoter region was fused to the β-glucuronidase (GUS) reporter gene and introduced into maize plants. In roots of independent transgenic lines, there was signiifcant induction of GUS activity in response to ammonium supply, conifrming ammonium-dependent expression ofZmALDH7B6 at the transcript level. Histochemical staining showed that GUS activity driven by theZmALDH7B6 promoter was mainly localized in the vascular tissues of maize roots. These results suggested thatZmALDH7B6 is induced by multiple environmental stresses in maize roots, and may play a role in detoxifying aldehydes, particularly in vascular tissue.

  14. Control of lipid oxidation at the mitochondrial level

    DEFF Research Database (Denmark)

    Sahlin, Kent

    2009-01-01

    matrix, beta-oxidation, the tricarboxylic acid cycle, and the electron transport chain (ETC). CHO catabolism may impair lipid oxidation by interfering with the transfer of LCFAs into mitochondria and by competing for mutual cofactors (i.e., nicotinamide adenine dinucleotide and (or) coenzyme A (Co......A)). The different effect of energy state on the catabolism of CHO and lipids is likely to be of major importance in explaining the shift in fuel utilization during intensive exercise. Formation of acetyl-CoA from CHO is activated by a low energy state, and will lead to accumulation of products that are inhibitory...

  15. Surviving environmental stress: the role of betaine aldehyde dehydrogenase in marine crustaceans

    Directory of Open Access Journals (Sweden)

    NA Stephens-Camacho

    2015-02-01

    Full Text Available Betaine aldehyde dehydrogenase (BADH belongs to the aldehyde dehydrogenases (ALDH family, an ancestral group of enzymes responsible for aldehyde detoxification in several organisms. The BADH enzyme catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB an important osmoptrotector and osmoregulator accumulated in response to cellular osmotic stress. The BADH enzymes have been extensively described in terrestrial organisms, but information in marine crustaceans remains scarce. Research on crustacean stress-adaptive capacity to environmental stressors relates GB accumulation in response to salinity variations. Although GB de novo synthesis is confirmed on crustaceans, its metabolic pathways and regulation mechanism are unexplored. In this work, the state of the knowledge of betaine aldehyde dehydrogenase enzymes in marine crustaceans is summarized, as a mechanism to overcome the deleterious effects of changes in temperature, salinity and dissolved oxygen concentration in seawater. The purpose of this review is to provide a more comprehensive overview to set the basis for exploring novel functions and properties of BADHs on the response of crustaceans to environmental stress.

  16. Regulation of NF-B-Induced Inflammatory Signaling by Lipid Peroxidation-Derived Aldehydes

    Directory of Open Access Journals (Sweden)

    Umesh C. S. Yadav

    2013-01-01

    Full Text Available Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE, acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-B and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-B signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases.

  17. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    Science.gov (United States)

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods.

  18. Synthesis of Discodermolide Subunits by S(E)2' Addition of Nonracemic Allenylstannanes to Aldehydes.

    Science.gov (United States)

    Marshall, James A.; Lu, Zhi-Hui; Johns, Brian A.

    1998-02-01

    Three subunits, 15, 29, and 34, of the immunosuppressant discodermolide were prepared starting from (S)-3-[(tert-butyldimethylsilyl)oxy]-2-methylpropanal ((S)-1) and the enantioenriched allenylstannanes (P)-2a, (P)-2b, and (P)-31. The route to 15 involved BF(3)-promoted addition of stannane (P)-2a to aldehyde (S)-1 which afforded the syn,syn-homopropargylic alcohol adduct 3 in 97% yield. The derived p-methoxybenzylidene acetal 5 was treated with Red-Al to effect cleavage of the pivalate and reduction of the double bond leading to the (E)-allylic alcohol 6. Sharpless epoxidation and subsequent addition of Me(2)CuCNLi(2) yielded the syn,syn,syn,anti stereopentad, diol 8. Protection of the secondary alcohol and oxidation of the primary gave aldehyde 12, which was treated with the alpha-bromo allylsilane 13 and CrCl(2), followed by NaH to effect elimination to the diene 15. A similar sequence was employed to prepare aldehyde 29. In this case aldehyde (S)-1 was converted to the anti,syn-homopropargylic alcohol 20 by treatment with the allenyl indium reagent formed in situ from allenylstannane (P)-2b and InBr(3). Epoxy alcohol 24, prepared from alcohol 20 by the above-described sequence, was reduced with Red-Al to afford diol 25. Protection of the secondary alcohol and oxidation of the primary completed the synthesis of 29. The anti,syn-homopropargylic alcohol 32 was obtained through addition of the allenic indium reagent, from allenylstannane (P)-31, to aldehyde (S)-1. Protection of the derived diol 33 as the p-methoxybenzylidene acetal afforded the third subunit, acetylene 34. Addition of the lithio derivative of 34 to aldehyde 29 gave alcohol 35 with the carbinyl stereochemistry needed for C7 of discodermolide as the major product.

  19. Dissolved organic carbon (DOC and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2012-12-01

    Full Text Available Cloud and fog droplets efficiently scavenge and process water-soluble compounds and thus modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC in the aqueous phase reach concentrations on the order of ~10 mg C L−1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i the removal of species from the gas phase preventing their processing by gas phase reactions (e.g. photolysis of aldehydes and (ii the formation of unique products that do not have any efficient gas phase sources (e.g. dicarboxylic acids.

    We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds in a biogenically-impacted location (Whistler, Canada and in fog water in a more polluted area (Davis, CA. Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions in the aqueous phase comprises 1–~40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidized and thus more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC increases by an order of magnitude from 7×103 M atm−1 to 7×104 M atm−1 during the ageing of air masses.

    The measurements are accompanied by

  20. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  1. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  2. Are PTH levels related to oxidative stress and inflammation in chronic kidney disease patients on hemodialysis?

    Directory of Open Access Journals (Sweden)

    Marcel Jaqueto

    Full Text Available Abstract Introduction: Patients at end stage renal disease have higher levels of inflammation and oxidative stress than the general population. Many factors contribute to these issues, and the parathyroid hormone (PTH is also implicated. Objective: The study was conducted in order to assess the relationship between PTH levels and inflammation and oxidative stress in hemodialysis patients. Methods: Cross-sectional study with patients of two hemodialysis facilities in Londrina, Brazil. Patients with other conditions known to generate oxidative stress and inflammation were excluded. Blood levels of PTH and biochemical parameters of inflammation (interleukins 1 and 6, tumor necrosis factor-alpha and oxidative stress (total plasma antioxidant capacity, malonic dialdehyde, lipid hydroperoxidation, advanced oxidation protein products, quantification of nitric oxide metabolites, and 8-isoprostane were measured before a dialysis session. Then, we made correlation analyses between PTH levels - either as the continuous variable or categorized into tertiles-, and inflammatory and oxidative stress biomarkers. Results: PTH did not show any correlation with the tested inflammation and oxidative stress parameters, nor as continuous variable neither as categorical variable. Conclusion: In this descriptive study, the results suggest that the inflammation and oxidative stress of hemodialysis patients probably arise from mechanisms other than secondary hyperparathyroidism.

  3. Serum paraoxonase activity, total thiols levels, and oxidative status in patients with acute brucellosis.

    Science.gov (United States)

    Esen, Ramazan; Aslan, Mehmet; Kucukoglu, Mehmet Emin; Cıkman, Aytekin; Yakan, Umit; Sunnetcioglu, Mahmut; Selek, Sahbettin

    2015-06-01

    It is well known that paraoxonase-1 (PON1) activity may decrease during the course of infection and inflammation. The aim of this study was to investigate serum PON1 activity, oxidative status, and thiols levels in patients with acute brucellosis. In addition, we investigated the PON1 phenotype in patients with acute brucellosis. Thirty patients with acute brucellosis and 35 healthy controls were enrolled. Serum paraoxonase and arylesterase activities, thiols levels, lipid hydroperoxide levels, total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined. Serum basal and salt-stimulated paraoxonase-arylesterase activities, TAC levels and thiols levels were significantly lower in patients with acute brucellosis than controls (for all, p brucellosis. These results indicate that lower PON1 activity is associated with oxidant-antioxidant imbalance.

  4. Patients with systemic vasculitis have increased levels of autoantibodies against oxidized LDL

    NARCIS (Netherlands)

    Swets, BP; Brouwer, DAJ; Tervaert, JWC

    2001-01-01

    Oxidation of low density lipoprotein (LDL) is considered to play an important role in the development of atherosclerosis and increased levels of autoantibodies against oxidized LDL have been found in patients with various manifestations of atherosclerosis. Patients with vasculitis are prone to the d

  5. Understanding complete oxidation of methane on spinel oxides at a molecular level

    Science.gov (United States)

    Tao, Franklin Feng; Shan, Jun-Jun; Nguyen, Luan; Wang, Ziyun; Zhang, Shiran; Zhang, Li; Wu, Zili; Huang, Weixin; Zeng, Shibi; Hu, P.

    2015-08-01

    It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo2O4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo2O4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. In situ studies of complete oxidation of methane on NiCo2O4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH3O with a following dehydrogenation to -CH2O a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.

  6. Acrolein—an α,ß-Unsaturated Aldehyde: A Review of Oral Cavity Exposure and Oral Pathology Effects

    Directory of Open Access Journals (Sweden)

    Dror Aizenbud

    2016-07-01

    Full Text Available Acrolein is a highly reactive unsaturated aldehyde widely present in the environment, particularly as a product of tobacco smoke. Our previous studies indicated the adverse consequences of even short-term acrolein exposure and proposed a molecular mechanism of its potential harmful effect on oral cavity keratinocytic cells. In this paper we chose to review the broad spectrum of acrolein sources such as pollution, food, and smoking. Consequently, in this paper we consider a high level of oral exposure to acrolein through these sources and discuss the noxious effects it has on the oral cavity including on salivary quality and contents, oral resistance to oxidative stress, and stress mechanism activation in a variety of oral cells.

  7. Cytotoxic kurubasch aldehyde from Trichilia emetica.

    Science.gov (United States)

    Traore, Maminata; Zhai, Lin; Chen, Ming; Olsen, Carl Erik; Odile, Nacoulma; Pierre, Guissou I; Bosco, Ouédrago J; Robert, Guigemdé T; Christensen, S Brøgger

    2007-01-01

    Kurubasch aldehyde, a sesquiterpenoid with an hydroxylated humulene skeleton, was isolated as free alcohol from Trichilia emetica Vahl. (Meliaceae), belonging to the order Sapindales. Related substances have been previously found in plants as esters of aromatic acids, and these plants were species belonging to the distant order Apiales. This is the first report of humulenes found in the genus Trichilia and only the second of humulenes in the order Sapindales. The aldehyde is a modest inhibitor of the growth of Plasmodium falciparum (IC50 76 microM) and slow-proliferating breast cancer cells MCF7 (78 microM), but a potent inhibitor of proliferation of S180 cancer cells (IC50 7.4 microM).

  8. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    Science.gov (United States)

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods.

  9. Theoretical structural study on the adsorption properties of aliphatic aldehydes on ZnO nanoclusters and graphene-like nanosheets systems

    Science.gov (United States)

    Tayebee, R.; Zamand, N.; Hosseini-nasr, A.; Kargar Razi, M.

    2014-05-01

    The structure optimizations for some aliphatic aldehydes adsorbed on ZnO nanoclusters, and graphene-like nanosheets were carried out using the B3LYP/LanL2DZ calculations and the adsorption energies were calculated. It was considered that adsorption of the examined aldehydes on the ZnO nanoclusters and graphene-like nanosheets occurred through carbonyl oxygens of aldehyde molecules with the surface Zn2+ ions of the central ring. Aldehydes with the general formula of R-COH (R denotes a branched or linear aliphatic chain with maximum of three carbon atoms) were considered. Also, Effects of chain length were investigated on the orientation of the aldehyde molecules with respect to the nanosheet and nanocluster surfaces. Findings revealed that the adsorption energy was decreased with enhancing chain length. However, the most negative adsorption energy was obtained for iso-butyraldehyde, as a branched aldehyde. Interaction of the aldehyde molecules with the surfaces of nanosheets were analyzed by means of DOS analysis and Bader's method. We hope the obtained results be helpful in identifying the mechanism of cyclotrimerization of aliphatic aldehydes on the surface of zinc oxide nanoparticles.

  10. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping.

    Science.gov (United States)

    Khlystov, Andrey; Samburova, Vera

    2016-12-06

    The growing popularity of electronic cigarettes (e-cigarettes) raises concerns about the possibility of adverse health effects to primary users and people exposed to e-cigarette vapors. E-Cigarettes offer a very wide variety of flavors, which is one of the main factors that attract new, especially young, users. How flavoring compounds in e-cigarette liquids affect the chemical composition and toxicity of e-cigarette vapors is practically unknown. Although e-cigarettes are marketed as safer alternatives to traditional cigarettes, several studies have demonstrated formation of toxic aldehydes in e-cigarette vapors during vaping. So far, aldehyde formation has been attributed to thermal decomposition of the main components of e-cigarette e-liquids (propylene glycol and glycerol), while the role of flavoring compounds has been ignored. In this study, we have measured several toxic aldehydes produced by three popular brands of e-cigarettes with flavored and unflavored e-liquids. We show that, within the tested e-cigarette brands, thermal decomposition of flavoring compounds dominates formation of aldehydes during vaping, producing levels that exceed occupational safety standards. Production of aldehydes was found to be exponentially dependent on concentration of flavoring compounds. These findings stress the need for a further, thorough investigation of the effect of flavoring compounds on the toxicity of e-cigarettes.

  11. Allylation of Aromatic Aldehyde under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu-Mei; JIA,Xue-Feng; WANG,Jin-Xian

    2004-01-01

    @@ Allylation of carbonyl compounds is one of the most interesting processes for the preparation of homoallylic alcohols. Over the past few decades, many reagents have been developed for such reactions[1~3]. In this paper, we first report allylic zinc reagent 1, which can be prepared from zinc dust and allyl bromide conveniently in THF, and reacted with aromatic aldehyde to give homo-allylic alcohols under microwave irradiation.

  12. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  13. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-04-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  14. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

    Science.gov (United States)

    Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.

    2017-02-01

    It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2~0.1 PAL (present atmospheric level), but that stability is lost at pO2biological productivity and resultant organic carbon burial drove the Great Oxidation Event.

  15. Effect of glutathione on brain nitric oxide levels in an experimental epilepsy mouse model

    Institute of Scientific and Technical Information of China (English)

    Aylin Akcali; Sadrettin Pence; Naciye Kurtul; Mehmet Bosnak; Munife Neyal

    2009-01-01

    BACKGROUND: Oxidative stress plays an important role in the pathophysiology of epilepsy. Glutathione, known as one of the compounds of antioxidant defense, has been shown to inhibit convulsions. Nitric oxide has a proconvulsant effect on a pentylenetetrazole-induced animal model. OBJECTIVE: To evaluate the effects of glutathione administration on nitric oxide levels in brain regions of convulsive and kindling pentylenetetrazole-induced seizure models. DESIGN, TIME, AND SETTING: A randomized, controlled, animal experiment. The study was performed at the Department of Physiology, Gaziantep University and Department of Chemistry-Biochemistry, Kahramamaras Sutcu Imam University in 2006.MATERIALS: Pentylenetetrazole and glutathione were purchased from Sigma, USA. METHODS: A total of 80 mice were assigned to 8 groups (n=10): normal control, saline control (1 mL normal saline), convulsive pentylenetetrazole (single intraperitoneal administration of pentylenetetrazole, 60 mg/kg), convulsive pentylenetrazole plus glutathione (single administration of 60 mg/kg pentylenetetrazole and 200 mg/kg glutathione), five-dose glutathione (intraperitoneal injection of 200 mg/kg glutathione respectively at 1, 3, 5, 7, and 10 days), single-dose glutathione (single administration of 200 mg/kg glutathione), pentylenetetrazole kindling (intraperitoneal administration of pentylenetetrazole of 40 mg/kg at 1, 3, 5, 7, and 10 days), and pentylenetetrazole kindling plus glutathione group (intraperitoneal injection of 40 mg/kg pentylenetetrazole and 200 mg/kg glutathione respectively at 1, 3, 5, 7, and 10 days). MAIN OUTCOME MEASURES: All mice were sacrificed 1 hour after the last administration. Brain nitric oxide levels were determined by spectrophotometry. RESULTS: There were no significant differences in nitric oxide levels between the normal control, saline control, five-dose glutathione, and single-dose glutathione groups (P>0.05). Nitric oxide levels in the cerebral hemisphere and

  16. Cough and exhaled nitric oxide levels: What happens with exercise?

    Directory of Open Access Journals (Sweden)

    Helen ePetsky

    2013-10-01

    Full Text Available Cough associated with exertion is often used as a surrogate marker of asthma. However, to date there are no studies that have objectively measured cough in association with exercise in children. Our primary aim was to examine whether children with a pre-existing cough have an increase in cough frequency during and post-exercise. We hypothesised that children with any coughing illness will have an increase in cough frequency post-exercise regardless of the presence of exercise induced broncho-constriction (EIB or atopy. In addition, we hypotheised that FeNO levels decreases post-exercise regardless of the presence of EIB or atopy.Children with chronic cough and a control group without cough undertook an exercise challenge, FeNO measurements and a skin prick test and wore a 24-hour voice recorder to objectively measure cough frequency. The association between recorded cough frequency, exercise, atopy and presence of EIB was tested. We also determined if the change in FeNO post exercise related to atopy or EIB.Of the 50 children recruited (35 with cough, 15 control, 7 had EIB. Children with cough had a significant increase in cough counts (median 7.0, IQR 0.5, 24.5 compared to controls (2.0, IQR 0, 5.0, p=0.028 post-exercise. Presence of atopy or EIB did not influence cough frequency. FeNO level was significantly lower post-exercise in both groups but the change was not influenced by atopy or EIB. Cough post-exertion is likely a generic response in children with a current cough. FeNO level decreases post-exercise irrespective of the presence of atopy or EIB. A larger study is necessary confirm or refute our findings.

  17. The Complete Molecular Geometry of Salicyl Aldehyde from Rotational Spectroscopy

    Science.gov (United States)

    Dorosh, O.; Bialkowska-Jaworska, E.; Kisiel, Z.; Pszczolkowski, L.; Kanska, M.; Krygowski, T. M.; Maeder, H.

    2013-06-01

    Salicyl aldehyde is a well known planar molecule containing an internal hydrogen bond. In preparing the publication of our previous report of the study of its rotational spectrum we have taken the opportunity to update the structure determination of this molecule to the complete r_e^{SE} geometry. The molecule contains 15 atoms and we have used supersonic expansion FTMW spectroscopy to obtain rotational constants for a total 26 different isotopic species, including all singly substitued species relative to the parent molecule. The ^{13}C and ^{18}O substitutions were measured in natural abundance, while deuterium substitutions were carried out synthetically. The r_e^{SE} determination requires the calculation of vibration-rotation changes in rotational constants from an ab initio anharmonic force field, which necessitates some compromises in the level of calculation for a molecule of the size of salicyl aldehyde. For this reason we studied the five lowest vibrationally excited states, by using the combination of room-temperature mm-wave spectroscopy and waveguide Fourier transform cm-wave spectroscopy. The experimental excited state rotational constants were then used to calibrate the anharmonic force field calculation. The resulting r_e^{SE} geometry is compared with other types of geometry determination possible from this data, with emphasis on the effect of the near zero principal coordinate of the important C_2 atom. Z.Kisiel et al., 61^{st} OSU Symposium on Molecular Spectroscopy, The Ohio State University, Ohio 2006, RI-12.

  18. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase.

    Science.gov (United States)

    Pirouzpanah, Saieed; Saieed, Pirouzpanah; Rashidi, Mohammad Reza; Reza, Rashidi Mohammad; Delazar, Abbas; Abbas, Delazar; Razavieh, Seyyed-Vali; Seyyedvali, Razavieh; Hamidi, Aliasghar; Aliasghar, Hamidi

    2006-01-01

    Ruta graveolens L. is a flavonoid-containing medicinal plant with various biological properties. In the present study, the effects of R. graveolens extract on aldehyde oxidase, a molybdenum hydroxylase, are investigated. Aldehyde oxidase was partially purified from liver homogenates of mature male guinea pigs by heat treatment and ammonium sulphate precipitation. The total extract was obtained by macerating the aerial parts of R. graveolens in MeOH 70% and the effect of this extract on the enzyme activity was assayed using phenanthridine, vanillin and benzaldehyde as substrates. Quercetin and its glycoside form, rutin were isolated, purified and identified from the extract and their inhibitory effects on the enzyme were investigated. R. graveolens extract exhibited a high inhibition on aldehyde oxidase activity (89-96%) at 100 microg/ml which was comparable with 10 microM of menadione, a specific potent inhibitor of aldehyde oxidase. The IC50 values for the inhibitory effect of extract against the oxidation of benzaldehyde, vanillin and phenanthridine were 10.4, 10.1, 43.2 microg/ml, respectively. Both quercetin and rutin at 10 microM caused 70-96% and 27-52% inhibition on the enzyme activity, respectively. Quercetin was more potent inhibitor than rutin, but both flavonols exerted their inhibitory effects mostly in a linear mixed-type.

  19. Evaluation of Oxidative Stress Parameters and Urinary Deoxypyridinoline Levels in Geriatric Patients with Osteoporosis

    Science.gov (United States)

    Demir, Mehmet; Ulas, Turgay; Tutoglu, Ahmet; Boyaci, Ahmet; Karakas, Emel Yigit; Sezen, Hatice; Ustunel, Murat; Bilinc, Hasan; Gencer, Mehmet; Buyukhatipoglu, Hakan

    2014-01-01

    [Purpose] To evaluate the oxidative stress parameters and urinary deoxypyridinoline levels in geriatric patients with osteoporosis. [Subjects and Methods] Eighty geriatric patients aged over 65 years were recruited. Patients were divided into two groups: Group 1 (n=40) consisted of patients with osteoporosis, and Group 2 (n=40) consisted of patients without osteoporosis. Bone mineral density measurements were performed for all patients using DEXA. Oxidative stress parameters were analyzed in blood samples, and deoxypyridinoline levels were analyzed in 24-hour urinary samples. [Results] Compared to Group 2, the total antioxidant status and oxidative stress index levels of Group 1 were not significantly different; however, total oxidant status and 24-hour urinary deoxypyridinoline levels were significantly higher. Pearson correlation coefficients indicated that OSI and urinary deoxypyridinoline levels were not correlated with any biochemical parameters. ROC-curve analysis revealed that urinary deoxypyridinoline levels over 30.80 mg/ml predicted osteoporosis with 67% sensitivity and 68% specificity (area under the curve = 0.734; %95 CI: 0.624–0.844). [Conclusion] Our results indicate that oxidative stress would play a role in the pathogenesis of osteoporosis, and that urinary deoxypyridinoline levels may be a useful screening test for osteoporosis. PMID:25276024

  20. T-786c Polymorphism in nitric oxide synthase 3 gene and Nitrit Oxide Level of Diabetic Retinopathy in Javanese Population

    Directory of Open Access Journals (Sweden)

    Putri Widelia Welkriana

    2015-11-01

    Full Text Available AbstractComplication of retinopathy in type 2 DM is caused of lower level of NO. Nitric oxide level is synthesizedfrom L-arginin in reaction that catalyze Nitric oxide synthase (NOS 3. The T-786C mutation in NOS 3 genedecreases the expression of nitric oxide synthase (NOS 3 so decreases NO synthesis. To investigate theassociation between T-786C polymorphism in NOS 3 gene with NO level of diabetic retinopathy patients. Thisstudy was a case control study, consist of 40 patient of type 2 diabetic with DR (case group and 40 patient oftype 2 diabetic without DR (control group of Javanese ethnic. The genotyping of T-786C polymorphism wasperformed by PCR-RLFP. Level of NO was measured by spectrophotometry. Chi square test and odd ratiowere used to analyze the association of the T-786C polymorphism in NOS 3 gene with DR. Differences ofNO level between TT and TC genotypes were analyzed using independent t test. The distribution of T-786Cpolymorphism in NOS 3 gene of DR subjects showed that frequency of TT genotype was 22.5% and TC genotypewas 77.5%. Non DR subjects showed the frequency of TT genotype was 50% and TC genotype was 50%, (p=0.011. Frequency of T allele in DR group was 61.25% and C allele was 38.75%, and frequency of T allele in nonDR group was 75% and C allele was 25%, (p= 0.62. Odd ratio of TC genotype was 3.444(CI; 95% : 0.964-3.735and C allele was 1.898 (CI; 95% : 1.310-9.058. The NO level of TC genotype was 1.43+0.126 and TT genotypewas 11.27+5.87 (p=0.000. Level of NO between RD and non RD showed not different significantly (p=0.160for retinopathy. The T-786C polymorphism of NOS 3 gene is risk factor for retinopathy in type 2 DiabetesMellitus. Individual with TC genotype of NOS 3 gene has lower level of NO than TT genotype.Keywords : Diabetic Retinopathy, Polymorphism, Nitric Oxide, Nitric Oxide Synthase.

  1. Emissions of aldehydes and ketones from a two-stroke engine using ethanol and ethanol-blended gasoline as fuel.

    Science.gov (United States)

    Magnusson, Roger; Nilsson, Calle; Andersson, Barbro

    2002-04-15

    Besides aliphatic gasoline, ethanol-blended gasoline intended for use in small utility engines was recently introduced on the Swedish market. For small utility engines, little data is available showing the effects of these fuels on exhaust emissions, especially concerning aldehydes and ketones (carbonyls). The objective of the present investigation was to study carbonyl emissions and regulated emissions from a two-stroke chain saw engine using ethanol, gasoline, and ethanol-blended gasoline as fuel (0%, 15%, 50%, 85%, and 100% ethanol). The effects of the ethanol-blending level and mechanical changes of the relative air/fuel ratio, lambda, on exhaust emissions was investigated, both for aliphatic and regular gasoline. Formaldehyde, acetaldehyde, and aromatic aldehydes were the most abundant carbonyls in the exhaust. Acetaldehyde dominated for all ethanol-blended fuels (1.2-12 g/kWh, depending on the fuel and lambda), and formaldehyde dominated for gasoline (0.74-2.3 g/kWh, depending on the type of gasoline and lambda). The main effects of ethanol blending were increased acetaldehyde emissions (30-44 times for pure ethanol), reduced emissions of all other carbonyls exceptformaldehyde and acrolein (which showed a more complex relation to the ethanol content), reduced carbon monoxide (CO) and ntirogen oxide (NO) emissions, and increased hydrocarbon (HC) and nitrogen dixodie (NO2) emissions. The main effects of increasing lambda were increased emissions of carbonyls and nitrogen oxides (NOx) and reduced CO and HC emissions. When the two types of gasoline are considered, benzaldehyde and tolualdehyde could be directly related to the gasoline content of aromatics or olefins, but also acrolein, propanal, crotonaldehyde, and methyl ethyl ketone mainly originated from aromatics or olefins, while the main source for formaldehyde, acetaldehyde, acetone, methacrolein, and butanal was saturated aliphatic hydrocarbons.

  2. Biogenic aldehyde(s) derived from the action of monoamine oxidase may mediate the antidipsotropic effect of daidzin.

    Science.gov (United States)

    Keung, W M

    2001-01-30

    Daidzin, a major active principle of an ancient herbal treatment for 'alcohol addiction', was first shown to suppress ethanol intake in Syrian golden hamsters. Since then this activity has been confirmed in Wistar rats, Fawn hooded rats, genetically bred alcohol preferring P rats and African green moneys under various experimental conditions, including two-level operant, two-bottle free-choice, limited access, and alcohol-deprivation paradigms. In vitro, daidzin is a potent and selective inhibitor of mitochondrial aldehyde dehydrogenase (ALDH-2). However, in vivo, it does not affect overall acetaldehyde metabolism in golden hamsters. Using isolated hamster liver mitochondria and 5-hydroxytryptamine (5-HT) and dopamine (DA) as the substrates, we demonstrated that daidzin inhibits the second but not the first step of the MAO/ALDH-2 pathway, the major pathway that catalyzes monoamine metabolism in mitochondria. Correlation studies using structural analogs of daidzin led to the hypothesis that the mitochondrial MAO/ALDH-2 pathway may be the site of action of daidzin and that one or more biogenic aldehydes such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or DOPAL derived from the action of monoamine oxidase (MAO) may be mediators of its antidipsotropic action.

  3. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    Science.gov (United States)

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk.

  4. Isolation of animal cell mutants defective in long-chain fatty aldehyde dehydrogenase. Sensitivity to fatty aldehydes and Schiff's base modification of phospholipids: implications for Sj-ogren-Larsson syndrome.

    Science.gov (United States)

    James, P F; Zoeller, R A

    1997-09-19

    Using tritium suicide, we have isolated a variant of the Chinese hamster ovary cell line, CHO-K1, that is deficient in long-chain fatty alcohol:NAD+ oxidoreductase (FAO; EC 1.1.1.192). Specifically, it was the fatty aldehyde dehydrogenase component that was affected. The enzymatic deficiency found in this mutant strain, designated FAA. K1A, was similar to that displayed by fibroblasts from patients with Sjögren-Larsson syndrome (SLS), an inheritable neurocutaneous disorder. Complementation analyses suggested that the deficiency in fatty alcohol oxidation in the FAA.K1A cells and the SLS fibroblasts is a result of lesions in homologous genes. The FAA.K1A cells were unable to convert long chain fatty aldehydes to the corresponding fatty acids. This resulted in a hypersensitivity of the FAA.K1A cells to the cytotoxic effects of long chain fatty aldehydes. The difference between the mutant and wild-type cells was most obvious when using fatty aldehydes between 14 and 20 carbons, with the greatest difference between wild-type and mutant cells found when using octadecanal. Fibroblasts from a patient with SLS also displayed the hypersensitivity phenotype when compared with FAldDH+ human fibroblasts. In both CHO and human FAldDH- cell lines, addition of long chain fatty aldehydes to the medium caused a dramatic increase in aldehyde-modified phosphatidylethanolamine, presumably through Schiff's base addition to the primary amine of the ethanolamine head group. When 25 microM hexadecanal was added to the growth medium, approximately 10% of the phosphatidylethanolamine was found in the fatty aldehyde-modified form in FAA.K1A, although this was not observed in wild-type cells. Modified phosphatidylethanolamine could be detected in FAldDH- cells even when exogenous fatty aldehydes were not added to the medium. We propose a possible role for fatty aldehydes, or other aldehydic species, in mediating some of the symptoms associated with Sjögren-Larsson syndrome.

  5. Modulating nitric oxide levels in dorsal root ganglion neurons of rat with low-level laser therapy

    Science.gov (United States)

    Zheng, Li-qin; Wang, Yu-hua; He, Yi-peng; Zhou, Jie; Yang, Hong-qin; Zhang, Yan-ding; Xie, Shu-sen

    2015-05-01

    Nitric oxide (NO) and nitric oxide synthase (NOS) have an important role in pain signaling transmission in animal models. Low-level laser therapy (LLLT) is known to have an analgesic effect, but the mechanism is unclear. The aim of the study is to investigate the influence of LLLT on NO release and NOS synthesis in dorsal root ganglion (DRG) neurons, in order to find whether LLLI can ameliorate pain through modulating NO production at the cellular level. The results show that in stress conditions, the laser irradiation at 658 nm can modulate NO production in DRG neurons with soma diameter of about 20 μm in a short time after illumination, and affect NOS synthesis in a dose-dependent manner. It is demonstrated that LLLT might treat pain by altering NO release directly and indirectly in DRG neurons.

  6. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    OpenAIRE

    Sara Soleimani Rad; Shamsi Abbasalizadeh; Amir Ghorbani Haghjo

    2013-01-01

    Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods:For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands of patients admitted...

  7. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    OpenAIRE

    Soleimani Rad, Sara; Abbasalizadeh, Shamsi; Ghorbani Haghjo, Amir; Sadagheyani, Mehzad; Montaseri, Azadeh; Soleimani Rad, Jafar

    2013-01-01

    Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods: For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands o...

  8. Evaluation of Salivary Nitric Oxide Levels in Smokers, Tobacco Chewers and Patients with Oral Lichenoid Reactions

    Science.gov (United States)

    Jose, Joy Idiculla; Sivapathasundharam, B.; Sabarinath, B.

    2016-01-01

    Introduction Nitric oxide (NO), a free radical, acts as a signalling molecule affecting numerous physiological and pathological processes. Role of nitric oxide as a mediator in tobacco related habits and the resultant oral lichenoid reactions was assessed. Aim The aim of the study is to evaluate and compare the salivary nitric oxide levels in normal patients with that of smokers, tobacco chewers and patients with oral lichenoid reactions. Materials and Methods One hundred and twenty patients were enrolled in the study which included 30 healthy patients without any chronic inflammatory lesion and habit as controls (group I), 30 smokers without the habit of tobacco/betel nut chewing and any oral lesion (group II), 30 tobacco chewers without the habit of smoking and any oral lesion (group III) and 30 histologically confirmed cases of oral lichenoid reaction with the habit of tobacco usage (group IV). Saliva from these patients was collected and the nitrite concentration was assessed. Results Our results concluded that there was highly significant increase in the nitric oxide levels in smokers, tobacco chewers and patients with oral lichenoid reactions compared to that of controls. Also, there was a significant increase in nitric oxide levels in patients with smoking associated oral lichenoid reactions in comparison with smokers and in patients with lichenoid reactions associated with tobacco chewing in comparison with tobacco chewers. Conclusion Estimation of salivary nitric oxide levels is a simple, non-invasive procedure and could be analysed to suggest the role of nitric oxide in the pathogenesis of these lesions. The increased activity of the enzyme may indicate that nitric oxide has a pathophysiological role in these lesions. PMID:26894179

  9. Vitamin E-coated dialysis membranes reduce the levels of oxidative genetic damage in hemodialysis patients.

    Science.gov (United States)

    Rodríguez-Ribera, Lara; Corredor, Zuray; Silva, Irene; Díaz, Juan Manuel; Ballarín, José; Marcos, Ricard; Pastor, Susana; Coll, Elisabet

    2017-03-01

    End-stage renal disease patients present oxidative stress status that increases when they are submitted to hemodialysis (HD). This increase in oxidative stress can affect their genetic material, among other targets. The objective of this study was to evaluate the effect of using polysulfone membranes coated with vitamin E, during the HD sessions, on the levels of genetic damage of HD patients. Forty-six patients were followed for 6 months, of whom 29 changed from conventional HD to the use of membranes coated with vitamin E. The level of genetic damage was measured using the micronucleus and the comet assays, both before and after the follow-up period. Serum vitamin E concentration was also checked. The obtained results showed that 24% of our patients presented vitamin E deficiency, and this was normalized in those patients treated with vitamin E-coated membranes. Patients with vitamin E deficiency showed higher levels of oxidative DNA damage. After the use of vitamin E-coated membranes we detected a significant decrease in the levels of oxidative damage. Additionally, hemoglobin values increased significantly with the use of vitamin E-coated membranes. In conclusion, the use of vitamin E-coated membranes supposes a decrease on the levels of oxidative DNA damage, and improves the uremic anemia status. Furthermore, the use of this type of membrane was also effective in correcting vitamin E deficiency.

  10. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Soumabha; Hendricks, P.I. [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Reynolds, J.C. [Centre for Analytical Science, Loughborough University, Loughborough, Leicestershire (United Kingdom); Cooks, R.G., E-mail: cooks@purdue.edu [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)

    2015-02-20

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.

  11. Nitrous Oxide Levels In Operating and Recovery Rooms of Iranian Hospitals

    Directory of Open Access Journals (Sweden)

    Sh Sadigh Maroufi

    2011-06-01

    Full Text Available "nBackground: Nitrous oxide (N2O is the oldest anesthetic in routine clinical use and its occupational exposure is under regulation by many countries. As studies are lacking to demonstrate the status of nitrous oxide levels in operating and recovery rooms of Iranian hospitals, we aimed to study its level in teaching hospitals of Tehran University of Medical Sciences."nMethods: During a 6-month period, we have measured the shift-long time weighted average concentration of N2O in 43 op­erating and 12 recovery rooms of teaching hospitals of Tehran University of Medical Sciences."nResults: The results show that the level of nitrous oxide in all hospitals is higher than the limits set by different countries and anesthetists are at higher risk of exposure. In addition, it was shown that installation of air ventilation could reduce not only the overall exposure level, but also the level of exposure of anesthetists in comparison with other personnel."nConclusion: The high nitrous oxide level in Iranian hospitals necessitates improvement of waste gas evacuation systems and regular monitoring to bring the concentration of this gas into the safe level.

  12. EVALUATION OF ISCHEMIA MODIFIED ALBUMIN AND NITRIC OXIDE LEVELS AND THEIR INTER - RELATIONSHIP IN HYPERTHYROIDISM

    Directory of Open Access Journals (Sweden)

    Rangaswamy

    2014-02-01

    Full Text Available BACKGROUND: Ischemia Modified Albumin (IMA is an ischemia/reperfusion injury marker which has been considered to be formed under oxidative stress conditions. Endothelial L - Arginine/NO pathway dysfunction can lead to oxidative stress which has deleterious effects seen on the vascular wall causing ischemia. AIM: 1 The study was conducted to estimate the levels of IMA and NO in hyperthyroidism patients. 2 To evaluate the relationship bet ween IMA and NO levels in hyperthyroidism. MATERIALS AND METHODS: A cross sectional study was done with 30 newly diagnosed hyperthyroid patients as cases and 30 age and sex matched healthy controls. Serum levels of IMA and NO were estimated by colorimetric methods and thyroid profile was done by ELIFA methodology. STATISTICAL ANALYSIS: Data were analyzed using SPSS. Values were expressed as Mean±SD. RESULTS: Nitric Oxide levels were significantly decreased in hyperthyroid patients (7.08±1.57μmol/L as compa red to healthy controls (39.76±4.98μmol/L (p=0.001. Ischemia Modified Albumin levels were found to be significantly increased in hyperthyroid patients (0.73±0.10 ODU when compared to healthy controls (0.28±0.01 ODU (p=0.001. CONCLUSION: In our study t here was increase in IMA levels with decreased NO levels which could be due to the consequence of oxidative stress and ischemia which is present in hyperthyroidism

  13. Oxidative stress may explain how hypertension is maintained by normal levels of angiotensin II

    Directory of Open Access Journals (Sweden)

    J.C. Romero

    2000-06-01

    Full Text Available It is well known that essential hypertension evolves in most patients with "near normal" levels of plasma renin activity. However, these levels appear to be responsible for the high levels of arterial pressure because they are normalized by the administration of angiotensin II converting inhibitors or angiotensin receptor antagonist. In experimental animals, hypertension can be induced by the continuous intravenous infusion of small doses of angiotensin II that are not sufficient to evoke an immediate pressor response. However, this condition resembles the characteristics of essential hypertension because the high levels of blood pressure exist with normal plasma levels of angiotensin II. It is suggested that small amounts of angiotensin whose plasma levels are inappropriate for the existing size of extracellular volume stimulate oxidative stress which binds nitric oxide forming peroxynitrite. The latter compound oxidizes arachidonic acid producing isoprostaglandin F2a (an isoprostane which is characterized by a strong antinatriuretic vasoconstrictor renal effect. In this chain of reactions the vasoconstrictor effects derived from oxygen quenching of nitric oxide and increased isoprostane synthesis could explain how hypertension is maintained with normal plasma levels of renin.

  14. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  15. Role of aldehydes in the toxic and mutagenic effects of nitrosamines.

    Science.gov (United States)

    Peterson, Lisa A; Urban, Anna M; Vu, Choua C; Cummings, Meredith E; Brown, Lee C; Warmka, Janel K; Li, Li; Wattenberg, Elizabeth V; Patel, Yesha; Stram, Daniel O; Pegg, Anthony E

    2013-10-21

    α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activities of three model methylating agents were compared in Chinese hamster ovary cells expressing or not expressing human O⁶-alkylguanine DNA alkyltransferase (AGT). N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN), and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)-1-butanone (NNK-4-OAc) are all activated by ester hydrolysis to methanediazohydroxide. NMUr does not form an aldehyde, whereas AMMN generates formaldehyde, and NNK-4-OAc produces 4-oxo-1-(3-pyridyl)-1-butanone (OPB). Since these compounds were likely to alkylate DNA to different extents, the toxic and mutagenic activities of these compounds were normalized to the levels of the most cytotoxic and mutagenic DNA adduct, O⁶-mG, to assess if the aldehydes contributed to the toxicological properties of these methylating agents. Levels of 7-mG indicated that the differences in cytotoxic and mutagenic effects of these compounds resulted from differences in their ability to methylate DNA. When normalized against the levels of O⁶-mG, there was no difference between these three compounds in cells that lacked AGT. However, AMMN and NNK-4-OAc were more toxic than NMUr in cells expressing AGT when normalized against O⁶-mG levels. In addition, AMMN was more mutagenic than NNK-4-OAc and MNUr in these cells. These findings demonstrate that the aldehyde decomposition products of nitrosamines can contribute to the cytotoxic and/or mutagenic activity of methylating nitrosamines.

