WorldWideScience

Sample records for aldehyde dehydrogenase genes

  1. Characterization of the rat Class 3 aldehyde dehydrogenase gene promoter.

    OpenAIRE

    Xie, Y Q; Takimoto, K; Pitot, H. C.; Miskimins, W K; Lindahl, R

    1996-01-01

    The Class 3 aldehyde dehydrogenase gene (ALDH-3) is differentially expressed. Expression is either constitutive or xenobiotic inducible via an aromatic hydrocarbon (Ah) receptor-mediated pathway, depending upon the tissue. A series of studies were performed to examine the regulation of rat ALDH-3 basal expression. DNase I footprint analysis identified four DNA regions within the proximal 1 kb of the 5' flanking region of rat ALDH-3 which interact with regulatory proteins. Reporter gene and ge...

  2. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    OpenAIRE

    Nicholas, H B; Persson, B; Jörnvall, H; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same c...

  3. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    Science.gov (United States)

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. PMID:27070284

  4. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  5. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  6. Expression of betaine aldehyde dehydrogenase gene and salinity tolerance in rice transgenic plants

    Institute of Scientific and Technical Information of China (English)

    郭岩; 张莉; 肖岗; 曹守云; 谷冬梅; 田文忠; 陈受宜

    1997-01-01

    Betaine as one of osmolytes plays an important role in osmoregulation of most high plants. Betaine aldehyde dehydrogenase C BADH) is the second enzyme involved in betaine biosynthesis. The BADH gene from a halophite, Atriplex hortensis, was transformed into rice cultivars by bombarment method. Totally 192 transgenic rice plants were obtained and most of them had higher salt tolerance than controls. Among transgenic plants transplanted in the saline pool containing 0.5% NaCl in a greenhouse, 22 survived, 13 of which set seeds, and the frequency of seed setting was very low, only 10% . But the controls could not grow under the same condition. The results of BADH ac-tivity assay and Northern blot showed that the BADH gene was integrated into chromosomes of transgenic plants and expressed.

  7. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.;

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati......BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian...

  8. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.

  9. Correlations Between Polymorphisms of Extracellular Superoxide Dismutase, Aldehyde Dehydrogenase-2 Genes, as Well as Drinking Behavior and Pancreatic Cancer

    Institute of Scientific and Technical Information of China (English)

    Chao-xian Zhang; Yong-mei Qin; Li-ke Guo

    2014-01-01

    Objective To investigate the correlation between drinking behavior combined with polymorphisms of extracellular superoxide dismutase (EC-SOD) and aldehyde dehydrogenase-2 (ALDH2) genes and pancreatic cancer. Methods The genetic polymorphisms of EC-SOD and ALDH2 were analyzed by polymerase chain reaction restriction fragment length polymorphism in the peripheral blood leukocytes obtained from 680 pancreatic cancer cases and 680 non-cancer controls. Subsequently the frequency of genotype was compared between the pancreatic cancer patients and the healthy controls.The relationship of drinking with pancreatic cancer was analyzed. Results The frequencies of EC-SOD (C/G) and ALDH2 variant genotypes were 37.35% and 68.82%respectively in the pancreatic cancer cases, and were significantly higher than those in the healthy controls (21.03% and 44.56%, all P Conclusion EC-SOD (C/G), ALDH2 variant genotypes and drinking might be the risk factors of pancreatic cancer.

  10. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer’s disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.

  11. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants

    OpenAIRE

    Edenberg, Howard J

    2007-01-01

    The primary enzymes involved in alcohol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Both enzymes occur in several forms that are encoded by different genes; moreover, there are variants (i.e., alleles) of some of these genes that encode enzymes with different characteristics and which have different ethnic distributions. Which ADH or ALDH alleles a person carries influence his or her level of alcohol consumption and risk of alcoholism. Researchers to date pri...

  12. Effect of Aldehyde Dehydrogenase 2 Gene Polymorphism on Hemodynamics After Nitroglycerin Intervention in Northern Chinese Han Population

    Directory of Open Access Journals (Sweden)

    Jia-Qi Xia

    2015-01-01

    Full Text Available Background: Nitroglycerin (NTG is one of the few immediate treatments for acute angina. Aldehyde dehydrogenase 2 (ALDH2 is a key enzyme in the human body that facilitates the biological metabolism of NTG. The biological mechanism of NTG serves an important function in NTG efficacy. Some reports still contradict the results that the correlation between ALDH2 gene polymorphisms and NTG and its clinical efficacy is different. However, data on NTG measurement by pain relief are subjective. This study aimed to investigate the influence of ALDH2 gene polymorphism on intervention with sublingual NTG using noninvasive hemodynamic parameters of cardiac output (CO and systemic vascular resistance (SVR in Northern Chinese Han population. Methods: This study selected 559 patients from the Affiliated Hospital of Qingdao University. A total of 203 patients presented with coronary heart disease (CHD and 356 had non-CHD (NCHD cases. All patient ALDH2 genotypes (G504A were detected and divided into two types: Wild (GG and mutant (GA/AA. Among the CHD group, 103 were wild-type cases, and 100 were mutant-type cases. Moreover, 196 cases were wild-type, and 160 cases were mutant type among the NCHD volunteers. A noninvasive hemodynamic detector was used to monitor the CO and the SVR at the 0, 5, and 15 minute time points after medication with 0.5 mg sublingual NTG. Two CO and SVR indicators were used for a comparative analysis of all case genotypes. Results: Both CO and SVR indicators significantly differed between the wild and mutant genotypes at various time points after intervention with sublingual NTG at 5 and 15 minutes in the NCHD (F = 16.460, 15.003, P = 0.000, 0.000 and CHD groups (F = 194.482, 60.582, P = 0.000, 0.000. All CO values in the wild-type case of both NCHD and CHD groups increased, whereas those in the mutant type decreased. The CO and ΔCO differences were statistically significant (P < 0.05; P < 0.05. The SVR and ΔSVR changed between the wild

  13. Transcriptional Regulation of Expression of the Maize Aldehyde Dehydrogenase 7 Gene (ZmALDH7B6) in Response to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    GU Ri-liang

    2014-01-01

    Aldehyde dehydrogenases (ALDHs) represent a large protein family, which includes several members that catalyze the oxidation of an aldehyde to its corresponding carboxylic acid in plants. Genes encoding members of theALDH7 subfamily have been suggested to play important roles in various stress adaptations in plants. In this study, quantitative RT-PCR analysis revealed that a maizeALDH7 subfamily member (ZmALDH7B6) was constitutively expressed in various organs, including roots, leaves, immature ears, tassels, and developing seeds. The abundance ofZmALDH7B6 mRNA transcripts in maize roots was increased by ammonium, NaCl, and mannitol treatments. To further analyze tissue-speciifc and stress-induced expression patterns, the 1.5-kb 5´-lfankingZmALDH7B6 promoter region was fused to the β-glucuronidase (GUS) reporter gene and introduced into maize plants. In roots of independent transgenic lines, there was signiifcant induction of GUS activity in response to ammonium supply, conifrming ammonium-dependent expression ofZmALDH7B6 at the transcript level. Histochemical staining showed that GUS activity driven by theZmALDH7B6 promoter was mainly localized in the vascular tissues of maize roots. These results suggested thatZmALDH7B6 is induced by multiple environmental stresses in maize roots, and may play a role in detoxifying aldehydes, particularly in vascular tissue.

  14. Osmotic Regulation of Betaine Content in Leymus chinensis Under Saline-alkali Stress and Cloning and Expression of Betaine Aldehyde Dehydrogenase(BADH)Gene

    Institute of Scientific and Technical Information of China (English)

    CUI Xi-yan; WANG Yong; GUO Ji-xun

    2008-01-01

    The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations.The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BADH:EC 1.2.1.8) activities have a direct relation with increased stressing time in the same treatment;both exhibit a single peak with increasing the concentration of saline-alkali solution,and number V shows the highest value.The BADH gene of Leymus chinensis Was cloned by RT-PCR and RACE technology and Was designated as LcBADH.The cDNA sequence of LcBADH Was 1774bp including the open reading frame(ORF)of 1521bp(coding 506 amino acids).The vector of prokaryotic expression was constructed by inserting the LcBADH gene fragment into pET30a(+)and transformed into E. coli BL21(DE3).The result of SDS-PAGE shows that the idio-protein with a molecular mass of 56.78 kDa was effectively expressed in the recombinant bacteria induced by isopropyl β-D-thiogalactoside(IPTG).

  15. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  16. Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations

    OpenAIRE

    Peng Giia-Sheun; Yin Shih-Jiun

    2009-01-01

    Abstract Alcoholism is a complex behavioural disorder. Molecular genetics studies have identified numerous candidate genes associated with alcoholism. It is crucial to verify the disease susceptibility genes by correlating the pinpointed allelic variations to the causal phenotypes. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the principal enzymes responsible for ethanol metabolism in humans. Both ADH and ALDH exhibit functional polymorphisms among racial populations; the...

  17. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    Science.gov (United States)

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  18. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming Gao; Keitaro Matsuo; Nobuyuki Hamajima; Kazuo Tajima; Toshiro Takezaki; Jian-Zhong Wu; Xiao-Mei Zhang; Hai-Xia Cao; Jian-Hua Ding; Yan-Ting Liu; Su-Ping Li; Jia Cao

    2008-01-01

    AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males.METHODS: A case-control study was conducted in 190 cases and 223 population-based controls.ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A) genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC).Information on smoking and drinking was collected and odds ratio (OR) was estimated.RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Significant interactions between ADH2,ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a significantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ,4DH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with theALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele.CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also significant gene-gene and geneenvironment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.

  19. Alcohol and Aldehyde Dehydrogenases: Retinoid Metabolic Effects in Mouse Knockout Models

    OpenAIRE

    Kumar, Sandeep; Sandell, Lisa L.; Trainor, Paul A; Koentgen, Frank; Duester, Gregg

    2011-01-01

    Retinoic acid (RA) is the active metabolite of vitamin A (retinol) that controls growth and development. The first step of RA synthesis is controlled by enzymes of the alcohol dehydrogenase (ADH) and retinol dehydrogenase (RDH) families that catalyze oxidation of retinol to retinaldehyde. The second step of RA synthesis is controlled by members of the aldehyde dehydrogenase (ALDH) family also known as retinaldehyde dehydrogenase (RALDH) that further oxidize retinaldehyde to produce RA. RA fun...

  20. The roles of aldehyde dehydrogenases (ALDHs in the PDH bypass of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lin Ming

    2009-03-01

    Full Text Available Abstract Background Eukaryotic aldehyde dehydrogenases (ALDHs, EC 1.2.1, which oxidize aldehydes into carboxylic acids, have been classified into more than 20 families. In mammals, Family 2 ALDHs detoxify acetaldehyde. It has been hypothesized that plant Family 2 ALDHs oxidize acetaldehyde generated via ethanolic fermentation, producing acetate for acetyl-CoA biosynthesis via acetyl-CoA synthetase (ACS, similar to the yeast pathway termed the "pyruvate dehydrogenase (PDH bypass". Evidence for this pathway in plants has been obtained from pollen. Results To test for the presence of the PDH bypass in the sporophytic tissue of plants, Arabidopsis plants homozygous for mutant alleles of all three Family 2 ALDH genes were fed with 14C-ethanol along with wild type controls. Comparisons of the incorporation rates of 14C-ethanol into fatty acids in mutants and wild type controls provided direct evidence for the presence of the PDH bypass in sporophytic tissue. Among the three Family 2 ALDHs, one of the two mitochondrial ALDHs (ALDH2B4 appears to be the primary contributor to this pathway. Surprisingly, single, double and triple ALDH mutants of Arabidopsis did not exhibit detectable phenotypes, even though a Family 2 ALDH gene is required for normal anther development in maize. Conclusion The PDH bypass is active in sporophytic tissue of plants. Blocking this pathway via triple ALDH mutants does not uncover obvious visible phenotypes.

  1. Residues that influence coenzyme preference in the aldehyde dehydrogenases.

    Science.gov (United States)

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A

    2015-06-01

    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  2. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Myocardial Insulin Resistance and Endoplasmic Reticulum Stress

    OpenAIRE

    Li, Shi-Yan; Gilbert, Sara A. B.; Li, Qun; Ren, Jun

    2009-01-01

    Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken β-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 wks. Cell shorteni...

  3. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans.

    Science.gov (United States)

    Sobreira, Tiago J P; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S L; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification. PMID:21169504

  4. Androgen regulation of aldehyde dehydrogenase 1A3 (ALDH1A3) in androgen responsive human prostate cancer cell LNCaP.

    Science.gov (United States)

    Previous gene array data from our laboratory identified the retinoic acid (RA) biosynthesis enzyme aldehyde dehydrogenase 1A3 (ALDH1A3) as a putative androgen-responsive gene in prostate cancer epithelial cells (LNCaP). In the present study we attempted to identify if any of the three ALDH1A/RA synt...

  5. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    Science.gov (United States)

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  6. Surviving environmental stress: the role of betaine aldehyde dehydrogenase in marine crustaceans

    Directory of Open Access Journals (Sweden)

    NA Stephens-Camacho

    2015-02-01

    Full Text Available Betaine aldehyde dehydrogenase (BADH belongs to the aldehyde dehydrogenases (ALDH family, an ancestral group of enzymes responsible for aldehyde detoxification in several organisms. The BADH enzyme catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB an important osmoptrotector and osmoregulator accumulated in response to cellular osmotic stress. The BADH enzymes have been extensively described in terrestrial organisms, but information in marine crustaceans remains scarce. Research on crustacean stress-adaptive capacity to environmental stressors relates GB accumulation in response to salinity variations. Although GB de novo synthesis is confirmed on crustaceans, its metabolic pathways and regulation mechanism are unexplored. In this work, the state of the knowledge of betaine aldehyde dehydrogenase enzymes in marine crustaceans is summarized, as a mechanism to overcome the deleterious effects of changes in temperature, salinity and dissolved oxygen concentration in seawater. The purpose of this review is to provide a more comprehensive overview to set the basis for exploring novel functions and properties of BADHs on the response of crustaceans to environmental stress.

  7. Separation and Purification of Betaine Aldehyde Dehydrogenase from Wild Suaeda liaotungensis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High active betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) is found in wild Suaeda liaotungensis. The enzyme is purified 206-fold with recovery of 1.5%. It have a specific activity of 2363 nmol/min*mg protein and the molecular mass of each subunit is 64.5 kDa as determined by SDS-PAGE.

  8. NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli.

    OpenAIRE

    Y.M. Chen; Zhu, Y; Lin, E C

    1987-01-01

    Mutant analysis revealed that complete utilization of L-fucose and L-rhamnose by Escherichia coli requires the activity of a common NAD-linked aldehyde dehydrogenase which converts L-lactaldehyde to L-lactate. Mutations affecting this activity mapped to the ald locus at min 31, well apart from the fuc genes (min 60) encoding the trunk pathway for L-fucose dissimilation (as well as L-1,2-propanediol oxidoreductase) and the rha genes (min 88) encoding the trunk pathway for L-rhamnose dissimilat...

  9. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.

    Science.gov (United States)

    Frömmel, Jan; Tarkowski, Petr; Kopečný, David; Šebela, Marek

    2016-09-25

    Plant NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases. They participate in the metabolism of polyamines or osmoprotectants. The enzymes are characterized by their broad substrate specificity covering ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The isoenzyme 1 from tomato (Solanum lycopersicum; SlAMADH1) oxidizes aliphatic aldehydes very efficiently and converts also furfural, its derivatives or benzaldehyde, which are present at low concentrations in alcoholic distillates such as fruit brandy. In this work, SlAMADH1 was examined as a bioanalytical tool for their detection. These aldehydes arise from fermentation processes or thermal degradation of sugars and their presence is related to health complications after consumption including nausea, emesis, sweating, decrease in blood pressure, hangover headache, among others. Sixteen samples of slivovitz (plum brandy) from local producers in Moravia, Czech Republic, were analyzed for their aldehyde content using a spectrophotometric activity assay with SlAMADH1. In all cases, there were oxidative responses observed when monitoring NADH production in the enzymatic reaction. Aldehydes in the distillate samples were also subjected to a standard determination using reversed-phase HPLC with spectrophotometric and tandem mass spectrometric detection after a derivatization with 2,4-dinitrophenylhydrazine. Results obtained by both methods were found to correlate well for a majority of the analyzed samples. The possible applicability of SlAMADH1 for the evaluation of aldehyde content in food and beverages has now been demonstrated. PMID:26703808

  10. Aldehyde dehydrogenase-derived omega-crystallins of squid and octopus. Specialization for lens expression.

    Science.gov (United States)

    Zinovieva, R D; Tomarev, S I; Piatigorsky, J

    1993-05-25

    omega-Crystallin of the octopus lens is related to aldehyde dehydrogenases (ALDH) of vertebrates (Tomarev, S. I., Zinovieva, R. D., and Piatigorsky, J. (1991) J. Biol. Chem. 266, 24226-24231) and ALDH1/eta-crystallin of elephant shrews (Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269). Only very low amounts of omega-crystallin are present in the squid lens. Here, we have cloned omega-crystallin cDNAs of the octopus (Octopus dofleini) and squid (Ommastrephes sloani pacificus) lenses. The deduced amino acid sequences of omega-crystallin from these species are 78% identical to each other, 56-58% identical to cytoplasmic ALDH1 and mitochondrial ALDH2 of vertebrates (which are 66-68% identical to each other), and 40% identical to Escherichia coli and spinach ALDHs. These data are consistent with the idea that the ALDH1/ALDH2 gene duplication in vertebrates occurred after divergence of cephalopods from the line giving rise to vertebrates, but before the separation of squid and octopus. Southern blot hybridization indicated that omega-crystallin is encoded by few genes (possibly just one) in octopus and squid. Northern blot hybridization revealed two bands (2.7 and 9.0 kilobases) of omega-crystallin RNA in the octopus lens and one band (4.2 kilobases) in the squid lens; omega-crystallin RNAs were undetectable in numerous non-lens tissues of octopus and squid, suggesting lens-specific expression of this gene(s). Finally, extracts of the octopus lens had no detectable ALDH activity using different substrates, consistent with omega-crystallin having no enzymatic activity. Taken together, our results suggest that omega-crystallin evolved by duplication of an ancestral gene encoding ALDH and subsequently specialized for refraction in the transparent lens while losing ALDH activity and expression in other tissues. PMID:7684383

  11. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    Science.gov (United States)

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  12. Aldehyde Dehydrogenase 1 Is a Tumor Stem Cell-Associated Marker in Lung Cancer

    OpenAIRE

    Jiang, Feng; Qiu, Qi; Khanna, Abha; Todd, Nevins W.; Deepak, Janaki; Xing, Lingxiao; Wang, Huijun; Liu, Zhenqiu; Su, Yun; Stass, Sanford A.; Katz, Ruth L

    2009-01-01

    Tumor contains small population of cancer stem cells (CSC) that are responsible for its maintenance and relapse. Analysis of these CSCs may lead to effective prognostic and therapeutic strategies for the treatment of cancer patients. We report here the identification of CSCs from human lung cancer cells using Aldefluor assay followed by fluorescence-activated cell sorting analysis. Isolated cancer cells with relatively high aldehyde dehydrogenase 1 (ALDH1) activity display in vitro features o...

  13. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress.

    Science.gov (United States)

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan

    2016-04-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE.

  14. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  15. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals

    KAUST Repository

    Trautmann, Danika

    2013-07-05

    Oxidative cleavage of carotenoids and peroxidation of lipids lead to apocarotenals and aliphatic aldehydes called alkanals, which react with vitally important compounds, promoting cytotoxicity. Although many enzymes have been reported to deactivate alkanals by converting them into fatty acids, little is known about the mechanisms used to detoxify apocarotenals or the enzymes acting on them. Cyanobacteria and other photosynthetic organisms must cope with both classes of aldehydes. Here we report that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids. Using a crude lysate of SynAlh1-expressing Escherichia coli cells, we show that SynAlh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate for SynAlh1, making involvement in Synechocystis retinoid metabolism unlikely. The transcript level of SynAlh1 is induced by high light and cold treatment, indicating a role in the stress response, and the corresponding gene is a constituent of a stress-related operon. The assumptions regarding the function of SynAlh are further supported by the surprisingly high homology to human and plant aldehyde dehydrogenase that have been assigned to aldehyde detoxification. SynAlh1 is the first aldehyde dehydrogenase that has been shown to form both apocarotenoic and fatty acids. This dual function suggests that its eukaryotic homologs may also be involved in apocarotenal metabolism, a function that has not been considered so far. Aldehyde dehydrogenases play an important role in detoxification of reactive aldehydes. Here, we report on a cyanbacterial enzyme capable in converting two classes of lipid-derived aldehydes, apocaotenals and alkanals. The corresponding gene is a

  16. Aldehyde dehydrogenase 2 in aplastic anemia, Fanconi anemia and hematopoietic stem cells.

    Science.gov (United States)

    Van Wassenhove, Lauren D; Mochly-Rosen, Daria; Weinberg, Kenneth I

    2016-09-01

    Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia. PMID:27650066

  17. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    Science.gov (United States)

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  18. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  19. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    Science.gov (United States)

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  20. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    Science.gov (United States)

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  1. Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation.

