WorldWideScience

Sample records for aldehyde dehydrogenase genes

  1. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  2. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  3. Expression of betaine aldehyde dehydrogenase gene and salinity tolerance in rice transgenic plants

    Institute of Scientific and Technical Information of China (English)

    郭岩; 张莉; 肖岗; 曹守云; 谷冬梅; 田文忠; 陈受宜

    1997-01-01

    Betaine as one of osmolytes plays an important role in osmoregulation of most high plants. Betaine aldehyde dehydrogenase C BADH) is the second enzyme involved in betaine biosynthesis. The BADH gene from a halophite, Atriplex hortensis, was transformed into rice cultivars by bombarment method. Totally 192 transgenic rice plants were obtained and most of them had higher salt tolerance than controls. Among transgenic plants transplanted in the saline pool containing 0.5% NaCl in a greenhouse, 22 survived, 13 of which set seeds, and the frequency of seed setting was very low, only 10% . But the controls could not grow under the same condition. The results of BADH ac-tivity assay and Northern blot showed that the BADH gene was integrated into chromosomes of transgenic plants and expressed.

  4. Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata.

    Science.gov (United States)

    Wang, F W; Wang, M L; Guo, C; Wang, N; Li, X W; Chen, H; Dong, Y Y; Chen, X F; Wang, Z M; Li, H Y

    2016-06-20

    Glycine betaine is an important quaternary ammonium compound that is produced in response to several abiotic stresses in many organisms. The synthesis of glycine betaine requires the catalysis of betaine aldehyde dehydrogenase (BADH), which can convert betaine aldehyde into glycine betaine in plants, especially in halotolerant plants. In this study, we isolated the full-length cDNA of BADH from Suaeda corniculata (ScBADH) using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends. Next, we analyzed the expression profile of ScBADH using real-time PCR. The results showed that ScBADH expression was induced in the roots, stems, and leaves of S. corniculata seedlings under salt and drought stress. Next, ScBADH was overexpressed in Arabidopsis, resulting in the transgenic plants exhibiting enhanced tolerance over wild-type plants under salt and drought stress. We then analyzed the levels of glycine betaine and proline, as well as superoxide dismutase (SOD) activity, during salt stress in WT and transgenic Arabidopsis. The results indicated that overexpression of ScBADH produced more glycine betaine and proline, and increased SOD activity under NaCl treatment. Our results suggest that ScBADH might be a positive regulator in plants during the response to NaCl.

  5. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.

  6. Correlations Between Polymorphisms of Extracellular Superoxide Dismutase, Aldehyde Dehydrogenase-2 Genes, as Well as Drinking Behavior and Pancreatic Cancer

    Institute of Scientific and Technical Information of China (English)

    Chao-xian Zhang; Yong-mei Qin; Li-ke Guo

    2014-01-01

    Objective To investigate the correlation between drinking behavior combined with polymorphisms of extracellular superoxide dismutase (EC-SOD) and aldehyde dehydrogenase-2 (ALDH2) genes and pancreatic cancer. Methods The genetic polymorphisms of EC-SOD and ALDH2 were analyzed by polymerase chain reaction restriction fragment length polymorphism in the peripheral blood leukocytes obtained from 680 pancreatic cancer cases and 680 non-cancer controls. Subsequently the frequency of genotype was compared between the pancreatic cancer patients and the healthy controls.The relationship of drinking with pancreatic cancer was analyzed. Results The frequencies of EC-SOD (C/G) and ALDH2 variant genotypes were 37.35% and 68.82%respectively in the pancreatic cancer cases, and were significantly higher than those in the healthy controls (21.03% and 44.56%, all P Conclusion EC-SOD (C/G), ALDH2 variant genotypes and drinking might be the risk factors of pancreatic cancer.

  7. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer’s disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.

  8. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati......BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian...... populations.SUBJECTS/METHODS: A nested case-control study (1269 cases matched to 2107controls by sex, age, study centre and date of blood collection) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) to evaluate the impact of rs1229984 (ADH1B), rs1573496 (ADH7...

  9. Transcriptional Regulation of Expression of the Maize Aldehyde Dehydrogenase 7 Gene (ZmALDH7B6) in Response to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    GU Ri-liang

    2014-01-01

    Aldehyde dehydrogenases (ALDHs) represent a large protein family, which includes several members that catalyze the oxidation of an aldehyde to its corresponding carboxylic acid in plants. Genes encoding members of theALDH7 subfamily have been suggested to play important roles in various stress adaptations in plants. In this study, quantitative RT-PCR analysis revealed that a maizeALDH7 subfamily member (ZmALDH7B6) was constitutively expressed in various organs, including roots, leaves, immature ears, tassels, and developing seeds. The abundance ofZmALDH7B6 mRNA transcripts in maize roots was increased by ammonium, NaCl, and mannitol treatments. To further analyze tissue-speciifc and stress-induced expression patterns, the 1.5-kb 5´-lfankingZmALDH7B6 promoter region was fused to the β-glucuronidase (GUS) reporter gene and introduced into maize plants. In roots of independent transgenic lines, there was signiifcant induction of GUS activity in response to ammonium supply, conifrming ammonium-dependent expression ofZmALDH7B6 at the transcript level. Histochemical staining showed that GUS activity driven by theZmALDH7B6 promoter was mainly localized in the vascular tissues of maize roots. These results suggested thatZmALDH7B6 is induced by multiple environmental stresses in maize roots, and may play a role in detoxifying aldehydes, particularly in vascular tissue.

  10. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.

    Science.gov (United States)

    Ishitani, M; Nakamura, T; Han, S Y; Takabe, T

    1995-01-01

    When subjected to salt stress or drought, some vascular plants such as barley respond with an increased accumulation of the osmoprotectant glycine betaine (betaine), being the last step of betaine synthesis catalyzed by betaine aldehyde dehydrogenase (BADH). We report here cloning and characterization of BADH cDNA from barley, a monocot, and the expression pattern of a BADH transcript. An open reading frame of 1515 bp encoded a protein which showed high homology to BADH enzymes present in other plants (spinach and sugar-beet) and in Escherichia coli. Transgenic tobacco plants harboring the clone expressed high levels of both BADH protein and its enzymatic activity. Northern blot analyses indicated that BADH mRNA levels increased almost 8-fold and 2-fold, respectively, in leaves and roots of barley plants grown in high-salt conditions, and that these levels decreased upon release of the stress, whereas they did not decrease under continuous salt stress. BADH transcripts also accumulate in response to water stress or drought, indicating a common response of the plant to osmotic changes that affect its water status. The addition of abscisic acid (ABA) to plants during growth also increased the levels of BADH transcripts dramatically, although the response was delayed when compared to that found for salt-stressed plants. Removal of plant roots before transferring the plants to high-salt conditions reduced only slightly the accumulation of BADH transcripts in the leaves.

  11. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  12. Osmotic Regulation of Betaine Content in Leymus chinensis Under Saline-alkali Stress and Cloning and Expression of Betaine Aldehyde Dehydrogenase(BADH)Gene

    Institute of Scientific and Technical Information of China (English)

    CUI Xi-yan; WANG Yong; GUO Ji-xun

    2008-01-01

    The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations.The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BADH:EC 1.2.1.8) activities have a direct relation with increased stressing time in the same treatment;both exhibit a single peak with increasing the concentration of saline-alkali solution,and number V shows the highest value.The BADH gene of Leymus chinensis Was cloned by RT-PCR and RACE technology and Was designated as LcBADH.The cDNA sequence of LcBADH Was 1774bp including the open reading frame(ORF)of 1521bp(coding 506 amino acids).The vector of prokaryotic expression was constructed by inserting the LcBADH gene fragment into pET30a(+)and transformed into E. coli BL21(DE3).The result of SDS-PAGE shows that the idio-protein with a molecular mass of 56.78 kDa was effectively expressed in the recombinant bacteria induced by isopropyl β-D-thiogalactoside(IPTG).

  13. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  14. Aldehyde dehydrogenases in Arabidopsis thaliana: Biochemical requirements, metabolic pathways and functional analysis

    Directory of Open Access Journals (Sweden)

    Naim eStiti

    2011-10-01

    Full Text Available Aldehyde dehydrogenases (ALDHs are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  15. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  16. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  17. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    Science.gov (United States)

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  18. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ma YM

    2016-04-01

    Full Text Available Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1 activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, the prognostic value of an individual ALDH1 isoenzyme in ovarian cancer is not clear. Thus, we accessed the prognostic value of ALDH1 isoenzymes in ovarian cancer patients through the “Kaplan–Meier plotter” online database, which can be used to determine the effect of the genes on ovarian cancer prognosis. We found that high mRNA expression of five ALDH1 isoenzymes, such as ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, was not correlated with overall survival (OS for all 1,306 ovarian cancer patients. In addition, all five of the ALDH1 isoenzymes’ high mRNA expression was found to be uncorrelated with OS in serous cancer or endometrioid cancer patients. However, ALDH1A3’s high mRNA expression is associated with worse OS in grade II ovarian cancer patients, hazard ratio (HR 1.53 (1.14–2.07, P=0.005. ALDH1A2’s high mRNA expression is significantly associated with worse OS in TP53 wild-type ovarian cancer patients, HR 2.86 (1.56–5.08, P=0.00036. In addition, ALDH1A3’s high mRNA expression is significantly associated with better OS in TP53 wild-type ovarian cancer patients, HR 0.56 (0.32–1.00, P=0.04. Our results indicate that although ALDH1 isoenzyme mRNA might not be a prognostic marker for overall ovarian cancer patients, some isoenzymes, such as ALDH1A2 and ALDH1A3, might be a good prognostic marker for some types of ovarian cancer patients. Keywords: ALDH1, cancer stem cell, prognosis, KM plotter, hazard ratio

  19. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming Gao; Keitaro Matsuo; Nobuyuki Hamajima; Kazuo Tajima; Toshiro Takezaki; Jian-Zhong Wu; Xiao-Mei Zhang; Hai-Xia Cao; Jian-Hua Ding; Yan-Ting Liu; Su-Ping Li; Jia Cao

    2008-01-01

    AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males.METHODS: A case-control study was conducted in 190 cases and 223 population-based controls.ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A) genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC).Information on smoking and drinking was collected and odds ratio (OR) was estimated.RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Significant interactions between ADH2,ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a significantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ,4DH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with theALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele.CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also significant gene-gene and geneenvironment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.

  20. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.

    Science.gov (United States)

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2014-11-28

    In the n-alkane assimilating yeast Yarrowia lipolytica, n-alkanes are oxidized to fatty acids via fatty alcohols and fatty aldehydes, after which they are utilized as carbon sources. Here, we show that four genes (HFD1-HFD4) encoding fatty aldehyde dehydrogenases (FALDHs) are involved in the metabolism of n-alkanes in Y. lipolytica. A mutant, in which all of four HFD genes are deleted (Δhfd1-4 strain), could not grow on n-alkanes of 12-18 carbons; however, the expression of one of those HFD genes restored its growth on n-alkanes. Production of Hfd2Ap or Hfd2Bp, translation products of transcript variants generated from HFD2 by the absence or presence of splicing, also supported the growth of the Δhfd1-4 strain on n-alkanes. The FALDH activity in the extract of the wild-type strain was increased when cells were incubated in the presence of n-decane, whereas this elevation in FALDH activity by n-decane was not observed in Δhfd1-4 strain extract. Substantial FALDH activities were detected in the extracts of Escherichia coli cells expressing the HFD genes. Fluorescent microscopic observation suggests that Hfd3p and Hfd2Bp are localized predominantly in the peroxisome, whereas Hfd1p and Hfd2Ap are localized in both the endoplasmic reticulum and the peroxisome. These results suggest that the HFD multigene family is responsible for the oxidation of fatty aldehydes to fatty acids in the metabolism of n-alkanes, and raise the possibility that Hfd proteins have diversified by gene multiplication and RNA splicing to efficiently assimilate or detoxify fatty aldehydes in Y. lipolytica.

  1. Residues that influence coenzyme preference in the aldehyde dehydrogenases.

    Science.gov (United States)

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A

    2015-06-01

    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  2. Molecular mechanism of null expression of aldehyde dehydrogenase-1 in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Yoshida, Akira [Institute of the City of Hope, Duarte, CA (United States); Yanagawa, Yuchio [Tokohu Univ., Sendai (Japan)

    1996-04-01

    In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5{prime}-promoter region of human, marmoset, and mouse ALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5{prime} promoter region of the human ALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver. 16 refs., 3 figs.

  3. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    Science.gov (United States)

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  4. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    Science.gov (United States)

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in total, with 21-28 replacements between any pair of the alpha/beta/gamma chains. These values, compared with those from species differences between the corresponding human and horse enzymes, suggest that isozyme developments in the class I enzyme resulted from separate gene duplications after the divergence of the human and equine evolutionary lines. All subunits exhibit some unique properties, with slightly closer similarity between the human gamma and horse enzyme subunits and somewhat greater deviations towards the human alpha subunit. Differences are large also in segments close to the active site zinc ligands and other functionally important positions. Species differences are distributed roughly equally between the two types of domain in the subunit, whereas isozyme differences are considerably more common in the catalytic than in the coenzyme-binding domain. These facts illustrate a functional divergence among the isozymes but otherwise similar changes during evolution. Polymorphic forms of beta and gamma subunits are characterized by single replacements at one and two positions, respectively, explaining known deviating properties. Class II and class III subunits are considerably more divergent. Their homology with class I isozymes exhibits only 60-65% positional identity. Hence, they reflect further steps towards the development of new enzymes, with variations well above the horse/human species levels, in contrast to the class I forms. Again, functionally important residues are affected, and patterns resembling those previously established for the divergently related

  5. Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations

    Directory of Open Access Journals (Sweden)

    Peng Giia-Sheun

    2009-01-01

    Full Text Available Abstract Alcoholism is a complex behavioural disorder. Molecular genetics studies have identified numerous candidate genes associated with alcoholism. It is crucial to verify the disease susceptibility genes by correlating the pinpointed allelic variations to the causal phenotypes. Alcohol dehydrogenase (ADH and aldehyde dehydrogenase (ALDH are the principal enzymes responsible for ethanol metabolism in humans. Both ADH and ALDH exhibit functional polymorphisms among racial populations; these polymorphisms have been shown to be the important genetic determinants in ethanol metabolism and alcoholism. Here, we briefly review recent advances in genomic studies of human ADH/ALDH families and alcoholism, with an emphasis on the pharmacogenetic consequences of venous blood acetaldehyde in the different ALDH2 genotypes following the intake of various doses of ethanol. This paper illustrates a paradigmatic example of phenotypic verifications in a protective disease gene for substance abuse.

  6. Surviving environmental stress: the role of betaine aldehyde dehydrogenase in marine crustaceans

    Directory of Open Access Journals (Sweden)

    NA Stephens-Camacho

    2015-02-01

    Full Text Available Betaine aldehyde dehydrogenase (BADH belongs to the aldehyde dehydrogenases (ALDH family, an ancestral group of enzymes responsible for aldehyde detoxification in several organisms. The BADH enzyme catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB an important osmoptrotector and osmoregulator accumulated in response to cellular osmotic stress. The BADH enzymes have been extensively described in terrestrial organisms, but information in marine crustaceans remains scarce. Research on crustacean stress-adaptive capacity to environmental stressors relates GB accumulation in response to salinity variations. Although GB de novo synthesis is confirmed on crustaceans, its metabolic pathways and regulation mechanism are unexplored. In this work, the state of the knowledge of betaine aldehyde dehydrogenase enzymes in marine crustaceans is summarized, as a mechanism to overcome the deleterious effects of changes in temperature, salinity and dissolved oxygen concentration in seawater. The purpose of this review is to provide a more comprehensive overview to set the basis for exploring novel functions and properties of BADHs on the response of crustaceans to environmental stress.

  7. Separation and Purification of Betaine Aldehyde Dehydrogenase from Wild Suaeda liaotungensis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High active betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) is found in wild Suaeda liaotungensis. The enzyme is purified 206-fold with recovery of 1.5%. It have a specific activity of 2363 nmol/min*mg protein and the molecular mass of each subunit is 64.5 kDa as determined by SDS-PAGE.

  8. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    Science.gov (United States)

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  9. 大鼠乙醛脱氢酶2基因调控腺病毒载体构建方法及意义%Methodology on construction of rat aldehyde dehydrogenase 2 gene regulation recombinant adenovirus vectors

    Institute of Scientific and Technical Information of China (English)

    李鸿博; 郎小娥

    2014-01-01

    目的:观察持续活化突变体腺病毒转染大鼠心肌细胞的转染效果及对乙醛脱氢酶2(ALDH2)表达的影响。方法分别将扩增得到的 ALDH2持续活化突变体基因及合成 ALDH2-siRNA 序列颈环状 DNA,连接相应载体后,得到重组穿梭质粒;对2种穿梭质粒分别进行扩增和酶切鉴定,并导入 pAdeno 腺病毒载体,转染293细胞进行扩增与纯化。将1日龄雄性 SD 大鼠心肌细胞进行培养,将2种重组腺病毒及对照空载体分别感染细胞,随后检测 ALDH2表达量。结果2种载体构建正确,纯化后两者滴度分别为2×1010,1.6×1010 PFU・ mL-1。实验组 ALDH2表达量与对照组相比差异具有统计学意义(P <0.01)。结论成功构建大鼠 ALDH2基因双向调控腺病毒载体,可以有效调控离体大鼠心肌细胞 ALDH2表达。%Objective To construct adenovirus specific for rat aldehyde dehydrogenase 2 (ALDH2) gene interference and consistent activation and transfect the viruses into rat cardiomyocytes to observe transfection effect and its influence on ALDH2 expression.Methods Consistently active ALDH2 (CA -ALDH2) mutant gene was amplified and linked to shuttle vector, thus recombinant shuttle plasmid was subsequently con -structed.Stem -loop DNA for ALDH2 silencing RNA ( ALDH2 -siRNA) sequence was synthesized and loaded it into vector thus recombi -nant shuttle plasmid was constructed .Both kinds of plasmid were imple -mented amplification and enzyme identification.Verified plasmids were loaded into pAdeno adenovirus vectors.The viruses were then transfected into 293 cell linage to replicate and be purified.Treat cultured cardio-myocytes from 1 -day -old neonatal male Sprague Dawley (SD) rat with empty adenovirus vector control and both kinds of recombinant adenovirus vector, and perform subsequent assay for ALDH2 expression.Results Both vectors are identified by endonuclease with titre of 2 ×10 10 , 1.6 ×10 10 PFU ・ mL-1

  10. Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food.

    Science.gov (United States)

    Giebułtowicz, Joanna; Dziadek, Marta; Wroczyński, Piotr; Woźnicka, Katarzyna; Wojno, Barbara; Pietrzak, Monika; Wierzchowski, Jacek

    2010-01-01

    Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (r(s) ~0.27; p=0.004 and r(s) =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in

  11. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    Science.gov (United States)

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  12. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters

    OpenAIRE

    Keung, Wing Ming; Klyosov, Anatole A; Vallee, Bert L.

    1997-01-01

    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation betwe...

  13. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress.

    Science.gov (United States)

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan

    2016-04-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE.

  14. Increment of antioxidase activity of transgenic tobacco with betaine aldehyde dehydrogenase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Superoxide dismutase (SOD) activity in the leaves of transgenic tobacco plants with betaine aldehyde dehydrogenase (BADH) gene was about 36% higher than that in the control plants (parent plants),activities of peroxi-dase (POD) and catalase (Cat) increased by about 62% and 88% respectively. Activities of ascorbate peroxidase (AsSPOD),dehydroascorbate redutase (DAsAR) and gluta-thione reductase (GR) in ascorbate-glutothion pathway lo-cated at chloroplasts increased by 67.7%,47.9% and 38.8% respectively. These results indicated that the H2O2 produced by SOD catalyzing superoxide anion radicals (O2- ) could be fully decomposed,and could not derive to form the strongest toxicant radicals ·OH. This is the first report to elucidate quantitatively that the activities of two kinds of antioxidative enzymes decomposed radicals and active oxygen were matched. Photoinhibition tolerant capacity of the transgenic tobacco plants was 35% higher than that in the parent plants. Increment of photoinhibition tolerant capacity in the trans-genic tobacco plants might be due to increment of antioxida-tive enzymes activities,in turn being able to more effectively scavenge active oxygen and radicals,protect organization and function of chloroplasts. These results showed that the increment of antioxidative enzymes activities in the trans-genic tobacco might be one of the reasons for the increment of resistance in the transgenic tobacco.

  15. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals

    KAUST Repository

    Trautmann, Danika

    2013-07-05

    Oxidative cleavage of carotenoids and peroxidation of lipids lead to apocarotenals and aliphatic aldehydes called alkanals, which react with vitally important compounds, promoting cytotoxicity. Although many enzymes have been reported to deactivate alkanals by converting them into fatty acids, little is known about the mechanisms used to detoxify apocarotenals or the enzymes acting on them. Cyanobacteria and other photosynthetic organisms must cope with both classes of aldehydes. Here we report that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids. Using a crude lysate of SynAlh1-expressing Escherichia coli cells, we show that SynAlh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate for SynAlh1, making involvement in Synechocystis retinoid metabolism unlikely. The transcript level of SynAlh1 is induced by high light and cold treatment, indicating a role in the stress response, and the corresponding gene is a constituent of a stress-related operon. The assumptions regarding the function of SynAlh are further supported by the surprisingly high homology to human and plant aldehyde dehydrogenase that have been assigned to aldehyde detoxification. SynAlh1 is the first aldehyde dehydrogenase that has been shown to form both apocarotenoic and fatty acids. This dual function suggests that its eukaryotic homologs may also be involved in apocarotenal metabolism, a function that has not been considered so far. Aldehyde dehydrogenases play an important role in detoxification of reactive aldehydes. Here, we report on a cyanbacterial enzyme capable in converting two classes of lipid-derived aldehydes, apocaotenals and alkanals. The corresponding gene is a

  16. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.

    Science.gov (United States)

    Rathinasabapathi, B; McCue, K F; Gage, D A; Hanson, A D

    1994-01-01

    Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline-->betaine aldehyde-->glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and Km for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.

  17. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain.

    Science.gov (United States)

    Zambelli, Vanessa O; Gross, Eric R; Chen, Che-Hong; Gutierrez, Vanessa P; Cury, Yara; Mochly-Rosen, Daria

    2014-08-27

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase-2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R(2) = 0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde- and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than in the wild-type mice. Finally, Alda-1 treatment was even beneficial when given after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic, cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians' apparent lower pain tolerance.

  18. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova

    2016-01-01

    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  19. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Lowe, Edward D; Gao, Guang-Yao; Johnson, Louise N; Keung, Wing Ming

    2008-08-14

    The ALDH2*2 gene encoding the inactive variant form of mitochondrial aldehyde dehydrogenase (ALDH2) protects nearly all carriers of this gene from alcoholism. Inhibition of ALDH2 has hence become a possible strategy to treat alcoholism. The natural product 7-O-glucosyl-4'-hydroxyisoflavone (daidzin), isolated from the kudzu vine ( Peruraria lobata), is a specific inhibitor of ALDH2 and suppresses ethanol consumption. Daidzin is the active principle in a herbal remedy for "alcohol addiction" and provides a lead for the design of improved ALDH2. The structure of daidzin/ALDH2 in complex at 2.4 A resolution shows the isoflavone moiety of daidzin binding close to the aldehyde substrate-binding site in a hydrophobic cleft and the glucosyl function binding to a hydrophobic patch immediately outside the isoflavone-binding pocket. These observations provide an explanation for both the specificity and affinity of daidzin (IC50 =80 nM) and the affinity of analogues with different substituents at the glucosyl position.

  20. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    Science.gov (United States)

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  1. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  2. Class 2 aldehyde dehydrogenase. Characterization of the hamster enzyme, sensitive to daidzin and conserved within the family of multiple forms.

    Science.gov (United States)

    Hjelmqvist, L; Lundgren, R; Norin, A; Jörnvall, H; Vallee, B; Klyosov, A; Keung, W M

    1997-10-13

    Mitochondrial (class 2) hamster aldehyde dehydrogenase has been purified and characterized. Its primary structure has been determined and correlated with the tertiary structure recently established for this class from another species. The protein is found to represent a constant class within a complex family of multiple forms. Variable segments that occur in different species correlate with non-functional segments, in the same manner as in the case of the constant class of alcohol dehydrogenases (class III type) of another protein family, but distinct from the pattern of the corresponding variable enzymes. Hence, in both these protein families, overall variability and segment architectures behave similarly, with at least one 'constant' form in each case, class III in the case of alcohol dehydrogenases, and at least class 2 in the case of aldehyde dehydrogenases.

  3. Isolation of animal cell mutants defective in long-chain fatty aldehyde dehydrogenase. Sensitivity to fatty aldehydes and Schiff's base modification of phospholipids: implications for Sj-ogren-Larsson syndrome.

    Science.gov (United States)

    James, P F; Zoeller, R A

    1997-09-19

    Using tritium suicide, we have isolated a variant of the Chinese hamster ovary cell line, CHO-K1, that is deficient in long-chain fatty alcohol:NAD+ oxidoreductase (FAO; EC 1.1.1.192). Specifically, it was the fatty aldehyde dehydrogenase component that was affected. The enzymatic deficiency found in this mutant strain, designated FAA. K1A, was similar to that displayed by fibroblasts from patients with Sjögren-Larsson syndrome (SLS), an inheritable neurocutaneous disorder. Complementation analyses suggested that the deficiency in fatty alcohol oxidation in the FAA.K1A cells and the SLS fibroblasts is a result of lesions in homologous genes. The FAA.K1A cells were unable to convert long chain fatty aldehydes to the corresponding fatty acids. This resulted in a hypersensitivity of the FAA.K1A cells to the cytotoxic effects of long chain fatty aldehydes. The difference between the mutant and wild-type cells was most obvious when using fatty aldehydes between 14 and 20 carbons, with the greatest difference between wild-type and mutant cells found when using octadecanal. Fibroblasts from a patient with SLS also displayed the hypersensitivity phenotype when compared with FAldDH+ human fibroblasts. In both CHO and human FAldDH- cell lines, addition of long chain fatty aldehydes to the medium caused a dramatic increase in aldehyde-modified phosphatidylethanolamine, presumably through Schiff's base addition to the primary amine of the ethanolamine head group. When 25 microM hexadecanal was added to the growth medium, approximately 10% of the phosphatidylethanolamine was found in the fatty aldehyde-modified form in FAA.K1A, although this was not observed in wild-type cells. Modified phosphatidylethanolamine could be detected in FAldDH- cells even when exogenous fatty aldehydes were not added to the medium. We propose a possible role for fatty aldehydes, or other aldehydic species, in mediating some of the symptoms associated with Sjögren-Larsson syndrome.

  4. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    Science.gov (United States)

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  5. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    Science.gov (United States)

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  6. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2.

    Science.gov (United States)

    Song, Kibbeum; Kim, Sokho; Na, Ji-Young; Park, Jong-Heum; Kim, Jae-Kyung; Kim, Jae-Hun; Kwon, Jungkee

    2014-10-01

    Rutin is derived from buckwheat, apples, and black tea. It has been shown to have beneficial anti-inflammatory and antioxidant effects. Ethanol is a central nervous system depressant and neurotoxin. Its metabolite, acetaldehyde, is critically toxic. Aldehyde dehydrogenase 2 (ALDH2) metabolizes acetaldehyde into nontoxic acetate. This study examined rutin's effects on ALDH2 activity in hippocampal neuronal cells (HT22 cells). Rutin's protective effects against acetaldehyde-based ethanol neurotoxicity were confirmed. Daidzin, an ALDH2 inhibitor, was used to clarify the mechanisms of rutin's protective effects. Cell viability was significantly increased after rutin treatment. Rutin significantly reversed ethanol-increased Bax, cytochrome c expression and caspase 3 activity, and decreased Bcl-2 and Bcl-xL protein expression in HT22 cells. Interestingly, rutin increased ALDH2 expression, while daidzin reversed this beneficial effect. Thus, this study demonstrates rutin protects HT22 cells against ethanol-induced neurotoxicity by increasing ALDH2 activity.

  7. Polymorphisms of alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 and esophageal cancer risk in Southeast Chinese males

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua Ding; Su-Ping Li; Hai-Xia Cao; Jian-Zhong Wu; Chang-Ming Gao; Ping Su; Yan-Ting Liu; Jian-Nong Zhou; Jun Chang; Gen-Hong Yao

    2009-01-01

    AIM: To evaluate the impact of alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) polymorphisms on esophageal cancer susceptibility in Southeast Chinese males. METHODS: Two hundred and twenty-one esophageal cancer patients and 191 healthy controls from Taixing city in Jiangsu Province were enrolled in this study. ADH2 and ALDH2 genotypes were examined by polymerase chain reaction and denaturing highperformance liquid chromatography. Unconditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence interval (CI). RESULTS: The ADH G allele carriers were more susceptible to esophageal cancer, but no association was found between ADH2 genotypes and risk of esophageal cancer when disregarding alcohol drinking status. Regardless of ADH2 genotype, ALDH2G/A or A/A carriers had significantly increased risk of developing esophageal cancer, with homozygous individuals showing higher esophageal cancer risk than those who were heterozygous. A significant interaction between ALDH2 and drinking was detected regarding esophageal cancer risk; the OR was 3.05 (95% CI: 1.49-6.25). Compared with non-drinkers carrying both ALDH2 G/G and ADH2 A/A, drinkers carrying both ALDH2 A allele and ADH2 G allele showed a significantly higher risk of developing esophageal cancer (OR = 8.36, 95% CI: 2.98-23.46).CONCLUSION: Both ADH2 G allele and ALDH2 A allele significantly increase the risk of esophageal cancer development in Southeast Chinese males. ALDH2 A allele significantly increases the risk of esophageal cancer development especially in alcohol drinkers. Alcohol drinkers carrying both ADH2 G allele and ALDH2 A allele have a higher risk of developing esophageal cancer.

  8. Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation.

    Science.gov (United States)

    Wenzl, M Verena; Beretta, Matteo; Griesberger, Martina; Russwurm, Michael; Koesling, Doris; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2011-08-01

    To elucidate the mechanism underlying reduction of nitroglycerin (GTN) to nitric oxide (NO) by mitochondrial aldehyde dehydrogenase (ALDH2), we generated mutants of the enzyme lacking the cysteines adjacent to reactive Cys302 (C301S and C303S), the glutamate that participates as a general base in aldehyde oxidation (E268Q) or combinations of these residues. The mutants were characterized regarding acetaldehyde dehydrogenation, GTN-triggered enzyme inactivation, GTN denitration, NO formation, and soluble guanylate cyclase activation. Lack of the cysteines did not affect dehydrogenase activity but impeded GTN denitration, aggravated GTN-induced enzyme inactivation, and increased NO formation. A triple mutant lacking the cysteines and Glu268 catalyzed sustained formation of superstoichiometric amounts of NO and exhibited slower rates of inactivation. These results suggest three alternative pathways for the reaction of ALDH2 with GTN, all involving formation of a thionitrate/sulfenyl nitrite intermediate at Cys302 as the initial step. In the first pathway, which predominates in the wild-type enzyme and reflects clearance-based GTN denitration, the thionitrate apparently reacts with one of the adjacent cysteine residues to yield nitrite and a protein disulfide. The predominant reaction catalyzed by the single and double cysteine mutants requires Glu268 and results in irreversible enzyme inactivation. Finally, combined lack of the cysteines and Glu268 shifts the reaction toward formation of the free NO radical, presumably through homolytic cleavage of the sulfenyl nitrite intermediate. Although the latter reaction accounts for less than 10% of total turnover of GTN metabolism catalyzed by wild-type ALDH2, it is most likely essential for vascular GTN bioactivation.

  9. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  10. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice.

    Science.gov (United States)

    Choi, Hyehun; Tostes, Rita C; Webb, R Clinton

    2011-01-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme that detoxifies aldehydes to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress, which is the imbalance between reactive oxygen species (ROS) generation and antioxidant defense activity. Increased ROS contribute to vascular dysfunction and structural remodeling in hypertension. We hypothesized that ALDH2 plays a protective role to reduce vascular contraction in angiotensin-II (AngII) hypertensive mice. Endothelium-denuded aortic rings from C57BL6 mice, treated with AngII (3.6 μg/kg/min, 14 days), were used to measure isometric force development. Rings treated with daidzin (10 μmol/L), an ALDH2 inhibitor, potentiated contractile responses to phenylephrine (PE) in AngII mice. Tempol (1 mmol/L) and catalase (600 U/mL) attenuated the augmented contractile effect of daidzin. In normotensive mice, contraction to PE in the presence of the daidzin was not different from control, untreated values. AngII aortic rings transfected with ALDH2 recombinant protein decreased contractile responses to PE compared with control. These data suggest that ALDH2 reduces vascular contraction in AngII hypertensive mice. Because tempol and catalase blocked the contractile response of the ALDH2 inhibitor, ROS generation by AngII may be decreased by ALDH2, thereby preventing ROS-induced contraction.

  11. Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus.

    Science.gov (United States)

    Chen, Chao; Joo, Jeong Chan; Brown, Greg; Stolnikova, Ekaterina; Halavaty, Andrei S; Savchenko, Alexei; Anderson, Wayne F; Yakunin, Alexander F

    2014-07-01

    Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD(+) binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.

  12. Modeling-dependent protein characterization of the rice aldehyde dehydrogenase (ALDH superfamily reveals distinct functional and structural features.

    Directory of Open Access Journals (Sweden)

    Simeon O Kotchoni

    Full Text Available The completion of the rice genome sequence has made it possible to identify and characterize new genes and to perform comparative genomics studies across taxa. The aldehyde dehydrogenase (ALDH gene superfamily encoding for NAD(P(+-dependent enzymes is found in all major plant and animal taxa. However, the characterization of plant ALDHs has lagged behind their animal- and prokaryotic-ALDH homologs. In plants, ALDHs are involved in abiotic stress tolerance, male sterility restoration, embryo development and seed viability and maturation. However, there is still no structural property-dependent functional characterization of ALDH protein superfamily in plants. In this paper, we identify members of the rice ALDH gene superfamily and use the evolutionary nesting events of retrotransposons and protein-modeling-based structural reconstitution to report the genetic and molecular and structural features of each member of the rice ALDH superfamily in abiotic/biotic stress responses and developmental processes. Our results indicate that rice-ALDHs are the most expanded plant ALDHs ever characterized. This work represents the first report of specific structural features mediating functionality of the whole families of ALDHs in an organism ever characterized.

  13. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Ikeda

    Full Text Available Hypoglycemic encephalopathy (HE is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE, a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl-2,6-dichlorobenzamide (Alda-1, a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg or vehicle (dimethyl sulfoxide; DMSO was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020. Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.

  14. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α

    Science.gov (United States)

    Hu, Nan; Ren, Jun; Zhang, Yingmei

    2016-01-01

    Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation. PMID:27634872

  15. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.

    Science.gov (United States)

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg; Heider, Johann

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.

  16. The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of daidzin.

    Science.gov (United States)

    Rooke, N; Li, D J; Li, J; Keung, W M

    2000-11-02

    Recent studies showed that daidzin suppresses ethanol intake in ethanol-preferring laboratory animals. In vitro, it potently and selectively inhibits the mitochondrial aldehyde dehydrogenase (ALDH-2). Further, it inhibits the conversion of monoamines such as serotonin (5-HT) and dopamine (DA) into their respective acid metabolites, 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in isolated hamster or rat liver mitochondria. Studies on the suppression of ethanol intake and inhibition of 5-HIAA (or DOPAC) formation by six structural analogues of daidzin suggested a potential link between these two activities. This, together with the finding that daidzin does not affect the rates of mitochondria-catalyzed oxidative deamination of these monoamines, raised the possibility that the ethanol intake-suppressive (antidipsotropic) action of daidzin is not mediated by the monoamines but rather by their reactive biogenic aldehyde intermediates such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or 3,4-dihydroxyphenylacetaldehyde (DOPAL) which accumulate in the presence of daidzin. To further evaluate this possibility, we synthesized more structural analogues of daidzin and tested and compared their antidipsotropic activities in Syrian golden hamsters with their effects on monoamine metabolism in isolated hamster liver mitochondria using 5-HT as the substrate. Effects of daidzin and its structural analogues on the activities of monoamine oxidase (MAO) and ALDH-2, the key enzymes involved in 5-HT metabolism in the mitochondria, were also examined. Results from these studies reveal a positive correlation between the antidipsotropic activities of these analogues and their abilities to increase 5-HIAL accumulation during 5-HT metabolism in isolated hamster liver mitochondria. Daidzin analogues that potently inhibit ALDH-2 but have no or little effect on MAO are most antidipsotropic, whereas those that also potently inhibit MAO exhibit little, if

  17. Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation.

    Science.gov (United States)

    Neubauer, Regina; Neubauer, Andrea; Wölkart, Gerald; Schwarzenegger, Christine; Lang, Barbara; Schmidt, Kurt; Russwurm, Michael; Koesling, Doris; Gorren, Antonius C F; Schrammel, Astrid; Mayer, Bernd

    2013-09-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.

  18. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.

    Science.gov (United States)

    Zhao, Di; Mo, Yan; Li, Meng-Tian; Zou, Shao-Wu; Cheng, Zhou-Li; Sun, Yi-Ping; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2014-12-01

    High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

  19. Identification of Tumor Endothelial Cells with High Aldehyde Dehydrogenase Activity and a Highly Angiogenic Phenotype

    Science.gov (United States)

    Maishi, Nako; Ohga, Noritaka; Hida, Yasuhiro; Kawamoto, Taisuke; Iida, Junichiro; Shindoh, Masanobu; Tsuchiya, Kunihiko; Shinohara, Nobuo; Hida, Kyoko

    2014-01-01

    Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs) exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs). TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH) in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis. PMID:25437864

  20. Identification of tumor endothelial cells with high aldehyde dehydrogenase activity and a highly angiogenic phenotype.

    Directory of Open Access Journals (Sweden)

    Hitomi Ohmura-Kakutani

    Full Text Available Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs. TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2. Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis.

  1. Vasodilatory effect of nitroglycerin in Japanese subjects with different aldehyde dehydrogenase 2 (ALDH2) genotypes.

    Science.gov (United States)

    Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; Yonezawa, Kazuya

    2017-03-23

    The functional genetic polymorphism of aldehyde dehydrogenase 2 (ALDH2) influences the enzymatic activities of its wild type (Glu504 encoded by ALDH2*1) and mutant type (Lys504 encoded by ALDH2*2) proteins. The enzymatic activities of mutant-type ALDH2 are limited compared with those of the wild type. ALDH2 has been suggested as a critical factor for nitroglycerin-mediated vasodilation by some human studies and in vitro studies. Currently, there is no research on direct observations of the vasodilatory effect of nitroglycerin sublingual tablets, which is the generally used dosage form. In the present study, the contribution of ALDH2 to the vasodilatory effect of nitroglycerin sublingual tablets was investigated among three genotype groups (ALDH2*1/*1, ALDH2*1/*2, and ALDH2*2/*2) in Japanese. The results by direct assessments of in vivo nitroglycerin-mediated dilation showed no apparent difference in vasodilation among all genotypes of ALDH2. Furthermore, to analyze the effect of other factors (age and flow-mediated dilation), multiple regression analysis and Pearson's correlation coefficient analysis were carried out. These analyses also indicated that the genotypes of ALDH2 were not related to the degree of vasodilation. These results suggest the existence of other predominant pathway(s) for nitroglycerin biotransformation, at least with regard to clinical nitroglycerin (e.g., a sublingual tablet) in Japanese subjects.

  2. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line.

    Science.gov (United States)

    Wang, Yi; Jiang, Yang; Ikeda, Jun-Ichiro; Tian, Tian; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-10-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine.

  3. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters.

    Science.gov (United States)

    Keung, W M; Klyosov, A A; Vallee, B L

    1997-03-04

    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation between ALDH-2 inhibition and ethanol intake suppression and raise the possibility that daidzin may, in fact, suppress ethanol intake of golden hamsters by inhibiting ALDH-2. Hamster liver contains not only mitochondrial ALDH-2 but also high concentrations of a cytosolic form, ALDH-1, which is a very efficient catalyst of acetaldehyde oxidation. Further, the cytosolic isozyme is completely resistant to daidzin inhibition. This unusual property of the hamster ALDH-1 isozyme accounts for the fact we previously observed that daidzin can suppress ethanol intake of this species without blocking acetaldehyde metabolism. Thus, the mechanism by which daidzin suppresses ethanol intake in golden hamsters clearly differs from that proposed for the classic ALDH inhibitor disulfiram. We postulate that a physiological pathway catalyzed by ALDH-2, so far undefined, controls ethanol intake of golden hamsters and mediates the antidipsotropic effect of daidzin.

  4. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  5. Isolation and Induced Expression of Betaine Aldehyde Dehydrogenase Gene from Spinach%菠菜甜菜碱醛脱氢酶基因的分离和诱导表达

    Institute of Scientific and Technical Information of China (English)

    张宁; 王蒂; 司怀军

    2004-01-01

    植物体内的甜菜碱由胆碱经两步不可逆的氧化反应合成,甜菜碱醛脱氢酶(betaine aldehyde dehydrogenase,BADH)是合成甜菜碱的关键酶,催化甜菜碱醛氧化为甜菜碱。本研究从菠菜叶片中分离了BADH基因,并将该基因与其它植物的BADH序列作了同源性分析,同时,证实了菠菜BADH基因的转录与表达受干旱和盐胁迫的诱导。

  6. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas expressing spinach betaine aldehyde dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Weijuan Fan

    Full Text Available Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas, a root crop with worldwide importance. The increased production of glycine betaine (GB improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait

  7. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  8. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling.

    Science.gov (United States)

    Sullivan, James P; Spinola, Monica; Dodge, Michael; Raso, Maria G; Behrens, Carmen; Gao, Boning; Schuster, Katja; Shao, Chunli; Larsen, Jill E; Sullivan, Laura A; Honorio, Sofia; Xie, Yang; Scaglioni, Pier P; DiMaio, J Michael; Gazdar, Adi F; Shay, Jerry W; Wistuba, Ignacio I; Minna, John D

    2010-12-01

    Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH(+) lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH(-) counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH(+) cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH(+) lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH(+) component, implicating Notch signaling in lung cancer stem cell maintenance.

  9. Aldehyde Dehydrogenase 1A1: Friend or Foe to Female Metabolism?

    Directory of Open Access Journals (Sweden)

    Jennifer M. Petrosino

    2014-03-01

    Full Text Available In this review, we summarize recent advances in understanding vitamin A-dependent regulation of sex-specific differences in metabolic diseases, inflammation, and certain cancers. We focus on the characterization of the aldehyde dehydrogenase-1 family of enzymes (ALDH1A1, ALDH1A2, ALDH1A3 that catalyze conversion of retinaldehyde to retinoic acid. Additionally, we propose a “horizontal transfer of signaling” from estrogen to retinoids through the action of ALDH1A1. Although estrogen does not directly influence expression of Aldh1a1, it has the ability to suppress Aldh1a2 and Aldh1a3, thereby establishing a female-specific mechanism for retinoic acid generation in target tissues. ALDH1A1 regulates adipogenesis, abdominal fat formation, glucose tolerance, and suppression of thermogenesis in adipocytes; in B cells, ALDH1A1 plays a protective role by inducing oncogene suppressors Rara and Pparg. Considering the conflicting responses of Aldh1a1 in a multitude of physiological processes, only tissue-specific regulation of Aldh1a1 can result in therapeutic effects. We have shown through successful implantation of tissue-specific Aldh1a1−/− preadipocytes that thermogenesis can be induced in wild-type adipose tissues to resolve diet-induced visceral obesity in females. We will briefly discuss the emerging role of ALDH1A1 in multiple myeloma, the regulation of reproduction, and immune responses, and conclude by discussing the role of ALDH1A1 in future therapeutic applications.

  10. Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels.

    Science.gov (United States)

    Neubauer, Regina; Wölkart, Gerald; Opelt, Marissa; Schwarzenegger, Christine; Hofinger, Marielies; Neubauer, Andrea; Kollau, Alexander; Schmidt, Kurt; Schrammel, Astrid; Mayer, Bernd

    2015-02-15

    The vascular bioactivation of the antianginal drug nitroglycerin (GTN), yielding 1,2-glycerol dinitrate and nitric oxide or a related activator of soluble guanylate cyclase, is catalyzed by aldehyde dehydrogenase-2 (ALDH2) in rodent and human blood vessels. The essential role of ALDH2 has been confirmed in many studies and is considered as general principle of GTN-induced vasodilation in mammals. However, this view is challenged by an early report showing that diphenyleneiodonium, which we recently characterized as potent ALDH2 inhibitor, has no effect on GTN-induced relaxation of bovine coronary arteries (De La Lande et al., 1996). We investigated this issue and found that inhibition of ALDH2 attenuates GTN-induced coronary vasodilation in isolated perfused rat hearts but has no effect on relaxation to GTN of bovine and porcine coronary arteries. This observation is explained by low levels of ALDH2 protein expression in bovine coronary arteries and several types of porcine blood vessels. ALDH2 mRNA expression and the rates of GTN denitration were similarly low, excluding a significant contribution of ALDH2 to the bioactivation of GTN in these vessels. Attempts to identify the responsible pathway with enzyme inhibitors did not provide conclusive evidence for the involvement of ALDH3A1, cytochrome P450, or GSH-S-transferase. Thus, the present manuscript describes a hitherto unrecognized pathway of GTN bioactivation in bovine and porcine blood vessels. If present in the human vasculature, this pathway might contribute to the therapeutic effects of organic nitrates that are not metabolized by ALDH2.

  11. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado.

    Science.gov (United States)

    Taylor, Nicky J; Cowan, A Keith

    2004-04-01

    The contribution of xanthine dehydrogenase (XDH, EC 1.1.1.204) to fruit size was investigated using the normal and small-fruit variants of Persea americana Mill. cv. 'Hass'. Inhibition of XDH by treatment of normal fruit, in the linear phase of growth (phase II), with allopurinol (Allo) arrested fruit growth. Adenine (Ade), a less effective inhibitor of this enzyme, also arrested fruit growth when applied in phase II and slowed fruit growth when applied in phase III. A time-course study on the activity of XDH in mesocarp tissue from normal and small fruit showed that maximum activity occurred late in phase II and that the peak in activity was absent in mesocarp of the small fruit. Feeding Ade to growing fruit in phase III caused a transient decline in fruit growth (measured as change in fruit length). Thereafter, growth resumed although fruit size was irreversibly affected. Treatment of fruit with Ade and Ade-containing cytokinins altered activity of another molybdenum enzyme, aldehyde oxidase (EC 1.2.3.1). Cytokinin oxidase was induced by cytokinin and auxin. Purine catabolism via hypoxanthine/xanthine was operative in normal fruit and in mesocarp from the small-fruit variant and as expected, Allo treatment caused accumulation of xanthine and adenine. In the absence of an increase in XDH during growth of the small-fruit phenotype, low levels of Ade were interpreted as resulting from respiration-enhanced adenylate depletion. Stress and/or pathogen induction of the alternative oxidase pathway is proposed as a possible cause.

  12. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    Science.gov (United States)

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  13. 嗜热乙醇杆菌中醛/醇脱氢酶的双启动子分析%The Promoter Analysis of the adhE Gene Encoding the Aldehyde/alcohol Dehydrogenase in Thermoanaerobacter ethanolicus

    Institute of Scientific and Technical Information of China (English)

    彭惠; 毛忠贵; 武国干; 邵蔚蓝

    2007-01-01

    克隆了嗜热乙醇杆菌(Thermoanaerobacter ethanolicus)中乙醇代谢的关键酶之一醛/醇脱氢酶(alcohol/acetaldehyde dehydrogenase,AdhE)基因的上游假定启动子序列,并进行了结构分析.结果表明,adhE的上游序列是启动子,能启动报告基因在大肠杆菌中持续表达.首次发现adhE的启动子序列中存在两个独立的启动子(P172和P37)和核糖体结合位点(SD172和SD37),分别都具有完整功能,但其活性均低于完整的启动子序列.由此推测嗜热乙醇杆菌中adhE的表达受这两个启动子协同调控.

  14. Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance.

    Science.gov (United States)

    Wenzel, Philip; Hink, Ulrich; Oelze, Matthias; Schuppan, Swaantje; Schaeuble, Karin; Schildknecht, Stefan; Ho, Kwok K; Weiner, Henry; Bachschmid, Markus; Münzel, Thomas; Daiber, Andreas

    2007-01-05

    Chronic therapy with nitroglycerin results in a rapid development of nitrate tolerance, which is associated with an increased production of reactive oxygen species. We have recently shown that mitochondria are an important source of nitroglycerin-induced oxidants and that the nitroglycerin-bioactivating mitochondrial aldehyde dehydrogenase is oxidatively inactivated in the setting of tolerance. Here we investigated the effect of various oxidants on aldehyde dehydrogenase activity and its restoration by dihydrolipoic acid. In vivo tolerance in Wistar rats was induced by infusion of nitroglycerin (6.6 microg/kg/min, 4 days). Vascular reactivity was measured by isometric tension studies of isolated aortic rings in response to nitroglycerin. Chronic nitroglycerin infusion lead to impaired vascular responses to nitroglycerin and decreased dehydrogenase activity, which was corrected by dihydrolipoic acid co-incubation. Superoxide, peroxynitrite, and nitroglycerin itself were highly efficient in inhibiting mitochondrial and yeast aldehyde dehydrogenase activity, which was restored by dithiol compounds such as dihydrolipoic acid and dithiothreitol. Hydrogen peroxide and nitric oxide were rather insensitive inhibitors. Our observations indicate that mitochondrial oxidative stress (especially superoxide and peroxynitrite) in response to organic nitrate treatment may inactivate aldehyde dehydrogenase thereby leading to nitrate tolerance. Glutathionylation obviously amplifies oxidative inactivation of the enzyme providing another regulatory pathway. Furthermore, the present data demonstrate that the mitochondrial dithiol compound dihydrolipoic acid restores mitochondrial aldehyde dehydrogenase activity via reduction of a disulfide at the active site and thereby improves nitrate tolerance.