  16. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity

    Science.gov (United States)

    Gatty, Hithesh K.; Stemme, Göran; Roxhed, Niclas

    2015-10-01

    A miniaturized amperometric nitric oxide (NO) gas sensor based on wafer-level fabrication of electrodes and a liquid electrolyte chamber is reported in this paper. The sensor is able to detect NO gas concentrations of the order of parts per billion (ppb) levels and has a measured sensitivity of 0.04 nA ppb-1 with a response time of approximately 12 s. A sufficiently high selectivity of the sensor to interfering gases such as carbon monoxide (CO) and to ammonia (NH3) makes it potentially relevant for monitoring of asthma. In addition, the sensor was characterized for electrolyte evaporation which indicated a sensor operation lifetime allowing approximately 200 measurements.

  17. Antioxidant enzymatic defenses and oxidative damage in Dentex dentex fed on different dietary macronutrient levels.

    Science.gov (United States)

    Pérez-Jiménez, Amalia; Hidalgo, M Carmen; Morales, Amalia E; Arizcun, Marta; Abellán, Emilia; Cardenete, Gabriel

    2009-11-01

    A wide range of antioxidant mechanisms are present in fish maintaining an adequate "oxidative balance". When this balance tilts in favor of the oxidant agents "oxidative stress" arises with detrimental effects in molecules of great biological importance. Little has been reported about the influence of different dietary energy sources on antioxidant defenses in fish. The influence of different dietary macronutrient combinations on the key antioxidant enzyme activity, the oxidative damage to lipids and proteins and the possible modifications in the SOD isoenzymatic pattern were evaluated in liver, white muscle, heart and erythrocytes of common dentex (Dentex dentex). Four experimental diets with different protein:lipid:carbohydrate ratios (43/16/28; 43/24/4; 38/19/28 and 38/24/13) were formulated. In general, neither different dietary macronutrient levels nor the interaction among them induces substantial modifications in enzymatic antioxidant defense mechanisms. Two constitutive SOD isoforms, CuZn-SOD I and Mn-SOD, were detected in the tissues analyzed in all experimental groups, independently of diet formulation, but, a third SOD isoenzyme, CuZn-SOD II seems to be induced in white muscle by higher dietary protein levels. Densitometric analyses of western blotting membranes revealed higher CuZn-SOD expression in the heart of dentex fed on lower dietary protein levels, although these differences did not correlate with the SOD activity. Finally, a direct relation exists between the lipid or protein intake level and occurrence of oxidative damage in different tissue components.

  18. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.

    Science.gov (United States)

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure-activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment.

  19. Increased endogenous DNA oxidation correlates to increased iron levels in melanocytes relative to keratinocytes.

    Science.gov (United States)

    Pelle, Edward; Huang, Xi; Zhang, Qi; Pernodet, Nadine; Yarosh, Daniel B; Frenkel, Krystyna

    2014-01-01

    The endogenous oxidative state of normal human epidermal melanocytes was investigated and compared to normal human epidermal keratinocytes (NHEKs) in order to gain new insight into melanocyte biology. Previously, we showed that NHEKs contain higher levels of hydrogen peroxide (H2O2) than melanocytes and that it can migrate from NHEKs to melanocytes by passive permeation. Nevertheless, despite lower concentrations of H2O2, we now report higher levels of oxidative DNA in melanocytes as indicated by increased levels of 8-oxo-2'-deoxyguanosine (8-oxo-dG): 4.49 (±0.55 SEM) 8-oxo-dG/10(6) dG compared to 1.49 (±0.11 SEM) 8-oxo-dG/10(6) dG for NHEKs. An antioxidant biomarker, glutathione (GSH), was also lower in melanocytes (3.14 nmoles (±0.15 SEM)/cell) in comparison to NHEKs (5.98 nmoles (±0.33 SEM)/cell). Intriguingly, cellular bioavailable iron as measured in ferritin was found to be nearly fourfold higher in melanocytes than in NHEKs. Further, ferritin levels in melanocytes were also higher than in hepatocarcinoma cells, an iron-rich cell, and it indicates that higher relative iron levels may be characteristic of melanocytes. To account for the increased oxidative DNA and lower GSH and H2O2 levels that we observe, we propose that iron may contribute to higher levels of oxidation by reacting with H2O2 through a Fenton reaction leading to the generation of DNA-reactive hydroxyl radicals. In conclusion, our data support the concept of elevated oxidation and high iron levels as normal parameters of melanocytic activity. We present new evidence that may contribute to our understanding of the melanogenic process and lead to the development of new skin care products.

  20. Antioxidant factors, nitric oxide levels, and cellular damage in leprosy patients

    Directory of Open Access Journals (Sweden)

    Taysa Ribeiro Schalcher

    2013-09-01

    Full Text Available Introduction The immune response caused by Mycobacterium leprae is a risk factor for the development of oxidative stress (OS in leprosy patients. This study aimed to assess OS in leprosy patients before the use of a multidrug therapy. Methods We evaluated the nitric oxide (NO concentration; antioxidant capacity; levels of malondialdehyde, methemoglobin and reduced glutathione; and the activity of catalase and superoxide dismutase (SOD in leprosy patients. Results We observed lower SOD activity in these leprosy patients; however, the NO levels and antioxidant capacity were increased. Conclusions The infectious process in response to M. leprae could primarily be responsible for the OS observed in these patients.

  1. Variations in Oxidative Stress Levels in 3 Days Follow-up in Ultramarathon Mountain Race Athletes.

    Science.gov (United States)

    Spanidis, Ypatios; Stagos, Dimitrios; Orfanou, Marina; Goutzourelas, Nikolaos; Bar-Or, David; Spandidos, Demetrios; Kouretas, Demetrios

    2017-03-01

    Spanidis, Y, Stagos, D, Orfanou, M, Goutzourelas, N, Bar-or, D, Spandidos, D, and Kouretas, D. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J Strength Cond Res 31(3): 582-594, 2017-The aim of the present study was the monitoring of the redox status of runners participating in a mountain ultramarathon race of 103 km. Blood samples from 12 runners were collected prerace and 24, 48, and 72 hours postrace. The samples were analyzed by using conventional oxidative stress markers, such as protein carbonyls (CARB), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. In addition, 2 novel markers, the static oxidation-reduction potential marker (sORP) and the capacity oxidation-reduction potential (cORP), were measured in plasma. The results showed significant increase in sORP levels and significant decrease in cORP and GSH levels postrace compared with prerace. The other markers did not exhibit significant changes postrace compared with prerace. Furthermore, an interindividual analysis showed that in all athletes but one sORP was increased, whereas cORP was decreased. Moreover, GSH levels were decreased in all athletes at least at 2 time points postrace compared with prerace. The other markers exhibited great variations between different athletes. In conclusion, ORP and GSH markers suggested that oxidative stress has existed even 3 days post ultramarathon race. The practical applications from these results would be that the most effective markers for short-term monitoring of ultramarathon mountain race-induced oxidative stress were sORP, cORP, and GSH. Also, administration of supplements enhancing especially GSH is recommended during ultramarathon mountain races to prevent manifestation of pathological conditions.

  2. The mechanism of Fermi level pinning/unpinning at high k Oxide/GaAs interface

    Science.gov (United States)

    Huang, M. L.; Lee, W. C.; Chang, P.; Lin, T. D.; Lee, Y. J.; Hong, M.; Kwo, J.

    2007-03-01

    Unpinning of Fermi level at oxide/GaAs interface is the one of the key issues of realizing GaAs-based III-V metal-oxide-semiconductor field-effect-transistors (MOSFETs) for high-speed and high power applications due to inherent advantages of high electron mobility, semi-insulating substrates, and high breakdown fields. In this study several important high dielectric constant materials, Al2O3, HfO2, Ga2O3(Gd2O3) and Y2O3, were in-situ deposited on GaAs(001), and exhibited the different Fermi level pinning/unpinning behavior of current-capacitance (C-V) characteristics. In order to correlate the relationship between the oxide/GaAs interfacial structure and their electrical behavior, in-situ XPS analysis was conducted shortly after nano high κ oxides were deposited on GaAs. Our studies suggest that Fermi level unpinning in the oxide/GaAs hetero-structure is attributed to the exclusion of the As-As and the As-O bonding during the initial interfacial formation.

  3. Low level laser therapy reduces oxidative stress in cortical neurons in vitro

    Science.gov (United States)

    Huang, Ying-Ying; Tedford, Clark E.; McCarthy, Thomas; Hamblin, Michael R.

    2012-03-01

    It is accepted that the mechanisms of low level laser therapy (LLLT) involves photons that are absorbed in the mitochondria of cells and lead to increase of mitochondrial metabolism resulting in more electron transport, increase of mitochondrial membrane potential, and more ATP production. Intracellular calcium changes are seen that correlate with mitochondrial stimulation. The situation with two other intermediates is more complex however: reactive oxygen species (ROS) and nitric oxide (NO). Evidence exists that low levels of ROS are produced by LLLT in normal cells that can be beneficial by (for instance) activating NF-kB. However high fluences of light can produce large amounts of ROS that can damage the cells. In oxidatively stressed cells the situation may be different. We exposed primary cultured cortical neurons to hydrogen peroxide (H2O2) or cobalt chloride (CoCl2) oxidative insults in the presence or absence of LLLT (810-nm laser at 0.3 or 3 J/cm2). Cell viability of cortical neurons was determined by lactate dehydrogenase assay. ROS in neurons was detected using an ROS probe, MitoRox with confocal microscopy. Results showed that LLLT dose-dependently reversed ROS production and protected cortical neurons against H2O2 or CoCl2 induced oxidative injury in cultured cortical neurons. Conclusion: LLLT can protect cortical neurons against oxidative stress by reversing the levels of ROS.

  4. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  5. Fast determination of aldehyde preservatives by miniaturized capillary electrophoresis with amperometric detection.

    Science.gov (United States)

    Li, Ying; Chen, Fang; Ge, Jinyuan; Tong, Fanghong; Deng, Zhaoyue; Shen, Fengwu; Gu, Qianxia; Ye, Jiannong; Chu, Qingcui

    2014-02-01

    A novel miniaturized CE with amperometric detection (mini-CE-AD) method has been developed for fast determination of aliphatic aldehyde preservatives, namely formaldehyde and glyoxal, in commodities. After derivatization with an electroactive compound 2-thiobarbituric acid, these two nonelectroactive aldehydes were converted to electroactive adducts, therefore detectable by mini-CE-AD approach. Under the optimum conditions, two aldehydes can be well-separated with the coexisting interferents as well as their homologs (acetaldehyde and methyl-glyoxal), and the LODs (S/N = 3) were achieved at nanogram-per-milliliter level (1.64-2.80 ng/mL) based on the online enrichment method of transient moving chemical reaction boundary. The proposed method has been applied for the analyses of above aldehyde preservatives in different real commodity samples including skincare products, baby lotion, and toothpaste, and the average recoveries were in the range of 94-105%, which should find a wide range of analytical applications as an alternative to conventional and microchip CE approaches.

  6. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.

    Science.gov (United States)

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2014-11-28

    In the n-alkane assimilating yeast Yarrowia lipolytica, n-alkanes are oxidized to fatty acids via fatty alcohols and fatty aldehydes, after which they are utilized as carbon sources. Here, we show that four genes (HFD1-HFD4) encoding fatty aldehyde dehydrogenases (FALDHs) are involved in the metabolism of n-alkanes in Y. lipolytica. A mutant, in which all of four HFD genes are deleted (Δhfd1-4 strain), could not grow on n-alkanes of 12-18 carbons; however, the expression of one of those HFD genes restored its growth on n-alkanes. Production of Hfd2Ap or Hfd2Bp, translation products of transcript variants generated from HFD2 by the absence or presence of splicing, also supported the growth of the Δhfd1-4 strain on n-alkanes. The FALDH activity in the extract of the wild-type strain was increased when cells were incubated in the presence of n-decane, whereas this elevation in FALDH activity by n-decane was not observed in Δhfd1-4 strain extract. Substantial FALDH activities were detected in the extracts of Escherichia coli cells expressing the HFD genes. Fluorescent microscopic observation suggests that Hfd3p and Hfd2Bp are localized predominantly in the peroxisome, whereas Hfd1p and Hfd2Ap are localized in both the endoplasmic reticulum and the peroxisome. These results suggest that the HFD multigene family is responsible for the oxidation of fatty aldehydes to fatty acids in the metabolism of n-alkanes, and raise the possibility that Hfd proteins have diversified by gene multiplication and RNA splicing to efficiently assimilate or detoxify fatty aldehydes in Y. lipolytica.

  7. Effect of Helicobacter pylori infection on gastric mucosal pathologic change and level of nitric oxide and nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    Yong-Fu Wang; Chun-Lin Guo; Li-Zhen Zhao; Guo-An Yang; Peng Chen; Hong-Kun Wang

    2005-01-01

    AIM: To investigate the level of nitric oxide (NO) and nitrous oxide synthase (NOS) enzyme and its effect on gastric mucosal pathologic change in patients infected with Helicobacter pylori (H pylori), and to study the pathogenic mechanism of H pylori.METHODS: The mucosal tissues of gastric antrum were taken by endoscopy, then their pathology, H pylori and anti-CagA-IgG were determined. Fifty H pyloripositive cases and 35 H pylori negative cases were randomly chosen.Serum level of NO and NOS was detected.RESULTS: One hundred and seven cases (71.33%) were anti-CagA-IgG positive in 150 H pyloripositive cases. The positive rate was higher especially in those with preneoplastic diseases, such as atrophy, intestinal metaplasia and dysplasia. The level of NO and NOS in positive group was higher than that in negative group, and apparently lower in active gastritis than in pre-neoplastic diseases such as atrophy, intestinal metaplasia and dysplasia.CONCLUSION: H pyloriis closely related with chronic gastric diseases, and type Ⅰ Hpylorimay be the real factor for Hpylori-related gastric diseases. Infection with H pylori can induce elevation of NOS, which produces NO.

  8. Changes in homocysteine levels during normal pregnancy and preeclampsia and its relation with oxidative stress

    Directory of Open Access Journals (Sweden)

    Shilpa A. V.

    2016-12-01

    Conclusions: The increased homocysteine levels in preeclampsia results in endothelial dysfunction and vasospasm. Also oxidative stress plays an important role in the pathogenesis of preeclampsia. Thus identifying the risk factors and aggressive management may prove to be beneficial in these women.

  9. Study of Foeniculum vulgare (Fennel Seed Extract Effects on Serum Level of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sadeghpour Nahid

    2015-04-01

    Full Text Available Objective: The Foeniculum vulgare (FVE, known as fennel, has a long history of herbal uses as both food and medicine. The seed of this plant has been used to promote menstruation, alleviate the symptoms of female climacteric, and increase the number of ovarian follicles. The aim of this study was to evaluate the fennel extract effects on serum level of oxidative stress in female mice. Materials and Methods: Totally, 28 virgin female albino mice were divided into four groups (n = 7. Groups 1 and 2 (experimental groups were administered FVE at 100 and at a concentration of 100 and 200 mg/kg for 5 days, interaperitoneally. Group 3 (negative control received ethanol and Group 4 (positive control received normal saline. Animals were scarified at 6th day, sera were collected and the level of oxidative stress was determination of using total antioxidant status kit. Results: Data analysis revealed that there is a significant difference in the mean level of serum oxidative stress between four different groups. P value in experimental groups compared to the control group was (P < 0.0001. Conclusion: Fennel extract can decrease the serum level of oxidative factors in female mice; it can be introduced as a novel medicine for treatment of infertility

  10. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats.

    Science.gov (United States)

    Aksoy, Nur; Aksoy, Mehmet; Bagci, Cahit; Gergerlioglu, H Serdar; Celik, Hakim; Herken, Emine; Yaman, Abdullah; Tarakcioglu, Mehmet; Soydinc, Serdar; Sari, Ibrahim; Davutoglu, Vedat

    2007-05-01

    There is increasing evidence that nuts have protective effects against coronary artery disease by improving lipid profile and inhibiting lipid oxidation. However, data about pistachio nuts are limited, and to our knowledge, there is no study investigating the effects of pistachio intake on lipid oxidation and serum antioxidant levels. This study, therefore, sought to determine the effects of pistachio intake on serum lipids and determine whether consumption of pistachio would alter serum antioxidant levels. Rats were randomly divided into three groups (n=12 for each): control group fed basic diet for 10 weeks and treated groups fed basic diet plus pistachio which constituted 20% and 40% of daily caloric intake, respectively. Consumption of pistachio as 20% of daily caloric intake increased high-density lipoprotein (HDL) levels and decreased total cholesterol (TC)/HDL ratio, compared with those not taking pistachio. However, TC, low-density lipoprotein (LDL) cholesterol and triglyceride levels were unaffected by pistachio consumption. Consumption of pistachio as 20% of daily caloric intake increased serum paraoxonase activity by 35% and arylesterase activity by 60%, which are known to inhibit LDL cholesterol oxidation, compared with the control group. However, increased antioxidant activity was blunted when pistachio intake was increased to 40% of daily caloric intake. In conclusion, the present results show that consumption of pistachio as 20% of daily caloric intake leads to significant improvement in HDL and TC/HDL ratio and inhibits LDL cholesterol oxidation. These results suggest that pistachio may be beneficial for both prevention and treatment of coronary artery disease.

  11. High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta

    OpenAIRE

    Visiedo, Francisco; Bugatto, Fernando; Sánchez, Viviana; Cózar-Castellano, Irene; Bartha, Jose L.; Perdomo, Germán

    2013-01-01

    Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase...

  12. Oxidative stress, melatonin level, and sleep insufficiency among electronic equipment repairers

    Directory of Open Access Journals (Sweden)

    El-Helaly Mohamed

    2010-01-01

    Full Text Available Background: Exposure to extremely low frequency electromagnetic field (ELF-EMF, especially among electronic equipment repairers may induce oxidative stress and affect sleep quality. Aims: This study was carried out to (a investigate the effect of exposure to ELF-EMF on the malondialdehyde (MDA levels among electronic equipment repairers as an indicator of oxidative stress; and melatonin hormone levels; and (b to study the prevalence of sleep insufficiency among electronic equipment repairers exposed to ELF-EMF. Materials and Methods: A cross-sectional study was carried out on 50 electronic equipment repairers at high risk of exposure to ELF-EMF, and a matched control group at lower risk of exposure to ELF-EMF. All the participants completed a self-administered questionnaire about medical and occupational histories; and sleep sufficiency. The plasma melatonin and MDA levels of the study subjects were assessed. Results: The mean level of serum melatonin in the electronic equipment repairers was lower than that of the controls (P < 0.01. Moreover, serum MDA mean level of the electronic equipment repairers was higher than that of the controls (P < 0.01. Sleep insufficiency was more frequent among electronic equipment repairers (18.00% in comparison with the controls (8.70% (P > 0.05. Conclusion: The electronic equipment repairers, exposed to ELF-EMF, are at a risk of oxidative stress and sleep insufficiency, which could be explained by lower plasma melatonin levels and higher MDA levels. Health education about the hazards of ELF-EMF, shortening of exposure time per day, and taking antioxidant vitamins should be done to ameliorate the oxidative effect of EMF on those workers.

  13. Alteration of cyclic nucleotides levels and oxidative stress in saliva of human subjects with periodontitis.

    Science.gov (United States)

    Mashayekhi, Fereshteh; Aghahoseini, Farzaneh; Rezaie, Ali; Zamani, Mohammad J; Khorasani, Reza; Abdollahi, Mohammad

    2005-11-15

    Experimental findings suggest a protective role for cyclic nucleotides against induction of oxidative stress in saliva. Oxidative stress is a major contributor to the pathogenesis of inflammatory diseases. This study was conducted to evaluate salivary oxidative stress along with cGMP and cAMP levels in periodontitis subjects. cAMP and cGMP are second messengers that have important roles in salivary gland functions. Unstimulated whole saliva samples were obtained from periodontitis patients and age- and sex-matched healthy individuals. Saliva samples were analyzed for thiobarbituric reactive substances (TBARS) as a marker of lipid peroxidation, ferric reducing ability (total antioxidant power, TAP), and levels of cAMP and cGMP. Concentrations of cAMP and cGMP were reduced in the saliva of patients with moderate and severe periodontitis. Saliva of patients with severe periodontitis had higher TBARS and lower TAP than control subjects. The presence of oxidative stress and lower levels of salivary cGMP and cAMP in periodontitis are in association with disease severity.

  14. Increased levels of thioredoxin in patients with abdominal aortic aneurysms (AAAs). A potential link of oxidative stress with AAA evolution

    DEFF Research Database (Denmark)

    Martinez-Pinna, R; Lindholt, Jes S.; Blanco-Colio, L M;

    2010-01-01

    Oxidative stress is a main mechanism involved in vascular pathologies. Increased thioredoxin (TRX) levels have been observed in several oxidative stress-associated cardiovascular diseases. We aim to test the potential role of TRX as a biomarker of oxidative stress in abdominal aortic aneurysm (AAA)....

  15. Plasma glutathione and oxidized glutathione level, glutathione/oxidized glutathione ratio, and albumin concentration in complicated and uncomplicated falciparum malaria

    Institute of Scientific and Technical Information of China (English)

    Loeki Enggar Fitri; Agustin Iskandar; Teguh Wahju Sardjono; Ummu Ditya Erliana; Widya Rahmawati; Didi Candradikusuma; Utama Budi Saputra; Eko Suhartono; Bambang Setiawan; Erma Sulistyaningsih

    2016-01-01

    Objective: To compare the level of glutathione(GSH) and oxidized glutathione(GSSG),the ratio of GSH/GSSG and the concentration of albumin in plasma of patients with complicated and un-complicated falciparum malaria.Methods: This research was a cross sectional study using comparison analysis with the plasma GSH and GSSG, the ratio of plasma GSH/GSSG and the concentration of plasma albumin as variables. The complicated malaria patients were obtained from Dr. Saiful Anwar Hospital Malang, whereas uncomplicated malaria patients were obtained from the Regency of Pleihari South Kalimantan. Plasma GSH and GSSG levels were determined by the spectrophotometer at the wave length of 412 nm, whereas the concentration of albumin was determined by bromocresol green method in the p H of 4.1.Results: There were no significant differences between the level of plasma GSH and GSSG in complicated and uncomplicated malaria patients, as well as the ratio of plasma GSH/GSSG in the two groups(P = 0.373; P = 0.538; and P = 0.615, respectively, independent ttest). In contrast, the plasma albumin concentration in complicated malaria patients were significantly higher than uncomplicated malaria patients(P = 0.000, Mann Whitney U test).Conclusions: It can be concluded that the average of plasma GSH and GSSG level, also plasma GSH/GSSG ratio in complicated malaria are not different from uncomplicated malaria. Although plasma concentration of albumin in both groups is below the normal range,there is an increase in complicated malaria that might be as compensation of oxidative stress.

  16. Plasma glutathione and oxidized glutathione level, glutathione/oxidized glutathione ratio, and albumin concentration in complicated and uncomplicated falciparum malaria

    Institute of Scientific and Technical Information of China (English)

    Loeki Enggar Fitri; Erma Sulistyaningsih; Agustin Iskandar; Teguh Wahju Sardjono; Ummu Ditya Erliana; Widya Rahmawati; Didi Candradikusuma; Utama Budi Saputra; Eko Suhartono; Bambang Setiawan

    2016-01-01

    Objective: To compare the level of glutathione (GSH) and oxidized glutathione (GSSG), the ratio of GSH/GSSG and the concentration of albumin in plasma of patients with complicated and un-complicated falciparum malaria. Methods: This research was a cross sectional study using comparison analysis with the plasma GSH and GSSG, the ratio of plasma GSH/GSSG and the concentration of plasma albumin as variables. The complicated malaria patients were obtained from Dr. Saiful Anwar Hospital Malang, whereas uncomplicated malaria patients were obtained from the Regency of Pleihari South Kalimantan. Plasma GSH and GSSG levels were determined by the spectrophotometer at the wave length of 412 nm, whereas the concentration of albumin was determined by bromocresol green method in the pH of 4.1. Results: There were no significant differences between the level of plasma GSH and GSSG in complicated and uncomplicated malaria patients, as well as the ratio of plasma GSH/GSSG in the two groups (P=0.373;P=0.538;and P=0.615, respectively, independent t-test). In contrast, the plasma albumin concentration in complicated malaria patients were significantly higher than uncomplicated malaria patients (P=0.000, Mann Whitney U test). Conclusions: It can be concluded that the average of plasma GSH and GSSG level, also plasma GSH/GSSG ratio in complicated malaria are not different from uncomplicated ma-laria. Although plasma concentration of albumin in both groups is below the normal range, there is an increase in complicated malaria that might be as compensation of oxidative stress.

  17. Development of an LC-MS/MS analytical method for the simultaneous measurement of aldehydes from polyunsaturated fatty acids degradation in animal feed.

    Science.gov (United States)

    Douny, Caroline; Bayram, Pinar; Brose, François; Degand, Guy; Scippo, Marie-Louise

    2016-05-01

    Knowing that polyunsaturated fatty acids can lead to the formation of potentially toxic aldehydes as secondary oxidation products, an analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) detection was developed to measure the concentration of eight aldehydes in animal feed: malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), 4-hydroxy-2-hexenal (4-HHE), crotonaldehyde (CRT), benzaldehyde (BNZ), hexanal (HXL), 2,4-nonadienal, and 2,4-decadienal. The developed method was validated according to the criteria and procedure described in international standards. The evaluated parameters were specificity/selectivity, recovery, precision, accuracy, uncertainty, limits of detection and quantification, using the concept of accuracy profiles. These parameters were determined during experiments conducted over three different days with ground Kellogg's® Corn Flakes® cereals as model matrix for animal feed and spiked at different levels of concentration. Malondialdehyde, 4-HHE, 4-HNE, crotonaldehyde, benzaldehyde, and hexanal can be analyzed in the same run in animal feed with a very good accuracy, with recovery rates ranging from 86 to 109% for a working range going from 0.16 to 12.50 mg/kg. The analysis of 2,4-nonadienal and 2,4-decadienal can also be performed but in a limited range of concentration and with a limited degree of accuracy. Their recovery rates ranged between 54 and 114% and coefficient of variation for the intermediate precision between 11 and 25% for these two compounds. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c.

    Science.gov (United States)

    Gómez-Manzo, S; Chavez-Pacheco, J L; Contreras-Zentella, M; Sosa-Torres, M E; Arreguín-Espinosa, R; Pérez de la Mora, M; Membrillo-Hernández, J; Escamilla, J E

    2010-11-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone.

  19. Molecular and Catalytic Properties of the Aldehyde Dehydrogenase of Gluconacetobacter diazotrophicus, a Quinoheme Protein Containing Pyrroloquinoline Quinone, Cytochrome b, and Cytochrome c▿

    Science.gov (United States)

    Gómez-Manzo, S.; Chavez-Pacheco, J. L.; Contreras-Zentella, M.; Sosa-Torres, M. E.; Arreguín-Espinosa, R.; Pérez de la Mora, M.; Membrillo-Hernández, J.; Escamilla, J. E.

    2010-01-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone. PMID:20802042

  20. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    Science.gov (United States)

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  1. Flunisolide Decreases Exhaled Nitric Oxide and Nitrotyrosine Levels in Asthmatic Children

    Science.gov (United States)

    Bodini, A.; Peroni, D. G.; Zardini, F.; Corradi, M.; Alinovi, R.; Boner, A. L.; Piacentini, G. L.

    2006-01-01

    Background. Exhaled nitric oxide (FeNO) has been reported to be elevated in the oxidative stress involved in asthmatic patients, and the reaction of nitric oxide (NO) with superoxide anions results in the formation of nitrotyrosine. The purpose of this study was to investigate the effect of inhaled steroid treatment on nitrotyrosine levels collected by exhaled breath condensate (EBC) and on FeNO. Methods. This was a single-blind placebo-controlled study. The lung function, FeNO, and nitrotyrosine levels were evaluated in 10 asthmatic children. Results. The nitrotyrosine levels were stable during the placebo period (T0 = 1.16 ng/ml versus T1 = 1.05 ng/ml; NS.), whereas they decreased after the treatment with flunisolide (T2 = 1.14 ng/ml versus T3 = 0.88 ng/ml; P < .001). No significant reduction in FeNO levels was observed after placebo treatment (T0 = 38.4 ppb versus T1 = 34.7 ppb, NS.). In contrast, FeNO values decreased significantly being at T3 = 14.9 ppb (T1 versus T3; P = .024). Conclusions. This study shows that corticosteroid treatment reduces nitrotyrosine levels in EBC of asthmatic subjects. PMID:17047290

  2. Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Malardé, Ludivine; Groussard, Carole; Lefeuvre-Orfila, Luz; Vincent, Sophie; Efstathiou, Théo; Gratas-Delamarche, Arlette

    2015-01-01

    Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)-induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1 g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1β, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1β: -75%, IL-6: -46%, and uric acid: -17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats.

  3. Correction factors for 13C-labelled substrate oxidation at whole-body and muscle level

    DEFF Research Database (Denmark)

    Van Hall, Gerrit

    1999-01-01

    The oxidation of fatty acids, carbohydrates and amino acids can be measured by quantifying the rate of excretion of labelled CO2 following administration of 14C- or 13C-labelled substrates at whole-body and tissue level. However, there is a theoretical need to correct the oxidation rates...... for the proportion of labelled CO2 that is produced via oxidation but not excreted. Furthermore, depending on the substrate and position of the C label(s), there may also be a need to correct for labelled C from the metabolized substrate that does not appear as CO2, but rather becomes temporarily fixed in other...... metabolites. The bicarbonate correction factor is used to correct for the labelled CO2 not excreted. Recently, an acetate correction factor has been proposed for the simultaneous correction of CO2 not excreted and label fixed in other metabolites via isotopic exchange reactions, mainly in the tricarboxylic...

  4. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Rebecca L. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: r.l.taylor@ncl.ac.uk; Caldwell, Gary S. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Bentley, Matthew G. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD{sub 50} values of 7 and 20 {mu}M for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 {mu}M of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD{sub 50} of decadienal by approximately a third for both species. 1 {mu}M of copper chloride in solutions of decadienal reduced the 24 h LD{sub 50} of decadienal to A. salina nauplii by approximately 11% and 1 {mu}M zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 {mu}M copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  5. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production.

  6. Toxicity of algal-derived aldehydes to two invertebrate species: do heavy metal pollutants have a synergistic effect?

    Science.gov (United States)

    Taylor, Rebecca L; Caldwell, Gary S; Bentley, Matthew G

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24h LD(50) values of 7 and 20 microM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 microM of copper sulphate in solutions of decadienal resulted in the reduction of the 24h LD(50) of decadienal by approximately a third for both species. 1 microM of copper chloride in solutions of decadienal reduced the 24h LD(50) of decadienal to A. salina nauplii by approximately 11% and 1 microM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 microM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  7. Nitric oxide levels in the anterior chamber of vitrectomized eyes with silicon oil

    Directory of Open Access Journals (Sweden)

    Paulo Escarião

    2013-10-01

    Full Text Available PURPOSE: To investigate the nitric oxide levels in the anterior chamber of eyes who underwent pars plana vitrectomy (PPV with silicone oil. METHODS: Patients who underwent PPV with silicon oil injection, from february 2005 to august 2007, were selected. Nine patients (nine eyes participated in the study (five women and four men. Nitric oxide concentration was quantified after the aspiration of aqueous humor samples during the procedure of silicon oil removal. Data such as: oil emulsification; presence of oil in the anterior chamber; intraocular pressure and time with silicone oil were evaluated. Values of p <0.05 were considered to be statistically significant. RESULTS: A positive correlation between nitric oxide concentration and time with silicon oil in the vitreous cavity (r=0.799 was observed. The nitric oxide concentration was significantly higher (p=0.02 in patients with silicon oil more than 24 months (0.90µmol/ml ± 0.59, n=3 in the vitreous cavity comparing to patients with less than 24 months (0.19µmol/ml ± 0.10, n=6. CONCLUSION: A positive correlation linking silicone oil time in the vitreous cavity with the nitric oxide concentration in the anterior chamber was observed.

  8. Turn on Fluorescent Probes for Selective Targeting of Aldehydes

    Directory of Open Access Journals (Sweden)

    Ozlem Dilek

    2016-03-01

    Full Text Available Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP fluorophore and a xanthene-derived fluorophore (rosamine were prepared. Model compounds of their product with an aldehyde were prepared using salicylaldehyde. Both amino boron dipyrromethene and rosamine derivatives are almost non-fluorescent in polar and apolar solvent. However, imine formation with salicylaldehyde on each fluorophore increases the fluorescence quantum yield by almost a factor of 10 (from 0.05 to 0.4. These fluorophores are therefore suitable candidates for development of fluorescence-based sensors for aldehydes.

  9. Levels of oxidative stress parameters and the protective effects of melatonin in psychosis model rat testis

    Institute of Scientific and Technical Information of China (English)

    Bekir S.Parlaktas; Birsen Ozyurt; Huseyin Ozyurt; Ayten T.Tunc; Ali Akbas

    2008-01-01

    Aim: To evaluate the effects of melatonin on antioxidant enzyme levels and histopathologic changes in dizocilpine (MK-801)-induced psychosis model rat testis. Methods: A total of 24 adult male Wistar-Albino rats were divided into three groups with 8 in each. Group Ⅰ was used as control. Rats in Group Ⅱ were injected with MK-801 (0.5 mg/kg body weight i.p. for 5 days). In addition to MK-801, melatonin (50 mg/kg body weight i.p. once a day for 5 days) was injected into the rats in Group Ⅲ. The testes were harvested bilaterally for biochemical and histopathological examinations. Antioxidant enzyme activities, malondialdehyde, protein carbonyl and nitric oxide (NO) levels in tes-ticular tissues were analyzed using spectrophotometric analysis methods. Histopathological examinations of the testes were also performed. Results: MK-801 induced testicular damage, which resulted in significant oxidative stress (OS) by increasing the levels of antioxidant enzymes. The malondialdehyde, protein carbonyl and NO levels were increased in testicular tissues of rats. Treatment with melatonin led to significant decrease in oxidative injury.Administration of melatonin also reduced the detrimental histopathologic effects caused by MK-801. Conclusion:The results of the present study showed that MK-801 cause OS in testicular tissues of rats and treatment with melatonin can reduce the harmful effects of MK-801.

  10. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor.

    Science.gov (United States)

    Wang, Shujiang; Oommen, Oommen P; Yan, Hongji; Varghese, Oommen P

    2013-07-01

    Aldehydes have been used as an important bioorthogonal chemical reporter for conjugation of large polymers and bioactive substances. However, generating aldehyde functionality on carbohydrate-based biopolymers without changing its native chemical structure has always persisted as a challenging task. The common methods employed to achieve this require harsh reaction conditions, which often compromise the structural integrity and biological function of these sensitive molecules. Here we report a mild and simple method to graft aldehydes groups on glycosaminoglycans (GAGs) in a site-selective manner without compromising the structural integrity of the biopolymer. This regio-selective modification was achieved by conjugating the amino-glycerol moiety on the carboxylate residue of the polymer, which allowed selective cleavage of pendent diol groups without interfering with the C2-C3 diol groups of the native glucopyranose residue. Kinetic evaluation of this reaction demonstrated significant differences in second-order reaction rate for periodate oxidation (by four-orders of magnitude) between the two types of vicinal diols. We employed this chemistry to develop aldehyde modifications of sulfated and nonsulfated GAGs such as hyaluronic acid (HA), heparin (HP), and chondroitin sulfate (CS). We further utilized these aldehyde grafted GAGs to tailor extracellular matrix mimetic injectable hydrogels and evaluated its rheological properties. The composition of the hydrogels was also found to modulate release of therapeutic protein such as FGF-2, demonstrating controlled release (60%) for over 14 days. In short, our result clearly demonstrates a versatile strategy to graft aldehyde groups on sensitive biopolymers under mild conditions that could be applied for various bioconjugation and biomedical applications such as drug delivery and regenerative medicine.

  11. Serum free fatty acid levels in PCOS patients treated with glucophage, magnesium oxide and spironolactone.

    Science.gov (United States)

    Muneyyirci-Delale, Ozgul; Kaplan, Julie; Joulak, Ibrahim; Yang, Lianfu; Von Gizycki, Hans; Nacharaju, Vijaya L

    2013-05-01

    To assess the effect of glucophage, magnesium oxide and spironolactone in altering free fatty acids (FFAs), 36 PCOS women were randomly divided into three groups. Group 1 (n = 14) was treated with 500 mg glucophage po bid, group 2 (n = 10) was treated with 400 mg magnesium oxide po bid and group 3 (n = 12) was treated with 50 mg spironolactone po bid for 12 weeks. A glucose tolerance test with 75 g glucose load was performed before and after treatment, collecting blood at 0, 1 and 2 h for insulin, glucose, FFA and aldosterone. Amount of FFA before and after treatment were compared by repeated measure ANOVA and represented as area under the curve. FFA levels before treatment were 0.83 ± 0.23, 0.77 ± 0.15 and 0.85 ± 0.28 and after treatment were 0.77 ± 0.48, 0.71 ± 0.18 and 0.66 ± 0.25 for glucophage, magnesium oxide and spironolactone-treated patients, respectively. The FFA levels were unchanged in the groups treated with glucophage and magnesium oxide but were significantly (p < 0.03) decreased in the group treated with spironolactone. Since FFAs are known to be involved in the development of insulin resistance, these results suggest that spironolactone may be useful for lowering insulin resistance in PCOS patients.

  12. Nanoplasmonic Photoluminescence Spectroscopy at Single-Particle Level: Sensing for Ethanol Oxidation.

    Science.gov (United States)

    Zheng, Zhaoke; Majima, Tetsuro

    2016-02-18

    Surface plasmon resonances of metal nanoparticles have shown significant promise for the use of solar energy to drive catalytic chemical reactions. More importantly, understanding and monitoring such catalytic reactions at single-nanoparticle level is crucial for the study of local reaction processes. Herein, using plasmonic photoluminescence (PL) spectroscopy, we describe a novel sensing method for catalytic ethanol oxidation reactions at the single-nanoparticle level. The Au nanorod monitors the interfacial interaction with ethanol during the catalytic reaction through the PL intensity changes in the single-particle PL spectra. The analysis of energy relaxation of excited electron-hole pairs indicates the relationship between the PL quenching and ethanol oxidation reaction on the single Au nanorod.

  13. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  14. Serum Levels of Stress Hormones and Oxidative Stress Biomarkers Differ according to Sasang Constitutional Type

    Directory of Open Access Journals (Sweden)

    Hyeong Geug Kim

    2015-01-01

    Full Text Available Objectives. This study investigated whether Sasang constitutional type is associated with differences in the serum levels of stress hormones and oxidative stress. Methods. A total of 236 participants (77 males and 159 females were enrolled. The serum levels of cortisol, adrenaline, reactive oxygen species (ROS, and malondialdehyde (MDA were analyzed. Results. The distribution of Sasang constitutional types was as follows: Taeumin, 35.6%; Soumin, 33.0%; and Soyangin, 31.4%. The serum cortisol levels of Taeumin were significantly lower than Soumin (p<0.1 in both sexes and Soyangin (p<0.05 in males and p<0.1 in females. The adrenaline levels were also significantly lower in Taeumin than in Soumin (p<0.05 in males and p<0.1 in females and Soyangin (p<0.1 in males. Serum ROS levels were significantly higher in Soyangin than in Taeumin and Soumin (p<0.05 in males, whereas MDA levels were significantly lower in Taeumin compared with Soumin and Soyangin (p<0.05 in males and p<0.1 in females. Conclusion. Taeumin type may tolerate psychological or oxidative stress better than other types, which suggests a biological mechanism to explain the different pathophysiological features of Sasang constitutional types.