    Science.gov (United States)

    Wenzl, M Verena; Beretta, Matteo; Griesberger, Martina; Russwurm, Michael; Koesling, Doris; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2011-08-01

    To elucidate the mechanism underlying reduction of nitroglycerin (GTN) to nitric oxide (NO) by mitochondrial aldehyde dehydrogenase (ALDH2), we generated mutants of the enzyme lacking the cysteines adjacent to reactive Cys302 (C301S and C303S), the glutamate that participates as a general base in aldehyde oxidation (E268Q) or combinations of these residues. The mutants were characterized regarding acetaldehyde dehydrogenation, GTN-triggered enzyme inactivation, GTN denitration, NO formation, and soluble guanylate cyclase activation. Lack of the cysteines did not affect dehydrogenase activity but impeded GTN denitration, aggravated GTN-induced enzyme inactivation, and increased NO formation. A triple mutant lacking the cysteines and Glu268 catalyzed sustained formation of superstoichiometric amounts of NO and exhibited slower rates of inactivation. These results suggest three alternative pathways for the reaction of ALDH2 with GTN, all involving formation of a thionitrate/sulfenyl nitrite intermediate at Cys302 as the initial step. In the first pathway, which predominates in the wild-type enzyme and reflects clearance-based GTN denitration, the thionitrate apparently reacts with one of the adjacent cysteine residues to yield nitrite and a protein disulfide. The predominant reaction catalyzed by the single and double cysteine mutants requires Glu268 and results in irreversible enzyme inactivation. Finally, combined lack of the cysteines and Glu268 shifts the reaction toward formation of the free NO radical, presumably through homolytic cleavage of the sulfenyl nitrite intermediate. Although the latter reaction accounts for less than 10% of total turnover of GTN metabolism catalyzed by wild-type ALDH2, it is most likely essential for vascular GTN bioactivation.

  2. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  3. Modeling-dependent protein characterization of the rice aldehyde dehydrogenase (ALDH superfamily reveals distinct functional and structural features.

    Directory of Open Access Journals (Sweden)

    Simeon O Kotchoni

    Full Text Available The completion of the rice genome sequence has made it possible to identify and characterize new genes and to perform comparative genomics studies across taxa. The aldehyde dehydrogenase (ALDH gene superfamily encoding for NAD(P(+-dependent enzymes is found in all major plant and animal taxa. However, the characterization of plant ALDHs has lagged behind their animal- and prokaryotic-ALDH homologs. In plants, ALDHs are involved in abiotic stress tolerance, male sterility restoration, embryo development and seed viability and maturation. However, there is still no structural property-dependent functional characterization of ALDH protein superfamily in plants. In this paper, we identify members of the rice ALDH gene superfamily and use the evolutionary nesting events of retrotransposons and protein-modeling-based structural reconstitution to report the genetic and molecular and structural features of each member of the rice ALDH superfamily in abiotic/biotic stress responses and developmental processes. Our results indicate that rice-ALDHs are the most expanded plant ALDHs ever characterized. This work represents the first report of specific structural features mediating functionality of the whole families of ALDHs in an organism ever characterized.

  4. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.

    Science.gov (United States)

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg; Heider, Johann

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.

  5. Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation.

    Science.gov (United States)

    Neubauer, Regina; Neubauer, Andrea; Wölkart, Gerald; Schwarzenegger, Christine; Lang, Barbara; Schmidt, Kurt; Russwurm, Michael; Koesling, Doris; Gorren, Antonius C F; Schrammel, Astrid; Mayer, Bernd

    2013-09-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.

  6. Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol.

    Science.gov (United States)

    Marselos, M; Vasiliou, V

    1991-01-01

    The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis. PMID:2060039

  7. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson’s disease

    Science.gov (United States)

    Yu, Rwei-Ling; Tan, Chun-Hsiang; Lu, Ying-Che; Wu, Ruey-Meei

    2016-01-01

    Neurotransmitter degradation has been proposed to cause the accumulation of neurotoxic metabolites. The metabolism of these metabolites involves aldehyde dehydrogenase 2 (ALDH2). The Asian-specific single nucleotide polymorphism rs671 causes reduced enzyme activity. This study aims to explore whether Parkinson’s disease (PD) patients with reduced ALDH2 activity owing to the rs671 polymorphism are at risk for neuropsychological impairments. A total of 139 PD patients were recruited. Each participant was assessed for medical characteristics and their ALDH2 genotype. The Mini-Mental State Examination (MMSE), the Clinical Dementia Rating Scale and the Frontal Behavioral Inventory were used to measure neuropsychological functions. We found that the MMSE scores were significantly lower in patients with inactive ALDH2 (U = 1873.5, p = 0.02). The presence of cognitive impairments was significantly more frequent in the inactive ALDH2 group (46.0%) than in the active ALDH2 group (26.3%) (χ2 = 5.886, p = 0.01). The inactive group showed significant deterioration in hobbies and exhibited more severe “disorganization” and “hyper-sexuality” behaviours. The additive effects of the allele on the development of cognitive impairments in PD patients may be an important finding that provides further insight into the pathogenic mechanism of cognitive dysfunction in PD. PMID:27453488

  8. Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic β cells in diabetic mice.

    Science.gov (United States)

    Kim-Muller, Ja Young; Fan, Jason; Kim, Young Jung R; Lee, Seung-Ah; Ishida, Emi; Blaner, William S; Accili, Domenico

    2016-01-01

    Insulin-producing β cells become dedifferentiated during diabetes progression. An impaired ability to select substrates for oxidative phosphorylation, or metabolic inflexibility, initiates progression from β-cell dysfunction to β-cell dedifferentiation. The identification of pathways involved in dedifferentiation may provide clues to its reversal. Here we isolate and functionally characterize failing β cells from various experimental models of diabetes and report a striking enrichment in the expression of aldehyde dehydrogenase 1 isoform A3 (ALDH(+)) as β cells become dedifferentiated. Flow-sorted ALDH(+) islet cells demonstrate impaired glucose-induced insulin secretion, are depleted of Foxo1 and MafA, and include a Neurogenin3-positive subset. RNA sequencing analysis demonstrates that ALDH(+) cells are characterized by: (i) impaired oxidative phosphorylation and mitochondrial complex I, IV and V; (ii) activated RICTOR; and (iii) progenitor cell markers. We propose that impaired mitochondrial function marks the progression from metabolic inflexibility to dedifferentiation in the natural history of β-cell failure. PMID:27572106

  9. Inhibition of aldehyde dehydrogenase-2 suppresses cocaine seeking by generating THP, a cocaine use–dependent inhibitor of dopamine synthesis

    OpenAIRE

    Yao, Lina; Fan, Peidong; Arolfo, Maria; Jiang, Zhang; Olive, M. Foster; Zablocki, Jeff; Sun, Hai-Ling; Chu, Nancy; Lee, Jeongrim; Kim, Hee-Yong; Leung, Kwan; Shryock, John; Blackburn, Brent; Diamond, Ivan

    2010-01-01

    There is no effective treatment for cocaine addiction despite extensive knowledge of the neurobiology of drug addiction1–4. Here we show that a selective aldehyde dehydrogenase-2 (ALDH-2) inhibitor, ALDH2i, suppresses cocaine self-administration in rats and prevents cocaine- or cue-induced reinstatement in a rat model of cocaine relapse-like behavior. We also identify a molecular mechanism by which ALDH-2 inhibition reduces cocaine-seeking behavior: increases in tetrahydropapaveroline (THP) f...

  10. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD+-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  11. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  12. Isolation and Induced Expression of Betaine Aldehyde Dehydrogenase Gene from Spinach%菠菜甜菜碱醛脱氢酶基因的分离和诱导表达

    Institute of Scientific and Technical Information of China (English)

    张宁; 王蒂; 司怀军

    2004-01-01

    植物体内的甜菜碱由胆碱经两步不可逆的氧化反应合成,甜菜碱醛脱氢酶(betaine aldehyde dehydrogenase,BADH)是合成甜菜碱的关键酶,催化甜菜碱醛氧化为甜菜碱。本研究从菠菜叶片中分离了BADH基因,并将该基因与其它植物的BADH序列作了同源性分析,同时,证实了菠菜BADH基因的转录与表达受干旱和盐胁迫的诱导。

  13. Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts.

    OpenAIRE

    Rizzo, W B; Craft, D A

    1991-01-01

    Sjögren-Larsson syndrome (SLS) is an inherited disorder associated with impaired fatty alcohol oxidation due to deficient activity of fatty alcohol:NAD+ oxidoreductase (FAO). FAO is a complex enzyme which consists of two separate proteins that sequentially catalyze the oxidation of fatty alcohol to fatty aldehyde and fatty acid. To determine which enzymatic component of FAO was deficient in SLS, we assayed fatty aldehyde dehydrogenase (FALDH) and fatty alcohol dehydrogenase in cultured fibrob...

  14. Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures

    International Nuclear Information System (INIS)

    Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. The results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to

  15. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas expressing spinach betaine aldehyde dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Weijuan Fan

    Full Text Available Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas, a root crop with worldwide importance. The increased production of glycine betaine (GB improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait

  16. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors.

    Science.gov (United States)

    Venton, G; Pérez-Alea, M; Baier, C; Fournet, G; Quash, G; Labiad, Y; Martin, G; Sanderson, F; Poullin, P; Suchon, P; Farnault, L; Nguyen, C; Brunet, C; Ceylan, I; Costello, R T

    2016-01-01

    The vast majority of patients with acute myeloid leukemia (AML) achieve complete remission (CR) after standard induction chemotherapy. However, the majority subsequently relapse and die of the disease. A leukemia stem cell (LSC) paradigm has been invoked to explain this failure of CR to reliably translate into cure. Indeed, LSCs are highly enriched in CD34+CD38- leukemic cells that exhibit positive aldehyde dehydrogenase activity (ALDH+) on flow cytometry, these LSCs are resistant to currently existing treatments in AML such as cytarabine and anthracycline that, at the cost of great toxicity on normal cells, are highly active against the leukemic bulk, but spare the LSCs responsible for relapse. To try to combat the LSC population selectively, a well-characterized ALDH inhibitor by the trivial name of dimethyl ampal thiolester (DIMATE) was assessed on sorted CD34+CD38- subpopulations from AML patients and healthy patients. ALDH activity and cell viability were monitored by flow cytometry. From enzyme kinetic studies DIMATE is an active enzyme-dependent, competitive, irreversible inhibitor of ALDH1. On cells in culture, DIMATE is a powerful inhibitor of ALDHs 1 and 3, has a major cytotoxic activity on human AML cell lines. Moreover, DIMATE is highly active against leukemic populations enriched in LSCs, but, unlike conventional chemotherapy, DIMATE is not toxic for healthy hematopoietic stem cells which retained, after treatment, their self-renewing and multi-lineage differentiation capacity in immunodeficient mice, xenografted with human leukemic cells. DIMATE eradicates specifically human AML cells and spares healthy mouse hematologic cells. PMID:27611922

  17. Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels.

    Science.gov (United States)

    Neubauer, Regina; Wölkart, Gerald; Opelt, Marissa; Schwarzenegger, Christine; Hofinger, Marielies; Neubauer, Andrea; Kollau, Alexander; Schmidt, Kurt; Schrammel, Astrid; Mayer, Bernd

    2015-02-15

    The vascular bioactivation of the antianginal drug nitroglycerin (GTN), yielding 1,2-glycerol dinitrate and nitric oxide or a related activator of soluble guanylate cyclase, is catalyzed by aldehyde dehydrogenase-2 (ALDH2) in rodent and human blood vessels. The essential role of ALDH2 has been confirmed in many studies and is considered as general principle of GTN-induced vasodilation in mammals. However, this view is challenged by an early report showing that diphenyleneiodonium, which we recently characterized as potent ALDH2 inhibitor, has no effect on GTN-induced relaxation of bovine coronary arteries (De La Lande et al., 1996). We investigated this issue and found that inhibition of ALDH2 attenuates GTN-induced coronary vasodilation in isolated perfused rat hearts but has no effect on relaxation to GTN of bovine and porcine coronary arteries. This observation is explained by low levels of ALDH2 protein expression in bovine coronary arteries and several types of porcine blood vessels. ALDH2 mRNA expression and the rates of GTN denitration were similarly low, excluding a significant contribution of ALDH2 to the bioactivation of GTN in these vessels. Attempts to identify the responsible pathway with enzyme inhibitors did not provide conclusive evidence for the involvement of ALDH3A1, cytochrome P450, or GSH-S-transferase. Thus, the present manuscript describes a hitherto unrecognized pathway of GTN bioactivation in bovine and porcine blood vessels. If present in the human vasculature, this pathway might contribute to the therapeutic effects of organic nitrates that are not metabolized by ALDH2.

  18. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  19. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Isolated ALDHHi PC3 cells preferentially form primitive holoclone-type colonies. ► Primitive holoclone colonies are predominantly ALDHLo but contain rare ALDHHi cells. ► Holoclone-forming cells are not restricted to the ALDHHi population. ► ALDH phenotypic plasticity occurs in PC3 cells (ALDHLo to ALDHHi and vice versa). ► ALDHHi cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDHLo cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDHHi population, or whether all ALDHHi cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDHHi cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDHHi cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDHLo population can develop ALDHHi populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDHHi cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in defined medium favouring stem cell characteristics. Although ALDHHi status enriches for holoclone formation, this activity may be mediated by a minority of ALDHHi cells.

  20. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado.

    Science.gov (United States)

    Taylor, Nicky J; Cowan, A Keith

    2004-04-01

    The contribution of xanthine dehydrogenase (XDH, EC 1.1.1.204) to fruit size was investigated using the normal and small-fruit variants of Persea americana Mill. cv. 'Hass'. Inhibition of XDH by treatment of normal fruit, in the linear phase of growth (phase II), with allopurinol (Allo) arrested fruit growth. Adenine (Ade), a less effective inhibitor of this enzyme, also arrested fruit growth when applied in phase II and slowed fruit growth when applied in phase III. A time-course study on the activity of XDH in mesocarp tissue from normal and small fruit showed that maximum activity occurred late in phase II and that the peak in activity was absent in mesocarp of the small fruit. Feeding Ade to growing fruit in phase III caused a transient decline in fruit growth (measured as change in fruit length). Thereafter, growth resumed although fruit size was irreversibly affected. Treatment of fruit with Ade and Ade-containing cytokinins altered activity of another molybdenum enzyme, aldehyde oxidase (EC 1.2.3.1). Cytokinin oxidase was induced by cytokinin and auxin. Purine catabolism via hypoxanthine/xanthine was operative in normal fruit and in mesocarp from the small-fruit variant and as expected, Allo treatment caused accumulation of xanthine and adenine. In the absence of an increase in XDH during growth of the small-fruit phenotype, low levels of Ade were interpreted as resulting from respiration-enhanced adenylate depletion. Stress and/or pathogen induction of the alternative oxidase pathway is proposed as a possible cause.

  1. 嗜热乙醇杆菌中醛/醇脱氢酶的双启动子分析%The Promoter Analysis of the adhE Gene Encoding the Aldehyde/alcohol Dehydrogenase in Thermoanaerobacter ethanolicus

    Institute of Scientific and Technical Information of China (English)

    彭惠; 毛忠贵; 武国干; 邵蔚蓝

    2007-01-01

    克隆了嗜热乙醇杆菌(Thermoanaerobacter ethanolicus)中乙醇代谢的关键酶之一醛/醇脱氢酶(alcohol/acetaldehyde dehydrogenase,AdhE)基因的上游假定启动子序列,并进行了结构分析.结果表明,adhE的上游序列是启动子,能启动报告基因在大肠杆菌中持续表达.首次发现adhE的启动子序列中存在两个独立的启动子(P172和P37)和核糖体结合位点(SD172和SD37),分别都具有完整功能,但其活性均低于完整的启动子序列.由此推测嗜热乙醇杆菌中adhE的表达受这两个启动子协同调控.

  2. Expression of aldehyde dehydrogenase after neoadjuvant chemotherapy is associated with expression of hypoxia-inducible factors 1 and 2 alpha and predicts prognosis in locally advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Daniel Guimarães Tiezzi

    2013-05-01

    Full Text Available OBJECTIVE: To analyze the expression of hypoxia-inducible factors (hypoxia-inducible factor 1A and hypoxia-inducible factor 2A and aldehyde dehydrogenase proteins in patients with locally advanced breast carcinoma who were subjected to neoadjuvant chemotherapy. METHODS: We included 90 patients with histologically confirmed stage II and III breast carcinoma who were treated with neoadjuvant chemotherapy between 2000 and 2005. Immunohistochemistry for aldehyde dehydrogenase, hypoxia-inducible factor 1A, and hypoxia-inducible factor 2A was performed before and after neoadjuvant chemotherapy. We analyzed the influence of clinical and pathological features on clinical and pathological response, disease-free survival, and overall survival. RESULTS: An objective clinical response to neoadjuvant chemotherapy was observed in 80% of patients, with 12% showing a complete pathological response. Among all clinical and pathological parameters, only the expression of hypoxia-inducible factor 1A was associated with a pathological response. A positive association was found between expression of aldehyde dehydrogenase and that of hypoxia-inducible factor 1A before and after chemotherapy. Aldehyde dehydrogenase expression was associated with expression of hypoxia inducible-factor 2A in tumors after neoadjuvant treatment. In a univariate analysis, prognosis was influenced by age, pathological response, metastasis to axillary lymph nodes after neoadjuvant chemotherapy, overexpression of hypoxia-inducible factor 2, and the presence of aldehyde dehydrogenase-positive cells within the primary tumor after neoadjuvant chemotherapy. In a multivariate analysis, only age and the presence of aldehyde dehydrogenase-positive cells after chemotherapy were associated with reduced overall survival. CONCLUSION: The presence of aldehyde dehydrogenase-positive cells within the residual tumor after neoadjuvant chemotherapy is associated with an increase in the expression of hypoxia

  3. Loss of aldehyde dehydrogenase in an Escherichia coli mutant selected for growth on the rare sugar L-galactose.

    OpenAIRE

    Zhu, Y; Lin, E C

    1987-01-01

    Escherichia coli K-12 converts L-fucose to dihydroxyacetone phosphate (C-1 to C-3) and L-lactaldehyde (C-4 to C-6) by a pathway specified by the fuc regulon. Aerobically, L-lactaldehyde serves as a carbon and energy source by the action of an aldehyde dehydrogenase of broad specificity; the product, L-lactate, is then converted to pyruvate. Anaerobically, L-lactaldehyde serves as an electron acceptor to regenerate NAD from NADH by the action of an oxidoreductase; the reduced product, L-12-pro...

  4. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought.

    OpenAIRE

    Weretilnyk, E A; Hanson, A D

    1990-01-01

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase (BADH, EC 1.2.1.8), a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a lambda gt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligon...

  5. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought

    International Nuclear Information System (INIS)

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase, a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a λgt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligonucleotide probes corresponding to amino acid sequences of two peptides prepared from purified BADH. The authenticity of the clone was confirmed by nucleotide sequence analysis; this analysis demonstrated the presence of a 1491-base-pair open reading frame that contained sequences encoding 12 peptide fragments of BADH. The clone hybridized to a 1.9-kilobase mRNA from spinach leaves; this mRNA was more abundant in salt-stressed plants, consistent with the known salt induction of BADH activity. The amino acid sequence deduced for the BADH cDNA sequence showed substantial similarities to those for nonspecific aldehyde dehydrogenases from several sources, including absolute conservation of a decapeptide in the probable active site. Comparison of deduced and determined amino acid sequences indicated that the transit peptide may comprise only 7 or 8 residues, which is atypically short for precursors to stromal proteins

  6. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought.

    Science.gov (United States)

    Weretilnyk, E A; Hanson, A D

    1990-04-01

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase (BADH, EC 1.2.1.8), a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a lambda gt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligonucleotide probes corresponding to amino acid sequences of two peptides prepared from purified BADH. The authenticity of the clone was confirmed by nucleotide sequence analysis; this analysis demonstrated the presence of a 1491-base-pair open reading frame that contained sequences encoding 12 peptide fragments of BADH. The clone hybridized to a 1.9-kilobase mRNA from spinach leaves; this mRNA was more abundant in salt-stressed plants, consistent with the known salt induction of BADH activity. The amino acid sequence deduced from the BADH cDNA sequence showed substantial similarities to those for nonspecific aldehyde dehydrogenases (EC 1.2.1.3 and EC 1.2.1.5) from several sources, including absolute conservation of a decapeptide in the probable active site. Comparison of deduced and determined amino acid sequences indicated that the transit peptide may comprise only 7 or 8 residues, which is atypically short for precursors to stromal proteins. PMID:2320587

  7. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer.