  15. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, R.E.; Haywood-Small, S.L. [Biomedical Research Centre, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Sisley, K. [Department of Oncology, Academic Unit of Ophthalmology and Orthopties, University of Sheffield, Sheffield S10 2RX (United Kingdom); Cross, N.A., E-mail: n.cross@shu.ac.uk [Biomedical Research Centre, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Isolated ALDH{sup Hi} PC3 cells preferentially form primitive holoclone-type colonies. Black-Right-Pointing-Pointer Primitive holoclone colonies are predominantly ALDH{sup Lo} but contain rare ALDH{sup Hi} cells. Black-Right-Pointing-Pointer Holoclone-forming cells are not restricted to the ALDH{sup Hi} population. Black-Right-Pointing-Pointer ALDH phenotypic plasticity occurs in PC3 cells (ALDH{sup Lo} to ALDH{sup Hi} and vice versa). Black-Right-Pointing-Pointer ALDH{sup Hi} cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDH{sup Lo} cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDH{sup Hi} population, or whether all ALDH{sup Hi} cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDH{sup Hi} cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDH{sup Hi} cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDH{sup Lo} population can develop ALDH{sup Hi} populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDH{sup Hi} cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in

  16. Activation of Human Salivary Aldehyde Dehydrogenase by Sulforaphane: Mechanism and Significance

    Science.gov (United States)

    Alam, Md. Fazle; Laskar, Amaj Ahmed; Maryam, Lubna

    2016-01-01

    Cruciferous vegetables contain the bio-active compound sulforaphane (SF) which has been reported to protect individuals against various diseases by a number of mechanisms, including activation of the phase II detoxification enzymes. In this study, we show that the extracts of five cruciferous vegetables that we commonly consume and SF activate human salivary aldehyde dehydrogenase (hsALDH), which is a very important detoxifying enzyme in the mouth. Maximum activation was observed at 1 μg/ml of cabbage extract with 2.6 fold increase in the activity. There was a ~1.9 fold increase in the activity of hsALDH at SF concentration of ≥ 100 nM. The concentration of SF at half the maximum response (EC50 value) was determined to be 52 ± 2 nM. There was an increase in the Vmax and a decrease in the Km of the enzyme in the presence of SF. Hence, SF interacts with the enzyme and increases its affinity for the substrate. UV absorbance, fluorescence and CD studies revealed that SF binds to hsALDH and does not disrupt its native structure. SF binds with the enzyme with a binding constant of 1.23 x 107 M-1. There is one binding site on hsALDH for SF, and the thermodynamic parameters indicate the formation of a spontaneous strong complex between the two. Molecular docking analysis depicted that SF fits into the active site of ALDH3A1, and facilitates the catalytic mechanism of the enzyme. SF being an antioxidant, is very likely to protect the catalytic Cys 243 residue from oxidation, which leads to the increase in the catalytic efficiency and hence the activation of the enzyme. Further, hsALDH which is virtually inactive towards acetaldehyde exhibited significant activity towards it in the presence of SF. It is therefore very likely that consumption of large quantities of cruciferous vegetables or SF supplements, through their activating effect on hsALDH can protect individuals who are alcohol intolerant against acetaldehyde toxicity and also lower the risk of oral cancer

  17. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer.

    Science.gov (United States)

    Laniewska-Dunaj, Magdalena; Jelski, Wojciech; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2013-07-01

    The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.

  18. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of patients with brain tumor

    Science.gov (United States)

    Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2017-01-01

    Introduction Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) exist in the brain. Alcohol dehydrogenase and ALDH are also present in brain tumor cells. Moreover, the activity of class I isoenzymes was significantly higher in cancer than healthy brain cells. The activity of these enzymes in tumor tissue is reflected in the serum and could thus be helpful for diagnostics of brain neoplasms. The aim of this study was to investigate the potential role of ADH and ALDH as markers for brain tumors. Material and methods Serum samples were taken for routine biochemical investigation from 115 patients suffering from brain tumors (65 glioblastomas, 50 meningiomas). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. Results There was a significant increase in the activity of ADH I isoenzyme and ADH total in the sera of brain tumor patients compared to the controls. The diagnostic sensitivity for ADH I was 78%, specificity 85%, and positive and negative predictive values were 86% and 76% respectively. The sensitivity and specificity of ADH I increased with the stage of the carcinoma. Area under receiver-operating characteristic curve for ADH I was 0.71. Conclusions The results suggest a potential role for ADH I as a marker for brain tumor. PMID:28261287

  19. Action of metadoxine on isolated human and rat alcohol and aldehyde dehydrogenases. Effect on enzymes in chronic ethanol-fed rats.

    Science.gov (United States)

    Parés, X; Moreno, A; Peralba, J M; Font, M; Bruseghini, L; Esteras, A

    1991-01-01

    Metadoxine (pyridoxine-pyrrolidone carboxylate) has been reported to accelerate ethanol metabolism. In the present work we have investigated the effect of metadoxine on the activities of isolated alcohol and aldehyde dehydrogenases from rat and man, and on the activity of these enzymes in chronic ethanol-fed rats. Our results indicate that in vitro metadoxine does not activate any of the enzymatic forms of alcohol dehydrogenase (classes I and II) or aldehyde dehydrogenase (low-Km and high-Km, cytosolic and mitochondrial). At concentrations higher than 0.1 mM, metadoxine inhibits rat class II alcohol dehydrogenase, although this would probably not affect the physiological ethanol metabolism. Chronic ethanol intake for 5 weeks results in a 25% decrease of rat hepatic alcohol dehydrogenase (class I) activity as compared with the pair-fed controls. The simultaneous treatment with metadoxine prevents activity loss, suggesting that the positive effect of metadoxine on ethanol metabolism can be explained by the maintenance of normal levels of alcohol dehydrogenase during chronic ethanol intake. No specific effect of chronic exposure to ethanol or to metadoxine was detected on rat aldehyde dehydrogenase activity.

  20. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population.

    Directory of Open Access Journals (Sweden)

    Kazuyo Yasuda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiaiting cells (CICs are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDH(Br cells from ovarian cancer cells. Both SP cells and ALDH(Br cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2, than those of main population (MP cells and ALDH(Low cells, respectively. We analyzed an SP and ALDH(Br overlapping population (SP/ALDH(Br, and the SP/ALDH(Br population exhibited higher tumor-initiating ability than that of SP cells or ALDH(Br cells, enabling initiation of tumor with as few as 10(2 cells. Furthermore, SP/ADLH(Br population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDH(Low, MP/ALDH(Br and MP/ALDH(Low cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDH(Br population was detected in several gynecological cancer cells with ratios of 0.1% for HEC-1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDH(Br overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.

  1. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway.

    Science.gov (United States)

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo

    2011-12-01

    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, pdaidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  2. The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease

    Science.gov (United States)

    Oniki, K; Morita, K; Watanabe, T; Kajiwara, A; Otake, K; Nakagawa, K; Sasaki, Y; Ogata, Y; Saruwatari, J

    2016-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies toxic aldehydes and has a key role in protecting the liver. An elevated gamma-glutamyl transferase (GGT) level is related to oxidative stress and nonalcoholic fatty liver disease (NAFLD). We herein investigated the association between inactive ALDH2*2 allele (rs671) and the risk of NAFLD, including the relationship to the GGT level. A retrospective follow-up study (mean 5.4±1.1 years) was conducted among 341 Japanese health screening program participants. The receiver operating characteristic curve indicated that the GGT level predicted the development of NAFLD (area under the curve: 0.65, P<0.05) with a cutoff value of 25.5 IUl−1. The longitudinal risk of NAFLD was higher in the ALDH2*2 allele carriers than in the noncarriers (odds ratio (OR): 2.30, 95% confidence interval (CI): 1.21–4.40), and the risk was further increased among the *2 allele carriers with GGT values ⩾25.5 IUl−1 (OR: 4.28, 95% CI: 1.80–10.19). On the other hand, there were no significant changes in the subjects' body weight and body mass index during observation period. The ALDH2*2 allele, in relation to the GGT level, may potentially be a novel risk factor for NAFLD. PMID:27214654

  3. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  4. Aldehyde dehydrogenase 2 protects human umbilical vein endothelial cells against oxidative damage and increases endothelial nitric oxide production to reverse nitroglycerin tolerance.

    Science.gov (United States)

    Hu, X Y; Fang, Q; Ma, D; Jiang, L; Yang, Y; Sun, J; Yang, C; Wang, J S

    2016-06-10

    Medical nitroglycerin (glyceryl trinitrate, GTN) use is limited principally by tolerance typified by a decrease in nitric oxide (NO) produced by biotransformation. Such tolerance may lead to endothelial dysfunction by inducing oxidative stress. In vivo studies have demonstrated that aldehyde dehydrogenase 2 (ALDH2) plays important roles in GTN biotransformation and tolerance. Thus, modification of ALDH2 expression represents a potentially effective strategy to prevent and reverse GTN tolerance and endothelial dysfunction. In this study, a eukaryotic expression vector containing the ALDH2 gene was introduced into human umbilical vein endothelial cells (HUVECs) by liposome-mediated transfection. An indirect immunofluorescence assay showed that ALDH2 expression increased 24 h after transfection. Moreover, real-time polymerase chain reaction and western blotting revealed significantly higher ALDH2 mRNA and protein expression in the gene-transfected group than in the two control groups. GTN tolerance was induced by treating HUVECs with 10 mM GTN for 16 h + 10 min, which significantly decreased NO levels in control cells, but not in those transfected with ALDH2. Overexpression of ALDH2 increased cell survival against GTN-induced cytotoxicity and conferred protection from oxidative damage resulting from nitrate tolerance, accompanied by decreased production of intracellular reactive oxygen species and reduced expression of heme oxygenase 1. Furthermore, ALDH2 overexpression promoted Akt phosphorylation under GTN tolerance conditions. ALDH2 gene transfection can reverse and prevent tolerance to GTN through its bioactivation and protect against oxidative damage, preventing the development of endothelial dysfunction.

  5. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析%Cloning, Expression, and Enzymatic Characteristics of Betaine Aldehyde De-hydrogenase Gene inSesuvium portulacastrum L.

    Institute of Scientific and Technical Information of China (English)

    喻时周; 杨成龙; 郭建春; 段瑞军

    2016-01-01

    在许多渗透调节剂中,甜菜碱是最理想的有机小分子渗透调节物质。甜菜碱在植物体内大量积累不会带来危害,同时能提高植物对环境胁迫的抗性。将海马齿中克隆到的甜菜碱醛脱氢酶基因构建到表达载体pET-28a(+)上,获得重组载体pET-SpBADH并将其成功地转化到BL21(DE3)中得到重组工程菌,经IPTG诱导能高效表达55 kD目的蛋白,表达量可以达到301µg mL–1。酶学特征分析表明,该蛋白最适pH值为7.2,在偏碱条件下能维持较高的催化活性; SpBADH蛋白对高温敏感,且温度对催化活性影响较大,超过55℃时酶活性只有20%,最适酶催化活性温度为37℃;而有机小分子醇类对酶的催化活性有保护作用,可以通过自身特征维持酶催化活性的微环境。%Among many osmotic materials, glycine betaine is a best organic micro-molecular, and functionally works for osmotic regulation in plants, which is non-toxic to plant growth. A lot of glycine betaine accumulatedin plant can enhance the resistance of plants to environmental stresses. In the study, a full-length sequence of betaine aldehyde dehydrogenase gene fromSesuvium portulacastrum was ligated with the vector pET-[28a](+), named pET-SpBADH, and successfully transformed into BL21(DE3) to obtain the corresponding recombinant engineering bacteria, which could highly express 55 kD protein induced by IPTG, with the expression level to 301 µg mL–1. The purified protein was obtained, showing the optimum pH value of 7.2, and maintain high catalytic activity the enzyme under slightly alkaline conditions. SpBADH protein very sensitive to high temperature effected the enzyme activity, with the optimum temperature to 37℃. The enzyme activity was only 20% when temperature was over 55℃. The small organic molecules of the reveral compounds of alcohol had a protective effect on the catalytic activity of the enzyme. The microenvironment of catalytic activity could be

  6. Isolation of an aldehyde dehydrogenase involved in the oxidation of fluoroacetaldehyde to fluoroacetate in Streptomyces cattleya.

    Science.gov (United States)

    Murphy, C D; Moss, S J; O'Hagan, D

    2001-10-01

    Streptomyces cattleya is unusual in that it produces fluoroacetate and 4-fluorothreonine as secondary metabolites. We now report the isolation of an NAD(+)-dependent fluoroacetaldehyde dehydrogenase from S. cattleya that mediates the oxidation of fluoroacetaldehyde to fluoroacetate. This is the first enzyme to be identified that is directly involved in fluorometabolite biosynthesis. Production of the enzyme begins in late exponential growth and continues into the stationary phase. Measurement of kinetic parameters shows that the enzyme has a high affinity for fluoroacetaldehyde and glycoaldehyde, but not acetaldehyde.

  7. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde.

    Science.gov (United States)

    Scharschmidt, M; Fisher, M A; Cleland, W W

    1984-11-01

    Primary intrinsic deuterium and 13C isotope effects have been determined for liver (LADH) and yeast (YADH) alcohol dehydrogenases with benzyl alcohol as substrate and for yeast aldehyde dehydrogenase (ALDH) with benzaldehyde as substrate. These values have also been determined for LADH as a function of changing nucleotide substrate. As the redox potential of the nucleotide changes from -0.320 V with NAD to -0.258 V with acetylpyridine-NAD, the product of primary and secondary deuterium isotope effects rises from 4 toward 6.5, while the primary 13C isotope effect drops from 1.025 to 1.012, suggesting a trend from a late transition state with NAD to one that is more symmetrical. The values of Dk (again the product of primary and secondary isotope effects) and 13k for YADH with NAD are 7 and 1.023, suggesting for this very slow reaction a more stretched, and thus symmetrical, transition state. With ALDH and NAD, the primary 13C isotope effect on the hydride transfer step lies in the range 1.3-1.6%, and the alpha-secondary deuterium isotope effect on the same step is at least 1.22, but 13C isotope effects on formation of the thiohemiacetal intermediate and on the addition of water to the thio ester intermediate are less than 1%. On the basis of the relatively large 13C isotope effects, we conclude that carbon motion is involved in the hydride transfer steps of dehydrogenase reactions.

  8. Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer.

    Science.gov (United States)

    Carpentino, Joseph E; Hynes, Mark J; Appelman, Henry D; Zheng, Tong; Steindler, Dennis A; Scott, Edward W; Huang, Emina H

    2009-10-15

    Patients with chronic ulcerative colitis are at increased risk of developing colorectal cancer. Although current hypotheses suggest that sporadic colorectal cancer is due to inability to control cancer stem cells, the cancer stem cell hypothesis has not yet been validated in colitis-associated cancer. Furthermore, the identification of the colitis to cancer transition is challenging. We recently showed that epithelial cells with the increased expression of aldehyde dehydrogenase in sporadic colon cancer correlate closely with tumor-initiating ability. We sought to determine whether ALDH can be used as a marker to isolate tumor-initiating populations from patients with chronic ulcerative colitis. We used fluorescence-activated cell sorting to identify precursor colon cancer stem cells from colitis patients and report both their transition to cancerous stem cells in xenografting studies as well as their ability to generate spheres in vitro. Similar to sporadic colon cancer, these colitis-derived tumors were capable of propagation as sphere cultures. However, unlike the origins of sporadic colon cancer, the primary colitic tissues did not express any histologic evidence of dysplasia. To elucidate a potential mechanism for our findings, we compared the stroma of these different environments and determined that at least one paracrine factor is up-regulated in the inflammatory and malignant stroma compared with resting, normal stroma. These data link colitis and cancer identifying potential tumor-initiating cells from colitic patients, suggesting that sphere and/or xenograft formation will be useful to survey colitic patients at risk of developing cancer.

  9. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1.

    Science.gov (United States)

    Wu, Bing; Yu, Lu; Wang, Yishi; Wang, Hongtao; Li, Chen; Yin, Yue; Yang, Jingrun; Wang, Zhifa; Zheng, Qiangsun; Ma, Heng

    2016-01-19

    Cardiac aging is characterized by accumulation of damaged proteins and decline of autophagic efficiency. Here, by forestalling SIRT1 carbonylated inactivation in aged heart, we determined the benefits of activation of aldehyde dehydrogenase 2 (ALDH2) on the autophagy. In this study, the ALDH2 KO mice progressively developed age-related heart dysfunction and showed reduction in the life span, which strongly suggests that ALDH2 ablation leads to cardiac aging. What's more, aged hearts displayed a significant decrease ALDH2 activity, resulting in accumulation of 4-HNE-protein adducts and protein carbonyls, impairment in the autophagy flux, and, consequently, deteriorated cardiac function after starvation. Sustained Alda-1 (selective ALDH2 activator) treatment increased cardiac ALDH2 activity and abrogated these effects. Using SIRT1 deficient heterozygous (Sirt1+/-) mice, we found that SIRT1 was necessary for ALDH2 activation-induced autophagy. We further demonstrated that ALDH2 activation attenuated SIRT1 carbonylation and improved SIRT1 activity, thereby increasing the deacetylation of nuclear LC3 and FoxO1. Sequentially, ALDH2 enhanced SIRT1 regulates LC3-Atg7 interaction and FoxO1 increased Rab7 expression, which were both necessary and sufficient for restoring autophagy flux. These results highlight that both accumulation of proteotoxic carbonyl stress linkage with autophagy decline contribute to heart senescence. ALDH2 activation is adequate to improve the autophagy flux by reducing the carbonyl modification on SIRT1, which in turn plays an important role in maintaining cardiac health during aging.

  10. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis.

    Science.gov (United States)

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  11. Mitochondrial aldehyde dehydrogenase mediates vasodilator responses of glyceryl trinitrate and sodium nitrite in the pulmonary vascular bed of the rat.

    Science.gov (United States)

    Badejo, Adeleke M; Hodnette, Chris; Dhaliwal, Jasdeep S; Casey, David B; Pankey, Edward; Murthy, Subramanyam N; Nossaman, Bobby D; Hyman, Albert L; Kadowitz, Philip J

    2010-09-01

    It has been reported that mitochondrial aldehyde dehydrogenase (ALDH2) catalyzes the formation of glyceryl dinitrate and inorganic nitrite from glyceryl trinitrate (GTN), leading to an increase in cGMP and vasodilation in the coronary and systemic vascular beds. However, the role of nitric oxide (NO) formed from nitrite in mediating the response to GTN in the pulmonary vascular bed is uncertain. The purpose of the present study was to determine if nitrite plays a role in mediating vasodilator responses to GTN. In this study, intravenous injections of GTN and sodium nitrite decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressure under baseline and elevated tone conditions and decreases in systemic arterial pressure in response to GTN and sodium nitrite were attenuated by cyanamide, an ALDH2 inhibitor, whereas responses to the NO donor, sodium nitroprusside (SNP), were not altered. The decreases in pulmonary and systemic arterial pressure in response to GTN and SNP were not altered by allopurinol, an inhibitor of xanthine oxidoreductase, whereas responses to sodium nitrite were attenuated. GTN was approximately 1,000-fold more potent than sodium nitrite in decreasing pulmonary and systemic arterial pressures. These results suggest that ALDH2 plays an important role in the bioactivation of GTN and nitrite in the pulmonary and systemic vascular beds and that the reduction of nitrite to vasoactive NO does not play an important role in mediating vasodilator responses to GTN in the intact chest rat.

  12. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    Energy Technology Data Exchange (ETDEWEB)

    McCue, K.F.; Hanson, A.D. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screened with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.

  13. Alcohol Dehydrogenase-1B (rs1229984 and Aldehyde Dehydrogenase-2 (rs671 Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Directory of Open Access Journals (Sweden)

    Akira Yokoyama

    Full Text Available Elevated serum triglyceride (TG and high-density-lipoprotein cholesterol (HDL-C levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics.The population consisted of 1806 Japanese alcoholic men (≥40 years who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission.High serum levels of TG (≥150 mg/dl, HDL-C (>80 mg/dl, and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively, and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively. The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]. The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl and HDL-C (≥100 mg/dl.The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  14. ALCOHOL AND ALDEHYDE DEHYDROGENASES CONTRIBUTE TO SEX-RELATED DIFFERENCES IN CLEARANCE OF ZOLPIDEM IN RATS

    Directory of Open Access Journals (Sweden)

    Cody J Peer

    2016-08-01

    Full Text Available Objectives:  The recommended zolpidem starting dose was lowered in females (5mg vs 10mg since side effects were more frequent and severe than those of males; the mechanism underlying sex differences in pharmacokinetics (PK is unknown.  We hypothesized that such differences were caused by known sex-related variability in alcohol dehydrogenase (ADH expression. Methods:  Male, female, and castrated male rats were administered 2.6 mg/kg zolpidem, +/- disulfiram (ADH/ALDH pathway inhibitor to compare PK changes induced by sex and gonadal hormones.  PK analyses were conducted in rat plasma and rat brain. Key findings:  Sex differences in PK were evident: females had a higher CMAX (112.4 vs 68.1 ug/L and AUC (537.8 vs 231.8 hr*ug/L than uncastrated males.  Castration induced an earlier TMAX (0.25 vs 1 hr, greater CMAX (109.1 vs 68.1 ug/L, and a corresponding AUC increase (339.7 vs 231.8 hr*ug/L.  Administration of disulfiram caused more drastic CMAX and TMAX changes in male vs female rats that mirrored the effects of castration on first-pass metabolism, suggesting that the observed PK differences may be caused by ADH/ALDH expression. Brain concentrations paralleled plasma concentrations.Conclusions:  These findings indicate that sex differences in zolpidem PK are influenced by variation in the expression of ADH/ALDH due to gonadal androgens.

  15. Characterization and Targeting of the Aldehyde Dehydrogenase Subpopulation in Ovarian Cancer

    Science.gov (United States)

    2015-07-01

    family members (Gli1 and Gli2) appear to play important roles in chemotherapy resistance, and when targeted enhance response to chemotherapy. To...polypeptide (PDGFRA, PDGFRB) and vascular endothelial growth factor receptor one, two, and three (VEGFR1, VEGFR2, VEGF3). These genes were expected to be...VEGF receptors. The fact that all members of these receptor families strengthens the validity of the association. Analysis of the species making up

  16. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  17. Mitochondrial aldehyde dehydrogenase (ALDH2 protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3β and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Zhang Yingmei

    2012-04-01

    Full Text Available Abstract Background Mitochondrial aldehyde dehydrogenase (ALDH2 displays some promise in the protection against cardiovascular diseases although its role in diabetes has not been elucidated. Methods This study was designed to evaluate the impact of ALDH2 on streptozotocin-induced diabetic cardiomyopathy. Friendly virus B(FVB and ALDH2 transgenic mice were treated with streptozotocin (intraperitoneal injection of 200 mg/kg to induce diabetes. Results Echocardiographic evaluation revealed reduced fractional shortening, increased end-systolic and -diastolic diameter, and decreased wall thickness in streptozotocin-treated FVB mice. Streptozotocin led to a reduced respiratory exchange ratio; myocardial apoptosis and mitochondrial damage; cardiomyocyte contractile and intracellular Ca2+ defects, including depressed peak shortening and maximal velocity of shortening and relengthening; prolonged duration of shortening and relengthening; and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of Akt, glycogen synthase kinase-3β and Foxo3a (but not mammalian target of rapamycin, elevated PTEN phosphorylation and downregulated expression of mitochondrial proteins, peroxisome proliferator-activated receptor γ coactivator 1α and UCP-2. Intriguingly, ALDH2 attenuated or ablated streptozotocin-induced echocardiographic, mitochondrial, apoptotic and myocardial contractile and intracellular Ca2+ anomalies as well as changes in the phosphorylation of Akt, glycogen synthase kinase-3β, Foxo3a and phosphatase and tensin homologue on chromosome ten, despite persistent hyperglycemia and a low respiratory exchange ratio. In vitro data revealed that the ALDH2 activator Alda-1 and glycogen synthase kinase-3β inhibition protected against high glucose-induced mitochondrial and mechanical anomalies, the effect of which was cancelled by mitochondrial uncoupling. Conclusions In summary, our data revealed that ALDH2

  18. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer

    Directory of Open Access Journals (Sweden)

    Opdenaker LM

    2014-12-01

    Full Text Available Lynn M Opdenaker,1,2 Kimberly M Arnold,1,3 Ryan T Pohlig,3,4 Jayasree S Padmanabhan,1 Daniel C Flynn,1,3 Jennifer Sims-Mourtada1–3 1Center for Translational Cancer Research, Helen F Graham Cancer Center, Christiana Care Health Services, Inc., Newark, Delaware, USA; 2Department of Biological Sciences, 3Department of Medical Laboratory Sciences, 4Biostatistics Core Facility, University of Delaware, Newark, Delaware, USA Abstract: In many types of tumors, especially breast tumors, aldehyde dehydrogenase (ALDH activity has been used to identify cancer stem-like cells within the tumor. The presence and quantity of these cells are believed to predict the response of tumors to chemotherapy. Therefore, identification and eradication of these cells would be necessary to cure the patient. However, there are 19 different ALDH isoforms that could contribute to the enzyme activity. ALDH1A1 and ALDH1A3 are among the isoforms mostly responsible for the increased ALDH activity observed in these stem-like cells, although the main isoforms vary in different tissues and tumor types. In the study reported here, we attempted to determine if ALDH1A1 or ALDH1A3, specifically, correlate with tumor stage, grade, and hormone-receptor status in breast-cancer patients. While there was no significant correlation between ALDH1A1 and any of the parameters tested, we were able to identify a positive correlation between ALDH1A3 and tumor stage in triple-negative cancers. In addition, ALDH1A3 was negatively correlated with estrogen-receptor status. Our data suggest that ALDH1A3 could be utilized as a marker to identify stem-like cells within triple-negative tumors. Keywords: breast tumor, ALDH, ALDH1A1, ALDH1A3, stem-like cells, triple-negative cancer

  19. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    Directory of Open Access Journals (Sweden)

    Iniesta Pilar

    2011-08-01

    Full Text Available Abstract Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect and through decrease in telomere length (long-term effect. Administration of this telomerase inhibitor (40 mg/kg in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls. Combination therapy consisting of irradiation (10Gy plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.

  20. The aldehyde dehydrogenase 2 (ALDH2) Glu504Lys polymorphism interacts with alcohol drinking in the risk of stomach cancer.

    Science.gov (United States)

    Matsuo, Keitaro; Oze, Isao; Hosono, Satoyo; Ito, Hidemi; Watanabe, Miki; Ishioka, Kuka; Ito, Seiji; Tajika, Masahiro; Yatabe, Yasushi; Niwa, Yasumasa; Yamao, Kenji; Nakamura, Shigeo; Tajima, Kazuo; Tanaka, Hideo

    2013-07-01

    The impact of alcohol on the risk of stomach cancer is controversial. Although aldehyde dehydrogenase 2 (ALDH2) Glu504Lys (rs671) polymorphism has a strong effect on acetaldehyde metabolism, little is known about its impact on stomach cancer risk when combined with alcohol drinking. This case-control study included a total of 697 incident stomach cancer case subjects and 1372 non-cancer control subjects who visited Aichi Cancer Center between 2001 and 2005. We estimated odds ratios (OR) and 95% confidence intervals (CI) for ALDH2 genotypes and alcohol consumption using logistic regression models after adjustment for potential confounders, including Helicobacter pylori infection. The ALDH2 504Lys allele was associated with the risk of stomach cancer, with adjusted ORs of 1.40 (95% CI, 1.11-1.76) for Glu/Lys and 1.73 (1.12-2.68) for Lys/Lys compared with Glu/Glu. Heavy drinking was associated with risk (OR 1.72, 1.17-2.52) after adjustment for ALDH2 genotype and other confounders. Moreover, ORs for heavy drinking were 1.28 (0.77-2.12) for those with ALDH2 Glu/Glu and 3.93 (1.99-5.79) for those with the ALDH2 Lys allele relative to non-drinkers with the Glu/Glu genotype (P for interaction = 0.0054). In conclusion, ALDH2 and alcohol drinking showed interaction for risk factors of stomach cancer, indicating that acetaldehyde plays a role in stomach carcinogenesis.

  1. Formation of Nitric Oxide by Aldehyde Dehydrogenase-2 Is Necessary and Sufficient for Vascular Bioactivation of Nitroglycerin*

    Science.gov (United States)

    Opelt, Marissa; Eroglu, Emrah; Waldeck-Weiermair, Markus; Russwurm, Michael; Koesling, Doris; Malli, Roland; Graier, Wolfgang F.; Fassett, John T.; Schrammel, Astrid; Mayer, Bernd

    2016-01-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN), resulting in activation of soluble guanylate cyclase (sGC) and cGMP-mediated vasodilation. We have previously shown that a minor reaction of ALDH2-catalyzed GTN bioconversion, accounting for about 5% of the main clearance-based turnover yielding inorganic nitrite, results in direct NO formation and concluded that this minor pathway could provide the link between vascular GTN metabolism and activation of sGC. However, lack of detectable NO at therapeutically relevant GTN concentrations (≤1 μm) in vascular tissue called into question the biological significance of NO formation by purified ALDH2. We addressed this issue and used a novel, highly sensitive genetically encoded fluorescent NO probe (geNOp) to visualize intracellular NO formation at low GTN concentrations (≤1 μm) in cultured vascular smooth muscle cells (VSMC) expressing an ALDH2 mutant that reduces GTN to NO but lacks clearance-based GTN denitration activity. NO formation was compared with GTN-induced activation of sGC. The addition of 1 μm GTN to VSMC expressing either wild-type or C301S/C303S ALDH2 resulted in pronounced intracellular NO elevation, with maximal concentrations of 7 and 17 nm, respectively. Formation of GTN-derived NO correlated well with activation of purified sGC in VSMC lysates and cGMP accumulation in intact porcine aortic endothelial cells infected with wild-type or mutant ALDH2. Formation of NO and cGMP accumulation were inhibited by ALDH inhibitors chloral hydrate and daidzin. The present study demonstrates that ALDH2-catalyzed NO formation is necessary and sufficient for GTN bioactivation in VSMC. PMID:27679490

  2. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  3. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Science.gov (United States)

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  4. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Zorzano, A. (Universidad de Barcelona (Spain)); Herrera, E. (Universidad de Madrid (Spain))

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  5. Aldehyde dehydrogenase-2 protects against myocardial infarction-related cardiac fibrosis through modulation of the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Zhao XJ

    2015-09-01

    Full Text Available Xinjun Zhao,1,2,* Yue Hua,1,2,* Hongmei Chen,1,2,* Haiyu Yang,3,* Tao Zhang,1,2,* Guiqiong Huang,4,* Huijie Fan,1,2 Zhangbin Tan,1,2 Xiaofang Huang,1,2 Bin Liu,5 Yingchun Zhou1,21The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China; 2Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China; 3Jiangmen Wuyi Traditional Chinese Medicine Hospital, Guangdong, Jiangmen, People’s Republic of China; 4Huizhou Hospital of Traditional Chinese Medicine, Huizhou, People’s Republic of China; 5The Second Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, People’s Republic of China*These authors contributed equally to this workBackground: Aldehyde dehydrogenase-2 (ALDH2 has a protective effect on ischemic heart disease. Here, we examined the protective effects of ALDH2 on cardiac fibrosis through modulation of the Wnt/ß-catenin signaling pathway in a rat model of myocardial infarction (MI.Methods: Wistar rats were divided into the sham (control, MI (model, and ALDH2 activator (Alda-1 groups. After 10 days of treatment, the left ventricular (LV remodeling parameters of each animal were evaluated by echocardiography. Myocardial fibrosis was evaluated by Masson’s trichrome staining and Sirius Red staining. Expression levels of collagen types I and III and β-smooth muscle actin (α-SMA were examined. Finally, the expression and activity of ALDH2 and the levels of several Wnt-related proteins and genes, such as phospho-glycogen synthase kinase (GSK-3β, GSK-3β, β-catenin, Wnt-1, WNT1-inducible signaling-pathway protein 1, and tumor necrosis factor (TNF-α, were also analyzed.Results: After MI, the heart weight/body weight ratio, LV dimension at end diastole, and LV dimension at end systole were decreased, while the LV ejection

  6. Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2)

    Science.gov (United States)

    Stachowicz, Aneta; Olszanecki, Rafał; Suski, Maciej; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Adamek, Dariusz; Korbut, Ryszard

    2017-01-01

    The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer’s disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE−/−) mice upon treatment with Alda-1—a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE−/− mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE−/− mice. Importantly, prolonged treatment of apoE−/− mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research. PMID:28218653

  7. Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c.

    Science.gov (United States)

    Gómez-Manzo, S; Chavez-Pacheco, J L; Contreras-Zentella, M; Sosa-Torres, M E; Arreguín-Espinosa, R; Pérez de la Mora, M; Membrillo-Hernández, J; Escamilla, J E

    2010-11-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone.

  8. Molecular and Catalytic Properties of the Aldehyde Dehydrogenase of Gluconacetobacter diazotrophicus, a Quinoheme Protein Containing Pyrroloquinoline Quinone, Cytochrome b, and Cytochrome c▿

    Science.gov (United States)

    Gómez-Manzo, S.; Chavez-Pacheco, J. L.; Contreras-Zentella, M.; Sosa-Torres, M. E.; Arreguín-Espinosa, R.; Pérez de la Mora, M.; Membrillo-Hernández, J.; Escamilla, J. E.

    2010-01-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone. PMID:20802042

  9. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities.

    Science.gov (United States)

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-06-15

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  10. Conversion of Suspected Food Carcinogen 5-Hydroxymethylfurfural by Sulfotransferases and Aldehyde Dehydrogenases in Postmitochondrial Tissue Preparations of Humans, Mice, and Rats.

    Science.gov (United States)

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-01-01

    The food contaminant 5-hydroxymethylfurfural (HMF) is formed by heat- and acid-catalyzed reactions from carbohydrates. More than 80% of HMF is metabolized by oxidation of the aldehyde group in mice and rats. Sulfo conjugation yields mutagenic 5-sulfoxymethylfurfural, the probable cause for the neoplastic effects observed in HMF-treated rodents. Considerable metabolic differences between species hinder assessing the tumorigenic risk associated with human dietary HMF uptake. Here, we assayed HMF turnover catalyzed by sulfotransferases or by aldehyde dehydrogenases (ALDHs) in postmitochondrial preparations from liver, kidney, colon, and lung of humans, mice, and rats. The tissues-specific clearance capacities of HMF sulfo conjugation (CL(SC)) and ALDH-catalyzed oxidation (CL(OX)) were concentrated to the liver. The hepatic clearance CL(SC) in mice (males: 487 µl/min/kg bw, females: 2520 µl/min/kg bw) and rats (males: 430 µl/min/kg bw, females: 198 µl/min/kg bw) were considerably higher than those in humans (males: 21.2 µl/min/kg bw, females: 32.2 µl/min/kg bw). The ALDH-related clearance rates CLOX in mice (males: 3400 ml/min/kg bw, females: 1410 ml/min/kg bw) were higher than those of humans (males: 436 ml/min/kg bw, females: 646 ml/min/kg bw) and rats (males: 627 ml/min/kg bw, females: 679 ml/min/kg bw). The ratio of CL(OX) to CL(SC) was lowest in female mice. This finding indicated that HMF sulfo conjugation was most substantial in the liver of female mice, a target tissue for HMF-induced neoplastic effects, and that humans may be less sensitive regarding HMF sulfo conjugation compared with the rodent models.

  11. The impact of mitochondrial aldehyde dehydrogenase (ALDH2) activation by Alda-1 on the behavioral and biochemical disturbances in animal model of depression.

    Science.gov (United States)

    Stachowicz, Aneta; Głombik, Katarzyna; Olszanecki, Rafał; Basta-Kaim, Agnieszka; Suski, Maciej; Lasoń, Władysław; Korbut, Ryszard

    2016-01-01

    The etiology of depression remains still unclear. Recently, it has been proposed, that mitochondrial dysfunction may be associated with development of mood disorders, such as depression, bipolar disorder and anxiety disorders. Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda-1, a small-molecule activator of ALDH2, on depressive- and anxiety-like behaviors in an animal model of depression - the prenatally stressed rats - using behavioral, molecular and proteomic methods. Prolonged Alda-1 administration significantly increased the climbing time, tended to reduce the immobility time and increased the swimming time of the prenatally stressed rats in the forced swim test. Moreover, treatment of prenatally stressed rats with Alda-1 significantly increased number of entries into the open arms of the maze and the time spent therein, as assessed by elevated plus-maze test. Such actions were associated with reduction of plasma 4-HNE-protein content, decrease of TNF-α mRNA and increase of PGC-1α (regulator of mitochondrial biogenesis) mRNA level in the frontal cortex and hippocampus of the prenatally stressed rats as well as with normalization of peripheral immune parameters and significant changes in expression of 6 and 4 proteins related to mitochondrial functions in the frontal cortex and hippocampus, respectively. Collectively, ALDH2 activation by Alda-1 led to a significant attenuation of depressive- and anxiety-like behaviors in the prenatally stressed rats. The pattern of changes suggested mitoprotective effect of Alda-1, however the exact functional consequences of the revealed alterations require further investigation.

  12. Statistical Measure of a Gene Evolution The Case of Glyceraldehyde-3-Phosphate Dehydrogenase Gene

    CERN Document Server

    Chattopadhyay, S; Chakrabarti, J; Chattopadhyay, Sujay; Sahoo, Satyabrata; Chakrabarti, Jayprokas

    2000-01-01

    The enzyme Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) catalyses the decomposition of glucose. The gene that produces the GAPDH is therefore present in a wide class of organisms. We show that for this gene the average value of the fluctuations in nucleotide distribution in the codons, normalized to strand bias, provides a reasonable measure of how the gene has evolved in time.

  13. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  14. Expression of aldehyde dehydrogenase family 1 member A1 and high mobility group box 1 in oropharyngeal squamous cell carcinoma in association with survival time.

    Science.gov (United States)

    Qian, Xu; Coordes, Annekatrin; Kaufmann, Andreas M; Albers, Andreas E

    2016-11-01

    Despite the development of novel multimodal treatment combinations in advanced oropharyngeal squamous cell carcinoma (OSCC), outcomes remain poor. The identification of specifically validated biomarkers is required to understand the underlying molecular mechanisms, to evaluate treatment efficiency and to develop novel therapeutic targets. The present study, therefore, examined the presence of aldehyde dehydrogenase family 1 member A1 (ALDH1A1) and high mobility group box 1 (HMGB1) expression in primary OSCC and analyzed the impact on survival time. In 59 patients with OSCC, the expression of ALDH1A1, p16 and HMGB1, and their clinicopathological data were analyzed. HMGB1 positivity was significantly increased in patients with T1-2 stage disease compared with T3-4 stage disease (P<0.001), whereas ALDH1A1 positivity was not. ALDH1A1(+) tumors showed significantly lower differentiation than ALDH1A1(-) tumors (P=0.018). Multivariate analysis showed that ALDH1A1 positivity (P=0.041) and nodal status (N2-3) (P=0.036) predicted a poor prognosis. In this patient cohort, ALDH1A1 and nodal status were identified as independent predictors of a shorter overall survival time. The study results, therefore, provide evidence of the prognostic value of ALDH1A1 as a marker for cancer stem cells and nodal status in OSCC patients.

  15. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo

    Science.gov (United States)

    Chen, Che-Hong; Cruz, Leslie A.; Mochly-Rosen, Daria

    2015-01-01

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo. PMID:25713355

  16. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN

    Science.gov (United States)

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272

  17. Aldehyded Dextran and ε-Poly(L-lysine Hydrogel as Nonviral Gene Carrier

    Directory of Open Access Journals (Sweden)

    Yumiko Togo

    2013-01-01

    Full Text Available Background. The expression term of the gene transfected in cells needs to belong enough inorder to make a gene therapy clinically effective. The controlled release of the transfected gene can be utilized. The new biodegradable hydrogel material created by 20 w/w% aldehyded dextran and 10 w/w% ε-poly(L-lysine (ald-dex/PLL was developed. We examined whether it could be as a nonviral carrier of the gene transfer. Methods. A plasmid (Lac-Z was mixed with ald-dex/PLL. An in vitro study was performed to assess the expression of Lac-Z with X-gal stain after gene transfer into the cultured 293 cells and bone marrow cells. As a control group, PLL was used as a cationic polymer. Results. We confirmed that the transfection efficiency of the ald-dex/PLL had a higher transfection efficiency than PLL in 293 cells (plasmid of 2 μg: ald-dex/PLL 1.1%, PLL 0.23%, plasmid of 16 μg: ald-dex/PLL 1.23%, PLL 0.48%. In bone marrow cells, we confirmed the expression of Lac-Z by changing the quantity of aldehyded dextran. In the groups using ald-dextran of the quantity of 1/4 and 1/12 of PLL, their transfection efficiency was 0.43% and 0.41%, respectively. Conclusions. This study suggested a potential of using ald-dex/PLL as a non-carrier for gene transfer.

  18. Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain.

    Science.gov (United States)

    Delneri, D; Gardner, D C; Bruschi, C V; Oliver, S G

    1999-11-01

    By in silicio analysis, we have discovered that there are seven open reading frames (ORFs) in Saccharomyces cerevisiae whose protein products show a high degree of amino acid sequence similarity to the aryl alcohol dehydrogenase (AAD) of the lignin-degrading fungus Phanerochaete chrysosporium. Yeast cultures grown to stationary phase display a significant aryl alcohol dehydrogenase activity by degrading aromatic aldehydes to the corresponding alcohols. To study the biochemical and the biological role of each of the AAD genes, a series of mutant strains carrying deletion of one or more of the AAD-coding sequences was constructed by PCR-mediated gene replacement, using the readily selectable marker kanMX. The correct targeting of the PCR-generated disruption cassette into the genomic locus was verified by analytical PCR and by pulse-field gel electrophoresis (PFGE) followed by Southern blot analysis. Double, triple and quadruple mutant strains were obtained by classical genetic methods, while the construction of the quintuple, sextuple and septuple mutants was achieved by using the marker URA3 from Kluyveromyces lactis, HIS3 from Schizosaccharomyces pombe and TRP1 from S. cerevisiae. None of the knock-out strains revealed any mutant phenotype when tested for the degradation of aromatic aldehydes using both spectrophotometry and high performance liquid chromatography (HPLC). Specific tests for changes in the ergosterol and phospholipids profiles did not reveal any mutant phenotype and mating and sporulation efficiencies were not affected in the septuple deletant. Compared to the wild-type strain, the septuple deletant showed an increased resistance to the anisaldehyde, but there is a possibility that the nutritional markers used for gene replacement are causing this effect.

  19. Physiological and Growth Responses of Tomato Progenies Harboring the Betaine Alhyde Dehydrogenase Gene to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Shu-Feng Zhou; Xian-Yang Chen; Xing-Ning Xue; Xin-Guo Zhang; Yin-Xin Li

    2007-01-01

    The responses of five transgenlc tomato (Lycoperslcon esculentum Mill) lines containing the betaine aldehyde dehydrogenase (BADH) gene to salt stress were evaluated. Proline, betaine (N, N, N-trimethylglycine, hereafter betaine), chlorophyll and ion contents, BADH activity, electrolyte leakage (EL), and some growth parameters of the plants under 1.0% and 1.5% NaCl treatments were examined. The transgenic tomatoes had enhanced BADH activity and betaine content, compared to the wild type under stress conditions. Salt stress reduced chlorophyll contents to a higher extent in the wild type than in the transgenic plants. The wild type exhibited significantly higher proline content than the transgenic plants at 0.9% and 1.3% NaCl. Cell membrane of the wild type was severely damaged as determined by higher EL under salinity stress. K+ and Ca2+ contents of all tested lines decreased under salt stress,but the transgenic plants showed a significantly higher accumulation of K+ and Ca2+ than the wild type. In contrast,the wild type had significantly higher Cl- and Na+ contents than the transgenic plants under salt stress. Although yield reduction among various lines varied, the wild type had the highest yield reduction. Fruit quality of the transgenic plants was better in comparison with the wild type as shown by a low ratio of blossom end rot fruits.The results show that the transgenic plants have improved salt tolerance over the wild type.

  20. 甜菜碱合成酶CMO、BADH基因无抗生素标记植物表达载体的构建%Construction of Non-antibiotic Maker Plant Expression Vector on Choline Monooxygenase and Betaine Aldehyde Dehydrogenase Gene

    Institute of Scientific and Technical Information of China (English)

    邓川; 高翎; 张君; 宋冰; 王丕武

    2011-01-01

    利用基因工程技术,对植物表达载体进行改造,去除NptⅡ、Hyg等抗生素标记,获得安全载体骨架,分别构建了无抗生素选择标记的CMO、BADH以及双价基因的植物表达载体pROK-CMO、pCAMBIA-1301-BADH 1、pCAMBIA-1301-CMO+BADH.通过冻融法将其转入根癌农杆菌LBA 4404中得到工程菌株,为下一步安全转化奠定基础.%By the genetic engineering technology, plant expression vectors were reconstructed to form a safe carrier skeleton, which were knocked out the antibiotic markers genes, such as NptII and Hyg. The Non-antibiotic maker Plant Expression Vectors with CMO or BADH gene were constructed respectively. Together with dual price of the plant expression vectors such as pROK-CMO, pCAMBIA-1301-BADH 1, pCAMBIA-1301-CMO + BADH were constructed later. The freeze-thaw method was used to transfer these vectors into the agrobaeterium strain LBA 4404 in order to acquire the engineering bacteria and laid the foundation for the security transformation of the next step.

  1. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2016-01-01

    Full Text Available The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling.

  2. Immobilisation and characterisation of biocatalytic co-factor recycling enzymes, glucose dehydrogenase and NADH oxidase, on aldehyde functional ReSyn™ polymer microspheres.

    Science.gov (United States)

    Twala, Busisiwe V; Sewell, B Trevor; Jordaan, Justin

    2012-05-10

    The use of enzymes in industrial applications is limited by their instability, cost and difficulty in their recovery and re-use. Immobilisation is a technique which has been shown to alleviate these limitations in biocatalysis. Here we describe the immobilisation of two biocatalytically relevant co-factor recycling enzymes, glucose dehydrogenase (GDH) and NADH oxidase (NOD) on aldehyde functional ReSyn™ polymer microspheres with varying functional group densities. The successful immobilisation of the enzymes on this new high capacity microsphere technology resulted in the maintenance of activity of ∼40% for GDH and a maximum of 15.4% for NOD. The microsphere variant with highest functional group density of ∼3500 μmol g⁻¹ displayed the highest specific activity for the immobilisation of both enzymes at 33.22 U mg⁻¹ and 6.75 U mg⁻¹ for GDH and NOD with respective loading capacities of 51% (0.51 mg mg⁻¹) and 129% (1.29 mg mg⁻¹). The immobilised GDH further displayed improved activity in the acidic pH range. Both enzymes displayed improved pH and thermal stability with the most pronounced thermal stability for GDH displayed on ReSyn™ A during temperature incubation at 65 °C with a 13.59 fold increase, and NOD with a 2.25-fold improvement at 45 °C on the same microsphere variant. An important finding is the suitability of the microspheres for stabilisation of the multimeric protein GDH.

  3. Effects of the aldehyde dehydrogenase inhibitor disulfiram on the plasma pharmacokinetics, metabolism, and toxicity of benzaldehyde dimethane sulfonate (NSC281612, DMS612, BEN) in mice

    Science.gov (United States)

    Parise, Robert A.; Beumer, Jan H.; Clausen, Dana M.; Rigatti, Lora H.; Ziegler, Judy A.; Gasparetto, Maura; Smith, Clayton A; Eiseman, Julie L.

    2013-01-01

    Purpose Benzaldehyde dimethane sulfonate (DMS612, NSC281612, BEN) is an alkylator with activity against renal cell carcinoma, currently in phase I trials. In blood, BEN is rapidly metabolized into its highly reactive carboxylic acid (BA), presumably the predominant alkylating species. We hypothesized that BEN is metabolized to BA by aldehyde dehydrogenase (ALDH) and aimed to increase BEN exposure in blood and tissues by inhibiting ALDH with disulfiram thereby shifting BA production from blood to tissues. Methods Female CD2F1 mice were dosed with 20 mg/kg BEN iv alone or 24 h after 300 mg/kg disulfiram ip. BEN, BA and metabolites were quantitated in plasma and urine, and toxicities were assessed. Results BEN had a plasma t½ <5 min and produced at least 12 products. The metabolite half-lives were <136 min. Disulfiram increased BEN plasma exposure 368-fold, (AUC0-inf from 0.11 to 40.5 mg/L•min), while plasma levels of BA remained similar. Urinary BEN excretion increased (1.0% to 1.5% of dose) while BA excretion was unchanged. Hematocrit, white blood cells counts and %lymphocytes decreased after BEN administration. Co-administration of disulfiram appeared to enhance these effects. Profound liver pathology was observed in mice treated with disulfiram and BEN. Conclusions BEN plasma concentrations increased after administration of disulfiram, suggesting that ALDH mediates the rapid metabolism of BEN in vivo, which may explain the increased toxicity seen with BEN after administration of disulfiram. Our results suggest that the co-administration of BEN with drugs that inhibit ALDH or to patients that are ALDH deficient may cause liver damage. PMID:24061865

  4. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes.