  15. Oxidative Stress Level in the Testes of Mice and Rats during Nickel Intoxication

    Directory of Open Access Journals (Sweden)

    Eugenia Murawska-Ciałowicz

    2012-01-01

    Full Text Available The genotioxic and carcinogenic effect of nickel probably results from its capacity to produce reactive oxygen species (ROS and disturb the redox balance. The aim of the study was to find out if rats lacking spermatic protamine 2 are less susceptible to Ni(II than mice. Consequently, the levels of malondialdehyde + 4 hydroxynonenal (MDA+4HDA − markers of lipid peroxidation, as well as the level of reduced glutathione (GSH were measured within the rat and mouse testes. Our results showed that the levels of lipid peroxidation markers were elevated in testicular homogenates of intoxicated mice without any changes in rats. GSH level was lower in the group of intoxicated mice comparing to the control without statistically significant changes in rats’ homogenates. Moreover, the level of GSH in the testes of intoxicated mice was lower than in rats. On the basis of our results, it appears that Ni(II can initiate oxidative stress in the testes of mice but not of rats and can reduce GSH level. Consequently, the antioxidative defense of the testes is reduced. Ni(II that causes oxidative stress in the testes may also contribute to infertility.

  16. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels.

    Science.gov (United States)

    Kim, Mi Kyung; Cho, Sang Woon; Park, Yoo Kyoung

    2012-04-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores.

  17. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    Science.gov (United States)

    Hoek-van den Hil, Elise F; Keijer, Jaap; Bunschoten, Annelies; Vervoort, Jacques J M; Stankova, Barbora; Bekkenkamp, Melissa; Herreman, Laure; Venema, Dini; Hollman, Peter C H; Tvrzicka, Eva; Rietjens, Ivonne M C M; van Schothorst, Evert M

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and (1)H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14% (p<0.001) and total poly unsaturated fatty acids (PUFA) were increased with 13% (p<0.01). Palmitic acid, oleic acid, and linoleic acid were all decreased by 9-15% (p<0.05) in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized by omega (ω)-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially ω-oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3) were also up-regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid ω-oxidation and lowered corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD.

  18. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    Directory of Open Access Journals (Sweden)

    Elise F Hoek-van den Hil

    Full Text Available Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD. In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control or with supplementation of 0.33% (w/w quercetin for 12 weeks. Gas chromatography and (1H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG were decreased with 14% (p<0.001 and total poly unsaturated fatty acids (PUFA were increased with 13% (p<0.01. Palmitic acid, oleic acid, and linoleic acid were all decreased by 9-15% (p<0.05 in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized by omega (ω-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially ω-oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3. Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3 were also up-regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid ω-oxidation and lowered corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD.

  19. Elastin aging and lipid oxidation products in human aorta

    Directory of Open Access Journals (Sweden)

    Kamelija Zarkovic

    2015-04-01

    Full Text Available Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA, (4-hydroxynonenal, malondialdehyde, acrolein, form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development.

  20. Lanthanide dithiocarbamate complexes: efficient catalysts for the cyanosilylation of aldehydes

    OpenAIRE

    VALE, JULIANA A.; FAUSTINO, WAGNER M.; Menezes, Paulo H.; Sá,Gilberto F. de

    2006-01-01

    A new class of lanthanide dithiocarbamate complexes was used to promote the cyanosilylation of aldehydes at high yields at room temperature. This represents the first application of lanthanide dithiocarbamate acting as Lewis acid.

  1. Deodorants: an experimental provocation study with cinnamic aldehyde

    DEFF Research Database (Denmark)

    Bruze, Magnus; Johansen, Jeanne Duus; Andersen, Klaus Ejner

    2003-01-01

    BACKGROUND: Axillary dermatitis is common and overrepresented in individuals with contact allergy to fragrances. Many individuals suspect their deodorants to be the incriminating products. OBJECTIVE: Our aim was to investigate the significance of cinnamic aldehyde in deodorants for the developmen...

  2. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    Science.gov (United States)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  3. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  4. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Science.gov (United States)

    2010-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  5. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    Science.gov (United States)

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft.

  6. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  7. Myocardial creatine levels do not influence response to acute oxidative stress in isolated perfused heart.

    Directory of Open Access Journals (Sweden)

    Dunja Aksentijević

    Full Text Available Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury.To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE would be relatively protected, while mice with creatine-deficiency (GAMT KO would fare worse.CrT-OE mice were pre-selected for creatine levels 20-100% above wild-type using in vivo (1H-MRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 µM (30 min, or the anti-neoplastic drug doxorubicin 15 µM (100 min. Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCδ expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wild-type controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction.Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-physiologically relevant anti-oxidant activity.

  8. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  9. Blood Levels of Oxidant/Antioxidant Parameters in Rats Infected with Toxoplasma gondii

    Science.gov (United States)

    Shahriari, Ali; Tavalla, Mehdi; Azadmanesh, Somayeh; Hamidinejat, Hossein

    2016-01-01

    Toxoplasmosis is a common parasitic infection in the world. Since increased free radicals and oxidative stress are reported in many parasitic diseases the purpose of the present study was to evaluate the oxidative stress in acute and chronic toxoplasmosis. RH strains of Toxoplasma tachyzoites were used in the present study. Twenty-five female rats were infected with the parasite while 25 other rats were as the control group that received normal saline. Zero-, 5-, 7-, 10-, and 45-day postinfection (DPI) blood samples were taken. Some parameters related to oxidant and antioxidants such as antioxidant enzymes, malondialdehyde, and total antioxidant capacity were measured. On day 7 after infection, GPX activity and GSH level were significantly increased and in the mentioned day the amount of total antioxidant capacity was significantly reduced. In other cases, there were no significant differences between the groups in different days. Overall, based on the results it seems that, on day 7 after infection, in infected rats responses to oxidative stress were triggered and led to decrease of total antioxidant capacity. Furthermore, glutathione was increased to cope with stress. It seems that probably antioxidant defense system entered the infection to the chronic phase and changed the parasites stage. PMID:27746857

  10. Amine-functionalized porous silicas as adsorbents for aldehyde abatement.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2013-06-26

    A series of aminopropyl-functionalized silicas containing of primary, secondary, or tertiary amines is fabricated via silane-grafting on mesoporous SBA-15 silica and the utility of each material in the adsorption of volatile aldehydes from air is systematically assessed. A particular emphasis is placed on low-molecular-weight aldehydes such as formaldehyde and acetaldehyde, which are highly problematic volatile organic compound (VOC) pollutants. The adsorption tests demonstrate that the aminosilica materials with primary amines most effectively adsorbed formaldehyde with an adsorption capacity of 1.4 mmolHCHO g(-1), whereas the aminosilica containing secondary amines showed lower adsorption capacity (0.80 mmolHCHO g(-1)) and the aminosilica containing tertiary amines adsorbed a negligible amount of formaldehyde. The primary amine containing silica also successfully abated higher aldehyde VOC pollutants, including acetaldehyde, hexanal, and benzaldehyde, by effectively adsorbing them. The adsorption mechanism is investigated by (13)C CP MAS solid-state NMR and FT-Raman spectroscopy, and it is demonstrated that the aldehydes are chemically attached to the surface of aminosilica in the form of imines and hemiaminals. The high aldehyde adsorption capacities of the primary aminosilicas in this study demonstrate the utility of amine-functionalized silica materials for reduction of gaseous aldehydes.

  11. Effects of glucocorticoid dexamethasone on serum nitric oxide synthase activity and nitric oxide levels in a rat model of lung disease-induced brain injury

    Institute of Scientific and Technical Information of China (English)

    Huajun Li; Ligang Jiang; Meng Xia; Haiping Li; Fanhua Meng; Wei Li; Lifeng Liu; Zhaohui Wang

    2011-01-01

    In this study, we investigated the effects of dexamethasone, pertussis toxin (a Gi protein inhibitor), and actinomycin (a transcription inhibitor) on serum nitric oxide synthase activity and nitric oxide content in a rat model of lung disease-induced brain injury. High-dose dexamethasone (13 mg/kg) and dexamethasone + actinomycin reduced lung water content, increased serum nitric oxide synthase activity and nitric oxide content, diminished inflammatory cell infiltration in pulmonary alveolar interstitium, attenuated meningeal vascular hyperemia, reduced glial cell infiltration, and decreased cerebral edema. These results demonstrate that high-dose glucocorticoid treatment can reduce the severity of lung disease-induced brain injury by increasing nitric oxide synthase activity and nitric oxide levels.

  12. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Rad

    2013-11-01

    Full Text Available Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods:For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands of patients admitted to Alzahra obstetric and gynecology hospital, according to WHO standards. The infertile men were selected from patients referred to infertility ward. Blood sampling from the participants carried out at a specific time, sera collected and the levels of malondialdehyde, total antioxidant capacity and Melatonin were detected in the sera. The data were analyzed using t-test and Sperman's correlation method. Results: Melatonin level in the sera from fertile men were 522 (39.32 ng/L and in infertile men were 511.78 (34.6 ng/L. MDA level in fertile and infertile men were 2.26 (0.34 vs 2.99 (0.44 nmol/ml which was significantly different. The level of TAC in the sera from fertile men were significantly higher than in infertile men. The result obtained for correlation coefficient Spearman's test revealed a significant, strong and direct correlation between Melatonin and TAC and a significant and reverse correlation between melatonin and MDA.Conclusion: It is concluded that melatonin could be involved in infertility. In other word, melatonin treatment and antioxidant-rich nutrition could help fertility by combating oxidative stress.

  13. Levels of lipid peroxidation, nitric oxide, and antioxidant vitamins in plasma of patients with fibromyalgia.

    Science.gov (United States)

    Akkuş, Selami; Naziroğlu, Mustafa; Eriş, Sevilay; Yalman, Kadir; Yilmaz, Nigar; Yener, Mahmut

    2009-06-01

    The etiology of fibromyalgia is not clearly understood. In recent years, a few studies have investigated the possible role of reactive oxygen species (ROS) in the etiology and pathogenesis of fibromyalgia. The aim of this study was to investigate plasma antioxidant vitamins, lipid peroxidation (LP), and nitric oxide (NO) levels in patients with fibromyalgia and controls. The study was performed on the blood plasma of 30 female patients and 30 age-matched controls. After a fast of 12 h, blood samples were taken, and plasma samples were obtained for measurement of vitamins A, C, E, and beta-carotene concentrations and levels of LP and NO. Concentrations of vitamins A (p fibromyalgia than in controls, and LP levels were significantly (p vitamin C and beta-carotene and levels of NO did not change significantly. These results provide some evidence for a potential role of LP and fat-soluble antioxidants in the patients with fibromyalgia.

  14. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

    Science.gov (United States)

    Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.

    2017-01-01

    It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event. PMID:28148950

  15. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    Science.gov (United States)

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects.

  16. A reactive and sensitive diffusion sampler for the determination of aldehydes and ketones in ambient air

    Science.gov (United States)

    Uchiyama, Shigehisa; Hasegawa, Shuji

    We developed a diffusive sampling device (DSD-carbonyl) for organic carbonyl compounds (aldehydes and ketones) which is suitable for collection and analysis of low concentration levels. This sampling device is composed of three parts, an exposure part made of a porous polytetrafluoroethylene (PPTFE) tube, an analysis part made of polypropylene (PP) tubing and an absorbent part made of 2,4-dinitrophenylhydrazine (DNPH) coated silica gel (DNPH-silica). Aldehydes and ketones diffuse to the DSD-carbonyl through PPTFE-tube by the mechanism of molecular diffusion and react specifically with DNPH to form a stable DNPH-derivatives. Collection is controlled by moving the absorbent from the exposure part to the analysis part by changing the posture of the DSD-carbonyl. DNPH-derivatives were eluted from an analysis part of DSD-carbonyl with acetonitrile directly and analyzed by high performance liquid chromatography (HPLC). The advantages of the DSD-carbonyl are the following: (1) The DSD-carbonyl can be used in a wide range of concentration of aldehydes and ketones in atmosphere, as the DSD-carbonyl exposure part has a variable diffusion area, (2) DNPH-derivatives are eluted from DNPH-silica without contamination of air. (3) The sampler can be applied to active sampling by connecting it with a pump. The limit of detection (LOD) for concentrations of major aldehydes and ketones ranged from 0.072 to 0.13 ppb, and the limit of quantitation (LOQ) ranged from 0.24 to 0.42 ppb. The coefficient variation (CV) for concentrations of major aldehydes and ketones ranged from 2.5 to 3.0% in laboratory air. The DSD-carbonyl method and active sampling method (US EPA method IP-6A) showed a good correlation (formaldehyde, r2=0.995). The uptake rates for formaldehyde, acetaldehyde, and acetone were estimated as 0.078, 0.062 and 0.079 nmol ppb -1 h -1, respectively. It is possible to estimate atmospheric aldehydes and ketones at parts per billion (ppb), with high sensitivity and precision, by

  17. Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels.

    Science.gov (United States)

    Neubauer, Regina; Wölkart, Gerald; Opelt, Marissa; Schwarzenegger, Christine; Hofinger, Marielies; Neubauer, Andrea; Kollau, Alexander; Schmidt, Kurt; Schrammel, Astrid; Mayer, Bernd

    2015-02-15

    The vascular bioactivation of the antianginal drug nitroglycerin (GTN), yielding 1,2-glycerol dinitrate and nitric oxide or a related activator of soluble guanylate cyclase, is catalyzed by aldehyde dehydrogenase-2 (ALDH2) in rodent and human blood vessels. The essential role of ALDH2 has been confirmed in many studies and is considered as general principle of GTN-induced vasodilation in mammals. However, this view is challenged by an early report showing that diphenyleneiodonium, which we recently characterized as potent ALDH2 inhibitor, has no effect on GTN-induced relaxation of bovine coronary arteries (De La Lande et al., 1996). We investigated this issue and found that inhibition of ALDH2 attenuates GTN-induced coronary vasodilation in isolated perfused rat hearts but has no effect on relaxation to GTN of bovine and porcine coronary arteries. This observation is explained by low levels of ALDH2 protein expression in bovine coronary arteries and several types of porcine blood vessels. ALDH2 mRNA expression and the rates of GTN denitration were similarly low, excluding a significant contribution of ALDH2 to the bioactivation of GTN in these vessels. Attempts to identify the responsible pathway with enzyme inhibitors did not provide conclusive evidence for the involvement of ALDH3A1, cytochrome P450, or GSH-S-transferase. Thus, the present manuscript describes a hitherto unrecognized pathway of GTN bioactivation in bovine and porcine blood vessels. If present in the human vasculature, this pathway might contribute to the therapeutic effects of organic nitrates that are not metabolized by ALDH2.

  18. Evaluation of Serum Nitric Oxide level in Patients with Oral Lichen Planus

    Directory of Open Access Journals (Sweden)

    Mehdipour M.

    2014-06-01

    Full Text Available Statement of Problem: Oral lichen planus (OLP is a chronic inflammatory oral mucosal disease with indefinite etiology. In recent researches, free radicals have been deliberated as the possible etiology of inflammatory and autoimmune diseases. Purpose: This study aimed to evaluate the stress oxidative status with the nitric oxide (NO index in a sample of Iranian population. Materials and Method: In this descriptive-comparative study; serum NO level was assessed in 20 OLP patients as the case group and 20 healthy individuals as the control group. Collected data were analyzed by adopting two Sample t-test; using SPSS 16 software. Statistical significance level was set at p < 0.05. Results: The mean serum NO levels in OLP patients and healthy controls were 17.1±3.4 ng/ml and 14.5±2.7 ng/ml respectively; which revealed a significant statistic-al difference (p= 0.009. Conclusions: The results of the current study with its limitation may support the premise that higher serum levels of NO in patients with OLP might activate the process of lymphocytes and cellular immunity system; hence, possibly endorsing the effect of serum NO in pathogenesis of lichen planus.

  19. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    Directory of Open Access Journals (Sweden)

    Jorge Escobar

    2010-01-01

    Full Text Available Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance.

  20. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    Science.gov (United States)

    Escobar, Jorge; Varela-Nallar, Lorena; Coddou, Claudio; Nelson, Pablo; Maisey, Kevin; Valdés, Daniel; Aspee, Alexis; Espinosa, Victoria; Rozas, Carlos; Montoya, Margarita; Mandiola, Cristian; Rodríguez, Felipe E.; Acuña-Castillo, Claudio; Escobar, Alejandro; Fernández, Ricardo; Diaz, Hernán; Sandoval, Mario; Imarai, Mónica; Rios, Miguel

    2010-01-01

    Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance. PMID:21253489

  1. Phobic anxiety and plasma levels of global oxidative stress in women

    Directory of Open Access Journals (Sweden)

    Kaitlin A. Hagan

    2015-03-01

    Full Text Available Background and Objectives: Psychological distress has been hypothesized to be associated with adverse biologic states such as higher oxidative stress and inflammation. Yet, little is known about associations between a common form of distress -phobic anxiety- and global oxidative stress. Thus, we related phobic anxiety to plasma fluorescent oxidation products (FlOPs, a global oxidative stress marker. Methods: We conducted a cross-sectional analysis among 1,325 women (aged 43-70 years from the Nurses' Health Study. Phobic anxiety was measured using the Crown-Crisp Index (CCI. Adjusted least-squares mean log-transformed FlOPs were calculated across phobic categories. Logistic regression models were used to calculate odds ratios (OR comparing the highest CCI category (≥ 6 points vs. lower scores, across FlOPs quartiles. Results: No association was found between phobic anxiety categories and mean FlOP levels in multivariable adjusted linear models. Similarly, in multivariable logistic regression models there were no associations between FlOPs quartiles and likelihood of being in the highest phobic category. Comparing women in the highest vs. lowest FlOPs quartiles: FlOP_360: OR = 0.68 (95% CI: 0.40 - 1.15; FlOP_320: OR = 0.99 (95% CI: 0.61 - 1.61; FlOP_400: OR = 0.92 (95% CI: 0.52, 1.63. Conclusions: No cross-sectional association was found between phobic anxiety and a plasma measure of global oxidative stress in this sample of middle-aged and older women.

  2. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Directory of Open Access Journals (Sweden)

    Medina-Navarro Rafael

    2011-11-01

    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  3. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS).

    Science.gov (United States)

    Huang, Juzheng; Kumar, Sacheen; Hanna, George B

    2014-09-01

    Aldehydes have attracted great scientific and clinical interest as potential disease biomarkers. We have investigated selected ion flow tube-mass spectrometry (SIFT-MS) in detecting and quantifying C3 to C10 saturated aldehydes (propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal and decanal) from the exhaled breath of 26 healthy human volunteers. To assess the reliability of the Nalophan® bag sampling method employed, the water level in the breath sample was measured up to 4 h after collection and showed no significant degradation. Propanal was found to be the most abundant aldehyde in the exhaled breath of healthy volunteers. For the C4-C10 aldehydes, their median concentrations were all less than 3 ppbv, demonstrating only trace quantities are present in the exhaled breath of the 26 healthy volunteers.

  4. Key changes in wine aroma active compounds during bottle storage of Spanish red wines under different oxygen levels.

    Science.gov (United States)

    Ferreira, Vicente; Bueno, Mónica; Franco-Luesma, Ernesto; Culleré, Laura; Fernández-Zurbano, Purificación

    2014-10-15

    Samples from 16 Spanish red wines have been stored for 6 months at 25 °C under different levels of oxygen (0-56 mg/L). Amino acids, metals, and phenolic compounds were analyzed and related to the production or depletion of key oxidation- and reduction-related aroma compounds. Oxidation brings about sensory-relevant increases in Strecker aldehydes, 1-octen-3-one, and vanillin. Formation of Strecker aldehydes correlates to the wine content on the corresponding amino acid precursor, Zn, and caffeic acid ethyl ester and negatively to some flavonols and anthocyanin derivatives. Formation of most carbonyls correlates to wine-combined SO2, suggesting that part of the increments are the result of the release of aldehydes forming bisulfite combinations once SO2 is oxidized. Methanethiol (MeSH) and dimethylsulfide (DMS), but not H2S levels, increase during storage. MeSH increments correlate to methionine levels and proanthocyanidins and negatively to resveratrol and aluminum. H2S, MeSH, and DMS levels all decreased with oxidation, and for the latter two, there are important effects of Mn and pH, respectively.

  5. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision.

    Science.gov (United States)

    Jesse, Stephen; He, Qian; Lupini, Andrew R; Leonard, Donovan N; Oxley, Mark P; Ovchinnikov, Oleg; Unocic, Raymond R; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y

    2015-11-25

    The atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous films in a scanning transmission electron microscope (STEM) is demonstrated. Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. The fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam is further demonstrated. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.

  6. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1.

    Directory of Open Access Journals (Sweden)

    Silvia Schumann

    Full Text Available Mouse aldehyde oxidase (mAOX1 forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Escherichia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.

  7. Serum Fetuin-A levels, insulin resistance and oxidative stress in women with polycystic ovary syndrome.

    Science.gov (United States)

    Enli, Yasar; Fenkci, Semin Melahat; Fenkci, Veysel; Oztekin, Ozer

    2013-12-01

    This study was designed to determine serum Fetuin-A levels and establish whether serum Fetuin-A level is related with insulin resistance, oxidative stress, ovarian hyperandrogenism and dyslipidemia in women with polycystic ovary syndrome (PCOS). Twenty-two patients with PCOS and twenty-one healthy control women were evaluated in this controlled clinical study. Serum Fetuin-A, lipid fractions, glucose, insulin, malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), superoxide dismutase (SOD) and other hormone (gonadotropins, androgens) levels were measured. The estimate of insulin resistance was calculated by homeostasis model assessment (HOMA-R). The women with PCOS had significantly higher serum fasting glucose, insulin, luteinizing hormone (LH), MDA, Fetuin-A levels, and LH/follicle-stimulating hormone (FSH) ratio, free androgen index (FAI), HOMA-IR than healthy women. However, sex hormone-binding globulin (SHBG) and GSH levels were significantly lower in patients with PCOS compared with controls. Fetuin-A was positively correlated with insulin, HOMA-IR and FAI. Multiple regression analysis revealed that FAI was strong predictor of serum Fetuin-A level. Serum Fetuin-A level was related with insulin resistance and ovarian hyperandrogenism in women with PCOS. These results suggest that Fetuin-A may have a role in triggering the processes leading to insulin resistance and androgen excess in PCOS.

  8. Elevated nitric oxide and 3',5' cyclic guanosine monophosphate levels in patients with alcoholic cirrhosis

    Institute of Scientific and Technical Information of China (English)

    C(i)ntia Siqueira; Miguel Carneiro de Moura; Ana J(u)lia Pedro; Paula Rocha

    2008-01-01

    AIM: To evaluate whether serum levels of nitric oxide (NO') and plasma levels of cyclic guanosine monophosphate (Cgmp) and total glutathione (GSH) are altered in patients with alcoholic cirrhosis and to examine their correlation with the severity of liver disease.METHODS: Twenty-six patients with alcoholic liver cirrhosis were studied. Serum levels of NO· and plasma levels of cGMP and GSH were measured in 7 patients with compensated alcoholic cirrhosis (Child-Pugh A) and 19 patients with advanced cirrhosis (Child-Pugh B and C).The model for end-stage liver disease (MELD) score was evaluated. Sixteen healthy volunteers served as controls.Liver enzymes and creatinine levels were also tested.RESULTS: NO· and cGMP levels were higher in patients with Child-Pugh B and C cirrhosis than in Child-Pugh A cirrhosis or controls (NO·: 21.70 ± 8.07 vs 11.70 ± 2.74; 21.70 ± 8.07 vs 7.26 ± 2.47 μmol/L, respectively;P < 0.001) and (cGMP: 20.12 ± 6.62 vs 10.14 ± 2.78;20.12 ± 6.62 vs 4.95 ± 1.21 pmol/L, respectively; P <0.001). Total glutathione levels were lower in patients with Child-Pugh B and C cirrhosis than in patients with Child-Pugh A cirrhosis or controls (16.04 ± 6.06 vs 23.01 ± 4.38 or 16.04 ± 6.06 vs 66.57 ± 26.23 μmol/L,respectively; P < 0.001). There was a significant correlation between NO· and cGMP levels in all patients with alcoholic cirrhosis. A significant negative correlation between reduced glutathione/glutathione disulfide and the MELD score was found in all cirrhotic patients. CONCLUSION: Our results suggest a role for oxidative stress in alcoholic liver cirrhosis, which is more significant in decompensated patients with higher levels of NO· and cGMP and lower GSH levels than in compensated and control patients. Altered mediator levels in decompensated patients may influence the hemodynamic changes in and progression of liver disease.

  9. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level.

    Science.gov (United States)

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-11-15

    The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO2 selectivity. Interestingly, Mn-TiO2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future.

  10. Changes in nitric oxide and free radical levels in rat gastrocnemius muscle during contraction and fatigue.

    Science.gov (United States)

    Ibrahim, Mariam Y; Ashour, Osama M

    2011-12-01

    1. The ratio of nitric oxide (NO) to free radicals is critical during skeletal muscle contraction. Changes in this ratio have been suggested to play a role in muscle fatigue. 2. The aim of the present study was to investigate the changes in NO and free radicals during tetanic and subtetanic contraction and fatigue in the gastrocnemius muscle of adult male Wistar rats. 3. Rats were subjected to either low- or high-frequency stimulation (10 and 100 Hz, respectively) of the right gastrocnemius muscle. Both groups were further subdivided into untreated (0.9% NaCl solution), N(G) -nitro-L-arginine methyl ester (L-NAME)-treated and reduced glutathione (GSH)-treated groups. Rats were administered their treatments intraperitoneally 30 min prior to electrical stimulation. 4. Levels of both NO and lipid peroxides increased significantly during peak force contraction for either type of contractions, with a more significant response during subtetanic contraction. Treatment with L-NAME significantly reduced the maximal force and this effect was more marked in the low frequency-stimulated group. Although peroxides levels were reduced by GSH, it had no significant effect on force production. In L-NAME-treated rats, the onset of 50% fatigue was accelerated with a significant increase in peroxides levels, whereas the opposite effects were observed after GSH treatment. 5. Current results reflect the importance of endogenous NO, as an anti-oxidant, in aiding muscle performance by overcoming oxidative stress during fatigue. They provide a possible explanation as to why patients with myopathies like Duchenne muscular dystrophy, in which dystrophin is lacking suffer from muscle weakness and fatigue easily.

  11. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-Ting [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yu, Yi-Hui [Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan (China); Nguyen, Van-Huy [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Lu, Kung-Te [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Wu, Jeffrey Chi-Sheng, E-mail: cswu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Luh-Maan [Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan (China); Kuo, Chi-Wen [Taiwan Semiconductor Manufacturing Company, Hsinchu 30078, Taiwan (China)

    2013-11-15

    Graphical abstract: We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. -- Highlights: • The combination of optical fiber and honeycomb significantly enhanced the performance of VOCs photodegradation. • The removal efficiency of m-xylene is enhanced to 96.5% as compared to 22.0% for UV irradiation alone. • Fiber-illuminated honeycomb reactor is the first step toward an industrial-scale technology on the removal of xylene. -- Abstract: The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO{sub 2} photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO{sub 2} selectivity. Interestingly, Mn-TiO{sub 2} in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future.

  12. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  13. Correlation of serum homocysteine metabolism and oxidative stress level with peripheral nerve damage in patients with Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Wei-Xia Gu; Zhi-Qing Zhuang; Mo-Lan Wang; Jun Zhu

    2016-01-01

    Objective:To analyze the correlation of serum homocysteine metabolism and oxidative stress level with peripheral nerve damage in patients with Parkinson's disease.Methods:A total of 58 patients with Parkinson's disease and 67 normal human beings were included in the study, levels of plasma homocysteine (Hcy) as well as superoxide dismutase (SOD), GSH, malondialdehyde (MDA) and other oxidative stress indexes were detected, and common peroneal nerve motor conduction velocity (MCV), latent period (LP) and amplitude (Amp) were determined.Results: Serum Hcy level of observation group was higher than that of control group while folic acid and vitamin B6 levels were lower than those of control group; serum oxidative indexes LHP, H2O2, AOPP and MDA levels were higher than those of control group while antioxidant indexes SOD T, SOD Mn, SOD Cu-Zn, GSH-PX, T-AOC and CAT levels were lower than those of control group; common peroneal nerve MCV and Amp values were lower than those of control group while LP value was higher than that of control group. Peripheral nerve damage parameter values in patients with Parkinson's disease were directly correlated with serum levels of Hcy metabolism indexes and oxidative stress indexes. Conclusions: Peripheral nerve damage in patients with Parkinson's disease is associated with hyperhomocysteinemia and oxidative stress disorder, and intervention in serum levels of Hcy and oxidative stress indexes is expected to become a new way for treatment of Parkinson's disease.

  14. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Directory of Open Access Journals (Sweden)

    J. C. Gong

    2010-08-01

    Full Text Available Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein in a central Beijing site in the summer and early fall of 2008 (from June to October. Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions. In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5. These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  15. Gaucher disease: plasmalogen levels in relation to primary lipid abnormalities and oxidative stress.

    Science.gov (United States)

    Moraitou, Marina; Dimitriou, Evangelia; Dekker, Nick; Monopolis, Ioannis; Aerts, Johannes; Michelakakis, Helen

    2014-01-01

    Plasmalogens represent a unique class of phospholipids. Reduced red blood cell plasmalogen levels in Gaucher disease patients were reported, correlating to total disease burden. The relation between plasmalogen abnormalities in Gaucher disease patients and primary glycosphingolipid abnormalities, malonyldialdehyde levels, an indicator of lipid peroxidation, and the total antioxidant status was further investigated. Significant reduction of C16:0 and C18:0 plasmalogens in red blood cells of Gaucher disease patients was confirmed. In parallel, a significant increase in the glucosylceramide/ceramide ratio in red blood cell membranes, as well as an average 200-fold increase in plasma glucosylsphingosine levels was observed. Red blood cell malonyldialdehyde levels were significantly increased in patients, whereas their total antioxidant status was significantly reduced. A negative correlation between plasmalogen species and glucosylceramide, ceramide, glucosylceramide/ceramide ratio, glucosylsphingosine and malonyldialdehyde, significant for the C16:0 species and all the above parameters with the exception of malonyldialdehyde levels, was found along with a positive non-significant correlation with the total antioxidant status. Our results indicate that increased lipid peroxidation and reduced total antioxidant status exist in Gaucher disease patients. They demonstrate a clear link between plasmalogen levels and the primary glycolipid abnormalities characterizing the disorder and an association with the increased oxidative stress observed in Gaucher disease patients.

  16. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Kippler, Maria [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Bakhtiar Hossain, Mohammad [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh); Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Lindh, Christian [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh); Moore, Sophie E. [MRC Keneba, MRC Laboratories (Gambia); Kabir, Iqbal [Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Vahter, Marie [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Broberg, Karin, E-mail: karin.broberg_palmgren@med.lu.se [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh)

    2012-01-15

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11-17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 {mu}g/L, and breast-milk Cd 0.13 {mu}g/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  17. Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease.

    Science.gov (United States)

    Antoniak, Derrick T; Duryee, Michael J; Mikuls, Ted R; Thiele, Geoffrey M; Anderson, Daniel R

    2015-12-01

    Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde-acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.

  18. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters

    Directory of Open Access Journals (Sweden)

    Zarghami Nosratollah

    2007-06-01

    Decreasing seminal plasma antioxidants levels, especially catalase and TAC, could have significant role in etiology of impaired sperm function. Measurement of 8-Isoprostane may be used as a specific biomarker for assessing oxidative stress on sperm.

  19. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    Science.gov (United States)

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-01-01

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix

  20. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    Directory of Open Access Journals (Sweden)

    Chuanjun Liu

    2017-02-01

    Full Text Available The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM sensor arrays based on molecularly imprinted sol-gel (MISG materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL; nonanal (NAL and bezaldehyde (BAL. The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS and tetrabutoxytitanium (TBOT. Aminopropyltriethoxysilane (APT; diethylaminopropyltrimethoxysilane (EAP and trimethoxy-phenylsilane (TMP were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA; nonanoic acid (NA and benzoic acid (BA were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA; multivariate analysis of covariance (MANCOVA and hierarchical cluster analysis (HCA. The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP effect and the matrix

  1. [THE POSSIBILITY OF APPLICATION OF COLORIMETRY TECHNIQUE OF DETECTION OF LEVELS OF OXIDATIVE STRESS AND ANTIOXIDANT CAPACITY OF SERUM].

    Science.gov (United States)

    Sapojnikova, M A; Strakhova, L A; Blinova, T V; Makarov, I A; Rakhmanov, R S; Umniagina, I A

    2015-11-01

    The analysis was implemented concerning indicators of oxidative status and antioxidant capacity of serum. The indicators were received by colorimetry technique based on detection of peroxides in blood serum in examined patients of different categories: healthy persons aged from 17 to 20 years and from 30 to 60 years and patients with bronchopulmonary pathology. The low level of oxidative stress and high antioxidant capacity of serum were established in individuals ofyounger age. With increasing of age, degree of expression of oxidative stress augmented and level of antioxidant defense lowered. Almost all patients with bronchopulmonary pathology had high level of oxidative stress and low level of antioxidant defense. The analysis of quantitative data of examined indicators their conformity with health condition was established

  2. Effects of simulated microgravity on nitric oxide level in cardiac myocytes and its mechanism

    Institute of Scientific and Technical Information of China (English)

    熊江辉; 李莹辉; 聂捷琳

    2003-01-01

    The depression of cardiac contractility induced by space microgravity is an important issue of aerospace medicine research, while its precise mechanism is still unknown. In the present study, we explored effects of simulated microgravity on nitric oxide (NO) level, inducible nitric oxide synthase (iNOS) expression and related regulative mechanism using electron spin resonance (ESR) spectroscopy, immunocytochemistry and in situ hybridization. We found a remarkable increase of NO level and up-regulation of iNOS and iNOS mRNA expression in rat cardiac myocytes under simulated microgravity. Staurosporine (a nonselective protein kinase inhibitor), calphostin C (a selective protein kinase C inhibitor), partially inhibited the effect of simulated microgravity. Thus regulative effect of simulated microgravity on iNOS expression is mediated at least partially via activation of protein kinase C. These results indicate that NO system in cardiac myocytes is sensitive to simulated microgravity and may play an important role in the depression of cardiac contractility induced by simulated microgravity.

  3. Compromised proteasome degradation elevates neuronal nitric oxide synthase levels and induces apoptotic cell death.

    Science.gov (United States)

    Lam, Philip Y; Cadenas, Enrique

    2008-10-15

    The significance of impairment of proteasome activity in PC12 cells was examined in connection with nitrative/nitrosative stress and apoptotic cell death. Treatment of differentiated PC12 cells with MG132, a proteasome inhibitor, elicited a dose- and time-dependent increase in neuronal nitric oxide synthase (nNOS) protein levels, decreased cell viability, and increased cytotoxicity. Viability and cytotoxicity were ameliorated by L-NAME (a broad NOS inhibitor). Nitric oxide/peroxynitrite formation was increased upon treatment of PC12 cells with MG132 and decreased upon treatment with the combination of MG132 and 7-NI (a specific inhibitor of nNOS). The decreases in cell viability appeared to be effected by an activation of JNK and its effect on mitochondrial Bcl-x(L) phosphorylation. These effects are strengthened by the activation of caspase-9 along with increased caspase-3 activity upon treatment of PC12 cells with MG132. These results suggest that impairment of proteasome activity and consequent increases in nNOS levels lead to a nitrative stress that involves the coordinated response of JNK cytosolic signaling and mitochondrion-driven apoptotic pathways.

  4. Ozone oxidative postconditioning ameliorates joint damage and decreases pro-inflammatory cytokine levels and oxidative stress in PG/PS-induced arthritis in rats.

    Science.gov (United States)

    Vaillant, Jaqueline Dranguet; Fraga, Angela; Díaz, María Teresa; Mallok, A; Viebahn-Hänsler, Renate; Fahmy, Ziad; Barberá, Ariana; Delgado, Liván; Menéndez, Silvia; Fernández, Olga Sonia León

    2013-08-15

    Rheumatoid Arthritis (RA) is the most prevalent chronic condition present in ~1% of the adult population. Many pro-inflammatory mediators are increased in RA, including Reactive Oxygen Species such as nitric oxide NO, pro-inflammatory cytokines as tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β) and other molecules. Ozone oxidative postconditioning has regulatory effects on some pathological targets associated with RA. Thus, the aim of this study was to investigate the efficacy of ozone therapy in PG/PS-induced arthritis in rats in point of joints inflammation and morphology. Moreover, cytokines, nitric oxide and oxidative stress levels in spleen homogenates were evaluated. Ozone treatment ameliorated joint damage, reduced TNF-α concentrations as well as TNF-α and IL-1β mRNA levels. Besides, cellular redox balance, nitric oxide and fructolysine levels were reestablished after ozone oxidative postconditioning. It was concluded that pleiotropic ozone's effects clarify its therapeutic efficacy in RA. Decreasing inflammation and joint injury, reduction of pro-inflammatory cytokines, TNF-α and IL-1β transcripts and re-establishment of cellular redox balance after ozone treatment were demonstrated.

  5. Plasma levels of interleukin-10 and nitric oxide in response to two different desflurane anesthesia flow rates

    Directory of Open Access Journals (Sweden)

    Dilek Kalayci

    2014-07-01

    Full Text Available OBJECTIVE: This study investigated interleukin-10 and nitric oxide plasma levels following surgery to determine whether there is a correlation between these two variables and if different desflurane anesthesia flow rates influence nitric oxide and interleukin-10 concentrations in circulation. MATERIALS AND METHODS: Forty patients between 18 and 70 years and ASA I-II physical status who were scheduled to undergo thyroidectomy were enrolled in the study. INTERVENTIONS: Patients were allocated into two groups to receive two different desflurane anesthesia flow rates: high flow (Group HF and low flow (Group LF. MEASUREMENTS: Blood samples were drawn at the beginning (t 0 and end (t 1 of the operation and after 24 h (t 2. Plasma interleukin-10 and nitric oxide levels were measured using an enzyme-linked-immunosorbent assay and a Griess reagents kit, respectively. Hemodynamic and respiratory parameters were assessed. RESULTS: There was no statistically significant difference between the two groups with regard to interleukin-10 levels at the times of measurement. Interleukin-10 levels were increased equally in both groups at times t 1 and t 2 compared with preoperative concentrations. For both groups, nitric oxide circulating concentrations were significantly reduced at times t 1 and t 2 compared with preoperative concentrations. However, the nitric oxide value was lower for Group HF compared to Group LF at t 2. No correlation was found between the IL-10 and nitric oxide levels. CONCLUSION: Clinical usage of two different flow anesthesia forms with desflurane may increase interleukin-10 levels both in Group HF and Group LF; nitric oxide levels circulating concentrations were significantly reduced at times t 1 and t 2 compared with preoperative concentrations; however, at 24 h postoperatively they were higher in Group LF compared to Group HF. No correlation was detected between interleukin-10 and nitric oxide levels.

  6. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure.

    Science.gov (United States)

    Brennan, Lisa; Khoury, Josef; Kantorow, Marc

    2017-01-01

    Age-related cataract is associated with oxidative stress and death of lens epithelial cells (LECs) whose survival is dependent on functional mitochondrial populations. Oxidative stress-induced depolarization/damage of LEC mitochondria results in increased reactive oxygen species (ROS) levels and cell death suggesting the need for a LEC mechanism to remove mitochondria depolarized/damaged upon oxidative stress exposure to prevent ROS release and LEC death. To date, a mechanism(s) for removal of depolarized/damaged LEC mitochondria has yet to be identified and the importance of eliminating oxidative stress-damaged mitochondria to prevent LEC ROS release and death has not been established. Here, we demonstrate that Parkin levels increase in LECs exposed to H2O2-oxidative stress. We establish that Parkin translocates to LEC mitochondria depolarized upon oxidative stress exposure and that Parkin recruits p62/SQSTM1 to depolarized LEC mitochondria. We demonstrate that translocation of Parkin results in the elimination of depolarized/damaged mitochondria and that Parkin clearance of LEC mitochondria is dependent on its ubiquitin ligase activity. Importantly, we demonstrate that Parkin elimination of damaged LEC mitochondria results in reduced ROS levels and increased survival upon oxidative stress exposure. These results establish that Parkin functions to eliminate LEC mitochondria depolarized/damaged upon oxidative stress exposure and that elimination of damaged mitochondria by Parkin is important for LEC homeostasis and survival. The data also suggest that mitochondrial quality control by Parkin could play a role in lens transparency.