    Science.gov (United States)

    Laniewska-Dunaj, Magdalena; Jelski, Wojciech; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2013-07-01

    The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.

  8. The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions.

    Science.gov (United States)

    Pineda, Erika; Encalada, Rusely; Olivos-García, Alfonso; Néquiz, Mario; Moreno-Sánchez, Rafael; Saavedra, Emma

    2013-01-16

    By applying metabolic control analysis and inhibitor titration we determined the degree of control (flux control coefficient) of pyruvate:ferredoxin oxidoreductase (PFOR) and bifunctional aldehyde-alcohol dehydrogenase (ADHE) over the fluxes of fermentative glycolysis of Entamoeba histolytica subjected to aerobic conditions. The flux-control coefficients towards ethanol and acetate formation determined for PFOR titrated with diphenyleneiodonium were 0.07 and 0.09, whereas for ADHE titrated with disulfiram were 0.33 and -0.19, respectively. ADHE inhibition induced significant accumulation of glycolytic intermediates and lower ATP content. These results indicate that ADHE exerts significant flux-control on the carbon end-product formation of amoebas subjected to aerobic conditions. PMID:23201265

  9. Situational aldehyde dehydrogenase expression by regulatory T cells may explain the contextual duality of cyclophosphamide as both a pro-inflammatory and tolerogenic agent

    OpenAIRE

    Kanakry, Christopher G.; Ganguly, Sudipto; Luznik, Leo

    2015-01-01

    In two recent publications, we demonstrated that after allogeneic stimulation, regulatory T cells (Tregs) increase expression of aldehyde dehydrogenase (ALDH), the major in vivo mechanism of cyclophosphamide detoxification, thereby becoming cyclophosphamide resistant. Differential ALDH expression may explain why cyclophosphamide has pro- and anti-inflammatory effects that are temporally and contextually dependent.

  10. The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease

    Science.gov (United States)

    Oniki, K; Morita, K; Watanabe, T; Kajiwara, A; Otake, K; Nakagawa, K; Sasaki, Y; Ogata, Y; Saruwatari, J

    2016-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies toxic aldehydes and has a key role in protecting the liver. An elevated gamma-glutamyl transferase (GGT) level is related to oxidative stress and nonalcoholic fatty liver disease (NAFLD). We herein investigated the association between inactive ALDH2*2 allele (rs671) and the risk of NAFLD, including the relationship to the GGT level. A retrospective follow-up study (mean 5.4±1.1 years) was conducted among 341 Japanese health screening program participants. The receiver operating characteristic curve indicated that the GGT level predicted the development of NAFLD (area under the curve: 0.65, P<0.05) with a cutoff value of 25.5 IUl−1. The longitudinal risk of NAFLD was higher in the ALDH2*2 allele carriers than in the noncarriers (odds ratio (OR): 2.30, 95% confidence interval (CI): 1.21–4.40), and the risk was further increased among the *2 allele carriers with GGT values ⩾25.5 IUl−1 (OR: 4.28, 95% CI: 1.80–10.19). On the other hand, there were no significant changes in the subjects' body weight and body mass index during observation period. The ALDH2*2 allele, in relation to the GGT level, may potentially be a novel risk factor for NAFLD. PMID:27214654

  11. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  12. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented. PMID:3593337

  13. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    OpenAIRE

    Sadeghi, H. Mir Mohammad; Ahmadi, R; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. ...

  14. Aldehyde dehydrogenase 2 protects human umbilical vein endothelial cells against oxidative damage and increases endothelial nitric oxide production to reverse nitroglycerin tolerance.

    Science.gov (United States)

    Hu, X Y; Fang, Q; Ma, D; Jiang, L; Yang, Y; Sun, J; Yang, C; Wang, J S

    2016-06-10

    Medical nitroglycerin (glyceryl trinitrate, GTN) use is limited principally by tolerance typified by a decrease in nitric oxide (NO) produced by biotransformation. Such tolerance may lead to endothelial dysfunction by inducing oxidative stress. In vivo studies have demonstrated that aldehyde dehydrogenase 2 (ALDH2) plays important roles in GTN biotransformation and tolerance. Thus, modification of ALDH2 expression represents a potentially effective strategy to prevent and reverse GTN tolerance and endothelial dysfunction. In this study, a eukaryotic expression vector containing the ALDH2 gene was introduced into human umbilical vein endothelial cells (HUVECs) by liposome-mediated transfection. An indirect immunofluorescence assay showed that ALDH2 expression increased 24 h after transfection. Moreover, real-time polymerase chain reaction and western blotting revealed significantly higher ALDH2 mRNA and protein expression in the gene-transfected group than in the two control groups. GTN tolerance was induced by treating HUVECs with 10 mM GTN for 16 h + 10 min, which significantly decreased NO levels in control cells, but not in those transfected with ALDH2. Overexpression of ALDH2 increased cell survival against GTN-induced cytotoxicity and conferred protection from oxidative damage resulting from nitrate tolerance, accompanied by decreased production of intracellular reactive oxygen species and reduced expression of heme oxygenase 1. Furthermore, ALDH2 overexpression promoted Akt phosphorylation under GTN tolerance conditions. ALDH2 gene transfection can reverse and prevent tolerance to GTN through its bioactivation and protect against oxidative damage, preventing the development of endothelial dysfunction.

  15. Isolation of an Aldehyde Dehydrogenase Involved in the Oxidation of Fluoroacetaldehyde to Fluoroacetate in Streptomyces cattleya

    Science.gov (United States)

    Murphy, Cormac D.; Moss, Steven J.; O'Hagan, David

    2001-01-01

    Streptomyces cattleya is unusual in that it produces fluoroacetate and 4-fluorothreonine as secondary metabolites. We now report the isolation of an NAD+-dependent fluoroacetaldehyde dehydrogenase from S. cattleya that mediates the oxidation of fluoroacetaldehyde to fluoroacetate. This is the first enzyme to be identified that is directly involved in fluorometabolite biosynthesis. Production of the enzyme begins in late exponential growth and continues into the stationary phase. Measurement of kinetic parameters shows that the enzyme has a high affinity for fluoroacetaldehyde and glycoaldehyde, but not acetaldehyde. PMID:11571203

  16. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity.

    Science.gov (United States)

    Kusuma, Gina D; Abumaree, Mohamed H; Pertile, Mark D; Perkins, Anthony V; Brennecke, Shaun P; Kalionis, Bill

    2016-06-01

    The use of mesenchymal stem/stromal cells (MSC) in regenerative medicine often requires MSC to function in environments of high oxidative stress. Human pregnancy is a condition where the mother's tissues, and in particular her circulatory system, are exposed to increased levels of oxidative stress. MSC in the maternal decidua basalis (DMSC) are in a vascular niche, and thus would be exposed to oxidative stress products in the maternal circulation. Aldehyde dehydrogenases (ALDH) are a large family of enzymes which detoxify aldehydes and thereby protect stem cells against oxidative damage. A subpopulation of MSC express high levels of ALDH (ALDH(br)) and these are more potent in repairing and regenerating tissues. DMSC was compared with chorionic villous MSC (CMSC) derived from the human placenta. CMSC reside in vascular niche and are exposed to the fetal circulation, which is in lower oxidative state. We screened an ALDH isozyme cDNA array and determined that relative to CMSC, DMSC expressed high levels of ALDH1 family members, predominantly ALDH1A1. Immunocytochemistry gave qualitative confirmation at the protein level. Immunofluorescence detected ALDH1 immunoreactivity in the DMSC and CMSC vascular niche. The percentage of ALDH(br) cells was calculated by Aldefluor assay and DMSC showed a significantly higher percentage of ALDH(br) cells than CMSC. Finally, flow sorted ALDH(br) cells were functionally potent in colony forming unit assays. DMSC, which are derived from pregnancy tissues that are naturally exposed to high levels of oxidative stress, may be better candidates for regenerative therapies where MSC must function in high oxidative stress environments. PMID:26880140

  17. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde.

    Science.gov (United States)

    Scharschmidt, M; Fisher, M A; Cleland, W W

    1984-11-01

    Primary intrinsic deuterium and 13C isotope effects have been determined for liver (LADH) and yeast (YADH) alcohol dehydrogenases with benzyl alcohol as substrate and for yeast aldehyde dehydrogenase (ALDH) with benzaldehyde as substrate. These values have also been determined for LADH as a function of changing nucleotide substrate. As the redox potential of the nucleotide changes from -0.320 V with NAD to -0.258 V with acetylpyridine-NAD, the product of primary and secondary deuterium isotope effects rises from 4 toward 6.5, while the primary 13C isotope effect drops from 1.025 to 1.012, suggesting a trend from a late transition state with NAD to one that is more symmetrical. The values of Dk (again the product of primary and secondary isotope effects) and 13k for YADH with NAD are 7 and 1.023, suggesting for this very slow reaction a more stretched, and thus symmetrical, transition state. With ALDH and NAD, the primary 13C isotope effect on the hydride transfer step lies in the range 1.3-1.6%, and the alpha-secondary deuterium isotope effect on the same step is at least 1.22, but 13C isotope effects on formation of the thiohemiacetal intermediate and on the addition of water to the thio ester intermediate are less than 1%. On the basis of the relatively large 13C isotope effects, we conclude that carbon motion is involved in the hydride transfer steps of dehydrogenase reactions.

  18. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    Energy Technology Data Exchange (ETDEWEB)

    McCue, K.F.; Hanson, A.D. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screened with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.

  19. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer

    Science.gov (United States)

    Opdenaker, Lynn M; Arnold, Kimberly M; Pohlig, Ryan T; Padmanabhan, Jayasree S; Flynn, Daniel C; Sims-Mourtada, Jennifer

    2014-01-01

    In many types of tumors, especially breast tumors, aldehyde dehydrogenase (ALDH) activity has been used to identify cancer stem-like cells within the tumor. The presence and quantity of these cells are believed to predict the response of tumors to chemotherapy. Therefore, identification and eradication of these cells would be necessary to cure the patient. However, there are 19 different ALDH isoforms that could contribute to the enzyme activity. ALDH1A1 and ALDH1A3 are among the isoforms mostly responsible for the increased ALDH activity observed in these stem-like cells, although the main isoforms vary in different tissues and tumor types. In the study reported here, we attempted to determine if ALDH1A1 or ALDH1A3, specifically, correlate with tumor stage, grade, and hormone-receptor status in breast-cancer patients. While there was no significant correlation between ALDH1A1 and any of the parameters tested, we were able to identify a positive correlation between ALDH1A3 and tumor stage in triple-negative cancers. In addition, ALDH1A3 was negatively correlated with estrogen-receptor status. Our data suggest that ALDH1A3 could be utilized as a marker to identify stem-like cells within triple-negative tumors. PMID:25540596

  20. Mitochondrial aldehyde dehydrogenase mediates vasodilator responses of glyceryl trinitrate and sodium nitrite in the pulmonary vascular bed of the rat.

    Science.gov (United States)

    Badejo, Adeleke M; Hodnette, Chris; Dhaliwal, Jasdeep S; Casey, David B; Pankey, Edward; Murthy, Subramanyam N; Nossaman, Bobby D; Hyman, Albert L; Kadowitz, Philip J

    2010-09-01

    It has been reported that mitochondrial aldehyde dehydrogenase (ALDH2) catalyzes the formation of glyceryl dinitrate and inorganic nitrite from glyceryl trinitrate (GTN), leading to an increase in cGMP and vasodilation in the coronary and systemic vascular beds. However, the role of nitric oxide (NO) formed from nitrite in mediating the response to GTN in the pulmonary vascular bed is uncertain. The purpose of the present study was to determine if nitrite plays a role in mediating vasodilator responses to GTN. In this study, intravenous injections of GTN and sodium nitrite decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressure under baseline and elevated tone conditions and decreases in systemic arterial pressure in response to GTN and sodium nitrite were attenuated by cyanamide, an ALDH2 inhibitor, whereas responses to the NO donor, sodium nitroprusside (SNP), were not altered. The decreases in pulmonary and systemic arterial pressure in response to GTN and SNP were not altered by allopurinol, an inhibitor of xanthine oxidoreductase, whereas responses to sodium nitrite were attenuated. GTN was approximately 1,000-fold more potent than sodium nitrite in decreasing pulmonary and systemic arterial pressures. These results suggest that ALDH2 plays an important role in the bioactivation of GTN and nitrite in the pulmonary and systemic vascular beds and that the reduction of nitrite to vasoactive NO does not play an important role in mediating vasodilator responses to GTN in the intact chest rat.

  1. Deficient Expression of Aldehyde Dehydrogenase 1A1 Is Consistent with Increased Sensitivity of Gorlin Syndrome Patients to Radiation Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  2. Autocrine function of aldehyde dehydrogenase 1 as a determinant of diet- and sex-specific differences in visceral adiposity.

    Science.gov (United States)

    Yasmeen, Rumana; Reichert, Barbara; Deiuliis, Jeffrey; Yang, Fangping; Lynch, Alisha; Meyers, Joseph; Sharlach, Molly; Shin, Sangsu; Volz, Katharina S; Green, Kari B; Lee, Kichoon; Alder, Hansjuerg; Duester, Gregg; Zechner, Rudolf; Rajagopalan, Sanjay; Ziouzenkova, Ouliana

    2013-01-01

    Mechanisms for sex- and depot-specific fat formation are unclear. We investigated the role of retinoic acid (RA) production by aldehyde dehydrogenase 1 (Aldh1a1, -a2, and -a3), the major RA-producing enzymes, on sex-specific fat depot formation. Female Aldh1a1(-/-) mice, but not males, were resistant to high-fat (HF) diet-induced visceral adipose formation, whereas subcutaneous fat was reduced similarly in both groups. Sexual dimorphism in visceral fat (VF) was attributable to elevated adipose triglyceride lipase (Atgl) protein expression localized in clusters of multilocular uncoupling protein 1 (Ucp1)-positive cells in female Aldh1a1(-/-) mice compared with males. Estrogen decreased Aldh1a3 expression, limiting conversion of retinaldehyde (Rald) to RA. Rald effectively induced Atgl levels via nongenomic mechanisms, demonstrating indirect regulation by estrogen. Experiments in transgenic mice expressing an RA receptor response element (RARE-lacZ) revealed HF diet-induced RARE activation in VF of females but not males. In humans, stromal cells isolated from VF of obese subjects also expressed higher levels of Aldh1 enzymes compared with lean subjects. Our data suggest that an HF diet mediates VF formation through a sex-specific autocrine Aldh1 switch, in which Rald-mediated lipolysis in Ucp1-positive visceral adipocytes is replaced by RA-mediated lipid accumulation. Our data suggest that Aldh1 is a potential target for sex-specific antiobesity therapy. PMID:22933113

  3. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1, in human epithelial cancers.

    Directory of Open Access Journals (Sweden)

    Shan Deng

    Full Text Available Aldehyde dehydrogenase isoform 1 (ALDH1 has been proved useful for the identification of cancer stem cells. However, our knowledge of the expression and activity of ALDH1 in common epithelial cancers and their corresponding normal tissues is still largely absent. Therefore, we characterized ALDH1 expression in 24 types of normal tissues and a large collection of epithelial tumor specimens (six cancer types, n = 792 by immunohistochemical staining. Using the ALDEFUOR assay, ALDH1 activity was also examined in 16 primary tumor specimens and 43 established epithelial cancer cell lines. In addition, an ovarian cancer transgenic mouse model and 7 murine ovarian cancer cell lines were analyzed. We found that the expression levels and patterns of ALDH1 in epithelial cancers are remarkably distinct, and they correlate with their corresponding normal tissues. ALDH1 protein expression levels are positively correlated with ALDH1 enzymatic activity measured by ALDEFLUOR assay. Long-term in vitro culture doesn't significantly affect ALDH1 activity in epithelial tumor cells. Consistent with research on other cancers, we found that high ALDH1 expression is significantly associated with poor clinical outcomes in serous ovarian cancer patients (n = 439, p = 0.0036. Finally, ALDH(br tumor cells exhibit cancer stem cell properties and are resistant to chemotherapy. As a novel cancer stem cell marker, ALDH1 can be used for tumors whose corresponding normal tissues express ALDH1 in relatively restricted or limited levels such as breast, lung, ovarian or colon cancer.

  4. Age determines the prognostic role of the cancer stem cell marker aldehyde dehydrogenase-1 in breast cancer

    Directory of Open Access Journals (Sweden)

    Mieog J Sven D

    2012-01-01

    Full Text Available Abstract Background The purpose of this study was to compare the expression and the prognostic effect of the breast cancer stem cell marker aldehyde dehydrogenase-1 (ALDH1 in young and elderly breast cancer patients. Methods The study population (N = 574 consisted of all early breast cancer patients primarily treated with surgery in our center between 1985 and 1994. Median follow-up was 17.9 years (range: 0.1 to 23.5. Tissue microarray slides were immunohistochemically stained for ALDH1 expression and quantified by two independent observers who were blinded to clinical outcome. Assessment of the prognostic effect of ALDH1 expression was stratified according to age and systemic treatment. Results Complete lack of expression of ALDH1 was found in 40% of tumors. With increasing age more tumors showed complete absence of ALDH1 expression (P 65 years, ALDH1 status was not associated with any clinical outcome. Conversely, in patients aged P = .021 and relative survival (relative excess risks of death = 2.36 (95% CI, 1.22 to 3.68; P = .016. Ten-year relative survival risk was 57% in ALDH1-positive patients compared to 83% in ALDH1-negative patients. Conclusion ALDH1 expression and its prognostic effect are age-dependent. Our results support the hypothesis that breast cancer biology is different in elderly patients compared to their younger counterparts and emphasizes the importance of taking into consideration age-specific interactions in breast cancer research.

  5. Aldehyde dehydrogenase 1A1 stabilizes transcription factor Gli2 and enhances the activity of Hedgehog signaling in hepatocellular cancer.

    Science.gov (United States)

    Yan, Zhengwei; Xu, Liyao; Zhang, Junyan; Lu, Quqin; Luo, Shiwen; Xu, Linlin

    2016-03-18

    The Gli transcription factors are primary transcriptional regulators that mediate the activation of Hedgehog (Hh) signaling. Recent studies have revealed that Gli proteins are also regulated transcriptionally and post-translationally through noncanonical mechanisms, independent of Hh signaling. However, the precise mechanisms involved in the regulation of Gli proteins remain unclear. Using a differential mass-spectrometry approach, we found that aldehyde dehydrogenase 1A1 (ALDH1A1) is associated with transcription factor Gli2. Overexpression of ALDH1A1 increased Gli2 protein levels; in contrast, ALDH1A1 depletion facilitated Gli2 degradation. In addition, Gli2 mRNA expression was not affected by ectopic expression of ALDH1A1, indicating the role of ALDH1A1 in the stabilization of Gli2. Further investigation showed that ALDH1A1 prolonged the stability of Gli2 protein in a catalytic-independent manner. Finally, we showed that overexpression of ALDH1A1 activated the Hh signaling pathway and promoted cell growth, migration and invasion in hepatocellular cancer cells. Together, these results illustrate regulatory roles of ALDH1A1 in the activation of the Hh signaling pathway and highlight a novel mechanism for the aberrant activation of the Hh signaling pathway in hepatocellular cancer cells. PMID:26896768

  6. Aldehyde Dehydrogenase1 Immunohistochemical Staining in Primary Breast Cancer Cells Independently Predicted Overall Survival But Did Not Correlate with the Presence of Circulating or Disseminated Tumors Cells

    OpenAIRE

    Woodward, Wendy A.; Krishnamurthy, Savitri; Lodhi, Ashutosh; Xiao, Lianchun; Gong, Yun; Cristofanilli, Massimo; Buchholz, Thomas A.; Lucci, Anthony

    2014-01-01

    Purpose: We hypothesized that aldehyde dehydrogenase 1 (ALDH1) staining in breast cancer tumor cells might be a simple surrogate for the presence of circulating tumor cells (CTCs) or disseminated tumor cells (DTCs). Experimental Design: Whole tissue primary tumor sections from 121 patients enrolled in a clinical trial assessing CTCs and DTCs at the time of surgery were stained for ALDH1 and scored by a dedicated breast pathologist blinded to outcome. Clinical data was extracted and staining w...