    Science.gov (United States)

    Vardi, Assaf; Bidle, Kay D; Kwityn, Clifford; Hirsh, Donald J; Thompson, Stephanie M; Callow, James A; Falkowski, Paul; Bowler, Chris

    2008-06-24

    Diatoms are unicellular phytoplankton accounting for approximately 40% of global marine primary productivity [1], yet the molecular mechanisms underlying their ecological success are largely unexplored. We use a functional-genomics approach in the marine diatom Phaeodactylum tricornutum to characterize a novel protein belonging to the widely conserved YqeH subfamily [2] of GTP-binding proteins thought to play a role in ribosome biogenesis [3], sporulation [4], and nitric oxide (NO) generation [5]. Transgenic diatoms overexpressing this gene, designated PtNOA, displayed higher NO production, reduced growth, impaired photosynthetic efficiency, and a reduced ability to adhere to surfaces. A fused YFP-PtNOA protein was plastid localized, distinguishing it from a mitochondria-localized plant ortholog. PtNOA was upregulated in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), a molecule previously shown to regulate intercellular signaling, stress surveillance [6], and defense against grazers [7]. Overexpressing cell lines were hypersensitive to sublethal levels of this aldehyde, manifested by altered expression of superoxide dismutase and metacaspases, key components of stress and death pathways [8, 9]. NOA-like sequences were found in diverse oceanic regions, suggesting that a novel NO-based system operates in diatoms and may be widespread in phytoplankton, providing a biological context for NO in the upper ocean [10].

  5. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases

    Directory of Open Access Journals (Sweden)

    Stephen eTechtmann

    2012-04-01

    Full Text Available Carbon monoxide (CO is commonly known as a toxic gas, yet it is used by both aerobic and anaerobic bacteria and many archaea. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases (anaerobic CODHs, or [Ni,Fe]-CODHs in currently available genomic sequence databases. More than 6% (185 genomes out of 2887 bacterial and archaeal genome sequences in the IMG database possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. The phylogenetic study of this extended protein family revealed nine distinct clades of [Ni,Fe]-CODHs. These clades consisted of [Ni,Fe]-CODHs that, while apparently monophyletic within the clades, were encoded by microorganisms of disparate phylogeny, based on 16S rRNA sequences, and widely ranging physiology. Following this discovery, it was therefore of interest to examine the extent and possible routes of horizontal gene transfer (HGT affecting [Ni,Fe]-CODH genes and gene clusters that include [Ni,Fe]-CODHs.The genome sequence of the extreme thermophile Thermosinus carboxydivorans was used as a case study for HGT. The [Ni,Fe]-CODH operon of T. carboxydivorans differs from its whole genome in its G+C content by 8.2 mol%. Here, we apply statistical methods to establish acquisition by T. carboxydivorans of the gene cluster including [Ni,Fe]-CODH via HGT. Analysis of tetranucleotide frequency and codon usage with application of the Kullback-Leibler divergence metric showed that the [Ni,Fe]-CODH-1 operon of T. carboxidyvorans is quite dissimilar to the whole genome. Using the same metrics, the T. carboxydivorans [Ni,Fe]-CODH-1 operon is highly similar to the genome of the phylogenetically distant anaerobic carboxydotroph Carboxydothermus hydrogenoformans. These results allow to assume recent HTG of the gene cluster from a relative of C. hydrogenoformans to T. carboxydivorans or a more ancient transfer from a C. hydrogenoformans ancestor to a T. carboxydivorans

  6. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy.

    Science.gov (United States)

    Guo, Yuli; Yu, Wenjun; Sun, Dongdong; Wang, Jiaxing; Li, Congye; Zhang, Rongqing; Babcock, Sara A; Li, Yan; Liu, Min; Ma, Meijuan; Shen, Mingzhi; Zeng, Chao; Li, Na; He, Wei; Zou, Qian; Zhang, Yingmei; Wang, Haichang

    2015-02-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is known to offer myocardial protection against stress conditions including ischemia-reperfusion injury, alcoholism and diabetes mellitus although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on diabetes-induced myocardial injury with a focus on autophagy. Wild-type FVB and ALDH2 transgenic mice were challenged with streptozotozin (STZ, 200mg/kg, i.p.) for 3months to induce experimental diabetic cardiomyopathy. Diabetes triggered cardiac remodeling and contractile dysfunction as evidenced by cardiac hypertrophy, decreased cell shortening and prolonged relengthening duration, the effects of which were mitigated by ALDH2. Lectin staining displayed that diabetes promoted cardiac hypertrophy, the effect of which was alleviated by ALDH2. Western blot analysis revealed dampened autophagy protein markers including LC3B ratio and Atg7 along with upregulated p62 following experimental diabetes, the effect of which was reconciled by ALDH2. Phosphorylation level of AMPK was decreased and its downstream signaling molecule FOXO3a was upregulated in both diabetic cardiac tissue and in H9C2 cells with high glucose exposure. All these effect were partly abolished by ALDH2 overexpression and ALDH2 agonist Alda1. High glucose challenge dampened autophagy in H9C2 cells as evidenced by enhanced p62 levels and decreased levels of Atg7 and LC3B, the effect of which was alleviated by the ALDH2 activator Alda-1. High glucose-induced cell death and apoptosis were reversed by Alda-1. The autophagy inhibitor 3-MA and the AMPK inhibitor compound C mitigated Alda-1-offered beneficial effect whereas the autophagy inducer rapamycin mimicked or exacerbated high glucose-induced cell injury. Moreover, compound C nullified Alda-1-induced protection against STZ-induced changes in autophagy and function. Our results suggested that ALDH2 protects against diabetes-induced myocardial dysfunction possibly through an

  7. Relationships between resistance to cross-linking agents and glutathione metabolism, aldehyde dehydrogenase isozymes and adenovirus replication in human tumour cell lines.

    Science.gov (United States)

    Parsons, P G; Lean, J; Kable, E P; Favier, D; Khoo, S K; Hurst, T; Holmes, R S; Bellet, A J

    1990-12-15

    In a panel of 10 human tumour cell lines with no prior exposure to drugs in vitro, resistance to cisplatin correlated with resistance to the nitrogen mustard derivatives Asta Z-7557 (mafosfamide, an activated form of cyclophosphamide), melphalan and chlorambucil. Simultaneous treatment with DL-buthionine-S,R-sulfoximine did not enhance the toxicity of cisplatin or Asta Z-7557, and no correlation was found between drug resistance and cellular levels of metallothioneins (as judged by sensitivity to cadmium chloride), glutathione (GSH), GSH reductase, GSH transferase, or gamma-glutamyltranspeptidase. The two cell lines most resistant to Asta Z-7557 expressed aldehyde dehydrogenase cytosolic isozyme 1, found also in normal ovary, but not isozyme 3. Treatment of resistant cells with cisplatin or Asta Z-7557 inhibited cellular DNA synthesis and replication of adenovirus 5 to a lesser extent than in sensitive cells. The virus could be directly inactivated by both drugs prior to infection, subsequent replication being inhibited to the same extent in sensitive and resistant cells. In contrast to Asta Z-7557 and other DNA damaging agents, cisplatin was much more toxic to adenovirus (D37 0.022-0.048 microM) than to cells (D37 0.25-2.5 microM). The adenovirus 5 mutant Ad5ts125 having a G----A substitution was even more sensitive to cisplatin (D37 7-8 nM) than wild type virus and another mutant. Cisplatin was detoxified less by sonicated resistant resistant cells than sensitive cells, as judged by inactivation of Ad5ts125 added to the reaction mixture. It can be inferred that (i) the major differences in cellular resistance to cisplatin and Asta Z-7557 in the present material did not involve enhanced DNA repair or protection by metallothioneins or GSH, but were associated with the ability to continue cellular and viral DNA synthesis during treatment, (ii) resistance was not associated with less template damage, and (iii) the adenovirus genome may be a suitable probe for

  8. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    Science.gov (United States)

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  9. Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies

    Directory of Open Access Journals (Sweden)

    Pascariello Caterina

    2008-05-01

    Full Text Available Abstract Background Aldehyde dehydrogenase (ALDH is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007. The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients. Results In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively. As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a. Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA. Conclusion Our study, comparing surface antigen expression of

  10. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Li

    Full Text Available Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017 and TP53 mutation (p < 0.001, but not 1p/19q loss (p = 0.834, occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041 and frontal lobe location (p = 0.010 were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response

  11. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Science.gov (United States)

    Li, Ming-Yang; Wang, Yin-Yan; Cai, Jin-Quan; Zhang, Chuan-Bao; Wang, Kuan-Yu; Cheng, Wen; Liu, Yan-Wei; Zhang, Wei; Jiang, Tao

    2015-01-01

    Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017) and TP53 mutation (p isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041) and frontal lobe location (p = 0.010) were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response. Isocitrate dehydrogenase 1 mutation was highly associated with O 6-methylguanine DNA

  12. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eun Ju [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Choi, Inho, E-mail: inhochoi@ynu.ac.kr [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  13. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  14. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa).

    Science.gov (United States)

    Tang, Wei; Sun, Jiaqi; Liu, Jia; Liu, Fangfang; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2014-11-01

    As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.

  15. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Science.gov (United States)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  16. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.

    Science.gov (United States)

    González-Segura, Lilian; Rudiño-Piñera, Enrique; Muñoz-Clares, Rosario A; Horjales, Eduardo

    2009-01-16

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit

  17. The roles of aldehyde dehydrogenase in the eyes against ultraviolet radiation injury%眼内醛脱氢酶在防止紫外线辐射损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    葛佳佳; 苏胜; 刘平

    2014-01-01

    人眼持续暴露于来自阳光紫外线辐射(ultraviolet radiation,UVR)中会产生大量的活性氧族(reactive oxygen species,ROS),诱导氧化应激反应,产生毒性醛损伤眼组织.醛脱氢酶(aldehydedehydrogenase,ALDH)超家族是一类多功能蛋白,在内、外源性醛的代谢及抗氧化应激等过程中起着重要作用.ALDH在眼部防止UVR损伤的机制尚不明确.ALDH在眼部主要分布于角膜和晶状体中,其中ALDH1A1和ALDH3A1表达丰富,可能与抗UVR损伤有关.新近的研究提示,针对ALDH的药物可能对某些眼病有益.%Continual exposure to solar ultraviolet radiation (UVR),the human eye will produce a large number of reactive oxygen species (ROS),which can induce oxidative stress reaction,produce large amounts of toxic aldehydes,cause serious damage to the eye tissues.The aldehyde dehydrogenase (ALDH) superfamily is a kind of multifunctional proteins,which plays an important role in the metabolism of endogenous and exogenous aldehydes.The mechanism of ALDH in the defense against UVR damage is unclear.ALDH in eye mainly distributed in the cornea and lens,among which ALDH1A1 and ALDH3A1 present abundantly,maybe have unique roles in the defense against UVR.Recent studies indicated that drugs targeted ALDH may be beneficial to some eye diseases.

  18. Bagging Treatment Influences Production of C6 Aldehydes and Biosynthesis-Related Gene Expression in Peach Fruit Skin

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Shen

    2014-08-01

    Full Text Available Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were used to study the effects of bagging treatment on the formation of C6 aldehydes in peach fruit (Prunus persica L. Batsch, cv. Yulu over two succeeding seasons. Higher concentrations of n-hexanal and (E-2-hexenal, which are characteristic aroma volatiles of peach fruit, were induced by bagging treatment. After bagging treatment, peach fruit had significantly higher LOX and HPL enzyme activities, accompanying increased contents of C6 aldehydes. The gene expression data obtained through real-time PCR showed that no consistent significant differences in transcript levels of LOX genes were observed over the two seasons, but significantly up-regulated expression was found for PpHPL1 after bagging treatment In addition, bagging-treated fruit produced more (E-2-hexenal and had higher expression levels of PpHPL1 during postharvest ripening at room temperature. The regulatory role of the LOX-HPL pathway on the biosynthesis of n-hexanal and (E-2-hexenal in response to bagging treatment during peach fruit development is discussed in the text.

  19. Identification of yak lactate dehydrogenase B gene variants by gene cloning

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Native polyacrylamide gel electrophoresis showed that two types of lactate dehydrogenase (LDH) existed in yaks. Based on the electrophoresis characteristics of LDH isoenzymes, yak LDH variants were speculated to be the gene mutation on H subunit encoded by B gene. According to the mobility in electrophoresis, the fast-band LDH type was named LDH-Hf and the slow-band LDH type LDH-Hs. In order to reveal the gene alteration in yak LDH variants, total RNA was extracted from heart tissues of yaks with different LDH variants, and cDNAs of the two variants were reverse transcripted. Two variants of B genes were cloned by RT-PCR. Sequence analysis revealed that four nucleotides differed between LDH-Bf and LDH-Bs, which resulted in two amino acids alteration. By Deepview software analysis of the conformation of yak LDH1 variants and H subunit, these four nucleotides altered two amino acids that generated new hydrogen bonds to change the hydrogen bonds network, and further caused subtle conformational changes between the two LDH variants.

  20. Identification of yak lactate dehydrogenase B gene variants by gene cloning

    Institute of Scientific and Technical Information of China (English)

    ZHENG YuCai; ZHAO XingBo; ZHOU Jing; PIAO Ying; JIN SuYu; HE QingHua; HONG Jian; LINing; WU ChangXin

    2008-01-01

    Native polyacrylamide gel electrophoresis showed that two types of lactate dehydrogenase (LDH) existed in yaks. Based on the electrophoresis characteristics of LDH isoenzymes, yak LDH variants were speculated to be the gene mutation on H subunit encoded by B gene. According to the mobility in electrophoresis, the fast-band LDH type was named LDH-Hf and the slow-band LDH type LDH-Hs. In order to reveal the gene alteration In yak LDH variants, total RNA was extracted from heart tissues of yaks with different LDH variants, and cDNAs of the two variants were reverse transcripted. Two variants of B genes were cloned by RT-PCR. Sequence analysis revealed that four nucleotides differed between LDH-Bf and LDH-Bs, which resulted in two amino acids alteration. By Deepview software analysis of the conformation of yak LDH1 variants and H subunit, these four nucleotides altered two amino acids that generated new hydrogen bonds to change the hydrogen bonds network, and further caused subtle conformstionsl changes between the two LDH variants.

  1. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  2. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren

    2008-01-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may...... be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking...... and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men...

  3. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes.

    Science.gov (United States)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren; Tybjaerg-Hansen, Anne; Grønbaek, Morten

    2008-06-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men with the ADH1B.1/1 genotype compared to men with the ADH1B.1/2 genotype. Furthermore, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1/1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1/1 genotype was 67 and 62% among the white population compared with 9 and 24% among the East Asian population.

  4. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis.

    Science.gov (United States)

    Yao, Yu-Xin; Li, Ming; Zhai, Heng; You, Chun-Xiang; Hao, Yu-Jin

    2011-03-15

    Cytosolic NAD-dependent malate dehydrogenase (cyMDH) is an enzyme crucial for malate synthesis in the cytosol. The apple MdcyMDH gene (GenBank Accession No. DQ221207) encoding the cyMDH enzyme in apple was cloned and functionally characterized. The protein was subcellularly localized to the cytoplasm and plasma membrane. Based on kinetic parameters, it mainly catalyzes the reaction from oxalacetic acid (OAA) to malate in vitro. The expression level of MdcyMDH was positively correlated with malate dehydrogenase (MDH) activity throughout fruit development, but not with malate content, especially in the ripening apple fruit. MdcyMDH overexpression contributed to malate accumulation in the apple callus and tomato. Taken together, our results support the involvement of MdcyMDH directly in malate synthesis and indirectly in malate accumulation through the regulation of genes/enzymes associated with malate degradation and transportation, gluconeogenesis and the tricarboxylic acid cycle.

  5. The aldehyde dehydrogenase, AldA, is essential for L-1,2-propanediol utilization in laboratory-evolved Escherichia coli

    DEFF Research Database (Denmark)

    Aziz, Ramy K.; Monk, Jonathan M.; Andrews, Kathleen A.;

    2017-01-01

    is highly conserved among members of the family Enterobacteriacea. To test this hypothesis, we first performed computational model simulation, which confirmed the essentiality of the aldA gene for 1,2-PDO utilization by the evolved PDO-degrading E. coli. Next, we deleted the aldA gene from the evolved...

  6. Disruption of the 11-cis-Retinol Dehydrogenase Gene Leads to Accumulation of cis-Retinols and cis-Retinyl Esters

    OpenAIRE

    Driessen, Carola A. G. G.; Winkens, Huub J.; Hoffmann, Kirstin; Kuhlmann, Leonoor D.; Janssen, Bert P. M.; van Vugt, Anke H M; Van Hooser, J. Preston; Wieringa, B. E.; Deutman, August F; Palczewski, Krzysztof; Ruether, Klaus; Janssen, Jacques J. M.

    2000-01-01

    To elucidate the possible role of 11-cis-retinol dehydrogenase in the visual cycle and/or 9-cis-retinoic acid biosynthesis, we generated mice carrying a targeted disruption of the 11-cis-retinol dehydrogenase gene. Homozygous 11-cis-retinol dehydrogenase mutants developed normally, including their retinas. There was no appreciable loss of photoreceptors. Recently, mutations in the 11-cis-retinol dehydrogenase gene in humans have been associated with fundus albipunctatus. In 11-cis-retinol deh...

  7. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.

    OpenAIRE

    Melo-Oliveira, R; I.C. Oliveira; Coruzzi, G M

    1996-01-01

    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH...

  8. The human L-threonine 3-dehydrogenase gene is an expressed pseudogene

    Directory of Open Access Journals (Sweden)

    Edgar Alasdair J

    2002-10-01

    Full Text Available Abstract Background L-threonine is an indispensable amino acid. One of the major L-threonine degradation pathways is the conversion of L-threonine via 2-amino-3-ketobutyrate to glycine. L-threonine dehydrogenase (EC 1.1.1.103 is the first enzyme in the pathway and catalyses the reaction: L-threonine + NAD+ = 2-amino-3-ketobutyrate + NADH. The murine and porcine L-threonine dehydrogenase genes (TDH have been identified previously, but the human gene has not been identified. Results The human TDH gene is located at 8p23-22 and has 8 exons spanning 10 kb that would have been expected to encode a 369 residue ORF. However, 2 cDNA TDH transcripts encode truncated proteins of 157 and 230 residues. These truncated proteins are the result of 3 mutations within the gene. There is a SNP, A to G, present in the genomic DNA sequence of some individuals which results in the loss of the acceptor splice site preceding exon 4. The acceptor splice site preceding exon 6 was lost in all 23 individuals genotyped and there is an in-frame stop codon in exon 6 (CGA to TGA resulting in arginine-214 being replaced by a stop codon. These truncated proteins would be non-functional since they have lost part of the NAD+ binding motif and the COOH terminal domain that is thought to be involved in binding L-threonine. TDH mRNA was present in all tissues examined. Conclusions The human L-threonine 3-dehydrogenase gene is an expressed pseudogene having lost the splice acceptor site preceding exon 6 and codon arginine-214 (CGA is mutated to a stop codon (TGA.

  9. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh genes in legumes

    Directory of Open Access Journals (Sweden)

    Ochiai Toshinori

    2005-04-01

    Full Text Available Abstract Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events.

  10. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes

    Science.gov (United States)

    Fukuda, Tatsuya; Yokoyama, Jun; Nakamura, Toru; Song, In-Ja; Ito, Takuro; Ochiai, Toshinori; Kanno, Akira; Kameya, Toshiaki; Maki, Masayuki

    2005-01-01

    Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events. PMID:15836788

  11. Effect of glucocorticoid on promoter of 11β-hydroxysteroid dehydrogenase I gene

    Institute of Scientific and Technical Information of China (English)

    何平; 孙刚

    2003-01-01

    Objective: To study the effect of glucocorticoid on the promoter of the pre-receptor glucocorticoid metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) gene. Methods: The 1.2 kb length sequence upstream to the transcription start site of the 11β-HSD1 gene was amplified with polymerase chain reaction (PCR) and then was cloned into pBLCAT6 plasmid carrying chloramphenicol acetyltransferase (CAT) reporter gene. The plasmid pBLCAT6 carrying the promoter and reporter gene was used to transfect HeLa cells to study the regulation of 11β-HSD1 gene expression by glucocorticoids in terms of reporter gene expression. Results: PCR showed that there was a complete alignment of the amplified sequence with the sequence 1.2 kb upstream to the transcription start site of 11β-HSD1 gene. When cloned into pBLCAT6 plasmid carrying the reporter gene, this part of the promoter is functional in terms of regulation of reporter gene expression upon transfection into HeLa cells. The synthetic glucocorticoid-dexamethasone induced the reporter gene expression in the system described above, which was blocked by glucocorticoid receptor antagonist RU486. Conclusion: Glucocorticoids can modulate the expression of 11β-HSD1 through a mechanism involving activation of GR and interaction of the promoter of 11β-HSD1 gene.

  12. Development of a prediction model and estimation of cumulative risk for upper aerodigestive tract cancer on the basis of the aldehyde dehydrogenase 2 genotype and alcohol consumption in a Japanese population

    Science.gov (United States)

    Koyanagi, Yuriko N.; Ito, Hidemi; Oze, Isao; Hosono, Satoyo; Tanaka, Hideo; Abe, Tetsuya; Shimizu, Yasuhiro; Hasegawa, Yasuhisa

    2017-01-01

    Alcohol consumption and the aldehyde dehydrogenase 2 (ALDH2) polymorphism are associated with the risk of upper aerodigestive tract cancer, and a significant gene–environment interaction between the two has been confirmed in a Japanese population. To aid the development of a personalized prevention strategy, we developed a risk-prediction model and estimated absolute risks stratified by a combination of the ALDH2 genotype and alcohol consumption. We carried out two age-matched and sex-matched case–control studies: one (630 cases and 1260 controls) for model derivation and the second (654 cases and 654 controls) for external validation. On the basis of data from the derivation study, a prediction model was developed by fitting a conditional logistic regression model using the following predictors: age, sex, smoking, drinking, and the ALDH2 genotype. The risk model, including a combination of the ALDH2 genotype and alcohol consumption, provided high discriminatory accuracy and good calibration in both the derivation and the validation studies: C statistics were 0.82 (95% confidence interval 0.80–0.84) and 0.83 (95% confidence interval 0.81–0.85), respectively, and the calibration plots of both studies remained close to the ideal calibration line. Cumulative risks were obtained by combining odds ratios estimated from the risk model with the age-specific incidence rate and population size. For heavy drinkers with a heterozygous genotype, the cumulative risk at age 80 was above 20%. In contrast, risk in the other groups was less than 5%. In conclusion, modification of alcohol consumption according to the ALDH2 genotype will have a major impact on upper aerodigestive tract cancer prevention. These findings represent a simple and practical model for personalized cancer prevention. PMID:26862830

  13. Association between common alcohol dehydrogenase gene (ADH) variants and schizophrenia and autism

    OpenAIRE

    Zuo, Lingjun; Wang,Kesheng; Zhang, Xiang-Yang; Pan, Xinghua; Wang, Guilin; Tan, Yunlong; ZHONG, CHUNLONG; Krystal, John H.; State, Matthew; Zhang, Heping; Luo, Xingguang

    2013-01-01

    Humans express at least seven alcohol dehydrogenase (ADH) isoforms that are encoded by ADH gene cluster (ADH7–ADH1C–ADH1B–ADH1A–ADH6–ADH4–ADH5) at chromosome 4. ADHs are key catabolic enzymes for retinol and ethanol. The functional ADH variants (mostly rare) have been implicated in alcoholism risk. In addition to catalyzing the oxidation of retinol and ethanol, ADHs may be involved in the metabolic pathways of several neurotransmitters that are implicated in the neurobiology of neuropsychiatr...

  14. Genetic variation of Aflatoxin B(1) aldehyde reductase genes (AFAR) in human tumour cells

    DEFF Research Database (Denmark)

    Praml, Christian; Schulz, Wolfgang; Claas, Andreas

    2008-01-01

    AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B(1) (AFB(1)). In the rat, Afar1 induction can prevent AFB(1)-induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic....... Furthermore, human AFAR1 catalyses the rate limiting step in the synthesis of the neuromodulator gamma-hydroxybutyrate (GHB) and was found elevated in neurodegenerative diseases such as Alzheimer's and dementia with Lewy bodies (DLB). The human AFAR gene family maps to a genomic region in 1p36 of frequent...

  15. Cloning and Characterization of Glyceraldehyde-3-phosphate Dehydrogenase Encoding Gene in Gracilaria/Gracilariopsis lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    REN Xueying; SUI Zhenghong; ZHANG Xuecheng

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene (gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  16. Molecular cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12.

    Science.gov (United States)

    Zhang, T; Qi, Z; Yu, Q S; Tang, K X

    2013-07-15

    Penicillium expansum produces large amounts of lipase, which is widely used in laundry detergent and leather industry. We isolated the glyceraldehyde-3-phosphate dehydrogenase gene (PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree based on GPD proteins showed that P. expansum is close to Aspergillus species, but comparatively distant from P. marneffei. Southern blot results revealed a single copy of PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes have potential for genetic engineering of P. expansum for industrial lipase production.

  17. Genetic polymorphisms in cytochrome P4502E1,alcohol and aldehyde dehydrogenases and the risk of esophageal squamous cell carcinoma in Gansu Chinese males

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei Guo; Qin Wang; Yan-Zhen Liu; Huei-Min Chen; Zhi Qi; Qing-Hong Guo

    2008-01-01

    showed no synergistic interaction.CONCLUSION:In our study,we found that alcohol consumption and polymorphisms in the CYP2E1,ADHIB and ALDH2 genes are important risk factors for ESCC,and that there was a synergistic interaction among polymorphisms in the CYP2E1,ALDH2 and ADHIB genes and heavy alcohol drinking,in Chinese males living in Gansu province,China.

  18. The 6-phosphogluconate Dehydrogenase Genes Are Responsive to Abiotic Stresses in Rice

    Institute of Scientific and Technical Information of China (English)

    Fu-Yun Hou; Ji Huang; Shan-Lin Yu; Hong-Sheng Zhang

    2007-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44) are both key enzymes of the pentose phosphate pathway (PPP). The OsG6PDH1 and Os6PGDH1 genes encoding cytosolic G6PDH and cytosolic 6PGDH were isoiated from rice (Oryza satlva L.). We have shown that Os6PGDH1 gene was up-regulated by salt stress. Here we reported the isolation and characterization of Os6PGDH2 from rice, which encode the plastidic counterpart of 6PGDH. Genomic organization analysis indicated that OsG6PDH1 and OsG6PDH2 genes contain multiple introns, whereas two Os6PGDH1 and Os6PGDH2 genes have no introns in their translated regions. In a step towards understanding the functions of the pentose phosphate pathway in plants in response to various abiotic stresses, the expressions of four genes in the rice seedlings treated by drought, cold, high salinity and abscisic acid (ABA) were investigated. The results show that OsG6PDH1 and OsG6PDH2 are not markedly regulated by the abiotic stresses detected. However, the transcript levels of both Os6PGDH1 and Os6PGDH2 are up-regulated in rice seedlings under drought, cold, high salinity and ABA treatments. Meanwhile,the enzyme activities of G6PDH and 6PGDH in the rice seedlings treated by various ablotlc stresses were investigated.Like the mRNA expression patterns, G6PDH activity remains constant but the 6PGDH increases steadily during the treatments. Taken together, we suggest that the pentose phosphate pathway may play an important role in rice responses to abiotlc stresses and the second key enzyme of PPP, 6PGDH, may function as a regulator controlling the efficiency of the pathway under abiotic stresses.

  19. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene

    DEFF Research Database (Denmark)

    Tanaka, K; Yokota, I; Coates, P M

    1992-01-01

    of 172 unrelated patients each representing an independent pedigree, a total of 8 different mutations have been identified. Among them, a single prevalent mutation, 985A-->G, was found in 90% of 344 variant alleles. 985A-->G causes glutamate substitution for lysine-304 in the mature MCAD subunit, which...... causes impairment of tetramer assembly and instability of the protein. Three of 7 rarer mutations have been identified in a few unrelated patients, while the remaining 4 have each been found in only a single pedigree. In addition to tabulating the mutations, the acyl-CoA dehydrogenase gene family......, the structure of the MCAD gene and the evolution of 985A-->G mutation are briefly discussed....

  20. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    Science.gov (United States)

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions.

  1. New studies of the alcohol dehydrogenase cline in D. melanogaster from Mexico.

    Science.gov (United States)

    Pipkin, S B; Franklin-Springer, E; Law, S; Lubega, S

    1976-01-01

    An altitudinal cline of frequencies of alcohol dehydrogenase alleles occurs in D. melanogaster populations of southeastern Mexico. A similar cline of two aldehyde oxidase alleles is present, but frequencies of esterase-6 alleles are not distributed clinically. Collections were made from small dispersed populations. Some gene flow occurred throughout the lowlands according to the distribution of two moderately endemic autosomal inversions and five previously described inversions. The clines are believed dependent on a limited gene flow between temperature races of D. melanogaster.

  2. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  3. An experimental test for lineage-specific position effects on alcohol dehydrogenase (Adh) genes in Drosophila

    Science.gov (United States)

    Siegal, Mark L.; Hartl, Daniel L.

    1998-01-01

    Independent transgene insertions differ in expression based on their location in the genome; these position effects are of interest because they reflect the influence of genome organization on gene regulation. Position effects also represent potentially insurmountable obstacles to the rigorous functional comparison of homologous genes from different species because (i) quantitative variation in expression of each gene across genomic positions (generalized position effects, or GPEs) may overwhelm differences between the genes of interest, or (ii) divergent genes may be differentially sensitive to position effects, reflecting unique interactions between each gene and its genomic milieu (lineage-specific position effects, or LSPEs). We have investigated both types of position-effect variation by applying our method of transgene coplacement, which allows comparisons of transgenes in the same position in the genome of Drosophila melanogaster. Here we report an experimental test for LSPE in Drosophila. The alcohol dehydrogenase (Adh) genes of D. melanogaster and Drosophila affinidisjuncta differ in both tissue distribution and amounts of ADH activity. Despite this striking regulatory divergence, we found a very high correlation in overall ADH activity between the genes of the two species when placed in the same genomic position as assayed in otherwise Adh-null adults and larvae. These results argue against the influence of LSPE for these sequences, although the effects of GPE are significant. Our new findings validate the coplacement approach and show that it greatly magnifies the power to detect differences in expression between transgenes. Transgene coplacement thus dramatically extends the range of functional and evolutionary questions that can be addressed by transgenic technology. PMID:9861000

  4. Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copepod.

    Science.gov (United States)

    Willett, Christopher S; Burton, Ronald S

    2003-08-01

    Glutamate dehydrogenase (GDH) plays a key role in the metabolism of free amino acids (FAA) in crustaceans and other metazoans. Glutamate synthesized by GDH via reductive amination is the amino group donor for alanine synthesis and the precursor required for proline synthesis. Since both proline and alanine are important intracellular osmolytes in many marine invertebrates, GDH has been widely implicated as playing a central role in response to hyperosmotic stress in these organisms. We have isolated the gene encoding a GDH homolog from the euryhaline copepod Tigriopus californicus and examined the regulation of GDH under salinity stress. The gene encodes a protein of 557 residues with 76% amino acid identity with Drosophila melanogaster GDH. The gene encodes an N-terminal mitochondrial signal sequence peptide. Only a single intron of 71 bp was found in the GDH gene in T. californicus when genomic sequences and cDNA sequences were compared. The levels of GDH mRNA do not increase during hyperosmotic stress in this copepod. The effects of salt and hyperosmotic stress on GDH enzyme activity were also investigated. GDH activities decrease with increasing NaCl concentrations in in vitro enzyme assays, while live animals exposed to hyperosmotic stress showed no change in GDH enzyme activities. Combined, these results indicate that GDH transcription and enzyme activity do not appear to function in the regulation of alanine and proline accumulation during hyperosmotic stress in T. californicus. The manner in which this important physiological process is regulated remains unknown.

  5. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.

    Science.gov (United States)

    Melo-Oliveira, R; Oliveira, I C; Coruzzi, G M

    1996-05-14

    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH1 gene product functions in the direction of glutamate catabolism under carbon-limiting conditions. Low levels of GDH1 mRNA present in leaves of light-grown plants can be induced by exogenously supplied ammonia. Under such conditions of carbon and ammonia excess, GDH1 may function in the direction of glutamate biosynthesis. The Arabidopsis gdh-deficient mutant allele gdh1-1 cosegregates with the GDH1 gene and behaves as a recessive mutation. The gdh1-1 mutant displays a conditional phenotype in that seedling growth is specifically retarded on media containing exogenously supplied inorganic nitrogen. These results suggest that GDH1 plays a nonredundant role in ammonia assimilation under conditions of inorganic nitrogen excess. This notion is further supported by the fact that the levels of mRNA for GDH1 and chloroplastic glutamine synthetase (GS2) are reciprocally regulated by light.

  6. Medium-Chain Acyl-CoA Dehydrogenase Deficiency in Gene-Targeted Mice.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Medium-chain acyl-CoA dehydrogenase (MCAD deficiency is the most common inherited disorder of mitochondrial fatty acid beta-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD by gene targeting in embryonic stem (ES cells. The MCAD mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 degrees C with prior fasting. The sporadic cardiac lesions seen in MCAD mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.

  7. Construction of differentially expressed cDNA libraries of aldehyde dehydrogenase with high and low activity from tongue squamous carcinoma Tca8113 cell line%基于舌鳞癌Tca8113细胞醛脱氢酶活性不同构建差异表达基因cDNA文库

    Institute of Scientific and Technical Information of China (English)

    孙守娟; 季平; 邓诚; 李颖; 邹波; 漆小娟

    2012-01-01

    Objective To construct the differentially expressed cDNA libraries of aldehyde dehydro genase with high and low activity (ALDHhigh/ALDHlow) from tongue squamous carcinoma Tca8113 cell line. Methods Expression of stem cell marker ALDH was detected, and ALDHhighand ALDHlow cells were collected by Aldefluor assay combined with flow cytometry. Differentially expressed genes of total RNA that was extracted from the two cell subpopulations by Trizol were screened and amplified by suppressing subtractive hybridization ( SSH) , and the PCR products were connected with pMD18-T vector and then transfected into E. Coli DH5a for amplification. Enzyme digestion, gene sequencing and homology analysis were performed in 24 positive clones that were randomly picked from each library. Results Two subproportions of ALDHhigh and ALDHlowwere " screened out, and ALDHhigh cells in Tca8113 cells accounted for 2. 5%. RNA D(260)/D(280) of ALDHhigh and ALDHlow were 1. 93 and 1. 92, respectively. Two-directional subtractive cDNA libraries of ALDHhigh and ALDHlow were constructed, and each library comprised 500 clones. PCR analysis of 24 clones randomly picked from each library showed that insert-fragments distributed in 200 - 700 bp, and no false positive clones were detected. Gene sequencing result that was analyzed and indexed by PubMed showed that cancer related genes included SLC25A13, KLHL2, NPC1, WAPL, BARD1, Notch2 and EEF2K. Conclusion Two-directional subtractive cDNA libraries of ALDHhigh and ALDHlow cells were successfully constructed.%目的 构建舌鳞癌Tca8113细胞系中高、低醛脱氢酶活性(high/low aldehyde dehydrogenase activity,ALDHhigh/ALDHlow)细胞差异表达基因cDNA文库.方法 用流式细胞仪检测ALDEFLUOR(R)染色的Tca8113细胞中干细胞标志物ALDH的表达,并收集ALDHhigh和ALDHlow细胞;用Trizol分别提取两亚群细胞的总RNA;用抑制性消减杂交(SSH)对2组RNA进行差异基因筛选和扩增,扩增产物与pMD18-T载体

  8. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production.

  9. Frequent germ-line succinate dehydrogenase subunit D gene mutations in patients with apparently sporadic parasympathetic paraganglioma

    NARCIS (Netherlands)

    H. Dannenberg (Hilde); W.N.M. Dinjens (Winand); M. Abbou; H. van Urk (Hero); B.K. Pauw; D. Mouwen; W.J. Mooi (Wolter); R.R. de Krijger (Ronald)

    2002-01-01

    textabstractPURPOSE: Recently, familial paraganglioma (PGL) was shown to be caused bymutations in the gene encoding succinate dehydrogenase subunit D (SDHD). However, the prevalence of SDHD mutations in apparently sporadic PGL is unknown. We studied the frequency and spectrum of ge

  10. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma-pheochromocytoma syndrome.

    Science.gov (United States)

    Prasad, Chaithra; Oakley, Gerard J; Yip, Linwah; Coyne, Christopher; Rangaswamy, Balasubramanya; Dixit, Sanjay B

    2014-01-01

    Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma-pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  11. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Directory of Open Access Journals (Sweden)

    Chaithra Prasad

    2014-10-01

    Full Text Available Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  12. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Science.gov (United States)

    Oakley, Gerard J; Yip, Linwah; Coyne, Christopher; Rangaswamy, Balasubramanya; Dixit, Sanjay B

    2014-01-01

    Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes. PMID:27489656

  13. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.: Bioinformatic Analysis and Expression Patterns

    Directory of Open Access Journals (Sweden)

    Yazhong eJin

    2016-05-01

    Full Text Available Alcohol dehydrogenases (ADH, encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH, designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into 3 groups respectively, namely long-, medium- and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into 6 medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed.

  14. Alternative splicing of testis-specific lactate dehydrogenase C gene in mammals and pigeon.

    Science.gov (United States)

    Huang, Lin; Lin, Yaqiu; Jin, Suyu; Liu, Wei; Xu, Yaou; Zheng, Yucai

    2012-04-01

    The objective of the present study was to confirm the widespread existence of alternative splicing of lactate dehydrogenase c (ldhc) gene in mammals. RT-PCR was employed to amplify cDNAs of ldhc from testes of mammals including pig, dog, rabbit, cat, rat, and mouse, as well as pigeon. Two to six kinds of splice variants of ldhc were observed in the seven species as a result of deletion of one or more exons or insertion of partial sequence of an intron in the mature mRNA. The deleted exons occur mostly in exons 5, 4, 6, and 3. The insertion of a partial sequence of introns, which resulted in an abnormal stop codon in the inserted intron sequence, was observed only in dog and rat. The deletion of exons also resulted in a reading frame shift and formation of a stop codon in some variants. No alternative splicing was observed for ldha and ldhb genes in testis of yak. Native polyacrylamide gel electrophoresis and Western blot analysis revealed no obvious LDH-C4 activity derived from expressed ldhc variants. Our results demonstrated the widespread and unique existence of alternative splicing of ldhc genes in mammals.

  15. Cloning, sequencing and expression of the Schwanniomyces occidentalis NADP-dependent glutamate dehydrogenase gene.

    Science.gov (United States)

    De Zoysa, P A; Connerton, I F; Watson, D C; Johnston, J R

    1991-08-01

    The cloned NADP-specific glutamate dehydrogenase (GDH) genes of Aspergillus nidulans (gdhA) and Neurospora crassa (am) have been shown to hybridize under reduced stringency conditions to genomic sequences of the yeast Schwanniomyces occidentalis. Using 5' and 3' gene-specific probes, a unique 5.1 kb BclI restriction fragment that encompasses the entire Schwanniomyces sequence has been identified. A recombinant clone bearing the unique BclI fragment has been isolated from a pool of enriched clones in the yeast/E. coli shuttle vector pWH5 by colony hybridization. The identity of the plasmid clone was confirmed by functional complementation of the Saccharomyces cerevisiae gdh-1 mutation. The nucleotide sequence of the Schw. occidentalis GDH gene, which consists of 1380 nucleotides in a continuous reading frame of 459 amino acids, has been determined. The predicted amino acid sequence shows considerable homology with GDH proteins from other fungi and significant homology with all other available GDH sequences.

  16. Protein causes hyperinsulinemia: a Chinese patient with hyperinsulinism/hyperammonaemia syndrome due to a glutamate dehydrogenase gene mutation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi; XIAO Xin-hua; DIAO Cheng-ming; TONG An-li; WANG Ou; QIU Zheng-qing; YU Kang; WANG Tong

    2010-01-01

    @@ Glucose is derived from three sources: intestinal absorption, glycogenolysis, and gluconeogenesis. Hypoglycemia in child is often attributed to depletion of glycogen stores. However, recently, congenital hyperinsulinism becomes an important cause of hypoglycaemia in early infancy. Mutations in the genes encoding SUR1 and KIR6.2 are the most frequent genetic causes of hyperinsulinism followed by mutations in the glutamate dehydrogenase (GDH) gene which encodes hyperinsulinism/hyperammonaemia (HI/HA) syndrome.

  17. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    Science.gov (United States)

    Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914

  18. Succinate dehydrogenase gene mutations are strongly associated with paraganglioma of the organ of Zuckerkandl.

    Science.gov (United States)

    Lodish, Maya B; Adams, Karen T; Huynh, Thanh T; Prodanov, Tamara; Ling, Alex; Chen, Clara; Shusterman, Suzanne; Jimenez, Camilo; Merino, Maria; Hughes, Marybeth; Cradic, Kendall W; Milosevic, Dragana; Singh, Ravinder J; Stratakis, Constantine A; Pacak, Karel

    2010-09-01

    Organ of Zuckerkandl paragangliomas (PGLs) are rare neuroendocrine tumors that are derived from chromaffin cells located around the origin of the inferior mesenteric artery extending to the level of the aortic bifurcation. Mutations in the genes encoding succinate dehydrogenase subunits (SDH) B, C, and D (SDHx) have been associated with PGLs, but their contribution to PGLs of the organ of Zuckerkandl PGLs is not known. We aimed to describe the clinical presentation of patients with PGLs of the organ of Zuckerkandl and investigate the prevalence of SDHx mutations and other genetic defects among them. The clinical characteristics of 14 patients with PGL of the organ of Zuckerkandl were analyzed retrospectively; their DNA was tested for SDHx mutations and deletions. Eleven out of 14 (79%) patients with PGLs of the organ of Zuckerkandl were found to have mutations in the SDHB (9) or SDHD (2) genes; one patient was found to have the Carney-Stratakis syndrome (CSS), and his PGL was discovered during surgery for gastrointestinal stromal tumor. Our results show that SDHx mutations are prevalent in pediatric and adult PGLs of the organ of Zuckerkandl. Patients with PGLs of the organ of Zuckerkandl should be screened for SDHx mutations and the CSS; in addition, asymptomatic carriers of an SDHx mutation among the relatives of affected patients may benefit from tumor screening for early PGL detection.

  19. Silencing of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Youl [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu (Korea, Republic of); Yoo, Young Hyun [Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan (Korea, Republic of); Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu (Korea, Republic of)

    2013-04-05

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report an autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.

  20. Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis.

    Science.gov (United States)

    Turano, F J; Thakkar, S S; Fang, T; Weisemann, J M

    1997-04-01

    Two distinct cDNA clones encoding NAD(H)-dependent glutamate dehydrogenase (NAD[H]-GDH) in Arabidopsis thaliana were identified and sequenced. The genes corresponding to these cDNA clones were designated GDH1 and GDH2. Analysis of the deduced amino acid sequences suggest that both gene products contain putative mitochondrial transit polypeptides and NAD(H)- and alpha-ketoglutarate-binding domains. Subcellular fractionation confirmed the mitochondrial location of the NAD(H)-GDH isoenzymes. In addition, a putative EF-hand loop, shown to be associated with Ca2+ binding, was identified in the GDH2 gene product but not in the GDH1 gene product. GDH1 encodes a 43.0-kD polypeptide, designated alpha, and GDH2 encodes a 42.5-kD polypeptide, designated beta. The two subunits combine in different ratios to form seven NAD(H)-GDH isoenzymes. The slowest-migrating isoenzyme in a native gel, GDH1, is a homohexamer composed of alpha subunits, and the fastest-migrating isoenzyme, GDH7, is a homohexamer composed of beta subunits. GDH isoenzymes 2 through 6 are heterohexamers composed of different ratios of alpha and beta subunits. NAD(H)-GDH isoenzyme patterns varied among different plant organs and in leaves of plants irrigated with different nitrogen sources or subjected to darkness for 4 d. Conversely, there were little or no measurable changes in isoenzyme patterns in roots of plants treated with different nitrogen sources. In most instances, changes in isoenzyme patterns were correlated with relative differences in the level of alpha and beta subunits. Likewise, the relative difference in the level of alpha or beta subunits was correlated with changes in the level of GDH1 or GDH2 transcript detected in each sample, suggesting that NAD(H)-GDH activity is controlled at least in part at the transcriptional level.

  1. Identification of putative methanol dehydrogenase (moxF) structural genes in methylotrophs and cloning of moxF genes from Methylococcus capsulatus bath and Methylomonas albus BG8

    OpenAIRE

    Stephens, R. L.; Haygood, M G; Lidstrom, M. E.

    1988-01-01

    An open-reading-frame fragment of a Methylobacterium sp. strain AM1 gene (moxF) encoding a portion of the methanol dehydrogenase structural protein has been used as a hybridization probe to detect similar sequences in a variety of methylotrophic bacteria. This hybridization was used to isolate clones containing putative moxF genes from two obligate methanotrophic bacteria, Methylococcus capsulatus Bath and Methylomonas albus BG8. The identity of these genes was confirmed in two ways. A T7 exp...

  2. Molecular cloning and characterization of two YGL039w genes encoding broad specificity NADPH-dependent aldehyde reductases from Kluyveromyces marxianus strain DMB1.

    Science.gov (United States)

    Akita, Hironaga; Watanabe, Masahiro; Suzuki, Toshihiro; Nakashima, Nobutaka; Hoshino, Tamotsu

    2015-08-01

    Two genes from Kluyveromyces marxianus strain DMB1, YGL039w1 and YGL039w2, encode putative uncharacterized oxidoreductases that respectively share 42 and 44% identity with the Saccharomyces cerevisiae S288c NADPH-dependent methylglyoxal reductase (EC 1.1.1.283). To determine the enzymatic characteristics of their products, the two genes were expressed in recombinant Escherichia coli cells, after which the YGL039w1 and YGL039w2 proteins were purified to homogeneity. In the presence of NADPH, both enzymes showed reductive activities toward at least nine aldehyde substrates, but no NADP(+)-dependent oxidative activities. These two YGL039w proteins thus appear to be aldehyde reductases. In addition, although both enzymes retained more than 70% of their activities after incubation for 30 min at temperatures below 40°C or at pHs between 5.5 and 11.3, YGL039w2 was slightly more thermostable than YGL039w1.

  3. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    Science.gov (United States)

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass.

  4. The cinnamyl alcohol dehydrogenase gene family in melon (Cucumis melo L.): bioinformatic analysis and expression patterns.

    Science.gov (United States)

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2014-01-01

    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments implied that some motifs may be responsible for the high specificity of these CAD proteins, and may be one of the key residues in the catalytic mechanism. The phylogenetic tree revealed seven groups of CAD and melon CAD genes fell into four main groups. CmCAD1 and CmCAD2 belonged to the bona fide CAD group, in which these CAD genes, as representative from angiosperms, were involved in lignin synthesis. Other CmCADs were distributed in group II, V and VII, respectively. Semi-quantitative PCR and real time qPCR revealed differential expression of CmCADs, and CmCAD5 was expressed in different vegetative tissues except mature leaves, with the highest expression in flower, while CmCAD2 and CmCAD5 were strongly expressed in flesh during development. Promoter analysis revealed several motifs of CAD genes involved in the gene expression modulated by various hormones. Treatment of abscisic acid (ABA) elevated the expression of CmCADs in flesh, whereas the transcript levels of CmCAD1 and CmCAD5 were induced by auxin (IAA); Ethylene induced the expression of CmCADs, while 1-MCP repressed the effect, apart from CmCAD4. Taken together, these data suggested that CmCAD4 may be a pseudogene and that all other CmCADs may be involved in the lignin biosynthesis induced by both abiotic and biotic stresses and in tissue-specific developmental lignification through a CAD genes family network, and CmCAD2 may be the main CAD enzymes for lignification of melon flesh and CmCAD5 may also function in flower development.

  5. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R; Horjales, E

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is

  6. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  7. Gene clone,expression and enzyme activity assay of a cytosolic malate dehydrogenase from apple fruits

    Institute of Scientific and Technical Information of China (English)

    Yuxin YAO; Yujin HAO; Ming LI; Mingli PANG; Zhi LIU; Heng ZHAI

    2008-01-01

    Malate dehydrogenase (MDH) ubiquitously exists in animals,plants and microoganisms,and catalyzes the interconversion from oxaloacetate to malate.Cytosolic NAD-dependent MDH gene (cyMDH)encodes a key enzyme crucial for malic acid synthesis in the cytosol which has not been extensively characterized in plants.In this study,a full-length cDNA of cyMDH was isolated from apple fruits with RT-PCR as well as 3' and 5' rapid amplification of cDNA ends,and designated as Mal-cyMDH (GenBank accession No.DQ221207).It contained a 996-bp ORF and its sequence analysis shows a high similarity to other plant cyMDHs.Phylogenetic analysis indicated that almost all the cyMDHs could be clustered into the same group and it was likely to represent the original MDH.A roughly 37-kDa fused protein was obtained by the recombinant prokaryotic expression and its enzyme activity assay showed that it mainly catalyzed oxaloacetate to malate.It was also discovered that the enzyme activity of cyMDH exhibited remarkable difference between the high- and low-acid apple germplasm.

  8. Cloning of Lactate dehydrogenase Gene and Effect on the Waterlogging Tolerance of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ben-bo Xu

    2012-10-01

    Full Text Available To investigate the mechanism on waterlogging tolerance in Brassica napus, 12 B. napus cultivars with different waterlogging tolerance were used in the research and Waterlogging Tolerance Index (WTI was calculated by multiplying relative percentage germination and the relative seedling height. The results indicated that Lactate Dehydrogenase (LDH enzyme activity rapidly increased at 24 h after waterlogging treatment and reached peak between 48-72 h. WTI was correlated with LDH enzyme activity at 24 h after water logging treatment and the correlation coefficient between them was 0.84. Transcription level of the BnLDH had significant difference in the 12 lines after waterlogging treatment. BnLDH expression level was very low before waterlogging treatment and induced by waterlogging treatment and arrived at peak at 48 h. Correlation analysis indicated correlation coefficient between WTI and BnLDH expression at 24 and 48 h after waterlogging treatment was 0.56 and 0.72, respectively. An LDH gene, denoted BnLDH-1, was cloned from oilseeds by the Rapid Amplification of CDNA Ends (RACE from 12 materials and the results indicated all of them had same protein sequence.