  7. Low-level 14C methane oxidation rate measurements modified for remote field settings

    Science.gov (United States)

    Pack, M. A.; Pohlman, J.; Ruppel, C. D.; Xu, X.

    2012-12-01

    Aerobic methane oxidation limits atmospheric methane emissions from degraded subsea permafrost and dissociated methane hydrates in high latitude oceans. Methane oxidation rate measurements are a crucial tool for investigating the efficacy of this process, but are logistically challenging when working on small research vessels in remote settings. We modified a low-level 14C-CH4 oxidation rate measurement for use in the Beaufort Sea above hydrate bearing sediments during August 2012. Application of the more common 3H-CH4 rate measurement that uses 106 times more radioactivity was not practical because the R/V Ukpik cannot accommodate a radiation van. The low-level 14C measurement does not require a radiation van, but careful isolation of the 14C-label is essential to avoid contaminating natural abundance 14C measurements. We used 14C-CH4 with a total activity of 1.1 μCi, which is far below the 100 μCi permitting level. In addition, we modified field procedures to simplify and shorten sample processing. The original low-level 14C-CH4 method requires 6 steps in the field: (1) collect water samples in glass serum bottles, (2) inject 14C-CH4 into bottles, (3) incubate for 24 hours, (4) filter to separate the methanotrophic bacterial cells from the aqueous sample, (5) kill the filtrate with sodium hydroxide (NaOH), and (6) purge with nitrogen to remove unused 14C-CH4. Onshore, the 14C-CH4 respired to carbon dioxide or incorporated into cell material by methanotrophic bacteria during incubation is quantified by accelerator mass spectrometry (AMS). We conducted an experiment to test the possibility of storing samples for purging and filtering back onshore (steps 4 and 6). We subjected a series of water samples to steps 1-3 & 5, and preserved with mercuric chloride (HgCl2) instead of NaOH because HgCl2 is less likely to break down cell material during storage. The 14C-content of the carbon dioxide in samples preserved with HgCl2 and stored for up to 2 weeks was stable

  8. An overview on therapeutics attenuating amyloid β level in Alzheimer's disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels.

    Science.gov (United States)

    Zhou, Xiaoling; Li, Yifei; Shi, Xiaozhe; Ma, Chun

    2016-01-01

    Alzheimer's disease (AD) is the most common underlying cause of dementia, and novel drugs for its treatment are needed. Of the different theories explaining the development and progression of AD, "amyloid hypothesis" is the most supported by experimental data. This hypothesis states that the cleavage of amyloid precursor protein (APP) leads to the formation of amyloid beta (Aβ) peptides that congregate with formation and deposition of Aβ plaques in the frontal cortex and hippocampus. Risk factors including neurotransmitter modulation, chronic inflammation, metal-induced oxidative stress and elevated cholesterol levels are key contributors to the disease progress. Current therapeutic strategies abating AD progression are primarily based on anti-acetylcholinesterase (AChE) inhibitors as cognitive enhancers. The AChE inhibitor, donepezil, is proven to strengthen cognitive functions and appears effective in treating moderate to severe AD patients. N-Methyl-D-aspartate receptor antagonist, memantine, is also useful, and its combination with donepezil demonstrated a strong stabilizing effect in clinical studies on AD. Nonsteroidal anti-inflammatory drugs delayed the onset and progression of AD and attenuated cognitive dysfunction. Based upon epidemiological evidence and animal studies, antioxidants emerged as potential AD preventive agents; however, clinical trials revealed inconsistencies. Pharmacokinetic and pharmacodynamic profiling demonstrated pleiotropic functions of the hypolipidemic class of drugs, statins, potentially contributing towards the prevention of AD. In addition, targeting the APP processing pathways, stimulating neuroprotective signaling mechanisms, using the amyloid anti-aggregants and Aβ immunotherapy surfaced as well-tested strategies in reducing the AD-like pathology. Overall, this review covers mechanism of inducing the Aβ formation, key risk factors and major therapeutics prevalent in the AD treatment nowadays. It also delineates the need

  9. Effect of drinking Arabian Qahwa on fractional exhaled nitric oxide levels in healthy nonsmoking Saudi adults

    Directory of Open Access Journals (Sweden)

    Syed Shahid Habib

    2012-01-01

    Full Text Available Objectives: Fractional exhaled nitric oxide (FENO is an emerging marker of inflammation in respiratory diseases. However, it is affected by a number of confounding factors. We aimed to study the effect of drinking Arabian Qahwa on FENO in non-smoking Saudi healthy adults. Methods: We recruited 12 nonsmoker healthy male adults aged 36.6 ± 2.7 (21-50 years. All subjects were free from acute respiratory infections or allergies and had normal ventilatory functions and serum IgE levels. At 8 am in the morning, their baseline values of FENO were recorded. They had not taken tea or coffee in the morning and had taken similar light breakfast. They were given three cups of Arabian Qahwa to drink and then after every 30 minutes, serial levels of FENO were recorded. Results: Average FENO levels at baseline were 28.73 ± 9.33 (mean ± SD parts per billion (ppb. The mean FENO levels started to decrease significantly after 30 minutes of drinking Arabian Qahwa (P=0.002. This decrease in FENO level was further observed till two hours after Qahwa drinking and then it started to increase in next 90 minutes but still was significantly lower than the baseline (P=0.002. The mean FENO level recorded after 4 hours was 27.22 ± 10.22 (P=0.039. Conclusions: FENO levels were significantly lowered by intake of Arabian Qahwa and this effect remains for about 4 hours. Therefore, history of recent Qahwa intake and abstinence is essential before performance of FENO and its interpretation.

  10. Prenatal exposure to zinc oxide particles alters monoaminergic neurotransmitter levels in the brain of mouse offspring.

    Science.gov (United States)

    Okada, Yuka; Tachibana, Ken; Yanagita, Shinya; Takeda, Ken

    2013-01-01

    Zinc oxide (ZnO) nano-sized particles (NPs) are beneficial materials used for sunscreens and cosmetics. Although ZnO NPs are widely used for cosmetics, the health effects of exposure during pregnancy on offspring are largely unknown. Here we investigated the effects of prenatal exposure to ZnO NPs on the monoaminergic system of the mouse brain. Subcutaneous administration of ZnO NPs to the pregnant ICR mice (total 500 μg/mouse) were carried out and then measured the levels of dopamine (DA), serotonin (5-HT), and noradrenalin, and their metabolites in 9 regions of the brain of offspring (6-week-old) using high performance liquid chromatography (HPLC). HPLC analysis demonstrated that DA levels were increased in hippocampus in the ZnO NP exposure group. In the levels of DA metabolites, homovanillic acid was increased in the prefrontal cortex and hippocampus, and 3, 4-dihydroxyphenylacetic acid was increased in the prefrontal cortex by prenatal ZnO NP exposure. Furthermore, DA turnover levels were increased in the prefrontal cortex, neostriatum, nucleus accumbens, and amygdala in the ZnO NP exposure group. We also found changes of the levels of serotonin in the hypothalamus, and of the levels of 5-HIAA (5-HT metabolite) in the prefrontal cortex and hippocampus in the ZnO NP-exposed group. The levels of 5-HT turnover were increased in each of the regions except for the cerebellum by prenatal ZnO NP exposure. The present study indicated that prenatal exposure to ZnO NPs might disrupt the monoaminergic system, and suggested the possibility of detrimental effects on the mental health of offspring.

  11. Measurements of Location-Dependent Nitric Oxide Levels on Skin Surface in relation to Acupuncture Point

    Directory of Open Access Journals (Sweden)

    Yejin Ha

    2012-01-01

    Full Text Available Location-dependent skin surface’s partial nitric oxide pressure (pNO is studied using highly sensitive amperometric NO microsensor with a small sensing area (diameter  = 76 μm. The pNO level of LI4 (Hegu acupuncture point is measured and compared with the pNO level of nonacupuncture point. In addition, the mapping of pNO is carried out over the left wrist skin area one- as well as two-dimensionally. Statistically higher pNO levels near the position of acupuncture points than non-acupuncture points are observed consistently, implying tight relationship between the level of NO release of skin and acupuncture points. The amperometric planar NO microsensor successfully monitors the heterogeneity of skin pNO distribution in high spatial resolution due to its advantageous features such as high sensitivity and small sensing dimension. The current study suggests the direct connection between NO and acupuncture points and possibly provides beneficial information to understand physiological roles and basis of the acupuncture points.

  12. Measurements of Location-Dependent Nitric Oxide Levels on Skin Surface in relation to Acupuncture Point.

    Science.gov (United States)

    Ha, Yejin; Kim, Misun; Nah, Jiseon; Suh, Minah; Lee, Youngmi

    2012-01-01

    Location-dependent skin surface's partial nitric oxide pressure (pNO) is studied using highly sensitive amperometric NO microsensor with a small sensing area (diameter  = 76 μm). The pNO level of LI4 (Hegu) acupuncture point is measured and compared with the pNO level of nonacupuncture point. In addition, the mapping of pNO is carried out over the left wrist skin area one- as well as two-dimensionally. Statistically higher pNO levels near the position of acupuncture points than non-acupuncture points are observed consistently, implying tight relationship between the level of NO release of skin and acupuncture points. The amperometric planar NO microsensor successfully monitors the heterogeneity of skin pNO distribution in high spatial resolution due to its advantageous features such as high sensitivity and small sensing dimension. The current study suggests the direct connection between NO and acupuncture points and possibly provides beneficial information to understand physiological roles and basis of the acupuncture points.

  13. Betel Leaf Extract (Piper betle L. Antihyperuricemia Effect Decreases Oxidative Stress by Reducing the Level of MDA and Increase Blood SOD Levels of Hyperuricemia Wistar Rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    I Made Sumarya

    2016-06-01

    Full Text Available Background: Betel leaf extracts (Piper betle L. antioxidant activity and enzyme inhibitors of XO. Hyperuricemia cause oxidative stress by increasing the formation of reactive oxygen species (ROS cause lipid peroxidation and oxygenation of low-density lipoprotein cholesterol (LDLc. Objective: The aim of this research was to determine the betel leaf extract as an anti hyperuricemia that can lower the blood uric acid levels and oxidative stress by lowering the levels of MDA and increase the SOD of hyperuricemia of the rat’s blood. Method: Experimental research was conducted with the design of The Randomized Post Test Only Control Group Design, on normal Wistar rats (Rattus norvegicus, administered with oxonic potassium (hyperuricemia and the hyperuricemia rats either given betel leaf extract and allopurinol. After the experiment of uric acid levels, MDA and SOD in rat blood determined. Results: The results showed that the betel leaf extract significantly (p <0.05 lower uric acid levels, MDA and increase levels of SOD in rat blood. There is a positive correlation between the levels of uric acid with MDA levels and a negative correlation, although not significantly with SOD (p >0.05. Conclusion: It can be concluded that the betel leaf extract as an anti-hyperuricemia can lower the uric acid levels and decreases oxidative stress by lowering the levels of MDA and increasing the SOD.

  14. Levels of selected oxidative stress markers in the vitreous and serum of diabetic retinopathy patients

    Science.gov (United States)

    Brzović-Šarić, Vlatka; Landeka, Irena; Šarić, Borna; Barberić, Monika; Andrijašević, Lidija; Cerovski, Branimir; Oršolić, Nada

    2015-01-01

    Purpose In diabetes, an impaired antioxidant defense system contributes to the development of diabetic retinopathy. The main objective of this paper was to find correlations of oxidative stress parameters within and between the vitreous and serum in patients with type 2 diabetes who had developed proliferative diabetic retinopathy. Methods The study included and compared two groups of patients who underwent vitrectomy: 37 patients with type 2 diabetes and proliferative retinopathy (PDR), and 50 patients with non-diabetic eye disorders (NDED). Vascular endothelial growth factor (VEGF), advanced oxidized protein product (AOPP), and oxidative stress markers (direct lipid hydroperoxidation (LPO), malondialdehyde (MDA), total superoxide dismutase (SOD), and glutathione (GSH)) were measured in the vitreous and serum of both groups and correlated with one another, between humoral compartments and with gender, age, and serum glucose levels. Results In the vitreous of PDR patients, VEGF, LPO, and MDA (p<0.05) were increased and SOD values were slightly lowered (p<0.05) than in NDED patients. Vitreous AOPP and GSH showed no differences between the groups. In the serum, AOPP, MDA, and SOD were increased (p<0.05) and VEGF was slightly increased (p<0.05) in the PDR group compared to NDED. With regard to gender, similar changes were recorded for both groups, except for the lower serum MDA in males than females in the NDED group. Advanced age showed no significant effect on changes of measured parameters in the vitreous. In the serum, VEGF was positively correlated (p<0.05) and MDA and SOD negatively correlated (p<0.05) with increasing age. Among measured parameters within and between the vitreous and serum, several correlative links occurred in the PDR group that were not present in the NDED group. The most prominent correlation changes were between serum LPO and vitreal LPO, serum SOD and vitreal LPO, serum LPO and serum SOD, and vitreal VEGF and serum SOD. Conclusions Among

  15. Aldehyde measurements in indoor environments in Strasbourg (France)

    Science.gov (United States)

    Marchand, C.; Bulliot, B.; Le Calvé, S.; Mirabel, Ph.

    Formaldehyde and acetaldehyde concentrations have been measured in indoor environments of various public spaces (railway station, airport, shopping center, libraries, underground parking garage, etc.) of Strasbourg area (east of France). In addition, formaldehyde, acetaldehyde propionaldehyde and hexanal concentrations have been measured in 22 private homes in the same area. In most of the sampling sites, indoor and outdoor formaldehyde and acetaldehyde concentrations were measured simultaneously. Gaseous aldehydes levels were quantified by a conventional DNHP-derivatization method followed by liquid chromatography coupled to UV detection. Outdoor formaldehyde and acetaldehyde concentrations were both in the range 1-10 μg m -3, the highest values being measured at the airport and railway station. Indoor concentrations were strongly dependant upon the sampling sites. In homes, the average concentrations were 37 μg m -3 (living rooms) and 46 μg m -3 (bedrooms) for formaldehyde, 15 μg m -3 (living rooms) and 18 μg m -3 (bedrooms) for acetaldehyde, 1.2 μg m -3 (living rooms) and 1.6 μg m -3 (bedrooms) for propionaldehyde, 9 μg m -3 (living rooms) and 10 μg m -3 (bedrooms) for hexanal. However, concentrations as high as 123, 80 and 47 μg m -3 have been found for formaldehyde, acetaldehyde and hexanal respectively. In public spaces, the highest formaldehyde concentration (62 μg m -3) was found in a library and the highest concentration of acetaldehyde (26 μg m -3) in the hall of a shopping center. Additional measurements of formaldehyde and acetaldehyde were made inside a car both at rest or in a fluid or heavy traffic as well as in a room where cigarettes were smoked. Our data have been discussed and compared with those of previous studies.

  16. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea

    Directory of Open Access Journals (Sweden)

    Parvaiz eAhmad

    2016-03-01

    Full Text Available This work was designed to evaluate whether external application of nitric oxide (NO in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L. plants. SNAP (50 μM was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl. Salt stress negatively affected growth and biomass yield, leaf relative water content (LRWC and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars, hydrogen peroxide (H2O2 and malondialdehyde (MDA, as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and glutathione reductase (GR in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt-induced oxidative damage by enhancing the biosynthesis of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system.

  17. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    Science.gov (United States)

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  18. Effect of Different Selenium Supplementation Levels on Oxidative Stress, Cytokines, and Immunotoxicity in Chicken Thymus.

    Science.gov (United States)

    Wang, Yachao; Jiang, Li; Li, Yuanfeng; Luo, Xuegang; He, Jian

    2016-08-01

    This study assessed the effects of different selenium (Se) supplementation levels on oxidative stress, cytokines, and immunotoxicity in chicken thymus. A total of 180 laying hens (1 day old; Mianyang, China) were randomly divided into 4 groups (n = 45). The chickens were maintained either on a basic diet (control group) containing 0.2 mg/kg Se, a low-supplemented diet containing 5 mg/kg Se, a medium-supplemented diet containing 10 mg/kg Se, or a high-supplemented diet containing 15 mg/kg Se for 15, 30, and 45 days, respectively. Over the entire experimental period, serum and thymus samples were collected and used for the detection of the experimental index. The results indicated that the antioxidative enzyme activities and messenger RNA (mRNA) levels of antioxidative enzymes, IFN-γ and IL-2 in the thymus, and the content of IFN-γ and IL-2 in the serum of excessive-Se-treated chickens at all time points (except for the 5 mg/kg Se supplement group at 15 days) were significantly decreased (P thymus in the 5 mg/kg Se supplement group at 15 and 30 days compared to the corresponding control groups. In histopathological examination, the thymus tissue from excessive-Se-treated chickens revealed different degrees of cortex drop, incrassation of the medulla, and degeneration of the reticular cells. These results suggested that the excessive Se could result in a decrease in immunity, an increase in oxidative damage, and a series of clinical pathology changes, such as cortex drop, incrassation of the medulla, and degeneration of the reticular cells.

  19. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    Science.gov (United States)

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain.

  20. Durian Consumption Effect on the Plasma Malondialdehyde Level as Biomarker of Stress Oxidative in Rats

    Directory of Open Access Journals (Sweden)

    Anugrah Aulia Ulil Amri

    2016-03-01

    Full Text Available Background: Excessive consumption of durian (Durio zibethinus Murray in Indonesia is often connected with its effect on health. This study aims to understand the effect of durian consumption to malondialdehyde (MDA in plasma as oxidative stress biomarker. Methods: The study used an experimental research design on animal models, in the Biochemistry and Molecular Biology Department, Faculty of Medicine, Universitas Indonesia, July–August 2012. Thirty two Sprague-Dawley rats were used, divided into four groups: control, treatment week 1, 2, and 3. Each treatment group was given 20 gram durian fruit diluted with water until 20 ml volume per oral, divided into two doses (10 ml each with 4 hours interlude between doses for 1 week, 2 weeks, and 3 weeks. All groups got normal diet and water ad libitum. Plasma MDA level was measured by TBARS method, then analyzed using Kurskal-Wallis and Mann-Whitney tests. Results: Seventeen samples were successfully decapitated (5 for control; 6 for week 1; 3 for week 2; 3 for week 3. Average plasma MDA level for control treatment week 1, 2 and 3 groups were 0.707 nmol/ml, 0.432 nmol/ml, 0.312 nmol/ml, and 0.746 nmol/ml respectively. Data was significant (p<0.05 with p=0.02. Compared with control group, a significant increase occurred in week 1 and 2 groups with p=0.028 and p=0.025 respectively. Conclusions: Results of durian consumption show MDA level significantly decreases in week 1 and 2. However, MDA level dramatically increases exceeding control group level in week 3.

  1. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  2. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    Directory of Open Access Journals (Sweden)

    Rodríguez-García Ignacio

    2007-02-01

    Full Text Available Abstract Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans.

  3. Lipid-derived aldehyde degradation under thermal conditions.

    Science.gov (United States)

    Zamora, Rosario; Navarro, José L; Aguilar, Isabel; Hidalgo, Francisco J

    2015-05-01

    Nucleophilic degradation produced by reactive carbonyls plays a major role in food quality and safety. Nevertheless, these reactions are complex because reactive carbonyls are usually involved in various competitive reactions. This study describes the thermal degradation of 2-alkenals (2-pentenal and 2-octenal) and 2,4-alkadienals (2,4-heptadienal and 2,4-decadienal) in an attempt to both clarify the stability of aldehydes and determine new compounds that might also play a role in nucleophile/aldehyde reactions. The obtained results showed that alkenals and alkadienals decomposed rapidly in the presence of buffer and air to produce formaldehyde, acetaldehyde, and the aldehydes corresponding to the breakage of the carboncarbon double bonds: propanal, hexanal, 2-pentenal, 2-octenal, glyoxal, and fumaraldehyde. The activation energy of double bond breakage was relatively low (∼ 25 kJ/mol) and the yield of alkanals (10-18%) was higher than that of 2-alkenals (∼ 1%). All these results indicate that these reactions should be considered in order to fully understand the range of nucleophile/aldehyde adducts produced.

  4. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  5. High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner.

    Science.gov (United States)

    Long, Eric K; Olson, Dalay M; Bernlohr, David A

    2013-10-01

    Protein carbonylation is the covalent modification of proteins by α,β-unsaturated aldehydes produced by nonenzymatic lipid peroxidation of polyunsaturated fatty acids. The most widely studied aldehyde product of lipid peroxidation, trans-4-hydroxy-2-nonenal (4-HNE), is associated with obesity-induced metabolic dysfunction and has demonstrated reactivity toward key proteins involved in cellular function. However, 4-HNE is only one of many lipid peroxidation products and the lipid aldehyde profile in adipose tissue has not been characterized. To further understand the role of oxidative stress in obesity-induced metabolic dysfunction, a novel LC-MS/MS method was developed to evaluate aldehyde products of lipid peroxidation and applied to the analysis of adipose tissue. 4-HNE and trans-4-oxo-2-nonenal (4-ONE) were the most abundant aldehydes present in adipose tissue. In high fat-fed C57Bl/6J and ob/ob mice the levels of lipid peroxidation products were increased 5- to 11-fold in epididymal adipose, unchanged in brown adipose, but decreased in subcutaneous adipose tissue. Epididymal adipose tissue of high fat-fed mice also exhibited increased levels of proteins modified by 4-HNE and 4-ONE, whereas subcutaneous adipose tissue levels of these modifications were decreased. High fat feeding of C57Bl/6J mice resulted in decreased expression of a number of genes linked to antioxidant biology selectively in epididymal adipose tissue. Moreover, TNFα treatment of 3T3-L1 adipocytes resulted in decreased expression of GSTA4, GPx4, and Prdx3 while upregulating the expression of SOD2. These results suggest that inflammatory cytokines selectively downregulate antioxidant gene expression in visceral adipose tissue, resulting in elevated lipid aldehydes and increased protein carbonylation.

  6. Portal pressure and blood nitric oxide levels as predictors of outcome in biliary atresia

    Directory of Open Access Journals (Sweden)

    Vikram Khanna

    2016-01-01

    Full Text Available Aim: To evaluate the incidence of portal hypertension (PHT in biliary atresia (BA patients and to monitor its progress after Kasai portoenterostomy (KP by measuring nitric oxide (NO levels in peripheral blood. Materials and Methods: A prospective cross-sectional study conducted over a period of 2 years. Intraoperative portal pressure (PP and blood NO levels at presentation, 1-month, 3-month, and 6-month follow-up, were correlated with clinical and biochemical parameters in BA patients. The mean NO level in age-matched control group was 4.64 ± 2.32 μmol/L. Results: Thirty-four BA patients underwent KP over a period of 2 years. The mean age of presentation was 2.7 months (range 1-4 months. The mean intraoperative PP was 21.3 ± 5.4 mmHg. The mean PP in patients aged 90 days was 18.53 ± 4.45 mmHg, 20.33 ± 3.07 mmHg, and 26.5 ± 5.01 mmHg, respectively. The mean PP in the patients who underwent successful KP was 16.75 ± 3.54 mmHg while for those who continued to have jaundice it was 23.94 ± 4.63 mmHg (P < 0.001. NO levels closely followed the PP as shown by the regression equation NO = 4.79 + 0.64 PP mmHg, R2 = 0.69. The mean NO level at presentation was 18.48 ± 4.17 μmol/L and at 1-month, 3-month, and 6-month follow-up was 11.94 ± 5.62 μmol/L, 10.79 ± 6.02 μmol/L, and 9.93 ± 6.53 μmol/L, respectively (P < 0.001. The difference in NO levels was also statistically significant between the patients who cleared jaundice and those with persisting jaundice. Conclusion: All BA patients had PHT at presentation. PHT worsens with age and has an adverse effect on outcome of KP. NO levels in blood closely follow PP and higher levels are associated with poor outcome.

  7. Portal pressure and blood nitric oxide levels as predictors of outcome in biliary atresia

    Science.gov (United States)

    Khanna, Vikram; Bhatnagar, Veereshwar; Agarwala, Sandeep; Srinivas, Maddur; Das, Nibhriti; Singh, Manoj Kumar

    2016-01-01

    Aim: To evaluate the incidence of portal hypertension (PHT) in biliary atresia (BA) patients and to monitor its progress after Kasai portoenterostomy (KP) by measuring nitric oxide (NO) levels in peripheral blood. Materials and Methods: A prospective cross-sectional study conducted over a period of 2 years. Intraoperative portal pressure (PP) and blood NO levels at presentation, 1-month, 3-month, and 6-month follow-up, were correlated with clinical and biochemical parameters in BA patients. The mean NO level in age-matched control group was 4.64 ± 2.32 μmol/L. Results: Thirty-four BA patients underwent KP over a period of 2 years. The mean age of presentation was 2.7 months (range 1-4 months). The mean intraoperative PP was 21.3 ± 5.4 mmHg. The mean PP in patients aged 90 days was 18.53 ± 4.45 mmHg, 20.33 ± 3.07 mmHg, and 26.5 ± 5.01 mmHg, respectively. The mean PP in the patients who underwent successful KP was 16.75 ± 3.54 mmHg while for those who continued to have jaundice it was 23.94 ± 4.63 mmHg (P < 0.001). NO levels closely followed the PP as shown by the regression equation NO = 4.79 + 0.64 PP mmHg, R2 = 0.69. The mean NO level at presentation was 18.48 ± 4.17 μmol/L and at 1-month, 3-month, and 6-month follow-up was 11.94 ± 5.62 μmol/L, 10.79 ± 6.02 μmol/L, and 9.93 ± 6.53 μmol/L, respectively (P < 0.001). The difference in NO levels was also statistically significant between the patients who cleared jaundice and those with persisting jaundice. Conclusion: All BA patients had PHT at presentation. PHT worsens with age and has an adverse effect on outcome of KP. NO levels in blood closely follow PP and higher levels are associated with poor outcome. PMID:27046973

  8. [Examination of the oral cavities of patients with cancer: clinical evaluation and indirect measurement of the nitric oxide level].

    Science.gov (United States)

    de Carvalho, Emilia Campos; Cárnio, Evelin Capellari; Khouri, Vivian Youssef; Guilherme, Caroline; dos Santos, Claudia Benedita; Pace, Mariangela Aparecida

    2013-02-01

    This observational study aimed to verify the association between the clinical state of the oral cavity (based on the Index of Decayed, Missing, and Filled Teeth and the Simplified Oral Hygiene Index) and the indirectly determined nitric oxide level in patients with oncologic and hematologic diseases. This study included 20 hospitalized patients who were in the evaluation phase prior to starting chemotherapy and who had been diagnosed with leukemia (35%), lymphoma (50%) or myeloma (15%). Fifty percent of these patients had normal oral health (no injury or trauma), and most had satisfactory (35%) or typical (35%) hygiene, but 30% had poor or very poor hygiene. The indirectly measured levels of nitric oxide ranged from 13.34 to 257. The nitric oxide level was not associated with other parameters, and there was great variability in its level. Further studies are necessary given the potential of using this indicator in the early detection of oral diseases.

  9. Oleic acid-dependent modulation of Nitric oxide associated 1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis

    Science.gov (United States)

    The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...

  10. Antibiotics from basidiomycetes. 26. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens.

    Science.gov (United States)

    Anke, H; Casser, I; Steglich, W; Pommer, E H

    1987-04-01

    Phlebiakauranol aldehyde and the corresponding alcohol were isolated from cultures of Punctularia atropurpurascens. The aldehyde but not the alcohol exhibited strong antifungal activity against several phytopathogens as well as antibacterial and cytotoxic activities. Two acetylated derivatives prepared from the aldehyde showed only very weak antifungal and antibacterial and moderate cytotoxic activities. We therefore assume, that the aldehyde group together with the high number of hydroxyl groups are responsible for the biological activity of the compound.

  11. A STUDY OF OXIDANTS-ANTIOXIDANTS BALANCE IN ASTHMATIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Lokendra

    2014-06-01

    Full Text Available : This study was done to observe the serum/plasma oxidant-antioxidant status among asthmatic patients. Plasma MDA (Malon-di-aldehyde, an oxidant and Serum SOD (superoxide dismutase, an antioxidant, were assayed among asthmatic patients and their mean values were compared with healthy volunteer controls. Values were also observed in different age groups. The difference in mean pMDA level was found statistically significantly among cases and control, higher among asthmatic patients. Likewise, s-SOD level was significantly reduced among asthmatic patients. Clearly, there was an imbalance between oxidants and antioxidants levels among asthmatic patients and this consideration may be helpful in proper planning of basket of anti-asthma interventions. Future studies are recommended.

  12. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova

    2016-01-01

    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  13. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice.

    Science.gov (United States)

    Choi, Hyehun; Tostes, Rita C; Webb, R Clinton

    2011-01-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme that detoxifies aldehydes to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress, which is the imbalance between reactive oxygen species (ROS) generation and antioxidant defense activity. Increased ROS contribute to vascular dysfunction and structural remodeling in hypertension. We hypothesized that ALDH2 plays a protective role to reduce vascular contraction in angiotensin-II (AngII) hypertensive mice. Endothelium-denuded aortic rings from C57BL6 mice, treated with AngII (3.6 μg/kg/min, 14 days), were used to measure isometric force development. Rings treated with daidzin (10 μmol/L), an ALDH2 inhibitor, potentiated contractile responses to phenylephrine (PE) in AngII mice. Tempol (1 mmol/L) and catalase (600 U/mL) attenuated the augmented contractile effect of daidzin. In normotensive mice, contraction to PE in the presence of the daidzin was not different from control, untreated values. AngII aortic rings transfected with ALDH2 recombinant protein decreased contractile responses to PE compared with control. These data suggest that ALDH2 reduces vascular contraction in AngII hypertensive mice. Because tempol and catalase blocked the contractile response of the ALDH2 inhibitor, ROS generation by AngII may be decreased by ALDH2, thereby preventing ROS-induced contraction.

  14. EFFECT OF RICE STRAW AND NITRATE LEVELS IN SOIL SOLUTION ON NITROUS OXIDE EMISSION

    Directory of Open Access Journals (Sweden)

    André Carlos Cruz Copetti

    2015-04-01

    Full Text Available Among the greenhouse gases, nitrous oxide (N2O is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2 and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N and rice straw levels (0, 5 and 10 Mg ha-1, i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF, significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.

  15. Evaluation of salivary nitric oxide level in children with early childhood caries

    Science.gov (United States)

    Senthil Eagappan, AR; Rao, V. Arun Prasad; Sujatha, S.; Senthil, D.; Sathiyajeeva, J.; Rajaraman, G.

    2016-01-01

    Background: Nitric oxide (NO), a highly reactive radical, participates in the nonspecific natural defense mechanism of the oral cavity. The present study was attempted to evaluate the salivary NO levels in 4–5 year-old children with early childhood caries (ECC). The objective of the present study was to assess the salivary NO concentration in children with different caries activity. Materials and Methods: The study included 120 healthy 4.5 year-old children and they were equally divided into three groups based on decayed, missing, filled surfaces (dmfs) score; forty caries-free children (control group), forty children with dmfs 1.5 (ECC group), and forty with dmfs ⩾6 (severe ECC group). Saliva collected was measured for NO concentration by Griess reaction method. The obtained data were analyzed by ANOVA and Pearson's correlation coefficient. Results: The mean level of NO in the saliva of the control group was 51.2 ± 8.3457 and that of ECC and severe ECC were 47.1 ± 5.2614 and 33.625 ± 4.6942, respectively. The mean salivary NO concentration was significantly higher in healthy controls when compared to children with ECC and severe ECC. Moreover, a negative correlation (r = −0.6658) was observed between the salivary NO level and the mean dmfs, suggesting that as the salivary NO level decreases, the caries incidence increases. Conclusion: The obtained results support the antimicrobial activity of salivary NO and also suggest that an increase in NO production might contribute to lower the caries occurrence in children. PMID:27605992

  16. Elevated levels of nitric oxide and low levels of haptoglobin are associated with severe malarial anaemia in African children

    DEFF Research Database (Denmark)

    Gyan, Ben; Kurtzhals, Jørgen; Akanmori, Bartholomew D

    2002-01-01

    Severe malarial anaemia (SA) is a major complication of malaria and an important cause of child mortality and morbidity. However, the pathogenesis behind SA is poorly understood. Nitric oxide (NO) is known to play a protective role against clinical malaria but is also suggested to have a pathogen...

  17. Biogenic isoprene and implications for oxidant levels in Beijing during the 2008 Olympic Games

    Science.gov (United States)

    Chang, Chih-Chung; Shao, Min; Chou, Charles C. K.; Liu, Shaw-Chen; Zhu, Tong; Lee, Kun-Zhang; Lai, Cheng-Hsun; Lin, Po-Hsiung; Wang*, Jia-Lin

    2014-05-01

    As the host of the 2008 Summer Olympic Games, Beijing implemented a series of stringent, short-term air quality control measures to reduce the emissions of anthropogenic air pollutants. Large reductions in the daily average concentrations of primary pollutants, e.g., non-methane hydrocarbons (NMHCs) and nitrogen oxides (NOx) of approximately 50% were observed at the air quality observatory of Peking University. Nevertheless, high levels of ozone were present during the control period. Although anthropogenic precursors were greatly reduced, the meteorological conditions in summer, including high temperature and light flux, are conducive to the production of large amounts of biogenic isoprene, which is extremely reactive. The diurnal pattern of isoprene showed daily maximum mixing ratios of 0.83 ppbv at noon and a minimum at night, reflecting its primarily biogenic properties. Using the ratio of isoprene to vehicle exhaust tracers, approximately 92% of the daytime isoprene was estimated from biogenic sources, and only 8% was attributed to vehicular emissions. In terms of OH reactivity and the ozone formation potential (OFP), biogenic isoprene with its midday surge can contribute approximately 20% of the total OFPs and 40-50% of the total OH reactivities of the 65 measured NMHCs during the midday hours. The discrepancy between decreased precursor levels and the observed high ozone was most likely caused by a combination of many factors. The changes in the partition among the components of oxidation products (O3, NO2 and NOz) and the contribution of air pollutants from regional sources outside Beijing should be two primary reasons. Furthermore, the influences of biogenic isoprene as well as the non-linearity of O3-VOC-NOx chemistry are other major concerns that can reduce the effectiveness of the control measures for decreasing ozone formation. Although anthropogenic precursors were greatly reduced during the Olympic Games, the presence of sufficient biogenic isoprene

  18. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels.

    Science.gov (United States)

    Wu, Wanqiang; Wang, Xin; Xiang, Qisen; Meng, Xu; Peng, Ye; Du, Na; Liu, Zhigang; Sun, Quancai; Wang, Chan; Liu, Xuebo

    2014-01-01

    Astaxanthin (AST) is a carotenoid pigment which possesses potent antioxidative, anti-inflammatory, and neuroprotective properties. The aim of this study was to investigate whether administration of AST had protective effects on D-galactose-induced brain aging in rats, and further examined its protective mechanisms. The results showed that AST treatment significantly restored the activities of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), and increased glutathione (GSH) contents and total antioxidant capacity (T-AOC), but decreased malondialdehyde (MDA), protein carbonylation and 8-hydroxy-2- deoxyguanosine (8-OHdG) levels in the brains of aging rats. Furthermore, AST increased the ratio of Bcl-2/Bax, but decreased the expression of Cyclooxygenase-2 (COX-2) in the brains of aging rats. Additionally, AST ameliorated histopathological changes in the hippocampus and restored brain derived neurotrophic factor (BDNF) levels in both the brains and hippocampus of aging rats. These results suggested that AST could alleviate brain aging, which may be due to attenuating oxidative stress, ameliorating hippocampus damage, and upregulating BDNF expression.

  19. Stoichiometry of mitochondrial H+ translocation coupled to succinate oxidation at level flow.

    Science.gov (United States)

    Costa, L E; Reynafarje, B; Lehninger, A L

    1984-04-25

    The mechanistic stoichiometry of vectorial H+ translocation coupled to succinate oxidation by rat liver mitochondria in the presence of a permeant cation has been determined under level flow conditions with a membraneless fast responding O2 electrode kinetically matched with a glass pH electrode. The reactions were initiated by rapid injection of O2 into the anaerobically preincubated test system under conditions in which interfering H+ backflow was minimized. The rates of O2 uptake and H+ ejection, obtained from computer-fitted regression lines, were monotonic and first order over 75% of the course of O2 consumption. Extrapolation of the observed rates to zero time, at which zero delta mu H+ and thus level flow prevails, yielded vectorial H+/O flow ratios above 7 and closely approaching 8. The mitochondria undergo no irreversible change and give identical H+/O ratios on repeated tests. In a further refinement, the lower and upper limits of the mechanistic H+/O ratio were determined to be 7.55 and 8.56, respectively, from plots of the rates of O2 uptake versus H+ ejection at increasing malonate and increasing valinomycin concentrations, respectively. It is therefore concluded that the mechanistic H+/O ratio for energy-conserving sites 2 + 3 is 8, in confirmation of earlier measurements. KCl concentration is critical for maximal observed H+/O ratios. Optimum conditions and possible errors in determination of mechanistic H+/O translocation ratios are discussed.

  20. Effects of composite restorations on nitric oxide and uric acid levels in saliva

    Directory of Open Access Journals (Sweden)

    Nilgun Akgul

    2015-01-01

    Full Text Available Background and Aims: Dental materials that are used in dentistry should be harmless to oral tissues, and should, therefore, not contain any leachable toxic and diffusible substances capable of causing side effects. This study was intended to investigate the effects on salivary nitric oxide (NO and uric acid (UA levels after application of dental composite filling materials to healthy volunteers. Materials and Methods: A total of 52 individuals (32 female and 20 male participated in the study. Filtek Z250 composite filling material (3M ESPE, St Paul, MN, USA was applied to healthy volunteers. Saliva samples were collected before restoration (baseline and 1 h, 1-day, 7 days, and 30 days after restoration. NO concentrations were measured using the Griess reaction method, and UA was measured using an enzymatic method. Data were analyzed using repeated measures ANOVA and the Bonferroni post-hoc test (α =5%. Results: NO values increased statistically significant after 7 days (P 0.05. There was no correlation between NO and UA levels in saliva (P > 0.05. Conclusion: Composite resins activated the antioxidant system in saliva. However, further studies are now needed to confirm our findings and to permit a definitive conclusion.

  1. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    Science.gov (United States)

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  2. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia.

    Science.gov (United States)

    Westerholm, Maria; Levén, Lotta; Schnürer, Anna

    2012-11-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH(4)(+)-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors.

  3. Age-dependent dichotomous effect of superoxide dismutase Ala16Val polymorphism on oxidized LDL levels.

    Science.gov (United States)

    Dedoussis, George V; Kanoni, Stavroula; Panagiotakos, Demosthenes B; Louizou, Eirini; Grigoriou, Efi; Chrysohoou, Christina; Pitsavos, Christos; Stefanadis, Christodoulos

    2008-02-29

    We investigated the association between superoxide dismutase (SOD) Ala16Val polymorphism and the levels of oxidized LDL lipoprotein-C (ox-LDL-C) in two age-different Greek cohorts. Four hundred fifteen middle-aged (n=147 females: 43.2+/-13 years, n=268 males: 43.3+/-14 years) Caucasian Greek subjects consisted the middle aged cohort. One hundred seventy five elderly (n=88 females: 79.9+/-4 years; n=87 males: 80.6+/-4 years) were selected from the elderly cohort. Genotype data were obtained for all of them. Multiple linear regression analysis, stratified by gender and adjusted for age, smoking habits and body mass index as covariates, showed higher ox-LDL-C levels for the middle aged men with the Val/Val genotype, compared to the other allele (Ala/Ala and Ala/Val) carriers (65.9+/-25.7 vs. 55.7+/-20.5 mg/dl; standardized beta coefficient=0.192, P=0.012). On the contrary, elderly women with the Val/Val genotype occurred with lower ox-LDL-C levels compared to the Ala/Ala or Ala/Val genotype (74.2+/-22.1 vs. 86.5+/-26.6 mg/dl; standardized beta coefficient= -0.269, P=0.015). The same trend was also recorded in elderly men, however without reaching statistical significance (standardized beta coefficient= -0.187, P=0.077). Moreover, elderly men and women with the Ala/Ala or Ala/Val genotype presented higher triglycerides levels compared to Val/Val (women: 145.2+/-68.7 vs. 114.3+/- 34.3 mg/dl, P= 0.027; men: 147.8+/-72.4 vs. 103.7 +/-38.0 mg/dl, P=0.002). Additionally, middle aged men with the Val/Val genotype had higher HDL-C levels compared to the Ala allele carriers. The results suggest that SOD Ala16Val polymorphism is an age-dependent modulator of ox-LDL-C levels in middle-aged men and elderly women.