  7. Aldehyde Dehydrogenase 1 Is a Marker for Normal and Malignant Human Colonic Stem Cells (SC) and Tracks SC Overpopulation during Colon Tumorigenesis

    OpenAIRE

    Huang, Emina H.; Hynes, Mark J.; Zhang, Tao; Ginestier, Christophe; Dontu, Gabriela; Appelman, Henry; Fields, Jeremy Z.; Wicha, Max S.; Boman, Bruce M

    2009-01-01

    Although the concept that cancers originate from stem cells (SC) is becoming scientifically accepted, mechanisms by which SC contribute to tumor initiation and progression are largely unknown. For colorectal cancer (CRC), investigation of this problem has been hindered by a paucity of specific markers for identification and isolation of SC from normal and malignant colon. Accordingly, aldehyde dehydrogenase 1 (ALDH1) was investigated as a possible marker for identifying colonic SC and for tra...

  8. Alcohol Dehydrogenase-1B (rs1229984 and Aldehyde Dehydrogenase-2 (rs671 Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Directory of Open Access Journals (Sweden)

    Akira Yokoyama

    Full Text Available Elevated serum triglyceride (TG and high-density-lipoprotein cholesterol (HDL-C levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics.The population consisted of 1806 Japanese alcoholic men (≥40 years who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission.High serum levels of TG (≥150 mg/dl, HDL-C (>80 mg/dl, and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively, and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively. The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]. The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl and HDL-C (≥100 mg/dl.The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  9. ALCOHOL AND ALDEHYDE DEHYDROGENASES CONTRIBUTE TO SEX-RELATED DIFFERENCES IN CLEARANCE OF ZOLPIDEM IN RATS

    Directory of Open Access Journals (Sweden)

    Cody J Peer

    2016-08-01

    Full Text Available Objectives:  The recommended zolpidem starting dose was lowered in females (5mg vs 10mg since side effects were more frequent and severe than those of males; the mechanism underlying sex differences in pharmacokinetics (PK is unknown.  We hypothesized that such differences were caused by known sex-related variability in alcohol dehydrogenase (ADH expression. Methods:  Male, female, and castrated male rats were administered 2.6 mg/kg zolpidem, +/- disulfiram (ADH/ALDH pathway inhibitor to compare PK changes induced by sex and gonadal hormones.  PK analyses were conducted in rat plasma and rat brain. Key findings:  Sex differences in PK were evident: females had a higher CMAX (112.4 vs 68.1 ug/L and AUC (537.8 vs 231.8 hr*ug/L than uncastrated males.  Castration induced an earlier TMAX (0.25 vs 1 hr, greater CMAX (109.1 vs 68.1 ug/L, and a corresponding AUC increase (339.7 vs 231.8 hr*ug/L.  Administration of disulfiram caused more drastic CMAX and TMAX changes in male vs female rats that mirrored the effects of castration on first-pass metabolism, suggesting that the observed PK differences may be caused by ADH/ALDH expression. Brain concentrations paralleled plasma concentrations.Conclusions:  These findings indicate that sex differences in zolpidem PK are influenced by variation in the expression of ADH/ALDH due to gonadal androgens.

  10. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  11. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer

    Directory of Open Access Journals (Sweden)

    Opdenaker LM

    2014-12-01

    Full Text Available Lynn M Opdenaker,1,2 Kimberly M Arnold,1,3 Ryan T Pohlig,3,4 Jayasree S Padmanabhan,1 Daniel C Flynn,1,3 Jennifer Sims-Mourtada1–3 1Center for Translational Cancer Research, Helen F Graham Cancer Center, Christiana Care Health Services, Inc., Newark, Delaware, USA; 2Department of Biological Sciences, 3Department of Medical Laboratory Sciences, 4Biostatistics Core Facility, University of Delaware, Newark, Delaware, USA Abstract: In many types of tumors, especially breast tumors, aldehyde dehydrogenase (ALDH activity has been used to identify cancer stem-like cells within the tumor. The presence and quantity of these cells are believed to predict the response of tumors to chemotherapy. Therefore, identification and eradication of these cells would be necessary to cure the patient. However, there are 19 different ALDH isoforms that could contribute to the enzyme activity. ALDH1A1 and ALDH1A3 are among the isoforms mostly responsible for the increased ALDH activity observed in these stem-like cells, although the main isoforms vary in different tissues and tumor types. In the study reported here, we attempted to determine if ALDH1A1 or ALDH1A3, specifically, correlate with tumor stage, grade, and hormone-receptor status in breast-cancer patients. While there was no significant correlation between ALDH1A1 and any of the parameters tested, we were able to identify a positive correlation between ALDH1A3 and tumor stage in triple-negative cancers. In addition, ALDH1A3 was negatively correlated with estrogen-receptor status. Our data suggest that ALDH1A3 could be utilized as a marker to identify stem-like cells within triple-negative tumors. Keywords: breast tumor, ALDH, ALDH1A1, ALDH1A3, stem-like cells, triple-negative cancer

  12. Aldehyde dehydrogenase 3A1 is robustly upregulated in gastric cancer stem-like cells and associated with tumorigenesis.

    Science.gov (United States)

    Wu, Di; Mou, Yi-Ping; Chen, Ke; Cai, Jia-Qin; Zhou, Yu-Cheng; Pan, Yu; Xu, Xiao-Wu; Zhou, Wei; Gao, Jia-Qi; Chen, Ding-Wei; Zhang, Ren-Chao

    2016-08-01

    Enhanced aldehyde dehydrogenase (ALDH) activity has been shown to serve as a hallmark for cancer stem cells (CSCs). Recent evidence suggests that its role as a stem cell-related marker has come down to the specific isoform. However, little is known about the specific ALDH isoform contributing to aldefluor activity in gastric cancer. In this study, we isolated ALDHbright cells from 2 human gastric cancer cell lines MKN-45 and SGC‑7901 by using an Aldefluor assay and found elevated self-renewal, differentiation and tumorigenicity, as demonstration of stemness characteristics. We also found that ALDHbright cells expressed decreased levels of E-cadherin but increased levels of Snail and Vimentin, indication of an epithelial-mesenchymal transition (EMT) phenotype which may be responsible for the enhanced metastatic potential. Since further research and prognostic application based on ALDH prevalence require the quantification of the specific ALDH isoform, we characterized the expression of all 19 ALDH isoforms in the sorted gastric cancer cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Compared with the non-stem counterparts, robust upregulation of ALDH-3A1 was observed in these gastric cancer stem-like cells. Furthermore, we performed immunohistological analysis on 93 fixed patient gastric tumor samples and found that ALDH-3A1 expression correlated well with gastric cancer dysplasia and grades, differentiation, lymph node metastasis and cancer stage. Our data, therefore, provide strong evidence that ALDH-3A1 is a novel gastric cancer stem cell related marker with potential prognostic values and demonstrate a clear association between ALDH-3A1 prevalence and gastric cancer progression. PMID:27279633

  13. Increased Expression of Aldehyde Dehydrogenase 2 Reduces Renal Cell Apoptosis During Ischemia/Reperfusion Injury After Hypothermic Machine Perfusion.

    Science.gov (United States)

    Zhong, Zibiao; Hu, Qianchao; Fu, Zhen; Wang, Ren; Xiong, Yan; Zhang, Yang; Liu, Zhongzhong; Wang, Yanfeng; Ye, Qifa

    2016-06-01

    Hypothermic machine perfusion (MP) can reduce graft's injury after kidney transplantation; however, the mechanism has not been elucidated. In the past decade, many studies showed that aldehyde dehydrogenase 2 (ALDH2) is a protease which can inhibit cell apoptosis. Therefore, this study aims to explore whether ALDH2 takes part in reducing organ damage after MP. Eighteen healthy male New Zealand rabbits (12 weeks old, weight 3.0 ± 0.3 kg) were randomly divided into three groups: normal group, MP group, and cold storage (CS) group (n = 6). The left kidney of rabbits underwent warm ischemia for 35 min through clamping the left renal pedicle and then reperfusion for 1 h. Left kidneys were preserved by MP or CS (4°C for 4 h) in vivo followed by the right nephrectomy and 24-h reperfusion, and then the specimens and blood were collected. Finally, concentration of urine creatinine (Cr), blood urea nitrogen (BUN), and 4-HNE were tested. Renal apoptosis was detected by TUNEL staining, and the expression of ALDH2, cleaved-caspase 3, bcl-2/ bax, MAPK in renal tissue was detected by immunohistochemistry or Western blot; 24 h after surgery, the concentration of Cr in MP group was 355 ± 71μmol/L, in CS group was 511 ± 44 μmol/L (P bcl-2/bax in MP group was significantly higher than that in CS group (P < 0.05); expression of cleaved caspase-3 in both MP and CS group significantly increased as compared with that in normal group (P < 0.05). In conclusion, increased expression of ALDH2 can reduce the renal cell apoptosis through inhibiting MAPK pathway during ischemia/reperfusion injury (IRI) after hypothermic MP. PMID:26582147

  14. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    Directory of Open Access Journals (Sweden)

    Iniesta Pilar

    2011-08-01

    Full Text Available Abstract Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect and through decrease in telomere length (long-term effect. Administration of this telomerase inhibitor (40 mg/kg in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls. Combination therapy consisting of irradiation (10Gy plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.

  15. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Science.gov (United States)

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  16. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  17. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Zorzano, A. (Universidad de Barcelona (Spain)); Herrera, E. (Universidad de Madrid (Spain))

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  18. Aldehyde dehydrogenase-2 protects against myocardial infarction-related cardiac fibrosis through modulation of the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Zhao XJ

    2015-09-01

    Full Text Available Xinjun Zhao,1,2,* Yue Hua,1,2,* Hongmei Chen,1,2,* Haiyu Yang,3,* Tao Zhang,1,2,* Guiqiong Huang,4,* Huijie Fan,1,2 Zhangbin Tan,1,2 Xiaofang Huang,1,2 Bin Liu,5 Yingchun Zhou1,21The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China; 2Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China; 3Jiangmen Wuyi Traditional Chinese Medicine Hospital, Guangdong, Jiangmen, People’s Republic of China; 4Huizhou Hospital of Traditional Chinese Medicine, Huizhou, People’s Republic of China; 5The Second Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, People’s Republic of China*These authors contributed equally to this workBackground: Aldehyde dehydrogenase-2 (ALDH2 has a protective effect on ischemic heart disease. Here, we examined the protective effects of ALDH2 on cardiac fibrosis through modulation of the Wnt/ß-catenin signaling pathway in a rat model of myocardial infarction (MI.Methods: Wistar rats were divided into the sham (control, MI (model, and ALDH2 activator (Alda-1 groups. After 10 days of treatment, the left ventricular (LV remodeling parameters of each animal were evaluated by echocardiography. Myocardial fibrosis was evaluated by Masson’s trichrome staining and Sirius Red staining. Expression levels of collagen types I and III and β-smooth muscle actin (α-SMA were examined. Finally, the expression and activity of ALDH2 and the levels of several Wnt-related proteins and genes, such as phospho-glycogen synthase kinase (GSK-3β, GSK-3β, β-catenin, Wnt-1, WNT1-inducible signaling-pathway protein 1, and tumor necrosis factor (TNF-α, were also analyzed.Results: After MI, the heart weight/body weight ratio, LV dimension at end diastole, and LV dimension at end systole were decreased, while the LV ejection

  19. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    Science.gov (United States)

    Sadeghi, H. Mir Mohammad; Ahmadi, R.; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D.

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. coli XL1-blue competent cells. Following plasmid preparation, the cloned gene was digested out and ligated into the expression vector pET-22b(+). Electrophoresis of PCR product showed a 789 bp band. Recombinant plasmid (rpTZ57R) was then constructed. This plasmid was double digested with XhoI and EcoRI resulting in 800 bp and 2900 bp bands. The obtained insert was ligated into pET-22b(+) vector and its orientation was confirmed with XhoI and BamHI restriction enzymes. In conclusion, in the present study the recombinant expression vector containing xylitol dehydrogenase gene has been constructed and can be used for the production of this enzyme in high quantities. PMID:22110522

  20. Pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica.

    Science.gov (United States)

    Pineda, Erika; Encalada, Rusely; Rodríguez-Zavala, José S; Olivos-García, Alfonso; Moreno-Sánchez, Rafael; Saavedra, Emma

    2010-08-01

    The in vitro Entamoeba histolytica pyruvate:ferredoxin oxidoreductase (EhPFOR) kinetic properties and the effect of oxidative stress on glycolytic pathway enzymes and fluxes in live trophozoites were evaluated. EhPFOR showed a strong preference for pyruvate as substrate over other oxoacids. The enzyme was irreversibly inactivated by a long period of saturating O(2) exposure (IC(50) 0.034 mm), whereas short-term exposure ( 90% inhibition allowed for partial restoration by addition of Fe(2+). CoA and acetyl-CoA prevented, whereas pyruvate exacerbated, inactivation induced by short-term saturating O(2) exposure. Superoxide dismutase was more effective than catalase in preventing the inactivation, indicating that reactive oxygen species (ROS) were involved. Hydrogen peroxide caused inactivation in an Fe(2+)-reversible fashion that was not prevented by the coenzymes, suggesting different mechanisms of enzyme inactivation by ROS. Structural analysis on an EhPFOR 3D model suggested that the protection against ROS provided by coenzymes could be attributable to their proximity to the Fe-S clusters. After O(2) exposure, live parasites displayed decreased enzyme activities only for PFOR (90%) and aldehyde dehydrogenase (ALDH; 68%) of the bifunctional aldehyde-alcohol dehydrogenase (EhADH2), whereas acetyl-CoA synthetase remained unchanged, explaining the increased acetate and lowered ethanol fluxes. Remarkably, PFOR and ALDH activities were restored after return of the parasites to normoxic conditions, which correlated with higher ethanol and lower acetate fluxes. These results identified amebal PFOR and ALDH of EhADH2 activities as markers of oxidative stress, and outlined their relevance as significant controlling steps of energy metabolism in parasites subjected to oxidative stress. PMID:20629749

  1. Molecular and Catalytic Properties of the Aldehyde Dehydrogenase of Gluconacetobacter diazotrophicus, a Quinoheme Protein Containing Pyrroloquinoline Quinone, Cytochrome b, and Cytochrome c▿

    Science.gov (United States)

    Gómez-Manzo, S.; Chavez-Pacheco, J. L.; Contreras-Zentella, M.; Sosa-Torres, M. E.; Arreguín-Espinosa, R.; Pérez de la Mora, M.; Membrillo-Hernández, J.; Escamilla, J. E.

    2010-01-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone. PMID:20802042

  2. New Aldehyde Reductase Genes of Saccharomyces cerevisiae Contribute In Situ Detoxification of Lignocellulose-to-Ethanol Conversion Inhibitiors

    Science.gov (United States)

    Furfural and 5-hydroxymethylfurfural (HMF) are inhibitory compounds commonly encountered during lignocellulose-to-ethanol conversion for cleaner transportation fuels. It is possible to in situ detoxify the aldehyde inhibitors by tolerant ethanologenic yeast strains. Multiple gene-mediated reductio...

  3. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    Science.gov (United States)

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares 80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  4. Conversion of Suspected Food Carcinogen 5-Hydroxymethylfurfural by Sulfotransferases and Aldehyde Dehydrogenases in Postmitochondrial Tissue Preparations of Humans, Mice, and Rats.

    Science.gov (United States)

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-01-01

    The food contaminant 5-hydroxymethylfurfural (HMF) is formed by heat- and acid-catalyzed reactions from carbohydrates. More than 80% of HMF is metabolized by oxidation of the aldehyde group in mice and rats. Sulfo conjugation yields mutagenic 5-sulfoxymethylfurfural, the probable cause for the neoplastic effects observed in HMF-treated rodents. Considerable metabolic differences between species hinder assessing the tumorigenic risk associated with human dietary HMF uptake. Here, we assayed HMF turnover catalyzed by sulfotransferases or by aldehyde dehydrogenases (ALDHs) in postmitochondrial preparations from liver, kidney, colon, and lung of humans, mice, and rats. The tissues-specific clearance capacities of HMF sulfo conjugation (CL(SC)) and ALDH-catalyzed oxidation (CL(OX)) were concentrated to the liver. The hepatic clearance CL(SC) in mice (males: 487 µl/min/kg bw, females: 2520 µl/min/kg bw) and rats (males: 430 µl/min/kg bw, females: 198 µl/min/kg bw) were considerably higher than those in humans (males: 21.2 µl/min/kg bw, females: 32.2 µl/min/kg bw). The ALDH-related clearance rates CLOX in mice (males: 3400 ml/min/kg bw, females: 1410 ml/min/kg bw) were higher than those of humans (males: 436 ml/min/kg bw, females: 646 ml/min/kg bw) and rats (males: 627 ml/min/kg bw, females: 679 ml/min/kg bw). The ratio of CL(OX) to CL(SC) was lowest in female mice. This finding indicated that HMF sulfo conjugation was most substantial in the liver of female mice, a target tissue for HMF-induced neoplastic effects, and that humans may be less sensitive regarding HMF sulfo conjugation compared with the rodent models. PMID:26454887

  5. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  6. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin. PMID:25772736

  7. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo

    Science.gov (United States)

    Chen, Che-Hong; Cruz, Leslie A.; Mochly-Rosen, Daria

    2015-01-01

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo. PMID:25713355

  8. Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain.

    Science.gov (United States)

    Delneri, D; Gardner, D C; Bruschi, C V; Oliver, S G

    1999-11-01

    By in silicio analysis, we have discovered that there are seven open reading frames (ORFs) in Saccharomyces cerevisiae whose protein products show a high degree of amino acid sequence similarity to the aryl alcohol dehydrogenase (AAD) of the lignin-degrading fungus Phanerochaete chrysosporium. Yeast cultures grown to stationary phase display a significant aryl alcohol dehydrogenase activity by degrading aromatic aldehydes to the corresponding alcohols. To study the biochemical and the biological role of each of the AAD genes, a series of mutant strains carrying deletion of one or more of the AAD-coding sequences was constructed by PCR-mediated gene replacement, using the readily selectable marker kanMX. The correct targeting of the PCR-generated disruption cassette into the genomic locus was verified by analytical PCR and by pulse-field gel electrophoresis (PFGE) followed by Southern blot analysis. Double, triple and quadruple mutant strains were obtained by classical genetic methods, while the construction of the quintuple, sextuple and septuple mutants was achieved by using the marker URA3 from Kluyveromyces lactis, HIS3 from Schizosaccharomyces pombe and TRP1 from S. cerevisiae. None of the knock-out strains revealed any mutant phenotype when tested for the degradation of aromatic aldehydes using both spectrophotometry and high performance liquid chromatography (HPLC). Specific tests for changes in the ergosterol and phospholipids profiles did not reveal any mutant phenotype and mating and sporulation efficiencies were not affected in the septuple deletant. Compared to the wild-type strain, the septuple deletant showed an increased resistance to the anisaldehyde, but there is a possibility that the nutritional markers used for gene replacement are causing this effect.

  9. Physiological and Growth Responses of Tomato Progenies Harboring the Betaine Alhyde Dehydrogenase Gene to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Shu-Feng Zhou; Xian-Yang Chen; Xing-Ning Xue; Xin-Guo Zhang; Yin-Xin Li

    2007-01-01

    The responses of five transgenlc tomato (Lycoperslcon esculentum Mill) lines containing the betaine aldehyde dehydrogenase (BADH) gene to salt stress were evaluated. Proline, betaine (N, N, N-trimethylglycine, hereafter betaine), chlorophyll and ion contents, BADH activity, electrolyte leakage (EL), and some growth parameters of the plants under 1.0% and 1.5% NaCl treatments were examined. The transgenic tomatoes had enhanced BADH activity and betaine content, compared to the wild type under stress conditions. Salt stress reduced chlorophyll contents to a higher extent in the wild type than in the transgenic plants. The wild type exhibited significantly higher proline content than the transgenic plants at 0.9% and 1.3% NaCl. Cell membrane of the wild type was severely damaged as determined by higher EL under salinity stress. K+ and Ca2+ contents of all tested lines decreased under salt stress,but the transgenic plants showed a significantly higher accumulation of K+ and Ca2+ than the wild type. In contrast,the wild type had significantly higher Cl- and Na+ contents than the transgenic plants under salt stress. Although yield reduction among various lines varied, the wild type had the highest yield reduction. Fruit quality of the transgenic plants was better in comparison with the wild type as shown by a low ratio of blossom end rot fruits.The results show that the transgenic plants have improved salt tolerance over the wild type.

  10. Genetic polymorphisms of alcohol dehydrogense-1B and aldehyde dehydrogenase-2, alcohol flushing, mean corpuscular volume, and aerodigestive tract neoplasia in Japanese drinkers.