  9. Clonal diversity of the glutamate dehydrogenase gene in Giardia duodenalis from Thai Isolates: evidence of genetic exchange or Mixed Infections?

    OpenAIRE

    2011-01-01

    Abstract Background The glutamate dehydrogenase gene (gdh) is one of the most popular and useful genetic markers for the genotypic analysis of Giardia duodenalis (syn. G. lamblia, G. intestinalis), the protozoan that widely causes enteric disease in humans. To determine the distribution of genotypes of G. duodenalis in Thai populations and to investigate the extent of sequence variation at this locus, 42 fecal samples were collected from 3 regions of Thailand i.e., Central, Northern, and East...

  10. Association between common alcohol dehydrogenase gene (ADH) variants and schizophrenia and autism.

    Science.gov (United States)

    Zuo, Lingjun; Wang, Kesheng; Zhang, Xiang-Yang; Pan, Xinghua; Wang, Guilin; Tan, Yunlong; Zhong, Chunlong; Krystal, John H; State, Matthew; Zhang, Heping; Luo, Xingguang

    2013-07-01

    Humans express at least seven alcohol dehydrogenase (ADH) isoforms that are encoded by ADH gene cluster (ADH7-ADH1C-ADH1B-ADH1A-ADH6-ADH4-ADH5) at chromosome 4. ADHs are key catabolic enzymes for retinol and ethanol. The functional ADH variants (mostly rare) have been implicated in alcoholism risk. In addition to catalyzing the oxidation of retinol and ethanol, ADHs may be involved in the metabolic pathways of several neurotransmitters that are implicated in the neurobiology of neuropsychiatric disorders. In the present study, we comprehensively examined the associations between common ADH variants [minor allele frequency (MAF) >0.05] and 11 neuropsychiatric and neurological disorders. A total of 50,063 subjects in 25 independent cohorts were analyzed. The entire ADH gene cluster was imputed across these 25 cohorts using the same reference panels. Association analyses were conducted, adjusting for multiple comparisons. We found 28 and 15 single nucleotide polymorphisms (SNPs), respectively, that were significantly associated with schizophrenia in African-Americans and autism in European-Americans after correction by false discovery rate (FDR) (q disorders after region-wide correction by SNPSpD (8.9 × 10(-5) ≤ p ≤ 0.0003 and 2.4 × 10(-5) ≤ p ≤ 0.0003, respectively). No variants were significantly associated with the other nine neuropsychiatric disorders, including alcohol dependence. We concluded that common ADH variants conferred risk for both schizophrenia in African-Americans and autism in European-Americans.

  11. Internode length in Pisum. Gene na may block gibberellin synthesis between ent-7. cap alpha. -hydroxykaurenoic acid and biggerellin A/sub 12/-aldehyde. [Pisum sativum

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, T.J.; Reid, J.B.

    1987-04-01

    The elongation response of the gibberellin (GA) deficient genotypes na, ls, and lh of peas (Pisum sativum L.) to a range of GA-precursors was examined. Plants possessing gene na did not respond to precursors in the GA biosynthetic pathway prior to GA/sub 12/-aldehyde. In contrast, plants possessing lh and ls responded as well as wild-type plants (dwarfed with AMO-1618) to these compounds. The results suggest that GA biosynthesis is blocked prior to ent-kaurene in the lh and ls mutants and between ent-7..cap alpha..-hydroxykaurenoic acid and GA/sub 12/-aldehyde in the na mutant. Feeds of ent(/sup 3/H)kaurenoic acid and (/sup 2/H)GA/sub 12/-aldehyde to a range of genotypes supported the above conclusions. The na line WL1766 was shown by gas chromatography-mass spectrometry (GC-MS) to metabolize(/sup 2/H)GA/sub 12/-aldehyde to a number of (/sup 2/H)C/sub 19/-GAs including GA/sub 1/. However, there was no indication in na genotypes for the metabolism of ent-(/sup 3/H)kaurenoic acid to these GAs. In contrast, the expanding shoot tissue of all Na genotypes examined metabolized ent-(/sup 3/H)kaurenoic acid to radioactive compounds that co-chromatographed with GA/sub 1/, GA/sub 8/, GA/sub 20/, and GA/sub 29/. However, insufficient material was present for unequivocal identification of the metabolites. The radioactive profiles from HPLC of extracts of the node treated with ent-(/sup 3/H)kaurenoic acid were similar for both Na and na plants and contained ent-16..cap alpha..,17-dihydroxykaurenoic acid and ent-6..cap alpha..,7..cap alpha..,16..beta..,17-tetrahydroxykaurenoic acid (both characterized by GC-MS), suggesting that the metabolites arose from side branches of the main GA-biosynthetic pathway. Thus, both Na and na plants appear capable of ent-7..cap alpha..-hydroxylation.

  12. Characterization of the Kluyveromyces marxianus strain DMB1 YGL157w gene product as a broad specificity NADPH-dependent aldehyde reductase.

    Science.gov (United States)

    Akita, Hironaga; Watanabe, Masahiro; Suzuki, Toshihiro; Nakashima, Nobutaka; Hoshino, Tamotsu

    2015-01-01

    The open reading frame YGL157w in the genome of the yeast Kluyveromyces marxianus strain DMB1 encodes a putative uncharacterized oxidoreductase. However, this protein shows 46% identity with the Saccharomyces cerevisiae S288c NADPH-dependent methylglyoxal reductase, which exhibits broad substrate specificity for aldehydes. In the present study, the YGL157w gene product (KmGRE2) was purified to homogeneity from overexpressing Escherichia coli cells and found to be a monomer. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (branched-chain and linear) and aromatic aldehydes. The optimal pH for methylglyoxal reduction was 5.5. With methylglyoxal as a substrate, the optimal temperature for enzyme activity at pH 5.5 was 45°C. The enzyme retained more than 70% of its activity after incubation for 30 min at temperatures below 35°C or at pHs between 5.5 and 9.0. In addition, the KmGRE2-overexpressing E. coli showed improved growth when cultivated in cedar hydrolysate, as compared to cells not expressing the enzyme. Taken together, these results indicate that KmGRE2 is potentially useful as an inhibit decomposer in E. coli cells.

  13. Analysis of Enzyme Activity of Alcohol Dehydrogenase and Alcohol Dehydrogenase 3 (ADH3 Gene Polymorphism of Alcoholics and Non-Alcoholics in Indonesia.

    Directory of Open Access Journals (Sweden)

    . Suhartini

    2016-12-01

    Full Text Available Alcohol is an addictive substance that is often misused worldwide, including in Indonesia. Ninety percent of the alcohol that enters the body will be metabolized in the liver using the alcohol dehydrogenase (ADH enzyme. It is important to determine the activity of ADH enzyme and ADH3 gene polymorphism on alcoholics and non-alcoholics in Yogyakarta, Indonesia. The aim of the study is  to determine ADH activity and identify ADH3 gene polymorphism of alcoholics and non-alcoholics in Yogyakarta, Indonesia. This study was an observational study with a cross-sectional design method. Blood samples were taken from 71 Javanese alcoholics and 71 non-alcoholics of Javanese descent in Yogyakarta, Indonesia. The participants were initially requested to sign an informed consent form. Examination of ADH enzyme activity used the spectrophotometry method and ADH3 gene polymorphism was assessed with PCR-RFLP using Ssp I restriction enzyme. The activity of ADH enzyme in all individuals appeared to be a slower type. The average of the ethanol value of alcoholics and non-alcoholics were 0.05554 mM and 0.0758 mM respectively. Gene type of alcoholics were ADH3*2(75.4%, ADH3*1/3*2(21.5%, and ADH3*1(3.1%, and non-alcoholics were ADH3*2(88.6%, ADH3*1/3*2(10.0%, and ADH3*1(1.4%. There were no significant differences between the activity of ADH with polymorphism of ADH3 gene in either alcoholics and non-alcoholics (p>0,05. Conclusion: The activity of ADH enzyme in all participants appeared to be a slower type. Most of the ADH3 gene polymorphism of alcoholics and non-alcoholics were both ADH3*2 (75.4% and 88.6%. There was no differences of ADH enzyme activity with ADH3 gene polymorphism between alcoholics and non-alcoholics of Javanese population in Yogyakarta, Indonesia.

  14. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase gene in Pennisetum purpureum

    Indian Academy of Sciences (India)

    Ran Tang; Xiang-Qian Zhang; You-Han Li; Xin-Ming Xie

    2014-04-01

    Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key enzyme involved in lignin biosynthesis, catalyses the last step in monolignol synthesis and has a major role in genetic regulation of lignin production. In the present study, a 1 342-bp cDNA fragment of CAD gene, named PpCAD, was isolated from Pennisetum purpureum using strategies of homologous clone and rapid amplification of cDNA end. It was translated into an intact protein sequence including 366 amino acid residues by ORF Finder. The genomic full-length DNA of PpCAD was a 3 738-bp sequence containing four exons and three introns, among which the 114-bp exon was considered to be a conserved region compared with other CADs. Basic bioinformatic analysis presumed that the PpCAD was a nonsecretory and hydrophobic protein with five possible transmembrane helices. The phylogenetic analysis indicated that the PpCAD belonged to the class of bona fide CADs involved in lignin synthesis and it showed a high similarity (nearly 90%) with CAD protein sequences of Sorghum bicolor, Panicum virgatum and Zea mays in Gramineae. Furthere, PpCAD amino acid sequence was demonstrated to have some conserved motifs such as Zn-binding site, Zn-catalytic centre and NADP(H) binding domain after aligning with other bona fide CADs. Three-dimensional homology modelling of PpCAD showed that the protein had some exclusive features of bona fide CADs.

  15. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene.

    Science.gov (United States)

    Kuilenburg, André B P van; Meijer, Judith; Tanck, Michael W T; Dobritzsch, Doreen; Zoetekouw, Lida; Dekkers, Lois-Lee; Roelofsen, Jeroen; Meinsma, Rutger; Wymenga, Machteld; Kulik, Wim; Büchel, Barbara; Hennekam, Raoul C M; Largiadèr, Carlo R

    2016-04-01

    Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil, thymine and the antineoplastic agent 5-fluorouracil. Genetic variations in the gene encoding DPD (DPYD) have emerged as predictive risk alleles for 5FU-associated toxicity. Here we report an in-depth analysis of genetic variants in DPYD and their consequences for DPD activity and pyrimidine metabolites in 100 Dutch healthy volunteers. 34 SNPs were detected in DPYD and 15 SNPs were associated with altered plasma concentrations of pyrimidine metabolites. DPD activity was significantly associated with the plasma concentrations of uracil, the presence of a specific DPYD mutation (c.1905+1G>A) and the combined presence of three risk variants in DPYD (c.1905+1G>A, c.1129-5923C>G, c.2846A>T), but not with an altered uracil/dihydrouracil (U/UH2) ratio. Various haplotypes were associated with different DPD activities (haplotype D3, a decreased DPD activity; haplotype F2, an increased DPD activity). Functional analysis of eight recombinant mutant DPD enzymes showed a reduced DPD activity, ranging from 35% to 84% of the wild-type enzyme. Analysis of a DPD homology model indicated that the structural effect of the novel p.G401R mutation is most likely minor. The clinical relevance of the p.D949V mutation was demonstrated in a cancer patient heterozygous for the c.2846A>T mutation and a novel nonsense mutation c.1681C>T (p.R561X), experiencing severe grade IV toxicity. Our studies showed that the endogenous levels of uracil and the U/UH2 ratio are poor predictors of an impaired DPD activity. Loading studies with uracil to identify patients with a DPD deficiency warrants further investigation.

  16. Analysis of isocitrate dehydrogenase-1/2 gene mutations in gliomas

    Institute of Scientific and Technical Information of China (English)

    YU Lei; QI Song-tao; LI Zhi-yong

    2010-01-01

    Objective To highlight recent researches which may show promise for histomolecular classification and new treatments for gliomas.Data sources All articles cited in this review were mainly searched from PubMed, which were published in English from 1996 to 2010.Study selection Original articles and critical reviews selected were relevant to the isocitrate dehydrogenase-1/2 mutation in gliomas and other tumors.Results Extraordinary high rates of somatic mutations in isocitrate dehydrogenase-1/2 occur in the majority of World Health Organization grade Ⅱ and grade Ⅲ gliomas as well as grade Ⅳ secondary glioblastomas. Isocitrate dehydrogenase-1/2 mutations are associated with younger age at diagnosis and a better prognosis in patients with mutated tumors. The functional role of isocitrate dehydrogenase-1/2 mutations in the pathogenesis of gliomas is still unclear.Conclusion Isocitrate dehydrogenase-1/2 mutations define a specific subtype of gliomas and may have great significance in the diagnosis, prognosis, and treatment of patients with these tumors.

  17. Phosphatidylethanolamine N-methyltransferase and choline dehydrogenase gene polymorphisms are associated with human sperm concentration

    Institute of Scientific and Technical Information of China (English)

    Leandros Lazaros; Ioannis Georgiou; Nectaria Xita; Elissavet Hatzi; Apostolos Kaponis; Georgios Makrydimas; Atsushi Takenaka; Nikolaos Sofikitis; Theodoros Stefos; Konstantinos Zikopoulos

    2012-01-01

    Choline is a crucial factor in the regulation of sperm membrane structure and fluidity,and this nutrient plays an important role in the maturation and fertilizing capacity of spermatozoa.Transcripts of phosphatidylethanolamine N-methyltransferase (PEMT) and choline dehydrogenase (CHDH),two basic enzymes of choline metabolism,have been observed in the human testis,demonstrating their gene expression in this tissue.In the present study,we explored the contribution of the PEMTand CHDHgene variants to sperm parameters.Two hundred oligospermic and 250 normozoospermic men were recruited.DNA was extracted from the spermatozoa,and the PEMT -774G>C and CHDH +432G>T polymorphisms were genotyped.The genotype distribution of the PEMT -774G>C polymorphism did not differ between oligospermic and normozoospermic men.In contrast,in the case of the CHDH +432G>T polymorphism,oligospermic men presented the CHDH432G/G genotype more frequently than normozoospermic men (62% vs.42%,P<0.001).The PEMT774G/G genotype was associated with a higher sperm concentration compared to the PEMT774G/C and 774C/C genotypes in oligospermic men (12.5±5.6×106 spermatozoa ml-1 vs.8.3±5.2×106 spermatozoa ml-1,P<0.002) and normozoospermic men (81.5±55.6×106 vs.68.1±44.5× 106 spermatozoa ml-1,P<0.006).In addition,the CHDH432G/G genotype was associated with higher sperm concentration compared to CHDH432G/T and 432T/T genotypes in oligospermic (11.8± 5.1 × 106 VS.7.8±5.3 × 106spermatozoa ml-1,P<0.003)and normozoospermic men(98.6±62.2×106vs.58.8±33.6×106 spermatozoa ml-1,p<0.001).In our series,the PEMT-774G>C and CHDH +432G>T polymorphisms were associated with sperm concentration.This finding suggests a possible influence of these genes on sperm quality.

  18. Purification of the Pyruvate Dehydrogenase Multienzyme Complex of Zymomonas mobilis and Identification and Sequence Analysis of the Corresponding Genes

    Science.gov (United States)

    Neveling, Ute; Klasen, Ralf; Bringer-Meyer, Stephanie; Sahm, Hermann

    1998-01-01

    The pyruvate dehydrogenase (PDH) complex of the gram-negative bacterium Zymomonas mobilis was purified to homogeneity. From 250 g of cells, we isolated 1 mg of PDH complex with a specific activity of 12.6 U/mg of protein. Analysis of subunit composition revealed a PDH (E1) consisting of the two subunits E1α (38 kDa) and E1β (56 kDa), a dihydrolipoamide acetyltransferase (E2) of 48 kDa, and a lipoamide dehydrogenase (E3) of 50 kDa. The E2 core of the complex is arranged to form a pentagonal dodecahedron, as shown by electron microscopic images, resembling the quaternary structures of PDH complexes from gram-positive bacteria and eukaryotes. The PDH complex-encoding genes were identified by hybridization experiments and sequence analysis in two separate gene regions in the genome of Z. mobilis. The genes pdhAα (1,065 bp) and pdhAβ (1,389 bp), encoding the E1α and E1β subunits of the E1 component, were located downstream of the gene encoding enolase. The pdhB (1,323 bp) and lpd (1,401 bp) genes, encoding the E2 and E3 components, were identified in an unrelated gene region together with a 450-bp open reading frame (ORF) of unknown function in the order pdhB-ORF2-lpd. Highest similarities of the gene products of the pdhAα, pdhAβ, and pdhB genes were found with the corresponding enzymes of Saccharomyces cerevisiae and other eukaryotes. Like the dihydrolipoamide acetyltransferases of S. cerevisiae and numerous other organisms, the product of the pdhB gene contains a single lipoyl domain. The E1β subunit PDH was found to contain an amino-terminal lipoyl domain, a property which is unique among PDHs. PMID:9515924

  19. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1993-01-01

    157 mutation was verified in genomic DNA from the patient and her mother by a PCR-based assay. The mutation changes conserved arginine at position 28 (R28C) of the mature MCAD protein. The effect of the T157 mutation on MCAD protein was investigated by expression of mutant MCAD cDNA in COS-7 cells......-chain acyl-CoA dehydrogenase (SCAD) gene of a patient with SCAD deficiency, suggesting that the conserved arginine is crucial for formation of active enzyme in the straight-chain acyl-CoA dehydrogenases....

  20. Genes contributing to the development of alcoholism: an overview.

    Science.gov (United States)

    Edenberg, Howard J

    2012-01-01

    Genetic factors (i.e., variations in specific genes) account for a substantial portion of the risk for alcoholism. However, identifying those genes and the specific variations involved is challenging. Researchers have used both case-control and family studies to identify genes related to alcoholism risk. In addition, different strategies such as candidate gene analyses and genome-wide association studies have been used. The strongest effects have been found for specific variants of genes that encode two enzymes involved in alcohol metabolism-alcohol dehydrogenase and aldehyde dehydrogenase. Accumulating evidence indicates that variations in numerous other genes have smaller but measurable effects.

  1. PCR-based amplification and heterologous expression of Pseudomonas alcohol dehydrogenase genes from the soil metagenome for biocatalysis.

    Science.gov (United States)

    Itoh, Nobuya; Isotani, Kentaro; Makino, Yoshihide; Kato, Masaki; Kitayama, Kouta; Ishimota, Tuyoshi

    2014-02-05

    The amplification of useful genes from metagenomes offers great biotechnological potential. We employed this approach to isolate alcohol dehydrogenase (adh) genes from Pseudomonas to aid in the synthesis of optically pure alcohols from various ketones. A PCR primer combination synthesized by reference to the adh sequences of known Pseudomonas genes was used to amplify full-length adh genes directly from 17 samples of DNA extracted from soil. Three such adh preparations were used to construct Escherichia coli plasmid libraries. Of the approximately 2800 colonies obtained, 240 putative adh-positive clones were identified by colony-PCR. Next, 23 functional adh genes named using the descriptors HBadh and HPadh were analyzed. The adh genes obtained via this metagenomic approach varied in their DNA and amino acid sequences. Expression of the gene products in E. coli indicated varying substrate specificity. Two representative genes, HBadh-1 and HPadh-24, expressed in E. coli and Pseudomonas putida, respectively, were purified and characterized in detail. The enzyme products of these genes were confirmed to be useful for producing anti-Prelog chiral alcohols.

  2. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Soares-Fernandes, Joao P.; Ribeiro, Manuel; Magalhaes, Zita; Rocha, Jaime F. [Hospital de S. Marcos, Department of Neuroradiology, Braga (Portugal); Teixeira-Gomes, Roseli [Hospital Pedro Hispano, Division of Neuropediatrics, Matosinhos (Portugal); Cruz, Romeu [Hospital Geral de Sto. Antonio, Department of Neuroradiology, Porto (Portugal); Leijser, Lara M. [Leiden University Medical Center, Department of Paediatrics, Division of Neonatology, Leiden (Netherlands)

    2008-05-15

    Pyruvate dehydrogenase (PDH) deficiency is one of the most common causes of congenital lactic acidosis. Correlations between the genetic defect and neuroimaging findings are lacking. We present conventional and diffusion-weighted MRI findings in a 7-day-old male neonate with PDH deficiency due to a mosaicism for the R302H mutation in the PDHA1 gene. Corpus callosum dysgenesis, widespread increased diffusion in the white matter, and bilateral subependymal cysts were the main features. Although confirmation of PDH deficiency depends on specialized biochemical analyses, neonatal MRI plays a role in evaluating the pattern and extent of brain damage, and potentially in early diagnosis and clinical decision making. (orig.)

  3. Expression of the succinate dehydrogenase genes (sdhCAB) from the facultatively anaerobic paenibacillus macerans during aerobic growth

    Science.gov (United States)

    Schirawski; Hankeln; Unden

    1998-10-01

    Paenibacillus (formerly Bacillus) macerans is capable of succinate oxidation under oxic conditions and fumarate reduction under anoxic conditions. The reactions are catalyzed by different enzymes, succinate dehydrogenase (Sdh) and fumarate reductase (Frd). The genes encoding Sdh (sdhCAB) were analyzed. The gene products of sdhA and sdhB were similar to the subunits of known Sdh and Frd enzymes. The hydrophobic subunit SdhC showed close sequence similarity to the class of Sdh/Frd enzymes containing diheme cytochrome b. From the sdhCAB gene cluster two transcripts were produced, one comprising sdhCAB, the other sdhAB. The transcripts were found only during aerobic growth, and the amount was directly proportional to Sdh activity, but inversely proportional to Frd activity.

  4. Ciona intestinalis as a Marine Model System to Study Some Key Developmental Genes Targeted by the Diatom-Derived Aldehyde Decadienal

    Directory of Open Access Journals (Sweden)

    Anna Lettieri

    2015-03-01

    Full Text Available The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazing. The cell targets of these compounds remain largely unknown. Here we identify some of the genes targeted by the diatom PUA 2-trans-4-trans-decadienal (DD using the tunicate Ciona intestinalis. The tools, techniques and genomic resources available for Ciona, as well as the suitability of Ciona embryos for medium-to high-throughput strategies, are key to their employment as model organisms in different fields, including the investigation of toxic agents that could interfere with developmental processes. We demonstrate that DD can induce developmental aberrations in Ciona larvae in a dose-dependent manner. Moreover, through a preliminary analysis, DD is shown to affect the expression level of genes involved in stress response and developmental processes.

  5. Ciona intestinalis as a marine model system to study some key developmental genes targeted by the diatom-derived aldehyde decadienal.

    Science.gov (United States)

    Lettieri, Anna; Esposito, Rosaria; Ianora, Adrianna; Spagnuolo, Antonietta

    2015-03-17

    The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes) induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazing. The cell targets of these compounds remain largely unknown. Here we identify some of the genes targeted by the diatom PUA 2-trans-4-trans-decadienal (DD) using the tunicate Ciona intestinalis. The tools, techniques and genomic resources available for Ciona, as well as the suitability of Ciona embryos for medium-to high-throughput strategies, are key to their employment as model organisms in different fields, including the investigation of toxic agents that could interfere with developmental processes. We demonstrate that DD can induce developmental aberrations in Ciona larvae in a dose-dependent manner. Moreover, through a preliminary analysis, DD is shown to affect the expression level of genes involved in stress response and developmental processes.

  6. CLONING, SEQUENCING AND EXPRESSION STUDIES OF THE GENES ENCODING AMICYANIN AND THE BETA-SUBUNIT OF METHYLAMINE DEHYDROGENASE FROM THIOBACILLUS-VERSUTUS

    NARCIS (Netherlands)

    UBBINK, M; VANKLEEF, MAG; KLEINJAN, DJ; HOITINK, CWG; HUITEMA, F; BEINTEMA, JJ; DUINE, JA; CANTERS, GW

    1991-01-01

    The genes encoding amicyanin and the beta-subunit of methylamine dehydrogenase (MADH) from Thiobacillus versutus have been cloned and sequenced. The organization of these genes makes it likely that they are coordinately expressed and it supports earlier findings that the blue copper protein amicyani

  7. Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis.

    Science.gov (United States)

    Ngo, Ho-Phuong-Thuy; Hong, Seung-Hye; Hong, Myoung-Ki; Pham, Tan-Viet; Oh, Deok-Kun; Kang, Lin-Woo

    2013-09-01

    Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.

  8. RNA expression and chromosomal location of the mouse long-chain acyl-CoA dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Hinsdale, M.E.; Farmer, S.C.; Hamm, D.A.; Tolwani, R.J.; Wood, P.A. [Univ. of Alabama, Birmingham, AL (United States)] [and others

    1995-07-20

    The cDNA for mouse long-chain acyl-CoA dehydrogenase (Acadl, gene symbol; LCAD, enzyme) was cloned and characterized. The cDNA was obtained by library screening and reverse transcription-polymerase chain reaction (RT-PCR). The deduced amino acid sequence showed a high degree of homology to both the rat and the human LCAD sequence. Northern analysis of multiple tissues using the mouse Acadl cDNA as a probe showed two bands in all tissues examined. We found a total of three distinct mRNAs for Acadl. These three mRNAs were encoded by a single gene that we mapped to mouse chromosome 1. The three transcripts differed in the 3{prime} untranslated region due to use of alternative polyadenylation sites. Quantitative evaluation of a multitissue Northern blot showed a varied ratio of the larger transcript as compared with the smaller transcripts. 40 refs., 6 figs., 1 tab.

  9. Nucleotide sequence of the GDH gene coding for the NADP-specific glutamate dehydrogenase of Saccharomyces cerevisiae.

    Science.gov (United States)

    Nagasu, T; Hall, B D

    1985-01-01

    The isolation of the Saccharomyces cerevisiae gene for NADP-dependent glutamate dehydrogenase (NADP-GDH) by cross hybridization to the Neurospora crassa am gene, known to encode for NADP-GDH is described. Two DNA fragments selected from a yeast genomic library in phage lambda gt11 were shown by restriction analysis to share 2.5 kb of common sequence. A yeast shuttle vector (CV13) carrying either to the cloned fragments complements the gdh- strain of S. cerevisiae and directs substantial overproduction of NADP-GDH. One of the cloned fragments was sequenced, and the deduced amino acid (aa) sequence of the yeast NADP-GDH is 64% homologous to N. crassa, 51% to Escherichia coli and 24% to bovine NADP-GDHs.

  10. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus.

    Science.gov (United States)

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-03-01

    Developing efficient native promoters is important for improving recombinant protein expression by fungal genetic engineering. The promoter region of glyceraldehyde-3-phosphate dehydrogenase gene in Pleurotus ostreatus (Pogpd) was isolated and optimized by upstream truncation. The activities of these promoters with different lengths were further confirmed by fluorescence, quantitative real-time PCR and Western blot analysis. A truncated Pogpd-P2 fragment (795 bp) drove enhanced green fluorescence protein (egfp) gene expression in P. ostreatus much more efficiently than full-length Pogpd-P1. Further truncating Pogpd-P2 to 603, 403 and 231 bp reduced the eGFP expression significantly. However, the 403-bp fragment between -356 bp and the start codon was the minimal but sufficient promoter element for eGFP expression. Compact native promoters for genetic engineering of P. ostreatus were successfully developed and validated in this study. This will broaden the preexisting repertoire of fungal promoters for biotechnology application.

  11. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  12. Characterization Analysis of Response of Alcohol Dehydrogenase Gene (ADH1 in Coix lacroyma>/em> jobi L. to Waterlogging Stress

    Directory of Open Access Journals (Sweden)

    Daqing-chen

    2012-12-01

    Full Text Available The aim of this study was focused on response of Alcohol Dehydrogenase gene (ADH1 in Coix to waterlogging stress. Based on the conserved sequence of Alcphol Dehydrogenase (ADH1 gene in maize, rice, and wheat, primers were designed to isolate theADH1 product. The full-length sequence of cDNA was firstly cloned by using RACE technology. The acquired gene contains an open reading frame (ORF, DQ455071.2 of 1140 bp and encodes 379 amino acids residues with the molecular weight and theoretical isoelectric of 40.965 and 6.13 KD, respectively. The BlastN/P analysis revealed that the sequence was highly homologous with gramineous plants such as ADH1 in maize, rice, and wheat. Moreover, it could be found in the phylogenetic tree that the origin of ADH1- encoding protein was most close to gramineous plants. It was predicted that it had at least two standard transmembrane segments, and the three-dimensional structure had 54.38% consistency with the reference model of 2 fzwa. The characteristic belt of ADH1 target protein was obtained by prokaryotic expression. Semi-quantitative analysis suggested thatADH1 gene expression was induced by waterlogging, and the expression in the root tip reached the highest level after 4 h of waterlogging, while ADH enzyme activity was also increased after waterlogging and reached the highest level after 6 h. Significant difference occurred in the ADH enzyme activities at different treatment time (p<0.05. Results indicated that ADH1 was sensitive to waterlogging and took part in tolerant and adaptive process under anaerobic environment.

  13. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments.

    Directory of Open Access Journals (Sweden)

    Evan Lau

    Full Text Available The mxaF gene, coding for the large (α subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene's usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria.

  14. Overexpression of a GmCnx1 gene enhanced activity of nitrate reductase and aldehyde oxidase, and boosted mosaic virus resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    Full Text Available Molybdenum cofactor (Moco is required for the activities of Moco-dependant enzymes. Cofactor for nitrate reductase and xanthine dehydrogenase (Cnx1 is known to be involved in the biosynthesis of Moco in plants. In this work, a soybean (Glycine max L. Cnx1 gene (GmCnx1 was transferred into soybean using Agrobacterium tumefaciens-mediated transformation method. Twenty seven positive transgenic soybean plants were identified by coating leaves with phosphinothricin, bar protein quick dip stick and PCR analysis. Moreover, Southern blot analysis was carried out to confirm the insertion of GmCnx1 gene. Furthermore, expression of GmCnx1 gene in leaf and root of all transgenic lines increased 1.04-2.12 and 1.55-3.89 folds, respectively, as compared to wild type with GmCnx1 gene and in line 10 , 22 showing the highest expression. The activities of Moco-related enzymes viz nitrate reductase (NR and aldehydeoxidase (AO of T1 generation plants revealed that the best line among the GmCnx1 transgenic plants accumulated 4.25 μg g(-1 h(-1 and 30 pmol L(-1, respectively (approximately 2.6-fold and 3.9-fold higher than non-transgenic control plants.In addition, overexpression ofGmCnx1boosted the resistance to various strains of soybean mosaic virus (SMV. DAS-ELISA analysis further revealed that infection rate of GmCnx1 transgenic plants were generally lower than those of non-transgenic plants among two different virus strains tested. Taken together, this study showed that overexpression of a GmCnx1 gene enhanced NR and AO activities and SMV resistance, suggesting its important role in soybean genetic improvement.

  15. Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise fundamentally affects morphology and fertility.

    Directory of Open Access Journals (Sweden)

    Katarína Mrízová

    Full Text Available Barley is one of the most important cereal crops grown worldwide. It has numerous applications, but its utility could potentially be extended by genetically manipulating its hormonal balances. To explore some of this potential we identified gene families of cytokinin dehydrogenases (CKX and isopentenyl transferases, enzymes that respectively irreversibly degrade and synthesize cytokinin (CK plant hormones, in the raw sequenced barley genome. We then examined their spatial and temporal expression patterns by immunostaining and qPCR. Two CKX-specific antibodies, anti-HvCKX1 and anti-HvCKX9, predominantly detect proteins in the aleurone layer of maturing grains and leaf vasculature, respectively. In addition, two selected CKX genes were used for stable, Agrobacterium tumefaciens-mediated transformation of the barley cultivar Golden Promise. The results show that constitutive overexpression of CKX causes morphological changes in barley plants and prevents their transition to flowering. In all independent transgenic lines roots proliferated more rapidly and root-to-shoot ratios were higher than in wild-type plants. Only one transgenic line, overexpressing CKX under the control of a promoter from a phosphate transporter gene, which is expressed more strongly in root tissue than in aerial parts, yielded progeny. Analysis of several T1-generation plants indicates that plants tend to compensate for effects of the transgene and restore CK homeostasis later during development. Depleted CK levels during early phases of development are restored by down-regulation of endogenous CKX genes and reinforced de novo biosynthesis of CKs.

  16. A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in "chromalveolate" members.

    Directory of Open Access Journals (Sweden)

    Kiyotaka Takishita

    Full Text Available Eukaryotes bearing red alga-derived plastids--photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia, photosynthetic stramenopiles, haptophytes, and cryptophytes--possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as "GapC1". Pioneering phylogenetic studies have indicated a single origin of the GapC1 enzymes in eukaryotic evolution, but there are two potential idiosyncrasies in the GapC1 phylogeny: Firstly, the GapC1 tree topology is apparently inconsistent with the organismal relationship among the "GapC1-containing" groups. Secondly, four stramenopile GapC1 homologues are consistently paraphyletic in previously published studies, although these organisms have been widely accepted as monophyletic. For a closer examination of the above issues, in this study GapC1 gene sampling was improved by determining/identifying nine stramenopile and two cryptophyte genes. Phylogenetic analyses of our GapC1 dataset, which is particularly rich in the stramenopile homologues, prompt us to propose a new scenario that assumes multiple, lateral GapC1 gene transfer events to explain the incongruity between the GapC1 phylogeny and the organismal relationships amongst the "GapC1-containing" groups. Under our new scenario, GapC1 genes uniquely found in photosynthetic alveolates, photosynthetic stramenopiles, haptophytes, and cryptopyhytes are not necessarily a character vertically inherited from a common ancestor.

  17. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings.

  18. The HADHSC gene encoding short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) and type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    van Hove, Els C; Hansen, Torben; Dekker, Jacqueline M;

    2006-01-01

    of the SCHAD enzyme in glucose-stimulated insulin secretion led us to the hypothesis that common variants in HADHSC on chromosome 4q22-26 might be associated with development of type 2 diabetes. In this study, we have performed a large-scale association study in four different cohorts from the Netherlands...... measure (all P > 0.1). The present study provides no evidence that the specific HADHSC variants or haplotypes examined do influence susceptibility to develop type 2 diabetes. We conclude that it is unlikely that variation in HADHSC plays a major role in the pathogenesis of type 2 diabetes in the examined......The short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) protein is involved in the penultimate step of mitochondrial fatty acid oxidation. Previously, it has been shown that mutations in the corresponding gene (HADHSC) are associated with hyperinsulinism in infancy. The presumed function...

  19. The functions of an apple cytosolic malate dehydrogenase gene in growth and tolerance to cold and salt stresses.

    Science.gov (United States)

    Yao, Yu-Xin; Dong, Qing-Long; Zhai, Heng; You, Chun-Xiang; Hao, Yu-Jin

    2011-03-01

    It is well-known that cytosolic NAD-dependent malate dehydrogenase (cyMDH; l-malate:NAD-oxidoreductase; EC 1.1.1.37) is an enzyme crucial for malic acid synthesis in the cytosol. Nothing is known about cyMDH in growth and stress tolerance. Here we characterised the role of the apple cyMDH gene (MdcyMDH, GenBank ID: DQ221207) in growth and tolerance to cold and salt stresses. MdcyMDH transcripts were highly accumulated in vigorously growing apple tissues, organs and suspension cells. In addition, MdcyMDH was sensitive to cold and salt stresses. MdcyMDH overexpression favourably contributed to cell and plant growth and conferred stress tolerance both in the apple callus and tomato. Taken together, our results indicated that MdcyMDH is involved in plant and cell growth as well as the tolerance to cold and salt stresses.

  20. The NADP-dependent glutamate dehydrogenase gene from the astaxanthin producer Xanthophyllomyces dendrorhous: use of Its promoter for controlled gene expression.

    Science.gov (United States)

    Rodríguez-Sáiz, Marta; Godio, Ramiro P; Alvarez, Vanessa; de la Fuente, Juan Luis; Martín, Juan F; Barredo, José Luis

    2009-02-01

    The gdhA gene encoding the NADP-dependent glutamate dehydrogenase (GDH) activity from Xanthophyllomyces dendrorhous has been cloned and characterized, and its promoter used for controlled gene expression in this red-pigmented heterobasidiomycetous yeast. We determined the nucleotide sequence of a 4701 bp DNA genomic fragment, showing an open reading frame of 1871 bp interrupted by five introns with fungal consensus splice-site junctions. The predicted protein (455 amino acids; 49 kDa) revealed high identity to GDHs, especially to those from the fungi Cryptococcus neoformans (70%), Sclerotinia sclerotiorum (66%), and several species of Aspergillus (66-67%). Gene phylogenies support the grouping of X. dendrorhous GDH close to those from the majority of the filamentous fungi. The promoter region of the gdhA gene (PgdhA) contains a TATA-like box and two large pyrimidine stretches. The use of PgdhA for gene expression was validated by electrotransformation of X. dendrorhous using an in-frame fusion with the hygromycin resistance gene (hygR) as a reporter. X. dendrorhous transformants were able to grow in YEME complex medium and in Czapek minimal medium supplemented with 50 microg/ml hygromycin, but gene expression in Czapek medium was repressed when using ammonium acetate as a nitrogen source. PgdhA is a valuable tool for controlled gene expression in Basidiomycetes.

  1. Effects of variant UDP-glucuronosyltransferase 1A1 gene,glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis

    Institute of Scientific and Technical Information of China (English)

    Yang-Yang Huang; Ching-Shui Huang; Sien-Sing Yang; Min-Shung Lin; May-Jen Huang; Ching-Shan Huang

    2005-01-01

    AIM: To test the hypothesis that the variant UDPglucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis.METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups,respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency.RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6TAA/A(TA)7TAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, χ2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0±6.5 and 12.7±2.9 μmol/L, respectively; P<0.001, Student's ttest).CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese.

  2. Regulatory region with putA gene of proline dehydrogenase that links to the lum and the lux operons in Photobacterium leiognathi.

    Science.gov (United States)

    Lin, J W; Yu, K Y; Chen, H Y; Weng, S F

    1996-02-27

    Nucleotide sequence of regulatory region (R & R) with putA gene (EMBL Accession No. U39227) from Photobacterium leiognathi PL741 has been determined, and the putA gene encoded amino acid sequence of proline dehydrogenase is deduced. Alignment and comparison of proline dehydrogenase of P. leiognathi with the proline dehydrogenase domain in the PutA protein of Escherichia coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that regulatory region with the putA gene is linked to the lum and lux operons in genome; the gene order is (R & R: regulatory region; ter:transcriptional terminator), whereas the R & R is the regulatory region for the lum and the lux operons, ter is the transcriptional terminator for the lum operon, and R & R(I) apparently is the regulatory region for the putA and related genes. Nucleotide sequence analysis illustrates the specific inverted repeat (SIR), cAMP-CRP consensus sequence, canonical -10/-35 promoter, putative operator and Shine-Dalgarno (SD) sequence on the regulatory region R & R(I) for the putA and related genes; it suggests that the putA and related genes are simply linked to the lum and the lux operons in genome, the regulatory region R & R(I) is independent for the putA and related genes.

  3. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome

    DEFF Research Database (Denmark)

    Banner, Jytte; Gregersen, N; Kølvraa, S

    1993-01-01

    syndrome is still a matter of controversy. The present study investigated 120 well-defined cases of sudden infant death syndrome in order to detect the frequency of the most common disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase (G985) compared with the frequency...

  4. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    of ethylmalonic acid (EMA). To define the genetic basis of SCAD deficiency and ethylmalonic aciduria in patients, we have determined the sequence of the complete coding portion of the human SCAD gene (ACADS) and all of the intron-exon boundaries. The SCAD gene is approximately 13 kb in length and consists of 10......, 990T, 1260C) constitutes an allelic variant with a frequency of 22% in the general Danish population. Using fluorescence in-situ hybridization, we confirm the localization of the human SCAD gene to the distal part of Chromosome (Chr) 12 and suggest that the SCAD gene is a single-copy gene...

  5. Disparate sequence characteristics of the Erysiphe graminis f.sp. hordei glyceraldehyde-3-phosphate dehydrogenase gene

    DEFF Research Database (Denmark)

    Christiansen, S.K.; Justesen, A.F.; Giese, H.

    1997-01-01

    to be similar for all four genes. The results of the codon-usage analysis suggest that Egh is more flexible than other fungi in the choice of nucleotides at the wobble position. Codon-usage preferences in Egh and barley genes indicate a level of difference which may be exploited to discriminate between fungal...... and plant genes in sequence mixtures. The Egh gpd promoter appears to be superior to that of the Egh beta-tubulin gene (tub2) for driving the E. coli beta-glucuronidase (GUS) gene in transformation experiments....

  6. Mutational Analyses of Glucose Dehydrogenase and Glucose-6-Phosphate Dehydrogenase Genes in Pseudomonas fluorescens Reveal Their Effects on Growth and Alginate Production.

    Science.gov (United States)

    Maleki, Susan; Mærk, Mali; Valla, Svein; Ertesvåg, Helga

    2015-05-15

    The biosynthesis of alginate has been studied extensively due to the importance of this polymer in medicine and industry. Alginate is synthesized from fructose-6-phosphate and thus competes with the central carbon metabolism for this metabolite. The alginate-producing bacterium Pseudomonas fluorescens relies on the Entner-Doudoroff and pentose phosphate pathways for glucose metabolism, and these pathways are also important for the metabolism of fructose and glycerol. In the present study, the impact of key carbohydrate metabolism enzymes on growth and alginate synthesis was investigated in P. fluorescens. Mutants defective in glucose-6-phosphate dehydrogenase isoenzymes (Zwf-1 and Zwf-2) or glucose dehydrogenase (Gcd) were evaluated using media containing glucose, fructose, or glycerol. Zwf-1 was shown to be the most important glucose-6-phosphate dehydrogenase for catabolism. Both Zwf enzymes preferred NADP as a coenzyme, although NAD was also accepted. Only Zwf-2 was active in the presence of 3 mM ATP, and then only with NADP as a coenzyme, indicating an anabolic role for this isoenzyme. Disruption of zwf-1 resulted in increased alginate production when glycerol was used as the carbon source, possibly due to decreased flux through the Entner-Doudoroff pathway rendering more fructose-6-phosphate available for alginate biosynthesis. In alginate-producing cells grown on glucose, disruption of gcd increased both cell numbers and alginate production levels, while this mutation had no positive effect on growth in a non-alginate-producing strain. A possible explanation is that alginate synthesis might function as a sink for surplus hexose phosphates that could otherwise be detrimental to the cell.

  7. 乙醛脱氢酶-1作为心肌干细胞有效标志物的实验研究%Aldehyde dehydrogenase-1 as an effective marker for cardiac stem cells

    Institute of Scientific and Technical Information of China (English)

    韦海珠; 胡琳洁; 梁冬

    2013-01-01

    目的 研究乙醛脱氢酶-1(ALDH-1)是否可以作为分选心肌干细胞(CSC)的有效标志物.方法 从裸鼠心脏分离培养细胞球,收集细胞球制成单细胞悬液,利用Aldefluor试剂结合流式细胞术来分选心脏球体细胞中的SSCloAldebr细胞(ALDH-1阳性细胞),通过增殖能力、克隆形成、表型分析及定向分化能力鉴定其干细胞(SC)的特性.结果 裸鼠心脏细胞无血清培养可形成细胞球,球体细胞中可检测到ALDH-1阳性细胞的存在;ALDH-1阳性细胞具有高增殖性、高克隆形成率及定向分化的能力,具有SC的特性.结论 裸鼠心脏中存在CSC;ALDH-1可以作为CSC有效的标志物.%Objective To investigate whether acetaldehyde dehydrogenase-1 ( ALDH-1 ) may be used as an effective marker for sorting of cardiac stem cells (CSC). Methods Cells were separated from the heart of nude mice and cultured, and then collected to prepare single cell suspension. Utilizing Aldefluor reagent in conjunction with flow cytometry, SSCloAldebr cells (ALDH-1 positive cells) were sorted from collected cardiac cells. Characteristics of the cardiac stem cells were identified by analyzing reproductive capacity, clone formation, phenotypes and oriented differentiation of the sorted cells. Results Through serum-free culture cardiac cells from the heart of nude mice formed heter-cell spheres. In spheroid cells ALDH-1 positive cells were found. ALDH-1 positive cells possessed characteristics of stem cells including high reproductive capacity, high clone forming rate and ability for oriented differentiation. Conclusion Cardiac stem cells exist in the heart of nude mice, and ALDH-1 may be used as an effective marker for cardiac stem cells.

  8. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Jin-Woo; Chin, Young-Wook; Park, Yong-Cheol; Seo, Jin-Ho

    2012-01-01

    Bioethanol is currently used as an alternative fuel for gasoline worldwide. For economic production of bioethanol by Saccharomyces cerevisiae, formation of a main by-product, glycerol, should be prevented or minimized in order to reduce a separation cost of ethanol from fermentation broth. In this study, S. cerevisiae was engineered to investigate the effects of the sole and double disruption of NADH-dependent glycerol-3-phosphate dehydrogenase 1 (GPD1) and NADPH-requiring glutamate dehydrogenase 1 (GDH1) on the production of glycerol and ethanol from glucose. Even though sole deletion of GPD1 or GDH1 reduced glycerol production, double deletion of GPD1 and GDH1 resulted in the lowest glycerol concentration of 2.31 g/L, which was 46.4% lower than the wild-type strain. Interestingly, the recombinant S. cerevisiae ∆GPD1∆GDH1 strain showed a slight improvement in ethanol yield (0.414 g/g) compared with the wild-type strain (0.406 g/g). Genetic engineering of the glycerol and glutamate metabolic pathways modified NAD(P)H-requiring metabolic pathways and exerted a positive effect on glycerol reduction without affecting ethanol production.

  9. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Directory of Open Access Journals (Sweden)

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  10. Identification of point mutations in Glucose-6-Phosphate Dehydrogenase gene in Timor Island people : A preliminary report

    Directory of Open Access Journals (Sweden)

    Widanto Hardjowasito

    2001-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD deficiency is common in malaria endemic region, however no molecular study has been performed on G6PD deficiency in Timor Island, Indonesia a malarial hyperendemic area which Proto Malay is the majority of the people in that island. To observe the frequency and molecular type of mutations in G6PD deficient Proto Malay people, 118 native people were screened using formazan ring test. Mutation in the G6PD gene were determined by MPTP (Multiple PCR using Multiple Tandem Forward Primers and a common Reserve Pimer method and confirmed by automatic sequencer. This study shows that three males have lower G6PD activity. Using MPTP method, a point mutation could be indicated in the two cases. Sequencing of the amplified products in 2 G6PD patients disclosed mutations of T383C in exon 5 and C 592 T in exon 6 in respective case. Our result documents point mutations in exon 5 and exon 6 in the G6PD gene of two Proto Malay people in Timor. These mutations are common in Asia region. (Med J Indones 2001; 10: 210-3Keywords: mutations, G6PD, Proto Malay.

  11. Genetic diversity of Echinococcus granulosus in southwest China determined by the mitochondrial NADH dehydrogenase subunit 2 gene.

    Science.gov (United States)

    Wang, Jiahai; Wang, Ning; Hu, Dandan; Zhong, Xiuqin; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    We evaluated genetic diversity and structure of Echinococcus granulosus by analyzing the complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene in 51 isolates of E. granulosus sensu stricto metacestodes collected at three locations in this region. We detected 19 haplotypes, which formed a distinct clade with the standard sheep strain (G1). Hence, all 51 isolates were identified as E. granulosus sensu stricto (G1-G3). Genetic relationships among haplotypes were not associated with geographical divisions, and fixation indices (Fst) among sampling localities were low. Hence, regional populations of E. granulosus in the southwest China are not differentiated, as gene flow among them remains high. This information is important for formulating unified region-wide prevention and control measures. We found large negative Fu's Fs and Tajima's D values and a unimodal mismatch distribution, indicating that the population has undergone a demographic expansion. We observed high genetic diversity among the E. granulosus s. s. isolates, indicating that the parasite population in this important bioregion is genetically robust and likely to survive and spread. The data from this study will prove valuable for future studies focusing on improving diagnosis and prevention methods and developing robust control strategies.

  12. Deletion of the aceE gene (encoding a component of pyruvate dehydrogenase) attenuates Salmonella enterica serovar Enteritidis.

    Science.gov (United States)

    Pang, Ervinna; Tien-Lin, Chang; Selvaraj, Madhan; Chang, Jason; Kwang, Jimmy

    2011-10-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major food-borne pathogen. From a transposon insertion mutant library created previously using S. Enteritidis 10/02, one of the mutants was identified to have a 50% lethal dose (LD(50) ) at least 100 times that of the parental strain in young chicks, with an attenuation in a poorly studied gene encoding a component of pyruvate dehydrogenase, namely the aceE gene. Evaluation of the in vitro virulence characteristics of the ΔaceE∷kan mutant revealed that it was less able to invade epithelial cells, less resistant to reactive oxygen intermediate, less able to survive within a chicken macrophage cell line and had a retarded growth rate compared with the parental strain. Young chicks vaccinated with 2 × 10(9) CFU of the ΔaceE∷kan mutant were protected from the subsequent challenge of the parental strain, with the mutant colonized in the liver and spleen in a shorter time than the group infected with the parental strain. In addition, compared with the parental strain, the ΔaceE∷kan mutant did not cause persistent eggshell contamination of vaccinated hens.