  4. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Chidambarampadmavathy, Karthigeyan; Nadarajan, Saravanan; Heimann, Kirsten

    2016-03-01

    Low-level methane emissions from coal mine ventilation air (CMV-CH4; i.e., 1 % CH4) can significantly contribute to global climate change, and therefore, treatment is important to reduce impacts. To investigate CMV-CH4 abatement potential, five different mixed methanotrohic consortia (MMCs) were established from soil/sediment sources, i.e., landfill top cover soil, bio-solid compost, vegetated humus soil, estuarine and marine sediments. Enrichment conditions for MMCs were as follows: nitrate mineral salt (NMS) medium, pH ~ 6.8; 25 °C; 20-25 % CH4; agitation 200 rpm; and culture period 20 days, in mini-bench-top bioreactors. The enriched cultures were supplemented with extra carbon (methanol 0.5-1.5 %, formate 5-15 mM, and acetate 5-15 mM), nitrogen (nitrate 0.5-1.5 g L(-1), ammonium 0.1-0.5 g L(-1), or urea: 0.1-0.5 g L(-1)), and trace elements (copper 1-5 μM, iron 1-5 μM, and zinc 1-5 μM) in different batch experiments to improve low-level CH4 abatement. Average CH4 oxidation capacities (MOCs) of MMCs varied between 1.712 ± 0.032 and 1.963 ± 0.057 mg g(-1)DWbiomass h(-1). Addition of formate improved the MOCs of MMCs, but the dose-response varied for different MMCs. Acetate, nitrate and copper had no significant effect on MOCs, while addition of methanol, ammonium, urea, iron and zinc impacted negatively. Overall, MMCs enriched from marine sediments and landfill top cover soil showed high MOCs which were largely resilient to nutrient supplementation, suggesting a strong potential for biofilter development for industrial low-level CH4 abatement, such as those present in CMV.

  5. Effects of Ischemic Postconditioning on the Hemodynamic Parameters and Heart Nitric Oxide Levels of Hypothyroid Rats

    Directory of Open Access Journals (Sweden)

    Sajad Jeddi

    2015-02-01

    Full Text Available Background: Ischemic postconditioning (IPost is a method of protecting the heart against ischemia-reperfusion (IR injury. However, the effectiveness of IPost in cases of ischemic heart disease accompanied by co-morbidities such as hypothyroidism remains unclear. Objective: The aim of this study was to determine the effect of IPost on myocardial IR injury in hypothyroid male rats. Methods: Propylthiouracil in drinking water (500 mg/L was administered to male rats for 21 days to induce hypothyroidism. The hearts from control and hypothyroid rats were perfused in a Langendorff apparatus and exposed to 30 min of global ischemia, followed by 120 min of reperfusion. IPost was induced immediately following ischemia. Results: Hypothyroidism and IPost significantly improved the left ventricular developed pressure (LVDP and peak rates of positive and negative changes in left ventricular pressure (±dp/dt during reperfusion in control rats (p < 0.05. However, IPost had no add-on effect on the recovery of LVDP and ±dp/dt in hypothyroid rats. Furthermore, hypothyroidism significantly decreased the basal NO metabolite (NOx levels of the serum (72.5 ± 4.2 vs. 102.8 ± 3.7 μmol/L; p < 0.05 and heart (7.9 ± 1.6 vs. 18.8 ± 3.2 μmol/L; p < 0.05. Heart NOx concentration in the hypothyroid groups did not change after IR and IPost, whereas these were significantly (p < 0.05 higher and lower after IR and IPost, respectively, in the control groups. Conclusion: Hypothyroidism protects the heart from IR injury, which may be due to a decrease in basal nitric oxide (NO levels in the serum and heart and a decrease in NO after IR. IPost did not decrease the NO level and did not provide further cardioprotection in the hypothyroid group.

  6. Effects of Ischemic Postconditioning on the Hemodynamic Parameters and Heart Nitric Oxide Levels of Hypothyroid Rats

    Energy Technology Data Exchange (ETDEWEB)

    Jeddi, Sajad; Zaman, Jalal; Ghasemi, Asghar, E-mail: ghasemi@endocrine.ac.ir [Endocrine Physiology Research Center - Research Institute for Endocrine Sciences - Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Endocrine Research Center - Research Institute for Endocrine Sciences - Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Ischemic postconditioning (IPost) is a method of protecting the heart against ischemia-reperfusion (IR) injury. However, the effectiveness of IPost in cases of ischemic heart disease accompanied by co-morbidities such as hypothyroidism remains unclear. The aim of this study was to determine the effect of IPost on myocardial IR injury in hypothyroid male rats. Propylthiouracil in drinking water (500 mg/L) was administered to male rats for 21 days to induce hypothyroidism. The hearts from control and hypothyroid rats were perfused in a Langendorff apparatus and exposed to 30 min of global ischemia, followed by 120 min of reperfusion. IPost was induced immediately following ischemia. Hypothyroidism and IPost significantly improved the left ventricular developed pressure (LVDP) and peak rates of positive and negative changes in left ventricular pressure (±dp/dt) during reperfusion in control rats (p < 0.05). However, IPost had no add-on effect on the recovery of LVDP and ±dp/dt in hypothyroid rats. Furthermore, hypothyroidism significantly decreased the basal NO metabolite (NO{sub x}) levels of the serum (72.5 ± 4.2 vs. 102.8 ± 3.7 μmol/L; p < 0.05) and heart (7.9 ± 1.6 vs. 18.8 ± 3.2 μmol/L; p < 0.05). Heart NO{sub x} concentration in the hypothyroid groups did not change after IR and IPost, whereas these were significantly (p < 0.05) higher and lower after IR and IPost, respectively, in the control groups. Hypothyroidism protects the heart from IR injury, which may be due to a decrease in basal nitric oxide (NO) levels in the serum and heart and a decrease in NO after IR. IPost did not decrease the NO level and did not provide further cardioprotection in the hypothyroid group.

  7. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico.

    Science.gov (United States)

    Rangel-Méndez, Jorge A; Arcega-Cabrera, Flor E; Fargher, Lane F; Moo-Puc, Rosa E

    2016-02-01

    Mercury (Hg) is a global pollutant that is released into the environment from geologic and anthropogenic sources. Once it enters an organism, it generates several toxicity mechanisms and oxidative stress has been proposed as the main one. Metal susceptibility is greater in children, which is a result of their physiology and behavior. In Yucatan, Mexico, burning of unregulated garbage dumps and household trash, ingestion of top marine predators, and pottery manufacturing are among the conditions that could promote Hg exposure. However, for Yucatan, there are no published studies that report Hg levels and associated oxidative stress status in children. Therefore, this study aimed to assess Hg levels in blood and urine and oxidative stress biomarkers levels in a sample of 107 healthy children from three localities in Yucatan, Mexico, as well as investigate the relationship between these parameters. Hg was detected in 11 (10.28%) of blood samples and 38 (35.51%) of urine samples collected from the participating children. Fourteen subjects showed Hg above recommended levels. The oxidative stress biomarkers were slightly elevated in comparison with other studies and were statistically different between the sampling sites. No linear correlation between Hg levels and oxidative stress biomarkers was found. Nevertheless, exploratory univariate and multivariate analysis showed non-linear relations among the measured variables. Globally, the study provides, for the first time, information regarding Hg levels and their relationship with oxidative stress biomarkers in a juvenile population from Mexico's southeast (Yucatan) region. In agreement with worldwide concern about Hg, this study should stimulate studies on metal monitoring in humans (especially children) among scientists working in Mexico, the establishment of polices for its regulation, and the reduction of human health risks.

  8. Biogenic isoprene and implications for oxidant levels in Beijing during the 2008 Olympic Games

    Science.gov (United States)

    Chang, C.-C.; Shao, M.; Chou, C. C. K.; Liu, S.-C.; Wang, J.-L.; Lee, K.-Z.; Lai, C.-H.; Zhu, T.; Lin, P.-H.

    2013-10-01

    As the host of the 2008 Summer Olympic Games, Beijing implemented a series of stringent, short-term air quality control measures to reduce the emissions of anthropogenic air pollutants. Large reductions in the daily average concentrations of primary pollutants, e.g., non-methane hydrocarbons (NMHCs) and nitrogen oxides (NOx) of approximately 50% were observed at the air quality observatory of Peking University. Nevertheless, high levels of ozone were present during the control period. Although anthropogenic precursors were greatly reduced, the meteorological conditions in summer, including high temperature and light flux, are conducive to the production of large amounts of biogenic isoprene, which is extremely reactive. The diurnal pattern of isoprene showed daily maximum mixing ratios of 0.83 ppbv at noon and a minimum at night, reflecting its primarily biogenic properties. Using the ratio of isoprene to vehicle exhaust tracers, approximately 92% of the daytime isoprene was estimated from biogenic sources, and only 8% was attributed to vehicular emissions. In terms of OH reactivity and the ozone formation potential (OFP), biogenic isoprene with its midday surge can contribute approximately 20% of the total OFPs and 40-50% of the total OH reactivities of the 65 measured NMHCs during the midday hours. The discrepancy between decreased precursor levels and the observed high ozone was most likely caused by a combination of many factors. The changes in the partition among the components of oxidation products (O3, NO2 and NOz) and the contribution of air pollutants from regional sources outside Beijing should be two primary reasons. Furthermore, the influences of biogenic isoprene as well as the non-linearity of O3-VOC-NOx chemistry are other major concerns that can reduce the effectiveness of the control measures for decreasing ozone formation. Although anthropogenic precursors were greatly reduced during the Olympic Games, sufficient biogenic isoprene and moderate NOx

  9. The relationship between cytokine level and nitric oxide content in aqueous humor after intraocular lens implantation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To investigate the relationship between cytokine level and nitric oxide (NO) content in aqueous humor after intraocular lens implantation. METHODS: All New Zealand rabbits were divided randomly into three groups: (1) control group, (2) extracapsular cataract extraction group (ECCE), (3) extracapsular cataract extraction and posterior chamber intraocular lens implantation group (ECCE+IOL). The inflammation of all experimental rabbit eyes, including cornea edema and anterior chamber exudation were observed via zoom-photo slitlamp microscope 1,3,7,14,30 d postoperation. Meanwhile, aqueous humor was drawn for white blood cell (WBC) counting and classifying, and for NO-2/NO-3 and cytokine assay, including interleukin-2(IL-2), tumour necrosis factor-α(TNF-α). Statistics were taken by SPSS softwear. RESULTS: (1) Total WBC in aqueous humor were higher and anterior chamber exudation were more severe in ECCE+IOL group than that in ECCE group and control group. (2) The level of IL-2 and TNF-α and the content of NO-2/NO-3 in aqueous humor of ECCE+IOL group were higher than that in ECCE group and control group 1-14 d postoperation respectively, and it increased to peak value at 3-7 d postoperation and decreased gradually after two weeks postoperation. (3) The change regularity of IL-2, TNF-α and NO-2/NO-3 in each group were basically similar, i.e. when the level of cytokine (IL-2 and TNF-α) was normal, the content of NO-2/NO-3 was normal too, when the level of cytokine (IL-2 and TNF-α) increased, the content of NO-2/NO-3 increased too. CONCLUSION: The intraocular inflammation after ECCE+IOL was more severe than that after simple ECCE. NO, IL-2 and TNF-α play an important role in intraocular inflammation after intraocular lens implantation. The changes of IL-2 and TNF-α level was closely related with NO content in aqueous humor.

  10. Prevalence and mechanism of polyunsaturated aldehydes production in the green tide forming macroalgal genus Ulva (Ulvales, Chlorophyta).

    Science.gov (United States)

    Alsufyani, Taghreed; Engelen, Aschwin H; Diekmann, Onno E; Kuegler, Stefan; Wichard, Thomas

    2014-10-01

    Lipoxygenase/hydroperoxide lyase mediated transformations convert polyunsaturated fatty acids into various oxylipins. First, lipoxygenases catalyze fatty acid oxidation to fatty acid hydroperoxides. Subsequently, breakdown reactions result in a wide array of metabolites with multiple physiological and ecological functions. These fatty acid transformations are highly diverse in marine algae and play a crucial rule in e.g., signaling, chemical defense, and stress response often mediated through polyunsaturated aldehydes (PUAs). In this study, green tide-forming macroalgae of the genius Ulva (Chlorophyta) were collected at various sampling sites in the lagoon of the Ria Formosa (Portugal) and were surveyed for PUAs. We demonstrated that sea-lettuce like but not tube-like morphotypes produce elevated amounts of volatile C10-polyunsaturated aldehydes (2,4,7-decatrienal and 2,4-decadienal) upon tissue damage. Moreover, morphogenetic and phylogenetic analyses of the collected Ulva species revealed chemotaxonomic significance of the perspective biosynthetic pathways. The aldehydes are derived from omega-3 and omega-6 polyunsaturated fatty acids (PUFA) with 20 or 18 carbon atoms including eicosapentaenoic acid (C20:5 n-3), arachidonic acid (C20:4 n-6), stearidonic acid (C18:4 n-3), and γ-linolenic acid (C18:3 n-6). We present first evidences that lipoxygenase-mediated (11-LOX and 9-LOX) eicosanoid and octadecanoid pathways catalyze the transformation of C20- and C18-polyunsaturated fatty acids into PUAs and concomitantly into short chain hydroxylated fatty acids.

  11. Oxidative Stability of Dispersions Prepared from Purified Marine Phospholipid and the Role of α-Tocopherol

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2012-01-01

    the investigation of nonenzymatic browning in purified marine PL dispersions. Dispersions were prepared by high-pressure homogenizer. The oxidative and hydrolytic stabilities of dispersions were investigated by determination of hydroperoxides, secondary volatile oxidation products, and free fatty acids......, respectively, during 32 days of storage at 2 °C. Nonenzymatic browning was investigated through measurement of Strecker aldehydes, color changes, and pyrrole content. Dispersions containing α-tocopherol or higher levels of purified marine PL showed a lower increment of volatiles after 32 days storage...

  12. Protein Cysteines Map to Functional Networks According to Steady-state Level of Oxidation

    OpenAIRE

    Go, Young-Mi; Duong, Duc M.; Peng, Junmin; Jones, Dean P

    2011-01-01

    The cysteine (Cys) proteome serves critical roles in protein structure, function and regulation, and includes key targets in oxidative mechanisms of disease. Thioredoxins maintain Cys residues in thiol forms, and previous research shows that the redox potential of thioredoxin in mitochondria and nuclei is more reduced than cytoplasm, suggesting that proteins in these compartments may have different steady-state oxidation. This study measured fractional oxidation of 641 peptidyl Cys residues f...

  13. Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance

    DEFF Research Database (Denmark)

    Jothery, Aqeel H. Al; Vaanholt, Lobke M.; Mody, Nimesh

    2016-01-01

    Oxidative damage caused by reactive oxygen species has been hypothesised to underpin the trade-off between reproduction and somatic maintenance, i.e., the life-history-oxidative stress theory. Previous tests of this hypothesis have proved equivocal, and it has been suggested that the variation...... in responses may be related to the tissues measured. Here, we measured oxidative damage (protein carbonyls, 8-OHdG) and antioxidant protection (enzymatic antioxidant activity and serum antioxidant capacity) in multiple tissues of reproductive (R) and non-reproductive (N) mice from two mouse strains selectively...... bred for high (H) or low (L) food intake, which differ in their reproductive performance, i.e., H mice have increased milk energy output (MEO) and wean larger pups. Levels of oxidative damage were unchanged (liver) or reduced (brain and serum) in R versus N mice, and no differences in multiple measures...

  14. Effects of aerosolized ketamine on the level of nitric oxide and nitric oxide synthetase in the lung tissue of rat with asthma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To explore the effects of aerosolized ketamine on the level of nitric oxide and nitric oxide synthetase in the lung tissue in rat asthma model. Methods: Forty SD rats were randomly assigned to five groups: control group (group N), asthma model group (group A), two pretreated groups of different concentrations of ketamine (group K1, K2)and dexamethasone group(group D) with eight rats in each group. The rats in group A were sensitized by injection of ovalbumin (OA) together with aluminum hydroxide and bordetella pertussis as adjuvants. Two weeks after the sensitization, aerosolized OA was used to cause asthma. The rats in group K1 and K2 were sensitized with OA as group A , and then exposed to aerosol of ketamine , with the concentration of 25 g/L and 50 g/L respectively. Before using aerosolized OA, the rats in group D were exposed to aerosol of 0.01% dexamethasone . The level of NO2-/NO3- in lung tissues, inducible nitric oxide synthetase(iNOS) and constitute nitric oxide synthetase(cNOS) was measured in all groups. Results: The level of NO2-/NO3- and the activity of iNOS in lung tissues in group A were signiticantly higher than those in the other groups. The iNOS activity and the level of NO2-/NO3- in lung tissues were highly positively correlated. Conclusion: NO can induce airway hyperreactivity that may worsen asthma. Aerosolized ketamine can decrease the iNOS expression and reduce the level of NO in the lung tissue in rat asthma model.

  15. Influence of bismuth oxide concentration on the pH level and biocompatibility of white Portland cement

    Directory of Open Access Journals (Sweden)

    Marina Angélica MARCIANO

    2014-07-01

    Full Text Available Objectives: To investigate if there is a relation between the increase of bismuth oxide and the decrease of pH levels and an intensification of toxicity in the Portland cement. Material and Methods: White Portland cement (WPC was mixed with 0, 15, 20, 30 and 50% bismuth oxide, in weight. For the pH level test, polyethylene tubes were filled with the cements and immersed in Milli-Q water for 15, 30 and 60 days. After each period, the increase of the pH level was assessed. For the biocompatibility, two polyethylene tubes filled with the cements were implanted in ninety albino rats (n=6. The analysis of the intensity of the inflammatory infiltrate was performed after 15, 30 and 60 days. The statistical analysis was performed using the Kruskal-Wallis, Dunn and Friedman tests for the pH level and the Kruskal-Wallis and Dunn tests for the biological analysis (p0.05. For the inflammatory infiltrates, no significant statistical differences were found among the groups in each period (p>0.05. The 15% WPC showed a significant decrease of the inflammatory infiltrate from 15 to 30 and 60 days (p<0.05. Conclusions: The addition of bismuth oxide into Portland cement did not affect the pH level and the biological response. The concentration of 15% of bismuth oxide resulted in significant reduction in inflammatory response in comparison with the other concentrations evaluated.

  16. Exhaled nitric oxide and urinary EPX levels in infants: a pilot study

    Directory of Open Access Journals (Sweden)

    Olin Anna-Carin

    2011-05-01

    Full Text Available Abstract Background Objective markers of early airway inflammation in infants are not established but are of great interest in a scientific setting. Exhaled nitric oxide (FeNO and urinary eosinophilic protein X (uEPX are a two such interesting markers. Objective To investigate the feasibility of measuring FeNO and uEPX in infants and their mothers and to determine if any relations between these two variables and environmental factors can be seen in a small sample size. This was conducted as a pilot study for the ongoing Swedish Environmental Longitudinal Mother and child Asthma and allergy study (SELMA. Methods Consecutive infants between two and six months old and their mothers at children's health care centres were invited, and 110 mother-infant pairs participated. FeNO and uEPX were analysed in both mothers and infants. FeNO was analyzed in the mothers online by the use of the handheld Niox Mino device and in the infants offline from exhaled air sampled during tidal breathing. A 33-question multiple-choice questionnaire that dealt with symptoms of allergic disease, heredity, and housing characteristics was used. Results FeNO levels were reduced in infants with a history of upper respiratory symptoms during the previous two weeks (p Conclusion The use of uEPX as a marker of early inflammation was not supported. FeNO levels in infants were associated to windowpane condensation. Measuring FeNO by the present method may be an interesting way of evaluating early airway inflammation. In a major population study, however, the method is difficult to use, for practical reasons.

  17. Leptin reduces plasma ANP level via nitric oxide-dependent mechanism.

    Science.gov (United States)

    Yuan, Kuichang; Yu, Jiahua; Shah, Amin; Gao, Shan; Kim, Sun Young; Kim, Sung Zoo; Park, Byung-Hyun; Kim, Suhn Hee

    2010-04-01

    Leptin is a circulating adipocyte-derived hormone that influences blood pressure (BP) and metabolism. This study was designed to define the possible role of leptin in regulation of the atrial natriuretic peptide (ANP) system using acute and chronic experiments. Intravenous infusion of rat leptin (250 microg/kg injection plus 2 microg.kg(-1).min(-1) for 20 min) into Sprague-Dawley rats increased BP by 25 mmHg and decreased plasma level of ANP from 80.3 +/- 3.45 to 51.8 +/- 3.3 pg/ml. Reserpinization attenuated the rise in BP, but not the reduction of plasma ANP during leptin infusion. N(omega)-nitro-l-arginine methyl ester prevented the effects of leptin on the reduction of ANP level. In hyperleptinemic rats that received adenovirus containing rat leptin cDNA (AdCMV-leptin), BP increased during first 2 days and then recovered to control value. Plasma concentration of ANP and expression of ANP mRNA, but not of atrial ANP, in hyperleptinemic rats were lower than in the control groups on the first and second week after administration of AdCMV-leptin. These effects were not observed by the pretreatment with N(omega)-nitro-l-arginine methyl ester. No differences in renal function and ANP receptor density in the kidney were found between hyperleptinemic and control rats. Basal ANP secretion and isoproterenol-induced suppression of ANP secretion from isolated, perfused atria of hyperleptinemic rats were not different from those of other control groups. These data suggest that leptin inhibits ANP secretion indirectly through nitric oxide without changing basal or isoproterenol-induced ANP secretion.

  18. Acrolein—an α,ß-Unsaturated Aldehyde: A Review of Oral Cavity Exposure and Oral Pathology Effects

    OpenAIRE

    Dror Aizenbud; Itay Aizenbud; Abraham Z. Reznick; Katia Avezov

    2016-01-01

    Acrolein is a highly reactive unsaturated aldehyde widely present in the environment, particularly as a product of tobacco smoke. Our previous studies indicated the adverse consequences of even short-term acrolein exposure and proposed a molecular mechanism of its potential harmful effect on oral cavity keratinocytic cells. In this paper we chose to review the broad spectrum of acrolein sources such as pollution, food, and smoking. Consequently, in this paper we consider a high level of oral ...

  19. Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation.

    Science.gov (United States)

    Wenzl, M Verena; Beretta, Matteo; Griesberger, Martina; Russwurm, Michael; Koesling, Doris; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2011-08-01

    To elucidate the mechanism underlying reduction of nitroglycerin (GTN) to nitric oxide (NO) by mitochondrial aldehyde dehydrogenase (ALDH2), we generated mutants of the enzyme lacking the cysteines adjacent to reactive Cys302 (C301S and C303S), the glutamate that participates as a general base in aldehyde oxidation (E268Q) or combinations of these residues. The mutants were characterized regarding acetaldehyde dehydrogenation, GTN-triggered enzyme inactivation, GTN denitration, NO formation, and soluble guanylate cyclase activation. Lack of the cysteines did not affect dehydrogenase activity but impeded GTN denitration, aggravated GTN-induced enzyme inactivation, and increased NO formation. A triple mutant lacking the cysteines and Glu268 catalyzed sustained formation of superstoichiometric amounts of NO and exhibited slower rates of inactivation. These results suggest three alternative pathways for the reaction of ALDH2 with GTN, all involving formation of a thionitrate/sulfenyl nitrite intermediate at Cys302 as the initial step. In the first pathway, which predominates in the wild-type enzyme and reflects clearance-based GTN denitration, the thionitrate apparently reacts with one of the adjacent cysteine residues to yield nitrite and a protein disulfide. The predominant reaction catalyzed by the single and double cysteine mutants requires Glu268 and results in irreversible enzyme inactivation. Finally, combined lack of the cysteines and Glu268 shifts the reaction toward formation of the free NO radical, presumably through homolytic cleavage of the sulfenyl nitrite intermediate. Although the latter reaction accounts for less than 10% of total turnover of GTN metabolism catalyzed by wild-type ALDH2, it is most likely essential for vascular GTN bioactivation.

  20. Interactions Between Exogenous Bt Insecticidal Protein and Cotton Terpenoid Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jun; GUO Yu-yuan; WU Kong-ming; WANG Wu-gang

    2002-01-01

    The contents of terpenoid aldehydes in Bt transgenic cotton and their non-Bt parental varieties were analyzed by the HPLC method. Statistical analysis of variance showed that Bt insecticidal protein Bt-ICP expression has no negative effect on the synthesis of gossypol, total heliocides and total resistant terpenoids.The results of the combined dosage test of Bt-ICP and gossypoi in vitro showed that there is no interaction between gossypol and Bt-ICP on the mortality of cotton boilworm larvae Helicoverpa armigera (Hubnner). It is indicated that the actions of Bt-ICP and gossypol on cotton bollworm are additive. Therefore, it is advantageous to combine Bt-ICP with cotton terpenoid aldehydes in controlling cotton bollworm.

  1. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling

    NARCIS (Netherlands)

    Zhang, X.; Bieberle, A.

    2016-01-01

    This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/b

  2. Can iron oxides remove Cr(VI) from drinking water at sub-ppb levels?

    Science.gov (United States)

    Kaprara, Efthymia; Simeonidis, Konstantinos; Samaras, Petros; Zouboulis, Anastasios; Mitrakas, Manassis

    2013-04-01

    Hexavalent chromium [Cr(VI)] has long been recognized as a potential carcinogen via inhalation, in contrast to trivalent chromium [Cr(III)] which is 100 times less toxic and also a necessary nutrient, essential to human glucidic metabolism. Nowadays there is an increasing concern that Cr(VI) is also carcinogenic by the oral route of exposure, while an increased number of publications indicate that Cr(VI) is a common natural pollutant. Hexavalent chromium formation is attributed to natural oxidation of Cr(III) in ultramafic derived soils and ophiolithic rocks. To verify this theory, drinking water samples were collected from targeted areas of Greece e.g. areas in which the geological background is predominated by ultramafic minerals and the water supply depends mainly on groundwater resources. Valuable guide for the samples collection was the geological map of Greece and emphasis was given to regions where the natural occurrence of Cr(VI) is thought to be more possible. A wide range of Cr concentrations (2-100 μg/L) were detected in the areas studied, with most of them ranging below the current limit of 50 μg/L, and the Cr(VI) concentration being more than 90% of the total. Since the Cr(VI) affects significant part of population worldwide, a debate was established concerning the enforcement of stringent regulation, which also demands the drinking water treatment processes re-evaluation in view of Cr(VI) removal at sub-ppb level. In this regard, adsorption has evolved as the front line of defense for chromium removal. The motivation of this work was to investigate the efficiency of iron oxides for the adsorption of Cr(VI) from drinking water and its removal at sub-ppb levels. The adsorbents examined included iron oxy-hydroxides and magnetite prepared using common low cost iron salts. Their effectiveness as Cr(VI) adsorbents was evaluated through the decrease of a Cr(VI) concentration of 100μg/L prepared in NSF water at pH 7. Preliminary batch experiments did not

  3. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    Science.gov (United States)

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  4. Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis

    NARCIS (Netherlands)

    T. Naruko; M. Ueda; S. Ehara; A. Itoh; K. Haze; N. Shirai; Y. Ikura; M. Ohsawa; H. Itabe; Y. Kobayashi; H. Yamagishi; M. Yoshiyama; J. Yoshikawa; A.E. Becker

    2006-01-01

    Objective-Recently, elevated levels of plasma oxidized low-density lipoprotein (LDL) have been shown to relate to plaque instability in human atherosclerotic lesions. We investigated prospectively patients admitted with acute myocardial infarction (AMI) who underwent primary coronary stenting to eva

  5. Effect of oxygen level on the oxidative stability of two different retail pork products stored using modified atmosphere packaging (MAP)

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Ann Tørngren, Mari; Christensen, Mette;

    2016-01-01

    The characteristics and the oxidative stability of pork steaks and of pork mince were investigated during 2, 5 and 7 days of refrigerated storage using oxygen (O2) levels of 0%, 20%, 50% and 80% in modified atmosphere packaging (MAP). Steaks stored during 7 days were not affected by an increase...

  6. Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane%Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane

    Institute of Scientific and Technical Information of China (English)

    程柯; 范甜甜; 孙健

    2011-01-01

    Easily accessible chiral phosphoric acid lb has been applied as efficient organocatalyst for the asymmetric al- lylation of aldehydes with allyltrichlorosilane. In the presence of 20 mol% of lb, the allylation of a broad range of aldehydes proceeded smoothly to give the corresponding homoallylic alcohol with up to 87% ee and 97% yield.

  7. Signal transduction pathways in erythrocyte nitric oxide metabolism under high fibrinogen levels

    Science.gov (United States)

    Saldanha, Carlota; Freitas, T.; Lopez de Almeida, J. P.; Silva-Herdade, A.

    2014-05-01

    Previous studies show that the fibrinogen molecule modulates the metabolism of nitric oxide (NO) in erythrocyte. The in vitro induced hiperfibrinogenemia interferes in the metabolism of the NO in the erythrocyte in dependence of the phosphorylation degree of the band 3. The soluble form of fibrinogen binds into CD47 protein present in the erythrocyte membrane. The soluble thrombomodulin is an inflammatory marker that binds to the erythrocyte CD47 in a site with a sequence peptide known as 4N1K. A study done in vitro shows that when hiperfibrinogenemia was induced in the presence of the peptide 4N1K agonist of CD47 it were observed variations in the efflux of NO from erythrocyte and an increase in the concentrations of GSNO, peroxinitrite, nitrite and nitrate of the erythrocytes. The aim of this work was to study the influence of the peptide 4N1K, on the metabolism of NO in the erythrocyte under high fibrinogen concentration and in the presence of inhibitors of the status of phosphorylation of protein band 3. In this in vitro study, whole blood samples were harvested from healthy subjects and NO, peroxynitrite, nitrite, nitrate and S-nitro-glutathione (GSNO) were determined in presence of 4N1K, calpeptine, Syk inhibitor and under high fibrinogen concentrations. The results obtained in erythrocytes under high fibrinogen levels when 4N1K is present with the Syk inhibitor or with calpeptine, showed in relation to the control samples increased significant concentrations of efflux of NO and of peroxynitrite, nitrite, nitrate and GSNO. In conclusion it was verified that in the in vitro model of hiperfibrinogenemia the peptide 4N1K, agonist of CD47, induces mobilization of NO in the erythrocyte in dependence of the status of phosphorylation of protein band 3.

  8. Effect of Folk Dance Training on Blood Oxidative Stress Level, Lipids, and Lipoproteins

    Directory of Open Access Journals (Sweden)

    Okdan Bora

    2016-09-01

    Full Text Available Introduction. Folk dance is a form of physical activity which helps develop the ability to use the whole body in a coordinated way with music, and folk dancers’ characteristics vary according to the particular type of dance practised in a given geographic region. The aims of the study were to evaluate the effects of 12-week folk dance training on blood oxidative stress level, lipids, lipoproteins, as well as muscle damage markers and to define some physical and physiological properties of folk dancers. Material and methods. Thirty-eight healthy male folk dancers aged 21-28 years having an average of 11 years of dance training experience voluntarily participated in the study. All of the physical and physiological measurements and the blood analysis were performed twice, before and after the training period which focused on different regional dances (Caucasus, Bar, Zeybek, Spoon Dance, Thracian dances, and Horon. The training was done 2 hours per day (a total of 10 hours a week, during a 12-week-long period. Results. All the blood parameters were found to be within the specified reference ranges. The training programme had no significant effect on the blood lipid profile, whereas it was found to have positive effects on body fat (p ≤ 0.012, peak oxygen consumption (VO2peak; p = 0.000, muscle damage markers (creatine kinase, Δ% = −19.6, and total antioxidant capacity (p ≤ 0.002. Conclusions. Regular folk dance training was found to have positive effects on body fat, VO2peak, blood total antioxidant capacity, and muscle damage markers. Based on these results, the community should be encouraged to perform folk dance as a recreational physical activity, and public awareness should be raised about the health benefits of practising folk dances.

  9. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    Science.gov (United States)

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass.

  10. Characterisation of fluorescent Schiff bases formed during oxidation of pig myofibrils.

    Science.gov (United States)

    Chelh, Ilham; Gatellier, Philippe; Santé-Lhoutellier, Véronique

    2007-06-01

    The aim of this study was to investigate the formation of fluorescent Schiff bases between proteins and lipid oxidation products in myofibrils. Myofibrils were prepared from pig M. longissimus dorsi and oxidized by hydroxyl (OH()) and superoxide (O(2)(-)) radical generating systems. Protein oxidation was measured by the carbonyl content and lipid oxidation was estimated by measurement of thiobarbituric acid reactive substances (TBARS). To avoid any bias due to their low solubility, fluorescent pigments were estimated directly in the solid state by a front-face fluorescence technique. Hydroxyl radicals generated high levels of lipid and protein oxidation as well as fluorescent pigments, whereas only fluorescence was affected by superoxide radicals. The formation of fluorescent pigments was linked not only to aldehyde production, but also to the availability of the amino groups of the myofibrillar protein side chains. Schiff bases could be implicated in protein aggregation with deleterious effect on meat quality.

  11. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    Science.gov (United States)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  12. Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata.

    Science.gov (United States)

    Wang, F W; Wang, M L; Guo, C; Wang, N; Li, X W; Chen, H; Dong, Y Y; Chen, X F; Wang, Z M; Li, H Y

    2016-06-20

    Glycine betaine is an important quaternary ammonium compound that is produced in response to several abiotic stresses in many organisms. The synthesis of glycine betaine requires the catalysis of betaine aldehyde dehydrogenase (BADH), which can convert betaine aldehyde into glycine betaine in plants, especially in halotolerant plants. In this study, we isolated the full-length cDNA of BADH from Suaeda corniculata (ScBADH) using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends. Next, we analyzed the expression profile of ScBADH using real-time PCR. The results showed that ScBADH expression was induced in the roots, stems, and leaves of S. corniculata seedlings under salt and drought stress. Next, ScBADH was overexpressed in Arabidopsis, resulting in the transgenic plants exhibiting enhanced tolerance over wild-type plants under salt and drought stress. We then analyzed the levels of glycine betaine and proline, as well as superoxide dismutase (SOD) activity, during salt stress in WT and transgenic Arabidopsis. The results indicated that overexpression of ScBADH produced more glycine betaine and proline, and increased SOD activity under NaCl treatment. Our results suggest that ScBADH might be a positive regulator in plants during the response to NaCl.

  13. Potential polyunsaturated aldehydes in the Strait of Gibraltar under two tidal regimes.

    Science.gov (United States)

    Morillo-García, Soledad; Valcárcel-Pérez, Nerea; Cózar, Andrés; Ortega, María J; Macías, Diego; Ramírez-Romero, Eduardo; García, Carlos M; Echevarría, Fidel; Bartual, Ana

    2014-03-13

    Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA). These organisms are dominant in the large phytoplankton fraction (>10 µm) in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides), diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA) ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell⁻¹. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability.

  14. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Vincenzo Marrone

    Full Text Available Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30 were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  15. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Marrone, Vincenzo; Piscopo, Marina; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna; Costantini, Maria

    2012-01-01

    Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  16. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura F.

    Science.gov (United States)

    Morimoto, Masanori; Tanimoto, Kumiko; Sakatani, Akiko; Komai, Koichiro

    2002-05-01

    The insect antifeedant anthraquinone aldehyde nordamnacanthal (1,3-dihydroxy-anthraquinone-2-al) was identified in Galium aparine L., and isolated from the root powder of akane (Rubia akane), a member of the Rubiaceae. Structure-activity relationship (SAR) studies using a series of anthraquinone analogues suggested that the aldehyde group on the anthraquinone was more important than the quinone moiety for antifeedant activity against the common cutworm (Spodoptera litura). High levels of nordamnacanthal were found in the seed leaf stage and in callus tissue induced from seedlings of G. aparine, but its concentration decreased with plant development. Since these compounds are natural pigments for dying textiles, we also evaluated the antifeedant activity against the carpet beetle (Attagenus japonicus ), a textile pest was also evaluated. While nordamnacanthal had strong antifeedant activity against the common cutworm, it did not show any antifeedant activity against the carpet beetle. The most effective antifeedant against the carpet beetle was the major constituent in the extract of R. trictorum, lucidin-3-O-primeveroside, a food pigment.

  17. Photo-oxidation of organic compounds in liquid low-level mixed wastes at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    Gering, K.L.; Schwendiman, G.L.

    1996-08-01

    A bench-scale oxidation apparatus is implemented to study the effectiveness of using an artificial ultraviolet source, a 175-watt medium pressure mercury vapor lamp, to enhance the destruction of organic contaminants in water with chemical oxidants. The waste streams used in this study are samples or surrogates of mixed wastes at the Idaho National Engineering Laboratory. The contaminants that are investigated include methylene chloride, 1,1,1-trichlorethane, 1, 1-dichlororethane, acetone, 2-propanol, and ethylenediamine tetraacetic acid. We focus on H{sub 2}O{sub 2}-based oxidizers for our treatment scheme, which include the UV/H{sub 2}O{sub 2} system, the dark Fenton system (H{sub 2}O{sub 2}/Fe{sup 2+}), and the photo- assisted Fenton system (UV/H{sub 2}O{sub 2}/Fe{sup 3+}) is used in particular. Variables include concentration of the chemical oxidizer, concentration of the organic contaminant, and the elapsed reaction time. Results indicate that the photo-assisted Fenton system provides the best overall performance of the oxidizing systems listed above, where decreases in concentrations of methylene chloride, 1,1,1- trichloroethane, 1,1-dichlororethane, 2-propanol, and ethylenediamine tetraacetic acid were seen. However, UV-oxidation treatment provided no measurable benefit for a mixed waste containing acetone in the presence of 2-propanol.

  18. Neuroglobin in Breast Cancer Cells: Effect of Hypoxia and Oxidative Stress on Protein Level, Localization, and Anti-Apoptotic Function

    Science.gov (United States)

    Fiocchetti, Marco; Cipolletti, Manuela; Leone, Stefano; Naldini, Antonella; Carraro, Fabio; Giordano, Daniela; Verde, Cinzia; Ascenzi, Paolo; Marino, Maria

    2016-01-01

    The over-expression of human neuroglobin (NGB), a heme-protein preferentially expressed in the brain, displays anti-apoptotic effects against hypoxic/ischemic and oxidative stresses enhancing neuron survival. As hypoxic and oxidative stress injury frequently occurs in fast proliferating neoplastic tissues, here, the effect of these stressors on the level, localization, and anti-apoptotic function of NGB in wild type and NGB-stable-silenced MCF-7 breast cancer cells has been assessed. The well-known endogenous NGB inducer 17β-estradiol (E2) has been used as positive control. The median pO2 present in tumor microenvironment of breast cancer patients (i.e., 2% O2) does not affect the NGB level in breast cancer cells, whereas hydrogen peroxide and lead(IV) acetate, which increase intracellular reactive oxygen species (ROS) level, enhance the NGB levels outside the mitochondria and still activate apoptosis. However, E2-induced NGB up-regulation in mitochondria completely reverse lead(IV) acetate-induced PARP cleavage. These results indicate that the NGB level could represent a marker of oxidative-stress in MCF-7 breast cancer cells; however, the NGB ability to respond to injuring stimuli by preventing apoptosis requires its re-allocation into the mitochondria. As a whole, present data might lead to a new direction in understanding NGB function in cancer opening new avenues for the therapeutic intervention. PMID:27149623

  19. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice

    Directory of Open Access Journals (Sweden)

    Colin T. Shearn

    2016-04-01

    Full Text Available Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH-fed GSTA4−/− mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4−/− mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4−/− mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4−/− mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4−/− PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST

  20. Selective oxidation of benzylic alcohols using copper-manganese mixed oxide nanoparticles as catalyst

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2015-07-01

    Full Text Available The catalytic activity of copper-manganese (CuMn2 mixed oxide nanoparticles (Cu/Mn = 1:2 has been studied for the selective oxidation of benzylic alcohols to the corresponding aldehydes using molecular oxygen as an oxidizing agent. The CuMn2 mixed oxide showed excellent catalytic activity for the oxidation of benzylic alcohols to the corresponding aldehydes with high selectivity (>99%. The complete conversion (100% of all the benzylic alcohols to the corresponding aldehydes is achieved within a short reaction period at 102 °C. The catalytic performance is obtained to be dependent on the electronic and steric effects of the substituents present on the phenyl ring. Electron withdrawing and bulky groups attached to the phenyl ring required longer reaction time for a complete conversion of the benzylic alcohols.