    Science.gov (United States)

    Yokoyama, Akira; Mizukami, Takeshi; Yokoyama, Tetsuji

    2015-01-01

    Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) modulate exposure levels to ethanol/acetaldehyde. Endoscopic screening of 6,014 Japanese alcoholics yielded high detection rates of esophageal squamous cell carcinoma (SCC; 4.1%) and head and neck SCC (1.0%). The risks of upper aerodigestive tract SCC/dysplasia, especially of multiple SCC/dysplasia, were increased in a multiplicative fashion by the presence of a combination of slow-metabolizing ADH1B*1/*1 and inactive heterozygous ALDH2*1/*2 because of prolonged exposure to higher concentrations of ethanol/acetaldehyde. A questionnaire asking about current and past facial flushing after drinking a glass (≈180 mL) of beer is a reliable tool for detecting the presence of inactive ALDH2. We invented a health-risk appraisal (HRA) model including the flushing questionnaire and drinking, smoking, and dietary habits. Esophageal SCC was detected at a high rate by endoscopic mass-screening in high HRA score persons. A total of 5.0% of 4,879 alcoholics had a history of (4.0%) or newly diagnosed (1.0%) gastric cancer. Their high frequency of a history of gastric cancer is partly explained by gastrectomy being a risk factor for alcoholism because of altered ethanol metabolism, e.g., by blood ethanol level overshooting. The combination of H. pylori-associated atrophic gastritis and ALDH2*1/*2 showed the greatest risk of gastric cancer in alcoholics. High detection rates of advanced colorectal adenoma/carcinoma were found in alcoholics, 15.7% of 744 immunochemical fecal occult blood test (IFOBT)-negative alcoholics and 31.5% of the 393 IFOBT-positive alcoholics. Macrocytosis with an MCV≥106 fl increased the risk of neoplasia in the entire aerodigestive tract of alcoholics, suggesting that poor nutrition as well as ethanol/acetaldehyde exposure plays an important role in neoplasia. PMID:25427912

  11. Immobilisation and characterisation of biocatalytic co-factor recycling enzymes, glucose dehydrogenase and NADH oxidase, on aldehyde functional ReSyn™ polymer microspheres.

    Science.gov (United States)

    Twala, Busisiwe V; Sewell, B Trevor; Jordaan, Justin

    2012-05-10

    The use of enzymes in industrial applications is limited by their instability, cost and difficulty in their recovery and re-use. Immobilisation is a technique which has been shown to alleviate these limitations in biocatalysis. Here we describe the immobilisation of two biocatalytically relevant co-factor recycling enzymes, glucose dehydrogenase (GDH) and NADH oxidase (NOD) on aldehyde functional ReSyn™ polymer microspheres with varying functional group densities. The successful immobilisation of the enzymes on this new high capacity microsphere technology resulted in the maintenance of activity of ∼40% for GDH and a maximum of 15.4% for NOD. The microsphere variant with highest functional group density of ∼3500 μmol g⁻¹ displayed the highest specific activity for the immobilisation of both enzymes at 33.22 U mg⁻¹ and 6.75 U mg⁻¹ for GDH and NOD with respective loading capacities of 51% (0.51 mg mg⁻¹) and 129% (1.29 mg mg⁻¹). The immobilised GDH further displayed improved activity in the acidic pH range. Both enzymes displayed improved pH and thermal stability with the most pronounced thermal stability for GDH displayed on ReSyn™ A during temperature incubation at 65 °C with a 13.59 fold increase, and NOD with a 2.25-fold improvement at 45 °C on the same microsphere variant. An important finding is the suitability of the microspheres for stabilisation of the multimeric protein GDH.

  12. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2016-01-01

    Full Text Available The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling.

  13. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    Science.gov (United States)

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  14. Cloning and Expression of a Xylitol-4-Dehydrogenase Gene from Pantoea ananatis

    OpenAIRE

    Aarnikunnas, J. S.; Pihlajaniemi, A.; Palva, A; Leisola, M.; Nyyssölä, A.

    2006-01-01

    The Pantoea ananatis ATCC 43072 mutant strain is capable of growing with xylitol as the sole carbon source. The xylitol-4-dehydrogenase (XDH) catalyzing the oxidation of xylitol to l-xylulose was isolated from the cell extract of this strain. The N-terminal amino acid sequence of the purified protein was determined, and an oligonucleotide deduced from this peptide sequence was used to isolate the xylitol-4-dehydrogenase gene (xdh) from a P. ananatis gene library. Nucleotide sequence analysis ...

  15. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  16. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    OpenAIRE

    Dolferus, R; Osterman, J. C.; Peacock, W. J.; Dennis, E.S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved fr...

  17. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Science.gov (United States)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  18. The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs.

    OpenAIRE

    McDonald, I R; Murrell, J.C.

    1997-01-01

    The methanol dehydrogenase gene mxaF, encoding the large subunit of the enzyme, was amplified from the DNA of a number of representative methanotrophs, methyletrophs, and environmental samples by PCR using primers designed from regions of conserved amino acid sequence identified by comparison of three known sequences of the large subunit of methanol dehydrogenase. The resulting 550-bp PCR products were cloned and sequenced. Analysis of the predicted amino acid sequences corresponding to these...

  19. Purification, crystallization and preliminary X-ray analysis of recombinant betaine aldehyde dehydrogenase 2 (OsBADH2), a protein involved in jasmine aroma, from Thai fragrant rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Crystals of betaine aldehyde dehydrogenase 2 from rice (O. sativa L.) belonged to a C-centred orthorhombic space group and diffraceted X-rays to 2.6 Å resolution. Fragrant rice (Oryza sativa L.) betaine aldehyde dehydrogenase 2 (OsBADH2) is a key enzyme in the synthesis of fragrance aroma compounds. The extremely low activity of OsBADH2 in catalyzing the oxidation of acetaldehyde is believed to be crucial for the accumulation of the volatile compound 2-acetyl-1-pyrroline (2AP) in many scented plants, including fragrant rice. Recombinant fragrant rice OsBADH2 was expressed in Escherichia coli as an N-terminal hexahistidine fusion protein, purified using Ni Sepharose affinity chromatography and crystallized using the microbatch method. Initial crystals were obtained within 24 h using 0.1 M Tris pH 8.5 with 30%(w/v) PEG 4000 and 0.2 M magnesium chloride as the precipitating agent at 291 K. Crystal quality was improved when the enzyme was cocrystallized with NAD+. Improved crystals were grown in 0.1 M HEPES pH 7.4, 24%(w/v) PEG 4000 and 0.2 M ammonium chloride and diffracted to beyond 2.95 Å resolution after being cooled in a stream of N2 immediately prior to X-ray diffraction experiments. The crystals belonged to space group C2221, with unit-cell parameters a = 66.03, b = 183.94, c = 172.28 Å. An initial molecular-replacement solution has been obtained and refinement is in progress

  20. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  1. Cloning and expression of bacterial genes coding amino acid dehydrogenases (oxidoreductases)

    International Nuclear Information System (INIS)

    Full text: The synthesis of 15N-labeled amino acids from the corresponding α-ketoacids can be accomplished in vitro using bacterial NAD-dependent amino acid dehydrogenases. The example of alanine dehydrogenase (AlaDH) and leucine dehydrogenase (LeuDH) will be presented here. Both enzymes belong to NAD dependent oxidoreductase family. AlaDH or L-alanine NAD-oxidoreductase (EC 1.4.1.1) promotes the reversible oxidative deamination of L-alanine to pyruvate (pyruvic acid). LeuDH or L-leucine NAD-oxidoreductase (EC 1.4.1.9) catalyses the reversible oxidative deamination of many related L-amino acids to corresponding α-ketoacids. The bacterial genes encoding AlaDH from Bacillus subtilis and LeuDH from Bacillus stearothermophilus were cloned separately in pET21b vector, and overexpressed in Escherichia coli BL21(DE3) strain. The [15N]L-alanine was synthesized by reductive amination of pyruvate, in the presence of 15NH4Cl, NADH, AlaDH and glucose dehydrogenase. The [15N]L-leucine, [15N]L-isoleucine, [15N]L-norleucine, [15N]L-valine and [15N]L-norvaline were produced in the same conditions using LeuDH, as a catalyst, and α- ketoisocaproate, DL-α-keto-β-methyl-n-valerate, α-ketocaproate, α-ketoisovalerate and α-ketovalerate, respectively, as substrates. In all cases, the reaction mixtures included glucose dehydrogenase for NADH regeneration with glucose as electron donor. The NADH renewal is more convenient with glucose dehydrogenase than other methods described before using formate dehydrogenase or alcohol dehydrogenase. The glucose dehydrogenase is very active and do not inhibit 15N-labeled amino acid synthesis. As determined by mass spectroscopy, the 15N-labeled amino acids were synthesized with yields between 60% and 95%. Our results demonstrate the usefulness of recombinant amino acid dehydrogenases for in vitro synthesis of 15N-labeled amino acids. (author)

  2. Comparative characterization of two GDP-mannose dehydrogenase genes from Saccharina japonica (Laminariales, Phaeophyceae)

    OpenAIRE

    Zhang, Pengyan; Shao, Zhanru; Jin, Weihua; Duan, Delin

    2016-01-01

    Background Saccharina japonica is an important commercial brown seaweed, its main product is alginate, which is used in food, textile and by the cosmetic and pharmaceutical industries. GDP-mannose dehydrogenase (GMD) is the key enzyme involved in the synthesis of alginate. However, little is known about GMD in S. japonica. Here we report comparative biochemical analysis of two GMD genes in S. japonica. Results Two GMD genes from S. japonica (Sjgmd1, Sjgmd2) were cloned. The open reading frame...

  3. Identification of some ectomycorrhizal basidiomycetes by PCR amplification of their gpd (glyceraldehyde-3-phosphate dehydrogenase) genes.

    OpenAIRE

    Kreuzinger, N; Podeu, R; Gruber, F; Göbl, F; Kubicek, C P

    1996-01-01

    Degenerated oligonucleotide primers designed to flank an approximately 1.2-kb fragment of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) from ascomycetes and basidiomycetes were used to amplify the corresponding gpd fragments from several species of the ectomycorrhizal fungal taxa Boletus, Amanita, and Lactarius. Those from B. edulis, A. muscaria, and L. deterrimus were cloned and sequenced. The respective nucleotide sequences of these gene fragments showed a moderate degree...

  4. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.;

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  5. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren;

    2008-01-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may...... be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking...... and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men...

  6. Cloning of the rat pyruvate dehydrogenase kinase 4 gene promoter: activation of pyruvate dehydrogenase kinase 4 by the peroxisome proliferator-activated receptor gamma coactivator.

    Science.gov (United States)

    Ma, Ke; Zhang, Yi; Elam, Marshall B; Cook, George A; Park, Edwards A

    2005-08-19

    The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the metabolism of glucose to acetyl-CoA. Phosphorylation of pyruvate dehydrogenase by the pyruvate dehydrogenase kinases (PDK) inhibits pyruvate dehydrogenase complex activity. There are four PDK isoforms, and expression of PDK4 and PDK2 genes is elevated in starvation and diabetes, allowing glucose to be conserved while fatty acid oxidation is increased. In these studies we have investigated the transcriptional mechanisms by which the expression of the PDK4 gene is increased. The peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of genes involved in hepatic gluconeogenesis and mitochondrial fatty acid oxidation. We have found that PGC-1alpha will induce the expression of both the PDK2 and PDK4 genes in primary rat hepatocytes and ventricular myocytes. We cloned the promoter for the rat PDK4 gene. Hepatic nuclear factor 4 (HNF4), which activates many genes in the liver, will induce PDK4 expression. Although HNF4 and PGC-1alpha interact to stimulate several genes encoding gluconeogenic enzymes, the induction of PDK4 does not involve interactions of PGC-1alpha with HNF4. Using the chromatin immunoprecipitation assay, we have demonstrated that HNF4 and PGC-1alpha are associated with the PDK4 gene in vivo. Our data suggest that by inducing PDK genes PGC-1alpha will direct pyruvate away from metabolism into acetyl-CoA and toward the formation of oxaloacetate and into the gluconeogenic pathway. PMID:15967803

  7. Polymorphism of the parasite lactate dehydrogenase gene from Plasmodium vivax Korean isolates

    OpenAIRE

    Shin, Hyun-Il; KIM, Jung-Yeon; Lee, Won-Ja; Sohn, Youngjoo; Lee, Sang-wook; Kang, Yoon-Joong; Lee, Hyeong-Woo

    2013-01-01

    Background Assaying for the parasitic lactate dehydrogenase (pLDH) is widely used as a rapid diagnostic test (RDT), but the efficacy of its serological effectiveness in diagnosis, that is antibody detection ability, is not known. The genetic variation of Korean isolates was analysed, and recombinant protein pLDH was evaluated as a serodiagnostic antigen for the detection of Plasmodium vivax malaria. Methods Genomic DNA was purified, and the pLDH gene of P. vivax was amplified from blood sampl...

  8. Functional Distinctions between IMP Dehydrogenase Genes in Providing Mycophenolate Resistance and Guanine Prototrophy to Yeast*

    OpenAIRE

    Hyle, Judith W.; Shaw, Randal J.; Reines, Daniel

    2003-01-01

    IMP dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo synthesis of GTP. Yeast with mutations in the transcription elongation machinery are sensitive to inhibitors of this enzyme such as 6-azauracil and mycophenolic acid, at least partly because of their inability to transcriptionally induce IMPDH. To understand the molecular basis of this drug-sensitive phenotype, we have dissected the expression and function of a four-gene family in yeast called IMD1 through IMD4. We show...

  9. The human L-threonine 3-dehydrogenase gene is an expressed pseudogene

    Directory of Open Access Journals (Sweden)

    Edgar Alasdair J

    2002-10-01

    Full Text Available Abstract Background L-threonine is an indispensable amino acid. One of the major L-threonine degradation pathways is the conversion of L-threonine via 2-amino-3-ketobutyrate to glycine. L-threonine dehydrogenase (EC 1.1.1.103 is the first enzyme in the pathway and catalyses the reaction: L-threonine + NAD+ = 2-amino-3-ketobutyrate + NADH. The murine and porcine L-threonine dehydrogenase genes (TDH have been identified previously, but the human gene has not been identified. Results The human TDH gene is located at 8p23-22 and has 8 exons spanning 10 kb that would have been expected to encode a 369 residue ORF. However, 2 cDNA TDH transcripts encode truncated proteins of 157 and 230 residues. These truncated proteins are the result of 3 mutations within the gene. There is a SNP, A to G, present in the genomic DNA sequence of some individuals which results in the loss of the acceptor splice site preceding exon 4. The acceptor splice site preceding exon 6 was lost in all 23 individuals genotyped and there is an in-frame stop codon in exon 6 (CGA to TGA resulting in arginine-214 being replaced by a stop codon. These truncated proteins would be non-functional since they have lost part of the NAD+ binding motif and the COOH terminal domain that is thought to be involved in binding L-threonine. TDH mRNA was present in all tissues examined. Conclusions The human L-threonine 3-dehydrogenase gene is an expressed pseudogene having lost the splice acceptor site preceding exon 6 and codon arginine-214 (CGA is mutated to a stop codon (TGA.

  10. Effect of glucocorticoid on promoter of 11β-hydroxysteroid dehydrogenase I gene

    Institute of Scientific and Technical Information of China (English)

    何平; 孙刚

    2003-01-01

    Objective: To study the effect of glucocorticoid on the promoter of the pre-receptor glucocorticoid metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) gene. Methods: The 1.2 kb length sequence upstream to the transcription start site of the 11β-HSD1 gene was amplified with polymerase chain reaction (PCR) and then was cloned into pBLCAT6 plasmid carrying chloramphenicol acetyltransferase (CAT) reporter gene. The plasmid pBLCAT6 carrying the promoter and reporter gene was used to transfect HeLa cells to study the regulation of 11β-HSD1 gene expression by glucocorticoids in terms of reporter gene expression. Results: PCR showed that there was a complete alignment of the amplified sequence with the sequence 1.2 kb upstream to the transcription start site of 11β-HSD1 gene. When cloned into pBLCAT6 plasmid carrying the reporter gene, this part of the promoter is functional in terms of regulation of reporter gene expression upon transfection into HeLa cells. The synthetic glucocorticoid-dexamethasone induced the reporter gene expression in the system described above, which was blocked by glucocorticoid receptor antagonist RU486. Conclusion: Glucocorticoids can modulate the expression of 11β-HSD1 through a mechanism involving activation of GR and interaction of the promoter of 11β-HSD1 gene.

  11. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh genes in legumes

    Directory of Open Access Journals (Sweden)

    Ochiai Toshinori

    2005-04-01

    Full Text Available Abstract Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events.

  12. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes

    Science.gov (United States)

    Fukuda, Tatsuya; Yokoyama, Jun; Nakamura, Toru; Song, In-Ja; Ito, Takuro; Ochiai, Toshinori; Kanno, Akira; Kameya, Toshiaki; Maki, Masayuki

    2005-01-01

    Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events. PMID:15836788

  13. Genes that modulate susceptibility for alcohol dependence

    OpenAIRE

    Caio Cesar Silva de Cerqueira; Domingos Lázaro Souza Rios

    2008-01-01

    The pathways for the metabolism of the alcohol are complex and modulated by some genes that promote response to this substance. The genes that codify the enzyme alcohol dehydrogenase (os genes ADH1B or ADH2) act in the conversion of ethanol in acetaldehyde; the enzyme aldehyde dehydrogenase (ALDH2) that converts the aldehyde into ascetic acid, and the gene that codifies the enzyme cytochrome P450, isoform 2E1 (CYP2E1), that acts generating free radicals of great importance in the induced hepa...

  14. Two Zebrafish Alcohol Dehydrogenases Share Common Ancestry with Mammalian Class I, II, IV, and V Alcohol Dehydrogenase Genes but Have Distinct Functional Characteristics*

    OpenAIRE

    Reimers, Mark J.; Hahn, Mark E.; Tanguay, Robert L.

    2004-01-01

    Ethanol is teratogenic to many vertebrates. We are utilizing zebrafish as a model system to determine whether there is an association between ethanol metabolism and ethanol-mediated developmental toxicity. Here we report the isolation and characterization of two cDNAs encoding zebrafish alcohol dehydrogenases (ADHs). Phylogenetic analysis of these zebrafish ADHs indicates that they share a common ancestor with mammalian class I, II, IV, and V ADHs. The genes encoding these zebrafish ADHs have...

  15. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis.

    OpenAIRE

    Duester, G; Shean, M L; McBride, M S; Stewart, M J

    1991-01-01

    Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between...

  16. [Effects of panthenol and carnitine on aldehyde metabolic enzymes in rats with tetrachloromethane-induced liver injury].

    Science.gov (United States)

    Satanovskaia, V I; Pron'ko, P S; Gaĭshmanova, A V; Miskevich, D A

    2009-01-01

    Tetrachloromethane (2 g/kg, intragastric) produced a decrease in the activity of NAD- and NADH- dependent aldehyde dehydrogenases with high Km for aldehydes in rat liver. Panthenol and L-carnitine administered separately normalized the activity of aldehyde dehydrogenases, while a combination of the drugs did not produce any significant effect. PMID:19441727

  17. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.

    Science.gov (United States)

    Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J

    2014-08-20

    Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates. PMID:25076127

  18. Cloning and Characterization of Glyceraldehyde-3-phosphate Dehydrogenase Encoding Gene in Gracilaria/Gracilariopsis lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    REN Xueying; SUI Zhenghong; ZHANG Xuecheng

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene (gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  19. Molecular cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12.

    Science.gov (United States)

    Zhang, T; Qi, Z; Yu, Q S; Tang, K X

    2013-01-01

    Penicillium expansum produces large amounts of lipase, which is widely used in laundry detergent and leather industry. We isolated the glyceraldehyde-3-phosphate dehydrogenase gene (PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree based on GPD proteins showed that P. expansum is close to Aspergillus species, but comparatively distant from P. marneffei. Southern blot results revealed a single copy of PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes have potential for genetic engineering of P. expansum for industrial lipase production. PMID:23420404

  20. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.

    Science.gov (United States)

    Zhang, Yi; Ma, Ke; Sadana, Prabodh; Chowdhury, Farhana; Gaillard, Stephanie; Wang, Fang; McDonnell, Donald P; Unterman, Terry G; Elam, Marshall B; Park, Edwards A

    2006-12-29

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the oxidation of glucose to acetyl-CoA. Phosphorylation of PDC by the pyruvate dehydrogenase kinases (PDK2 and PDK4) inhibits PDC activity. Expression of the PDK genes is elevated in diabetes, leading to the decreased oxidation of pyruvate to acetyl-CoA. In these studies we have investigated the transcriptional regulation of the PDK4 gene by the estrogen-related receptors (ERRalpha and ERRgamma). The ERRs are orphan nuclear receptors whose physiological roles include the induction of fatty acid oxidation in heart and muscle. Previously, we found that the peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of PDK4. Here we report that ERRalpha and ERRgamma stimulate the PDK4 gene in hepatoma cells, suggesting a novel role for ERRs in controlling pyruvate metabolism. In addition, both ERR isoforms recruit PGC-1alpha to the PDK4 promoter. Insulin, which decreases the expression of the PDK4 gene, inhibits the induction of PDK4 by ERRalpha and ERRgamma. The forkhead transcription factor (FoxO1) binds the PDK4 gene and contributes to the induction of PDK4 by ERRs and PGC-1alpha. Insulin suppresses PDK4 expression in part through the dissociation of FoxO1 and PGC-1alpha from the PDK4 promoter. Our data demonstrate a key role for the ERRs in the induction of hepatic PDK4 gene expression. PMID:17079227

  1. The absence of aldehyde dehydrogenase 1 A1-positive cells in benign mammary stroma is associated with risk factors for breast cancer

    OpenAIRE

    Isfoss BL; Holmqvist B; Jernström H; Alm P; Olsson H.