  13. A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2009-02-01

    Full Text Available Abstract Background Analyses based on phylogenetic and ultrastructural data have suggested that euglenids (such as Euglena gracilis, trypanosomatids and diplonemids are members of a monophyletic lineage termed Euglenozoa. However, many uncertainties are associated with phylogenetic reconstructions for ancient and rapidly evolving groups; thus, rare genomic characters become increasingly important in reinforcing inferred phylogenetic relationships. Findings We discovered that the iron-sulfur subunit (SdhB of mitochondrial succinate dehydrogenase is encoded by a split and rearranged nuclear gene in Euglena gracilis and trypanosomatids, an example of a rare genomic character. The two subgenic modules are transcribed independently and the resulting mRNAs appear to be independently translated, with the two protein products imported into mitochondria, based on the presence of predicted mitochondrial targeting peptides. Although the inferred protein sequences are in general very divergent from those of other organisms, all of the required iron-sulfur cluster-coordinating residues are present. Moreover, the discontinuity in the euglenozoan SdhB sequence occurs between the two domains of a typical, covalently continuous SdhB, consistent with the inference that the euglenozoan 'half' proteins are functional. Conclusion The discovery of this unique molecular marker provides evidence for the monophyly of Euglenozoa that is independent of evolutionary models. Our results pose questions about the origin and timing of this novel gene arrangement and the structure and function of euglenozoan SdhB.

  14. Metabolite Fingerprinting in Transgenic Nicotiana tabacum Altered by the Escherichia coli Glutamate Dehydrogenase Gene

    Directory of Open Access Journals (Sweden)

    R. Mungur

    2005-01-01

    Full Text Available With about 200 000 phytochemicals in existence, identifying those of biomedical significance is a mammoth task. In the postgenomic era, relating metabolite fingerprints, abundances, and profiles to genotype is also a large task. Ion analysis using Fourier transformed ion cyclotron resonance mass spectrometry (FT-ICR-MS may provide a high-throughput approach to measure genotype dependency of the inferred metabolome if reproducible techniques can be established. Ion profile inferred metabolite fingerprints are coproducts. We used FT-ICR-MS-derived ion analysis to examine gdhA (glutamate dehydrogenase (GDH; EC 1.4.1.1 transgenic Nicotiana tabacum (tobacco carrying out altered glutamate, amino acid, and carbon metabolisms, that fundamentally alter plant productivity. Cause and effect between gdhA expression, glutamate metabolism, and plant phenotypes was analyzed by 13NH4+ labeling of amino acid fractions, and by FT-ICR-MS analysis of metabolites. The gdhA transgenic plants increased 13N labeling of glutamate and glutamine significantly. FT-ICR-MS detected 2 012 ions reproducible in 2 to 4 ionization protocols. There were 283 ions in roots and 98 ions in leaves that appeared to significantly change abundance due to the measured GDH activity. About 58% percent of ions could not be used to infer a corresponding metabolite. From the 42% of ions that inferred known metabolites we found that certain amino acids, organic acids, and sugars increased and some fatty acids decreased. The transgene caused increased ammonium assimilation and detectable ion variation. Thirty-two compounds with biomedical significance were altered in abundance by GDH including 9 known carcinogens and 14 potential drugs. Therefore, the GDH transgene may lead to new uses for crops like tobacco.

  15. The Analysis of Polymorphism of Alcohol Dehydrogenase 3 (ADH3) Gene and Influence of Liver Function Status in Indonesia.

    Science.gov (United States)

    Suhartini; Mustofa; Nurhantari, Yudha; Rianto, Bambang Udji Djoko

    2017-01-31

    Indonesian culture actually has no historical record of behaviors in consuming alcohol, but there are many recent reports of alcohol abuse among Asian people involving their traditional drink. In genotype studies, the damage of the liver caused by consuming alcohol is influenced by the presence of the polymorphism enzyme gene. The lack of study regarding such topic is a signal to further investigate ADH3 gene distribution and its effect on liver function status. The total of 197 research subjects of Javanese descent received alcohol dehydrogenase 3 (ADH3) genetic polymorphism and liver status tests in the city of Yogyakarta, Indonesian. An analytical study with a cross-sectional design was then conducted on the subjects, with the resulting isolated DNAs amplified through polymerase chain reaction (PCR). The genotype of ADH3 was determined by means of restriction fragment length polymorphism (RFLP) using Ssp1 restricting enzyme. Liver function status was assessed by measuring serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvate transaminase (SGPT) and gamma glutamyl transferase (GGT) using a photometric system. Gene types of ADH3*1 (2.1%), ADH3*2 (82.7%) and ADH3*1/3*2 (15.2%) on the subjects were concluded, finding that there is no difference between the gender. In conclusion most of the ADH3 gene polymorphism of the subjects were ADH3*2 (82.7%). The influence of genetic polymorphisms on the status of liver function in the subjects showed significant difference according to GGT measurement, but the same cannot be said on the other two values measuring SGOT and SGPT.

  16. 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression.

    Science.gov (United States)

    Wetzel, Jana; Scheibner, Olaf; Burmester, Anke; Schimek, Christine; Wöstemeyer, Johannes

    2009-01-01

    The NADP-dependent 4-dihydrotrisporin-dehydrogenase is a (-) mating-type-specific enzyme in the pathway from beta-carotene to trisporic acid. This substance and its isomers and derivatives represent the general system of sexual communication in zygomycetes. The (-) mating type of Mucor mucedo was stimulated by trisporic acid and the enzyme was purified by ion exchange and affinity chromatography. Several peptides of the 26-kDa protein, digested with trypsin, were sequenced by mass spectrometry. Oligonucleotides based on protein sequence data were used for PCR amplification of genomic DNA. The primary PCR fragment was sequenced and the complete gene, TSP2, was isolated. A labeled TSP2 hybridization probe detects a single-copy gene in the genome of M. mucedo. Northern blot analysis with RNAs from different growth stages reveals that the expression of the gene depends on the developmental stage of the mycelium in both mating types of M. mucedo. At the enzyme level, activity is found exclusively in the (-) mating type. However, renaturation of proteins in sodium dodecyl sulfate-containing gels revealed the TSP2 gene product in both mating types. Analyzing the protein sequence places the enzyme in the short chain dehydrogenase superfamily. Thus, it has an evolutionary origin distinct from that of the previously isolated 4-dihydromethyltrisporate dehydrogenase, which belongs to the aldo/keto reductase superfamily. Apart from the TSP2 genes in the three sequenced zygomycetous genomes (Phycomyces blakesleeanus, Rhizopus oryzae, and Mucor circinelloides), the closest relative is the Myxococcus xanthus CsgA gene product, which is also a short chain dehydrogenase, involved in C signaling and fruiting body formation.

  17. 4-Dihydrotrisporin-Dehydrogenase, an Enzyme of the Sex Hormone Pathway of Mucor mucedo: Purification, Cloning of the Corresponding Gene, and Developmental Expression▿

    Science.gov (United States)

    Wetzel, Jana; Scheibner, Olaf; Burmester, Anke; Schimek, Christine; Wöstemeyer, Johannes

    2009-01-01

    The NADP-dependent 4-dihydrotrisporin-dehydrogenase is a (−) mating-type-specific enzyme in the pathway from β-carotene to trisporic acid. This substance and its isomers and derivatives represent the general system of sexual communication in zygomycetes. The (−) mating type of Mucor mucedo was stimulated by trisporic acid and the enzyme was purified by ion exchange and affinity chromatography. Several peptides of the 26-kDa protein, digested with trypsin, were sequenced by mass spectrometry. Oligonucleotides based on protein sequence data were used for PCR amplification of genomic DNA. The primary PCR fragment was sequenced and the complete gene, TSP2, was isolated. A labeled TSP2 hybridization probe detects a single-copy gene in the genome of M. mucedo. Northern blot analysis with RNAs from different growth stages reveals that the expression of the gene depends on the developmental stage of the mycelium in both mating types of M. mucedo. At the enzyme level, activity is found exclusively in the (−) mating type. However, renaturation of proteins in sodium dodecyl sulfate-containing gels revealed the TSP2 gene product in both mating types. Analyzing the protein sequence places the enzyme in the short chain dehydrogenase superfamily. Thus, it has an evolutionary origin distinct from that of the previously isolated 4-dihydromethyltrisporate dehydrogenase, which belongs to the aldo/keto reductase superfamily. Apart from the TSP2 genes in the three sequenced zygomycetous genomes (Phycomyces blakesleeanus, Rhizopus oryzae, and Mucor circinelloides), the closest relative is the Myxococcus xanthus CsgA gene product, which is also a short chain dehydrogenase, involved in C signaling and fruiting body formation. PMID:18931040

  18. Identification and bioinformatics analysis of lactate dehydrogenase genes fromEchinococcus granulosus

    Institute of Scientific and Technical Information of China (English)

    Gang Lu; Yajun Lu; Lihua Li; Lixian Wu; Zhigang Fan; Dazhong Shi; Hu Wang; Xiumin Han

    2010-01-01

    Objective:To identify full length cDNA sequence of lactate dehydrogenase(LDH) from adultEchinococcus granulosus (E. granulosus) and to predict the structure and function of its encoding protein using bioinformatics methods.Methods: With the help ofNCBI, EMBI, Expasy and other online sites, the open reading frame (ORF), conserved domain, physical and chemical parameters, signal peptide, epitope, topological structures of the protein sequences were predicted and a homology tertiary structure model was created; VectorNTI software was used for sequence alignment, phylogenetic tree construction and tertiary structure prediction. Results: The target sequence was1 233 bp length with a996 bp biggestORFencoding331 amino acids protein with typicalL-LDH conserved domain. It was confirmed as full length cDNA of LDH fromE. granulosus and named asEgLDH (GenBank accession number:HM748917). The predicted molecular weight and isoelectric point of the deduced protein were3 5516.2Da and6.32 respectively. Compared withLDHs fromTaenia solium, Taenia saginata asiatica, Spirometra erinaceieuropaei, Schistosoma japonicum, Clonorchis sinensis and human, it showed similarity of 86%, 85%, 55%, 58%, 58% and 53%, respectively. EgLDH contained3putative transmembrane regions and4 major epitopes (54aa-59aa,81aa-87aa,97aa-102aa,307aa-313aa), the latter were significant different from the corresponding regions of humanLDH. In addition, someNAD and substrate binding sites located on epitopes54aa-59aa and97aa-102aa, respectively. Tertiary structure prediction showed that3 key catalytic residues105R, 165D and192H forming a catalytic center near the epitope97aa-102aa, mostNAD and substrate binding sites located around the center.Conclusions: The full length cDNA sequences of EgLDH were identified. It encoded a putative transmembrane protein which might be an ideal target molecule for vaccine and drugs.

  19. Isolation and characterization of an inducible NAD-dependent butyraldehyde dehydrogenase from clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, W.; Duerre, P. [Universitaet Ulm (Germany)

    1996-12-31

    A NAD-dependent butyraldehyde dehydrogenase (BAD) has been purified from C. acetobutylicum DSM 792 and DSM 173 1. This key enzyme of butanol production, catalyzing the conversion of butyryl-CoA to butyraldehyde, was induced shortly before the onset of butanol production and proved to be oxygen-sensitive. A one step purification procedure on reactive green 19 allowed to purify the enzyme to homogeneity. The purified protein was found to be extremely unstable and could only partially be stabilized by addition of mercaptoethanol and storage below -20{degrees}C. The enzyme subunit had a molecular mass of 39.5 kDa. In the reverse reaction (butyryl-CoA-forming) the apparent pH optimum was 9.75 and Vmax was significantly higher with butyraldehyde and propionaldehyde than with acetaldehyde. BAD could also use NADP+, but NAD+ was the preferred coenzyme for the reverse reaction. The N-terminal amino acid sequence of the C. acetobutylicurn DSM 792 protein showed high homology to glyceraldehyde-3-phosphate dehydrogenases (GAP), especially to the protein of C. pasteurianum. Genomic libraries of C. acetobutylicum DSM 792 were screened by hybridization using PCR-generated heterologous probes encoding the gap gene of C. pasteurianum. Sequence analysis of the positive clones revealed high homology, but no identity to the N-terminal amino acid sequence of the butyraldehyde dehydrogenase. Thus, BAD from C. acetobutylicum is distinctly different from other reported aldehyde dehydrogenases with butyraldehyde dehydrogenase activity.

  20. 4-Dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene.

    Science.gov (United States)

    Czempinski, K; Kruft, V; Wöstemeyer, J; Burmester, A

    1996-09-01

    We have purified the NADP-dependent 4-dihydromethyltrisporate dehydrogenase from the zygomycete Mucor mucedo. The enzyme is involved in the biosynthesis of trisporic acid, the sexual hormone of zygomycetes, which induces the first steps of zygophore development. Protein was obtained from the (-) mating type of M. mucedo after induction with trisporic acid, and purified by gel filtration and affinity chromatography steps. On SDS-PAGE a band with an apparent molecular mass of 33 kDa was ascribed to the enzyme. After transferring onto PVDF membranes the protein was digested with endoprotease Lys-C, and several peptides were sequenced. Oligonucleotides derived from protein sequence data were used for PCR amplification of genomic M. mucedo DNA. The PCR fragment was used as probe for isolation of the corresponding cDNA and complete genomic DNA clones. Comparison of protein and DNA sequence data showed that the cloned fragment corresponded to the purified protein. Search for similarity with protein sequences of the Swiss-Prot database revealed a relationship to enzymes belonging to the aldo/keto reductase superfamily. Southern-blot analysis of genomic DNA with the labelled cloned fragment detected a single-copy gene in both mating types of M. mucedo. PCR with genomic DNA from other zygomycetes gave rise to several fragments. Hybridization analysis with the cloned M. mucedo fragment showed that a fragment of similar length cross-hybridized in Blakeslea trispora (Choanephoraceae) as well as in Parasitella parasitica and Absidia glauca (Mucoraceae). The promoter region of the gene contains DNA elements with similarity to a cAMP-regulated gene of Dictyostelium discoideum.

  1. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression.

    Science.gov (United States)

    Macková, Hana; Hronková, Marie; Dobrá, Jana; Turečková, Veronika; Novák, Ondřej; Lubovská, Zuzana; Motyka, Václav; Haisel, Daniel; Hájek, Tomáš; Prášil, Ilja Tom; Gaudinová, Alena; Štorchová, Helena; Ge, Eva; Werner, Tomáš; Schmülling, Thomas; Vanková, Radomíra

    2013-07-01

    Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms.

  2. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis

    Institute of Scientific and Technical Information of China (English)

    朱冰; 俞冠翘; 朱家璧; 沈善炯

    2000-01-01

    The gdhA genes of IRC-3 GDH strain and IRC-8 GDH+ strain were cloned, and they both successfully complemented the nutritional lesion of an E. coli glutamate auxotroph, Q100 GDH". However, the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3. The gdhA genes of the wild type and mutant origin were sequenced separately. No nucleotide difference was detected between them. Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant. Additionally, no GDH inhibitor was found in the wild type strain IRC-3. It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression. Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the family I -type hexameric protein, while the GDH of Bacillus subtilis belongs to family II.

  3. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gdhA genes of IRC-3 GDH-strain and IRC-8 GDH+ strain were cloned,and they both successfully complemented the nutritional lesion of an E.coli glutamate auxotroph,Q100 GDH-.However,the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3.The gdhA genes of the wild type and mutant origin were sequenced separately.No nucleotide difference was detected between them.Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant.Additionally,no GDH inhibitor was found in the wild type strain IRC-3.It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression.Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the familyⅠ-type hexameric protein,while the GDH of Bacillus subtilis belongs to family II.

  4. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    Science.gov (United States)

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-02

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  5. The genome of Vibrio cholerae contains two different and functional genes for aspartate semialdehyde dehydrogenases

    Directory of Open Access Journals (Sweden)

    Karen Marrero

    2004-01-01

    Full Text Available En Vibrio cholerae se identificaron dos genes asd, los cuales fueron clonados en Escherichia coli c6097, por complementación del defecto de la deshidrogenasa del aspartato semialdehído (Asd. La actividad de la Asd fue también confirmada in vitro para cada producto génico. Se determinaron las secuencias nucleotídicas y los polipéptidos predichos, los cuales fueron comparados con las secuencias depositadas en las bases de datos Genbank y Swissprot, respectivamente. Cada producto génico pertenece a uno de los dos grupos de homología encontrados para Asd en la base de datos Swissprot. Los genes asd descritos en este trabajo corresponden a los genes VC2036 y VC2107 del cromosoma I del genoma de V. cholerae depositado en el Instituto de Investigaciones Genómicas (TIGR de EE.UU. Se obtuvieron mutantes de cada gen, pero el doble mutante solo se obtuvo en presencia de un gen asd complementario en trans. Estos mutantes fueron caracterizados microbiológicamente, así como su comportamiento in vivo e in vitro, en modelos animales y bajo condiciones de laboratorio.

  6. Clonal diversity of the glutamate dehydrogenase gene in Giardia duodenalis from Thai Isolates: evidence of genetic exchange or Mixed Infections?

    Directory of Open Access Journals (Sweden)

    Saksirisampant Wilai

    2011-09-01

    Full Text Available Abstract Background The glutamate dehydrogenase gene (gdh is one of the most popular and useful genetic markers for the genotypic analysis of Giardia duodenalis (syn. G. lamblia, G. intestinalis, the protozoan that widely causes enteric disease in humans. To determine the distribution of genotypes of G. duodenalis in Thai populations and to investigate the extent of sequence variation at this locus, 42 fecal samples were collected from 3 regions of Thailand i.e., Central, Northern, and Eastern regions. All specimens were analyzed using PCR-based genotyping and recombinant subcloning methods. Results The results showed that the prevalence of assemblages A and B among these populations was approximately equal, 20 (47.6% and 22 (52.4%, respectively. Sequence analysis revealed that the nucleotide diversity of assemblage B was significantly greater than that in assemblage A. Among all assemblage B positive specimens, the allelic sequence divergence within isolates was detected. Nine isolates showed mixed alleles, ranged from three to nine distinct alleles per isolate. Statistical analysis demonstrated the occurrence of genetic recombination within subassemblages BIII and BIV was likely. Conclusion This study supports increasing evidence that G. duodenalis has the potential for genetic exchange.

  7. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    Science.gov (United States)

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124.

  8. Studies on lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a firm basis was laid to start site directed

  9. Cloning, sequencing, and functional analysis of the 5'-flanking region of the rat 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase gene.

    Science.gov (United States)

    Lin, H K; Penning, T M

    1995-09-15

    Rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase (3 alpha-HSD/DD) is a member of the aldo-keto reductase gene superfamily. It displays high constitutive expression and inactivates circulating steroid hormones and suppresses the formation of polycyclic aromatic hydrocarbon anti- and syn-diol-epoxides (ultimate carcinogens). To elucidate mechanisms responsible for constitutive expression of the 3 alpha-HSD/DD gene a rat genomic library obtained from adult Sprague-Dawley female liver (HaeIII partial digest) was screened, using a probe corresponding to the 5'-end of the cDNA (-15 to +250), and a 15.8-kb genomic clone was isolated. Sequencing revealed that 6.3 kb contained exon 1 (+16 to +138 bp) plus additional introns and exons. The transcription start site (+1) was located by primer extension analysis, and the initiation codon, ATG, was located at +55 bp. The remaining 9.5 kb represented the 5'-flanking region of the rat 3 alpha-HSD/DD gene. A 1.6-kb fragment of this region was sequenced. A TATTTAA sequence (TATA box) was found at 33 bp upstream from the major transcription start site. cis-acting elements responsible for the constitutive expression of the rat 3 alpha-HSD/DD gene were located on the 5'-flanking region by transient transfection of reporter-gene (chloramphenicol acetyl transferase, CAT) constructs into human hepatoma cells (HepG2). CAT assays identified the basal promoter between (-199 and +55 bp), the presence of a proximal enhancer (-498 to -199 bp) which stimulated CAT activity 6-fold, the existence of a powerful silencer (-755 to -498 bp), and a strong distal enhancer (-4.0 to -2.0 kb) which increased CAT activity by 20-40-fold. A computer search of available consensus sequences for trans-acting factors revealed that a cluster of Oct-sites were uniquely located in the silencer region. Using the negative response element (-797 to -498 bp) as a probe and nuclear extracts from HepG2 cells, three bands were identified by gel mobility shift

  10. Ciona intestinalis as a Marine Model System to Study Some Key Developmental Genes Targeted by the Diatom-Derived Aldehyde Decadienal

    OpenAIRE

    Anna Lettieri; Rosaria Esposito; Adrianna Ianora; Antonietta Spagnuolo

    2015-01-01

    The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes) induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazin...

  11. Regulation of hexokinase and glucose-6-phosphate dehydrogenase genes expression at norm and pathology

    Directory of Open Access Journals (Sweden)

    Marunych R. Yu.

    2013-03-01

    Full Text Available The increasing of glycolysis in tumors under aerobic conditions is known as Warburg phenomenon; the activity of the pentose phosphate pathway increases also significantly. The pentose phosphate pathway and glycolysis, especially their first steps, and the regulatory enzyme 6-phosphofrukto-2-kinase/fructose-2,6-bisphosphatase are influenced by cell signaling systems such as the system of circadian clock, the system of hypoxia-inducible factor and unfolded protein response system, that allow malignant cells to adapt to stress factors such as hypoxia, ischemia and influence of low molecular agents. The review enlightens the impact of signaling systems on the key enzymes of glycolysis and the pentose phosphate pathway gene expression in normal cells and in malignant cells, and their importance for survival of malignant cells under stress conditions.

  12. Genomic clones of Aspergillus nidulans containing alcA, the structural gene for alcohol dehydrogenase and alcR, a regulatory gene for ethanol metabolism.

    Science.gov (United States)

    Doy, C H; Pateman, J A; Olsen, J E; Kane, H J; Creaser, E H

    1985-04-01

    Our aim was to obtain from Aspergillus nidulans a genomic bank and then clone a region we expected from earlier genetic mapping to contain two closely linked genes, alcA, the structural gene for alcohol dehydrogenase (ADH) and alcR, a positive trans-acting regulatory gene for ethanol metabolism. The expression of alcA is repressed by carbon catabolites. A genomic restriction fragment characteristic of the alcA-alcR region was identified, cloned in pBR322, and used to select from a genomic bank in lambda EMBL3A three overlapping clones covering 24 kb of DNA. Southern genomic analysis of wild-type, alcA and alcR mutants showed that the mutants contained extra DNA at sites near the center of the cloned DNA and are close together, as expected for alcA and alcR. Transcription from the cloned DNA and hybridization with a clone carrying the Saccharomyces cerevisiae gene for ADHI (ADC1) are both confined to the alcA-alcR region. At least one of several species of mature mRNA is about 1 kb, the size required to code for ADH. For all species, carbon catabolite repression overrides control by induction. The overall characteristics of transcription, hybridization to ADC1 and earlier work suggest that alcA consists of a number of exons and/or that the alcA-alcR region represents a cluster of alcA-related genes or sequences.

  13. Characterization of an Arxula adeninivorans alcohol dehydrogenase involved in the metabolism of ethanol and 1-butanol.

    Science.gov (United States)

    Kasprzak, Jakub; Rauter, Marion; Riechen, Jan; Worch, Sebastian; Baronian, Kim; Bode, Rüdiger; Schauer, Frieder; Kunze, Gotthard

    2016-05-01

    In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans.

  14. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae.

    OpenAIRE

    Miller, S. M; Magasanik, B

    1991-01-01

    We analyzed the upstream region of the GDH2 gene, which encodes the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae, for elements important for the regulation of the gene by the nitrogen source. The levels of this enzyme are high in cells grown with glutamate as the sole source of nitrogen and low in cells grown with glutamine or ammonium. We found that this regulation occurs at the level of transcription and that a total of six sites are required to cause a CYC1-lacZ fusion to...

  15. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82.

    OpenAIRE

    Takizawa, N; Kaida, N; Torigoe, S; Moritani,T.; Sawada, T.; Satoh, S.; Kiyohara, H

    1994-01-01

    Naphthalene and phenanthrene are transformed by enzymes encoded by the pah gene cluster of Pseudomonas putida OUS82. The pahA and pahB genes, which encode the first and second enzymes, dioxygenase and cis-dihydrodiol dehydrogenase, respectively, were identified and sequenced. The DNA sequences showed that pahA and pahB were clustered and that pahA consisted of four cistrons, pahAa, pahAb, pahAc, and pahAd, which encode ferredoxin reductase, ferredoxin, and two subunits of the iron-sulfur prot...

  16. Expression of aldehyde dehydrogenase 1 in colon cancer

    Institute of Scientific and Technical Information of China (English)

    Yi Hou; Yi-Yi Liu; Xiao-Kun Zhao

    2013-01-01

    Objective: To study the expression of ALDH1 in colon cancer and its clinical significance. Methods: The expression of ALDH1 was examined in 98 surgical specimens of primary colonic carcinoma and 15 normal colon tissues with immunohistochemistry method. The correlations of the expression with clinicopathological parameters and prognosis of colon cancer were analyzed.Results:The positive rate of expression of ALDH1 was 76.5% (75/98) in the cancer tissues and 13.3% (2/15) in normal colon tissues. There were an obvious statistical difference (P<0.05) between the two groups. The ALDH1 expression was significantly correlated with the histological grade, TNM stages and lymph node metastasis in colon cancer (P<0.05). It was also related with patients’ survival time, those with positive expressions had a poor prognosis (P<0.05). Conclusions: The results suggeste that the overexpression of ALDH1 plays important roles in proliferation and progression in colon cancer, the ALDH1 may be a valuable marker to predict the biological behavior and trend of metastasis of colon cancer.

  17. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family.

    Science.gov (United States)

    Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2012-11-01

    Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described

  18. Molecular cloning and characterization of two inducible NAD⁺-adh genes encoding NAD⁺-dependent alcohol dehydrogenases from Acetobacter pasteurianus SKU1108.

    Science.gov (United States)

    Masud, Uraiwan; Matsushita, Kazunobu; Theeragool, Gunjana

    2011-11-01

    The cytosolic NAD⁺-dependent alcohol dehydrogenases (NAD⁺-ADHs) are induced in the quinoprotein ADH-(PQQ-ADH) defective Acetobacter pasteurianus SKU1108 mutant during growth in an ethanol medium. The adhI and adhII genes, which encode NAD⁺-ADH I and ADH II, respectively, of this strain have been cloned and characterized. Sequence analyses have revealed that the adhI gene consists of 1029 bp coding for 342 amino acids, which share 99.71% identity with the same protein from A. pasteurianus IFO 3283. Conversely, the adhII gene is composed of 762 bp encoding for a polypeptide of 253 amino acids, which exhibit 99.60% identity with the A. pasteurianus IFO 3283 protein. ADH I is a member of the group I Zn-dependent long-chain ADHs, while the ADH II belongs to the group II short-chain dehydrogenase/reductase NAD⁺-ADHs. The NAD⁺-adh gene disruptants exhibited a growth reduction when grown in an ethanol medium. In Escherichia coli, ethanol induced adhI and adhII promoter activities by approximately 1.5 and 2.0 times, respectively, and the promoter activity of the adhII gene exceeded that of the adhI gene by approximately 3.5 times. The possible promoter regions of the adhI and adhII genes are located at approximately 81-105 bp and 74-92 bp, respectively, from their respective ATG start codons. Their repressor regions might be located in proximity to these promoters and may repress gene expression in the wild-type, where the membrane-bound ADH effectively functions.

  19. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    Science.gov (United States)

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  20. The cinnamyl alcohol dehydrogenase (CAD gene family in flax (Linum usitatissimum L.: Insight from expression profiling of cads induced by elicitors in cultured flax cells

    Directory of Open Access Journals (Sweden)

    Eom Hee Seung

    2016-01-01

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD is a key enzyme in the biosynthesis of lignin and lignans as it catalyzes the final step of monolignol biosynthesis, using NADPH as a cofactor. In higher plants, CAD is encoded by a multigene family consisting of three major classes. Based on the recently released flax (Linum usitatissimum L. whole-genome sequences, in this study we identified six CAD family genes that contain an ADH_N domain and an ADH_zinc_N domain, which suggests that the putative flax CADs (LuCADs are zinc-dependent alcohol dehydrogenases and members of the plant CAD family. In addition, expression analysis using quantitative real-time PCR revealed spatial variations in the expression of LuCADs in different organs. Comparative analysis between LuCAD enzymatic activity and LuCAD transcripts indicates that the variation of LuCAD enzymatic activities by elicitors is reflected by transcription of LuCADs in flax suspension-cultured cells. Taken together, our genome-wide analysis of CAD genes and the expression profiling of these genes provide valuable information for understanding the function of CADs, and will assist future studies on the physiological role of monolignols associated with plant defense.

  1. Alcohol, Aldehydes, Adducts and Airways.

    Science.gov (United States)

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  2. 线粒体乙醛脱氢酶2对β淀粉样蛋白所致神经元损伤的作用及机制%Effects and mechanism of mitochondrial aldehyde dehydrogenase 2 on neuronal damage caused by amyloid

    Institute of Scientific and Technical Information of China (English)

    杨英; 龚忠厚; 李翠; 张倩; 王智斌; 韩亚军; 陈阳; 葛伟

    2015-01-01

    Objective To investigate the role of mitochondrial aldehyde dehydrogenase 2 ( ALDH2) on neuronal damage induced byβ-amyloid( Aβ) .Methods HT-22 mouse hippocampal neuronal cell line was used, MTT was used to determine Aβconcentration.Western bolt was used to detect ALDH2 protein level, ELISA was used to detect 4-HNE content, luciferase enzyme was used to detect intracellular ATP content.Results The cell survival rate was significantly decreased when HT22 cells loaded with 50 μmol/L Aβ25~35 .The expression level of ALDH2 protein and the cell survival rate of HT22 did not change when intervened by ALDH2 activator Alda-1 and the inhibitor Daid-zin, further experimental results showed that Alad-1 could improve the increased 4-HNE content and the reduced ATP in HT22 when cells loaded Aβ25~35 .Conclusions ALDH2 activation might elicit neuronal protective effect against Aβ25~35 through reducing 4-HNE levels and increasing ATP content of the intracellular.%目的:探讨线粒体乙醛脱氢酶(ALDH)2对β淀粉样蛋白(Aβ)所致神经元损伤的作用及机制。方法应用HT-22小鼠海马神经元细胞系,MTT法检测明确Aβ25~35负载浓度制成Aβ神经元损伤模型;ALDH2激活剂Alda-1、ALDH2抑制剂Daidzin 干预后,Western印迹检测ALDH2蛋白表达水平;并采用ELISA检测4-HNE含量、以荧光素酶法检测细胞内的ATP含量。结果 HT22细胞负载Aβ25~35(浓度50μmol/L)时细胞生存率有显著降低;ALDH2激活剂Alda-1、ALDH2抑制剂 Daidzin 干预后,ALDH2蛋白表达水平并未发生变化,也并未导致细胞生存率改变;加入 Alad-1后负载Aβ25~35的HT22细胞4-HNE含量显著减少,细胞内ATP含量明显提高,与Aβ组相比较有显著差异(P<0.05)。结论 ALDH2激活后能有效减轻Aβ导致的神经元损伤,可能通过减少细胞内4-HNE含量、增加ATP含量实现其细胞保护的作用。

  3. Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage.

    Science.gov (United States)

    Sivapragasam, Smitha; Grove, Anne

    2016-05-01

    The gene encoding Streptomyces coelicolor xanthine dehydrogenase regulator (XdhR) is divergently oriented from xdhABC, which encodes xanthine dehydrogenase (Xdh). Xdh is required for purine salvage pathways. XdhR was previously shown to repress xdhABC expression. We show that XdhR binds the xdhABC-xdhR intergenic region with high affinity (Kd ∼ 0.5 nM). DNaseI footprinting reveals that this complex formation corresponds to XdhR binding the xdhR gene promoter at two adjacent sites; at higher protein concentrations, protection expands to a region that overlaps the transcriptional and translational start sites of xdhABC. While substrates for Xdh have little effect on DNA binding, GTP and ppGpp dissociate the DNA-XdhR complex. Progression of cells to stationary phase, a condition associated with increased (p)ppGpp production, leads to elevated xdhB expression; in contrast, inhibition of Xdh by allopurinol results in xdhB repression. We propose that XdhR is a direct target of (p)ppGpp, and that expression of xdhABC is upregulated during the stringent response to promote purine salvage pathways, maintain GTP homeostasis and ensure continued (p)ppGpp synthesis. During exponential phase growth, basal levels of xdhABC expression may be achieved by GTP serving as a lower-affinity XdhR ligand.

  4. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    Science.gov (United States)

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  5. Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions.

    Science.gov (United States)

    Sung, Chang-Keun; Kim, Seung-Mi; Oh, Chang-Jin; Yang, Sun-A; Han, Byung-Hee; Mo, Eun-Kyoung

    2012-07-01

    The present study, taraxerone (d-friedoolean-14-en-3-one) was isolated from Sedum sarmentosum with purity 96.383%, and its enhancing effects on alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were determined: EC(50) values were 512.42 ± 3.12 and 500.16 ± 3.23 μM for ADH and ALDH, respectively. In order to obtain more information on taraxerone related with the alcohol metabolism, 40% ethanol (5 mL/kg body weight) with 0.5-1mM of taraxerone were administered to mice. The plasma alcohol and acetaldehyde concentrations of taraxerone-treated groups were significantly lowered than those of the control group (p<0.01): approximately 20-67% and 7-57% lowered for plasma alcohol and acetaldehyde, respectively. Compare to the control group, the ADH and ALDH expressions in the liver tissues were abruptly increased in the taraxerone-treated groups after ethanol exposure. In addition, taraxerone prevented catalase, superoxide dismutase, and reduced glutathione concentrations from the decrease induced by ethanol administration with the concentration dependent manner.

  6. Cloning and Sequence Analysis of a Glucose-6-Phosphate Dehydrogenase Gene PsG6PDH from Freezing-tolerant Populus suaveolens

    Institute of Scientific and Technical Information of China (English)

    Lin Yuan-zhen; Lin Shan-zhi; Zhang Wei; Zhang Qian; Zhang Zhi-yi; Guo Huan

    2005-01-01

    A 1207 hp cDNA fragment (PsG6PDH) was amplified by PT-PCR from cold-induced total Pna of the freexing-tolerant P. Suaveolens, using primers based on the highly comserved region of published plant glucose-6-phosphate dehydrogenase (G6PDH)genes. The sepuence analysis showed that PsG6PDH coding region had 1 101 bp and encoded 367 predicted aminoacid residues. Moreover, the nucleotide sequence of psG6PDH showed 83%,82%,79%,79% and 78% identity, and the derived amino acid sequence shared 44.2%,44.7%,42.0%,40.5% and 43.9% identity with those of the Solanum tuberosum, Nicotiana tabacum, Triticum aestivum, Oryxa sativa and Arabidopsis thaliana, respectively. The results show that PsG6PDH is a new member of G6PDH gene family and belongs to cytosolic G6PDH gene. This is the first report on clonign of the G6PDH gene from woody plants.

  7. Engineering the α-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica.

    Science.gov (United States)

    Yovkova, Venelina; Otto, Christina; Aurich, Andreas; Mauersberger, Stephan; Barth, Gerold

    2014-03-01

    To establish and develop a biotechnological process of α-ketoglutaric acid (KGA) production by Yarrowia lipolytica, it is necessary to increase the KGA productivity and to reduce the amounts of by-products, e.g. pyruvic acid (PA) as major by-product and fumarate, malate and succinate as minor by-products. The aim of this study was the improvement of KGA overproduction with Y. lipolytica by a gene dose-dependent overexpression of genes encoding NADP(+)-dependent isocitrate dehydrogenase (IDP1) and pyruvate carboxylase (PYC1) under KGA production conditions from the renewable carbon source raw glycerol. Recombinant Y. lipolytica strains were constructed, which harbour multiple copies of the respective IDP1, PYC1 or IDP1 and PYC1 genes together. We demonstrated that a selective increase in IDP activity in IDP1 multicopy transformants changes the produced amount of KGA. Overexpression of the gene IDP1 in combination with PYC1 had the strongest effect on increasing the amount of secreted KGA. About 19% more KGA compared to strain H355 was produced in bioreactor experiments with raw glycerol as carbon source. The applied cultivation conditions with this strain significantly reduced the main by-product PA and increased the KGA selectivity to more than 95% producing up to 186 g l(-1) KGA. This proved the high potential of this multicopy transformant for developing a biotechnological KGA production process.

  8. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    Science.gov (United States)

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.

  9. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66.

    Science.gov (United States)

    Naveed, Muhammad; Ahmed, Iftikhar; Khalid, Nauman; Mumtaz, Abdul Samad

    2014-01-01

    Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and root lengths of Phaseolus vulgaris. The structural determination of GDH protein was carried out using bioinformatics tools like Pfam, InterProScan, I-TASSER and COFACTOR. These tools predicted the structural based functional homology of pyrroloquinoline quinone domains in GDH. GDH of Leclercia sp. QAU-66 is one of the main factor that involved in plant growth promotion and provides a solid background for further research in plant growth promoting activities.

  10. Role of positron emission tomography and bone scintigraphy in the evaluation of bone involvement in metastatic pheochromocytoma and paraganglioma: specific implications for succinate dehydrogenase enzyme subunit B gene mutations.

    NARCIS (Netherlands)

    Zelinka, T.; Timmers, H.J.L.M.; Kozupa, A.; Chen, C.C.; Carrasquillo, J.A.; Reynolds, J.C.; Ling, A.; Eisenhofer, G.; Lazurova, I.; Adams, K.T.; Whatley, M.A.; Widimsky, J.Jr.; Pacak, K.

    2008-01-01

    We performed a retrospective analysis of 71 subjects with metastatic pheochromocytoma and paraganglioma (30 subjects with mutation of succinate dehydrogenase enzyme subunit B (SDHB) gene and 41 subjects without SDHB mutation). Sixty-nine percent presented with bone metastases (SDHB +/-: 77% vs 63%),

  11. Group III alcohol dehydrogenase from Pectobacterium atrosepticum: insights into enzymatic activity and organization of the metal ion-containing region.

    Science.gov (United States)

    Elleuche, Skander; Fodor, Krisztian; von der Heyde, Amélie; Klippel, Barbara; Wilmanns, Matthias; Antranikian, Garabed

    2014-05-01

    NAD(P)(+)-dependent alcohol dehydrogenases (ADH) are widely distributed in all phyla. These proteins can be assigned to three nonhomologous groups of isozymes, with group III being highly diverse with regards to catalytic activity and primary structure. Members of group III ADHs share a conserved stretch of amino acid residues important for cofactor binding and metal ion coordination, while sequence identities for complete proteins are highly diverse (90 %). A putative group III ADH PaYqhD has been identified in BLAST analysis from the plant pathogenic enterobacterium Pectobacterium atrosepticum. The PaYqhD gene was expressed in the heterologous host Escherichia coli, and the recombinant protein was purified in a two-step purification procedure to homogeneity indicating an obligate dimerization of monomers. Four conserved amino acid residues involved in metal ion coordination were substituted with alanine, and their importance for catalytic activity was confirmed by circular dichroism spectrum determination, in vitro, and growth experiments. PaYqhD exhibits optimal activity at 40 °C with short carbon chain aldehyde compounds and NADPH as cofactor indicating the enzyme to be an aldehyde reductase. No oxidative activities towards alcoholic compounds were detectable. EDTA completely inhibited catalytic activity and was fully restored by the addition of Co(2+). Activity measurements together with sequence alignments and structure analysis confirmed that PaYqhD belongs to the butanol dehydrogenase-like enzymes within group III of ADHs.

  12. Experimentally increased codon bias in the Drosophila Adh gene leads to an increase in larval, but not adult, alcohol dehydrogenase activity.

    Science.gov (United States)

    Hense, Winfried; Anderson, Nathan; Hutter, Stephan; Stephan, Wolfgang; Parsch, John; Carlini, David B

    2010-02-01

    Although most amino acids can be encoded by more than one codon, the synonymous codons are not used with equal frequency. This phenomenon is known as codon bias and appears to be a universal feature of genomes. The translational selection hypothesis posits that the use of optimal codons, which match the most abundant species of isoaccepting tRNAs, results in increased translational efficiency and accuracy. Previous work demonstrated that the experimental reduction of codon bias in the Drosophila alcohol dehydrogenase (Adh) gene led to a significant decrease in ADH protein expression. In this study we performed the converse experiment: we replaced seven suboptimal leucine codons that occur naturally in the Drosophila melanogaster Adh gene with the optimal codon. We then compared the in vivo ADH activities imparted by the wild-type and mutant alleles. The introduction of optimal leucine codons led to an increase in ADH activity in third-instar larvae. In adult flies, however, the introduction of optimal codons led to a decrease in ADH activity. There is no evidence that other selectively constrained features of the Adh gene, or its rate of transcription, were altered by the synonymous replacements. These results are consistent with translational selection for codon bias being stronger in the larval stage and suggest that there may be a selective conflict over optimal codon usage between different developmental stages.

  13. Byssochlamys nivea with patulin-producing capability has an isoepoxydon dehydrogenase gene (idh) with sequence homology to Penicillium expansum and P. griseofulvum.

    Science.gov (United States)

    Dombrink-Kurtzman, Mary Ann; Engberg, Amy E

    2006-09-01

    Nucleotide sequences of the isoepoxydon dehydrogenase gene (idh) for eight strains of Byssochlamys nivea were determined by constructing GenomeWalker libraries. A striking finding was that all eight strains of B. nivea examined had identical nucleotide sequences, including those of the two introns present. The length of intron 2 was nearly three times the size of introns in strains of Penicillium expansum and P. griseofulvum, but intron 1 was comparable in size to the number of nucleotides present in introns 1 and 2 of P. expansum and P. griseofulvum. A high degree of amino acid homology (88%) existed for the idh genes of the strains of B. nivea when compared with sequences of P. expansum and P. griseofulvum. There were many nucleotide differences present, but they did not affect the amino acid sequence because they were present in the third position. The identity of the B. nivea isolates was confirmed by sequencing the ITS/partial LSU (28 S) rDNA genes. Four B. nivea strains were analysed for production of patulin, a mycotoxin found primarily in apple juice and other fruit products. The B. nivea strains produced patulin in amounts comparable to P. expansum strains. Interest in the genus Byssochlamys is related to the ability of its ascospores to survive pasteurization and cause spoilage of heat-processed fruit products worldwide.

  14. Performance of Glutamate Dehydrogenase and Triose Phosphate Isomerase Genes in the Analysis of Genotypic Variability of Isolates of Giardia duodenalis from Livestocks

    Directory of Open Access Journals (Sweden)

    Natália M. N. Fava

    2013-01-01

    Full Text Available Giardia duodenalis is a small intestinal protozoan parasite of several terrestrial vertebrates. This work aims to assess the genotypic variability of Giardia duodenalis isolates from cattle, sheep and pigs in the Southeast of Brazil, by comparing the standard characterization between glutamate dehydrogenase (gdh and triose phosphate isomerase (tpi primers. Fecal samples from the three groups of animals were analyzed using the zinc sulphate centrifugal flotation technique. Out of 59 positive samples, 30 were from cattle, 26 from sheep and 3 from pigs. Cyst pellets were stored and submitted to PCR and nested-PCR reactions with gdh and tpi primers. Fragment amplification of gdh and tpi genes was observed in 25 (42.4% and 36 (61.0% samples, respectively. Regarding the sequencing, 24 sequences were obtained with gdh and 20 with tpi. For both genes, there was a prevalence of E specific species assemblage, although some isolates have been identified as A and B, by the tpi sequencing. This has also shown a larger number of heterogeneous sequences, which have been attribute to mixed infections between assemblages B and E. The largest variability of inter-assemblage associated to the frequency of heterogeneity provided by tpi sequencing reinforces the polymorphic nature of this gene and makes it an excellent target for studies on molecular epidemiology.

  15. Identification and characterization of genes, encoding the 3-hydroxybutyrate dehydrogenase and a putative lipase, in an avirulent spontaneous Legionella pneumophila serogroup 6 mutant.

    Science.gov (United States)

    Scaturro, Maria; Barello, Cristina; Giusti, Melania De; Fontana, Stefano; Pinci, Federica; Giuffrida, Maria Gabriella; Ricci, Maria Luisa

    2015-04-01

    Legionella pneumophila is a pathogen widespread in aquatic environment, able to multiply both within amoebae and human macrophages. The aim of this study was to identify genes differently expressed in a spontaneous avirulent Legionella pneumophila serogroup 6 mutant, named Vir-, respect the parental strain (Vir+), and to determine their role in the loss of virulence. Protein profiles revealed some differences in Vir- proteomic maps, and among the identified proteins the undetectable 3-hydroxybutyrate dehydrogenase (BdhA) and a down-produced lipase. Both Legionella enzymes were studied before and were here further characterized at genetic level. A significant down-regulation of both genes was observed in Vir- at the transcriptional level, but the use of defined mutants demonstrated that they did not affect the intracellular multiplication. A mutant (MS1) showed an accumulation of poly-3-hydroxybutyrate (PHB) granules suggesting a role of bdhA gene in its degradation process. The lipase deduced amino acid sequence revealed a catalytic triad, typical of the 'lipase box' characteristic of PHB de-polymerase enzymes, that let us suppose a possible involvement of lipase in the PHB granule degradation process. Our results revealed unexpected alterations in secondary metabolic pathways possibly linking the loss of virulence to Legionella lack of energy sources.

  16. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Pucci, Biagio; Rossi, Mosè; Raia, Carlo A

    2010-03-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75 degrees C and a 30-min half-inactivation temperature of ~90 degrees C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and alpha-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of alpha-methyl and alpha-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.

  17. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Andresen, B S; Jensen, T G; Bross, P

    1994-01-01

    spot. Here we describe the results from sequence analysis of exon 11 and part of the flanking introns from 36 compound heterozygous patients with MCAD deficiency. We have identified four previously unknown disease-causing mutations (M301T, S311R, R324X, and E359X) and two silent mutations in exon 11......Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most commonly recognized defect of the mitochondrial beta-oxidation in humans. It is a potentially fatal, autosomal recessive inherited defect. Most patients with MCAD deficiency are homozygous for a single disease-causing mutation (G985......), causing a change from lysine to glutamate at position 304 (K304E) in the mature MCAD. Only seven non-G985 mutations, all of which are rare, have been reported. Because the G985 mutation and three of the non-G985 mutations are located in exon 11, it has been suggested that this exon may be a mutational hot...

  18. Cloning and Expression Analysis of Malate Dehydrogenase Gene from Cassava%木薯苹果酸脱氢酶基因克隆和表达分析

    Institute of Scientific and Technical Information of China (English)

    尹奇; 仝征; 贺庭琪; 王力敏; 黄启星; 郭运玲; 孔华; 王旭初; 郭安平

    2013-01-01

    为从木薯块根中获得苹果酸脱氢酶(MDH)基因,并研究其在转录水平的表达变化规律,利用RACE技术从木薯“华南8号”块根中克隆得到了苹果酸脱氢酶基因,其cDNA全长1 175 bp,包含999 bp的开放阅读框,共编码332个氨基酸.从木薯“华南8号”中获得的MDH氨基酸序列,与其它物种的该序列相似度达84%~94%,包含细胞质苹果酸脱氢酶中高度保守的NAD结合基元“TGAAGQI”和催化基元“IWGNH”.木薯MDH基因与块根淀粉合成相关,在块根发育前期表达量较低,膨大期表达量较高,膨大后期表达量逐渐降低.%A 1 175 bp cDNA sequence of MDH with a 999 bp open reading frame,encoding a protein with 332 amino acids,was obtained from cassava SC8 roots by RACE (rapid-amplification of cDNA ends) to study the expressional pattern of malate dehydrogenase (MDH) mRNA.The MDH shared 84%~94% of amino acid sequence identities with MDH from other species,and contained a typical NAD+ binding motif (TGAAGQI) and a catalytic motif (IWGNH),suggesting it was a cytosolic molate dehydrogenase (cyMDH) gene.MDH was perhaps involved in the process of starch accumulation in cassava,the expression of cassava MDH was up regulated during storage root thinckening.

  19. A new resistance source of aldehyde reductase functions from Scheffersomyces stipitis against biomass fermentation inhibitor furfural

    Science.gov (United States)

    Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment are a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuels production. This study identified five uncharacterized putative genes of Scheffersomyces stipiti...

  20. 线粒体乙醛脱氢酶2突变型基因的心肌保护作用%Effect of mitochondrial aldehyde dehydrogenase 2 genotype on cardio-protection in patients with ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    张裕坚; 金周晟; 陈鸿飞; 吴一泉; 徐旭仲

    2015-01-01

    Objective: To investigate the protection of human mitochondrial aldehyde dehydrognase 2 gene mutations for patients undergone cardiopulmonary bypass (CPB).Methods: A prospective cohort of TOF pa-tients (n=71) was recruited to investigate the inlfuence of the ALDH2*2 allele on cardio-protection after surgical repair. The patients were divided into 2 groups: ALDH2*2 (n=45) and ALDH2*1 (n=26). The right atrial append-age was harvested. ALDH2 activity, MDA and GSH were analysed. The cTnI was tested 20 hours later after the surgery. The time in hospital were recorded.Results: ALDH2*2 carriers showed highter GSH. ALDH2*2 car-riers showed lower MDA, cTnI, and shorter postoperative length of hospital stay.Conclusion: ALDH2*2 allele has a myocardial protection effect after ischemic reperfusion injury, it may associated with greater expression of GSH level.%目的:观察施行心脏手术的患者,携带线粒体乙醛脱氢酶2(ALDH2)突变型基因对心肌缺血再灌注损伤的保护作用。方法:将北京阜外医院小儿心脏外科71例施行法洛四联症根治术的患者根据ALDH2基因型检测结果分成2组:突变型组(携带ALDH2*2突变型基因)和野生型组(携带ALDH2*1野生型基因)。收集术中切除的右心室流出道心肌组织,采用分光光度计法检测ALDH2酶活性,丙二醛(MDA)和还原型谷胱甘肽(GSH)含量。体外循环升主动脉开放后20 h取血检测心肌肌钙蛋白值(cTnI)。结果:突变型组患者术中缺血心肌组织毒性醛类MDA含量更低(P=0.013),心肌保护物质GSH含量更高(P=0.011),并且突变型组患者术后有更低的cTnI值(P=0.015),更短的术后住院时间(P=0.017)。结论:携带ALDH2突变型基因可以明显降低术中缺血心肌组织毒性醛类物质的堆积,提高心肌组织GSH含量,并且具有更好的临床预后,对心肌缺血再灌注损伤具有保护作用。

  1. Molecular cloning of alcohol dehydrogenase genes of the yeast Pichia stipitis and identification of the fermentative ADH.