  1. The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of daidzin.

    Science.gov (United States)

    Rooke, N; Li, D J; Li, J; Keung, W M

    2000-11-02

    Recent studies showed that daidzin suppresses ethanol intake in ethanol-preferring laboratory animals. In vitro, it potently and selectively inhibits the mitochondrial aldehyde dehydrogenase (ALDH-2). Further, it inhibits the conversion of monoamines such as serotonin (5-HT) and dopamine (DA) into their respective acid metabolites, 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in isolated hamster or rat liver mitochondria. Studies on the suppression of ethanol intake and inhibition of 5-HIAA (or DOPAC) formation by six structural analogues of daidzin suggested a potential link between these two activities. This, together with the finding that daidzin does not affect the rates of mitochondria-catalyzed oxidative deamination of these monoamines, raised the possibility that the ethanol intake-suppressive (antidipsotropic) action of daidzin is not mediated by the monoamines but rather by their reactive biogenic aldehyde intermediates such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or 3,4-dihydroxyphenylacetaldehyde (DOPAL) which accumulate in the presence of daidzin. To further evaluate this possibility, we synthesized more structural analogues of daidzin and tested and compared their antidipsotropic activities in Syrian golden hamsters with their effects on monoamine metabolism in isolated hamster liver mitochondria using 5-HT as the substrate. Effects of daidzin and its structural analogues on the activities of monoamine oxidase (MAO) and ALDH-2, the key enzymes involved in 5-HT metabolism in the mitochondria, were also examined. Results from these studies reveal a positive correlation between the antidipsotropic activities of these analogues and their abilities to increase 5-HIAL accumulation during 5-HT metabolism in isolated hamster liver mitochondria. Daidzin analogues that potently inhibit ALDH-2 but have no or little effect on MAO are most antidipsotropic, whereas those that also potently inhibit MAO exhibit little, if

  2. DLTS study of annihilation of oxidation induced deep-level defects in Ni/SiO2/-Si MOS structures

    Indian Academy of Sciences (India)

    N Shashank; Sanjeev K Gupta; K V Madhu; J Akhtar; R Damle

    2011-12-01

    This paper describes the fabrication of MOS capacitor and DLTS study of annihilation of deeplevel defects upon thermal annealing. Ni/SiO2/-Si MOS structures fabricated on -type Si wafers were investigated for process-induced deep-level defects. The deep-level traps in Si substrates induced during the processing of Ni/SiO2/-Si have been investigated using deep-level transient spectroscopy (DLTS). A characteristic deep-level defect at C = 0.49 eV which was introduced during high-temperature thermal oxidation process was detected. The trap position was found to shift to different energy levels (C = 0.43, 0.46 and 0.34 eV) during thermal annealing process. The deep-level trap completely anneals at 350°C. Significant reduction in trap density with an increase in recombination life time and substrate doping concentration as a function of isochronal annealing were observed.

  3. Variation of interface trap level charge density within the bandgap of 4H-SiC with varying oxide thickness

    Indian Academy of Sciences (India)

    Sanjeev K Gupta; A Azam; J Akhtar

    2011-01-01

    Interfacial characteristics of metal oxide-silicon carbide (MOSiC) structure with different thickness of SiO2, thermally grown in steam ambient on Si-face of 4H-SiC (0 0 0 1) substrate were investigated. Variations in interface trapped level density (Dit) was systematically studied employing high-low (H-L) frequency – method. It was found that the distribution of Dit within the bandgap of 4H-SiC varied with oxide thickness. The calculated Dit value near the midgap of 4H-SiC remained almost stable for all oxide thicknesses in the range of 109 –1010 cm-2 eV-1. The Dit near the conduction band edge had been found to be of the order of 1011 cm-2 eV-1 for thicker oxides and for thinner oxides Dit was found to be the range of 1010 cm-2 eV-1. The process had direct relevance in the fabrication of MOS-based device structures.

  4. Oxidative stress levels are correlated with P15 and P16 gene promoter methylation in myelodysplastic syndrome patients.

    Science.gov (United States)

    Gonçalves, Ana Cristina; Cortesão, Emília; Oliveiros, Barbara; Alves, Vera; Espadana, Ana Isabel; Rito, Luís; Magalhães, Emília; Pereira, Sónia; Pereira, Amélia; Costa, José Manuel Nascimento; Mota-Vieira, Luisa; Sarmento-Ribeiro, Ana Bela

    2016-08-01

    Oxidative stress and abnormal DNA methylation have been implicated in some types of cancer, namely in myelodysplastic syndromes (MDS). Since both mechanisms are observed in MDS patients, we analyzed the correlation of intracellular levels of peroxides, superoxide anion, and glutathione (GSH), as well as ratios of peroxides/GSH and superoxide/GSH, with the methylation status of P15 and P16 gene promoters in bone marrow leukocytes from MDS patients. Compared to controls, these patients had lower GSH content, higher peroxide levels, peroxides/GSH and superoxide/GSH ratios, as well as higher methylation frequency of P15 and P16 gene promoters. Moreover, patients with methylated P15 gene had higher oxidative stress levels than patients without methylation (peroxides: 460 ± 42 MIF vs 229 ± 25 MIF, p = 0.001; superoxide: 383 ± 48 MIF vs 243 ± 17 MIF, p = 0.022; peroxides/GSH: 2.50 ± 0.08 vs 1.04 ± 0.34, p P16 and at least one methylated gene had higher peroxide levels as well as peroxides/GSH ratio than patients without methylation. Interestingly, oxidative stress levels allow the discrimination of patients without methylation from ones with methylated P15, methylated P16, or at least one methylated (P15 or P16) promoter. Taken together, these findings support the hypothesis that oxidative stress is correlated with P15 and P16 hypermethylation.

  5. Decreased Glutathione Peroxidase Activities with Concomitant Increased Oxidized Glutathione Levels among Residents in an Arsenic Contaminated Community of Southern Thailand

    Directory of Open Access Journals (Sweden)

    Warangkana CHUNGLOK

    2008-01-01

    Full Text Available Glutathione peroxidase (GPx and glutathione are important antioxidants responsible for the scavenging of reactive oxygen species (ROS. It has been shown that changes in GPx activities and glutathione levels are associated with various diseases including toxic chemical related diseases and cancers. The study aimed to determine the levels of GPx activity and glutathione among residents in Ron Phibun district, an arsenic-exposed area. Blood samples were obtained from 32 volunteers in the Thasala group, a nearby nonarsenic-exposed area and 36 residents in the Ron Phibun group. Red cell lysates were subjected to analysis of GPx activity and glutathione. The results showed that GPx activities were significantly decreased among study subjects from Ron Phibun (p < 0.05. Interestingly, oxidized glutathione (GSSG levels were significantly increased compared with those from Thasala (p < 0.05. Total glutathione and reduced glutathione (GSH levels were not different among the two groups. Mean values of GPx activities, total glutathione and GSH tended to decrease among high-exposure subjects compared to low-exposure subjects. This was concomitant with a slight increase in GSSG levels among high-exposure subjects. The levels of GPx activities and GSSG may be early biomarkers for low levels of oxidative stress in a mining area affected with arsenic poisoning.

  6. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α

    Science.gov (United States)

    Hu, Nan; Ren, Jun; Zhang, Yingmei

    2016-01-01

    Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation. PMID:27634872

  7. Effects of rapeseed oil on fatty acid oxidation and lipid levels in rat heart and liver.

    Science.gov (United States)

    Kienle, M G; Cighetti, G; Spagnuolo, C; Galli, C

    1976-09-01

    The comparative rates of oxidation of erucic and oleic acids and of their CoA esters were studied in heart and liver mitochondria of rats fed a standard diet or semisynthetic diets containing 25% of the calories as either rapeseed oil (46.6% erucic and 10.4% eicosenoic acid) or olive oil, for a period of 5 months. The long exposure to the diet containing 25% rapeseed oil did not alter the oxidative activity of mitochondria and did not induce morphological changes in the heart. It is confirmed that erucic acid is oxidized in mitochondria at lower rates than other long chain fatty acids and that its activation as CoA derivative may be one of the rate limiting steps of the overall oxidationprocess. Total lipids and triglycerides do not significantly change in the heart whereas they increase in the liver of rats fed the diet containing rapeseed oil.

  8. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  9. Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO

    DEFF Research Database (Denmark)

    Rodríguez-Zúñiga, Ursula Fabiola; Cannella, David; de Campos Giordano, Roberto

    2015-01-01

    Sugarcane bagasse, corn stover, and wheat straw are among the most available resources for production of cellulosic ethanol. For these biomasses we study the influence of pre-treatment methods on the chemical composition, as well as on the subsequent reactions of enzymatic hydrolysis and oxidation...... of cellulose. The applied pre-treatment methods are organosolv, hydrothermal, and alkaline. Hydrothermally pretreated wheat straw gave the highest cellulose conversion with 80% glucose yield and 0.8% oxidized cellulose products. Recent studies have shown that lignin is able to boost the activity...

  10. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    Science.gov (United States)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  11. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Science.gov (United States)

    Mason, Katelynn M; Meyers, Michael S; Fox, Abbie M

    2016-01-01

    Summary Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation. PMID:27829908

  12. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Directory of Open Access Journals (Sweden)

    Katelynn M. Mason

    2016-09-01

    Full Text Available Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation.

  13. The Impact of Rendered Protein Meal Oxidation Level on Shelf-Life, Sensory Characteristics, and Acceptability in Extruded Pet Food

    Science.gov (United States)

    Chanadang, Sirichat; Koppel, Kadri; Aldrich, Greg

    2016-01-01

    Simple Summary Sensory analysis was used to determine the changes due to the storage time on extruded pet food prepared from two different rendered protein meals: (i) beef meat and bone meal (BMBM); (ii) chicken byproduct meal (CPBM). Extrusion is a process where feed is pressed through a die in order to create shapes and increase digestibility. Descriptive sensory analysis using a human panel found an increase in undesirable sensory attributes (e.g., oxidized oil, rancid) in extruded pet food over storage time, especially the one prepared from chicken by product meal without antioxidants. The small increase in oxidized and rancid aromas of BMBM samples did not affect pet owners’ acceptability of the products. CPBM samples without antioxidants showed a notable increase in oxidized and rancid aroma over storage time and, thus, affected product acceptability negatively. This finding indicated that human sensory analysis can be used as a tool to track the changes of pet food characteristics due to storage, as well as estimate the shelf-life of the products. Abstract Pet foods are expected to have a shelf-life for 12 months or more. Sensory analysis can be used to determine changes in products and to estimate products’ shelf-life. The objectives of this study were to (1) investigate how increasing levels of oxidation in rendered protein meals used to produce extruded pet food affected the sensory properties and (2) determine the effect of shelf-life on pet owners’ acceptability of extruded pet food diet formulated without the use of preservative. Pet food diets contained beef meat bone meal (BMBM) and chicken byproduct meal (CBPM) in which the oxidation was retarded with ethoxyquin, mixed tocopherols, or none at all, and then extruded into dry pet foods. These samples represented low, medium, and high oxidation levels, respectively. Samples were stored for 0, 3, 6, 9, and 12 months at ambient temperature. Each time point, samples were evaluated by six highly

  14. Electron transmission through a class of anthracene aldehyde molecules

    Science.gov (United States)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupco; Kocarev, Ljupco

    2016-03-01

    Transmission of electrons via metal-molecule-metal junctions, involving rotor-stator anthracene aldehyde molecules is investigated. Two model barriers having input parameters evaluated from accurate ab initio calculations are proposed and the transmission coefficients are obtained by using the quasiclassical approximation. Transmission coefficients further enter in the integral for the net current, utilizing Simmons' method. Conformational dependence of the tunneling processes is evident and the presence of the side groups enhances the functionality of the future single-molecule based electronic devices.

  15. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.

  16. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Science.gov (United States)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  17. DNA-Templated Introduction of an Aldehyde Handle in Proteins

    DEFF Research Database (Denmark)

    Kodal, Anne Louise Bank; Rosen, Christian Bech; Mortensen, Michael Rosholm;

    2016-01-01

    -templated reductive amination we create DNA-protein conjugates with control over labeling stoichiometry without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing coupling of a second reactive DNA strand to the vicinity of a protein metal......-binding site. Here, we demonstrate DNA-templated reductive amination for His6-tagged proteins and native metal-binding proteins, including IgG1 antibodies. We also use a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde to proteins. This functions as a handle...

  18. Piperidine Promoted Regioselective Synthesis of α, β-unsaturated Aldehydes

    Directory of Open Access Journals (Sweden)

    *A. H. Banday

    2013-03-01

    Full Text Available An efficient, facile and regioselective synthesis of α,β-unsaturated aldehydes from β-hydroxynitriles is reported. The reaction is carried out using DIBAL-H and promoted by piperidine under dry conditions at a temperature of -78 oC and can be described as a concomitant reduction-elimination reaction. The same reaction if carried out in the absence of piperidine gives mainly the uneliminated reduction product. The products formed are of immense importance as synthons in a large number of chemical reactions and biological processes.

  19. ADSORPTION OF UNSATURATED ALDEHYDES ON TiO2

    OpenAIRE

    Natalia Ortega; Oswaldo Núñez

    2012-01-01

    In this work, the unsaturated aldehydes adsorption on TiO2 surface was studied. To test their efficiency as catalyst, experiments on heterogeneous photocatalysis of p-nitrophenol (PNP) and a sample obtained from an oil industry effluent were carried out using a solar simulator and modified-TiO2 systems. The systems of TiO2 used were: TiO2 pure (without modifying) and TiO2-dienal systems constituted by the chemical adsorption of 2,4 hexadienal, 2,4 heptadienal and trans-cinamaldehyde on the su...

  20. Effect of carbamide peroxide and hydrogen peroxide on the surface morphology and zinc oxide levels of IRM fillings.

    Science.gov (United States)

    Rostein, I; Cohenca, N; Mor, C; Moshonov, J; Stabholz, A

    1995-12-01

    The effect of 10% carbamide peroxide or 10% hydrogen peroxide on the surface morphology and zinc oxide levels of IRM fillings was tested. Ninety IRM samples were treated with either 10% carbamide peroxide, 10% hydrogen peroxide or phosphate buffer which served as control. Treatment consisted of placing the samples in a dry incubator at 37 degrees C for 1, 3 or 7 days. At each time point, the samples were removed from the test solutions, dried and prepared for surface scanning electron microscopy and energy dispersive spectrometric analysis. After 3 days, 10% carbamide peroxide significantly reduced the zinc oxide levels as compared to the 10% hydrogen peroxide group (IRM fillings, but their modes of action differed.

  1. Mitochondrial DNA (mtDNA haplogroups and serum levels of anti-oxidant enzymes in patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Fernandez-Moreno Mercedes

    2011-11-01

    Full Text Available Abstract Background Oxidative stress play a main role in the initiation and progression of the OA disease and leads to the degeneration of mitochondria. To prevent this, the chondrocytes possess a well-coordinated enzymatic antioxidant system. Besides, the mitochondrial DNA (mtDNA haplogroups are associated with the OA disease. Thus, the main goal of this work is to assess the incidence of the mtDNA haplogroups on serum levels of two of the main antioxidant enzymes, Manganese Superoxide Dismutase (Mn-SOD or SOD2 and catalase, and to test the suitability of these two proteins for potential OA-related biomarkers. Methods We analyzed the serum levels of SOD2 and catalase in 73 OA patients and 77 healthy controls carrying the haplogroups J, U and H, by ELISA assay. Knee and hip radiographs were classified according to Kellgren and Lawrence (K/L scoring from Grade 0 to Grade IV. Appropriate statistical analyses were performed to test the effects of clinical variables, including gender, body mass index (BMI, age, smoking status, diagnosis, haplogroups and radiologic K/L grade on serum levels of these enzymes. Results Serum levels of SOD2 appeared statistically increased in OA patients when compared with healthy controls (p Conclusions The increased levels of SOD2 in OA patients indicate an increased oxidative stress OA-related, therefore this antioxidant enzyme could be a suitable candidate biomarker for diagnosis of OA. Mitochondrial haplogroups significantly correlates with serum levels of catalase

  2. Oxidative stress level and anthropogenic load index as prognostic criteria of disease outcome in patients with oropharyngeal cancer

    OpenAIRE

    Stcherbatyuk Т.G.; Davydenko D.V.; Novikova V.А.

    2013-01-01

    The aim of the investigation was to assess the role of ecological problems and oxidative homeostasis parameters in life expectancy prognosis of oncology patients in the territories with different anthropogenic load level. Materials and Methods. A group of oncology patients included 80 males with oropharyngeal tumors (III–IV stage tumors of oral and oropharyngeal cavity), mean age being 58.63±0.68. According to clinical and morphological characteristics of the disease, and social and adapt...

  3. Effect of Exposure to Pill Contraceptive Low-dose Levels of Homocysteine and Nitric Oxide in Healthy Women

    Directory of Open Access Journals (Sweden)

    A Dehghani

    2016-07-01

    Full Text Available Introduction: Cardiovascular disease is one of the public health priorities. Consumption of oral contraceptives increase the risk of cardiovascular disease and it still remains a concern. This study aimed to investigate the effect of exposure on pill contraceptive low-dose  levels on homocysteine and nitric oxide. methods: In this cohort ( retrospective+ prospective study, 100 women with normal menstrual cycle aged betwen 20-35 years old refered to health care centers of Yazd, Iran in 2015.  This study was conducted through face to face interviews by the researcher who asked for demographic and anthropometric characteristics. Anthropometic indices  was measured and the levels of homosysteine and nitric oxide was determined. The data were analyzed using t-test, chi- square test and ANOVA by SPSS 21. Results: The mean and standard deviation of homocysteine levels in the exposed group acompared to non-exposed group were (3/848±2/357 μmol/L and (3/284±1/616 μmol/L as well as the mean and standard deviation of nitric oxide in the exposed group were (p-value=0/41 and (181/360±90/44μM and in the non-exposed group were (162/654±90/913 μM and (p-value=0/29 , respectively.According to these results, there was not found any statistical significant  difference among these results. Conclusion: Taking low dose oral contraceptives in healthy women did not change any differences in homocysteine and nitric oxide levels as a modifiable risk factors for cardiovascular disease.

  4. The effect of hydroalcoholic extract of P. crispum on sperm parameters, testis tissue and serum nitric oxide levels in mice

    OpenAIRE

    Cyrus Jalili; Mohammad Reza Salahshoor; Tahere Naderi

    2015-01-01

    Background: Sperm dysfunction is one of the main causes of male infertility. Petroselinum crispum (P. crispum) is a member of umbelliferae family that contains different vitamins and minerals and has numerous therapeutic properties. The aim of this study was to evaluate P. crispum effect on sperm parameters, testis tissue and serum nitric oxid levels in mice. Materials and Methods: Hydroalcoholic extract of P. crispum was prepared and administered intraperitoneally (0,100, 150 and 200 mg...

  5. Leptin levels are associated with fat oxidation and dietary-induced weight loss in obesity

    DEFF Research Database (Denmark)

    Verdich, C; Toubro, S; Buemann, B

    2001-01-01

    To examine the relationship between fasting plasma leptin and 24-hour energy expenditure (EE), substrate oxidation, and spontaneous physical activity (SPA) in obese subjects before and after a major weight reduction compared with normal weight controls. To test fasting plasma leptin, substrate ox...

  6. Some Phenolic Compounds Increase the Nitric Oxide Level in Endothelial Cells in Vitro

    NARCIS (Netherlands)

    Appeldoorn, M.M.; Venema, D.P.; Peters, T.H.F.; Koenen, M.E.; Arts, I.C.W.; Vincken, J.P.; Gruppen, H.; Keijer, J.; Hollman, P.C.H.

    2009-01-01

    The vasorelaxing properties of chocolate and wine might relate to the presence of phenolic compounds. One of the potential mechanisms involved is stimulation of endothelial nitric oxide (NO) production, as NO is a major regulator of vasodilatation. This study aimed to develop an in vitro assay using

  7. Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro

    NARCIS (Netherlands)

    Appeldoorn, M.M.; Venema, D.P.; Peters, T.H.F.; Koenen, M.E.; Arts, I.C.W.; Vincken, J.-P.; Gruppen, H.; Keuer, J.; Hollman, P.C.H.

    2009-01-01

    The vasorelaxing properties of chocolate and wine might relate to the presence of phenolic compounds. One of the potential mechanisms involved is stimulation of endothelial nitric oxide (NO) production, as NO is a major regulator of vasodilatation. This study aimed to develop an in vitro assay using

  8. Nitric Oxide and Interlukin-6 Levels in Intellectual Disability Adults with Epilepsy

    Science.gov (United States)

    Carmeli, Eli; Beiker, Reut; Morad, Mohammed

    2009-01-01

    Nitric oxide (NO) and interlukin-6 (IL-6) are highly reactive mediators that have been shown to play different roles in a variety of different biological process. The role of NO and IL-6 in the neuropathogenesis of brain seizures is still questionable. In order to evaluate the role of NO and IL-6 in neurological disorders such as seizures, we…

  9. The higher level of organization of the oxidative phosphorylation system : mitochondrial supercomplexes

    NARCIS (Netherlands)

    Dudkina, Natalya V.; Sunderhaus, Stephanie; Boekema, Egbert J.; Braun, Hans-Peter

    2008-01-01

    The organization of the oxidative phosphorylation (OXPHOS) system within the inner mitochondrial membrane appears to be far more complicated than previously thought. In particular, the individual protein complexes of the OXPHOS system (complexes I to V) were found to specifically interact forming de

  10. Effect of age and eosinophil number on fractional exhaled nitric oxide level in non-asthmatic children in shanghai.

    Science.gov (United States)

    Liu, Wei; Chu, Jizhi; Sun, Li; Shen, Zhiqin; Liu, Yan; Peng, Qing; Gao, Xiwen

    2014-10-01

    This study aimed to identify the relationship between fractional exhaled nitric oxide (FeNO) level and potential factors in non-asthmatic children from Shanghai, China. From March to April 2012, the school-aged children fulfilling the inclusion criteria were recruited. The FeNO levels of non-asthmatic children were detected by the Nano Coulomb nitric oxide analyzer. Questionnaires were recorded, including personal data, family illness history and daily habits. In addition, not only the number of leukocytes and eosinophils but also the level of hemoglobin in peripheral blood, were measured via the automated blood cell analyzer. All data were statistically analyzed with SPSS version 17.0 software and the correlation of these potential factors with FeNO level was calculated via Kendall's rank correlation. A total of 132 healthy children (aging 6-13 years) were enrolled in Minhang District, Shanghai, China. The mean value of FeNO level was 15.05 ppb. The correlation analyses revealed that age (R=0.190, p=0.029) and eosinophil number (R=0.575, p=0.000) were significantly and positively correlated with FeNO levels. The FeNO levels of individuals aged 10-13 years was significantly higher than those of the individuals aged 6-9 years (22.65 ± 18.82 ppb vs. 15.28 ± 9.78 ppb, p<0.05). However, other potential factors were not significantly correlated with FeNO level. The FeNO levels in healthy school-aged children may reflect airway eosinophilic inflammation levels, and was affected by eosinophil count and age significantly.

  11. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-07

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom.

  12. Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Bhat, Supriya V; Booth, Sean C; Vantomme, Erik A N; Afroj, Shirin; Yost, Christopher K; Dahms, Tanya E S

    2015-09-01

    The chlorophenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used extensively worldwide despite its known toxicity and our limited understanding of how it affects non-target organisms. Escherichia coli is a suitable model organism to investigate toxicity and adaptation mechanisms in bacteria exposed to xenobiotic chemicals. We developed a methodical platform that uses atomic force microscopy, metabolomics and biochemical assays to quantify the response of E. coli exposed to sublethal levels of 2,4-D. This herbicide induced a filamentous phenotype in E. coli BL21 and a similar phenotype was observed in a selection of genotypically diverse E. coli strains (A0, A1, B1, and D) isolated from the environment. The filamentous phenotype was observed at concentrations 1000 times below field levels and was reversible upon supplementation with polyamines. Cells treated with 2,4-D had more compliant envelopes, significantly remodeled surfaces that were rougher and altered vital metabolic pathways including oxidative phosphorylation, the ABC transport system, peptidoglycan biosynthesis, amino acid, nucleotide and sugar metabolism. Most of the observed effects could be attributed to oxidative stress, consistent with increases in reactive oxygen species as a function of 2,4-D exposure. This study provides direct evidence that 2,4-D at sublethal levels induces oxidative stress and identifies the associated metabolic changes in E. coli.

  13. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi.

    Science.gov (United States)

    Esteve-Gassent, Maria D; Smith, Trever C; Small, Christina M; Thomas, Derek P; Seshu, J

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA) capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560), and outer surface protein A (OspA, BBA15) were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC), Decorin binding protein A (DbpA), fibronectin binding protein (BBK32), RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of the sod

  14. Comparison of the Salivary and the Serum Nitric Oxide Levels in Chronic and Aggressive Periodontitis: A Biochemical Study

    Science.gov (United States)

    Sundar, N. Mani; Krishnan, V; Krishnaraj, S; Hemalatha, V.T.; Alam, Md Nazish

    2013-01-01

    Background and Objectives: Nitric oxide (NO) is a ubiquitous intercellular messenger molecule with important cardiovascular, neurological, and immune functions. In addition, it has been postulated that the pharmacological inhibition of NO or its actions may be therapeutically valuable in the disease management. The levels of nitric oxide may provide clues about the severity and the state of the underlying disease process. It could be an inflammatory biomarker that may enable clinicians to direct the environmentally based prevention or treatment programmes and to establish whether NO plays a role in the pathogenesis of periodontitis or not. Hence, the aim of the present study was to evaluate the salivary and the serum levels of NO in generalized chronic and aggressive periodontitis. The Study Design: Unstimulated whole saliva and serum samples were collected from a total of 60 subjects who were in the age group of 18-45 years, who participated in this study. They were divided into three equal groups with 20 subjects in each group; group A (healthy controls), group B (chronic periodontitis) and group C (aggressive periodontitis). The clinical parameters were assessed, based on the oral hygiene index simplified (OHI-S), the gingival index (GI), the probing pocket depth and the clinical attachment loss (CAL). A biochemical analysis was performed to evaluate and compare the salivary and the serum nitric oxide levels of the above groups. Statistical Analysis and Results: The statistical comparisons were done under the Griess Reaction. There were statistically significant salivary and serum levels of NO in the groups of periodontitis (group B and C) as compared to those in the healthy controls (group A). A significant positive correlation was found between the values of the salivary and the serum NO levels in chronic and aggressive periodontitis. Conclusion: Nitric oxide is a potent modulator of the inflammatory disease processes and under pathological conditions, NO has

  15. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients

    Directory of Open Access Journals (Sweden)

    Nilgun Solak Tekin

    2007-01-01

    Full Text Available Background. Psoriasis is a chronic inflammatory skin disease characterized by an accelerated turnover of epidermal cells and an incomplete differentiation in epidermis with lesion. However, the exact etiology of psoriasis is unknown. Abnormalities in essential fatty acid metabolism, free radical generation, lipid peroxidation, and release of lymphokines have been proposed. Objective. Our purpose was to evaluate the plasma lipids and oxidized low-density lipoprotein accumulation in psoriatic skin lesion in order to ascertain the possible participation of oxidative stress and oxidative modification of lipids in pathogenesis of psoriasis. Methods. The study group included 84 patients with psoriasis, and 40 sex- and age-matched healthy volunteers. Blood lipid profile was determined. Psoriatic and nonlesional skin samples of psoriatic patients were evaluated for the presence of oxidized low-density lipoprotein by using an immune-fluorescent staining method. Results. The mean levels of lipids (total cholesterol, triglyceride, and LDL cholesterol in patients with psoriasis were found to be significantly higher than those of healthy subjects. Psoriatic skins were shown positive oxidized low-density lipoprotein staining. There was no staining in nonlesional skin samples of the same individuals. Conclusion. Lipid peroxidation mediated by free radicals is believed to be one of the important causes of cell membrane destruction and cell damage. This study shows for the first time the accumulation of oxidized low-density lipoprotein in psoriatic skin lesion. We believe that accumulation of ox-LDL in psoriatic skin may have an important role in the immune-inflammatory events that result in progressive skin damage.

  16. Implication of low HDL-c levels in patients with average LDL-c levels: a focus on oxidized LDL, large HDL subpopulation, and adiponectin.

    Science.gov (United States)

    Mascarenhas-Melo, Filipa; Sereno, José; Teixeira-Lemos, Edite; Marado, Daniela; Palavra, Filipe; Pinto, Rui; Rocha-Pereira, Petronila; Teixeira, Frederico; Reis, Flávio

    2013-01-01

    To evaluate the impact of low levels of high density lipoprotein cholesterol (HDL-c) on patients with LDL-c average levels, focusing on oxidative, lipidic, and inflammatory profiles. Patients with cardiovascular risk factors (n = 169) and control subjects (n = 73) were divided into 2 subgroups, one of normal HDL-c and the other of low HDL-c levels. The following data was analyzed: BP, BMI, waist circumference and serum glucose Total-c, TGs, LDL-c, oxidized LDL, total HDL-c and subpopulations (small, intermediate, and large), paraoxonase-1 (PON1) activity, hsCRP, uric acid, TNF- α , adiponectin, VEGF, and iCAM1. In the control subgroup with low HDL-c levels, significantly higher values of BP and TGs and lower values of PON1 activity and adiponectin were found, versus control normal HDL-c subgroup. However, differences in patients' subgroups were clearly more pronounced. Indeed, low HDL-c subgroup presented increased HbA1c, TGs, non-HDL-c, Ox-LDL, hsCRP, VEGF, and small HDL-c and reduced adiponectin and large HDL. In addition, Ox-LDL, large-HDL-c, and adiponectin presented interesting correlations with classical and nonclassical markers, mainly in the normal HDL-c patients' subgroup. In conclusion, despite LDL-c average levels, low HDL-c concentrations seem to be associated with a poor cardiometabolic profile in a population with cardiovascular risk factors, which is better evidenced by traditional and nontraditional CV biomarkers, including Ox-LDL, large HDL-c, and adiponectin.

  17. The Impact of Rendered Protein Meal Oxidation Level on Shelf-Life, Sensory Characteristics, and Acceptability in Extruded Pet Food.

    Science.gov (United States)

    Chanadang, Sirichat; Koppel, Kadri; Aldrich, Greg

    2016-07-28

    Pet foods are expected to have a shelf-life for 12 months or more. Sensory analysis can be used to determine changes in products and to estimate products' shelf-life. The objectives of this study were to (1) investigate how increasing levels of oxidation in rendered protein meals used to produce extruded pet food affected the sensory properties and (2) determine the effect of shelf-life on pet owners' acceptability of extruded pet food diet formulated without the use of preservative. Pet food diets contained beef meat bone meal (BMBM) and chicken byproduct meal (CBPM) in which the oxidation was retarded with ethoxyquin, mixed tocopherols, or none at all, and then extruded into dry pet foods. These samples represented low, medium, and high oxidation levels, respectively. Samples were stored for 0, 3, 6, 9, and 12 months at ambient temperature. Each time point, samples were evaluated by six highly trained descriptive panelists for sensory attributes related to oxidation. Samples without preservatives were chosen for the acceptability test, since the differences in sensory characteristics over storage time were more distinguishable in those samples. Pet owners evaluated samples for aroma, appearance and overall liking. Descriptive sensory analysis detected significant changes in oxidized-related sensory characteristics over storage time. However, the differences for CBPM samples were more pronounced and directional. The consumer study showed no differences in pet owners' acceptability for BMBM samples. However, the noticeable increase in aroma characteristics (rancid aroma 0.33-4.21) in CBPM samples over storage time did have a negative effect on consumer's liking (overall liking 5.52-4.95).

  18. Method of oxidizing an alcohol

    NARCIS (Netherlands)

    Dijksman, A.; Arends, I.W.C.E.; Sheldon, R.A.

    2000-01-01

    The invention relates to a method of oxidizing an alcohol to form an aldehyde or ketone using a ruthenium ion and oxygen in the presence of a substantially stable N-O free radical compound, wherein two atoms bound to the nitrogen atom are not themselves hydrogen carriers. It has been found that with

  19. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  20. Poststroke Depression as a Factor Adversely Affecting the Level of Oxidative Damage to Plasma Proteins during a Brain Stroke

    Directory of Open Access Journals (Sweden)

    Natalia Cichoń

    2015-01-01

    Full Text Available Poststroke depression, the second most serious psychosomatic complication after brain stroke, leads to delay of the rehabilitation process and is associated with an increased disability and cognitive impairment along with increase in term mortality. Research into the biochemical changes in depression is still insufficiently described. The aim of our study was therefore to evaluate the possible association between plasma protein oxidative/nitrative damages and the development of poststroke depression. We evaluated oxidative/nitrative modifications of specific proteins by measurement of 3-nitrotyrosine and carbonyl groups levels using ELISA test. Additionally, we checked differences in proteins thiol groups by spectrophotometric assay based on reaction between DTNB and thiols. We also evaluated catalase activity in erythrocytes measured as ability to decompose H2O2. Correlation analysis was performed using Spearman’s rank. We observed significant (P<0.001 differences in all oxidative/nitrative stress parameters in brain stroke patients compared to healthy group. Our research shows that oxidative damage of proteins is correlated with the degree of poststroke depression, while nitrative changes do not show any relationship. We demonstrate a positive correlation between the concentration of carbonyl groups and the Geriatric Depression Scale and a negative correlation between the degree of depression and the concentration of -SH groups or catalase activity.

  1. The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics

    Directory of Open Access Journals (Sweden)

    Hisham Waggiallah

    2011-01-01

    Full Text Available Background: The oxidative stress is considered as major consequence of diabetes mellitus affecting red cell antioxidant enzymes. Aim: The present study was conducted to assess the impact of oxidative stress (reduced glutathione on glutathione peroxidase, and glutathione reductse and prevalence of anemia among diabetic patients. Materials and Methods: The study involved 100 adult patients attending Buraidah Central Hospital and 30 healthy controls. Blood samples were collected and analyzed for glutathione (GSH concentration, glutathione peroxidase (GPO, glutathione reductase (GR, fasting blood sugar (RBS, hemoglobin (HGB, red cell count (RBCs hematocrit (HCT mean cell volume (MCV mean cell hemoglobin (MCH and mean cell hemoglobin concentration (MCHC and hemoglobin A1c. Blood urea, serum creatinine, and microalbuminuria were measured to exclude diabetes mellitus nephropathy. Results : were obtained showed significant correlation between deficiency of glutathione peroxidase, glutathione reductase and deficient of glutathione among diabetics, which has significant correlation between low hemoglobin concentration (females <120 g/L, males <130 g/L, also there is low concentration of red cell count and red cell indices (MCV, MCH and MCHC. The prevalence of anemia was 22% in diabetes patients. Conclusion: It can be concluded that there is strong significant effect of oxidative stress (reduced glutathione on glutathione peroxidase, glutathione reductase level these may reduce hemoglobin concentration in diabetic patients. This means oxidative stress of diabetes mellitus is the possible cause of anemia in diabetics without nephropathy.

  2. Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Fritzie T Celino

    Full Text Available BACKGROUND: Spermatogonia are highly tolerant to reactive oxygen species (ROS attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD and Western blot analysis using an anti-Copper/Zinc (Cu/Zn SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage. CONCLUSIONS/SIGNIFICANCE: These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.

  3. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling.

    Science.gov (United States)

    Zhang, Xueqing; Bieberle-Hütter, Anja

    2016-06-08

    This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/band edge, charge transport, and electrochemical reactions at the electrode-electrolyte interface. In particular, we review the mechanisms of the oxygen evolution reaction, strategies to lower overpotential, and computational methods applied to PEC systems with particular focus on multiscale modeling. The current challenges in modeling PEC interfaces and their processes are summarized. At the end, we propose a new multiscale modeling approach to simulate the PEC interface under conditions most similar to those of experiments. This approach will contribute to identifying the limitations at PEC interfaces. Its generic nature allows its application to a number of electrochemical systems.

  4. Engineering the Mechanical Properties of Monolayer Graphene Oxide at the Atomic Level.

    Science.gov (United States)

    Soler-Crespo, Rafael A; Gao, Wei; Xiao, Penghao; Wei, Xiaoding; Paci, Jeffrey T; Henkelman, Graeme; Espinosa, Horacio D

    2016-07-21

    The mechanical properties of graphene oxide (GO) are of great importance for applications in materials engineering. Previous mechanochemical studies of GO typically focused on the influence of the degree of oxidation on the mechanical behavior. In this study, using density functional-based tight binding simulations, validated using density functional theory simulations, we reveal that the deformation and failure of GO are strongly dependent on the relative concentrations of epoxide (-O-) and hydroxyl (-OH) functional groups. Hydroxyl groups cause GO to behave as a brittle material; by contrast, epoxide groups enhance material ductility through a mechanically driven epoxide-to-ether functional group transformation. Moreover, with increasing epoxide group concentration, the strain to failure and toughness of GO significantly increases without sacrificing material strength and stiffness. These findings demonstrate that GO should be treated as a versatile, tunable material that may be engineered by controlling chemical composition, rather than as a single, archetypical material.

  5. Elevated levels of urinary markers of oxidatively generated DNA and RNA damage in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Poulsen, Henrik Enghusen; Kessing, Lars Vedel;

    2015-01-01

    investigated oxidatively generated damage to DNA and RNA in patients with bipolar disorder and its relationship with the affective phase compared with healthy control subjects. METHODS: Urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), markers...... of oxidatively generated DNA and RNA damage, respectively, was measured in 37 rapid cycling patients with bipolar disorder and in 40 age- and gender-matched healthy control subjects. Employing a longitudinal design, repeated measurements of both markers were evaluated in various affective phases in patients...... with bipolar disorder during a six- to 12-month period and compared with repeated measurements in healthy control subjects. RESULTS: In linear mixed models, adjusting for demographical, metabolic, and lifestyle factors, the excretion of 8-oxodG and 8-oxoGuo was significantly elevated in euthymic patients...

  6. Low level and sub-chronic exposure to methylmercury induces hypertension in rats: nitric oxide depletion and oxidative damage as possible mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Grotto, Denise; Barcelos, Gustavo R.M.; Barbosa, Fernando [Universidade de Sao Paulo, Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Ribeirao Preto, SP (Brazil); Castro, Michele M. de [Universidade de Sao Paulo, Departamento de Farmacologia, Faculdade de Medicina de Ribeirao Preto, Ribeirao Preto, SP (Brazil); Garcia, Solange C. [Universidade Federal de Santa Maria, Departamento de Analises Clinicas e Toxicologicas, Santa Maria, Rio Grande do Sul (Brazil)

    2009-07-15

    Increased risk of hypertension after methylmercury (MeHg) exposure has been suggested. However, the underlying mechanisms are not well explored. In this paper, we have analyzed whether sub-chronic exposure to MeHg increases systolic blood pressure even at very low levels. In addition, we analyzed if the methylmercury-induced hypertension is associated with a decreased plasmatic nitric oxide levels and with a dysregulation of the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), as well as the levels of MDA and glutathione. For this study, Wistar rats were treated with methylmercury chloride (100 {mu}g/kg per day) or vehicle. Total treatment time was 100 days. Malondialdehyde (MDA) and circulating NOx levels and superoxide dismutase (SOD) and catalase (CAT) activities were determined in plasma, whereas glutathione levels were determined in erythrocytes. Our results show that long-term treatment at a low level of MeHg affected systolic blood pressure, increasing and reducing the levels of plasmatic MDA and NOx, respectively. However, the activity of SOD did not decrease in the MeHg exposed group when compared to the control. We found a negative correlation between plasmatic nitrite/nitrate (NOx) levels and systolic blood pressure (r=-0.67; P=0.001), and a positive correlation between MDA and systolic blood pressure (r=0.61; P=0.03), thus suggesting increased inhibition of NO formation with the increase of hypertension. In conclusion, long-term exposure to a low dose of MeHg increases the systolic pressure and is associated, at least in part, with increased production of ROS as judged by increased production of malondialdehyde and depressed NO availability. (orig.)