    2016-01-01

    Björn Logi Isfoss,1–3 Bo Holmqvist,1,4 Helena Jernström,1 Per Alm,1 Håkan Olsson1,5 1Department of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 2Department of Pathology, Skane University Hospital, Lund, Sweden; 3Department of Pathology, Telemark Hospital, Skien, Norway; 4ImaGene-iT AB, Medicon Village, 5Division of Cancer Epidemiology, Department of Clinical Sciences, Lund University, Lund, Sweden Abstract: In this study,...

  2. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency.

    Science.gov (United States)

    Draper, Nicole; Walker, Elizabeth A; Bujalska, Iwona J; Tomlinson, Jeremy W; Chalder, Susan M; Arlt, Wiebke; Lavery, Gareth G; Bedendo, Oliver; Ray, David W; Laing, Ian; Malunowicz, Ewa; White, Perrin C; Hewison, Martin; Mason, Philip J; Connell, John M; Shackleton, Cedric H L; Stewart, Paul M

    2003-08-01

    In cortisone reductase deficiency (CRD), activation of cortisone to cortisol does not occur, resulting in adrenocorticotropin-mediated androgen excess and a phenotype resembling polycystic ovary syndrome (PCOS; refs. 1,2). This suggests a defect in the gene HSD11B1 encoding 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), a primary regulator of tissue-specific glucocorticoid bioavailability. We identified intronic mutations in HSD11B1 that resulted in reduced gene transcription in three individuals with CRD. In vivo, 11beta-HSD1 catalyzes the reduction of cortisone to cortisol whereas purified enzyme acts as a dehydrogenase converting cortisol to cortisone. Oxo-reductase activity can be regained using a NADPH-regeneration system and the cytosolic enzyme glucose-6-phosphate dehydrogenase. But the catalytic domain of 11beta-HSD1 faces into the lumen of the endoplasmic reticulum (ER; ref. 6). We hypothesized that endolumenal hexose-6-phosphate dehydrogenase (H6PDH) regenerates NADPH in the ER, thereby influencing directionality of 11beta-HSD1 activity. Mutations in exon 5 of H6PD in individuals with CRD attenuated or abolished H6PDH activity. These individuals have mutations in both HSD11B1 and H6PD in a triallelic digenic model of inheritance, resulting in low 11beta-HSD1 expression and ER NADPH generation with loss of 11beta-HSD1 oxo-reductase activity. CRD defines a new ER-specific redox potential and establishes H6PDH as a potential factor in the pathogenesis of PCOS. PMID:12858176

  3. The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments

    OpenAIRE

    Lau, Evan; Meredith C Fisher; Steudler, Paul A.; Cavanaugh, Colleen Marie

    2013-01-01

    The mxaF gene, coding for the large \\((\\alpha)\\) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mx...

  4. The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression

    Directory of Open Access Journals (Sweden)

    Yellanki Priyadarshini

    2009-03-01

    Full Text Available Abstract Background Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in the development of plants and their defense against pathogens. The biosynthesis of monolignols, which represent the main component of lignin involves many enzymes. The cinnamyl alcohol dehydrogenase (CAD is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa and partially in Populus. This is the first comprehensive study on the CAD gene family in woody plants including genome organization, gene structure, phylogeny across land plant lineages, and expression profiling in Populus. Results The phylogenetic analyses showed that CAD genes fall into three main classes (clades, one of which is represented by CAD sequences from gymnosperms and angiosperms. The other two clades are represented by sequences only from angiosperms. All Populus CAD genes, except PoptrCAD 4 are distributed in Class II and Class III. CAD genes associated with xylem development (PoptrCAD 4 and PoptrCAD 10 belong to Class I and Class II. Most of the CAD genes are physically distributed on duplicated blocks and are still in conserved locations on the homeologous duplicated blocks. Promoter analysis of CAD genes revealed several motifs involved in gene expression modulation under various biological and physiological processes. The CAD genes showed different expression patterns in poplar with only two genes preferentially expressed in xylem tissues during lignin biosynthesis. Conclusion The phylogeny of CAD genes suggests that the radiation of this gene family may have occurred in the early ancestry of angiosperms. Gene distribution on the chromosomes of Populus showed that both large scale and tandem duplications contributed significantly to the CAD gene family expansion. The duplication of several CAD genes seems to be associated with a genome duplication

  5. The 6-phosphogluconate Dehydrogenase Genes Are Responsive to Abiotic Stresses in Rice

    Institute of Scientific and Technical Information of China (English)

    Fu-Yun Hou; Ji Huang; Shan-Lin Yu; Hong-Sheng Zhang

    2007-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44) are both key enzymes of the pentose phosphate pathway (PPP). The OsG6PDH1 and Os6PGDH1 genes encoding cytosolic G6PDH and cytosolic 6PGDH were isoiated from rice (Oryza satlva L.). We have shown that Os6PGDH1 gene was up-regulated by salt stress. Here we reported the isolation and characterization of Os6PGDH2 from rice, which encode the plastidic counterpart of 6PGDH. Genomic organization analysis indicated that OsG6PDH1 and OsG6PDH2 genes contain multiple introns, whereas two Os6PGDH1 and Os6PGDH2 genes have no introns in their translated regions. In a step towards understanding the functions of the pentose phosphate pathway in plants in response to various abiotic stresses, the expressions of four genes in the rice seedlings treated by drought, cold, high salinity and abscisic acid (ABA) were investigated. The results show that OsG6PDH1 and OsG6PDH2 are not markedly regulated by the abiotic stresses detected. However, the transcript levels of both Os6PGDH1 and Os6PGDH2 are up-regulated in rice seedlings under drought, cold, high salinity and ABA treatments. Meanwhile,the enzyme activities of G6PDH and 6PGDH in the rice seedlings treated by various ablotlc stresses were investigated.Like the mRNA expression patterns, G6PDH activity remains constant but the 6PGDH increases steadily during the treatments. Taken together, we suggest that the pentose phosphate pathway may play an important role in rice responses to abiotlc stresses and the second key enzyme of PPP, 6PGDH, may function as a regulator controlling the efficiency of the pathway under abiotic stresses.

  6. Genetic variation of Aflatoxin B(1) aldehyde reductase genes (AFAR) in human tumour cells

    DEFF Research Database (Denmark)

    Praml, Christian; Schulz, Wolfgang; Claas, Andreas;

    2008-01-01

    AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B(1) (AFB(1)). In the rat, Afar1 induction can prevent AFB(1)-induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic...

  7. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    Science.gov (United States)

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions.

  8. Genetic polymorphisms in cytochrome P4502E1,alcohol and aldehyde dehydrogenases and the risk of esophageal squamous cell carcinoma in Gansu Chinese males

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei Guo; Qin Wang; Yan-Zhen Liu; Huei-Min Chen; Zhi Qi; Qing-Hong Guo

    2008-01-01

    showed no synergistic interaction.CONCLUSION:In our study,we found that alcohol consumption and polymorphisms in the CYP2E1,ADHIB and ALDH2 genes are important risk factors for ESCC,and that there was a synergistic interaction among polymorphisms in the CYP2E1,ALDH2 and ADHIB genes and heavy alcohol drinking,in Chinese males living in Gansu province,China.

  9. New studies of the alcohol dehydrogenase cline in D. melanogaster from Mexico.

    Science.gov (United States)

    Pipkin, S B; Franklin-Springer, E; Law, S; Lubega, S

    1976-01-01

    An altitudinal cline of frequencies of alcohol dehydrogenase alleles occurs in D. melanogaster populations of southeastern Mexico. A similar cline of two aldehyde oxidase alleles is present, but frequencies of esterase-6 alleles are not distributed clinically. Collections were made from small dispersed populations. Some gene flow occurred throughout the lowlands according to the distribution of two moderately endemic autosomal inversions and five previously described inversions. The clines are believed dependent on a limited gene flow between temperature races of D. melanogaster.

  10. Lovastatin changes activities of lactate dehydrogenase A and B genes in rat myocardial cells

    Institute of Scientific and Technical Information of China (English)

    GUO Wei-zao; JI Hong; YAN Zhi-hong; LI Lin; LI Di; LU Cui-lian

    2011-01-01

    Background Lactate dehydrogenase (LDH) is a crucial regulator of energy metabolism in many organs including the heart. Lovastatin is widely used in prevention and treatment of coronary heart disease and is a drug with substantial metabolic influences. Our study aimed to determine the activities of the lactate dehydrogenase A and B (LDHA and LDHB)genes following lovastatin treatment.Methods The rat myocardial cell line H9c2(2-1) in culture was exposed to 100 nmol/L lovastatin for 24 hours or for five days. The functions of the LDHA and LDHB genes were examined at the transcriptional (mRNA) level with quantitative real-time polymerase chain reaction (Q-RT-PCR), and at the translational (protein) level with immunoblotting.Results When compared with control levels, the LDHA mRNA went up by (151.65±16.72)% (P=0.0132) after 24 hours and by (175.28±56.54)% (P=0.0366) after five days of lovastatin treatment. Although 24 hours of lovastatin treatment had no significant effects on LDHB mRNA levels, when the treatment was extended to five days, LDHB mRNA levels were significantly down-regulated to (63.65±15.21)% of control levels (P=0.0117). After 24 hours of treatment with lovastatin,there were no significant changes in protein levels of either LDHA or LDHB. When treatment time was extended to five days, the protein levels of LDHA were up-regulated by (148.65±11.81)% (P=0.00969), while the protein levels of LDHB were down-regulated to (64.91±5.47)% of control levels (P=0.0192).Conclusions Lovastatin affects gene activities of LDHA and LDHB differently, which may reveal novel pharmacological effects of lovastatin.

  11. Deletion of alcohol dehydrogenase 2 gene in Pachysolen tannophilus improves ethanol production from corn stover hydrolysates

    Directory of Open Access Journals (Sweden)

    Sen Yang

    2015-12-01

    Full Text Available Although ethanol derived from lignocellulosic biomass is a promising alternative biofuel, the conversion rate of xylose to ethanol by fermentation is not ideal due to the low efficiency of many common yeasts in utilizing xylose. Pachysolen tannophilus can convert hexose and pentose such as L-arabinose, xylose and glucose in lignocellulosic hydrolysates to ethanol simultaneously. To increase the conversion of corn stover hydrolysates to bioethanol, the effect of alcohol dehydrogenase 2 gene (adh2 deletion in P. tannophilus on bioethanol production from corn stover hydrolysates was investigated. Two adh2 deletants (heterozygote ND and homozygote MC were constructed by using the short flanking homology PCR (SFH-PCR. The ND and MC strains showed lower alcohol dehydrogenase 2 (ADH2 activity than the initial strain P-01. In the fermented pentose and hexose sugars of MC and ND, the ethanol concentrations (g/L reached 15.8 and 18.9 versus14.6 of the initial P-01, while in the corn stover hydrolysate medium, the ethanol concentrations (g/L were 9.1 for MC and 9.8 for ND versus 7.5 for the initial strain P-01. This research provides useful information for improving the conversion efficiency of hexose and pentose to bioethanol by Pachysolen tannophilus.

  12. An experimental test for lineage-specific position effects on alcohol dehydrogenase (Adh) genes in Drosophila

    Science.gov (United States)

    Siegal, Mark L.; Hartl, Daniel L.

    1998-01-01

    Independent transgene insertions differ in expression based on their location in the genome; these position effects are of interest because they reflect the influence of genome organization on gene regulation. Position effects also represent potentially insurmountable obstacles to the rigorous functional comparison of homologous genes from different species because (i) quantitative variation in expression of each gene across genomic positions (generalized position effects, or GPEs) may overwhelm differences between the genes of interest, or (ii) divergent genes may be differentially sensitive to position effects, reflecting unique interactions between each gene and its genomic milieu (lineage-specific position effects, or LSPEs). We have investigated both types of position-effect variation by applying our method of transgene coplacement, which allows comparisons of transgenes in the same position in the genome of Drosophila melanogaster. Here we report an experimental test for LSPE in Drosophila. The alcohol dehydrogenase (Adh) genes of D. melanogaster and Drosophila affinidisjuncta differ in both tissue distribution and amounts of ADH activity. Despite this striking regulatory divergence, we found a very high correlation in overall ADH activity between the genes of the two species when placed in the same genomic position as assayed in otherwise Adh-null adults and larvae. These results argue against the influence of LSPE for these sequences, although the effects of GPE are significant. Our new findings validate the coplacement approach and show that it greatly magnifies the power to detect differences in expression between transgenes. Transgene coplacement thus dramatically extends the range of functional and evolutionary questions that can be addressed by transgenic technology. PMID:9861000

  13. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  14. Mechanism exploration of aldehyde dehydrogenase 2 in the cardioprotection of fasudil%乙醛脱氢酶2在法舒地尔心肌保护作用中的机制

    Institute of Scientific and Technical Information of China (English)

    叶红伟; 康品方; 王洪巨; 李正红; 关宿东; 高琴

    2013-01-01

    目的 探讨乙醛脱氢酶2(ALDH2)是否参与Rho激酶抑制剂法舒地尔的心肌保护作用,并分析其可能机制.方法 采用离体大鼠心脏,结扎冠状动脉左前降支30 min模拟局部心肌缺血,松开结扎线恢复灌流120 min复制心肌缺血/再灌注(I/R)模型.实验分4组:I/R组、法舒地尔组、ALDH2抑制剂氨基氰(CYA)组和法舒地尔+CYA(联合组)组.连续记录左心室动力学变化,再灌注期间收集冠脉流出液测定乳酸脱氢酶(LDH)含量;RT-PCR检测ALDH2mRNA表达以及Bcl-2/Bax比值的变化.结果 与I/R组比,法舒地尔组明显促进了左室发展压、左心室内压最大上升和下降速率、左心室做功的恢复,降低复灌期冠脉流出液中LDH的释放,ALDH2 mRNA表达增加,Bcl-2/Bax比值增高.ALDH2抑制剂CYA明显减弱法舒地尔的作用,抑制了心室动力学指标的恢复,LDH释放增多,ALDH2mRNA表达降低,Bcl-2/Bax比值降低.结论 法舒地尔抑制Rho激酶信号通路发挥心肌保护作用,其机制可能与激动ALDH2、抑制凋亡发生有关.%Objective To investigate whether aldehyde dehydrogenase 2 (ALDH2) was involved in the cardioprotection of fasudil, the inhibitor of Rho-kinase, and explore the mechanism. Methods Hearts isolated from male SD rats were subjected to 30 minutes of re gional ischemia (occlusion of left anterior descending artery) followed by 120 minutes of reperfusion. The experiment was divided into 4 groups: I/R, Fasudil, ALDH2 inhibitor CYA and Fasudil + CYA groups. The left ventricular hemodynamics were continuous recorded, the coronary effluent was collected during the reperfusion period to determinate lactate dehydrogenase (LDH) levels. ALDH2 mRNA expression and the ratio of Bcl-2/Bax were detected by RT-PCR. Results Compared with I/R group, fasudil significantly increased the restore of left ventricular developed pressure, maximal rise/fall rate of left ventricular pressure and rate pressure product, reduced LDH release during

  15. Medium-Chain Acyl-CoA Dehydrogenase Deficiency in Gene-Targeted Mice.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Medium-chain acyl-CoA dehydrogenase (MCAD deficiency is the most common inherited disorder of mitochondrial fatty acid beta-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD by gene targeting in embryonic stem (ES cells. The MCAD mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 degrees C with prior fasting. The sporadic cardiac lesions seen in MCAD mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.

  16. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V S; Corydon, M J;

    1998-01-01

    We have shown previously that a variant allele of the short-chain acyl-CoA dehydrogenase ( SCAD ) gene, 625G-->A, is present in homozygous form in 7% of control individuals and in 60% of 135 patients with elevated urinary excretion of ethylmalonic acid (EMA). We have now characterized three disease...

  17. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma-pheochromocytoma syndrome.

    Science.gov (United States)

    Prasad, Chaithra; Oakley, Gerard J; Yip, Linwah; Coyne, Christopher; Rangaswamy, Balasubramanya; Dixit, Sanjay B

    2014-01-01

    Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma-pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  18. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Directory of Open Access Journals (Sweden)

    Chaithra Prasad

    2014-10-01

    Full Text Available Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  19. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Science.gov (United States)

    Oakley, Gerard J; Yip, Linwah; Coyne, Christopher; Rangaswamy, Balasubramanya; Dixit, Sanjay B

    2014-01-01

    Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes. PMID:27489656

  20. The HADHSC gene encoding short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) and type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    van Hove, Els C; Hansen, Torben; Dekker, Jacqueline M;

    2006-01-01

    The short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) protein is involved in the penultimate step of mitochondrial fatty acid oxidation. Previously, it has been shown that mutations in the corresponding gene (HADHSC) are associated with hyperinsulinism in infancy. The presumed function...

  1. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.: Bioinformatic Analysis and Expression Patterns

    Directory of Open Access Journals (Sweden)

    Yazhong eJin

    2016-05-01

    Full Text Available Alcohol dehydrogenases (ADH, encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH, designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into 3 groups respectively, namely long-, medium- and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into 6 medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed.

  2. Changes of aldehyde dehydrogenase 2 on myocardial injury in diabetic rats%乙醛脱氢酶2在糖尿病大鼠致心肌损伤中的变化

    Institute of Scientific and Technical Information of China (English)

    史晓俊; 康品方; 高琴; 叶红伟; 李正红; 汤阳; 王洪巨

    2014-01-01

    目的:观察线粒体乙醛脱氢酶2 (aldehyde dehydrogenase 2,ALDH2)在糖尿病大鼠不同阶段导致心肌损伤中的变化,并分析其可能机制.方法:采用链脲佐菌素(streptozotocin,STZ)55 mg/kg腹腔注射复制糖尿病大鼠模型,造模成功后分别于4、8、12周时行离体心脏灌流,测定血流动力学指标;采用酶联免疫吸附实验(ELISA)检测血浆白细胞介素1(IL-1)、白细胞介素4(IL-4)水平及心肌组织4-羟壬烯醛(4-hydroxynonenal,4-HNE)含量;测定心肌组织ALDH2活性;RT-PCR测定心肌组织Bax、Bcl-2 mRNA的表达.结果:与对照组相比,糖尿病组左室发展压(left ventricular developed pressure,LVDP)、心率(HR)和左室做功(rate pressure product,RPP)明显降低(P<0.05或P<0.01),血浆IL-1水平增加(P<0.01),IL-4水平降低(P<0.01),心肌组织ALDH2活性下降(P<0.01),4-HNE含量增加(P<0.01);Bcl-2/Bax mRNA比值降低(P<0.01);随着糖尿病病程的延长,LVDP、HR和RPP进一步降低(P<0.01),血浆IL-4水平降低(P<0.05或P<0.01),IL-1水平增加,心肌组织ALDH2活性进一步降低(P<0.01),心肌组织4-HNE明显增加(P<0.01)、而Bcl-2/Bax mRNA比值降低(P<0.05或P<0.01).结论:随着糖尿病病程的延长,炎性损伤逐渐加重,凋亡增加,其机制可能与心肌ALDH2活性逐渐降低有关.%AIM:To investigate the changes of aldehyde dehydrogenase 2 (ALDH2) on myocardial injury in different stages of diabetic rats and analyze the related mechanism.METHODS:Diabetic (DM) model in SD rat was induced by a single intraperitoneal injection of 55 mg/kg streptozoticin (STZ).DM rats were divided into fourth week (DM4W),eighth week (DM8W) and twelfth week (DM12W) groups.The ventricular hemodynamic parameters were recorded,plasma interleukin-1 (IL-1),interleukin-4 (IL-4) and cardiac 4-hydroxynon-2-enal (4-HNE) levels were determined by enzyme-linked immuno sorbent assay (ELISA),cardiac ALDH2 activity was measured.The expressions of Bax and Bcl-2 at

  3. Protein causes hyperinsulinemia: a Chinese patient with hyperinsulinism/hyperammonaemia syndrome due to a glutamate dehydrogenase gene mutation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi; XIAO Xin-hua; DIAO Cheng-ming; TONG An-li; WANG Ou; QIU Zheng-qing; YU Kang; WANG Tong

    2010-01-01

    @@ Glucose is derived from three sources: intestinal absorption, glycogenolysis, and gluconeogenesis. Hypoglycemia in child is often attributed to depletion of glycogen stores. However, recently, congenital hyperinsulinism becomes an important cause of hypoglycaemia in early infancy. Mutations in the genes encoding SUR1 and KIR6.2 are the most frequent genetic causes of hyperinsulinism followed by mutations in the glutamate dehydrogenase (GDH) gene which encodes hyperinsulinism/hyperammonaemia (HI/HA) syndrome.