    Science.gov (United States)

    Passoth, V; Schäfer, B; Liebel, B; Weierstall, T; Klinner, U

    1998-10-01

    Two Pichia stipitis ADH genes (PsADH1 and PsADH2) were isolated by complementation of a Saccharomyces cerevisiae Adh(-)-mutant. The genes enabled the transformants to grow in the presence of antimycin A on glucose, to use ethanol as sole carbon source and made them sensitive to allylalcohol. The sequences of the genes showed similarities of 70-77% to sequences of ADH genes of Candida albicans, Kluyveromyces lactis, K. marxianus, and S. cerevisiae and about 60% homology to those of Schizosaccharomyces pombe and Aspergillus flavus. Southern hybridization experiments suggested that P. stipitis has only these two ADH genes. Both genes are located on the largest chromosome of P. stipitis. PsADH2 encodes for the ADH activity that is responsible for ethanol formation at oxygen limitation. The gene is regulated at the transcriptional level. Moreover, also in cells grown on ethanol, only PsADH2 transcript was found. PsADH1 transcript was detected under aerobic conditions on fermentable carbon sources.

  2. Detection of a mutation in the intron of Sperm-specific glyceraldehyde-3-phosphate dehydrogenase gene in patients with fibrous sheath dysplasia of the sperm flagellum.

    Science.gov (United States)

    Elkina, Y L; Kuravsky, M L; Bragina, E E; Kurilo, L F; Khayat, S S; Sukhomlinova, M Y; Schmalhausen, E V

    2017-03-01

    The fibrous sheath is a unique cytoskeletal structure surrounding the axoneme and outer dense fibres of the sperm flagellum. Dysplasia of the fibrous sheath (DFS) is a defect of spermatozoa observed in severe asthenozoospermic patients and characterised by morphologically abnormal flagella with distorted fibrous sheaths. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) is a glycolytic enzyme that is tightly associated with the fibrous sheath of the sperm flagellum. The enzymatic activity of GAPDS was investigated in sperm samples of seven patients with DFS and compared to that of normal spermatozoa (n = 10). The difference in GAPDS activity in DFS and normal spermatozoa was statistically significant (0.19 ± 0.11 and 0.75 ± 0.11 μmol NADH per min per mg protein respectively). Immunochemical staining revealed irregular distribution of GAPDS in the flagellum of DFS spermatozoa. Other five samples with typical alterations in the fibrous sheath were assayed for mutations within human GAPDS gene. In all five cases, a replacement of guanine by adenine was revealed in the intron region between the sixth and the seventh exons of GAPDS. It is assumed that the deficiency in GAPDS observed in most DFS sperm samples is ascribable to a disorder in the regulation of GAPDS expression caused by the mutation in the intron region of GAPDS gene.

  3. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton.

    Science.gov (United States)

    Wang, Zhi-An; Li, Qing; Ge, Xiao-Yang; Yang, Chun-Lin; Luo, Xiao-Li; Zhang, An-Hong; Xiao, Juan-Li; Tian, Ying-Chuan; Xia, Gui-Xian; Chen, Xiao-Ying; Li, Fu-Guang; Wu, Jia-He

    2015-07-16

    Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition.

  4. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  5. Bioactivation to an aldehyde metabolite--possible role in the onset of toxicity induced by the anti-HIV drug abacavir.

    Science.gov (United States)

    Grilo, Nádia M; Charneira, Catarina; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2014-01-30

    Aldehydes are highly reactive molecules, which can be generated during numerous physiological processes, including the biotransformation of drugs. Several non-P450 enzymes participate in their metabolism albeit alcohol dehydrogenase and aldehyde dehydrogenase are the ones most frequently involved in this process. Endogenous and exogenous aldehydes have been strongly implicated in multiple human pathologies. Their ability to react with biomacromolecules (e.g. proteins) yielding covalent adducts is suggested to be the common primary mechanism underlying the toxicity of these reactive species. Abacavir is one of the options for combined anti-HIV therapy. Although individual susceptibilities to adverse effects differ among patients, abacavir is associated with idiosyncratic hypersensitivity drug reactions and an increased risk of cardiac dysfunction. This review highlights the current knowledge on abacavir metabolism and discusses the potential role of bioactivation to an aldehyde metabolite, capable of forming protein adducts, in the onset of abacavir-induced toxic outcomes.

  6. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function.The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabitis elegans with notable improvements in reproduction, whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression.We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals and without affecting their respiration rate and ATP content.We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g. NDUFV1, NDUFS1, NDUFS6, NDUFS8 or GRIM-19 human orthologs in wild type animals is significantly reduced in the Ndi1p expressing worm.All together these results open up the perspective to identify new genes involved in complex I function, assembly or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

  7. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  8. Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Guangming, E-mail: zgming@hnu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li Zhen, E-mail: happylizhen@yeah.ne [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Tang Lin; Wu Mengshi; Lei Xiaoxia; Liu Yuanyuan; Liu Can; Pang Ya; Zhang Yi [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2011-05-01

    Highlights: > Gold nanoparticles/multiwalled carbon nanotubes/poly (1,5-naphthalenediamine) modified electrode was fabricated. > The sensor was applied for the detection of cellobiose dehydrogenase genes. > An effective method to distribute MWCNTs and attach to the electrode was proposed. > The composite films greatly improved the sensitivity and enhanced the DNA immobilization. > The DNA biosensor exhibited fairly high sensitivity and quite low detection limit. - Abstract: An electrochemical sensor based on gold nanoparticles (GNPs)/multiwalled carbon nanotubes (MWCNTs)/poly (1,5-naphthalenediamine) films modified glassy carbon electrode (GCE) was fabricated. The effectiveness of the sensor was confirmed by sensitive detection of cellobiose dehydrogenase (CDH) gene which was extracted from Phanerochaete chrysosporium using polymerase chain reaction (PCR). The monomer of 1,5-naphthalenediamine was electropolymerized on the GCE surface with abundant free amino groups which enhanced the stability of MWCNTs modified electrode. Congo red (CR)-functionalized MWCNTs possess excellent conductivity as well as high solubility in water which enabled to form the uniform and stable network nanostructures easily and created a large number of binding sites for electrodeposition of GNPs. The continuous GNPs together with MWCNTs greatly increased the surface area, conductivity and electrocatalytic activity. This electrode structure significantly improved the sensitivity of sensor and enhanced the DNA immobilization and hybridization. The thiol modified capture probes were immobilized onto the composite films-modified GCE by a direct formation of thiol-Au bond and horseradish peroxidase-streptavidin (HRP-SA) conjugates were labeled to the biotinylated detection probes through biotin-streptavidin bond. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the film assembly and DNA hybridization processes

  9. Identification of a new human mtDNA polymorphism (A14290G in the NADH dehydrogenase subunit 6 gene

    Directory of Open Access Journals (Sweden)

    M. Houshmand

    2006-06-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity. The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid. We looked for base conservation using DNA star software (MEGALIGN program as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%. This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.

  10. Recent advances in biotechnological applications of alcohol dehydrogenases.

    Science.gov (United States)

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  11. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    Science.gov (United States)

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  12. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD).

    Science.gov (United States)

    Motin, Vladimir L; Georgescu, Anca M; Elliott, Jeffrey M; Hu, Ping; Worsham, Patricia L; Ott, Linda L; Slezak, Tomas R; Sokhansanj, Bahrad A; Regala, Warren M; Brubaker, Robert R; Garcia, Emilio

    2002-02-01

    A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed.

  13. The Role of Sugar-related Regulation in the Light-dependent Alterations of Arabidopsis Glutamate Dehydrogenase Genes Expression

    Directory of Open Access Journals (Sweden)

    E.Yu. Garnik

    2014-12-01

    Full Text Available Expression of gdh1 and gdh2 genes of Arabidopsis thaliana increases in the dark and decreases in the light. The reason of such alteration seems to be a glucose rising in photosynthetic cell in the light, but this hypothesis needs to be confirmed. In this work we investigate the role of glucose and hexokinase 1 in the light-dependent regulation of the gdh1 and gdh2 expression. A comparison of expression profiles of apl3, gdh1, gdh2 genes in presenсe of exogenous sucrose in the dark and in the light has demonstrated that sugar-related repression of gdh1 and gdh2 genes is insufficient to provide the high decrease of their transcripts in the light. Using Arabidopsis mutant gin2-1 with a defect in hxk1 gene we demonstrated that such a decrease is not depended on the regulatory function of hexokinase 1. We presume that light- dependent alterations of gdh1 and gdh2 expression are mediated by some chloroplast-to-nucleus regulatory signals.

  14. Cloning, Sequencing and Characterization of 3-Hydroxybuty- rate Dehydrogenase Encoding Gene (bdh A) in Bradyrhizobium japonicum USDA110 Strain

    Institute of Scientific and Technical Information of China (English)

    DAI Mei-xue; WU Bo; BAI Xue-liang; ZHANG Cheng-gang; MA Qing-sheng; Charles Trevor C

    2002-01-01

    The current study describes the molecular characterization of a clone which can restore the ability of bdhA mutant strains NGRPA2 and Rm11107 to utilize 3-hydroxybutyrate as a sole carbon source (Hbu+). This clone was screened out by complementation experiment from Bradyrhizobium japonicum USDA110 genomic library, and the presence of bdhA gene in the clone was verified by Bdh assay and Southern blot analysis. Furthermore, the entire sequence of bdhA gene was sequenced and the sequence was deposited in GenBank database under the accession number AY077581. bdhA gene comprises 789 base pairs and encodes Bdh with 262 amino acid of MW 27.59 kDa. Interposon ΩKm was inserted into the bdh A ORF at EcoR I site and the bdhA mutant was constructed in B .japonicum by homologous recombination. Plant assay result did not show obvious effects of mutation of bdhA gene on nodulation and nitrogen-fixation.

  15. High Level Expression of Glucose-6-phosphate Dehydrogenase Gene PsG6PDH from Populus suaveolens in E. coli

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the functions of the gene PsG6PDH and the mechanisms underlying freezing tolerance of Populus suaveolens, the recombinant expression vector pET-G (pET30a-G6PDH), which contained full encoding region of PsG6PDH gene, was established. The recombinant was identified by lawn-PCR and double enzyme digestion and then transformed into expression host XA90 and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 100 kD polypeptide of G6PDH fusion protein. The results showed that the expressed amount of the fusion protein culminated after 1 mmol·L-1 IPTG treatment for 4 h and that pET-G product was predominately soluble and not extra-cellular secreting.

  16. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Knudsen, Jan Dines; Johanson, Ted; Eliasson Lantz, Anna

    2015-01-01

    by placing it in strains with different ability to reoxidise NADH, and applying different environmental conditions. Flow cytometric analysis of reporter strains expressing green fluorescent protein (GFP) under the control of the GPD2 promoter was used to determine the promoter activity at the single...... mapping revealed conditions where the GPD2 promoter was either completely inactive or hyperactive, which has implications for its implementation in future biotechnological applications such as for process control of heterologous gene expression....

  17. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene

    DEFF Research Database (Denmark)

    Kølvraa, S; Gregersen, N; Blakemore, A I;

    1991-01-01

    RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII. PstI and TaqI and with an MCAD cDNA-clone as a probe....... Of 32 disease-causing alleles studied, 31 possessed the previously published A----G point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present....... In contrast, the same haplotype was present in only 23% of normal alleles (P less than or equal to 3.4 x 10(-18)). These findings are consistent with the existence of a pronounced founder effect, possibly combined with biological and/or sampling selection....

  18. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.

    Science.gov (United States)

    Lee, Won-Heong; Park, Jin-Byung; Park, Kyungmoon; Kim, Myoung-Dong; Seo, Jin-Ho

    2007-08-01

    Whole-cell conversion of cyclohexanone to epsilon-caprolactone was attempted by recombinant Escherichia coli BL21(DE3) expressing cyclohexanone monooxygenase (CHMO) of Acinetobacter calcoaceticus NCIMB 9871. High concentrations of cyclohexanone and epsilon-caprolactone reduced CHMO-mediated bioconversion of cyclohexanone to epsilon-caprolactone in the resting recombinant E. coli cells. Metabolically active cells were employed by adopting a fed-batch culture to improve the production of epsilon-caprolactone from cyclohexanone. A glucose-limited fed-batch Baeyer-Villiger oxidation where a cyclohexanone level was maintained less than 6 g/l resulted in a maximum epsilon-caprolactone concentration of 11.0 g/l. The maximum epsilon-caprolactone concentration was improved further to 15.3 g/l by coexpression of glucose-6-phosphate dehydrogenase, an NADPH-generating enzyme encoded by the zwf gene which corresponded to a 39% enhancement in epsilon-caprolactone concentration compared with the control experiment performed under the same conditions.

  19. A Phytophthora sojae gene of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induced in host infection and its anti-oxidative function in yeast

    Institute of Scientific and Technical Information of China (English)

    ZENG Juan; WANG Yuanchao; SHEN Gui; ZHENG Xiaobo

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein well defined in eukaryotes, especially in mammalian and Saccharomyces cerevisiae. Using the method of suppression subtractive hybridization (SSH), we identified a Phytophthora sojae cDNA coding GAPDH, which was up-regulated during the early stage of soybean infection. The termed PsGapdh gene possessed three copies in the P. sojae genome. Its amino acid sequence harbored overall conserved domain of GADPH, homologous closest to GapC1 of Achlya bisexualis (oomycete) and adjoined to GapC2s of Odontella sinensis and Phaeodactylum tricornutum (diatom), on the C-Ⅱbranch of subfamily GapC in phylogeny tree of GAPDH. The transcriptional level of PsGapdh was up-regulated throughout early infection. Heterogenous expression of PsGapdh in the yeast tdh1-deleted mutant could rescue growth arrest under continuous exposure to H2O2. These results indicated active roles of PsGapdh in pathogen-host interaction and anti-oxidation.

  20. Cloning and Expression of S-mandelate Dehydrogenase Gene%S-扁桃酸脱氢酶基因的克隆及表达

    Institute of Scientific and Technical Information of China (English)

    曾贞; 杨军方; 杨成丽; 王鹏; 李大力

    2012-01-01

    S-mandelate dehydrogenase ( SMDH) can catalyze S-mandelic acid to benzoylformic acid. The SMDH nucleotide gene (mdlA) was cloned from DNA of Pseudomonas putida NUST by PCR, and the amplicon was inserted into prokaryotic expression vector pET-30a ( + ). This recombinant was transformed into E. Coli BL21 (DE3) and then highly expressed by induction of IPTG. The result of SDS-PAGE showed that the molecular weight of cloned SMDH was about 43kDa. The recombinant strain could catalyze S-mandelate to benzoylformic acid.%S-扁桃酸脱氢酶能够选择性催化S-扁桃酸生成苯甲酰甲酸.通过PCR扩增获得Pseudomonas putida NUST的S-扁桃酸脱氢酶全长基因(mdlA),并构建了表达载体pET30a(+)-mdlA,转化大肠杆菌E coli BL21 (DE3)后,经异丙基-β-D-硫代吡喃半乳糖苷(IPTG)诱导获得表达,SDS-PAGE结果显示表达蛋白为43kDa.所以工程菌细胞具有转化S-扁桃酸生成苯甲酰甲酸能力.

  1. Rapid detection of medium chain acyl-CoA dehydrogenase gene mutations by non-radioactive, single strand conformation polymorphism minigels.

    Science.gov (United States)

    Iolascon, A; Parrella, T; Perrotta, S; Guardamagna, O; Coates, P M; Sartore, M; Surrey, S; Fortina, P

    1994-07-01

    Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is a common inherited metabolic disorder affecting fatty acid beta oxidation. Identification of carriers is important since the disease can be fatal and is readily treatable once diagnosed. Twelve molecular defects have been identified in the MCAD gene; however, a single highly prevalent mutation, A985G, accounts for > 90% of mutant alleles in the white population. In order to facilitate the molecular diagnosis of MCAD deficiency, oligonucleotide primers were designed to amplify the exon regions encompassing the 12 mutations enzymatically, and PCR products were then screened with a single strand conformation polymorphism (SSCP) based method. Minigels were used allowing much faster run times, and silver staining was used after gel electrophoresis to eliminate the need for radioisotopic labelling strategies. Our non-radioactive, minigel SSCP approach showed that normals can be readily distinguished from heterozygotes and homozygotes for all three of the 12 known MCAD mutations which were detected in our sampling of 48 persons. In addition, each band pattern is characteristic for a specific mutation, including those mapping in the same PCR product like A985G and T1124C. When necessary, the molecular defect was confirmed using either restriction enzyme digestion of PCR products or by direct DNA sequence analysis or both. This rapid, non-radioactive approach can become routine for molecular diagnosis of MCAD deficiency and other genetic disorders.

  2. The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD(+)-dependent glutamate dehydrogenase which is subject to allosteric regulation.

    Science.gov (United States)

    Lu, C D; Abdelal, A T

    2001-01-01

    The NAD(+)-dependent glutamate dehydrogenase (NAD-GDH) from Pseudomonas aeruginosa PAO1 was purified, and its amino-terminal amino acid sequence was determined. This sequence information was used in identifying and cloning the encoding gdhB gene and its flanking regions. The molecular mass predicted from the derived sequence for the encoded NAD-GDH was 182.6 kDa, in close agreement with that determined from sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme (180 kDa). Cross-linking studies established that the native NAD-GDH is a tetramer of equal subunits. Comparison of the derived amino acid sequence of NAD-GDH from P. aeruginosa with the GenBank database showed the highest homology with hypothetical polypeptides from Pseudomonas putida, Mycobacterium tuberculosis, Rickettsia prowazakii, Legionella pneumophila, Vibrio cholerae, Shewanella putrefaciens, Sinorhizobium meliloti, and Caulobacter crescentus. A moderate degree of homology, primarily in the central domain, was observed with the smaller tetrameric NAD-GDH (protomeric mass of 110 kDa) from Saccharomyces cerevisiae or Neurospora crassa. Comparison with the yet smaller hexameric GDH (protomeric mass of 48 to 55 kDa) of other prokaryotes yielded a low degree of homology that was limited to residues important for binding of substrates and for catalytic function. NAD-GDH was induced 27-fold by exogenous arginine and only 3-fold by exogenous glutamate. Primer extension experiments established that transcription of gdhB is initiated from an arginine-inducible promoter and that this induction is dependent on the arginine regulatory protein, ArgR, a member of the AraC/XyIS family of regulatory proteins. NAD-GDH was purified to homogeneity from a recombinant strain of P. aeruginosa and characterized. The glutamate saturation curve was sigmoid, indicating positive cooperativity in the binding of glutamate. NAD-GDH activity was subject to allosteric control by arginine and citrate, which

  3. A recombinant plasmid of composite cysteine proteinase inhibitor/glyceraldehyde-3-phosphate dehydrogenase gene of periodic Brugia malayi functions on DNA immunity in the host

    Directory of Open Access Journals (Sweden)

    Z Fang

    2016-01-01

    Full Text Available Objectives: Both cysteine proteinase inhibitors (CPIs and glyceraldehyde-3-phosphate dehydrogenase (GAPDH play important roles in the pathogenesis of parasites and their relationship with the hosts. We constructed a new eukaryotic recombinant expression plasmid pcDNA3.1(+-BmCPI/BmGAPDH of periodic Brugia malayi for investigation of the DNA vaccine-elicited immune responses. Materials and Methods: We cloned a gene encoding the CPIs and GAPDH from periodic B. malayi into vector pcDNA3.1. The composited plasmid or the control was injected into the tibialis anterior muscle of the hind leg in BALB/c mice, respectively. The target genes were detected by reverse transcription-polymerase chain reaction in muscle tissues. The stimulation index (SI of T-lymphocyte proliferation and the levels of interferon-gamma (INF-g and interleukin-4 ( IL-4 in serum were detected by thiazolyl blue tetrazolium blue and enzyme-linked immunosorbent assays. Results: The pcDNA3.1(+-BmCPI/BmGAPDH was amplified from muscle tissues of the mice after immunisation. The SI of the immunised group was significantly higher than that of the two control groups (P < 0.05. The levels of INF-g and IL-4 of pcDNA3.1(+-BmCPI/BmGAPDH group were both higher than those of the two control groups (P < 0.05. The level of INF-g of pcDNA3.1(+-BmCPI/BmGAPDH group was significantly higher than that of pcDNA3.1(+-BmCPI/CpG group (P < 0.05. Conclusions: We conclude that the recombinant plasmid pcDNA3.1(+-BmCPI/BmGAPDH could elicit specific humoural and cellular immune responses in mice.

  4. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas.

    Science.gov (United States)

    Chung, Taemoon; Na, Juri; Kim, Young-Il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy.

  5. Insulin, CCAAT/Enhancer-Binding Proteins and Lactate Regulate the Human 11β-Hydroxysteroid Dehydrogenase Type 2 Gene Expression in Colon Cancer Cell Lines

    Science.gov (United States)

    Alikhani-Koupaei, Rasoul; Ignatova, Irena D.; Guettinger, Andreas; Frey, Felix J.; Frey, Brigitte M.

    2014-01-01

    11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon. PMID:25133511

  6. Insulin, CCAAT/enhancer-binding proteins and lactate regulate the human 11β-hydroxysteroid dehydrogenase type 2 gene expression in colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Thomas Andrieu

    Full Text Available 11β-Hydroxysteroid dehydrogenases (11beta-HSD modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29 at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.

  7. The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr.

    Science.gov (United States)

    Carlini, D B; Chen, Y; Stephan, W

    2001-01-01

    To gain insights into the relationship between codon bias, mRNA secondary structure, third-codon position nucleotide distribution, and gene expression, we predicted secondary structures in two related drosophilid genes, Adh and Adhr, which differ in degree of codon bias and level of gene expression. Individual structural elements (helices) were inferred using the comparative method. For each gene, four types of randomization simulations were performed to maintain/remove codon bias and/or to maintain or alter third-codon position nucleotide composition (N3). In the weakly expressed, weakly biased gene Adhr, the potential for secondary structure formation was found to be much stronger than in the highly expressed, highly biased gene Adh. This is consistent with the observation of approximately equal G and C percentages in Adhr ( approximately 31% across species), whereas in Adh the N3 distribution is shifted toward C (42% across species). Perturbing the N3 distribution to approximately equal amounts of A, G, C, and T increases the potential for secondary structure formation in Adh, but decreases it in Adhr. On the other hand, simulations that reduce codon bias without changing N3 content indicate that codon bias per se has only a weak effect on the formation of secondary structures. These results suggest that, for these two drosophilid genes, secondary structure is a relatively independent, negative regulator of gene expression. Whereas the degree of codon bias is positively correlated with level of gene expression, strong individual secondary structural elements may be selected for to retard mRNA translation and to decrease gene expression. PMID:11606539

  8. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V S; Corydon, M J

    1998-01-01

    , and a single point mutation, 511C-->T, in the other. The 1147C-->T mutation was not present in 98 normal alleles, but was detected in three alleles of 133 patients with elevated EMA excretion, consistently as a 625A-1147T allele. On the other hand, the 511C-->T mutation was present in 13 of 130 and 15 of 67......-causing mutations (confirmed by lack of enzyme activity after expression in COS-7 cells) and a new susceptibility variant in the SCAD gene of two patients with SCAD deficiency, and investigated their frequency in patients with elevated EMA excretion. The first SCAD-deficient patient was a compound heterozygote...... for two mutations, 274G-->T and 529T-->C. These mutations were not present in 98 normal control alleles, but the 529T-->C mutation was found in one allele among 133 patients with elevated EMA excretion. The second patient carried a 1147C-->T mutation and the 625G-->A polymorphism in one allele...

  9. 温泉环境宏基因组文库中醛脱氢酶基因的克隆及分析%Cloning and Analysis of Aldehyde Dehydrogenase Gene from Hot Spring Metagenomic Library

    Institute of Scientific and Technical Information of China (English)

    谌容; 王秋岩; 杨兵; 魏东芝; 谢恬

    2010-01-01

    甲基丙二酸半醛脱氢酶(MMSDH)是唯一需要CoA的一类醛脱氢酶.采用免培养-PCR技术结合基因组步移从宏基因组中成功分离一条MMSDH,获得的MMSDH在序列上具有醛脱氢酶的10个保守模块,以芽胞杆菌的MMSDH为模板预测其三维结构.研究证实采用免培养-PCR技术及基因组步移在微生物基因研究中具有重要的价值,且为新酶的筛选技术提供一条简单有效的途径.

  10. Gaseous aliphatic aldehydes in Chinese incense smoke

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.M.; Wang, L.H. (National Taiwan Univ., Taipei (China))

    1994-09-01

    Aliphatic aldehydes were found during the combustion of materials. Tobacco smoke contains aldehydes. Fire fighters were exposed to aldehydes when they conducted firefighting. Aldehydes in ambient air come mainly from the incomplete combustion of hydrocarbons and from photochemical reaction. Most aldehydes in ambient air are formaldehyde and acetaldehyde. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde were found in the atmosphere in Los Angeles. Burning Chinese incense for worshipping deities is a Chinese daily routine. It was suspected to be a factor causing nasopharynegeal cancer. Epidemiological studies correlated it with the high risk of childhood brain tumor and the high risk of childhood leukemia. Ames test identified the mutagenic effect of the smoke from burning Chinese incense. The smoke had bee proved to contain polycyclic aromatic hydrocarbons and aromatic aldehydes. Suspicion about formaldehyde and other alphatic aldehydes was evoked, when a survey of indoor air pollution was conducted in Taipei city. This study determined the presence of aliphatic aldehydes in the smoke from burning Chinese incense under a controlled atmosphere. 12 refs., 5 figs., 2 tabs.

  11. Biogenic aldehyde(s) derived from the action of monoamine oxidase may mediate the antidipsotropic effect of daidzin.

    Science.gov (United States)

    Keung, W M

    2001-01-30

    Daidzin, a major active principle of an ancient herbal treatment for 'alcohol addiction', was first shown to suppress ethanol intake in Syrian golden hamsters. Since then this activity has been confirmed in Wistar rats, Fawn hooded rats, genetically bred alcohol preferring P rats and African green moneys under various experimental conditions, including two-level operant, two-bottle free-choice, limited access, and alcohol-deprivation paradigms. In vitro, daidzin is a potent and selective inhibitor of mitochondrial aldehyde dehydrogenase (ALDH-2). However, in vivo, it does not affect overall acetaldehyde metabolism in golden hamsters. Using isolated hamster liver mitochondria and 5-hydroxytryptamine (5-HT) and dopamine (DA) as the substrates, we demonstrated that daidzin inhibits the second but not the first step of the MAO/ALDH-2 pathway, the major pathway that catalyzes monoamine metabolism in mitochondria. Correlation studies using structural analogs of daidzin led to the hypothesis that the mitochondrial MAO/ALDH-2 pathway may be the site of action of daidzin and that one or more biogenic aldehydes such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or DOPAL derived from the action of monoamine oxidase (MAO) may be mediators of its antidipsotropic action.

  12. Clustered Genes Encoding 2-Keto-l-Gulonate Reductase and l-Idonate 5-Dehydrogenase in the Novel Fungal d-Glucuronic Acid Pathway.

    Science.gov (United States)

    Kuivanen, Joosu; Arvas, Mikko; Richard, Peter

    2017-01-01

    D-Glucuronic acid is a biomass component that occurs in plant cell wall polysaccharides and is catabolized by saprotrophic microorganisms including fungi. A pathway for D-glucuronic acid catabolism in fungal microorganisms is only partly known. In the filamentous fungus Aspergillus niger, the enzymes that are known to be part of the pathway are the NADPH requiring D-glucuronic acid reductase forming L-gulonate and the NADH requiring 2-keto-L-gulonate reductase that forms L-idonate. With the aid of RNA sequencing we identified two more enzymes of the pathway. The first is a NADPH requiring 2-keto-L-gulonate reductase that forms L-idonate, GluD. The second is a NAD(+) requiring L-idonate 5-dehydrogenase forming 5-keto-gluconate, GluE. The genes coding for these two enzymes are clustered and share the same bidirectional promoter. The GluD is an enzyme with a strict requirement for NADP(+)/NADPH as cofactors. The kcat for 2-keto-L-gulonate and L-idonate is 21.4 and 1.1 s(-1), and the Km 25.3 and 12.6 mM, respectively, when using the purified protein. In contrast, the GluE has a strict requirement for NAD(+)/NADH. The kcat for L-idonate and 5-keto-D-gluconate is 5.5 and 7.2 s(-1), and the Km 30.9 and 8.4 mM, respectively. These values also refer to the purified protein. The gluD deletion resulted in accumulation of 2-keto-L-gulonate in the liquid cultivation while the gluE deletion resulted in reduced growth and cessation of the D-glucuronic acid catabolism.

  13. Clustered Genes Encoding 2-Keto-l-Gulonate Reductase and l-Idonate 5-Dehydrogenase in the Novel Fungal d-Glucuronic Acid Pathway

    Science.gov (United States)

    Kuivanen, Joosu; Arvas, Mikko; Richard, Peter

    2017-01-01

    D-Glucuronic acid is a biomass component that occurs in plant cell wall polysaccharides and is catabolized by saprotrophic microorganisms including fungi. A pathway for D-glucuronic acid catabolism in fungal microorganisms is only partly known. In the filamentous fungus Aspergillus niger, the enzymes that are known to be part of the pathway are the NADPH requiring D-glucuronic acid reductase forming L-gulonate and the NADH requiring 2-keto-L-gulonate reductase that forms L-idonate. With the aid of RNA sequencing we identified two more enzymes of the pathway. The first is a NADPH requiring 2-keto-L-gulonate reductase that forms L-idonate, GluD. The second is a NAD+ requiring L-idonate 5-dehydrogenase forming 5-keto-gluconate, GluE. The genes coding for these two enzymes are clustered and share the same bidirectional promoter. The GluD is an enzyme with a strict requirement for NADP+/NADPH as cofactors. The kcat for 2-keto-L-gulonate and L-idonate is 21.4 and 1.1 s-1, and the Km 25.3 and 12.6 mM, respectively, when using the purified protein. In contrast, the GluE has a strict requirement for NAD+/NADH. The kcat for L-idonate and 5-keto-D-gluconate is 5.5 and 7.2 s-1, and the Km 30.9 and 8.4 mM, respectively. These values also refer to the purified protein. The gluD deletion resulted in accumulation of 2-keto-L-gulonate in the liquid cultivation while the gluE deletion resulted in reduced growth and cessation of the D-glucuronic acid catabolism. PMID:28261181

  14. [The expression of the sperm-specific lactate dehydrogenase gene Ldh-c in plateau pika (Ochotona curzoniae) cardiac muscle and its effect on the anaerobic glycolysis].

    Science.gov (United States)

    Li, Xiao; Wei, Lian; Wang, Yang; Xu, Li-Na; Wei, Lin-Na; Wei, Deng-Bang

    2015-06-25

    The plateau pika (Ochotona curzoniae) has a strong adaptability to hypoxic plateau environment. We found that the sperm-specific lactate dehydrogenase (LDH-C4) gene Ldh-c expressed in plateau pika cardiac muscle. In order to shed light on the effect of LDH-C4 on the anaerobic glycolysis in plateau pika cardiac muscle, 20 pikas were randomly divided into the inhibitor group and the control group, and the sample size of each group was 10. The pikas of inhibitor group were injected with 1 mL 1 mol/L N-isopropyl oxamate, a specific LDH-C4 inhibitor, in biceps femoris muscle of hind legs, each leg with 500 μL. The pikas of control group were injected with the same volume of normal saline (0.9% NaCl). The mRNA and protein expression levels of Ldh-c gene in plateau pika cardiac muscle were determined by real-time PCR and Western blot. The activities of LDH, and the contents of lactate (LD) and ATP in cardiac muscle were compared between the inhibitor group and the control group. The results showed that 1) the expression levels of Ldh-c mRNA and protein were 0.47 ± 0.06 and 0.68 ± 0.08, respectively; 2) 30 min after injection of 1 mL 1 mol/L N-isopropyl oxamate in biceps femoris muscle, the concentration of N-isopropyl oxamate in blood was 0.08 mmol/L; 3) in cardiac muscle of the inhibitor group and the control group, the LDH activities were (6.18 ± 0.48) U/mg and (9.08 ± 0.58) U/mg, the contents of LD were (0.21 ± 0.03) mmol/g and (0.26 ± 0.04) mmol/g, and the contents of ATP were (4.40 ± 0.69) nmol/mg and (6.18 ± 0.73) nmol/mg (P < 0.01); 5) the inhibition rates of N-isopropyl oxamate to LDH, LD and ATP were 31.98%, 20.90% and 28.70%, respectively. The results suggest that Ldh-c expresses in cardiac muscle of plateau pika, and the pika cardiac muscle may get at least 28% ATP for its activities by LDH-C4 catalyzed anaerobic glycolysis, which reduces the dependence on oxygen and enhances the adaptation to the hypoxic environments.

  15. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    Science.gov (United States)

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.

  16. A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis

    DEFF Research Database (Denmark)

    Næsted, Henrik; Fennema, M.; Hao, L.

    1999-01-01

    The dhlA gene of Xanthobacter autotrophicus GJ10 encodes a dehalogenase which hydrolyzes dihalo- alkanes, such as 1,2-dichloroethane (DCE), to a halo- genated alcohol and an inorganic halide ( Janssen et al. 1994 , Annu. Rev. Microbiol. 48, 163-191). In Xanthobacter, these alcohols are further...... catabolized by alcohol and aldehyde dehydrogenase activities, and by the product of the dhlB gene to a second halide and a hydroxyacid. The intermediate halogenated alcohols and, in particular, the aldehydes are more toxic than the haloalkane substrates or the pathway products. We show here that plants......, including Arabidopsis, tobacco, oil seed rape and rice, do not express detectable haloalkane dehalogenase activities, and that wild-type Arabidopsis grows in the presence of DCE. In contrast, DCE applied as a volatile can be used to select on plates or in soil transgenic Arabidopsis which express dhl...

  17. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    Science.gov (United States)

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases.

  18. Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity

    NARCIS (Netherlands)

    van Kuilenburg, A.B.P.; Meijer, J.; Mul, A.N.P.M.; Meinsma, R.; Schmid, V.; Dobritzsch, D.; Hennekam, R.C.M.; Mannens, M.M.A.M.; Kiechle, M.; Etienne-Grimaldi, M.C.; Klümpen, H.J.; Maring, J.G.; Derleyn, V.A.; Maartense, E.; Milano, G.; Vijzelaar, R.; Gross, E.

    2010-01-01

    Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD d

  19. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  20. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  1. Chemoenzymatic Fc Glycosylation via Engineered Aldehyde Tags

    OpenAIRE

    2014-01-01

    Glycoproteins with chemically defined glycosylation sites and structures are important biopharmaceutical targets and critical tools for glycobiology. One approach toward constructing such molecules involves chemical glycosylation of aldehyde-tagged proteins. Here, we report the installation of a genetically encoded aldehyde tag at the internal glycosylation site of the crystallizable fragment (Fc) of IgG1. We replaced the natural Fc N-glycosylation sequon with a five amino-acid sequence that ...

  2. Simultaneous immobilization of dehydrogenases on polyvinylidene difluoride resin after separation by non-denaturing two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Youji [Graduate School of Science and Engineering (Science Section) and Venture Business Laboratory, Ehime University, Bunkyo-cho 2-5, Matsuyama City 790-8577 (Japan)], E-mail: yoji@dpc.ehime-u.ac.jp; Kadota, Mariko [Faculty of Science, Ehime University, Matsuyama (Japan)

    2008-06-16

    We detected mouse liver malate, sorbitol and aldehyde dehydrogenases by negative staining, analysis of malate and sorbitol dehydrogenase activities using each substrate, and electron transfers including nicotinamide adenine dinucleotide (NAD) and nitroblue tetrazolium in non-denaturing two-dimensional electrophoresis (2-DE) gel. Dehydrogenases were also identified by electrospray ionization tandem mass spectrometry (ESI-MS/MS) after 2-DE separation and protein detection by negative staining. Spots of dehydrogenases separated by 2-DE were excised, and simultaneously transferred and immobilized on polyvinylidene difuoride (PVDF) resin by electrophoresis. The dehydrogenase activities remained intact after immobilization. In conclusion, resin-immobilized dehydrogenases can be simultaneously obtained after separation by non-denaturing 2-DE, detection by negative staining and transferring to resins.

  3. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity.

    Science.gov (United States)

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A

    2015-09-01

    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  4. Sequence analysis of a 13.4 kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames.

    Science.gov (United States)

    Casamayor, A; Khalid, H; Balcells, L; Aldea, M; Casas, C; Herrero, E; Ariño, J

    1996-09-01

    A 13421 bp fragment located near the left telomere of chromosome XV (cosmid pEOA461) has been sequenced. Seven non-overlapping open reading frames (ORFs) encoding polypeptides longer than 100 residues have been found (AOB859, AOC184, AOE375, AOX142i, AOE423, AOA476 and AOE433). An additional ORF (AOE131) is found within AOA476. Three of them (AOC184, AOA476 and AOE433) show no remarkable identity with proteins deposited in the data banks. ORF AOB859 is quite similar to a hypothetical yeast protein of similar size located in chromosome VI, particularly within the C-terminal half. AOE375 encodes a new member of the glycogen synthase kinase-3 subfamily of Ser/Thr protein kinases. AOX142i is the gene encoding the previously described ribosomal protein L25. AOE423 codes for a protein virtually identical to the MDH2 malate dehydrogenase isozyme. However, our DNA sequence shows a single one-base insertion upstream of the reported initiating codon. This would produce a larger ORF by extending 46 residues the N-terminus of the protein. The existence of this insertion has been confirmed in three different yeast strains, including FY1679.

  5. Alcoholism: genes and mechanisms.

    Science.gov (United States)

    Oroszi, Gabor; Goldman, David

    2004-12-01

    Alcoholism is a chronic relapsing/remitting disease that is frequently unrecognized and untreated, in part because of the partial efficacy of treatment. Only approximately one-third of patients remain abstinent and one-third have fully relapsed 1 year after withdrawal from alcohol, with treated patients doing substantially better than untreated [1]. The partial effectiveness of strategies for prevention and treatment, and variation in clinical course and side effects, represent a challenge and an opportunity to better understand the neurobiology of addiction. The strong heritability of alcoholism suggests the existence of inherited functional variants of genes that alter the metabolism of alcohol and variants of other genes that alter the neurobiologies of reward, executive cognitive function, anxiety/dysphoria, and neuronal plasticity. Each of these neurobiologies has been identified as a critical domain in the addictions. Functional alleles that alter alcoholism-related intermediate phenotypes include common alcohol dehydrogenase 1B and aldehyde dehydrogenase 2 variants that cause the aversive flushing reaction; catechol-O-methyltransferase (COMT) Val158Met leading to differences in three aspects of neurobiology: executive cognitive function, stress/anxiety response, and opioid function; opioid receptor micro1 (OPRM1) Asn40Asp, which may serve as a gatekeeper molecule in the action of naltrexone, a drug used in alcoholism treatment; and HTTLPR, which alters serotonin transporter function and appears to affect stress response and anxiety/dysphoria, which are factors relevant to initial vulnerability, the process of addiction, and relapse.

  6. Genetic Polymorphisms of Alcohol Dehydrogenase and Aldehyde Dehydrogenase: Alcohol Use and Type 2 Diabetes in Japanese Men

    Directory of Open Access Journals (Sweden)

    Guang Yin

    2011-01-01

    Full Text Available This study investigated the association of ADH1B (rs1229984 and ALDH2 (rs671 polymorphisms with glucose tolerance status, as determined by a 75-g oral glucose tolerance test, and effect modification of these polymorphisms on the association between alcohol consumption and glucose intolerance in male officials of the Self-Defense Forces. The study subjects included 1520 men with normal glucose tolerance, 553 with prediabetic condition (impaired fasting glucose and impaired glucose tolerance, and 235 men with type 2 diabetes. There was an evident interaction between alcohol consumption and ADH1B polymorphism in relation to type 2 diabetes (interaction P=.03. The ALDH24∗87Lys allele was associated with a decreased prevalence odds of type 2 diabetes regardless of alcohol consumption. In conclusion, the ADH1B polymorphism modified the association between alcohol consumption and type 2 diabetes. A positive association between alcohol consumption and type 2 diabetes was confounded by ALDH2 polymorphism.

  7. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    Science.gov (United States)

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  8. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  9. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase product

  10. Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran

    Science.gov (United States)

    Reaghi, Saber; Haghighi, Ali; Harandi, Majid Fasihi; Spotin, Adel; Arzamani, Kourosh; Rouhani, Soheila

    2016-01-01

    Aim: Fascioliasis is one of the most zoonotic diseases with global extension. As the epidemiological distribution of Fasciola may lead to various genetic patterns of the parasite, the aim of this study is to identify Fasciola hepatica based on spermatogenesis, and phylogenetic analysis using mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I [ND1] and cytochrome oxidase subunit I) gene marker. Materials and Methods: In this study, 90 F. hepatica collected from 30 cattle at slaughterhouse located in three different geographical locations in the North-East of Iran were evaluated based on spermatogenetic ability and internal transcribed spacer 1 gene restriction fragment length polymorphism pattern. Genetic diversity and phylogenetic relationship using mtDNA gene marker for the isolates from the North-East of Iran, and other countries were then analyzed. Results: Partial sequences of mtDNA showed eight haplotypes in both genes. The phylogenic analysis using neighbor joining as well as maximum likelihood methods showed similar topologies of trees. Pairwise fixation index between different F. hepatica populations calculated from the nucleotide data set of ND1 gene are statistically significant and show the genetic difference. Conclusion: F. hepatica found in this region of Iran has different genetic structures through the other Fasciola populations in the world. PMID:27733809

  11. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  12. Stereoselective synthesis of (R)-phenylephrine using recombinant Escherichia coli cells expressing a novel short-chain dehydrogenase/reductase gene from Serratia marcescens BCRC 10948.

    Science.gov (United States)

    Peng, Guan-Jhih; Kuan, Yi-Chia; Chou, Hsiao-Yi; Fu, Tze-Kai; Lin, Jia-Shin; Hsu, Wen-Hwei; Yang, Ming-Te

    2014-01-20

    (R)-Phenylephrine [(R)-PE] is an α1-adrenergic receptor agonist and is widely used as a nasal decongestant to treat the common cold without the side effects of other ephedrine adrenergic drugs. We identified a short-chain dehydrogenase/reductase (SM_SDR) from Serratia marcescens BCRC 10948 that was able to convert 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) into (R)-PE. The SM_SDR used NADPH and NADH as cofactors with specific activities of 17.35±0.71 and 5.57±0.07mU/mg protein, respectively, at 30°C and pH 7.0, thereby indicating that this enzyme could be categorized as an NADPH-preferring short-chain dehydrogenase/reductase. Escherichia coli strain BL21 (DE3) expressing SM_SDR could convert HPMAE into (R)-PE with more than 99% enantiomeric excess. The productivity and conversion yield were 0.57mmolPE/lh and 51.06%, respectively, using 10mM HPMAE. Fructose was the most effective carbon source for the conversion of HPMAE to (R)-PE.

  13. Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil.

    Science.gov (United States)

    Pennacchio, Angela; Sannino, Vincenzo; Sorrentino, Giosuè; Rossi, Mosè; Raia, Carlo A; Esposito, Luciana

    2013-05-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh2 gene was heterologously overexpressed in Escherichia coli, and the resulting protein (SaADH2) was purified to homogeneity and both biochemically and structurally characterized. The crystal structure of the SaADH2 NADH-bound form reveals that the enzyme is a tetramer consisting of identical 27,024-Da subunits, each composed of 255 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 80 °C and a 30-min half-inactivation temperature of ∼88 °C. It also shows good tolerance to common organic solvents and a strict requirement for NAD(H) as the coenzyme. SaADH2 displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-ketoesters, but is poorly active on aliphatic, cyclic and aromatic alcohols, showing no activity on aldehydes. Interestingly, the enzyme catalyses the asymmetric reduction of benzil to (R)-benzoin with both excellent conversion (98 %) and optical purity (98 %) by way of an efficient in situ NADH-recycling system involving a second thermophilic ADH. The crystal structure of the binary complex SaADH2-NADH, determined at 1.75 Å resolution, reveals details of the active site providing hints on the structural basis of the enzyme enantioselectivity.

  14. Oxidation of Aromatic Aldehydes Using Oxone

    Science.gov (United States)

    Gandhari, Rajani; Maddukuri, Padma P.; Thottumkara, Vinod K.

    2007-01-01

    The experiment demonstrating the feasibility of using water as a solvent for organic reactions which highlights the cost and environmental benefits of its use is presented. The experiment encourages students to think in terms of the reaction mechanism of the oxidation of aldehydes knowing that potassium persulfate is the active oxidant in Oxone…

  15. Regulation of NF-B-Induced Inflammatory Signaling by Lipid Peroxidation-Derived Aldehydes

    Directory of Open Access Journals (Sweden)

    Umesh C. S. Yadav

    2013-01-01

    Full Text Available Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE, acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-B and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-B signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases.

  16. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  17. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  18. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy

    OpenAIRE

    Park, Sungwoo; Choi, Seon-Guk; Yoo, Seung-Min; Son, Jin H.; Jung, Yong-Keun

    2014-01-01

    CHDH (choline dehydrogenase) is an enzyme catalyzing the dehydrogenation of choline to betaine aldehyde in mitochondria. Apart from this well-known activity, we report here a pivotal role of CHDH in mitophagy. Knockdown of CHDH expression impairs CCCP-induced mitophagy and PARK2/parkin-mediated clearance of mitochondria in mammalian cells, including HeLa cells and SN4741 dopaminergic neuronal cells. Conversely, overexpression of CHDH accelerates PARK2-mediated mitophagy. CHDH is found on both...

  19. A novel R198H mutation in the glucose-6-phosphate dehydrogenase gene in the tribal groups of the Nilgiris in Southern India.

    Science.gov (United States)

    Chalvam, R; Kedar, P S; Colah, R B; Ghosh, K; Mukherjee, M B

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common red cell enzymopathy among humans. In India, G6PD Mediterranean, G6PD Orissa, and G6PD Kerala-Kalyan are the three common mutations which account almost 90% of G6PD deficiency. Here we describe G6PD Coimbra, an unreported variant from India, and a novel 593 G --> A mutation in exon 6 with an amino acid change of Arg 198 His, among the tribal groups of the Nilgiris in Southern India. Further, this novel mutation was structurally characterized and it was found that the mutation is located at the end of the coenzyme domain, which may cause enzyme instability.

  20. Role of farnesoid X receptor in establishment of ontogeny of phase-I drug metabolizing enzyme genes in mouse liver.

    Science.gov (United States)

    Peng, Lai; Piekos, Stephanie; Guo, Grace L; Zhong, Xiao-Bo

    2016-09-01

    The expression of phase-I drug metabolizing enzymes in liver changes dramatically during postnatal liver maturation. Farnesoid X receptor (FXR) is critical for bile acid and lipid homeostasis in liver. However, the role of FXR in regulating ontogeny of phase-I drug metabolizing genes is not clear. Hence, we applied RNA-sequencing to quantify the developmental expression of phase-I genes in both Fxr-null and control (C57BL/6) mouse livers during development. Liver samples of male C57BL/6 and Fxr-null mice at 6 different ages from prenatal to adult were used. The Fxr-null showed an overall effect to diminish the "day-1 surge" of phase-I gene expression, including cytochrome P450s at neonatal ages. Among the 185 phase-I genes from 12 different families, 136 were expressed, and differential expression during development occurred in genes from all 12 phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldoketo reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). The data also suggested new phase-I genes potentially targeted by FXR. These results revealed an important role of FXR in regulation of ontogeny of phase-I genes.

  1. Direct evidence that genetic variation in glycerol-3-phosphate and malate dehydrogenase genes (Gpdh and Mdh1) affects adult ethanol tolerance in Drosophila melanogaster.

    Science.gov (United States)

    Eanes, Walter F; Merritt, Thomas J S; Flowers, Jonathan M; Kumagai, Seiji; Zhu, Chen-Tseh

    2009-02-01

    Many studies of alcohol adaptation in Drosophila melanogaster have focused on the Adh polymorphism, yet the metabolic elimination of alcohol should involve many enzymes and pathways. Here we evaluate the effects of glycerol-3-phosphate dehydrogenase (Gpdh) and cytosolic malate dehydrogenase (Mdh1) genotype activity on adult tolerance to ethanol. We have created a set of P-element-excision-derived Gpdh, Mdh1, and Adh alleles that generate a range of activity phenotypes from full to zero activity. Comparisons of paired Gpdh genotypes possessing 10 and 60% normal activity and 66 and 100% normal activity show significant effects where higher activity increases tolerance. Mdh1 null allele homozygotes show reductions in tolerance. We use piggyBac FLP-FRT site-specific recombination to create deletions and duplications of Gpdh. Duplications show an increase of 50% in activity and an increase of adult tolerance to ethanol exposure. These studies show that the molecular polymorphism associated with GPDH activity could be maintained in natural populations by selection related to adaptation to alcohols. Finally, we examine the interactions between activity genotypes for Gpdh, Mdh1, and Adh. We find no significant interlocus interactions. Observations on Mdh1 in both Gpdh and Adh backgrounds demonstrate significant increases in ethanol tolerance with partial reductions (50%) in cytosolic MDH activity. This observation strongly suggests the operation of pyruvate-malate and, in particular, pyruvate-citrate cycling in adaptation to alcohol exposure. We propose that an understanding of the evolution of tolerance to alcohols will require a system-level approach, rather than a focus on single enzymes.