  7. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels.

    OpenAIRE

    MAZUEL, François; Espinosa, Ana; Luciani, Nathalie; Reffay, Myriam; Le Borgne, Rémi; Motte, Laurence; Desboeufs, Karine; Michel, Aude; Pellegrino, Teresa; Lalatonne, Yoann; Wilhelm, Claire

    2016-01-01

    International audience; Quantitative studies of the long-term fate of iron oxide nanoparticles inside cells, a prerequisite for regenerative medicine applications, are hampered by the lack of suitable biological tissue models and analytical methods. Here, we propose stem-cell spheroids as a tissue model to track intracellular magnetic nanoparticle transformations during long-term tissue maturation. We show that global spheroid magnetism can serve as a fingerprint of the degradation process, a...

  8. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models

    DEFF Research Database (Denmark)

    Møller, Peter; Risom, Lotte; Lundby, Carsten

    2008-01-01

    The objective of this review was to evaluate the association between hypoxia and oxidative damage to DNA and lipids. Evaluation criteria encompassed specificity and validation status of the biomarkers, study design, strength of the association, dose-response relationship, biological plausibility,...... in subjects at high altitude. Most of the animal experimental models should be interpreted with caution because the assays for assessment of lipid peroxidation products have suboptimal validity....

  9. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway.

    Science.gov (United States)

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo

    2011-12-01

    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, pdaidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  10. Effects of exogenous vitamin E supplementation on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease

    Indian Academy of Sciences (India)

    M K Daga; Rashmi Chhabra; Bhavneesh Sharma; T K Mishra

    2003-02-01

    Oxidative stress has been recognized as a central feature of smoke induced chronic obstructive pulmonary disease (COPD). Imbalance between oxidant and antioxidant enzymes is also an established fact in these patients. But studies in regard to stable COPD patients and effect of vitamin E supplementation are lacking. Thirty patients with COPD were included in the study. Their baseline clinical examination, spirometry, plasma malondialdehyde (MDA), alpha-tocopherol and red blood cell superoxide dismutase (SOD) levels were measured. Twenty healthy non-smokers who were matched for age and sex served as controls. All the above parameters were repeated after 12 weeks of supplementation with 400 IU of vitamin E daily. The mean malondialdehyde levels in the patients at baseline were higher than controls (5.91 ± 1.23 nmol/ml vs 4.55 ± 1.51 nmol/ml, = 0.001), so also was plasma alpha-tocopherol levels ( < 0.001), while SOD levels were lower in the patients compared to controls (1692 ± 259 units g/Hb vs 2451 ± 131 units g/Hb, < 0.001). Exogenous vitamin E (400 IU per day) supplementation did not bring about any significant change in plasma alpha-tocopherol and SOD levels. The Pearson’s co-efficient of correlation between the levels of MDA, vitamin E, SOD; and spirometric measurements were not significant either on day 1 or after 12 weeks of vitamin E supplementation. The present study shows that initially the plasma lipid peroxide (MDA) levels are high and antioxidants (alpha-tocopherol and SOD) are low in patients with COPD. Exogenous supplementation with vitamin E does not have any significant effect on the spirometric measurements though it brings down the levels of MDA showing attenuation of further damage. However, inclusion of larger number of patients and supplementation with vitamin E for longer periods may throw more light on free radical injury and protective effects of antioxidants.

  11. Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children.

    Directory of Open Access Journals (Sweden)

    Muhammad T Salam

    Full Text Available Exhaled nitric oxide (FeNO, a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2 and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children.In a cross-sectional population-based study, subjects (N = 2,457; 7-11 year-old were Hispanic and non-Hispanic white children who participated in the Southern California Children's Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes around the subjects' homes were estimated using geographic information system (GIS methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level.The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively. In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI: 9.99 to 13.80 than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63 with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002. In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34. Similar interactive effects of this haplotype and local

  12. Sidiming attenuates morphine withdrawal syndrome and nitric oxide (synthase) levels in morphine-dependent rats and rhesus monkeys

    Institute of Scientific and Technical Information of China (English)

    Zheng Yang; Renbin Huang; Jianchun Huang; Shijun Zhang; Xing Lin; Yang Jiao; Weizhe Jiang

    2011-01-01

    The present study analyzed the effects of Sidiming, a Chinese herbal compound, on withdrawal syndrome, body weight loss, and serum levels of nitric oxide and its synthase in morphine- dependent rats and rhesus monkeys. These effects were compared with clonidine, an active control drug used for clinical treatment. Results showed that 4 and 8 g/kg Sidiming, respectively, significantly suppressed morphine withdrawal syndrome and reduced body mass loss in morphine-dependent rats. In addition, 2.4 and 4.8 g/kg Sidiming, respectively, significantly attenuated withdrawal syndrome in rhesus monkeys. High-dose Sidiming (8 g/kg in rats and 4.8 g/kg in rhesus monkeys) led to significantly inhibited serum levels of nitric oxide and its synthase in morphine-dependent rats and rhesus monkeys, which were greater than clonidine. These findings suggested that Sidiming treatment attenuated withdrawal syndrome in morphine-dependent rats and rhesus monkeys by inhibiting serum nitric oxide and its synthase.

  13. The effect of endometritis on level of inflammatory protein and oxidation factor via NF-κB signal pathway

    Institute of Scientific and Technical Information of China (English)

    Ming Ni

    2015-01-01

    Objective:This study explored effect of endometritis induced by LPS on level of inflammatory protein and oxidation factor via NF-κB signal pathway.Methods: Endometial cell was treated with LPS (50, 100, 200 ng/mL). The viability of cell was detected by MTT assay. The concentration of IL-6 and PGE2 was tested by elisa method. The concentration of MDA was tested by thiobarbituric acid method. The concentration of SOD was tested by xanthine oxidation method. The concentration of NO was tested by Gries method. The expression of NF-κB p65 was assayed by western blot.Results:MTT assay demonstrated LPS (50, 100, 00 ng/mL) could suppress cell viability, and the inhibitory effect was highest in 48 h. With the increasing dose of LPS, the activity of SOD decreased, the level of MDA, NO, IL-1 and PGE2 elevated. Finally, LPS stimulated NF-κB p65 phosphorylation.Conclusion:These results suggested endometrial cell treated by LPS make inflammatory factor secreted and anti-oxidant ability decreased, which might be related to NF-κB signal pathway.

  14. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Ikeda

    Full Text Available Hypoglycemic encephalopathy (HE is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE, a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl-2,6-dichlorobenzamide (Alda-1, a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg or vehicle (dimethyl sulfoxide; DMSO was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020. Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.

  15. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Science.gov (United States)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  16. Potential Association of Lead Exposure During Early Development of Mice With Alteration of Hippocampus Nitric Oxide Levels and Learning Memory

    Institute of Scientific and Technical Information of China (English)

    LI SUN; ZHENG-YAN ZHAO; JIAN HU; XIE-LAI ZHOU

    2005-01-01

    Objective Chronic lead (Pb) exposure during development is known to produce learning deficits. Nitric oxide participates in the synaptic mechanisms involved in certain forms of learning and memory. This study was designed to clarify whether Pb-induced impairment in learning and memory was associated with the changes of nitric oxide levels in mice brains.Methods Sixty Balb/c mice aged 10 days were chosen. A model of lead exposure was established by drinking 0.025%, 0.05%,0.075% lead acetate, respectively for 8 weeks. The controls were orally given distilled water. The ability to learn and memorize was examined by open field test, T-water maze test. In parallel with the behavioral data, NO level of hippocampus tissue was detected by biochemical assay. Results Compared with control groups, (1) the weight of 0.075% group was significantly reduced (P<0.05); (2) The number of times in mice attaining the required standards in T-water maze test was lower in 0.075%group (P<0.01). No significant difference was found between experimental and control groups in open field test (P>0.05); (3)NO level of mouse hippocampus tissue was decreased in 0.075% group (P<0.01). Conclusions The findings suggest that decreased hippocampus NO level may contribute to the Pb-induced deficits in learning and memory processes.

  17. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    Science.gov (United States)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  18. High density lipoprotein level is negatively associated with the increase of oxidized low density lipoprotein lipids after a fatty meal.

    Science.gov (United States)

    Tiainen, Sanna; Ahotupa, Markku; Ylinen, Petteri; Vasankari, Tommi

    2014-12-01

    Recent reports show that a fatty meal can substantially increase the concentration of oxidized lipids in low density lipoprotein (LDL). Knowing the LDL-specific antioxidant effects of high density lipoprotein (HDL), we aimed to investigate whether HDL can modify the postprandial oxidative stress after a fatty meal. Subjects of the study (n = 71) consumed a test meal (a standard hamburger meal) rich in lipid peroxides, and blood samples were taken before, 120, 240, and 360 min after the meal. The study subjects were divided into four subgroups according to the pre-meal HDL cholesterol value (HDL subgroup 1, 0.66-0.91; subgroup 2, 0.93-1.13; subgroup 3, 1.16-1.35; subgroup 4, 1.40-2.65 mmol/L). The test meal induced a marked postprandial increase in the concentration of oxidized LDL lipids in all four subgroups. The pre-meal HDL level was associated with the extent of the postprandial rise in oxidized LDL lipids. From baseline to 6 h after the meal, the concentration of ox-LDL increased by 48, 31, 24, and 16% in the HDL subgroup 1, 2, 3, and 4, respectively, and the increase was higher in subgroup 1 compared to subgroup 3 (p = 0.028) and subgroup 4 (p = 0.0081), respectively. The pre-meal HDL correlated with both the amount and the rate of increase of oxidized LDL lipids. Results of the present study show that HDL is associated with the postprandial appearance of lipid peroxides in LDL. It is therefore likely that the sequestration and transport of atherogenic lipid peroxides is another significant mechanism contributing to cardioprotection by HDL.

  19. Oxidative stress elevated DNA damage and homocysteine level in normal pregnant women in a segment of Pakistani population.

    Science.gov (United States)

    Bukhari, Shazia A; Rajoka, Muhammad Ibrahim; Ibrahim, Z; Jalal, Fatima; Rana, Shahid Mahboob; Nagra, Saeed A

    2011-04-01

    Maternal oxidative stress during pregnancy may impair fetal growth and help in the development of diseases in adulthood. The aim of current study was to assess total oxidation status (TOS), related parameters and their relationship to DNA damage (%) and homocysteine level in normal pregnant women in low-income participants. In a cross-sectional study healthy women were grouped as normal, while age matched nulliparous and singleton pregnancies were included for first, second and third trimester groups. TOS (Phomocysteine (Ppregnant women were significantly higher as compared to normal healthy women. While serum total proteins (Phomocysteine (Phomocysteine with triglycerides (Ppregnant women. These changes were considered normal for pregnant women having optimum blood pressure and normal child birth. Hormonal influences and hemodilution may contribute towards the observed changes in this study.

  20. High-level neutron-coincidence-counter (HLNCC) implementation: assay of the plutonium content of mixed-oxide fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Foley, J E; Bosler, G E

    1982-04-01

    The portable High-Level Neutron Coincidence Counter is used to assay the /sup 240/Pu-effective loading of a reference mixed-oxide fuel assembly by neutron coincidence counting. We have investigated the effects on the coincidence count rate of the total fuel loading (UO/sub 2/ + PuO/sub 2/), the fissile loading, the fuel rod diameter, and the fuel rod pattern. The coincidence count rate per gram of /sup 240/Pu-effective per centimeter is primarily dependent on the total fuel loading of the assembly; the higher the loading, the higher the coincidence count rate. Detailed procedures for the assay of mixed-oxide fuel assemblies are developed.

  1. Effects of ethanol on CYP2E1 levels and related oxidative stress using a standard balanced diet.

    Science.gov (United States)

    Azzalis, Ligia A; Fonseca, Fernando L A; Simon, Karin A; Schindler, Fernanda; Giavarotti, Leandro; Monteiro, Hugo P; Videla, Luis A; Junqueira, Virgínia B C

    2012-07-01

    Expression of cytochrome P4502E1 (CYP2E1) is very much influenced by nutritional factors, especially carbohydrate consumption, and various results concerning the expression of CYP2E1 were obtained with a low-carbohydrate diet. This study describes the effects of ethanol treatment on CYP2E1 levels and its relationship with oxidative stress using a balanced standard diet to avoid low or high carbohydrate consumption. Rats were fed for 1, 2, 3, or 4 weeks a commercial diet plus an ethanol-sucrose solution. The results have shown that ethanol administration was associated with CYP2E1 induction and stabilization without related oxidative stress. Our findings suggest that experimental models with a low-carbohydrate/high-fat diet produce some undesirable CYP2E1 changes that are not present when a balanced standard diet is given.

  2. Cystine accumulation attenuates insulin release from the pancreatic β-cell due to elevated oxidative stress and decreased ATP levels.

    Science.gov (United States)

    McEvoy, Bernadette; Sumayao, Rodolfo; Slattery, Craig; McMorrow, Tara; Newsholme, Philip

    2015-12-01

    The pancreatic β-cell has reduced antioxidant defences making it more susceptible to oxidative stress. In cystinosis, a lysosomal storage disorder, an altered redox state may contribute to cellular dysfunction. This rare disease is caused by an abnormal lysosomal cystine transporter, cystinosin, which causes excessive accumulation of cystine in the lysosome. Cystinosis associated kidney damage and dysfunction leads to the Fanconi syndrome and ultimately end-stage renal disease. Following kidney transplant, cystine accumulation in other organs including the pancreas leads to multi-organ dysfunction. In this study, a Ctns gene knockdown model of cystinosis was developed in the BRIN-BD11 rat clonal pancreatic β-cell line using Ctns-targeting siRNA. Additionally there was reduced cystinosin expression, while cell cystine levels were similarly elevated to the cystinotic state. Decreased levels of chronic (24 h) and acute (20 min) nutrient-stimulated insulin secretion were observed. This decrease may be due to depressed ATP generation particularly from glycolysis. Increased ATP production and the ATP/ADP ratio are essential for insulin secretion. Oxidised glutathione levels were augmented, resulting in a lower [glutathione/oxidised glutathione] redox potential. Additionally, the mitochondrial membrane potential was reduced, apoptosis levels were elevated, as were markers of oxidative stress, including reactive oxygen species, superoxide and hydrogen peroxide. Furthermore, the basal and activated phosphorylated forms of the redox-sensitive transcription factor NF-κB were increased in cells with silenced Ctns. From this study, the cystinotic-like pancreatic β-cell model demonstrated that the altered oxidative status of the cell, resulted in depressed mitochondrial function and pathways of ATP production, causing reduced nutrient-stimulated insulin secretion.

  3. System and method to control h2o2 level in advanced oxidation processes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a bio-electrochemical system (BES) and a method of in-situ production and removal of H2O2 using such a bio-electrochemical system (BES). Further, the invention relates to a method for in-situ control of H2O2 content in an aqueous system of advanced oxidation...... processes (AOPs) involving in-situ generation of hydroxyl radical (OH) by using such a bio-electrochemical system (BES) and to a method for treatment of wastewater and water disinfection. The bio-electrochemical system (BES) according to the invention comprises: - an aqueous cathode compartment comprising...

  4. Flavour release of aldehydes and diacetyl in oil/water systems

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Bredie, W. L. P.; Stahnke, Louise Heller;

    2000-01-01

    The concentration- and time-dependent release of three C-6-aldehydes, six C-9-aldehydes and diacetyl was studied in model systems. The systems were water, rapeseed oil and oil-in-water emulsions. Dynamic headspace sampling was used to collect the volatile compounds. In the concentration-dependent...

  5. Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods

    NARCIS (Netherlands)

    Smit, B.A.; Engels, W.J.M.; Smit, G.

    2009-01-01

    Branched aldehydes, such as 2-methyl propanal and 2- and 3-methyl butanal, are important flavour compounds in many food products, both fermented and non-fermented (heat-treated) products. The production and degradation of these aldehydes from amino acids is described and reviewed extensively in lite

  6. Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes

    DEFF Research Database (Denmark)

    Thygesen, Mikkel Boas; Sørensen, Kasper Kildegaard; Cló, Emiliano

    2009-01-01

    Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell.......Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell....

  7. Effect of whey protein on the In Vivo Release of Aldehydes.

    NARCIS (Netherlands)

    Weel, K.G.C.; Boelrijk, A.E.M.; Burger, J.J.; Claassen, N.E.; Gruppen, H.; Voragen, A.G.J.

    2003-01-01

    Retention of aldehydes by whey proteins in solutions buffered at a range of pH values was studied under static and dynamic headspace conditions and in vivo in exhaled air. Static headspace measurements showed a clear increase in retention in the presence of whey proteins for aldehydes with longer ca

  8. Electric-field induced quantum broadening of the characteristic energy level of traps in semiconductors and oxides

    Science.gov (United States)

    Mohammed, Mazharuddin; Verhulst, Anne S.; Verreck, Devin; Van de Put, Maarten; Simoen, Eddy; Sorée, Bart; Kaczer, Ben; Degraeve, Robin; Mocuta, Anda; Collaert, Nadine; Thean, Aaron; Groeseneken, Guido

    2016-12-01

    The trap-assisted tunneling (TAT) current in tunnel field-effect transistors (TFETs) is one of the crucial factors degrading the sub-60 mV/dec sub-threshold swing. To correctly predict the TAT currents, an accurate description of the trap is required. Since electric fields in TFETs typically reach beyond 106 V/cm, there is a need to quantify the impact of such high field on the traps. We use a quantum mechanical implementation based on the modified transfer matrix method to obtain the trap energy level. We present the qualitative impact of electric field on different trap configurations, locations, and host materials, including both semiconductors and oxides. We determine that there is an electric-field related trap level shift and level broadening. We find that these electric-field induced quantum effects can enhance the trap emission rates.

  9. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine1[W][OA

    Science.gov (United States)

    Díaz-Sánchez, Ángel G.; González-Segura, Lilian; Mújica-Jiménez, Carlos; Rudiño-Piñera, Enrique; Montiel, Carmina; Martínez-Castilla, León P.; Muñoz-Clares, Rosario A.

    2012-01-01

    Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant Km(BAL) increases and Vmax/Km(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the Vmax/Km(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants. PMID:22345508

  10. Reduction of blood nitric oxide levels is associated with clinical improvement of the chronic pelvic pain related to endometriosis

    Directory of Open Access Journals (Sweden)

    M.G. Rocha

    2015-04-01

    Full Text Available The objective of this prospective study was to determine the plasma levels of nitric oxide (NO in women with chronic pelvic pain secondary to endometriosis (n=24 and abdominal myofascial pain syndrome (n=16. NO levels were measured in plasma collected before and 1 month after treatment. Pretreatment NO levels (μM were lower in healthy volunteers (47.0±12.7 than in women with myofascial pain (64.2±5.0, P=0.01 or endometriosis (99.5±12.9, P<0.0001. After treatment, plasma NO levels were reduced only in the endometriosis group (99.5±12.9 vs 61.6±5.9, P=0.002. A correlation between reduction of pain intensity and reduction of NO level was observed in the endometriosis group [correlation = 0.67 (95%CI = 0.35 to 0.85, P<0.0001]. Reduction of NO levels was associated with an increase of pain threshold in this group [correlation = -0.53 (-0.78 to -0.14, P<0.0001]. NO levels appeared elevated in women with chronic pelvic pain diagnosed as secondary to endometriosis, and were directly associated with reduction in pain intensity and increase in pain threshold after treatment. Further studies are needed to investigate the role of NO in the pathophysiology of pain in women with endometriosis and its eventual association with central sensitization.

  11. Changes in plasma hydrogen sulfide and nitric oxide levels and their clinical significance in children with Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hui; ZHANG Chao-ying; WU Jian-xin; ZHANG Ting

    2011-01-01

    Background Cardiac involvement is the most common complication of Kawasaki disease (KD); however,the underlying mechanisms are not understood.The present study was designed to investigate changes in plasma hydrogen sulfide (H2S) and nitric oxide (NO) levels in the acute and recovery stages of KD children and to examine their clinical significance.Methods Thirty-five KD patients and 32 healthy children were enrolled in the study.KD patients were divided into two subgroups:a non-cardiac involvement group and a cardiac involvement group.Plasma H2S levels were measured using the sulfur-sensitive electrode method and plasma NO levels and NO synthase activity were determined using the nitrate reductase method both before and after intravenous immune globulin (IVIG) therapy.Results Plasma H2S levels significantly decreased in KD patients during the acute phase of the disease and NO levels were significantly increased,compared with the control group (P <0.01).After treatment with IVIG,both plasma H2S and NO levels significantly increased (P <0.01).The plasma levels of H2S were significantly lower in the cardiac involvement group compared with the non-cardiac involvement group (P<0.05).Conclusion H2S and NO may play a role in the pathophysiological process of inflammation during the acute phase of KD.Endogenous H2S may exert protective effects with respect to cardiac complications in KD.

  12. Relation of middle molecules levels and oxidative stress to erythropoietin requirements in high-flux versus low-flux hemodialysis

    Directory of Open Access Journals (Sweden)

    Hala S El-Wakil

    2013-01-01

    Full Text Available The objective of this study is to investigate the serum beta-2-microglobulin (B2MG and advanced oxidation protein products (AOPP as middle molecule uremic toxins and protein carbonyl (PCO as oxidative stress marker in uremic patients undergoing high-flux versus low-flux hemodialysis (HD and to correlate their levels to the erythropoietin requirements for those patients. Twenty patients on chronic low-flux HD were recruited in the study. At the start of the study, all patients underwent high-flux HD for eight weeks, followed by low-flux HD for two weeks as a washout period. The patients were then subjected to another eight weeks of low-flux HD. Blood samples were obtained at the beginning and at the end of the high-flux period and the low-flux period. The mean erythropoietin dose for patients using high-flux HD was significantly lower than that for low-flux HD (P = 0.0062. Post-high flux, the B2MG and PCO levels were significantly lower than the pre-high-flux levels (P = 0.026 and 0.0005, respectively, but no significant change was observed in AOPP (P = 0.68. Post-low flux, the B2MG, AOPP and PCO were significantly higher than the pre-low-flux levels (P = 0.0002, 0.021 and <0.0001, respectively. Post-low flux, the B2MG and PCO were significantly higher than the post-high-flux levels (P <0.0001, but no significant difference was observed in AOPP (P = 0.11. High-flux HD results in reduction of some of the middle molecule toxins and PCO levels better than low-flux HD, and is associated with a better response to erythropoietin.

  13. Serum levels of soluble Fas, nitric oxide and cytokines in acute decompensated cirrhotic patients

    Institute of Scientific and Technical Information of China (English)

    Christoph Elsing; Sabine Harenberg; Wolfgang Stremmel; Thomas Herrmann

    2007-01-01

    AIM: To evaluate plasma levels of nitrite/nitrate (NOx),soluble Fas (sFas) antigen, tumor necrosis factor alpha(TNF-α) and interleukin-6 (TL-6) in patients with compensated and acute decompensated cirrhosis and to evaluate mediators causing acute decompensation in liver cirrhosis.METHODS: This prospective study was conducted in the medical intensive care unit of an academic tertiary center. Fifty-five patients with acute decompensation (gastrointestinal hemorrhage, encephalopathy, hydropic decompensation) and twenty-five patients with compensated liver cirrhosis were included. Blood samples were taken for analyses of sfas, Nox, TL-6, TNF-α. Liver enzymes and kidney functions were also tested.RESULTS: In patients with acute decompensation, plasma sfas levels were higher than in non-decompensated patients (15305±4646 vs 12458 ± 4322 pg/mL, P <0.05). This was also true for the subgroup of patients with alcoholic liver cirrhosis (P < 0.05). The other mediators were not different and none of the parameters predicted survival, except for ALT (alanine-aminotransferase). In patients with portal-hypertension-induced acute hemorrhage, NOx levels were significantly lower than in patients with other forms of decompensation (70.8 ±48.3 vs 112.9 ± 74.9 pg/mL, P < 0.05). When NOx levels were normalized to creatinine levels, the difference disappeared. IL-6, TNF-α and sfas were not different between bleeders and non-bleeders. In decompensated patients sfas, IL-6 and NOx levels correlated positively with creatinine levels, while IL-6 levels were dependent on Child class.CONCLUSION: In acute decompensated cirrhotic patients sFas is increased, suggesting a role of apoptosis in this process and patients with acute bleeding have lower NOx levels. However, in this acute complex clinical situation, kidney function seems to have a predominant influence on mediator levels.

  14. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    Science.gov (United States)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  15. High levels of γ-H2AX foci and cell membrane oxidation in adolescents with type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Caterina [Unità di Genetica, Dipartimento di Biologia, Pisa University, Pisa (Italy); Piaggi, Simona [Sezione di Patologia Sperimentale, Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Pisa University, Pisa (Italy); Federico, Giovanni [Unità di Endocrinologia Pediatrica e Diabete, Dipartimento di Medicina Clinica e Sperimentale Pisa University, Pisa (Italy); Scarpato, Roberto, E-mail: roberto.scarpato@unipi.it [Unità di Genetica, Dipartimento di Biologia, Pisa University, Pisa (Italy)

    2014-12-15

    Highlights: • We aimed to detect signs of very early damage in peripheral cells of T1DM adolescents. • T1DM patients had high levels of oxidized cells and reduced expression of iNOS and NO. • Highly mutagenic lesions were markedly increased in the diabetic group, mainly in females. • The observed damage might increase the risk of cancer in the patients later in life. - Abstract: Oxidative stress caused by an excess of free radicals is implicated in the pathogenesis and development of type 1 diabetes mellitus (T1DM) and, in turn, it can lead to genome damage, especially in the form of DNA double-strand break (DSB). The DNA DSB is a potentially carcinogenic lesion for human cells. Thus, we aimed to evaluate whether the level of oxidative stress was increased in peripheral blood lymphocytes of a group of affected adolescents. In 35 T1DM adolescents and 19 healthy controls we assessed: (1) spontaneous and H{sub 2}O{sub 2}-induced oxidation of cell membrane using a fluorescence lipid probe; (2) spontaneous and LPS-induced expression of iNOS protein and indirect NO determination via cytofluorimetric analysis of O{sub 2}{sup −}; (3) immunofluorescent detection of the basal level of histone H2AX phosphorylation (γ-H2AX foci), a well-validated marker of DNA DSB. In T1DM, the frequencies of oxidized cells, both spontaneous and H{sub 2}O{sub 2}-induced (47.13 ± 0.02) were significantly higher than in controls (35.90 ± 0.03). Patients showed, in general, both a reduced iNOS expression and production of NO. Furthermore, the level of spontaneous nuclear damage, quantified as γ-H2AX foci, was markedly increased in T1DM adolescents (6.15 ± 1.08% of γ-H2AX{sup +} cells; 8.72 ± 2.14 γ-H2AXF/n; 9.26 ± 2.37 γ-H2AXF/np), especially in females. In the present study, we confirmed the role that oxidative stress plays in the disease damaging lipids of cell membrane and, most importantly, causing genomic damage in circulating white blood cells of affected adolescents

  16. Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea

    Directory of Open Access Journals (Sweden)

    Mirian Pateiro

    2015-01-01

    Full Text Available The present study investigated the effect of the addition of increasing levels of the natural antioxidants tea (TEA and grape seed extracts (GRA on the physiochemical and oxidative stability of refrigerated stored pig pâtés. In addition, a synthetic antioxidant and a control batch were used, thus a total of eight batches of liver pâté were prepared: CON, BHT, TEA (TEA50, TEA200 and TEA1000 and GRA (GRA50, GRA200 and GRA1000. Pâté samples were analyzed following 0, 4, 8 and 24 weeks of storage. Color parameters were affected by storage period and level of antioxidant extract. Samples with TEA200 and GRA1000 levels of extracts showed lower total color difference between 0 and 24 weeks. At the end of storage period, the lower TBARs values were obtained in samples with the highest concentration on natural extract. Overall, the evolution of volatile compounds showed an increase in those ones that arise from the lipid oxidation and samples with TEA1000 extract showed the lowest values.

  17. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T.K. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Clarke, S.M., E-mail: stuart@bpi.cam.ac.u [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Bhinde, T. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Castro, M.A.; Millan, C. [Instituto Ciencia de los Materiales de Sevilla, Departamento de Quimica Inorganica (CSIC-Universidad de Sevilla) (Spain); Medina, S. [Centro de Investigacion, Tecnologia e Innovacion de la Universidad de Sevilla (CITIUS), Sevilla (Spain)

    2011-03-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C{sub 7}, C{sub 9} and C{sub 11}) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C{sub 11} homologue is determined to have a plane group of either p2, pgb or pgg, and for the C{sub 7} homologue the p2 plane group is preferred.

  18. Does acute exposure to aldehydes impair pulmonary function and structure?

    Science.gov (United States)

    Abreu, Mariana de; Neto, Alcendino Cândido; Carvalho, Giovanna; Casquillo, Natalia Vasconcelos; Carvalho, Niedja; Okuro, Renata; Ribeiro, Gabriel C Motta; Machado, Mariana; Cardozo, Aléxia; Silva, Aline Santos E; Barboza, Thiago; Vasconcellos, Luiz Ricardo; Rodrigues, Danielle Araujo; Camilo, Luciana; Carneiro, Leticia de A M; Jandre, Frederico; Pino, Alexandre V; Giannella-Neto, Antonio; Zin, Walter A; Corrêa, Leonardo Holanda Travassos; Souza, Marcio Nogueira de; Carvalho, Alysson R

    2016-07-15

    Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1β, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group.

  19. Reduction of Aldehydes and Ketones with Potassium Borohydride as Reductant

    Institute of Scientific and Technical Information of China (English)

    罗慧谋; 李毅群

    2005-01-01

    A series of aldehydes and ketones were reduced by potassium borohydride in an ionic liquid/water ([bmim]PF6/H2O) biphasic system to afford corresponding alcohol with high purity in excellent yields. The ionic liquid/water biphasic system could promote the chemoselectivity and the substituents such as nitro group and chlorine remained intact. Aromatic ketones were not as active as aromatic aldhydes and cyclic ketones owing to their higher steric hindrance. The ionic liquid could be recycled and reused. This protocol has notable advantages of no need of phase transfer catalyst and organic solvents, mild conditions, simple operation, short reaction time, ease work-up, high yields and recycling of the ionic liquid.

  20. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    Science.gov (United States)

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages.

  1. Differential effect of three polyunsaturated aldehydes on marine bacterial isolates.

    Science.gov (United States)

    Ribalet, Francois; Intertaglia, Laurent; Lebaron, Philippe; Casotti, Raffaella

    2008-01-31

    Bioactive polyunsaturated aldehydes (PUAs) are produced by several marine phytoplankton (mainly diatoms) and have been shown to have a detrimental effect on a wide variety of organisms, including phytoplankton and invertebrates. However, their potential impact on marine bacteria has been largely neglected. We assess here the effect of three PUAs produced by marine diatoms: 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, on the growth of 33 marine bacterial strains, including 16 strains isolated during a bloom of the PUA-producing diatom Skeletonema marinoi in the Northern Adriatic Sea. A concentration-dependent growth reduction was observed for 19 bacterial strains at concentrations ranging from 3 to 145 micromolL(-1). Surprisingly, Eudora adriatica strain MOLA358 (Flavobacteriaceae) and Alteromonas hispanica strain MOLA151 (Alteromonadaceae) showed growth stimulation upon exposure to PUAs at concentrations between 13 and 18 micromolL(-1). The remaining 12 strains were unaffected by even very high PUA concentrations. Strains isolated during the diatom bloom showed remarkable resistance to PUA exposures, with only two out of 16 strains showing growth inhibition at PUA concentrations below 106, 130, and 145 micromolL(-1) for 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, respectively. No correlation between taxonomical position and sensitivity to PUA was observed. Considering that many bacteria thrive in close vicinity of diatom cells, it is likely that these compounds may shape the structure of associated bacterial communities by representing a selection force. This is even more relevant during the final stages of blooms, when senescence and nutrient limitation increase the potential production and release of aldehydes.

  2. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  3. Potential Polyunsaturated Aldehydes in the Strait of Gibraltar under Two Tidal Regimes

    Directory of Open Access Journals (Sweden)

    Soledad Morillo-García

    2014-03-01

    Full Text Available Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA. These organisms are dominant in the large phytoplankton fraction (>10 µm in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides, diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell−1. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability.

  4. Wounding stimulates ALLENE OXIDE SYNTHASE gene and increases the level of jasmonic acid in Ipomoea nil cotyledons

    Directory of Open Access Journals (Sweden)

    Emilia Wilmowicz

    2016-03-01

    Full Text Available Allene oxide synthase (AOS encodes the first enzyme in the lipoxygenase pathway, which is responsible for jasmonic acid (JA formation. In this study we report the molecular cloning and characterization of InAOS from Ipomoea nil. The full-length gene is composed of 1662 bp and encodes for 519 amino acids. The predicted InAOS contains PLN02648 motif, which is evolutionarily conserved and characteristic for functional enzymatic proteins. We have shown that wounding led to a strong stimulation of the examined gene activity in cotyledons and an increase in JA level, which suggest that this compound may be a modulator of stress responses in I. nil.

  5. Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise Lotte N; Thomsen, Simon Francis

    2010-01-01

    Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM with rhini......Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM...... with rhinitis symptoms, atopy and nitric oxide in exhaled air (FeNO) as a measure of airway inflammation....

  6. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  7. Poststroke depression as a factor adversely affecting the level of oxidative damage to plasma proteins during a brain stroke.

    Science.gov (United States)

    Cichoń, Natalia; Bijak, Michał; Miller, Elżbieta; Niwald, Marta; Saluk, Joanna

    2015-01-01

    Poststroke depression, the second most serious psychosomatic complication after brain stroke, leads to delay of the rehabilitation process and is associated with an increased disability and cognitive impairment along with increase in term mortality. Research into the biochemical changes in depression is still insufficiently described. The aim of our study was therefore to evaluate the possible association between plasma protein oxidative/nitrative damages and the development of poststroke depression. We evaluated oxidative/nitrative modifications of specific proteins by measurement of 3-nitrotyrosine and carbonyl groups levels using ELISA test. Additionally, we checked differences in proteins thiol groups by spectrophotometric assay based on reaction between DTNB and thiols. We also evaluated catalase activity in erythrocytes measured as ability to decompose H2O2. Correlation analysis was performed using Spearman's rank. We observed significant (P stroke patients compared to healthy group. Our research shows that oxidative damage of proteins is correlated with the degree of poststroke depression, while nitrative changes do not show any relationship. We demonstrate a positive correlation between the concentration of carbonyl groups and the Geriatric Depression Scale and a negative correlation between the degree of depression and the concentration of -SH groups or catalase activity.

  8. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer’s disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.

  9. THE EFFECT OF USING VITAMIN E ON MUSCLE DAMAGE, OXIDANT AND ANTIOXIDANT LEVELS OF RUNNERS PERFORMING ENDURANCE TRAINING

    Directory of Open Access Journals (Sweden)

    Serdar BÜYÜKİPEKÇİ

    2012-12-01

    Full Text Available This study was made to research the effect of vitamin E on muscle damage, oxidant and antioxidant levels of runners. 28 students participated in the study as the experiment group at the age of 20,75±1,84 (n=16 and the control group (n=12 at the age of 20,42±1,78 who are physically active, have the similar physical features and education at Erciyes University. In this study, the same exercises were performed on both groups three times a week for thirty days. 400 IU (268 mg vitamin E was given to the athletes in experiment group in every day for 30 days. Nothing was given to the control group. The body weights and the percentage of body fat were measured at the pre and post one month exercise. Total antioxidant capacity, malondialdehyde, creatine kinase and lactate dehydrogenase were measured by making biochemical analyses. While any significant difference on pre-exercise CK and LDH levels, pre and post exercise TAC and MDA levels of experiment and control groups was not found, there was a significant difference on post exercise CK and LDH levels as a result of the intergroup comparison. As for the intragroup comparison, there was a significant increase on post exercise MDA level of both experiment and control group. This result was thought that the antioxidant capacity remains incapable; despite usage of vitamin E counter to oxidative stress increasing connectedly exercise. The reason of this inability in the antioxidant defense system is thought that this is because of the amount of daily vitamin E.

  10. Selective Oxidation of Alcohols Using Photoactive VO@g‑C3N4

    Data.gov (United States)

    U.S. Environmental Protection Agency — A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated...

  11. Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Salem, Neveen A; Hussein, Jihan Seid

    2012-04-01

    This study aimed at investigating the effect of the sweetener aspartame on oxidative stress and brain monoamines in normal circumstances and after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS; 100 μg/kg) in mice. Aspartame (0.625-45 mg/kg) was given via subcutaneous route at the time of endotoxin administration. Mice were euthanized 4 h later. Reduced glutathione (GSH), lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), and nitrite concentrations were measured in brain and liver. Tumor necrosis factor-alpha (TNF-α) and glucose were determined in brain. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in liver. The administration of only aspartame (22.5 and 45 mg/kg) increased brain TBARS by 17.7-32.8%, decreased GSH by 25.6-31.6%, and increased TNF-α by 16.7-44%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline, and dopamine. Aspartame did not alter liver TBARS, nitrite, GSH, AST, ALT, or ALP. The administration of LPS increased nitrite in brain and liver by 26.8 and 37.1%, respectively; decreased GSH in brain and liver by 21.6 and 31.1%, respectively; increased brain TNF-α by 340.4%, and glucose by 39.9%, and caused marked increase in brain monoamines. LPS increased AST, ALT, and ALP in liver tissue by 84.4, 173.7, and 258.9%, respectively. Aspartame given to LPS-treated mice at 11.25 and 22.5 mg/kg increased brain TBARS by 15.5-16.9%, nitrite by 12.6-20.1%, and mitigated the increase in monoamines. Aspartame did not alter liver TBARS, nitrite, GSH, ALT, AST, or ALP. Thus, the administration of aspartame alone or in the presence of mild systemic inflammatory response increases oxidative stress and inflammation in the brain, but not in the liver.

  12. Correlation between the serum level of advanced oxidation protein products and the cognitive function in patients with obstructive sleep apnea hypopnea syndrome

    Institute of Scientific and Technical Information of China (English)

    杨秀红

    2013-01-01

    Objective To observe the change of the cognitive function and the serum level of advanced oxidation protein products(AOPP) in patients with obstructive sleep apnea hypopnea syndrome(OSAHS),and then to investigate

  13. The plasma level of nitric oxide and the expression of inducible nitric oxidesynthase in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Run Xuan Shao; Jiang Bin Wang; Jia He Guo

    2000-01-01

    AIM To study the relationship between nitric oxide (NO), nitric oxide synthase (NOS) and humanhepatocellular carcinoma (HCC).METHODS Plsama NO2-/NO3- was measured by Griess reaction in 122 patients with chronic hepatitis(CH) and compensated liver cirrhosis (LC), among which 62 patients were complicated with HCC(CH = 28, LC = 34), and the rest 60 patients were not (CH = 29, LC = 31). Thirty healthy persons served asnormal controls (NC). There were no prominent differences among the groups in sex, age and the ratio ofCH to LC. The expression of inducible nitric oxide synthase (iNOS) in HCC (n = 40), CH (n = 30) and LC(n = 30) samples obtained from liver biopsy or operation was compared with that in normal liver tissues byusing immunohistochemistry. Ten normal liver tissue samples obtained from liver operation served as normalcontrols. The samples were fixed in formalin and embeded in paraffin. Anti-iNOS antibody (Santacruzcompany) was served as antibody-Ⅰ in immunohistochemical assay of iNOS in tissue.RESULTS Plasma NO2-/NO3- level in normal was 11.5 μmol/L±4.2μmol/L. The plasma level ofNO2 /NO3- in CH (58.6±17.4 μmol/L) and LC (38.7±10.6μmol/L) accompanied with HCC wasnotably higher than in those patients without HCC (CH: 24.8±9.4 μmol/L; LC: 22.3±8.7μmol/L,t=2.901, 2.756, P<0.01). Plasma NO2-/NO3- level in HCC accompanied with CH was significantlyhigher than in those accompanied with LC ( t = 2.216, P<0.05). Positive rate of iNOS in HCC, CH and LCwas 95%, 93% and 57% respectively. iNOS was not expressed in normal liver tissues. The expression level ofiNOS in HCC (χ2=17.4, P<0.001) and CH (χ2=11.64, P<0.025) was much higher than in LC.CONCLUSION Plasma NO2 / NO3- level significantly increased in patients with HCC and theimmunohistochemical staining of iNOS was positive. This suggests that the liver secrets NO in the higherlevel may participate in the carcinogenesis and progression of HCC.