  4. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    Science.gov (United States)

    Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914

  5. Ectopic Expression of the Chinese Cabbage Malate Dehydrogenase Gene Promotes Growth and Aluminum Resistance in Arabidopsis.

    Science.gov (United States)

    Li, Qing-Fei; Zhao, Jing; Zhang, Jing; Dai, Zi-Hui; Zhang, Lu-Gang

    2016-01-01

    Malate dehydrogenases (MDHs) are key metabolic enzymes that play important roles in plant growth and development. In the present study, we isolated the full-length and coding sequences of BraMDH from Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour) Olsson]. We conducted bioinformatics analysis and a subcellular localization assay, which revealed that the BraMDH gene sequence contained no introns and that BraMDH is localized to the chloroplast. In addition, the expression pattern of BraMDH in Chinese cabbage was investigated, which revealed that BraMDH was heavily expressed in inflorescence apical meristems, as well as the effect of BraMDH overexpression in two homozygous transgenic Arabidopsis lines, which resulted in early bolting and taller inflorescence stems. Furthermore, the fresh and dry weights of aerial tissue from the transgenic Arabidopsis plants were significantly higher than those from the corresponding wild-type plants, as were plant height, the number of rosette leaves, and the number of siliques produced, and the transgenic plants also exhibited stronger aluminum resistance when treated with AlCl3. Therefore, our results suggest that BraMDH has a dramatic effect on plant growth and that the gene is involved in both plant growth and aluminum resistance. PMID:27536317

  6. Silencing of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Youl [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu (Korea, Republic of); Yoo, Young Hyun [Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan (Korea, Republic of); Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu (Korea, Republic of)

    2013-04-05

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report an autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.

  7. Succinate dehydrogenase gene mutations are strongly associated with paraganglioma of the organ of Zuckerkandl.

    Science.gov (United States)

    Lodish, Maya B; Adams, Karen T; Huynh, Thanh T; Prodanov, Tamara; Ling, Alex; Chen, Clara; Shusterman, Suzanne; Jimenez, Camilo; Merino, Maria; Hughes, Marybeth; Cradic, Kendall W; Milosevic, Dragana; Singh, Ravinder J; Stratakis, Constantine A; Pacak, Karel

    2010-09-01

    Organ of Zuckerkandl paragangliomas (PGLs) are rare neuroendocrine tumors that are derived from chromaffin cells located around the origin of the inferior mesenteric artery extending to the level of the aortic bifurcation. Mutations in the genes encoding succinate dehydrogenase subunits (SDH) B, C, and D (SDHx) have been associated with PGLs, but their contribution to PGLs of the organ of Zuckerkandl PGLs is not known. We aimed to describe the clinical presentation of patients with PGLs of the organ of Zuckerkandl and investigate the prevalence of SDHx mutations and other genetic defects among them. The clinical characteristics of 14 patients with PGL of the organ of Zuckerkandl were analyzed retrospectively; their DNA was tested for SDHx mutations and deletions. Eleven out of 14 (79%) patients with PGLs of the organ of Zuckerkandl were found to have mutations in the SDHB (9) or SDHD (2) genes; one patient was found to have the Carney-Stratakis syndrome (CSS), and his PGL was discovered during surgery for gastrointestinal stromal tumor. Our results show that SDHx mutations are prevalent in pediatric and adult PGLs of the organ of Zuckerkandl. Patients with PGLs of the organ of Zuckerkandl should be screened for SDHx mutations and the CSS; in addition, asymptomatic carriers of an SDHx mutation among the relatives of affected patients may benefit from tumor screening for early PGL detection.

  8. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    OpenAIRE

    Rizzo, William B.

    2013-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize...

  9. Cloning and nucleotide sequence of the glpD gene encoding sn-glycerol-3-phosphate dehydrogenase of Pseudomonas aeruginosa.

    OpenAIRE

    Schweizer, H P; Po, C

    1994-01-01

    Nitrosoguanidine-induced Pseudomonas aeruginosa mutants which were unable to utilize glycerol as a carbon source were isolated. By utilizing PAO104, a mutant defective in glycerol transport and sn-glycerol-3-phosphate dehydrogenase (glpD), the glpD gene was cloned by a phage mini-D3112-based in vivo cloning method. The cloned gene was able to complement an Escherichia coli glpD mutant. Restriction analysis and recloning of DNA fragments located the glpD gene to a 1.6-kb EcoRI-SphI DNA fragmen...

  10. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress.

    Science.gov (United States)

    Pospíšilová, Hana; Jiskrová, Eva; Vojta, Petr; Mrízová, Katarína; Kokáš, Filip; Čudejková, Mária Majeská; Bergougnoux, Veronique; Plíhal, Ondřej; Klimešová, Jana; Novák, Ondřej; Dzurová, Lenka; Frébort, Ivo; Galuszka, Petr

    2016-09-25

    Together with auxins, cytokinins are the main plant hormones involved in many different physiological processes. Given this knowledge, cytokinin levels can be manipulated by genetic modification in order to improve agronomic parameters of cereals in relation to, for example, morphology, yield, and tolerance to various stresses. The barley (Hordeum vulgare) cultivar Golden Promise was transformed using the cytokinin dehydrogenase 1 gene from Arabidopsis thaliana (AtCKX1) under the control of mild root-specific β-glucosidase promoter from maize. Increased cytokinin degradation activity was observed positively to affect the number and length of lateral roots. The impact on morphology depended upon the recombinant protein's subcellular compartmentation. While assumed cytosolic and vacuolar targeting of AtCKX1 had negligible effect on shoot growth, secretion of AtCKX1 protein to the apoplast had a negative effect on development of the aerial part and yield. Upon the application of severe drought stress, all transgenic genotypes maintained higher water content and showed better growth and yield parameters during revitalization. Higher tolerance to drought stress was most caused by altered root morphology resulting in better dehydration avoidance. PMID:26773738

  11. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene

    OpenAIRE

    Koivuranta, Kari T; Ilmén, Marja; Wiebe, Marilyn G.; Ruohonen, Laura; Suominen, Pirkko; Penttilä, Merja

    2014-01-01

    Background Bioplastics, like polylactic acid (PLA), are renewable alternatives for petroleum-based plastics. Lactic acid, the monomer of PLA, has traditionally been produced biotechnologically with bacteria. With genetic engineering, yeast have the potential to replace bacteria in biotechnological lactic acid production, with the benefits of being acid tolerant and having simple nutritional requirements. Lactate dehydrogenase genes have been introduced to various yeast to demonstrate this pot...

  12. Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees.

    OpenAIRE

    Wise, C A; Sraml, M; Easteal, S

    1998-01-01

    To test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution, nucleotide sequences were determined for the 1041 bp of the NADH dehydrogenase subunit 2 (ND2) gene in 20 geographically diverse humans and 20 common chimpanzees. Contingency tests of neutrality were performed using four mutational categories for the ND2 molecule: synonymous and nonsynonymous mutations in the transmembrane regions, and synonymous and nonsynonymous mutati...

  13. Expression of a Heterologous Glutamate Dehydrogenase Gene in Lactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds

    OpenAIRE

    Rijnen, Liesbeth; Courtin, Pascal; Gripon, Jean-Claude; Yvon, Mireille

    2000-01-01

    The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so ...

  14. Cloning and characterization of a gene (msdA) encoding methylmalonic acid semialdehyde dehydrogenase from Streptomyces coelicolor.

    OpenAIRE

    Zhang, Y. X.; Tang, L.; Hutchinson, C R

    1996-01-01

    A homolog of the mmsA gene of Pseudomonas aeruginosa, which encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is involved in valine catabolism in pseudomonads and mammals, was cloned and sequenced from Streptomyces coelicolor. Of the two open reading frames (ORFs) found, which are convergently transcribed and separated by a 62-nucleotide noncoding region, the deduced amino acid sequence of the msdA ORF (homologous to mmsA) is similar to a variety of prokaryotic and eukaryotic a...

  15. Association between common alcohol dehydrogenase gene (ADH) variants and schizophrenia and autism.

    Science.gov (United States)

    Zuo, Lingjun; Wang, Kesheng; Zhang, Xiang-Yang; Pan, Xinghua; Wang, Guilin; Tan, Yunlong; Zhong, Chunlong; Krystal, John H; State, Matthew; Zhang, Heping; Luo, Xingguang

    2013-07-01

    Humans express at least seven alcohol dehydrogenase (ADH) isoforms that are encoded by ADH gene cluster (ADH7-ADH1C-ADH1B-ADH1A-ADH6-ADH4-ADH5) at chromosome 4. ADHs are key catabolic enzymes for retinol and ethanol. The functional ADH variants (mostly rare) have been implicated in alcoholism risk. In addition to catalyzing the oxidation of retinol and ethanol, ADHs may be involved in the metabolic pathways of several neurotransmitters that are implicated in the neurobiology of neuropsychiatric disorders. In the present study, we comprehensively examined the associations between common ADH variants [minor allele frequency (MAF) >0.05] and 11 neuropsychiatric and neurological disorders. A total of 50,063 subjects in 25 independent cohorts were analyzed. The entire ADH gene cluster was imputed across these 25 cohorts using the same reference panels. Association analyses were conducted, adjusting for multiple comparisons. We found 28 and 15 single nucleotide polymorphisms (SNPs), respectively, that were significantly associated with schizophrenia in African-Americans and autism in European-Americans after correction by false discovery rate (FDR) (q < 0.05); and 19 and 6 SNPs, respectively, that were significantly associated with these two disorders after region-wide correction by SNPSpD (8.9 × 10(-5) ≤ p ≤ 0.0003 and 2.4 × 10(-5) ≤ p ≤ 0.0003, respectively). No variants were significantly associated with the other nine neuropsychiatric disorders, including alcohol dependence. We concluded that common ADH variants conferred risk for both schizophrenia in African-Americans and autism in European-Americans.

  16. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    Science.gov (United States)

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass. PMID:27003269

  17. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase gene in Pennisetum purpureum

    Indian Academy of Sciences (India)

    Ran Tang; Xiang-Qian Zhang; You-Han Li; Xin-Ming Xie

    2014-04-01

    Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key enzyme involved in lignin biosynthesis, catalyses the last step in monolignol synthesis and has a major role in genetic regulation of lignin production. In the present study, a 1 342-bp cDNA fragment of CAD gene, named PpCAD, was isolated from Pennisetum purpureum using strategies of homologous clone and rapid amplification of cDNA end. It was translated into an intact protein sequence including 366 amino acid residues by ORF Finder. The genomic full-length DNA of PpCAD was a 3 738-bp sequence containing four exons and three introns, among which the 114-bp exon was considered to be a conserved region compared with other CADs. Basic bioinformatic analysis presumed that the PpCAD was a nonsecretory and hydrophobic protein with five possible transmembrane helices. The phylogenetic analysis indicated that the PpCAD belonged to the class of bona fide CADs involved in lignin synthesis and it showed a high similarity (nearly 90%) with CAD protein sequences of Sorghum bicolor, Panicum virgatum and Zea mays in Gramineae. Furthere, PpCAD amino acid sequence was demonstrated to have some conserved motifs such as Zn-binding site, Zn-catalytic centre and NADP(H) binding domain after aligning with other bona fide CADs. Three-dimensional homology modelling of PpCAD showed that the protein had some exclusive features of bona fide CADs.

  18. Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins.

    Science.gov (United States)

    Penning, T M; Jin, Y; Steckelbroeck, S; Lanisnik Rizner, T; Lewis, M

    2004-02-27

    Four soluble human 3 alpha-hydroxysteroid dehydrogenase (HSD) isoforms exist which are aldo-keto reductase (AKR) superfamily members. They share 86% sequence identity and correspond to: AKR1C1 (20 alpha(3 alpha)-HSD); AKR1C2 (type 3 3 alpha-HSD and bile-acid binding protein); AKR1C3 (type 2 3 alpha-HSD and type 5 17 beta-HSD); and AKR1C4 (type 1 3 alpha-HSD). Each of the homogeneous recombinant enzymes are plastic and display 3-, 17- and 20-ketosteroid reductase and 3 alpha- 17 beta- and 20 alpha-hydroxysteroid oxidase activities with different k(cat)/K(m) ratios in vitro. The crystal structure of the AKR1C2.NADP(+).ursodeoxycholate complex provides an explanation for this functional plasticity. Ursodeoxycholate is bound backwards (D-ring in the A-ring position) and upside down (beta-face of steroid inverted) relative to the position of 3-ketosteroids in the related rat liver 3 alpha-HSD (AKR1C9) structure. Transient transfection indicates that in COS-1 cells, AKR1C enzymes function as ketosteroid reductases due to potent inhibition of their oxidase activity by NADPH. By acting as ketosteroid reductases they may regulate the occupancy of the androgen, estrogen and progesterone receptors. RT-PCR showed that AKRs are discretely localized. AKR1C4 is virtually liver specific, while AKR1C2 and AKR1C3 are dominantly expressed in prostate and mammary gland. AKR1C genes are highly conserved in structure and may be transcriptionally regulated by steroid hormones and stress. PMID:15026176

  19. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli.

    Science.gov (United States)

    Inose, Ken; Fujikawa, Masako; Yamazaki, Tomohiko; Kojima, Katsuhiro; Sode, Koji

    2003-02-21

    We have cloned a 1620-nucleotide gene encoding the catalytic subunit (alpha subunit) of a thermostable glucose dehydrogenase (GDH) from Burkholderia cepacia. The FAD binding motif was found in the N-terminal region of the alpha subunit. The deduced primary structure of the alpha subunit showed about 48% identity to the catalytic subunits of sorbitol dehydrogenase (SDH) from Gluconobacter oxydans and 2-keto-D-gluconate dehydrogenases (2KGDH) from Erwinia herbicola and Pantoea citrea. The alpha subunit of B. cepacia was expressed in Escherichia coli in its active water-soluble form, showing maximum dye-mediated GDH activity at 70 degrees C, retaining high thermal stability. A putative open reading frame (ORF) of 507 nucleotides was also found upstream of the alpha subunit encoding an 18-kDa peptide, designated as gamma subunit. The deduced primary structure of gamma subunit showed about 30% identity to the small subunits of the SDH from G. oxydans and 2KGDHs from E. herbicola and P. citrea. PMID:12573242

  20. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene

    DEFF Research Database (Denmark)

    Tanaka, K; Yokota, I; Coates, P M;

    1992-01-01

    Medium chain acyl-CoA dehydrogenase (MCAD) catalyzes the first reaction of the beta-oxidation cycle for 4-10-carbon fatty acids. MCAD deficiency is one of the most frequent inborn metabolic disorders in populations of northwestern European origin. In the compilation of data from a worldwide study...

  1. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Uhlenbusch, I.; Sahm, H.; Sprenger, G.A. (Inst. fur Biotechnologie 1, Julich (Germany))

    1991-05-01

    Gene alaD for L-alanine dehydrogenase from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 {mu}mol {center dot} min{sup {minus}1} {center dot} mg of protein{sup {minus}1} in recombinant cells. As a result of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH{sub 4}{sup +} to the medium, growth of the recombinant cells stopped, and up to 41 mmol of alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PP{sub i}. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH {sub 4}{sup +} and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol {center dot} min{sup {minus}1} {center dot} mg(dry weight){sup {minus}1}. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.

  2. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    Science.gov (United States)

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  3. Production of Xylitol from d-Xylose by a Xylitol Dehydrogenase Gene-Disrupted Mutant of Candida tropicalis

    OpenAIRE

    Ko, Byoung Sam; Kim, Jinmi; Kim, Jung Hoe

    2006-01-01

    Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assay experiment indicated that BSXDH-3 lost apparently all XDH activity. Xylitol production by BSXDH-3 ...

  4. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Soares-Fernandes, Joao P.; Ribeiro, Manuel; Magalhaes, Zita; Rocha, Jaime F. [Hospital de S. Marcos, Department of Neuroradiology, Braga (Portugal); Teixeira-Gomes, Roseli [Hospital Pedro Hispano, Division of Neuropediatrics, Matosinhos (Portugal); Cruz, Romeu [Hospital Geral de Sto. Antonio, Department of Neuroradiology, Porto (Portugal); Leijser, Lara M. [Leiden University Medical Center, Department of Paediatrics, Division of Neonatology, Leiden (Netherlands)

    2008-05-15

    Pyruvate dehydrogenase (PDH) deficiency is one of the most common causes of congenital lactic acidosis. Correlations between the genetic defect and neuroimaging findings are lacking. We present conventional and diffusion-weighted MRI findings in a 7-day-old male neonate with PDH deficiency due to a mosaicism for the R302H mutation in the PDHA1 gene. Corpus callosum dysgenesis, widespread increased diffusion in the white matter, and bilateral subependymal cysts were the main features. Although confirmation of PDH deficiency depends on specialized biochemical analyses, neonatal MRI plays a role in evaluating the pattern and extent of brain damage, and potentially in early diagnosis and clinical decision making. (orig.)

  5. Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics.

    Science.gov (United States)

    Reimers, Mark J; Hahn, Mark E; Tanguay, Robert L

    2004-09-10

    Ethanol is teratogenic to many vertebrates. We are utilizing zebrafish as a model system to determine whether there is an association between ethanol metabolism and ethanol-mediated developmental toxicity. Here we report the isolation and characterization of two cDNAs encoding zebrafish alcohol dehydrogenases (ADHs). Phylogenetic analysis of these zebrafish ADHs indicates that they share a common ancestor with mammalian class I, II, IV, and V ADHs. The genes encoding these zebrafish ADHs have been named Adh8a and Adh8b by the nomenclature committee. Both genes were genetically mapped to chromosome 13. The 1450-bp Adh8a is 82, 73, 72, and 72% similar at the amino acid level to the Baltic cod ADH8 (previously named ADH1), the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. Also, the 1484-bp Adh8b is 77, 68, 67, and 66% similar at the amino acid level to the Baltic cod ADH8, the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. ADH8A and ADH8B share 86% amino acid similarity. To characterize the functional properties of ADH8A and ADH8B, recombinant proteins were purified from SF-9 insect cells. Kinetic studies demonstrate that ADH8A metabolizes ethanol, with a V(max) of 13.4 nmol/min/mg protein, whereas ADH8B does not metabolize ethanol. The ADH8A K(m) for ethanol as a substrate is 0.7 mm. 4-Methyl pyrazole, a classical competitive inhibitor of class I ADH, failed to inhibit ADH8A. ADH8B has the capacity to efficiently biotransform longer chain primary alcohols (>/=5 carbons) and S-hydroxymethlyglutathione, whereas ADH8A does not efficiently metabolize these substrates. Finally, mRNA expression studies indicate that both ADH8A and ADH8B mRNA are expressed during early development and in the adult brain, fin, gill, heart, kidney, muscle, and liver. Together these results indicate that class I-like ADH is conserved in zebrafish, albeit with mixed functional properties. PMID:15231826

  6. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II.

    OpenAIRE

    Ohta, K.; Beall, D S; Mejia, J P; Shanmugam, K. T.; Ingram, L O

    1991-01-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selec...

  7. Targeted Disruption of the Inosine 5′-Monophosphate Dehydrogenase Type I Gene in Mice

    OpenAIRE

    Gu, Jing Jin; Tolin, Amy K.; Jain, Jugnu; Huang, Hai; Santiago, Lalaine; Mitchell, Beverly S.

    2003-01-01

    Inosine 5′-monophosphate dehydrogenase (IMPDH) is the critical, rate-limiting enzyme in the de novo biosynthesis pathway for guanine nucleotides. Two separate isoenzymes, designated IMPDH types I and II, contribute to IMPDH activity. An additional pathway salvages guanine through the activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) to supply the cell with guanine nucleotides. In order to better understand the relative contributions of IMPDH types I and II and HPRT to normal b...

  8. Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis.

    Science.gov (United States)

    Ngo, Ho-Phuong-Thuy; Hong, Seung-Hye; Hong, Myoung-Ki; Pham, Tan-Viet; Oh, Deok-Kun; Kang, Lin-Woo

    2013-09-01

    Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.

  9. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments.

    Directory of Open Access Journals (Sweden)

    Evan Lau

    Full Text Available The mxaF gene, coding for the large (α subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene's usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria.

  10. Isolation of a new butanol-producing Clostridium strain: high level of hemicellulosic activity and structure of solventogenesis genes of a new Clostridium saccharobutylicum isolate.