  2. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Extance, Jonathan; Crennell, Susan J; Eley, Kirstin; Cripps, Roger; Hough, David W; Danson, Michael J

    2013-10-01

    Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD(+) pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 Å resolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.

  3. Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2011-01-01

    Full Text Available Alcohol dehydrogenases (ADH are a class of enzymes that catalyze the reversible oxidation of alcohols to corresponding aldehydes or ketones, by using either nicotinamide adenine dinucleotide (NAD or nicotinamide adenine dinucleotide phosphate (NADP, as coenzymes. In this study, a short-chain ADH gene was identified in Bombyx mori by 5'-RACE PCR. This is the first time the coding region of BmADH has been cloned, expressed, purified and then characterized. The cDNA fragment encoding the BmADH protein was amplified from a pool of silkworm cDNAs by PCR, and then cloned into E. coli expression vector pET-30a(+. The recombinant His-tagged BmADH protein was expressed in E. coli BL21 (DE3, and then purified by metal chelating affinity chromatography. The soluble recombinant BmADH, produced at low-growth temperature, was instrumental in catalyzing the ethanol-dependent reduction of NAD+, thereby indicating ethanol as one of the substrates of BmADH.

  4. Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea.

    Science.gov (United States)

    Timpson, Leanne M; Alsafadi, Diya; Mac Donnchadha, Cillín; Liddell, Susan; Sharkey, Michael A; Paradisi, Francesca

    2012-01-01

    Haloarchaeal alcohol dehydrogenases are of increasing interest as biocatalysts in the field of white biotechnology. In this study, the gene adh12 from the extreme halophile Haloarcula marismortui (HmADH12), encoding a 384 residue protein, was cloned into two vectors: pRV1 and pTA963. The resulting constructs were used to transform host strains Haloferax volcanii (DS70) and (H1209), respectively. Overexpressed His-tagged recombinant HmADH12 was purified by immobilized metal-affinity chromatography (IMAC). The His-tagged protein was visualized by SDS-PAGE, with a subunit molecular mass of 41.6 kDa, and its identity was confirmed by mass spectrometry. Purified HmADH12 catalyzed the interconversion between alcohols and aldehydes and ketones, being optimally active in the presence of 2 M KCl. It was thermoactive, with maximum activity registered at 60°C. The NADP(H) dependent enzyme was haloalkaliphilic for the oxidative reaction with optimum activity at pH 10.0. It favored a slightly acidic pH of 6.0 for catalysis of the reductive reaction. HmADH12 was significantly more tolerant than mesophilic ADHs to selected organic solvents, making it a much more suitable biocatalyst for industrial application.

  5. Aldehyde-induced xanthine oxidase activity in raw milk.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  6. [Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in Planta using strain of LBA4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene].

    Science.gov (United States)

    Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V

    2014-01-01

    To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.

  7. Cytotoxic kurubasch aldehyde from Trichilia emetica.

    Science.gov (United States)

    Traore, Maminata; Zhai, Lin; Chen, Ming; Olsen, Carl Erik; Odile, Nacoulma; Pierre, Guissou I; Bosco, Ouédrago J; Robert, Guigemdé T; Christensen, S Brøgger

    2007-01-01

    Kurubasch aldehyde, a sesquiterpenoid with an hydroxylated humulene skeleton, was isolated as free alcohol from Trichilia emetica Vahl. (Meliaceae), belonging to the order Sapindales. Related substances have been previously found in plants as esters of aromatic acids, and these plants were species belonging to the distant order Apiales. This is the first report of humulenes found in the genus Trichilia and only the second of humulenes in the order Sapindales. The aldehyde is a modest inhibitor of the growth of Plasmodium falciparum (IC50 76 microM) and slow-proliferating breast cancer cells MCF7 (78 microM), but a potent inhibitor of proliferation of S180 cancer cells (IC50 7.4 microM).

  8. Allylation of Aromatic Aldehyde under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu-Mei; JIA,Xue-Feng; WANG,Jin-Xian

    2004-01-01

    @@ Allylation of carbonyl compounds is one of the most interesting processes for the preparation of homoallylic alcohols. Over the past few decades, many reagents have been developed for such reactions[1~3]. In this paper, we first report allylic zinc reagent 1, which can be prepared from zinc dust and allyl bromide conveniently in THF, and reacted with aromatic aldehyde to give homo-allylic alcohols under microwave irradiation.

  9. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    Science.gov (United States)

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  10. Characterization and Targeting of the Aldehyde Dehydrogenase Subpopulation in Ovarian Cancer

    Science.gov (United States)

    2014-07-01

    of nociception revealed using siRNA in rats. J Neurochem 2009;111:1000–10. 29. Feng S, Agoulnik I, Truong A, Li Z, Creighton CJ, Kaftanovskaya EM, et...maintain anesthesia using 1.5 to 2% isoflurane once the mouse is unconscious and does not respond to pain (toe pinch). 8. Clean the skin at the site of

  11. Diazepam- and chlordiazepoxide-mediated increases in erythrocyte aldehyde dehydrogenase activity and its possible implications.

    Science.gov (United States)

    Murthy, P; Guru, S C; Shetty, K T; Ray, R; Channabasavanna, S M

    1992-01-01

    Erythrocyte ALDH activity was assayed in alcoholic (n = 70) and nonalcoholic (n = 40) subjects. In general, alcoholics without any prior medications (n = 57) were found to have a decreased ALDH activity (mean +/- SD: 3.38 +/- 1.7 mU; p less than 0.001) as compared to control group (5.10 +/- 1.57 mU). However, a group of alcoholics who were detoxified with benzodiazepines (n = 13) prior to blood collection for enzyme assay were found to have higher ALDH activity (4.92 +/- 2.46 mU; p less than 0.05) as compared to alcoholics who were not detoxified. In vitro experiments demonstrated that both diazepam (DZM) and chlordiazepoxide (CDP) could activate the ALDH. The magnitude of enzyme activation by DZM and CDP appear to correlate with their relative potency of tranquilizing effect. Further, the observed ability of DZM to reverse the inhibition of ALDH mediated by disulfiram may explain the biochemical basis of the reported ability of benzodiazepines (BDZ) to reduce the intensity of disulfiram ethanol reaction (DER).

  12. Characterization and Targeting of the Aldehyde Dehydrogenase Subpopulation in Ovarian Cancer

    Science.gov (United States)

    2012-07-01

    in androgen-independent prostate cancer. Clin Cancer Res 2008;14:5769–77. Putative Ovarian Cancer Stem Cells and Recurrence www.aacrjournals.org Clin... cyclooxygenase -2 in cervical, endometrial, and ovarian malignancies. Am J Obstet Gynecol 188(5):1174-1176, 2003. 9. Landen CN Jr, Younger NO...Obstetricians and Gynecologists, 2000. 7. Landen CN, Mathur SP, Richardson MS, Creasman WT. Expression of cyclooxygenase -2 in cervical

  13. Characterization and Targeting of the Aldehyde Dehydrogenase Subpopulation in Ovarian Cancer

    Science.gov (United States)

    2013-07-01

    the cells found in the tubal epithelium , mucinous tumors re- semble the mucin-producing glandular cells of the endocervix, and endome- trioid tumors... epithelium (7–9), including a study that found elevated Gli1 expression is associated with decreased survival (9). These studies have also showed...www.AJOG.orgCellular composition of the ovary The ovary is derived from multiple embryonic structures including the coelomic epithelium , the subcoelomic mesoderm, and

  14. Identification and mRNA expression of two 17β-hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals.

    Science.gov (United States)

    Zhang, Yingying; Wang, Qing; Ji, Yinglu; Zhang, Qian; Wu, Huifeng; Xie, Jia; Zhao, Jianmin

    2014-05-01

    17β-Hydroxysteroid dehydrogenases (17β-HSDs) are multifunctional enzymes involved in the metabolism of steroids, fatty acids, retinoids and bile acid. In this study, two novel types of 17β-HSDs (named as MgHsd17b10 and MgHsd17b12) were cloned from Mytilus galloprovincialis by using rapid amplification of cDNA ends (RACE) approaches. Sequence analysis showed that MgHsd17b10 and MgHsd17b12 encoded a polypeptide of 259 and 325 amino acids, respectively. Phylogenetic analysis revealed that MgHsd17b10 and MgHsd17b12 were evolutionarily clustered with other invertebrate 17β-HSD type 10 and 17β-HSD type 12 homologues. The MgHsd17b10 and MgHsd17b12 transcripts could be detected in all examined tissues with higher expression levels in digestive glands and gonad. After exposed to endocrine disrupting chemicals (Bisphenol A or 2,2',4,4'-tetrabromodiphenyl ether), the expression of MgHsd17b10 and MgHsd17b12 transcripts was both down-regulated in digestive glands. These findings suggest that MgHsd17b10 and MgHsd17b12 perhaps play an important role in the endocrine regulation of M. galloprovincialis.

  15. Evaluation of clinical value of single nucleotide polymorphisms of dihydropyrimidine dehydrogenase gene to predict 5-fluorouracil toxicity in 60 colorectal cancer patients in China.

    Science.gov (United States)

    Zhang, Xin; Sun, Butong; Lu, Zhenxia

    2013-01-01

    Dihydropyrimidine dehydrogenase (DPD) activity could be affected by single nucleotide polymorphisms (SNPs), resulting in either no effect, partial or complete loss of DPD activity. To evaluate if SNPs of DPD can be used to predict 5-FU toxicity, we evaluated five SNPs of DPD (14G1A, G1156T, G2194A, T85C and T464A) by TaqMan real time PCR in 60 colorectal cancer patients. Clinical data demonstrated that there was higher correlation between DPD activity and toxic effects of 5-FU (pDPD activities (DPD activities and higher toxic effects. Two patients were positive for the T464A detection, which were heterozygous with lower DPD activity and higher toxic effects and also positive for T85C detection. These data clearly indicated that the T464A and homozygous of the T85C are stronger biomarkers to predict the 5-FU toxicity. Our study significantly indicated that the detection for G2194A, T85C and T464A could predict ~13% of 5-FU severe toxic side effects.

  16. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Science.gov (United States)

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  17. The First Case of Severe Takotsubo Cardiomyopathy Associated with 5-Fluorouracil in a Patient with Abnormalities of Both Dihydropyrimidine Dehydrogenase (DPYD) and Thymidylate Synthase (TYMS) Genes

    Science.gov (United States)

    Smith, Melissa; Maloney, Antonio

    2016-01-01

    5-Fluorouracil (5-FU) is the backbone of the chemotherapy regimens approved for treatment of many malignancies, especially colorectal cancer (CRC). The incidence of cardiotoxicity associated with 5-FU ranges between 1.5% to 18% and is most commonly manifested as anginal symptoms. Cardiomyopathy is very rarely reported with 5-FU and capecitabine. A 35-year-old Caucasian male with T3, N1, M0 rectal cancer after the initial neoadjuvant chemoradiation with 5FU/LV followed by surgical abdominoperineal resection (APR), began mFOLFOX6 in the adjuvant setting. Following the first treatment, he developed severe cardiomyopathy, with a drop in ejection fraction (EF) to 19% from normal. The cardiac workup showed no ischemic or other etiologies to explain this cardiac event. He was a nonsmoker and only occasionally drank alcohol. He had no previous or family history of heart disease and had normal cholesterol level. He was treated for severe congestive heart failure (CHF). When the patient presented to us for second opinion, we decided to examine him for dihydropyrimidine dehydrogenase (DPD) deficiency and thymidylate synthase (TYMS) polymorphism. The patient was found to be heterozygous for the c.85T>C mutation, resulting in reduced DPYD enzymatic activity and homozygous for TYMS 5’TSER genotype 2R/2R *f. Our group first identified and reported P453L (1358C>T) type DPYD germline mutation in a patient who developed 5-FU induced cardiotoxicity. In this paper, we describe the first case of cardiomyopathy related to DPD deficiency and homozygous polymorphism of TYMS in a patient with colon cancer following 5-FU containing regimen. Fluorouracil-related cardiomyopathy has to be anticipated and treated to prevent the serious consequence of cardiac dysfunction. The prospective testing for DPD deficiency in patients might prevent DPD-deficient patients from severe toxicity or even death, and therefore the development of a unified screening method is warranted. PMID:27752409

  18. Comparative characterization of a temperature responsive gene (lactate dehydrogenase-B, ldh-b in two congeneric tropical fish, Lates calcarifer and Lates niloticus

    Directory of Open Access Journals (Sweden)

    Richard C. Edmunds, Lynne van Herwerden, Carolyn Smith-Keune, Dean R. Jerry

    2009-01-01

    Full Text Available The characterization of candidate loci is a critical step in obtaining insight into adaptation and acclimation of organisms. In this study of two non-model tropical (to sub-tropical congeneric perciformes (Lates calcarifer and Lates niloticus we characterized both coding and non-coding regions of lactate dehydrogenase-B (ldh-b, a locus which exhibits temperature-adaptive differences among temperate and sub-tropical populations of the North American killifish Fundulus heteroclitus. Ldh-b was 5,004 and 3,527 bp in length in L. calcarifer and L. niloticus, respectively, with coding regions comprising 1,005 bp in both species. A high level of sequence homology existed between species for both coding and non-coding regions of ldh-b (> 97% homology, corresponding to a 98.5% amino acid sequence homology. All six known functional sites within the encoded protein sequence (LDH-B were conserved between the two Lates species. Ten simple sequence repeat (SSR motifs (mono-, di-, tri- and tetranucleotide and thirty putative microRNA elements (miRNAs were identified within introns 1, 2, 5 and 6 of both Lates species. Five single nucleotide polymorphisms (SNPs were also identified within miRNA containing intron regions. Such SNPs are implicated in several complex human conditions and/or diseases (as demonstrated by extensive genome-wide association studies. This novel characterization serves as a platform to further examine how non-model species may respond to changes in their native temperatures, which are expected to increase by up to 6°C over the next century.

  19. 玉米NADP+-异柠檬酸脱氢酶基因克隆和特征分析%Cloning and Character Analysis of NADP+-Dependent Isocitrate Dehydrogenase Gene in Maize

    Institute of Scientific and Technical Information of China (English)

    袁进成; 宋晋辉; 瓮巧云; 马海莲; 王凌云; 刘颖慧

    2015-01-01

    异柠檬酸脱氢酶(IDH)是三羧酸循环中最关键和最有意义的限速酶,在生物体的三羧酸循环代谢反应中起重要的作用。我们从玉米中克隆了一个新的异柠檬酸脱氢酶基因,命名为ZmIDH2并对其特征进行初步研究。ZmIDH2基因全长1643 bp,开放阅读框1236 bp,编码412个氨基酸,同时克隆了IDH2基因组DNA,全长3463 bp,具有11个内含子和12个外显子。进化树分析表明该基因在生物进化中高度保守,与植物的细胞质IDH2基因的亲缘关系较近。半定量RT-PCR结果显示ZmIDH2基因在玉米中是组成型表达的,在根和幼胚中的表达量较高。胁迫处理玉米植株,表明在干旱和高盐条件下ZmIDH2基因表达量明显提高, ZmIDH2酶活性也受盐和干旱诱导。%NADP+-dependent isocitrate dehydrogenase (IDH) catalyzes the reversible conversion of isocitrate toα-ketoglutarate and plays an essential rate-limiting step in the citric acid cycle. In this report a cytosolic NADP+dependent isocitrate dehydrogenase gene from maize has been cloned. The analysis of the nucleotide sequence revealed an open reading frame of 1 236 bp and encoding 412 amino acids. The ZmIDH2 had a 12-extron/11-intron genomic structure and a genomic length of 3 463 bp. The amino acid sequence displayed high homology with those from other plants such as rice and Arabidopsis. The gene was transcripted in all tissues tested, with the high amount of ZmIDH2 transcript being found in root and embryo. Semi RT-PCR and enzyme active analyses showed that ZmIDH2 was induced by drought and salt stress both in transcription and enzyme level.

  20. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Soumabha; Hendricks, P.I. [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Reynolds, J.C. [Centre for Analytical Science, Loughborough University, Loughborough, Leicestershire (United Kingdom); Cooks, R.G., E-mail: cooks@purdue.edu [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)

    2015-02-20

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.

  1. 15 Hypoxyprostaglandin dehydrogenase. A review

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1976-01-01

    A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references.......A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references....

  2. Two-Step biocatalytic conversion of an ester to an aldehyde in reverse micelles.

    Science.gov (United States)

    Yang, F; Russell, A J

    1994-02-01

    Lipases from Candida cyclindracea (L-1754) and wheat germ (L-3001) have been used to hydrolyze esters to their corresponding alcohols and acids in reverse micelles. Alcohol dehydrogenase from baker's yeast (YADH) was subsequently used to reduce the alcohol products to aldehydes. Cofactor recycling in the redox reaction was achieved using a sacrificial cosubstrate, as described previously. Four surfactants (sodium dioctylsulfosuccinate, Nonidet P-40 with Triton X-35, polyoxyethylene, 10-cetyl-ether, polyoxyethylene sorbitan trioleate) were employed to determine the effect of amphiphile on ester hydrolysis and redox reaction rates separately. The effect of type of organic solvent, W(0) [(water]/[surfactant)], and substrate concentration on separte enzyme activity were also investigated. A brief investigation of a single phase, two-step reaction catalyzed by the combination of lipase and YADH in reverse micelles is also reported. The activities of the enzymes are significantly different when used together instead of independently. (c) 1994 John Wiley & Sons, Inc.

  3. Thymidylate synthase, dihydropyrimidine dehydrogenase, ERCC1, and thymidine phosphorylase gene expression in primary and metastatic gastrointestinal adenocarcinoma tissue in patients treated on a phase I trial of oxaliplatin and capecitabine

    Directory of Open Access Journals (Sweden)

    Danenberg Kathleen D

    2008-12-01

    Full Text Available Abstract Background Over-expression of thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD in tumor tissue is associated with insensitivity to 5-fluorouracil (5-FU. Over-expression of ERCC1 correlates with insensitivity to oxaliplatin (OX therapy, while high thymidine phosphorylase (TP levels predict for increased sensitivity to capecitabine (Xel. Methods Biopsies of metastatic tumor were taken before OX (130 mg/m2 day 1 given with Xel (1200–3000 mg/m2 in two divided doses days 1–5 and 8–12 every 3-weeks. Micro-dissected metastatic and primary tumors were analyzed for relative gene expression by real-time quantitative polymerase chain reaction. The clinical protocol prospectively identified the molecular targets of interest that would be tested. Endpoints for the molecular analyses were correlation of median, first and third quartiles for relative gene expression of each target with response, time to treatment failure (TTF, and survival. Results Among 91 patients participating in this trial; 97% had colorectal cancer. The median number of prior chemotherapy regimens was 2, and most had prior 5-FU and irinotecan. In paired samples, median mRNA levels were significantly higher in metastatic versus primary tumor (-fold: TS (1.9, DPD (3.8, ERCC1 (2.1 and TP (1.6. A strong positive correlation was noted between DPD and TP mRNA levels in both primary (r = 0.693, p Conclusion Target gene expression in primary tumor was significantly lower than that in paired metastatic tissue. High ERCC1 mRNA levels in metastatic tumor was associated with a shorter TTF. Lower expression of TS mRNA correlated with a lower chance of early PD with XelOX therapy and improved overall survival.

  4. Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, Mogens; Roepstorff, P.;

    2002-01-01

    strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG 1363 and the gapA overexpressing strain the GAPDH activity...

  5. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17{alpha}-methyldihydrotestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.L.; Thomason, R.G.; Lee, D.M.; Brill, J.L.; Price, B.B.; Carr, G.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States); Versteeg, D.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States)], E-mail: versteeg.dj@pg.com

    2008-04-28

    Concentration and time-dependent changes in hepatic gene expression were examined in adult, female zebrafish (Danio rerio) exposed to 0, 0.1, 0.7, 4.9 {mu}g/L of a model androgen, 17{alpha}-methyldihydrotestosterone (MDHT). At 24 and 168 h, fish were sacrificed and liver was extracted for gene expression analysis using custom Affymetrix GeneChip Zebrafish Genome Microarrays. In an effort to link gene expression changes to higher levels of biological organization, blood was collected for measurement of plasma steroid hormones (17{beta}-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. Body and ovary weight were also measured. A significant reduction in E2 occurred at 24 h (0.7 and 4.9 {mu}g/L) and 168 h (4.9 {mu}g/L) following MDHT exposure. In contrast, T was significantly increased at 24 h (4.9 {mu}g/L) and 168 h (0.1, 0.7, 4.9 {mu}g/L). 171 and 575 genes were significantly affected in a concentration-dependent manner at either 24 or 168 h by MDHT exposure at p {<=} 0.001 and p {<=} 0.01, respectively. Genes involved in retinoic acid metabolism (e.g. aldehyde dehydrogenase 8, member A1; retinol dehydrogenase 12), steroid biosynthesis and metabolism (e.g. hydroxysteroid (11{beta}) dehydrogenase 2; hydroxy-delta-5-steroid dehydrogenase, 3 beta-), hormone transport (e.g. sex hormone binding globulin), and regulation of cell growth and proliferation (e.g. N-myc downstream regulated gene 1; spermidinespermine N(1)-acetyltransferase) were affected by MDHT exposure. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to androgenic substances. Genes identified in this study provide information on the potential mode of action of strong androgens in female fish. In addition, when used for screening of EDC's, these genes may also serve as sensitive markers of exposure to androgenic compounds.

  6. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  7. Molecular Differentiation of Fasciola Species and Characterization of Genetic Diversity of F. gigantica Using NADH Dehydrogenase I (ND1 Gene in the Endemic Areas of Iran.

    Directory of Open Access Journals (Sweden)

    Shabnam Tadayon

    2015-03-01

    Full Text Available Fasciola hepatica and F. gigantica are the causative agents of fasciolosis in domestic animals and humans. Based on the morphometric criteria, differential diagnosis between them is problematic. In addition, intermediate forms of Fasciola have been found in Iran, which makes the differentiation more difficult. The aim of the present study was to provide molecular evidence for the existence of F. gigantica in Iran using sequencing analysis of ND1 and PCR-RFLP analysis of ITS2 regions and to study the intraspecies variations of F. gigantica based on mitochondrial ND1 gene polymorphism.Forty Fasciola spp. samples collected from four distinct provinces (Fars, Khuzestan, Gilan, Khorasan Razavi in Iran were collected for morphological and molecular characterization. In molecular method, PCR-RFLP analysis of ITS2 using pagI restriction enzyme was used as a screening approach for F. gigantica differentiation. Then mitochondrial DNA sequence variations in the ND1 gene were used for phylogenetic analysis.Based on the morphometric criteria and RFLP analysis, 14 parasitic samples were initially identified to be F. gigantica. Phylogenetic results showed that there are at least 10 different genotypes of F. gigantica in Iran, which are different from those existing in the GenBank. Twenty-six points out of 410 base pairs of sequenced ND1 gene in 10 varieties of F. gigantica were diagnosed to be polymorphic. From 26 points of polymorphism, only eight resulted in the post-translational amino acid changes in ND1 gene product structure.Data revealed noticeable genetic diversity (up to 4.63% between different varieties of F. gigantica in Iran.

  8. Purification and characterization of benzyl alcohol- and benzaldehyde- dehydrogenase from Pseudomonas putida CSV86.

    Science.gov (United States)

    Shrivastava, Rahul; Basu, Aditya; Phale, Prashant S

    2011-08-01

    Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD(+) dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD(+), while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K (m) value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K (m) and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.

  9. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.

    Science.gov (United States)

    Chen, Lu; Bromberger, Paul David; Nieuwenhuiys, Gavin; Hatti-Kaul, Rajni

    2016-01-01

    Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization) pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA) followed by reduction to 1,3-propandiol (1,3-PDO) with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP). The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s) in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7) belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and external recycling

  10. 异柠檬酸脱氢酶基因突变在神经胶质瘤发生发展中的作用%Possible role of isocitrate dehydrogenase gene mutation in the genesis of glioma

    Institute of Scientific and Technical Information of China (English)

    袁浩; 袁先厚; 江普查; 张捷; 文志华

    2011-01-01

    Objective To explore the possible role of isocitrate dehydrogenase (IDH) gene mutation in the genesis of glioma. Methods DNA was extracted from 89 glioma FFPE specimens. The primers were designed and synthetized. The exon 4 of IDH1 and IDH2 gene was screened and analyzed through polymerase chain reaction (PCR) and direct DNA sequencing. Results Altogether 36 IDH1 gene mutations were found (40. 4% ) , mainly from WHO Ⅱ and Ⅲ grade astrocytoma (61%-63% ) , oligodondroglioma (33%-66%) and oligoastrocytoma (57% -80%). All mutations were heterozygous, missense and point mutation, which were only found in codon 132 of IDH1. The patients with gene mutation were younger than those without muatation. Conclusion IDH1 gene mutation may play an important role in the tumorigenesis of glioma.%目的 观察异柠檬酸脱氢酶(IDH)基因突变在神经胶质瘤发生、发展中的作用.方法 提取89例胶质瘤蜡块标本DNA,设计合成引物,聚合酶链反应(PCR)扩增覆盖IDH1、IDH2基因4号外显子cDNA片段,正反双向DNA测序,观察基因突变频率和类型,分析基因型与临床表型的关系.结果 89例胶质瘤标本中有36例IDH1突变(40.4%);主要见于Ⅱ、Ⅲ级星形细胞瘤(61%~63%)、少突胶质细胞瘤(33%~66%)以及混合性胶质瘤(57%~80%);全部为4号外显子R132h杂合性、错义、点突变;各型胶质瘤组中突变型患者多较年轻.结论 高频率IDH基因特定催化活性区域碱基突变是胶质瘤发生、发展过程中一种重要的分子事件.

  11. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera.

    Science.gov (United States)

    Sanchita; Singh, Ruchi; Mishra, Anand; Dhawan, Sunita S; Shirke, Pramod A; Gupta, Madan M; Sharma, Ashok

    2015-11-01

    Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.

  12. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while oxi

  13. Fifteen novel mutations in the mitochondrial NADH dehydrogenase subunit 1, 2, 3, 4, 4L, 5 and 6 genes from Iranian patients with Leber's hereditary optic neuropathy (LHON).

    Science.gov (United States)

    Rezvani, Zahra; Didari, Elmira; Arastehkani, Ahoura; Ghodsinejad, Vadieh; Aryani, Omid; Kamalidehghan, Behnam; Houshmand, Massoud

    2013-12-01

    Leber's hereditary optic neuropathy (LHON) is an optic nerve dysfunction resulting from mutations in mitochondrial DNA (mtDNA), which is transmitted in a maternal pattern of inheritance. It is caused by three primary point mutations: G11778A, G3460A and T14484C; in the mitochondrial genome. These mutations are sufficient to induce the disease, accounting for the majority of LHON cases, and affect genes that encode for the different subunits of mitochondrial complexes I and III of the mitochondrial respiratory chain. Other mutations are secondary mutations associated with the primary mutations. The purpose of this study was to determine MT-ND variations in Iranian patients with LHON. In order to determine the prevalence and distribution of mitochondrial mutations in the LHON patients, their DNA was studied using PCR and DNA sequencing analysis. Sequencing of MT-ND genes from 35 LHON patients revealed a total of 44 nucleotide variations, in which fifteen novel variations-A14020G, A13663G, C10399T, C4932A, C3893G, C10557A, C12012A, C13934T, G4596A, T12851A, T4539A, T4941A, T13255A, T14353C and del A 4513-were observed in 27 LHON patients. However, eight patients showed no variation in the ND genes. These mutations contribute to the current database of mtDNA polymorphisms in LHON patients and may facilitate the definition of disease-related mutations in human mtDNA. This research may help to understand the disease mechanism and open up new diagnostic opportunities for LHON.

  14. Effects of aliphatic aldehydes on the growth and patulin production of Penicillium expansum in apple juice.

    Science.gov (United States)

    Taguchi, Tomoyasu; Kozutsumi, Daisuke; Nakamura, Ruka; Sato, Yoshio; Ishihara, Atsushi; Nakajima, Hiromitsu

    2013-01-01

    The effects of 16 aliphatic aldehydes with 3-10 carbons on the growth and patulin production of Penicillium expansum were examined. When P. expansum spores were inoculated into apple juice broth, some alkenals, including 2-propenal, (E)-2-butenal, (E)-2-pentenal, and (E)-2-hexenal, inhibited fungal growth and patulin production. Their minimal inhibitory concentrations were 5, 50, 80, and 80 µg/mL respectively. Vital staining indicated that these alkenals killed mycelia within 4 h. Treatment of the spores with these aldehydes also resulted in rapid loss of germination ability, within 0.5-2 d. On the other hand, aliphatic aldehydes with 8-10 carbons significantly enhanced patulin production without affecting fungal growth: 300 µg/mL of octanal and 100 µg/mL of (E)-2-octenal increased the patulin concentrations in the culture broth by as much as 8.6- and 7.8-fold as compared to that of the control culture respectively. The expression of the genes involved in patulin biosynthesis in P. expansum was investigated in mycelia cultured in apple juice broth containing 300 µg/mL of octanal for 3.5, 5, and 7 d. Transcription of the msas gene, encoding 6-methylsalicylic acid synthase, which catalyzed the first step in the patulin biosynthetic pathway was remarkably high in the 3.5-d and 5-d-old cultures as compared with the control. However, octanal did not any increase the transcription of the msas in the 7-d-old culture or that of the other two genes, IDH and the peab1, in culture. Thus the enhanced patulin accumulation with supplementation with these aldehydes is attributable to the increased amount of the msas transcript.

  15. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT and alanine dehydrogenase (AlaDH in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.

  16. Large contiguous gene deletions in Sjögren-Larsson syndrome.

    Science.gov (United States)

    Engelstad, Holly; Carney, Gael; S'aulis, Dana; Rise, Janae; Sanger, Warren G; Rudd, M Katharine; Richard, Gabriele; Carr, Christopher W; Abdul-Rahman, Omar A; Rizzo, William B

    2011-11-01

    Sjögren-Larsson syndrome (SLS) is an autosomal recessive disorder characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene for fatty aldehyde dehydrogenase, an enzyme that catalyzes the oxidation of fatty aldehyde to fatty acid. More than 70 mutations have been identified in SLS patients, including small deletions or insertions, missense mutations, splicing defects and complex nucleotide changes. We now describe 2 SLS patients whose disease is caused by large contiguous gene deletions of the ALDH3A2 locus on 17p11.2. The deletions were defined using long distance inverse PCR and microarray-based comparative genomic hybridization. A 24-year-old SLS female was homozygous for a 352-kb deletion involving ALDH3A2 and 4 contiguous genes including ALDH3A1, which codes for the major soluble protein in cornea. Although lacking corneal disease, she showed severe symptoms of SLS with uncommon deterioration in oral motor function and loss of ambulation. The other 19-month-old female patient was a compound heterozygote for a 1.44-Mb contiguous gene deletion and a missense mutation (c.407C>T, P136L) in ALDH3A2. These studies suggest that large gene deletions may account for up to 5% of the mutant alleles in SLS. Geneticists should consider the possibility of compound heterozygosity for large deletions in patients with SLS and other inborn errors of metabolism, which has implications for carrier testing and prenatal diagnosis.

  17. Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1.

    Science.gov (United States)

    Kostichka, K; Thomas, S M; Gibson, K J; Nagarajan, V; Cheng, Q

    2001-11-01

    Biological oxidation of cyclic ketones normally results in formation of the corresponding dicarboxylic acids, which are further metabolized in the cell. Rhodococcus ruber strain SC1 was isolated from an industrial wastewater bioreactor that was able to utilize cyclododecanone as the sole carbon source. A reverse genetic approach was used to isolate a 10-kb gene cluster containing all genes required for oxidative conversion of cyclododecanone to 1,12-dodecanedioic acid (DDDA). The genes required for cyclododecanone oxidation were only marginally similar to the analogous genes for cyclohexanone oxidation. The biochemical function of the enzymes encoded on the 10-kb gene cluster, the flavin monooxygenase, the lactone hydrolase, the alcohol dehydrogenase, and the aldehyde dehydrogenase, was determined in Escherichia coli based on the ability to convert cyclododecanone. Recombinant E. coli strains grown in the presence of cyclododecanone accumulated lauryl lactone, 12-hydroxylauric acid, and/or DDDA depending on the genes cloned. The cyclododecanone monooxygenase is a type 1 Baeyer-Villiger flavin monooxygenase (FAD as cofactor) and exhibited substrate specificity towards long-chain cyclic ketones (C11 to C15), which is different from the specificity of cyclohexanone monooxygenase favoring short-chain cyclic compounds (C5 to C7).

  18. Functional analysis of alcS, a gene of the alc cluster in Aspergillus nidulans.

    Science.gov (United States)

    Flipphi, Michel; Robellet, Xavier; Dequier, Emmanuel; Leschelle, Xavier; Felenbok, Béatrice; Vélot, Christian

    2006-04-01

    The ethanol utilization pathway (alc system) of Aspergillus nidulans requires two structural genes, alcA and aldA, which encode the two enzymes (alcohol dehydrogenase and aldehyde dehydrogenase, respectively) allowing conversion of ethanol into acetate via acetyldehyde, and a regulatory gene, alcR, encoding the pathway-specific autoregulated transcriptional activator. The alcR and alcA genes are clustered with three other genes that are also positively regulated by alcR, although they are dispensable for growth on ethanol. In this study, we characterized alcS, the most abundantly transcribed of these three genes. alcS is strictly co-regulated with alcA, and encodes a 262-amino acid protein. Sequence comparison with protein databases detected a putative conserved domain that is characteristic of the novel GPR1/FUN34/YaaH membrane protein family. It was shown that the AlcS protein is located in the plasma membrane. Deletion or overexpression of alcS did not result in any obvious phenotype. In particular, AlcS does not appear to be essential for the transport of ethanol, acetaldehyde or acetate. Basic Local Alignment Search Tool analysis against the A. nidulans genome led to the identification of two novel ethanol- and ethylacetate-induced genes encoding other members of the GPR1/FUN34/YaaH family, AN5226 and AN8390.

  19. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  20. 脑胶质瘤中核干细胞因子表达与IDH1基因突变分析%Analysis of expression of nucleostemin and mutations of ;isocitrate dehydrogenase 1 gene in glioma tissues

    Institute of Scientific and Technical Information of China (English)

    寿记新; 管海博; 程森

    2014-01-01

    Objective To analyze the characteristic of expression of NS and isocitrate dehydrogenase (IDH1) gene muta-tions in gliomas ,as to provide theoretical basis for the diagnosis and treatment of glioma. Methods Fifty-eight human glioma samples were analyzed. The protein expression levels of NS were measured by IHC. The polymorphisms change of IDH1 gene was detected by real-time quantitative PCR.Results Upshots immuno-histochemistry manifested that the positive expression rate of NS in high level gloma tissue was higher than that in low level glioma. Gene sequencing manifested that IDH1 gene mu-tations were observed in 16 samples having gliomas(55.2% ) ,and the mutation appeared as R132H type. By the SPSS analy-sis ,IDH1 gene mutation rate had a certain correlation with glioma pathology classification.Conclusion As the increase of path-ological level ,the expression of NS and IDH1 gene mutations rate are increased in glioma. It can provide strong evidence for the diagnosis of glioma and opened up a new research way in gene therapy for gliomas.%目的:分析胶质瘤中核干细胞因子(NS)表达和异柠檬酸脱氢酶1(IDHI)基因突变的特点,为胶质瘤的诊断、治疗提供理论依据。方法对58例原发性胶质瘤存档蜡块分析,采用免疫组织化学法检测 NS 蛋白的表达情况,应用 PCR技术检测标本中IDH1基因多态性变化。结果免疫组织化学法检测显示,在高级别胶质瘤标本中NS蛋白表达率高于低级别。经基因直接测序,16例(55.2%)出现IDH1突变,突变位点均为R132型。经统计学分析,IDH1基因突变率与胶质瘤病理分级呈正相关。结论在胶质瘤中核干细胞因子表达和ID H l基因突变率随病理级别的增加而增加,可为胶质瘤的诊断提供有力的证据,并为胶质瘤在基因治疗方面指出了新的研究方向。

  1. Isocitrate Dehydrogenase Gene Mutations in Acute Myeloid Luekenlia%急性髓系白血病中异柠檬酸脱氢酶基因突变的研究

    Institute of Scientific and Technical Information of China (English)

    周晓娟; 张苏江; 乔纯; 沈云峰; 李建勇

    2011-01-01

    本研究探讨急性髓系白血病(acute myeloid leukemia,AML)患者中异柠檬酸脱氢酶基因(IDH1、IDH2基因)点突变及其临床意义.选取90例初发AML患者,以基因组DNA为模板,分别扩增IDH1、IDH2基因的4号外显子,PCR产物通过直接测序法检测IDH突变情况.结果表明,有IDH1基因突变的患者为4例,有IDH2基因突变的患者为7例,突变率分别为4.4%、7.8%,无患者同时存在有2种突变,总突变率为12.2%.在有突变的患者中正常核型所占比例为72.7%,明显高于核型异常患者.存在突变的患者的缓解率为72.7%,较无突变患者高,但两者无统计学差异.有IDH基因突变的患者在缓解后突变消失,而复发后在同样位点再次出现突变.结论:IDH 基因突变主要见于正常核型的患者中,尤其是合并NPM1基因突变患者,并与复发相关.IDH基因突变可能成为AML尤其是正常核型AML治疗和预后的指标.%The purpose of this study was to identify point mutation of the isocitrate dehydrogenase gene ( IDH1 and IDH2) in patients with acute myeioid leukemia (AML) and its clinical significance. 90 de novo AML patients were selected for this study, the genomic DNA was served as template, the exon4 of IDH1 and IDH2 were amplified respectively. The IDH mutation was detected by using directly soguencing method for PCR product. The results indicated that among 90 de novo AML patients,4 patients (4.4%) showed the IDH1 gene mutation positive, and 7 (7.8%) patients showed IDH2 gene mutation positive. None was found harboring both mutations, the overall rate of mutation positive of them was 12.2%. In the AML patients with IDH gene mutation positive, the rate of normal karyotype was 72.7%, which was significanfiy higher than that in abnormality karyotype. The CR rate in mutation positive patients was 72.7%, which seemed as if higher than that in mutation negative patients, but without statistical significance. The mutation disappeared when the

  2. Aldehyde concentrations in wet deposition and river waters

    Energy Technology Data Exchange (ETDEWEB)

    Dąbrowska, Agata, E-mail: agatadab@amu.edu.pl; Nawrocki, Jacek

    2013-05-01

    The process of pollutants removal from the atmosphere can be responsible for the appearance of aldehydes in surface waters. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in precipitations as well as in surface water samples, while semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. Particularly high level of carbonyls concentration was noted after periods of drought and at the beginning of rainy periods. We estimated that ca. 40% of aldehydes from wet precipitations were delivered into river waters. The level of carbonyl concentration in river was positively correlated with specific local meteorological conditions such as solar radiation and ozone concentration, in contrast, there was negative correlation between aldehyde concentration in the river samples and the precipitation intensity. - Highlights: ► Atmosphere pollutants are responsible for the appearance of aldehydes in surface waters. ► Volatile aldehydes are commonly present in precipitations as well as in surface waters. ► Semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. ► High concentration of carbonyls were noted after periods of drought and at the beginning of rain. ► Carbonyl concentration in river is correlated to meteorological conditions.

  3. Mutations associated with succinate dehydrogenase D-related malignant paragangliomas.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Pacak, K.; Bertherat, J.; Lenders, J.W.M.; Duet, M.; Eisenhofer, G.; Stratakis, C.A.; Niccoli-Sire, P.; Tran, B.H.; Burnichon, N.; Gimenez-Roqueplo, A.P.

    2008-01-01

    OBJECTIVE: Hereditary paraganglioma (PGL) syndromes result from germline mutations in genes encoding subunits B, C and D of the mitochondrial enzyme succinate dehydrogenase (SDHB, SDHC and SDHD). SDHB-related PGLs are known in particular for their high malignant potential. Recently, however, maligna

  4. Short-chain acyl-CoA dehydrogenase gene mutation (c.319C>T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin.

    Science.gov (United States)

    Tein, Ingrid; Elpeleg, Orly; Ben-Zeev, Bruria; Korman, Stanley H; Lossos, Alexander; Lev, Dorit; Lerman-Sagie, Tally; Leshinsky-Silver, Esther; Vockley, Jerry; Berry, Gerard T; Lamhonwah, Anne-Marie; Matern, Dietrich; Roe, Charles R; Gregersen, Niels

    2008-02-01

    We report 10 children (7 male, 3 female), 3 homozygous for c.319C>T mutation and 7 heterozygous for c.319C>T on one allele and c.625G>A variant on the other in the short-chain acyl-CoA dehydrogenase (SCAD) gene (ACADS). All were of Ashkenazi Jewish origin in which group we found a c.319C>T heterozygote frequency of 1:15 suggesting the presence of a founder mutation or selective advantage. Phenotype was variable with onset from birth to early childhood. Features included hypotonia (8/10), developmental delay (8/10), myopathy (4/10) with multicore changes in two and lipid storage in one, facial weakness (3/10), lethargy (5/10), feeding difficulties (4/10) and congenital abnormalities (3/7). One female with multiminicore myopathy had progressive external ophthalmoplegia, ptosis and cardiomyopathy with pneumonia and respiratory failure. Two brothers presented with psychosis, pyramidal signs, and multifocal white matter abnormalities on MRI brain suggesting additional genetic factors. Two other infants also had white matter changes. Elevated butyrylcarnitine (4/8), ethylmalonic aciduria (9/9), methylsuccinic aciduria (6/7), decreased butyrate oxidation in lymphoblasts (2/4) and decreased SCAD activity in fibroblasts or muscle (3/3) were shown. Expression studies of c.319C>T in mouse liver mitochondria showed it to be inactivating. c.625G>A is a common variant in ACADS that may confer disease susceptibility. Five healthy parents were heterozygous for c.319C>T and c.625G>A, suggesting reduced penetrance or broad clinical spectrum. We conclude that the c.319C>T mutation can lead to wide clinical and biochemical phenotypic variability, suggesting a complex multifactorial/polygenic condition. This should be screened for in individuals with multicore myopathy, particularly among the Ashkenazim.

  5. Role of positron emission tomography and bone scintigraphy in the evaluation of bone involvement in metastatic pheochromocytoma and paraganglioma: specific implications for succinate dehydrogenase enzyme subunit B gene mutations.

    Science.gov (United States)

    Zelinka, Tomás; Timmers, Henri J L M; Kozupa, Anna; Chen, Clara C; Carrasquillo, Jorge A; Reynolds, James C; Ling, Alexander; Eisenhofer, Graeme; Lazúrová, Ivica; Adams, Karen T; Whatley, Millie A; Widimsky, Jirí; Pacak, Karel

    2008-03-01

    We performed a retrospective analysis of 71 subjects with metastatic pheochromocytoma and paraganglioma (30 subjects with mutation of succinate dehydrogenase enzyme subunit B (SDHB) gene and 41 subjects without SDHB mutation). Sixty-nine percent presented with bone metastases (SDHB +/-: 77% vs 63%), 39% with liver metastases (SDHB +/-: 27% vs 47%), and 32% with lung metastases (SDHB +/-: 37% vs 29%). The most common sites of bone involvement were thoracic spine (80%; SDHB+/-: 83% vs 77%), lumbar spine (78%; SDHB +/-: 78% vs 75%), and pelvic and sacral bones (78%; SDHB +/-: 91% vs 65%, P=0.04). Subjects with SDHB mutation also showed significantly higher involvement of long bones (SDHB +/-: 78% vs 30%, P=0.007) than those without the mutation. The best overall sensitivity in detecting bone metastases demonstrated positron emission tomography (PET) with 6-[(18)F]-fluorodopamine ([(18)F]-FDA; 90%), followed by bone scintigraphy (82%), computed tomography or magnetic resonance imaging (CT/MRI; 78%), 2-[(18)F]-fluoro-2-deoxy-d-glucose ([(18)F]-FDG) PET (76%), and scintigraphy with [(123/131)I]-metaiodobenzylguanidine (71%). In subjects with SDHB mutation, imaging modalities with best sensitivities for detecting bone metastases were CT/MRI (96%), bone scintigraphy (95%), and [(18)F]-FDG PET (92%). In subjects without SDHB mutations, the modality with the best sensitivity for bone metastases was [(18)F]-FDA PET (100%). In conclusion, bone scintigraphy should be used in the staging of patients with malignant pheochromocytoma and paraganglioma, particularly in patients with SDHB mutations. As for PET imaging, [(18)F]-FDG PET is highly recommended in SDHB mutation patients, whereas [(18)F]-FDA PET is recommended in patients without the mutation.

  6. Skeletal Muscle Magnetic Resonance Imaging of the Lower Limbs in Late-onset Lipid Storage Myopathy with Electron Transfer Flavoprotein Dehydrogenase Gene Mutations

    Institute of Scientific and Technical Information of China (English)

    Xin-Yi Liu; Ming Jin; Zhi-Qiang Wang; Dan-Ni Wang; Jun-Jie He; Min-Ting Lin; Hong-Xia Fu

    2016-01-01

    Background:Lipid storage myopathy (LSM) is a genetically heterogeneous group with variable clinical phenotypes.Late-onset multiple acyl-coenzyme A dehydrogenation deficiency (MADD) is a rather common form of LSM in China.Diagnosis and clinical management of it remain challenging,especially without robust muscle biopsy result and genetic detection.As the noninvasion and convenience,muscle magnetic resonance imaging (MRI) is a helpful assistant,diagnostic tool for neuromuscular disorders.However,the disease-specific MRI patterns of muscle involved and its diagnostic value in late-onset MADD have not been systematic analyzed.Methods:We assessed the MRI pattern and fat infiltration degree of the lower limb muscles in 28 late-onset MADD patients,combined with detailed clinical features and gene spectrum.Fat infiltration degree of the thigh muscle was scored while that ofgluteus was described as obvious or not.Associated muscular atrophy was defined as obvious muscle bulk reduction.Results:The mean scores were significantly different among the anterior,medial,and posterior thigh muscle groups.The mean of fat infiltration scores on posterior thigh muscle group was significantly higher than either anterior or medial thigh muscle group (P < 0.001).Moreover,the mean score on medial thigh muscle group was significantly higher than that of anterior thigh muscle group (P < 0.01).About half of the patients displayed fat infiltration and atrophy in gluteus muscles.Of 28 patients,12 exhibited atrophy in medial and/or posterior thigh muscle groups,especially in posterior thigh muscle group.Muscle edema pattern was not found in all the patients.Conclusions:Late-onset MADD patients show a typical muscular imaging pattern of fat infiltration and atrophy on anterior,posterior,and medial thigh muscle groups,with major involvement of posterior thigh muscle group and gluteus muscles and a sparing involvement of anterior thigh compartment.Our findings also suggest that muscle MRI of

  7. Turn on Fluorescent Probes for Selective Targeting of Aldehydes

    Directory of Open Access Journals (Sweden)

    Ozlem Dilek

    2016-03-01

    Full Text Available Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP fluorophore and a xanthene-derived fluorophore (rosamine were prepared. Model compounds of their product with an aldehyde were prepared using salicylaldehyde. Both amino boron dipyrromethene and rosamine derivatives are almost non-fluorescent in polar and apolar solvent. However, imine formation with salicylaldehyde on each fluorophore increases the fluorescence quantum yield by almost a factor of 10 (from 0.05 to 0.4. These fluorophores are therefore suitable candidates for development of fluorescence-based sensors for aldehydes.

  8. 杜氏盐藻甘油醛-3-磷酸脱氢酶基因启动子驱动氯霉素乙酰转移酶基因的表达及其活性检测%Expression and activity detection of chloramphenicol acetyltransferase gene driven by the glyceraldehyde-3-phosphate dehydrogenase gene of Dunaliella salina

    Institute of Scientific and Technical Information of China (English)

    张小毅; 刘巨源; 邱乐乐; 贾岩龙

    2012-01-01

    目的 为建立稳定高效的盐藻生物反应器寻找合适的内源性启动子驱动表达外源基因.方法 克隆鉴定了盐藻甘油醛-3-磷酸脱氢酶(GAPDH)基因5 ′上游区序列并成功构建由盐藻GAPDH基因启动子驱动的氯霉素乙酰转移酶(CAT)基因表达载体pUC-Gcat.利用构建的表达载体电击转化盐藻并在含有氯霉素的培养基中筛选转化藻株.随机挑选稳定转化的盐藻藻株进行CAT酶联免疫吸附测定分析.结果 获得3株稳定转化的盐藻藻株.聚合酶链式反应鉴定和CAT酶联免疫吸附测定分析结果表明,CAT基因已整合到了转化的盐藻基因组中.结论 本研究所克隆的内源性盐藻GAPDH基因启动子能够驱动CAT基因在盐藻中表达.%Objective To explore expression of foreign gene driven by a strong endogenous promoter in order to construct stable and high-performance bioreactors in Dunaliella salina. Methods In the present study, the upstream sequence of glyceraldehyde phosphate dehydrogenase of Dunaliella salina was cloned and identificated. Using electroporation, the alga was transformed with a plasmid pUC-Ccat containing giyceraldehyde-3-phosphate dehydrogenase ( GAPDH) gene promoter of Du-naliella salina and chloramphenicol acetyltransferase ( CAT) gene as a seletable gene. Using the expression vector, the Dunaliella salina cell was translated and the transformational strain was screened in nutrient medium containing chloramphenicol. The stable transformational strain was selected randomly to undertake CAT enzyme linked immunosorbent assay (ELISA). Results Three stable transformational strain were obtained. The results of polymerase chain reaction and CAT ELISA indicated that the CAT gene had been transferred to the alga. Conclusion The results of this paper suggest that the GAPDH gene promoter can work for genetic transformation of Dunaliella salina.