  14. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae.

    Science.gov (United States)

    Drakulic, Tamara; Temple, Mark D; Guido, Ron; Jarolim, Stefanie; Breitenbach, Michael; Attfield, Paul V; Dawes, Ian W

    2005-12-01

    Saccharomyces cerevisiae mutants lacking oxidative stress response genes were used to investigate which genes are required under normal aerobic conditions to maintain cellular redox homeostasis, using intracellular glutathione redox potential (glutathione E(h)) to indicate the redox environment of the cells. Levels of reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) were also assessed by FACS using dihydroethidium and rhodamine 123 as fluorescent probes. Cells became more oxidised as strains shifted from exponential growth to stationary phase. During both phases the presence of reduced thioredoxin and the activity of glutathione reductase were important for redox homeostasis. Thioredoxin reductase contributed less during exponential phase when there was a strong requirement for active Yap1p transcription factor, but was critical during stationary phase. The absence of ROS detoxification systems, such as catalases or superoxide dismutases, had a lesser effect on glutathione E(h), but a more pronounced effect on ROS levels and MMP. These results reflect the major shift in ROS generation as cells switch from fermentative to respiratory metabolism and also showed that there was not a strong correlation between ROS production, MMP and cellular redox environment. Heterogeneity was detected in populations of strains with compromised anti-oxidant defences, and as cells aged they shifted from one cell type with low ROS content to another with much higher intracellular ROS.

  15. Aluminium recovery from waste incineration bottom ash, and its oxidation level.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario

    2013-09-01

    The recovery of aluminium (Al) scraps from waste incineration bottom ash is becoming a common practice in waste management. However, during the incineration process, Al in the waste undergoes oxidation processes that reduce its recycling potential. This article investigates the behaviour of Al scraps in the furnace of two selected grate-fired waste-to-energy plants and the amount recoverable from the bottom ash. About 21-23% of the Al fed to the furnace with the residual waste was recovered and potentially recycled from the bottom ash. Out of this amount, 76-87% was found in the bottom ash fraction above 5 mm and thus can be recovered with standard eddy current separation technology. These values depend on the characteristics and the mechanical strength of the Al items in the residual waste. Considering Al packaging materials, about 81% of the Al in cans can be recovered from the bottom ash as an ingot, but this amount decreases to 51% for trays, 27% for a mix of aluminium and poly-laminated foils and 47% for paper-laminated foils. This shows that the recovery of Al from the incineration residues increases proportionally to the thickness of the packaging.

  16. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Garza, Octavio, E-mail: ojimenezgarza@ugto.mx [Health Sciences Division, University of Guanajuato Campus León, Blvd. Puente del Milenio 1001, Fracción del Predio San Carlos, C.P. 37670 León, Guanajuato (Mexico); Baccarelli, Andrea A.; Byun, Hyang-Min [Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 (United States); Márquez-Gamiño, Sergio [Health Sciences Division, University of Guanajuato Campus León, Blvd. Puente del Milenio 1001, Fracción del Predio San Carlos, C.P. 37670 León, Guanajuato (Mexico); Barrón-Vivanco, Briscia Socorro [Environmental Toxicology and Pollution Laboratory, Nayarit Autonomous University, Av. Ciudad de la Cultura s/n, “Amado Nervo”, Tepic, Nayarit C.P. 63155 (Mexico); Albores, Arnulfo [Department of Toxicology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico DF (Mexico)

    2015-08-01

    Background: CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. Goal: To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. Methods: We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86 +/− 7 mg/m{sup 3}) and 24 administrative workers (reference group, mean levels 0.21 +/− 0.02 mg/m{sup 3}) all of them from the city of León, Guanajuato, México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. Results: In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r = − .36, p < 0.05), as well as for IL6 promoter methylation levels (r = .44, p < 0.05). Moreover, CYP2E1 promoter methylation levels where higher in toluene-exposed smokers compared to nonsmokers (p = 0.009). We also observed significant correlations for CYP2E1 promoter methylation with GSTP1 and SOD1 promoter methylation levels (r = − .37, p < 0.05 and r = − .34, p < 0.05 respectively). Conclusion: These results highlight the importance of considering CYP2E1 epigenetic modifications, as well as its interactions with other genes, as key factors for unraveling the sub cellular mechanisms of toxicity exerted by oxidative stress, which can initiate disease process in chronic, low-level toluene exposure. People co-exposed to toluene and tobacco smoke are in higher risk due to a possible CYP2E1 repression. - Highlights: • We investigated gene-specific methylation in persons chronically exposed to toluene. • In a previous study, a reduced CYP2E1 activity was observed in these participants. • CYP2E1

  17. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  18. Ghrelin-related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries.

    Science.gov (United States)

    Ku, Jacqueline M; Sleeman, Mark W; Sobey, Christopher G; Andrews, Zane B; Miller, Alyson A

    2016-04-01

    The ghrelin gene is expressed in the stomach where it ultimately encodes up to three peptides, namely, acylated ghrelin, des-acylated ghrelin and obestatin, which all have neuroendocrine roles. Recently, the authors' reported that these peptides have important physiological roles in positively regulating vasodilator nitric oxide (NO) production in the cerebral circulation, and may normally suppress superoxide production by the pro-oxidant enzyme, Nox2-NADPH oxidase. To date, the majority of studies using exogenous peptides infer that they may have similar roles in the systemic circulation. Therefore, this study examined whether exogenous and endogenous ghrelin-related peptides modulate NO production and superoxide levels in mouse mesenteric arteries and/or thoracic aorta. Using wire myography, it was found that application of exogenous acylated ghrelin, des-acylated ghrelin or obestatin to mouse thoracic aorta or mesenteric arteries failed to elicit a vasorelaxation response, whereas all three peptides elicited vasorelaxation responses of rat thoracic aorta. Also, none of the peptides modulated mouse aortic superoxide levels as measured by L-012-enhanced chemiluminescence. Next, it was found that NO bioactivity and superoxide levels were unaffected in the thoracic aorta from ghrelin-deficient mice when compared with wild-type mice. Lastly, using novel GHSR-eGFP reporter mice in combination with double-labelled immunofluorescence, no evidence was found for the growth hormone secretagogue receptor (GHSR1a) in the throracic aorta, which is the only functional ghrelin receptor identified to date. Collectively these findings demonstrate that, in contrast to systemic vessels of other species (e.g. rat and human) and mouse cerebral vessels, ghrelin-related peptides do not modulate vasodilator NO production or superoxide levels in mouse systemic arteries.

  19. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice

    NARCIS (Netherlands)

    Hoek-van den Hil, E.F.; Keijer, J.; Bunschoten, A.; Vervoort, Jacques; Stankova, B.; Bekkenkamp-Grovestein, M.; Herreman, L.; Venema, D.P.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.; Schothorst, van E.M.

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H

  20. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    NARCIS (Netherlands)

    n den Hil, E.F. Hoek-va; Keijer, J.; Bunschoten, A.; Vervoort, J.J.; Stankova, B.; Bekkenkamp, M.; Herreman, L.; Venema, D.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.M.C.M.; Schothorst, E.M. van

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and (1)

  1. Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells.

    Science.gov (United States)

    Xie, Bingjie; Lin, Fankai; Peng, Lei; Ullah, Kaleem; Wu, Hanyan; Qing, Hong; Deng, Yulin

    2014-11-01

    More and more studies have suggested that methylglyoxal (MGO) induced by type-2 diabetes is related to Parkinson's disease (PD). However, little is known about the molecular mechanism. In this study, we explored the MGO toxicity in neuroblastoma SH-SY5Y cells. Neurotoxicity of MGO was measured by mitochondrial membrane potential, malondialdehyde, and methylthiazoletetrazolium assays. The levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) were detected by liquid chromatography-mass spectrometry/mass spectrometry. The expressions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) were detected by reverse transcriptase polymerase chain reaction and western blot analysis. The results showed that MGO induced an increase in TH and DAT expressions in SH-SY5Y neuroblastoma cells, while the levels of dopamine, DOPAC, and endogenous neurotoxin salsolinol also increased. Aminoguanidine (AG) is an inhibitor of MGO. It was found that AG could decrease the reactive oxygen species (ROS) level induced by MGO, but could not inhibit an increase of TH, DAT and dopamine. The increase of dopamine, DOPAC and salsolinol levels could lead to high ROS and mitochondrial damage. This study suggests that ROS caused by dopamine could contribute to the damage of dopaminergic neurons when MGO is increased during the course of diabetes.

  2. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  3. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters.

    Science.gov (United States)

    Keung, W M; Klyosov, A A; Vallee, B L

    1997-03-04

    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation between ALDH-2 inhibition and ethanol intake suppression and raise the possibility that daidzin may, in fact, suppress ethanol intake of golden hamsters by inhibiting ALDH-2. Hamster liver contains not only mitochondrial ALDH-2 but also high concentrations of a cytosolic form, ALDH-1, which is a very efficient catalyst of acetaldehyde oxidation. Further, the cytosolic isozyme is completely resistant to daidzin inhibition. This unusual property of the hamster ALDH-1 isozyme accounts for the fact we previously observed that daidzin can suppress ethanol intake of this species without blocking acetaldehyde metabolism. Thus, the mechanism by which daidzin suppresses ethanol intake in golden hamsters clearly differs from that proposed for the classic ALDH inhibitor disulfiram. We postulate that a physiological pathway catalyzed by ALDH-2, so far undefined, controls ethanol intake of golden hamsters and mediates the antidipsotropic effect of daidzin.

  4. Saliva nitric oxide levels in relation to caries experience and oral hygiene

    Directory of Open Access Journals (Sweden)

    Enas H. Mobarak

    2011-10-01

    Full Text Available The aim of the present study was to determine the relationship between nitric oxide (NO concentration/rate in the unstimulated whole saliva (UWS and stimulated whole saliva (SWS with the decay-missing-filled teeth (DMFT and simplified oral hygiene (OHI-s scores. Forty adults were included in the study. Half of the participants (n = 20 had high DMFT-OHI-s compared to the other half. UWS and SWS flow rates, initial and final pHs were also measured. NO concentrations in the UWS and SWS of high and low DMFT-OHI-s groups were determined using modified Griess reaction and NO rates were calculated. The two groups revealed no significant differences in their salivary flow rates and their initial pH. NO concentrations/rates in the UWS and SWS of high and low DMFT-OHI-s groups were not statistically different (p > 0.05. There was no significant correlation between NO concentration or NO rate and other tested variables (DMFT-OHI-s, initial pH and final pH. However, a significant correlation was found between UWS NO rate and UWS flow rate (r = 0.921, p = 0.0001 and SWS NO rate and between SWS flow rate (r = 0.921, p = 0.0001. It could be concluded that neither NO concentration nor NO rate correlates with the dental status. As the exposure to any salivary component (including NO depends not only on its concentration but also on the rate of production of such concentration, it would be of value when determining individuals’ salivary components to consider their rate values rather than their absolute concentrations.

  5. ApoB/ApoA-1 ratio and nitric oxide levels in pregnancy induced hypertensive women

    Directory of Open Access Journals (Sweden)

    Visala Sree Jammalamadaga

    2016-05-01

    Results: The SBP and DBP were significantly high between 3 groups. The mean plasma TC, TGL, VLDL, LDL, MDA, ApoB levels, ApoB/ApoA-I were significantly high and HDL, ApoA-I, NO, FRAP levels were significantly low between 3 groups. The ApoB/ApoA-I was positively correlated with TC, TGL, VLDL, LDL, malondialdehyde and negatively correlated with HDL, FRAP and NO. Conclusions: Our results indicate that women with PE and E exhibit markedly elevated concentrations of TGL-rich lipoproteins. The negative correlation between ApoB/ApoA-I with NO indicates that the hyperlipidemia is directly related with severity of ED in PIH. So, careful monitoring of ApoB/ApoA-I along with NO might be helpful to predict the onset and progression of the disease. [Int J Res Med Sci 2016; 4(5.000: 1329-1334

  6. Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli

    2005-10-24

    Previously, we found that safrole oxide could trigger vascular endothelial cell (VEC) apoptosis. In this study, to investigate its mechanism to induce apoptosis in VECs, the activities of nitric oxide synthetase and phosphatidylcholine specific phospholipase C, the level of reactive oxygen species and the expressions of Fas, integrin beta4 and P53 were analyzed. The data showed that safrole oxide induced apoptosis by increasing the expressions of Fas, integrin beta4 and P53, and depressing the activity of Ca(2+)-independent phosphatidylcholine-specific phospholipase C and intracellular reactive oxygen species levels in VECs.

  7. Level of Dietary Fat Does Not Affect Fuel Oxidation or Endurance Exercise Performance of Soldiers

    Science.gov (United States)

    1991-03-15

    METHODS Eight male military volunteers with normal fsting blood cholesterol and triglyceride levels and no history of diabetes gave their informed consent...Sustainment Module) on the intestinal microbiota and the bacterial P-glucuronidase activity was studied in young healthy male military subjects. The...in the microbiota of the feces of young active military subjects maintained on model NSM rations that were either high fat/3300 kcal or lower fat

  8. Determination of Sulfur Content at PPB Level in Light Oils by Oxidative Microcoulometry

    Institute of Scientific and Technical Information of China (English)

    Yang Defeng; He Pei

    2002-01-01

    A method for determination of sulfur content at ppb level in light oils is proposed. The key technique of the method includes the design of a new type of pyrolysis tube, which is characterized by large capacity and nested structure, and the optimization of operating conditions. The achievable lowest detection limit is 50ng/g. For the samples in which the sulfur content is less than lmg/L, this method features better precision and accuracy, good linearity and quicker test speed.

  9. Biological Effects of Short, High-Level Exposure to Gases: Nitrogen Oxides.

    Science.gov (United States)

    1980-07-01

    SUPPLEMENTARY NOT ES3 This project was one of four under the same contract; the others covered ammonia , carbon monoxide, and sulfur dioxide. 3 IS. KEY wOROS...characterize the biological responses to short, high-level exposures to four gases associated with certain Army weapons systems ( ammonia , carbon monoxide...20- i --- 7 (2) Biochemical and Other Effects Buckley and BalchumlO found biochemical changes, principally in enzyme activity of the liver, spleen

  10. Nitric oxide donor NOC-5 increases XIAP and Aven level in Jurkat cells.

    Science.gov (United States)

    Starikova, Elena G; Tashireva, L A; Novitsky, V V; Ryazantseva, N V

    2014-07-01

    Mitochondrial permeabilisation after NO donor application did not activate caspase-9. We have studied the X-linked apoptosis inhibitor (XIAP) and Aven protein content in NO-treated Jurkat cells. The level of both proteins increased in NO-treated cells. Thus the increase in XIAP and Aven content could be the cause of the lack of caspase-9 activity after mitochondrial permeabilisation in NO-treated Jurkat cells.

  11. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    Science.gov (United States)

    Sahin, Bünyamin; Kaya, Tolga

    2016-01-01

    In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  12. Decreased hippocampal homoarginine and increased nitric oxide and nitric oxide synthase levels in rats parallel training in a radial arm maze.

    Science.gov (United States)

    Sase, Ajinkya; Nawaratna, Gayan; Hu, Shengdi; Wu, Guoyao; Lubec, Gert

    2016-09-01

    L-homoarginine (hArg) is derived from enzymatic guanidination of lysine. It was demonstrated that hArg is a substrate for nitric oxide (NO) synthesis, blocks lysine transport and inhibits the uptake of arginine into synaptosomes and modulates GABA responses ex vivo. As there is limited information on its physiological roles in the brain, the aim of the study was to show whether hippocampal or frontal lobe (FL) hArg is paralleling training in the radial arm maze (RAM) or NO formation. Hippocampi and FL of male Sprague-Dawley rats were taken from trained or yoked in a RAM. Then hArg and metabolites, NO and NO synthase (NOS) were determined by standard methods. The animals learned the task in the RAM showing significant reduction of working memory errors. hArg showed decreased levels in both brain regions of trained animals as compared to yoked animals. Nitrate plus nitrite (NOx) concentrations and NOS activity were significantly increased in hippocampi, F(1,36) = 170.5; P ≤ 0.0001 and FL, F(1,36) = 74.67; P ≤ 0.0001 of trained animals as compared to yoked animals. Levels of hArg were negatively correlated with NOx in hippocampus (r = -0.6355; P = 0.0483) but not in FL and with lysine in the FL (r = -0.6650; P = 0.0358). NOx levels were positively correlated with NOS in both the hippocampus (r = 0.7474; P = 0.0129) and FL (r = 0.9563; P ≤  0.0001). These novel findings indicate that hArg is linked to NO formation in hippocampus but not in FL and is paralleling spatial memory in the RAM.

  13. Sensorially important aldehyde production from amino acids in model wine systems: impact of ascorbic acid, erythorbic acid, glutathione and sulphur dioxide.

    Science.gov (United States)

    Grant-Preece, Paris; Fang, Hongjuan; Schmidtke, Leigh M; Clark, Andrew C

    2013-11-01

    The efficiency of different white wine antioxidant systems in preventing aldehyde production from amino acids by oxidative processes is not well understood. The aim of this study was to assess the efficiency of sulphur dioxide alone and in combination with either glutathione, ascorbic acid or its stereoisomer erythorbic acid, in preventing formation of the sensorially important compounds methional and phenylacetaldehyde from methionine and phenylalanine in model white wine. UHPLC, GC-MS/MS, LC-MS/MS, flow injection analysis and luminescence sensors determined both compositional changes during storage, and sulphur dioxide-aldehyde apparent equilibrium constants. Depending on temperature (25 or 45°C) or extent of oxygen supply, sulphur dioxide was equally or more efficient in impeding the production of methional compared to the other antioxidant systems. For phenylacetaldehyde, erythorbic acid or glutathione with sulphur dioxide provided improved inhibition compared to sulphur dioxide alone, in conditions of limited oxygen consumption. The results also demonstrate the extent to which sulphur dioxide addition can lower the free aldehyde concentrations to below their aroma thresholds.

  14. The role of nitric oxide and oxidative stress in intestinal damage induced by selenium deficiency in chickens.

    Science.gov (United States)

    Yu, Jiao; Yao, Haidong; Gao, Xuejiao; Zhang, Ziwei; Wang, Jiu-Feng; Xu, Shi-Wen

    2015-02-01

    Nitric oxide (NO) is an essential messenger molecule and is associated with inflammation and oxidative stress. Although NO has important biological functions in mammals, its role in the mechanism that occurs after intestinal injuries in chickens remains unknown. The objective of the present study was to investigate the real role of NO and oxidative stress in the intestinal injuries of chickens induced by selenium (Se) deficiency. A total 150 chickens were randomly divided into the following two groups: a low-Se group (L group, fed a Se-deficient diet containing 0.020 mg/kg Se) and a control group (C group, fed a commercial diet containing 0.2 mg/kg Se). The activities and mRNA levels of glutathione peroxidase (GSH-Px), the production of glutathione (GSH) and NO, and the protein and mRNA levels of inducible nitric oxide synthase (iNOS) were examined in the intestinal tissues (duodenum, jejunum, and rectum) at 15, 25, 35, 45, and 55 days. Methane dicarboxylic aldehyde (MDA) levels were also detected by assay kits. Then, the morphologies of the tissues were observed under the microscope after hematoxylin and eosin staining (H&E staining). The results showed that Se deficiency induced higher inflammatory damage and MDA levels (P chickens and that low levels of GSH-Px and high contents of NO may exert a major role in the injury of the intestinal tract induced by Se deficiency.

  15. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  16. Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress

    Science.gov (United States)

    Salin, Karine; Auer, Sonya K.; Villasevil, Eugenia M.; Anderson, Graeme J.; Cairns, Andrew G.; Mullen, William; Hartley, Richard C.; Metcalfe, Neil B.

    2017-01-01

    In recent years evolutionary ecologists have become increasingly interested in the effects of reactive oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over a timescale from hours to days. The method is flexible with regard to the duration of exposure and initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2 levels were consistent across subsamples of the same liver but differed between muscle subsamples and between tissues of the same animal. The MitoB method provides a convenient method for measuring ROS levels in living animals over a significant period of time. Given its wide range of possible applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in ecological settings. PMID:28117373

  17. Cytokine and nitric oxide levels in patients with sepsis--temporal evolvement and relation to platelet mitochondrial respiratory function.

    Directory of Open Access Journals (Sweden)

    Fredrik Sjövall

    Full Text Available BACKGROUND: The levels of nitric oxide (NO and various cytokines are known to be increased during sepsis. These signaling molecules could potentially act as regulators and underlie the enhancement of mitochondrial function described in the later phase of sepsis. Therefore, we investigated the correlation between observed changes in platelet mitochondrial respiration and a set of pro- and anti-inflammatory cytokines as well as NO plasma levels in patients with sepsis. METHODS AND RESULTS: Platelet mitochondrial respiration and levels of TNFα, MCP-1 (monocyte chemotactic protein-1, INFγ (interferon-γ, IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10 and IL-17 and NO were analyzed in 38 patients with severe sepsis or septic shock at three time points during one week following admission to the ICU. Citrate synthase, mitochondrial DNA and cytochrome c were measured as markers of cellular mitochondrial content. All mitochondrial respiratory states increased over the week analyzed (p<0.001. IL-8 levels correlated with maximal mitochondrial respiration on day 6-7 (p = 0.02, r2 = 0.22 and was also higher in non-survivors compared to survivors on day 3-4 and day 6-7 (p = 0.03 respectively. Neither NO nor any of the other cytokines measured correlated with respiration or mortality. Cytochrome c levels were decreased at day 1-2 by 24±5% (p = 0.03 and returned towards values of the controls at the last two time points. Citrate synthase activity and mitochondrial DNA levels were similar to controls and remained constant throughout the week. CONCLUSIONS: Out of ten analyzed cytokines and nitric oxide, IL-8 correlated with the observed increase in mitochondrial respiration. This suggests that cytokines as well as NO do not play a prominent role in the regulation of platelet mitochondrial respiration in sepsis. Further, the respiratory increase was not accompanied by an increase in markers of mitochondrial content, suggesting a possible role for post

  18. Aldehyde oxidase importance in vivo in xenobiotic metabolism: imidacloprid nitroreduction in mice.

    Science.gov (United States)

    Swenson, Tami L; Casida, John E

    2013-05-01

    Aldehyde oxidase (AOX) metabolizes many xenobiotics in vitro, but its importance in vivo is usually unknown relative to cytochrome P450s (CYPs) and other detoxification systems. Currently, the most important insecticides are neonicotinoids, which are metabolized in vitro by AOX on reduction of the nitroimino group and by CYPs via oxidation reactions. The goal of this study was to establish the relative importance of AOX and CYPs in vivo using the mouse model. The procedure was to reduce liver AOX activity by providing tungsten or hydralazine in the drinking water or to use the AOX-deficient DBA/2 mouse strain. None of these approaches reduced CYP activity measured in vitro with an isozyme nonspecific substrate. Liver AOX activity was reduced by 45% with tungsten and 61% with hydralazine and 81% in AOX-deficient mice relative to controls. When mice were treated ip with the major neonicotinoid imidacloprid (IMI), metabolism by CYP oxidation reactions was not appreciably affected, whereas the AOX-generated nitrosoguanidine metabolite was decreased by 30% with tungsten and 56% with hydralazine and 86% in the AOX-deficient mice. The other IMI nitroreduction metabolite, desnitro-IMI, was decreased by 55%, 65%, and 81% with tungsten, hydralazine, and in the AOX-deficient mice, respectively. Thus, decreasing liver AOX activity by three quite different procedures gave a corresponding decrease for in vivo reductive metabolites in the liver of IMI-treated mice. Possible AOX involvement in IMI metabolism in insects was evaluated using AOX-expressing and AOX-deficient Drosophila, but no differences were found in IMI nitroreduction or sensitivity between the two strains. This is the first study to establish the in vivo relevance of AOX in neonicotinoid metabolism in mammals and one of the first for xenobiotics in general.

  19. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    Science.gov (United States)

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  20. Investigation of Homocystein Plasma Level in Cholestatic Rat and Its Effect on Nitric Oxide Secretion in Liver

    Directory of Open Access Journals (Sweden)

    N. Mirazi

    2005-04-01

    Full Text Available Homocystein (Hcy,one of the thio-amino acid is known as a risk factor in some cardiovascular diseases with releasing O2 radical . It has also been reported that; there is oxidative stress effects of Hcy in cholestasis. The aim of this study is to determine plasma Hcy alteration and nitric oxide (NO in liver and its effects on pathologic disfunction.In this study , 150 Spraque – Dawley male rats with 200 ± 20g body weight were used in the experiments and they were randomly divided in three control, SHAM and bile duct ligation (BDL groups (n= 10-12 . In 7th,14th,21st and 28th days cholestasis was observed in BDL group,the animal were anesthetized with ether and then blood samples were taken from heart directly and analysed for cystein , methionine by HPLC and HPLC-UV. Two hours before blood sampling , 40 and 100 mg/kg methionine were injected (I.P .All data are expressed as mean  SEM. Statistical evaluation of data performed by SPSS soft ware using analysis of variance (ANOVA followed by post hoc test. P-values less than 0.05 were considered statistically significant .The results suggest that billirubin and hepatic enzymes were significantly elevated in BDL rats compared with SHAM and controls (P<0.05. Homocystein concentration was significantly rised in 14th day in BDL group (P<0.05. The plasma cystein and methionine level were significantly elevated in BDL rats compared with SHAM and control groups ( p = 0.01 . Plasma nitrate / nitrite ratio were significantly increased in BDL rats compared with SHAM and control rats (P<0.05. With these data we suppose that some of the systemic oxidative stresses in BDL rat model of cholestasis contributes possibly through NO-dependent mechanisms disorders.

  1. Effect of olive and sunflower oils on low density lipoprotein level, composition, size, oxidation and interaction with arterial proteoglycans.

    Science.gov (United States)

    Carmena, R; Ascaso, J F; Camejo, G; Varela, G; Hurt-Camejo, E; Ordovas, J M; Martinez-Valls, J; Bergstöm, M; Wallin, B

    1996-09-06

    The atherogenicity of low density lipoproteins (LDL) may be modulated by its serum levels, structure and affinity for components of the intima, all properties that can be altered by diet. Linoleic acid-rich diets (n-G, 18:2) reduce the levels of LDL whereas those rich in oleic (n-9,18:1) are considered 'neutral'. However, LDL enriched in linoleic acid have been reported to be more vulnerable to free radical-mediated oxidation than those enriched in oleic, a potentially atherogenic property. The effect of dietary fats on other properties of LDL that may also modulate atherogenesis, such as size and capacity to interact with intima components, are not well established. We explored here how a change from an olive oil-rich diet (OO) to a sunflower oil-rich one (SFO) affects these parameters in a community with a traditional Mediterranean diet. Eighteen free-living volunteers were placed for 3 weeks on a diet with 31% of caloric intake as sunflower oil and then shifted for an additional 3 weeks to a diet in which OO provided 30.5% of the calories. The LDL after SFO had a fatty acids ratio of (18:2 + 18:3 + 20:4) to (16:0 + 16:1 + 18:0 + 18:1) of 1.06 +/- 0.11 compared to 0.73 +/- 0.06 after the OO period. Serum LDL was significantly lower after SFO than after OO. Unexpectedly, copper-catalyzed oxidation of LDL from the SFO period was significantly less than that of the particles from the OO period. The resistance to oxidation of LDL of the SFO and OO period related to alterations in content of the antioxidants alpha-tocopherol, beta-carotene and retinol, in addition to changes in size and fatty acids composition. In vitro binding of LDL to human arterial proteoglycans was also significantly lower for the SFO-LDL than the OO-LDL, a result that can also be attributed to the larger size of the SFO-LDL. Therefore, three properties of LDL: circulating levels, oxidizability, and affinity with intima proteoglycans, that may modulate its atherogenicity, were shifted in a

  2. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.

    Science.gov (United States)

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg; Heider, Johann

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.

  3. Bagging Treatment Influences Production of C6 Aldehydes and Biosynthesis-Related Gene Expression in Peach Fruit Skin

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Shen

    2014-08-01

    Full Text Available Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were used to study the effects of bagging treatment on the formation of C6 aldehydes in peach fruit (Prunus persica L. Batsch, cv. Yulu over two succeeding seasons. Higher concentrations of n-hexanal and (E-2-hexenal, which are characteristic aroma volatiles of peach fruit, were induced by bagging treatment. After bagging treatment, peach fruit had significantly higher LOX and HPL enzyme activities, accompanying increased contents of C6 aldehydes. The gene expression data obtained through real-time PCR showed that no consistent significant differences in transcript levels of LOX genes were observed over the two seasons, but significantly up-regulated expression was found for PpHPL1 after bagging treatment In addition, bagging-treated fruit produced more (E-2-hexenal and had higher expression levels of PpHPL1 during postharvest ripening at room temperature. The regulatory role of the LOX-HPL pathway on the biosynthesis of n-hexanal and (E-2-hexenal in response to bagging treatment during peach fruit development is discussed in the text.

  4. Oxidation of N-Nitrosoalkylamines by Human Cytochrome P450 2A6

    Science.gov (United States)

    Chowdhury, Goutam; Calcutt, M. Wade; Guengerich, F. Peter

    2010-01-01

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH3CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect (Dkapp ∼ 10), which was highly expressed in a variety of competitive and non-competitive experiments. The Dkapp for DEN was ∼3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO2H and CH3CO2H, respectively. In neither case was a lag observed, which was unexpected considering the kcat and Km parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde). PMID:20061389

  5. Nasal pungency and odor of homologous aldehydes and carboxylic acids.

    Science.gov (United States)

    Cometto-Muñiz, J E; Cain, W S; Abraham, M H

    1998-01-01

    Airborne substances can stimulate both the olfactory and the trigeminal nerve in the nose, giving rise to odor and pungent (irritant) sensations, respectively. Nose, eye, and throat irritation constitute common adverse effects in indoor environments. We measured odor and nasal pungency thresholds for homologous aliphatic aldehydes (butanal through octanal) and carboxylic acids (formic, acetic, butanoic, hexanoic, and octanoic). Nasal pungency was measured in subjects lacking olfaction (i.e., anosmics) to avoid odor biases. Similar to other homologous series, odor and pungency thresholds declined (i.e., sensory potency increased) with increasing carbon chain length. A previously derived quantitative structure-activity relationship (QSAR) based on solvation energies predicted all nasal pungency thresholds, except for acetic acid, implying that a key step in the mechanism for threshold pungency involves transfer of the inhaled substance from the vapor phase to the receptive biological phase. In contrast, acetic acid - with a pungency threshold lower than predicted - is likely to produce threshold pungency through direct chemical reaction with the mucosa. Both in the series studied here and in those studied previously, we reach a member at longer chain-lengths beyond which pungency fades. The evidence suggests a biological cut-off, presumably based upon molecular size, across the various series.

  6. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  7. Measurements Alcohols, Ketones, and Aldehydes During Trace-P

    Science.gov (United States)

    Apel, E. C.; Riemer, D. D.; Hills, A.; Lueb, R.; Fried, A.; Sachse, G.; Crawford, J.; Singh, H.; Blake, D.

    2002-12-01

    A sensitive and selective instrument (fast gas chromatographic mass spectrometer - FGCMS) was developed for the continuous measurement of oxygenated volatile organic compounds (OVOCs: alcohols, ketones and aldehydes (except for formaldehyde)) containing fewer than 6 carbon atoms and subsequently deployed during the NASA's TRACE-P (Transport and Chemical Evolution over the Pacific) experiment. This paper will briefly describe the instrument and present results obtained from 15 mission flights. Dramatic differences were observed in the mixing ratios and vertical profiles of the longer-lived species, acetone and methanol, compared to the shorter-lived species. For example, between 6 and 7 km, the median mixing ratios for the two longest lived species measured, acetone and methanol, are 765 pptv and 1061 pptv, respectively whereas the combined mixing ratio for all other species measured was less than 500 pptv. A large variety of air masses were encountered during this experiment and this is reflected in the behavior of the measured OVOCs. Relationships between the OVOCs and other trace species will be explored. Implications of these measurements for our current understanding of global tropospheric chemistry will be discussed.

  8. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  9. Identification of Potential Calorie Restriction-Mimicking Yeast Mutants with Increased Mitochondrial Respiratory Chain and Nitric Oxide Levels

    Directory of Open Access Journals (Sweden)

    Bin Li

    2011-01-01

    Full Text Available Calorie restriction (CR induces a metabolic shift towards mitochondrial respiration; however, molecular mechanisms underlying CR remain unclear. Recent studies suggest that CR-induced mitochondrial activity is associated with nitric oxide (NO production. To understand the role of mitochondria in CR, we identify and study Saccharomyces cerevisiae mutants with increased NO levels as potential CR mimics. Analysis of the top 17 mutants demonstrates a correlation between increased NO, mitochondrial respiration, and longevity. Interestingly, treating yeast with NO donors such as GSNO (S-nitrosoglutathione is sufficient to partially mimic CR to extend lifespan. CR-increased NO is largely dependent on mitochondrial electron transport and cytochrome c oxidase (COX. Although COX normally produces NO under hypoxic conditions, CR-treated yeast cells are able to produce NO under normoxic conditions. Our results suggest that CR may derepress some hypoxic genes for mitochondrial proteins that function to promote the production of NO and the extension of lifespan.

  10. Increased levels of the oxidative stress biomarker 8-iso-prostaglandin F2α in wastewater associated with tobacco use

    DEFF Research Database (Denmark)

    Ryu, Yeonsuk; Gracia-Lor, Emma; Bade, Richard

    2016-01-01

    oxidative stress at a community level. In this work, 8-iso-prostaglandin F2α (8-iso-PGF2α) was analysed in raw 24 h-composite wastewater samples collected from 4 Norwegian and 7 other European cities in 2014 and 2015. Using the same samples, biomarkers of alcohol (ethyl sulfate) and tobacco (trans-3......'-hydroxycotinine) use were also analysed to investigate any possible correlation between 8-iso-PGF2α and the consumption of the two drugs. The estimated per capita daily loads of 8-iso-PGF2α in the 11 cities ranged between 2.5 and 9.9 mg/day/1000 inhabitants with a population-weighted mean of 4.8 mg/day/1000...

  11. Probing the density of states of two-level tunneling systems in silicon oxide films using superconducting lumped element resonators

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, S. T. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Kaiser, Ch.; Wuensch, S.; Siegel, M. [Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Rotzinger, H.; Lukashenko, A.; Jerger, M.; Weiss, G. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Ustinov, A. V. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow Region 143025 (Russian Federation)

    2015-01-12

    We have investigated dielectric losses in amorphous silicon oxide (a-SiO) thin films under operating conditions of superconducting qubits (mK temperatures and low microwave powers). For this purpose, we have developed a broadband measurement setup employing multiplexed lumped element resonators using a broadband power combiner and a low-noise amplifier. The measured temperature and power dependences of the dielectric losses are in good agreement with those predicted for atomic two-level tunneling systems (TLS). By measuring the losses at different frequencies, we found that the TLS density of states is energy dependent. This had not been seen previously in loss measurements. These results contribute to a better understanding of decoherence effects in superconducting qubits and suggest a possibility to minimize TLS-related decoherence by reducing the qubit operation frequency.

  12. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  13. In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L.

    Science.gov (United States)

    Bisignano, G; Laganà, M G; Trombetta, D; Arena, S; Nostro, A; Uccella, N; Mazzanti, G; Saija, A

    2001-04-20

    In the present paper we report the 'in vitro' activity of eight aliphatic long-chain aldehydes from olive flavor (hexanal, nonanal, (E)-2-hexenal, (E)-2-eptenal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal and (E,E)-2,4-decadienal) against a number of standard and freshly isolated bacterial strains that may be causal agents of human intestinal and respiratory tract infections. The saturated aldehydes characterized in the present study do not exhibit significant antibacterial activity, while the alpha,beta-unsaturated aldehydes have a broad antimicrobial spectrum and show similar activity against Gram-positive and Gram-negative microorganisms. The effectiveness of the aldehydes under investigation seems to depend not only on the presence of the alpha,beta-double bond, but also on the chain length from the enal group and on the microorganism tested.

  14. Ambient Ionic Liquids Used in the Reduction ofAldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Dan Qian XU; Shu Ping LUO; Bao You LIU; Zhen Yuan XU; Yin Chu SHEN

    2004-01-01

    The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.

  15. The applications of Schiff bases in Ti-catalyzed asymmetric alkynylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Xian Jia; Lu Yin; Xuan Zhao; Xing Shu Li

    2007-01-01

    Sciff bases 1 and 2, which were derived from chiral aminoalcohols, were used as ligands in Ti-catalyzed asymmetric alkynylation of aldehydes. Good enantioselectivities (up to 88% ee) and high chemical yields (80-90 %) were obtained.

  16. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)

    2014-02-15

    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  17. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: A combined experimental and theoretical study

    DEFF Research Database (Denmark)

    Fristrup, Peter; Kreis, Michael; Palmelund, Anders;

    2008-01-01

    The mechanism for the rhodium-catalyzed decarbonylation of aldehydes was investigated by experimental techniques (Hammett studies and kinetic isotope effects) and extended by a computational study (DFT calculations). For both benzaldehyde and phenyl acetaldehyde derivatives, linear Hammett plots ...

  18. A new resistance source of aldehyde reductase functions from Scheffersomyces stipitis against biomass fermentation inhibitor furfural

    Science.gov (United States)

    Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment are a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuels production. This study identified five uncharacterized putative genes of Scheffersomyces stipiti...

  19. Is the Oxidative DNA Damage Level of Human Lymphocyte Correlated with the Antioxidant Capacity of Serum or the Base Excision Repair Activity of Lymphocyte?

    Directory of Open Access Journals (Sweden)

    Yi-Chih Tsai

    2013-01-01

    Full Text Available A random screening of human blood samples from 24 individuals of nonsmoker was conducted to examine the correlation between the oxidative DNA damage level of lymphocytes and the antioxidant capacity of serum or the base excision repair (BER activity of lymphocytes. The oxidative DNA damage level was measured with comet assay containing Fpg/Endo III cleavage, and the BER activity was estimated with a modified comet assay including nuclear extract of lymphocytes for enzymatic cleavage. Antioxidant capacity was determined with trolox equivalent antioxidant capacity assay. We found that though the endogenous DNA oxidation levels varied among the individuals, each individual level appeared to be steady for at least 1 month. Our results indicate that the oxidative DNA damage level is insignificantly or weakly correlated with antioxidant capacity or BER activity, respectively. However, lymphocytes from carriers of Helicobacter pylori (HP or Hepatitis B virus (HBV tend to give higher levels of oxidative DNA damage (P<0.05. Though sera of this group of individuals show no particular tendency with reduced antioxidant capacity, the respective BER activities of lymphocytes are lower in average (P<0.05. Thus, reduction of repair activity may be associated with the genotoxic effect of HP or HBV infection.

  20. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Avinash Agarwal

    2014-01-01

    Full Text Available Introduction: The primary objective of this study was to determine the serum level of antioxidant enzymes and to correlate them with outcome in patients of aluminum phosphide (ALP poisoning and, secondly, to evaluate the effect of N-acetylcysteine (NAC given along with supportive treatment of ALP poisoning. Design: We conducted a cohort study in patients of ALP poisoning hospitalized at a tertiary care center of North India. The treatment group and control group were enrolled during the study period of 1 year from May 2011 to April 2012. Interventions: Oxidative stress was evaluated in each subject by estimating the serum levels of the enzymes, viz. catalase, superoxide dismutase (SOD and glutathione reductase (GR. The treatment group comprised of patients who were given NAC in addition to supportive treatment (magnesium sulfate and vasopressors, if required, while in the control group, only supportive treatment was instituted. The primary endpoint of the study was the survival of the patients. Measurements and Results: The baseline catalase (P = 0.008 and SOD (P < 0.01 levels were higher among survivors than non-survivors. Of the total patients in the study, 31 (67.4% expired and 15 (32.6% survived. Among those who expired, the mean duration of survival was 2.92 ± 0.40 days in the test group and 1.82 ± 0.33 days in the control group (P = 0.043. Conclusions: This study suggests that the baseline level of catalase and SOD have reduced in ALP poisoning, but baseline GR level has not suppressed but is rather increasing with due time, and more so in the treatment group. NAC along with supportive treatment may have improved survival in ALP poisoning.