  9. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Vincenzo Marrone

    Full Text Available Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30 were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  10. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Marrone, Vincenzo; Piscopo, Marina; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna; Costantini, Maria

    2012-01-01

    Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  11. The gamma fibrinogen gene (FGG) maps to chromosome 17 in both cattle and sheep.

    Science.gov (United States)

    Johnson, S E; Barendse, W; Hetzel, D J

    1993-01-01

    The gamma fibrinogen gene (FGG) was localised in both cattle and sheep using in situ hybridisation. The probe employed was a 1-kb bovine cDNA fragment. Based on observations of QFQ-banded chromosome preparations, this locus is on bovine chromosome 17q12-->q13 and on the homologous sheep chromosome 17. This localisation is, to our knowledge, the first assignment to chromosome 17 in either the bovine or ovine genome. In addition to localising FGG to this chromosome, the assignment provisionally maps the previously unassigned syntenic group U23, containing (besides FGG) the genes for mitochondrial aldehyde dehydrogenase 2 (ALDH2), interleukin 2 (IL2), immunoglobulin lambda (IGL), and beta fibrinogen (FGB), to chromosome 17 in cattle and probably to the same chromosome in sheep.

  12. Bioinformatics Analysis on the Structure and Function of Malate Dehydrogenase Gene of Taenia solium%生物信息学法分析猪带绦虫苹果酸脱氢酶结构与功能

    Institute of Scientific and Technical Information of China (English)

    蓝磊; 廖兴江; 黄江; 戴佳琳

    2012-01-01

    目的:分析和预测猪带绦虫苹果酸脱氢酶的结构和特性,用于指导其生物学功能的实验研究.方法:利用美国国家生物技术信息中心和瑞士生物信息学研究所的蛋白分析专家系统中有关基因和蛋白的序列和结构信息分析的工具,结合Pcgene和Vector NTI suite生物信息学分析软件包,从猪带绦虫全长cDNA质粒文库中识别苹果酸脱氢酶基因及其编码区,分析、预测该基因编码的蛋白质的理化特性、翻译后的修饰位点、功能域、亚细胞定位、拓扑结构、二级结构、三维空间构象等.结果:该基因编码332个氨基酸,为全长基因.GenBank中与细粒棘球绦虫苹果酸脱氢酶序列同源性最高,理论分子量为36459.2 Da.预测编码蛋白无跨膜区,无二硫键,稳定性较好.与吸虫属的苹果酸脱氢酶进化关系最近.结论:应用生物信息方法从猪带绦虫成虫Cd-NA文库中筛选出了猪带绦虫核糖体Cdna全长序列并预测得到其结构与功能方面信息.%Objective: To analyze and predict the structure and characteristics of Taenia solium mal-ate dehydrogenase ( MDH) , and so as to guide the experimental research on biological function of MDH. Methods: Tools about informatics analyis on sequences and structures of gene and protein in protein analysis expert system of bioinformatic institute of Switzerland, and those of state biological and technology information center of USA, combined with Pcgene and Vector NTI suite bioinformatics soft-ware pakege were employed to screen Taenia solium MDH gene and encoding region from cDNA plas-mid library to analyze and predict physicochemical properties of its encoding protein, modification site after translation, function domains, subcelluar location, topological structure, secondary structure, and 3D conformation and so on. Results: This gene encoded 332 amino acids, and was a full length gene. It was the most homologues to Taenia echinococcus MDH in Gen

  13. Lanthanide dithiocarbamate complexes: efficient catalysts for the cyanosilylation of aldehydes

    OpenAIRE

    VALE, JULIANA A.; FAUSTINO, WAGNER M.; Menezes, Paulo H.; Sá,Gilberto F. de

    2006-01-01

    A new class of lanthanide dithiocarbamate complexes was used to promote the cyanosilylation of aldehydes at high yields at room temperature. This represents the first application of lanthanide dithiocarbamate acting as Lewis acid.

  14. Deodorants: an experimental provocation study with cinnamic aldehyde

    DEFF Research Database (Denmark)

    Bruze, Magnus; Johansen, Jeanne Duus; Andersen, Klaus Ejner

    2003-01-01

    BACKGROUND: Axillary dermatitis is common and overrepresented in individuals with contact allergy to fragrances. Many individuals suspect their deodorants to be the incriminating products. OBJECTIVE: Our aim was to investigate the significance of cinnamic aldehyde in deodorants for the developmen...

  15. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    Science.gov (United States)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  16. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  17. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Science.gov (United States)

    2010-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  18. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  19. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  20. Genes Encoding Enzymes Involved in Ethanol Metabolism

    Science.gov (United States)

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  1. Amine-functionalized porous silicas as adsorbents for aldehyde abatement.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2013-06-26

    A series of aminopropyl-functionalized silicas containing of primary, secondary, or tertiary amines is fabricated via silane-grafting on mesoporous SBA-15 silica and the utility of each material in the adsorption of volatile aldehydes from air is systematically assessed. A particular emphasis is placed on low-molecular-weight aldehydes such as formaldehyde and acetaldehyde, which are highly problematic volatile organic compound (VOC) pollutants. The adsorption tests demonstrate that the aminosilica materials with primary amines most effectively adsorbed formaldehyde with an adsorption capacity of 1.4 mmolHCHO g(-1), whereas the aminosilica containing secondary amines showed lower adsorption capacity (0.80 mmolHCHO g(-1)) and the aminosilica containing tertiary amines adsorbed a negligible amount of formaldehyde. The primary amine containing silica also successfully abated higher aldehyde VOC pollutants, including acetaldehyde, hexanal, and benzaldehyde, by effectively adsorbing them. The adsorption mechanism is investigated by (13)C CP MAS solid-state NMR and FT-Raman spectroscopy, and it is demonstrated that the aldehydes are chemically attached to the surface of aminosilica in the form of imines and hemiaminals. The high aldehyde adsorption capacities of the primary aminosilicas in this study demonstrate the utility of amine-functionalized silica materials for reduction of gaseous aldehydes.

  2. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine1[W][OA

    Science.gov (United States)

    Díaz-Sánchez, Ángel G.; González-Segura, Lilian; Mújica-Jiménez, Carlos; Rudiño-Piñera, Enrique; Montiel, Carmina; Martínez-Castilla, León P.; Muñoz-Clares, Rosario A.

    2012-01-01

    Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant Km(BAL) increases and Vmax/Km(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the Vmax/Km(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants. PMID:22345508

  3. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a s

  4. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C

    1996-01-01

    tests and 6-week graded use tests with 0.02, 0.1 and 0.8% cinnamic aldehyde in ethanol was studied in a group of cinnamic-aldehyde-sensitive eczema patients. The minimum effect level demonstrated was 0.02% cinnamic aldehyde on patch testing and 0.1% cinnamic aldehyde on use testing, which are allowed...... exposure information is needed to evaluate more fully the consequences of cinnamic aldehyde sensitivity....

  5. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    Energy Technology Data Exchange (ETDEWEB)

    Basen, M; Schut, GJ; Nguyen, DM; Lipscomb, GL; Benn, RA; Prybol, CJ; Vaccaro, BJ; Poole, FL; Kelly, RM; Adams, MWW

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.

  6. Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Vianey-Saban, C;

    1996-01-01

    extensive sequence homology corroborating the notion that these genes are evolutionarily related. Southern blot analysis of genomic DNA from hybrid cell lines was used to localize the VLCAD gene to human chromosome 17p11.2-p11.13105. Using Northern and Western blot analysis to investigate the tissue...... specific distribution of VLCAD mRNA and protein in several human tissues we showed that VLCAD is most abundant in heart and skeletal muscle. This agrees well with the fact that cardiac and muscle symptoms are characteristic for patients with VLCAD deficiency. Northern blot analysis and sequencing of cloned...

  7. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins.

    Science.gov (United States)

    Periyasamy, Sankar; Govindappa, Nagaraj; Sreenivas, Suma; Sastry, Kedarnath

    2013-11-01

    Sorbitol is used as a non-repressive carbon source to develop fermentation process for Mut(s) recombinant clones obtained using the AOX1 promoter in Pichia pastoris. Sorbitol dehydrogenase is an enzyme in the carbohydrate metabolism that catalyzes reduction of D-fructose into D-sorbitol in the presence of NADH. The small stretch of 211bps upstream region of sorbitol dehydrogenase coding gene has all the promoter elements like CAAT box, GC box, etc. It is able to promote protein production under repressive as well as non-repressive carbon sources. In this study, the strength of the sorbitol dehydrogenase promoter was evaluated by expression of two heterologous proteins: human serum albumin and erythrina trypsin inhibitor. Sorbitol dehydrogenase promoter allowed constitutive expression of recombinant proteins in all carbon sources that were tested to grow P. pastoris and showed activity similar to GAP promoter. The sorbitol dehydrogenase promoter was active in all the growth phases of the P. pastoris.

  8. 急性髓系白血病患者IDH1及IDH2基因突变及临床特征分析%Clinical characteristics in adult acute myeloid leukemia with isocitrate dehydrogenase gene mutation

    Institute of Scientific and Technical Information of China (English)

    王蓉娴; 吴德沛; 陈苏宁; 何军; 徐杨; 王秀丽; 尹佳; 田竑; 田孝鹏

    2013-01-01

    目的 探讨急性髓系白血病(AML)患者异柠檬酸脱氢酶(IDH)1及IDH2基因突变的发生率,并探讨其临床特征及意义.方法 选取2005年2月至2011年3月经MICM分型确诊的570例初治AML患者,采用骨髓单个核细胞基因组DNA,PCR方法扩增IDH1、IDH2基因4号外显子,基因测序检测IDHl R132及IDH2 RI40/R172基因突变,分析患者临床特征并判定其疗效.结果 570例AML患者中90例检测到IDH基因突变,突变率为15.79%,其中IDH1突变27例(4.74%),IDH2突变63例(ll.05%).未发现有患者同时获得IDH1和IDH2突变.IDH突变与FAB分型中AML-M1显著相关(P<0.01);突变组年龄、初诊外周血血小板计数与未突变组比较,差异有统计学意义(中位数:53岁比40岁,52×109/L比31×109/L,均P<0.01);IDH基因突变与正常核型、NPM1基因突变,尤其是NPM1基因突变未伴FLT3-ITD基因突变的基因型相关,但与WT1、FLT3-TKD及MLL-PTD突变无明显的相关性.在非M3型患者中,突变组的化疗完全缓解率低于未突变组(58.1%比77.9%),差异有统计学意义(P<0.05).在不伴NPM1基因突变的患者或在正常核型的亚群中,IDH基因突变者预计2年总生存率低于该基因未突变者(28.4%比51.3%,P<0.01).结论 IDH基因突变更易存在于年龄偏大的AML患者中,IDH突变与临床特点、疗效具有一定相关性,提示是预后不良的分子学标志.%Objective To explore the prevalence and clinical characteristics of isocitrate dehydrogenase (IDH)1 R132 and IDH2 R140/R172 gene mutations in acute myeloid leukemia (AML) patients.Methods Polymerase chain reaction (PCR) and direct sequencing were used to sequence exon 4 of IDH gene in 570 AML patients from 2005 to 2011.Results In a cohort of 570 patients,AML IDH gene mutation was found in 90 (15.79%) patients.IDH1 and IDH2 mutations were detected in 27 (4.74%) patients and 63 (11.05%) patients respectively.None of them had the combined mutations of IDH1 and IDH2

  9. Diplotype Trend Regression Analysis of the ADH Gene Cluster and the ALDH2 Gene: Multiple Significant Associations with Alcohol Dependence

    Science.gov (United States)

    Luo, Xingguang; Kranzler, Henry R.; Zuo, Lingjun; Wang, Shuang; Schork, Nicholas J.; Gelernter, Joel

    2006-01-01

    The set of alcohol-metabolizing enzymes has considerable genetic and functional complexity. The relationships between some alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes and alcohol dependence (AD) have long been studied in many populations, but not comprehensively. In the present study, we genotyped 16 markers within the ADH gene cluster (including the ADH1A, ADH1B, ADH1C, ADH5, ADH6, and ADH7 genes), 4 markers within the ALDH2 gene, and 38 unlinked ancestry-informative markers in a case-control sample of 801 individuals. Associations between markers and disease were analyzed by a Hardy-Weinberg equilibrium (HWE) test, a conventional case-control comparison, a structured association analysis, and a novel diplotype trend regression (DTR) analysis. Finally, the disease alleles were fine mapped by a Hardy-Weinberg disequilibrium (HWD) measure (J). All markers were found to be in HWE in controls, but some markers showed HWD in cases. Genotypes of many markers were associated with AD. DTR analysis showed that ADH5 genotypes and diplotypes of ADH1A, ADH1B, ADH7, and ALDH2 were associated with AD in European Americans and/or African Americans. The risk-influencing alleles were fine mapped from among the markers studied and were found to coincide with some well-known functional variants. We demonstrated that DTR was more powerful than many other conventional association methods. We also found that several ADH genes and the ALDH2 gene were susceptibility loci for AD, and the associations were best explained by several independent risk genes. PMID:16685648

  10. Distinct roles of jasmonates and aldehydes in plant-defense responses.

    Directory of Open Access Journals (Sweden)

    E Wassim Chehab

    Full Text Available BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs, C(6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS and hydroperoxide lyase (HPL branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae, an insect herbivore (leafminers: Liriomyza trifolii, and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola. We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani, a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic

  11. Refolding of a thermostable glyceraldehyde dehydrogenase for application in synthetic cascade biomanufacturing.

    Directory of Open Access Journals (Sweden)

    Fabian Steffler

    Full Text Available The production of chemicals from renewable resources is gaining importance in the light of limited fossil resources. One promising alternative to widespread fermentation based methods used here is Synthetic Cascade Biomanufacturing, the application of minimized biocatalytic reaction cascades in cell free processes. One recent example is the development of the phosphorylation independent conversion of glucose to ethanol and isobutanol using only 6 and 8 enzymes, respectively. A key enzyme for this pathway is aldehyde dehydrogenase from Thermoplasma acidophilum, which catalyzes the highly substrate specific oxidation of d-glyceraldehyde to d-glycerate. In this work the enzyme was recombinantly expressed in Escherichia coli. Using matrix-assisted refolding of inclusion bodies the yield of enzyme production was enhanced 43-fold and thus for the first time the enzyme was provided in substantial amounts. Characterization of structural stability verified correct refolding of the protein. The stability of the enzyme was determined by guanidinium chloride as well as isobutanol induced denaturation to be ca. -8 kJ/mol both at 25°C and 40°C. The aldehyde dehydrogenase is active at high temperatures and in the presence of small amounts of organic solvents. In contrast to previous publications, the enzyme was found to accept NAD(+ as cofactor making it suitable for application in the artificial glycolysis.

  12. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(PH-dependent dehydrogenases (synthases, which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti plasmid. In addition to the reverse oxidative reaction(s, the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation. We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A, and exhibited dehydrogenase (but not oxidase activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.

  13. Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    Full Text Available BACKGROUND: The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques. PRINCIPAL FINDINGS: Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana ×P. tomentosa leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes. CONCLUSIONS: Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.

  14. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L

    Directory of Open Access Journals (Sweden)

    Lundgren Anneli

    2011-03-01

    Full Text Available Abstract Background Recently, Artemisia annua L. (annual or sweet wormwood has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. Results The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13 reductase and aldehyde dehydrogenase 1 showed remarkably higher expression (between ~40- to ~500-fold in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures. Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. Conclusions Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes. The expression of dihydroartemisinic aldehyde reductase has been suggested to have a

  15. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance l

  16. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    Science.gov (United States)

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed.

  17. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  18. 大肠杆菌苹果酸脱氢酶基因mdh的克隆、高效表达及酶学性质%Cloning,Expression,and Characterization of a Malate Dehydrogenase Gene from Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    李倩; 徐美娟; 夏海锋; 饶志明

    2011-01-01

    Malate dehydrogenase (MDH) gene was amplified via PCR from the chromosome of Escherichia coli in this manuscript.The PCR product was cloned into the expression vector pET28a (+).The resulted recombinant plasmid was transformed into E.coli BL21 (DE3).Induced by 0.5 mmol/L IPTG, MDH, a 36KDa protein, was successfully expressed in E.coli BL21 (DE3).An active MDH was purified by Ni-NTA column affinity Chromatography, with the specific activity of 112.5 U/mg,the purification multiple of 2.62, and the recovery rate of 59%.In a preliminary study, the enzymatic properties of the purified His-tagged enzyme were characterized.It was found to have pH and temperature optima of 37 ℃ and 6.0, respectively.The enzyme was stable when pH and temperature kept in the range of 2.0 to 6.0 and blow 42 ℃, respectively.Its activity was activated by K+ dramatically, inhibited by Cu2+ , seriously inhibited by Zn2+ and Hg2+.Although alcohols have little effect on this enzyme, glycerol could dramatically improve the thermal stability of MDH.When oxaloacetic acid was used as substrate, the enzyme kinetic constants of Km and Vmax was 0.235 mmol/L and 0.47 μmol/(L · min), respectively.%以大肠杆菌基因组DNA为模板,扩增得到苹果酸脱氢酶(mdh)编码基因mdh,构建了重组菌pET-28a-mdh/BL21并成功表达了mdh,大小约36 000.选用Ni柱亲和层析法纯化具有活性的苹果酸脱氢酶(mdh),纯化后比酶活达到112.5 U/mg,纯化倍数达2.62倍,回收率为59%.并对该酶的酶学性质进行了初步研究,其中反应最适PH值为6.0,在PH值2.0~6.0范围内稳定;反应最适温度为37℃,在42℃以下酶的稳定性较好.K+对酶有明显的激活作用,Cu2+对酶有抑制作用,Hg2+和Zn2+对酶有很强的抑制作用.醇类对酶的活力影响不大,丙三醇可显著提高酶的热稳定性.酶动力学参数以草酰乙酸为底物的Km为0.235 mmol/L,Vmax为0.47 μmol/(L·min).

  19. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Takahashi, Kento; Nakanishi, Fumika; Tomita, Takeo; Akiyama, Nagisa; Lassak, Kerstin; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2016-11-01

    Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg(2+), thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.

  20. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration

    DEFF Research Database (Denmark)

    Gauer, Sabrina; Wang, Zhijie; Otten, Harm;

    2014-01-01

    A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an L-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consistin...

  1. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  2. Cyclodextrin Aldehydes are Oxidase Mimics

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Bjerre, Jeannette; Bols, Mikael

    2009-01-01

    Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin...

  3. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    Directory of Open Access Journals (Sweden)

    Rodríguez-García Ignacio

    2007-02-01

    Full Text Available Abstract Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans.

  4. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  5. Lipid-derived aldehyde degradation under thermal conditions.

    Science.gov (United States)

    Zamora, Rosario; Navarro, José L; Aguilar, Isabel; Hidalgo, Francisco J

    2015-05-01

    Nucleophilic degradation produced by reactive carbonyls plays a major role in food quality and safety. Nevertheless, these reactions are complex because reactive carbonyls are usually involved in various competitive reactions. This study describes the thermal degradation of 2-alkenals (2-pentenal and 2-octenal) and 2,4-alkadienals (2,4-heptadienal and 2,4-decadienal) in an attempt to both clarify the stability of aldehydes and determine new compounds that might also play a role in nucleophile/aldehyde reactions. The obtained results showed that alkenals and alkadienals decomposed rapidly in the presence of buffer and air to produce formaldehyde, acetaldehyde, and the aldehydes corresponding to the breakage of the carboncarbon double bonds: propanal, hexanal, 2-pentenal, 2-octenal, glyoxal, and fumaraldehyde. The activation energy of double bond breakage was relatively low (∼ 25 kJ/mol) and the yield of alkanals (10-18%) was higher than that of 2-alkenals (∼ 1%). All these results indicate that these reactions should be considered in order to fully understand the range of nucleophile/aldehyde adducts produced.

  6. Aldehydic acids in frying oils: formation, toxicological significance and analysis

    Directory of Open Access Journals (Sweden)

    Kamal-Eldin, Afaf

    1996-10-01

    Full Text Available Aldehydic acids are generated in oxidized lipids as a result of decomposition of hydroperoxides by (β-scission reactions. Aldehydes are known to interact with proteins and DNA and to impair enzymatic functions. Aldehydic esters from oxidized lipids were reabsorbed to a significant extent in rats. This paper reviews the mechanism of formation of esterified aldehydic acids in frying oils and their physiological/toxicological effects. The paper also gives an overview of relevant basic analytical techniques that needs to be improved to establish reliable quantitative method (s.

    Ácidos aldehídicos son producidos en lípidos oxidados como resultado de la descomposición de hidroperóxidos por reacciones de (β-escición. Es conocido que los aldehídos interaccionan con las proteínas y el ADN y debilitan las funciones enzimáticas. Los esteres aldehídicos de lípidos oxidados fueron reabsorbidos en una cantidad significativa en ratas. Este artículo revisa los mecanismos de formación de ácidos aldehídicos esterificados en aceites de fritura y sus efectos fisiológicos/toxicológicos. El artículo también ofrece una visión de conjunto de las técnicas analíticas básicas que necesitan ser mejoradas para establecer métodos cuantitativos fiables.

  7. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  8. Catalyst-Controlled Wacker-Type Oxidation: Facile Access to Functionalized Aldehydes

    OpenAIRE

    Wickens, Zachary K.; Skakuj, Kacper; Morandi, Bill; Grubbs, Robert H

    2014-01-01

    The aldehyde-selective oxidation of alkenes bearing diverse oxygen groups in the allylic and homoallylic position was accomplished with a nitrite-modified Wacker oxidation. Readily available oxygenated alkenes were oxidized in up to 88% aldehyde yield and as high as 97% aldehyde selectivity. The aldehyde-selective oxidation enabled the rapid, enantioselective synthesis of an important pharmaceutical agent, atomoxetine. Finally, the influence of proximal functional groups on this anti-Markovni...

  9. Antibiotics from basidiomycetes. 26. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens.

    Science.gov (United States)

    Anke, H; Casser, I; Steglich, W; Pommer, E H

    1987-04-01

    Phlebiakauranol aldehyde and the corresponding alcohol were isolated from cultures of Punctularia atropurpurascens. The aldehyde but not the alcohol exhibited strong antifungal activity against several phytopathogens as well as antibacterial and cytotoxic activities. Two acetylated derivatives prepared from the aldehyde showed only very weak antifungal and antibacterial and moderate cytotoxic activities. We therefore assume, that the aldehyde group together with the high number of hydroxyl groups are responsible for the biological activity of the compound.

  10. Gene Cloning and mRNA Expression of Glutamate Dehydrogenase in the Liver, Brain, and Intestine of the Swamp Eel, Monopterus albus (Zuiew), Exposed to Freshwater, Terrestrial Conditions, Environmental Ammonia, or Salinity Stress

    OpenAIRE

    Tok, Chia Y.; Shit F Chew; Yuen K Ip

    2011-01-01

    The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can undergo long period of emersion, has high environmental and tissue ammonia tolerance, and can survive in brackish water. We obtained a cDNA sequence of glutamate dehydrogenase (gdh), which consisted of a 133-bp 5′ UTR, a complete coding sequence region spanning 1629 bp and a 3′ UTR of approximately 717 bp, from the liver, intestine, and brain of M. albus. The translated Gdh amino acid sequence had 542 residues, ...

  11. Molecular Cloning and Bioinformatics Analysis of Dihydrolipoamide Dehydrogenase Gene from Vibrio alginolyticus%溶藻弧菌二氢硫辛酰胺脱氢酶基因克隆及其生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    庞欢瑛; 陈立明; 蔡佳; 汤菊芬; 王蓓; 吴灶和; 简纪常

    2014-01-01

    Primers for PCR cloning were designed according to the whole genome sequence of Vibrio alginolyticus published in GenBank. The dihydrolipoamide dehydrogenase (DLD) gene of V. alginolyticus strain HY9901 was amplified by PCR and cloned into pMD18-T vector to investigate the possibility of DLD as a candidate antigen for vaccine production. Sequence analysis revealed DLD gene (GenBank Number: AGK62253) is 1 428 bp and encodes a putative protein of 475 amino acids. The predicted molecular mass of DLD was 50.998 ku with an estimated pI of 5.51. Using SignalP 4.0 and TMHMM Server 2.0 software, it was predicted that the DLD protein did not contain a signal peptide or a transmembranous region. This protein had one asn-glycosylation site, five protein kinase C phosphorylation site, six casein kinase II phosphorylation site, and so on. To further analyze the evolutionary relationship among DLD, a molecular phylogenetic tree was constructed by using Mega 5.0 software. In this tree, the DLD protein showed high genetic relationship with Vibrio parahaemolyticus. Using Kyte Doolittle-Hydrophilic parameters, Karplus-Schulz flexibility, Emini surface accessibility and antigenic Jameson-Wolf parameters methods, the B-cell preponderant epitopes of DLD might be localized in the regions of 5-10, 106-110, 120-125, 158-163 and 175-180. The three-dimensional structure of DLD was determined by using SWISS-MODEL work-space and it had a similar structure to DLD protein of Escherichia coli. Kegg analysis found that DLD involved nine signaling pathways, such as sugar glycolysis and dysplasia, and so on. These results can provide a basis for further studies on the shared immunogenecity of DLD and vaccine preparation.%根据溶藻弧菌(Vibrio alginolyticus)二氢硫辛酰胺脱氢酶(dihydrolipoamide dehydrogenase,DLD)的基因序列设计1对特异性引物。PCR扩增结果显示,DLD(GenBank登录号AGK62253)全长1428 bp,共编码475个氨基酸残基。根据推导的氨

  12. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia.

    Science.gov (United States)

    Santiago, Rocío; Alarcón, Borja; de Armas, Roberto; Vicente, Carlos; Legaz, María Estrella

    2012-06-01

    This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD.

  13. Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Creer Michael H

    2010-03-01

    Full Text Available Abstract Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDHhiLin-, and ALDHloLin- cells following transplantation to NOD/SCID or NOD/SCID β2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDHhiLin- stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDHloLin- committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDHhiLin- cell-treated mice, as compared to PBS and ALDHloLin- cell-treated mice. Conclusions Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.

  14. Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer.

    Science.gov (United States)

    Li, Huihui; Ma, Fei; Wang, Haijuan; Lin, Chen; Fan, Ying; Zhang, Xueyan; Qian, Haili; Xu, Binghe

    2013-12-17

    The stem cell marker ALDH1 has been of particular interest to scientists since it has been successfully used as a marker to isolate cancer stem cells from breast cancers. However, little is known, especially in Chinese breast cancer patients, on whether ALDH1 enrichment is prevalent in certain subtypes of breast cancer. In this study, we performed flow cytometry and immunohistochemistry to measure the expression of ALDH1 in 10 breast cancer cell lines and in a set of tissue microarrays consisting of 101 breast cancer tissues from the Chinese population. The 101 breast cancer tissues included 4 cancer subtypes defined on bases of their ER, PR, and HER2 statuses: triple-negative (25 cases), luminal A (33 cases), luminal B (16 cases) and HER2-overexpressing (HER2-OE, 27 cases). We found that ALDH1 was expressed in 25 of the 101 cases of breast cancer tissues. When the analysis was stratified, we found that the expression of ALDH1 varied significantly among the 4 subtypes, with a higher expression in triple-negative breast cancer (TNBC, p=0.003) than in the other 3 subtypes. In a series of breast cancer cell lines, we also confirmed that ALDH1 activity was mainly found in TNBC cell lines compared with non-TNBC ones (15.6% ± 2.45% vs 5.5% ± 2.58%, p=0.026). These data support the concept that the expression of ALDH1 is higher in TNBC than non-TNBC, which may be clinically meaningful for a better understanding of the poor prognosis of TNBC patients.

  15. Relationship between genetic polymorphisms of alcohol and aldehyde dehydrogenases and esophageal squamous cell carcinoma risk in males

    Institute of Scientific and Technical Information of China (English)

    Chia-Fang Wu; Deng-Chyang Wu; Hon-Ki Hsu; Ein-Long Kao; Jang-Ming Lee; Cheng-Chieh Lin; Ming-Tsang Wu

    2005-01-01

    AIM: To investigate the association between the genetic polymorphisms of ADH2 and ALDH2, lifetime alcohol consumption and esophageal cancer risk in the Taiwanese men.METHODS: Between August 2000 and June 2003, 134 pathologically-proven esophageal squamous cell carcinoma male patients and 237 male controls were recruited from Kaohsiung Medical University Hospital and Kaohsiung Veterans General Hospital in southern Taiwan.ADH2 and ALDH2 polymorphisms were genotyped using PCR-RFLP.RESULTS: Compared to those with ADH2*2/*2,individuals with ADH2*1/*2 and ADH2*1/*1 had 2.28-and 7.14-fold, respectively, increased risk of developing esophageal cancer (95%CI = 1.11-4.68 and 2.76-18.46)after adjusting for alcohol consumption and other covariates. The significant increased risk was also noted among subjects with ALDH2*1/*2 (adjusted OR (AOR)= 5.25, 95%CI = 2.47-11.19), when compared to those with ALDH2*1/*1. The increased risk of esophageal cancer was made greater, when subjects carried both ADH2*1/*1 and ALDH2*1/*2, compared to those with ADH2*1/*2 or ADH2*2/*2 and ALDH2*1/*1 (AOR = 36.79,95%CI = 9.36-144.65). Furthermore, we found a multiplicative effect of lifetime alcoholic consumption and genotypes (ADH2 and ALDH2) on esophageal cancer risk.CONCLUSION: Our findings suggest that polymorphisms of ADH2 and ALDH2 can modify the influence of alcoholic consumption on esophageal cancer risk.

  16. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.

  17. Mass-array芯片技术在葡萄糖-6-磷酸脱氢酶基因突变位点检测中的应用%Application of Mass-array gene chip to detect glucose-6-phosphate dehydrogenase gene mutations

    Institute of Scientific and Technical Information of China (English)

    陈瑶; 苏跃青; 周进福; 王旌; 赵红; 曾颖琳; 林庆颖; 林枫; 张洪华

    2015-01-01

    目的 探讨应用Mass-array基因芯片技术检测葡萄糖-6-磷酸脱氢酶(G6PD)基因突变位点的价值,并对其进行质量评价.方法 收集2006至2013年在福建省妇幼保健院新生儿疾病筛查中心进行G6PD筛查的婴儿,根据化学筛查结果分成2组:G6PD缺乏症患儿和正常儿童,随机抽取患儿和正常对照儿童各300例.采用基因分析工具(Genotyping Tools)与Mass-array Design软件,利用中国人群已报道的G6PD基因33个突变位点芯片,应用Mass-array基因技术检测G6PD基因突变位点,并通过DNASanger测序法验证基因芯片检测结果的准确性.结果 在300例G6PD患儿中,共检出单纯型单点突变9种:1376G>T、1388G>A、95A>G、1024C>T、392G>T、1360C>T、487G>A、517T>C、1365-13T>C;复合突变型7种:871G> A/1365-13T> C/1311C>T、1004C> A/1311C> T/1365-13T>C、1376G >T/1365-13T>C/1311C>T、1365-13T >C/1311C >T、1376G> T/1365-13T>C、95A> G/1365-13T> C/1311C>T、1388G> A/1365-13T>C;300名正常对照儿童中未检测到G6PD基因突变.进一步所有样本的Sanger DNA测序结果与基因芯片检测结果完全一致.结论 采用Massarray基因芯片技术检测G6PD基因突变方法是一种准确、高效的G6PD基因突变筛查方法.%Objective To develop the Mass-array gene chip to detect glucose-6-phosphate dehydrogenase (G6PD) gene mutations,and to evaluate its quality.Methods Randomly choosing the children who perform neonatal screening in Neonatal Screening Center of Fujian Maternity and Children Health Hospital from 2006 to 2013.Children were divided into control group and G6PD patient group.Using Genotyping Tools from Sequenom company and the software of Mass-array Assay Design to design the PCR amplification primer of 33 G6PD gene mutations which were well-known in Chinese.Then depending on Mass-array gene chip technology to detect glucose-6-phosphate dehydrogenase gene mutations.DNA Sanger sequencing was

  18. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  19. CODEHOP法设计引物克隆色盐杆菌ST307胆碱脱氢酶基因及其序列分析%Cloning and Sequence Analysis of Choline Dehydrogenase betA Gene Fragment by CODEHOP from Chromohalobacter sp.ST307

    Institute of Scientific and Technical Information of China (English)

    何冬华; 齐文静; 纪婧琦; 戴美学; 夏志洁

    2012-01-01

    Objective To study the synthesis of betaine from Chromohalobacter sp. ST307 and obtain choline dehydrogenase betA gene fragment for the sequence analysis. Methods Betaine was extracted and detected by alcohol extraction from Chromohalobacter sp. ST307. CODEHOP software was used to online design the degenerate primers to carry out PCR of choline dehydrogenase betA gene obtained and molecular biological softwares were used for the sequence analysis. Results Chromohalobacter sp. ST307 cells accumulated betaine. The betA gene fragment with a length of 485 bp was obtained by PCR. BLAST sequence analysis indicated that the sequence had higher similarity, to betA gene of GenBank and the highest similarity reached 83%. Nucleotide phylogenetic analysis showed that betA gene sequence of strain ST307 had a close evolutionary relationship with Pseudomonas fulva 12-X. Conclusion The degenerate primers designed by the CODEHOP software can be used to obtain specific gene fragment with strong credibility. The success of cloning betA gene fragment will provide scientific basis for obtaining all sequences of choline dehydrogenase gene and studying salt-tolerant mechanism and genetic improvement.%目的 研究色盐杆菌ST307甜菜碱的合成,克隆分析其胆碱脱氢酶betA基因片段.方法 采用醇提法提取色盐杆菌ST307中的甜菜碱并检测,用CODEHOP在线程序设计简并引物扩增胆碱脱氢酶betA基因序列,并进行序列分析.结果 色盐杆菌ST307细胞中积累甜菜碱,通过PCR获得长度为485bp的betA基因片段.BLAST序列分析显示该基因序列与多个菌株的betA基因序列具有较高的同源性,最高达83%.核苷酸序列比对及进化树构建结果显示,色盐杆菌ST307胆碱脱氢酶基因序列与Pseudomonas fulva 12-X进化关系最为接近.结论 CODEHOP法设计的简并引物可信性较强,同时betA基因片段的成功克隆将为获得ST307胆碱脱氢酶基因的全序列、研究耐盐机制和遗传改良提供科学依据.

  20. Interactions Between Exogenous Bt Insecticidal Protein and Cotton Terpenoid Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jun; GUO Yu-yuan; WU Kong-ming; WANG Wu-gang

    2002-01-01

    The contents of terpenoid aldehydes in Bt transgenic cotton and their non-Bt parental varieties were analyzed by the HPLC method. Statistical analysis of variance showed that Bt insecticidal protein Bt-ICP expression has no negative effect on the synthesis of gossypol, total heliocides and total resistant terpenoids.The results of the combined dosage test of Bt-ICP and gossypoi in vitro showed that there is no interaction between gossypol and Bt-ICP on the mortality of cotton boilworm larvae Helicoverpa armigera (Hubnner). It is indicated that the actions of Bt-ICP and gossypol on cotton bollworm are additive. Therefore, it is advantageous to combine Bt-ICP with cotton terpenoid aldehydes in controlling cotton bollworm.

  1. Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Yano, Akiko; Kubota, Masafumi; Iguchi, Kazuhiro; Usui, Shigeyuki; Hirano, Kazuyuki

    2006-05-01

    The biguanides metformin and buformin, which are clinically used for diabetes mellitus, are known to improve resistance to insulin in patients. Biguanides were reported to cause lactic acidosis as a side effect. Since the mechanism of the side effect still remains obscure, we have examined genes whose expression changes by treating HepG2 cells with buformin in order to elucidate the mechanisms of the side effect. A subtraction cDNA library was constructed by the method of suppressive subtractive hybridization and the screening of the library was performed with cDNA probes prepared from HepG2 cells treated with or without buformin for 12 h. The expression of the gene and the protein obtained by the screening was monitored by real-time RT-PCR with specific primers and Western blotting with specific antibody. The amounts of ATP and NAD+ were determined with luciferase and alcohol dehydrogenase, respectively. We found that expression of the glyceraldehyde 3-phosphate dehydrogenase (GAPD) gene was suppressed by treating HepG2 cells with 0.25 mM buformin for 12 h as a result of the library screening. The decrease in the expression depended on the treatment period. The amount of GAPD protein also decreased simultaneously with the suppression of the gene expression by the treatment with buformin. The amount of ATP and NAD+ in the HepG2 cells treated with buformin decreased to 10 and 20% of the control, respectively. These observations imply that the biguanide causes deactivation of the glycolytic pathway and subsequently the accumulation of pyruvate and NADH and a decrease in NAD+. Therefore, the reaction equilibrium catalyzed by lactate dehydrogenase leans towards lactate production and this may result in lactic acidosis.

  2. Inhibition of lactate production in rat brain extracts and synaptosomes by 3-[4-(reduced 3-pyridine aldehyde-adenine dinucleotide)]-pyruvate.

    Science.gov (United States)

    Cooper, A J; Lai, J C; Coleman, A E; Pulsinelli, W A

    1987-06-01

    In basic solutions, pyruvate enolizes and reacts (through its 3-carbon) with the 4-carbon of the nicotinamide ring of NAD+, yielding an NAD-pyruvate adduct in which the nicotinamide ring is in the reduced form. This adduct is a strong inhibitor of lactate dehydrogenase, presumably because it binds simultaneously to the NADH and pyruvate sites. The potency of the inhibition, however, is muted by the adduct's tendency to cyclize to a lactam. We prepared solutions of the pyruvate adduct of NAD+ and of NAD+ analogues in which the -C(O)NH2 of NAD+ was replaced with -C(S)NH2, -C(O)CH3, and -C(O)H. Of the four, only the last analogue, 3-[4-(reduced 3-pyridine aldehyde-adenine dinucleotide)]-pyruvate (RAP) cannot cyclize and it was found to be the most potent inhibitor of beef heart and rat brain lactate dehydrogenases. The inhibitor binds very tightly to the NADH site (Ki approximately 1 nM for the A form). Even at high concentrations (20 microM), RAP had little or no effect on rat brain glyceraldehyde-3-phosphate, pyruvate, alpha-ketoglutarate, isocitrate, soluble and mitochondrial malate, and glutamate dehydrogenases. The glycolytic enzymes, hexokinase and phosphofructokinase, were similarly unaffected. RAP strongly inhibited lactate production from glucose in rat brain extracts but was less effective in inhibiting lactate production from glucose in synaptosomes.

  3. Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane%Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane

    Institute of Scientific and Technical Information of China (English)

    程柯; 范甜甜; 孙健

    2011-01-01

    Easily accessible chiral phosphoric acid lb has been applied as efficient organocatalyst for the asymmetric al- lylation of aldehydes with allyltrichlorosilane. In the presence of 20 mol% of lb, the allylation of a broad range of aldehydes proceeded smoothly to give the corresponding homoallylic alcohol with up to 87% ee and 97% yield.

  4. Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase.

    Science.gov (United States)

    Berzin, Vel; Tyurin, Michael; Kiriukhin, Michael

    2013-02-01

    Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60% CO and 40% H₂ in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.

  5. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    Science.gov (United States)

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  6. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  7. Cloning and Bioinformatic Analysis of 6-Phogluconate Dehydrogenase Gene from Aspergillus oryzae%米曲霉6-磷酸葡萄糖酸脱氢酶基因(gnd)的克隆及生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    吴晶晶; 洪志宏; 张卡; 陈宏文

    2012-01-01

    采用PCR技术从米曲霉CICC2012菌株基因组中克隆6-磷酸葡萄糖酸脱氢酶基因(gnd),并利用生物信息学手段对其氨基酸序列、进化树、理化性质、蛋白质结构等进行分析.序列测定和分析结果表明.gnd基因序列长为1 723 bp.包含1个1 551 bp的开放阅读框,编码516个氨基酸;gnd基因编码的6PGDH氨基酸序列与黄曲霉6PGDH基因的同源性为99%,存在的丝氨酸、苏氨酸和酪氨酸磷酸化位点分别有11,2和6个;6PGDH蛋白分子量为57.3 kD,等电点为5.63; gnid基因编码蛋白二级结构α-螺旋区域占44.57%,β-折叠区域占12.79%.无规则卷曲区域占42.64%;氨基酸残基11~195位点为NADP+结合区域.%6-Phogluconate dehydrogenase (6PGDH, EC 1.1.1.44) is one of the key enzymes in the pentose phosphate pathway (PPP). In this study, the 6-phogIuconate dehydrogenase gene (gnd) of Aspergillus oryzae CICC2012 was cloned by means of PCR. Subsequently, the bioinformatic methodology was applied to determine the amino acid sequence homology, phylogenetic trees, physical-chemical properties and protein structure of the gene. The results revealed the gene's length to be 1 723 bp, which encompassed an open reading frame with 1 551 bp encoding 516 amino acids. The 6PGDH encoded by gnd showed a 99% homology with the 6PGDH gene of Aspergillus flavus, which had 11 serine phosphorylation sites, 2 threonine phosphorylation sites and 6 tyrosine phosphorylation sites. The 6PGDH had a molecular weight of 57. 3 kD and an isoelectric point of 5. 63. The secondary structure of the gnd protein was 44. 57% alpha helix, 12. 79% beta sheet and 42. 64% random coil. The 11 - 195 amino acid residues appeared to be the NADP+ binding sites.

  8. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH

    Directory of Open Access Journals (Sweden)

    Barış Binay

    2016-02-01

    Full Text Available This study aimed to prepare robust immobilized formate dehydrogenase (FDH preparations which can be used as effective biocatalysts along with functional oxidoreductases, in which in situ regeneration of NADH is required. For this purpose, Candida methylica FDH was covalently immobilized onto Immobead 150 support (FDHI150, Immobead 150 support modified with ethylenediamine and then activated with glutaraldehyde (FDHIGLU, and Immobead 150 support functionalized with aldehyde groups (FDHIALD. The highest immobilization yield and activity yield were obtained as 90% and 132%, respectively when Immobead 150 functionalized with aldehyde groups was used as support. The half-life times (t1/2 of free FDH, FDHI150, FDHIGLU and FDHIALD were calculated as 10.6, 28.9, 22.4 and 38.5 h, respectively at 35 °C. FDHI150, FDHIGLU and FDHIALD retained 69, 38 and 51% of their initial activities, respectively after 10 reuses. The results show that the FDHI150, FDHIGLU and FDHIALD offer feasible potentials for in situ regeneration of NADH.

  9. 猪带绦虫乳酸脱氢酶A和B的生物信息学比较分析%Bioinformatics Analysis and Comparision of the Genes Encoding Lactate Dehydrogenase A and B from Taenia solium

    Institute of Scientific and Technical Information of China (English)

    杜武英; 戴佳琳; 黄艳; 胡旭初; 余新炳; 徐劲; 廖兴江; 黄江

    2010-01-01

    目的 预测及比较分析猪带绦虫乳酸脱氢酶A(Taenia solium lactate dehydrogenase A,TsLDH-A)和乳酸脱氢酶B(Taenia solium lactate dehydrogenase B,TsLDH-B),用于指导其生物学功能的研究.方法 利用生物信息网站如美国国家生物技术信息中心(NCBI,http://www.ncbi.nlm.nih.gov/)和瑞士生物信息学研究所的蛋白分析专家系统(ExPASY,http://ca.expasy.org/)中有关基因和蛋白的序列和结构信息分析的各种工具,结合其它生物信息学分析软件包,从猪带绦虫成虫全长cDNA质粒文库中识别LDH-A和LDH-B的全长编码基因并对其结构与功能进行生物信息学预测分析.结果 两序列都是包含完整开放阅读框的全长基因,推导出的氨基酸序列与其它物种LDH-A或LDH-B同源基因的氨基酸序列的一致性均大于50%.两者编码的蛋白在编码的氨基酸数目(331)、蛋白的理化性质、L-乳酸脱氢酶结构域、构成LDH酶催化中心的关键氨基酸、包含LDH活性位点的线性表位、无亚细胞定位等方面是一致的,但两者在翻译后的修饰位点、3个跨膜区和其他线性表位方面既相似也有区别.结论 应用生物信息方法从猪带绦虫成虫cDNA文库中筛选出了TsLDH-A和TsLDH-B的cDNA全长序列,并预测和比较了两者结构与功能方面的信息,为进一步研究所编码蛋白的功能奠定了基础.

  10. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Álvaro D. Fernández-Fernández

    2016-01-01

    Full Text Available NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2 and nitric oxide (NO. NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH. Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS, while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

  11. Hairpin Ribozyme Genes Curtail Alcohol Drinking: from Rational Design to in vivo Effects in the Rat.

    Science.gov (United States)

    Sapag, Amalia; Irrazábal, Thergiory; Lobos-González, Lorena; Muñoz-Brauning, Carlos R; Quintanilla, María Elena; Tampier, Lutske

    2016-07-12

    Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism.

  12. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  13. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Indian Academy of Sciences (India)

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2014-12-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  14. 异柠檬酸脱氢酶基因突变在肝内胆管癌中的作用%Isocitrate dehydrogenase gene mutations in intrahepatic cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    陈骏; 史炯; 毛谅; 仇毓东

    2015-01-01

    Mutations in isocitrate dehydrogenase are among the most common genetic alterations in intrahepatic cholangiocarcinoma (ICC).Mutant IDH proteins in ICC and other malignancies acquire an abnormal enzymatic activity, allowing the conversion of alpha-ketoglutarate (alphaKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple alphaKG-dependent dioxygenases, and results in alterations in cell differentiation and tumorigenesis.This review will focus on recent advances, which may help understand the function of IDH mutation in intrahepatic cholangiocarcinoma.%异柠檬酸脱氢酶(IDH)是肝内胆管癌(ICC)中最常见的基因变异之一.在ICC和其他恶性肿瘤中,突变翻译后的IDH酶可产生异常代谢产物羟戊二酸(2-HG),并取代正常代谢产物a酮戊二酸(a-KG),从而抑制多量a-KG依赖的双加氧酶活性,导致细胞分化改变,肿瘤形成.本文对ICC中IDH基因突变作用的研究进展进行综述.

  15. 柳蚕异柠檬酸脱氢酶基因cDNA的克隆与表达分析%Cloning and Expression Analysis of Isocitrate Dehydrogenase Gene From Actias selene Hubner

    Institute of Scientific and Technical Information of China (English)

    吴祥; 曹甲; 刘朝良; 朱保建; 魏国清; 王在贵; 姚立虎; 钱岑; 汤良文; 周炎

    2009-01-01

    异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)是生物体内一种重要的氧化还原酶.根据已报道的烟酰胺腺嘌呤二核苷酸磷酸异柠檬酸脱氢酶(NADP-IDH)基因的保守性序列设计引物,以柳蚕(Actias selene Hubner)蛹脂肪体cDNA为模板,经PCR扩增获得了柳蚕IDH基因的部分序列.该序列长1 269 bp,编码412个氨基酸,与家蚕IDH基因的cDNA序列同源性达82.5%.柳蚕IDH与果蝇、赤拟谷盗、斑马鱼、人、大鼠、库蚊、人体虱、恶性疟原虫IDH的氨基酸序列同源性在70%左右,具有较高的保守性.半定量PCR检测结果表明,柳蚕IDH基因在蛹期不同组织中均有表达,且表达量没有显著差异.

  16. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Indian Academy of Sciences (India)

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2015-06-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  17. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  18. Isocitrate dehydrogenase mutations in gliomas.

    Science.gov (United States)

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy.

  19. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji

    2002-08-27

    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  20. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed.

  1. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    Science.gov (United States)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  2. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Science.gov (United States)

    Mason, Katelynn M; Meyers, Michael S; Fox, Abbie M

    2016-01-01

    Summary Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation. PMID:27829908

  3. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Directory of Open Access Journals (Sweden)

    Katelynn M. Mason

    2016-09-01

    Full Text Available Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation.

  4. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  5. Polymorphisms in alcohol metabolism genes ADH1B and ALDH2, alcohol consumption and colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Marta Crous-Bou

    Full Text Available BACKGROUND: Colorectal cancer (CRC is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. METHODOLOGY/PRINCIPAL FINDINGS: SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC study (OR = 1.47; 95%CI = 1.18-1.81. Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025. A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. CONCLUSIONS/SIGNIFICANCE: Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants.

  6. Polymorphisms in Alcohol Metabolism Genes ADH1B and ALDH2, Alcohol Consumption and Colorectal Cancer

    Science.gov (United States)

    Crous-Bou, Marta; Rennert, Gad; Cuadras, Daniel; Salazar, Ramon; Cordero, David; Saltz Rennert, Hedy; Lejbkowicz, Flavio; Kopelovich, Levy; Monroe Lipkin, Steven; Bernard Gruber, Stephen; Moreno, Victor

    2013-01-01

    Background Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. Methodology/Principal Findings SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. Conclusions/Significance Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants. PMID:24282520

  7. Electron transmission through a class of anthracene aldehyde molecules

    Science.gov (United States)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupco; Kocarev, Ljupco

    2016-03-01

    Transmission of electrons via metal-molecule-metal junctions, involving rotor-stator anthracene aldehyde molecules is investigated. Two model barriers having input parameters evaluated from accurate ab initio calculations are proposed and the transmission coefficients are obtained by using the quasiclassical approximation. Transmission coefficients further enter in the integral for the net current, utilizing Simmons' method. Conformational dependence of the tunneling processes is evident and the presence of the side groups enhances the functionality of the future single-molecule based electronic devices.

  8. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.