    Science.gov (United States)

    Berezina, Oksana V; Brandt, Agnieszka; Yarotsky, Sergey; Schwarz, Wolfgang H; Zverlov, Vladimir V

    2009-10-01

    New isolates of solventogenic bacteria exhibited high hemicellulolytic activity. They produced butanol and acetone with high selectivity for butanol (about 80% of butanol from the total solvent yield). Their 16S rDNA sequence was 99% identical to that of Clostridium saccharobutylicum. The genes responsible for the last steps of solventogenesis and encoding crotonase, butyryl-CoA dehydrogenase, electron-transport protein subunits A and B, 3-hydroxybutyryl-CoA dehydrogenase, alcohol dehydrogenase, CoA-transferase (subunits A and B), acetoacetate decarboxylase, and aldehyde dehydrogenase were identified in the new C. saccharobutylicum strain Ox29 and cloned into Escherichia coli. The genes for crotonase, butyryl-CoA dehydrogenase, electron-transport protein subunits A and B, and 3-hydroxybutyryl-CoA dehydrogenase composed the bcs-operon. A monocistronic operon containing the alcohol dehydrogenase gene was located downstream of the bcs-operon. Genes for aldehyde dehydrogenase, CoA-transferase (subunits A and B), and acetoacetate decarboxylase composed the sol-operon. The gene sequences and the gene order within the sol- and bcs-operons of C. saccharobutylicum Ox29 were most similar to those of Clostridium beijerinckii. The activity of some of the bcs-operon genes, expressed in heterologous E. coli, was determined. PMID:19674858

  11. Biochemical Analysis of Recombinant AlkJ from Pseudomonas putida Reveals a Membrane-Associated, Flavin Adenine Dinucleotide-Dependent Dehydrogenase Suitable for the Biosynthetic Production of Aliphatic Aldehydes

    OpenAIRE

    Kirmair, Ludwig; Skerra, Arne

    2014-01-01

    The noncanonical alcohol dehydrogenase AlkJ is encoded on the alkane-metabolizing alk operon of the mesophilic bacterium Pseudomonas putida GPo1. To gain insight into the enzymology of AlkJ, we have produced the recombinant protein in Escherichia coli and purified it to homogeneity using His6 tag affinity and size exclusion chromatography (SEC). Despite synthesis in the cytoplasm, AlkJ was associated with the bacterial cell membrane, and solubilization with n-dodecyl-β-d-maltoside was necessa...

  12. Association of ADHIB and ALDH2 gene polymorphisms with alcohol dependence: A pilot study from India

    OpenAIRE

    Vaswani Meera; Prasad Pushplata; Kapur Suman

    2009-01-01

    Abstract Functional polymorphism in the genes encoding alcohol dehydrogenase (ADH) 1B and aldehyde dehydrogenase (ALDH) 2 are considered most important among several genetic determinants of alcohol dependence, a complex disorder. There is no report on the widely studied Arg47His and Glu487Lys polymorphisms from Indian alcoholdependent populations. In this paper, we report, for the first time, allelic and genotypic frequencies of Arg47His and Glu487Lys single nucleotide polymorphisms (SNPs) in...

  13. Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise fundamentally affects morphology and fertility.

    Directory of Open Access Journals (Sweden)

    Katarína Mrízová

    Full Text Available Barley is one of the most important cereal crops grown worldwide. It has numerous applications, but its utility could potentially be extended by genetically manipulating its hormonal balances. To explore some of this potential we identified gene families of cytokinin dehydrogenases (CKX and isopentenyl transferases, enzymes that respectively irreversibly degrade and synthesize cytokinin (CK plant hormones, in the raw sequenced barley genome. We then examined their spatial and temporal expression patterns by immunostaining and qPCR. Two CKX-specific antibodies, anti-HvCKX1 and anti-HvCKX9, predominantly detect proteins in the aleurone layer of maturing grains and leaf vasculature, respectively. In addition, two selected CKX genes were used for stable, Agrobacterium tumefaciens-mediated transformation of the barley cultivar Golden Promise. The results show that constitutive overexpression of CKX causes morphological changes in barley plants and prevents their transition to flowering. In all independent transgenic lines roots proliferated more rapidly and root-to-shoot ratios were higher than in wild-type plants. Only one transgenic line, overexpressing CKX under the control of a promoter from a phosphate transporter gene, which is expressed more strongly in root tissue than in aerial parts, yielded progeny. Analysis of several T1-generation plants indicates that plants tend to compensate for effects of the transgene and restore CK homeostasis later during development. Depleted CK levels during early phases of development are restored by down-regulation of endogenous CKX genes and reinforced de novo biosynthesis of CKs.

  14. A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in "chromalveolate" members.

    Directory of Open Access Journals (Sweden)

    Kiyotaka Takishita

    Full Text Available Eukaryotes bearing red alga-derived plastids--photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia, photosynthetic stramenopiles, haptophytes, and cryptophytes--possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as "GapC1". Pioneering phylogenetic studies have indicated a single origin of the GapC1 enzymes in eukaryotic evolution, but there are two potential idiosyncrasies in the GapC1 phylogeny: Firstly, the GapC1 tree topology is apparently inconsistent with the organismal relationship among the "GapC1-containing" groups. Secondly, four stramenopile GapC1 homologues are consistently paraphyletic in previously published studies, although these organisms have been widely accepted as monophyletic. For a closer examination of the above issues, in this study GapC1 gene sampling was improved by determining/identifying nine stramenopile and two cryptophyte genes. Phylogenetic analyses of our GapC1 dataset, which is particularly rich in the stramenopile homologues, prompt us to propose a new scenario that assumes multiple, lateral GapC1 gene transfer events to explain the incongruity between the GapC1 phylogeny and the organismal relationships amongst the "GapC1-containing" groups. Under our new scenario, GapC1 genes uniquely found in photosynthetic alveolates, photosynthetic stramenopiles, haptophytes, and cryptopyhytes are not necessarily a character vertically inherited from a common ancestor.

  15. Overexpression of a GmCnx1 gene enhanced activity of nitrate reductase and aldehyde oxidase, and boosted mosaic virus resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    Full Text Available Molybdenum cofactor (Moco is required for the activities of Moco-dependant enzymes. Cofactor for nitrate reductase and xanthine dehydrogenase (Cnx1 is known to be involved in the biosynthesis of Moco in plants. In this work, a soybean (Glycine max L. Cnx1 gene (GmCnx1 was transferred into soybean using Agrobacterium tumefaciens-mediated transformation method. Twenty seven positive transgenic soybean plants were identified by coating leaves with phosphinothricin, bar protein quick dip stick and PCR analysis. Moreover, Southern blot analysis was carried out to confirm the insertion of GmCnx1 gene. Furthermore, expression of GmCnx1 gene in leaf and root of all transgenic lines increased 1.04-2.12 and 1.55-3.89 folds, respectively, as compared to wild type with GmCnx1 gene and in line 10 , 22 showing the highest expression. The activities of Moco-related enzymes viz nitrate reductase (NR and aldehydeoxidase (AO of T1 generation plants revealed that the best line among the GmCnx1 transgenic plants accumulated 4.25 μg g(-1 h(-1 and 30 pmol L(-1, respectively (approximately 2.6-fold and 3.9-fold higher than non-transgenic control plants.In addition, overexpression ofGmCnx1boosted the resistance to various strains of soybean mosaic virus (SMV. DAS-ELISA analysis further revealed that infection rate of GmCnx1 transgenic plants were generally lower than those of non-transgenic plants among two different virus strains tested. Taken together, this study showed that overexpression of a GmCnx1 gene enhanced NR and AO activities and SMV resistance, suggesting its important role in soybean genetic improvement.

  16. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products.

    Directory of Open Access Journals (Sweden)

    Brett K Kaiser

    Full Text Available We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.

  17. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P;

    1997-01-01

    , 990T, 1260C) constitutes an allelic variant with a frequency of 22% in the general Danish population. Using fluorescence in-situ hybridization, we confirm the localization of the human SCAD gene to the distal part of Chromosome (Chr) 12 and suggest that the SCAD gene is a single-copy gene...

  18. Disparate sequence characteristics of the Erysiphe graminis f.sp. hordei glyceraldehyde-3-phosphate dehydrogenase gene

    DEFF Research Database (Denmark)

    Christiansen, S.K.; Justesen, A.F.; Giese, H.

    1997-01-01

    to be similar for all four genes. The results of the codon-usage analysis suggest that Egh is more flexible than other fungi in the choice of nucleotides at the wobble position. Codon-usage preferences in Egh and barley genes indicate a level of difference which may be exploited to discriminate between fungal...... and plant genes in sequence mixtures. The Egh gpd promoter appears to be superior to that of the Egh beta-tubulin gene (tub2) for driving the E. coli beta-glucuronidase (GUS) gene in transformation experiments....

  19. Microbial alcohol dehydrogenases: identification, characterization and engineering

    OpenAIRE

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety of substrate specificities and are involved in an astonishingly wide range of metabolic processes, in all living organisms. Besides the scientific interest in ADHs, they are also attractive biocat...

  20. Molecular cloning of three pyranose dehydrogenase-encoding genes from Agaricus meleagris and analysis of their expression by real-time RT-PCR.

    Science.gov (United States)

    Kittl, Roman; Sygmund, Christoph; Halada, Petr; Volc, Jindrich; Divne, Christina; Haltrich, Dietmar; Peterbauer, Clemens K

    2008-02-01

    Sugar oxidoreductases such as cellobiose dehydrogenase or pyranose oxidase are widespread enzymes among fungi, whose biological function is largely speculative. We investigated a similar gene family in the mushroom Agaricus meleagris and its expression under various conditions. Three genes (named pdh1, pdh2 and pdh3) putatively encoding pyranose dehydrogenases were isolated. All three genes displayed a conserved structure and organization, and the respective cDNAs contained ORFs translating into polypeptides of 602 or 600 amino acids. The N-terminal sections of all three genes encode putative signal peptides consistent with the enzymes extracellular secretion. We cultivated the fungus on different carbon sources and analyzed the mRNA levels of all three genes over a period of several weeks using real-time RT-PCR. The glyceraldehyde-3-phosphate dehydrogenase gene from A. meleagris was also isolated and served as reference gene. pdh2 and pdh3 are essentially transcribed constitutively, whereas pdh1 expression is upregulated upon exhaustion of the carbon source; pdh1 appears to be additionally regulated under conditions of oxygen limitation. These data are consistent with an assumed role in lignocellulose degradation. PMID:18097667

  1. No evidence for promoter region methylation of the succinate dehydrogenase and fumarate hydratase tumour suppressor genes in breast cancer

    Directory of Open Access Journals (Sweden)

    Dobrovic Alexander

    2009-09-01

    Full Text Available Abstract Background Succinate dehydrogenase (SDH and fumarate hydratase (FH are tricarboxylic acid (TCA cycle enzymes that are also known to act as tumour suppressor genes. Increased succinate or fumarate levels as a consequence of SDH and FH deficiency inhibit hypoxia inducible factor-1α (HIF-1α prolyl hydroxylases leading to sustained HIF-1α expression in tumours. Since HIF-1α is frequently expressed in breast carcinomas, DNA methylation at the promoter regions of the SDHA, SDHB, SDHC and SDHD and FH genes was evaluated as a possible mechanism in silencing of SDH and FH expression in breast carcinomas. Findings No DNA methylation was identified in the promoter regions of the SDHA, SDHB, SDHC, SDHD and FH genes in 72 breast carcinomas and 10 breast cancer cell lines using methylation-sensitive high resolution melting which detects both homogeneous and heterogeneous methylation. Conclusion These results show that inactivation via DNA methylation of the promoter CpG islands of SDH and FH is unlikely to play a major role in sporadic breast carcinomas.

  2. Distinct Retinoid Metabolic Functions for Alcohol Dehydrogenase Genes Adh1 and Adh4 in Protection against Vitamin A Toxicity or Deficiency Revealed in Double Null Mutant Mice*

    OpenAIRE

    Molotkov, Andrei; Deltour, Louise; Foglio, Mario H.; Cuenca, Arnold E.; Duester, Gregg

    2002-01-01

    The ability of class I alcohol dehydrogenase (ADH1) and class IV alcohol dehydrogenase (ADH4) to metabolize retinol to retinoic acid is supported by genetic studies in mice carrying Adh1 or Adh4 gene disruptions. To differentiate the physiological roles of ADH1 and ADH4 in retinoid metabolism we report here the generation of an Adh1/4 double null mutant mouse and its comparison to single null mutants. We demonstrate that loss of both ADH1 and ADH4 does not have additive effects, either for pr...

  3. Target validation of the inosine monophosphate dehydrogenase (IMPDH) gene in Cryptosporidium using Phylomer(®) peptides.

    Science.gov (United States)

    Jefferies, R; Yang, R; Woh, C K; Weldt, T; Milech, N; Estcourt, A; Armstrong, T; Hopkins, R; Watt, P; Reid, S; Armson, A; Ryan, U M

    2015-01-01

    Cryptosporidiosis, a gastroenteric disease characterised mainly by diarrheal illnesses in humans and mammals is caused by infection with the protozoan parasite Cryptosporidium. Treatment options for cryptosporidiosis are limited, with the current therapeutic nitazoxanide, only partly efficacious in immunocompetent individuals. The parasite lacks de novo purine synthesis, and is exclusively dependant on purine salvage from its host. Inhibition of the inosine 5' monophosphate dehydrogenase (IMPDH), a purine salvage enzyme that is essential for DNA synthesis, thereby offers a potential drug target against this parasite. In the present study, a yeast-two-hybrid system was used to identify Phylomer peptides within a library constructed from the genomes of 25 phylogenetically diverse bacteria that targeted the IMPDH of Cryptosporidium parvum (IMPcp) and Cryptosporidium hominis (IMPch). We identified 38 unique interacting Phylomers, of which, 12 were synthesised and screened against C. parvum in vitro. Two Phylomers exhibited significant growth inhibition (81.2-83.8% inhibition; P < 0.05), one of which consistently exhibited positive interactions with IMPcp and IMPch during primary and recapitulation yeast two-hybrid screening and did not interact with either of the human IMPDH proteins. The present study highlightsthe potential of Phylomer peptides as target validation tools for Cryptosporidium and other organisms and diseases because of their ability to bind with high affinity to target proteins and disrupt function. PMID:25447124

  4. Deletion of the aceE gene (encoding a component of pyruvate dehydrogenase) attenuates Salmonella enterica serovar Enteritidis.

    Science.gov (United States)

    Pang, Ervinna; Tien-Lin, Chang; Selvaraj, Madhan; Chang, Jason; Kwang, Jimmy

    2011-10-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major food-borne pathogen. From a transposon insertion mutant library created previously using S. Enteritidis 10/02, one of the mutants was identified to have a 50% lethal dose (LD(50) ) at least 100 times that of the parental strain in young chicks, with an attenuation in a poorly studied gene encoding a component of pyruvate dehydrogenase, namely the aceE gene. Evaluation of the in vitro virulence characteristics of the ΔaceE∷kan mutant revealed that it was less able to invade epithelial cells, less resistant to reactive oxygen intermediate, less able to survive within a chicken macrophage cell line and had a retarded growth rate compared with the parental strain. Young chicks vaccinated with 2 × 10(9) CFU of the ΔaceE∷kan mutant were protected from the subsequent challenge of the parental strain, with the mutant colonized in the liver and spleen in a shorter time than the group infected with the parental strain. In addition, compared with the parental strain, the ΔaceE∷kan mutant did not cause persistent eggshell contamination of vaccinated hens.

  5. Genetic diversity of Echinococcus granulosus in southwest China determined by the mitochondrial NADH dehydrogenase subunit 2 gene.

    Science.gov (United States)

    Wang, Jiahai; Wang, Ning; Hu, Dandan; Zhong, Xiuqin; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    We evaluated genetic diversity and structure of Echinococcus granulosus by analyzing the complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene in 51 isolates of E. granulosus sensu stricto metacestodes collected at three locations in this region. We detected 19 haplotypes, which formed a distinct clade with the standard sheep strain (G1). Hence, all 51 isolates were identified as E. granulosus sensu stricto (G1-G3). Genetic relationships among haplotypes were not associated with geographical divisions, and fixation indices (Fst) among sampling localities were low. Hence, regional populations of E. granulosus in the southwest China are not differentiated, as gene flow among them remains high. This information is important for formulating unified region-wide prevention and control measures. We found large negative Fu's Fs and Tajima's D values and a unimodal mismatch distribution, indicating that the population has undergone a demographic expansion. We observed high genetic diversity among the E. granulosus s. s. isolates, indicating that the parasite population in this important bioregion is genetically robust and likely to survive and spread. The data from this study will prove valuable for future studies focusing on improving diagnosis and prevention methods and developing robust control strategies.

  6. In silico cloning and characterization of the glycerol-3-phosphate dehydrogenase (GPDH) gene family in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Herrera-Valencia, Virginia A; Macario-González, Laura A; Casais-Molina, Melissa L; Beltran-Aguilar, Anayeli G; Peraza-Echeverría, Santy

    2012-05-01

    Glycerol-3-phosphate dehydrogenase (GPDH) catalyzes the conversion of dihydroxyacetone phosphate (DHAP) and NADH to glycerol-3-phosphate (G3P) and NAD(+). G3P is important as a precursor for glycerol and glycerolipid synthesis in microalgae. A GPDH enzyme has been previously purified from the green microalga Chlamydomonas reinhardtii, however, no genes coding for GPDH have been characterized before. In this study, we report the in silico characterization of three putative GPDH genes from C. reinhardtii: CrGPDH1, CrGPDH2, and CrGPDH3. These sequences showed a significant similarity to characterized GPDH genes from the microalgae Dunaliella salina and Dunaliella viridis. The prediction of the three-dimensional structure of the proteins showed the characteristic fold topology of GPDH enzymes. Furthermore, the phylogenetic analysis showed that the three CrGPDHs share the same clade with characterized GPDHs from Dunaliella suggesting a common evolutionary origin and a similar catalytic function. In addition, the K(a)/K(s) ratios of these sequences suggested that they are under purifying selection. Moreover, the expression analysis showed a constitutive expression of CrGPDH1, while CrGPDH2 and CrGPDH3 were induced in response to osmotic stress, suggesting a possible role for these two sequences in the synthesis of glycerol as a compatible solute in osmoregulation, and perhaps also in lipid synthesis in C. reinhardtii. This study has provided a foundation for further biochemical and genetic studies of the GPDH family in this model microalga, and also opportunities to assess the potential of these genes to enhance the synthesis of TAGs for biodiesel production. PMID:22358185

  7. Metabolite Fingerprinting in Transgenic Nicotiana tabacum Altered by the Escherichia coli Glutamate Dehydrogenase Gene

    Directory of Open Access Journals (Sweden)

    R. Mungur

    2005-01-01

    Full Text Available With about 200 000 phytochemicals in existence, identifying those of biomedical significance is a mammoth task. In the postgenomic era, relating metabolite fingerprints, abundances, and profiles to genotype is also a large task. Ion analysis using Fourier transformed ion cyclotron resonance mass spectrometry (FT-ICR-MS may provide a high-throughput approach to measure genotype dependency of the inferred metabolome if reproducible techniques can be established. Ion profile inferred metabolite fingerprints are coproducts. We used FT-ICR-MS-derived ion analysis to examine gdhA (glutamate dehydrogenase (GDH; EC 1.4.1.1 transgenic Nicotiana tabacum (tobacco carrying out altered glutamate, amino acid, and carbon metabolisms, that fundamentally alter plant productivity. Cause and effect between gdhA expression, glutamate metabolism, and plant phenotypes was analyzed by 13NH4+ labeling of amino acid fractions, and by FT-ICR-MS analysis of metabolites. The gdhA transgenic plants increased 13N labeling of glutamate and glutamine significantly. FT-ICR-MS detected 2 012 ions reproducible in 2 to 4 ionization protocols. There were 283 ions in roots and 98 ions in leaves that appeared to significantly change abundance due to the measured GDH activity. About 58% percent of ions could not be used to infer a corresponding metabolite. From the 42% of ions that inferred known metabolites we found that certain amino acids, organic acids, and sugars increased and some fatty acids decreased. The transgene caused increased ammonium assimilation and detectable ion variation. Thirty-two compounds with biomedical significance were altered in abundance by GDH including 9 known carcinogens and 14 potential drugs. Therefore, the GDH transgene may lead to new uses for crops like tobacco.

  8. 乙醛脱氢酶-1作为心肌干细胞有效标志物的实验研究%Aldehyde dehydrogenase-1 as an effective marker for cardiac stem cells

    Institute of Scientific and Technical Information of China (English)

    韦海珠; 胡琳洁; 梁冬

    2013-01-01

    目的 研究乙醛脱氢酶-1(ALDH-1)是否可以作为分选心肌干细胞(CSC)的有效标志物.方法 从裸鼠心脏分离培养细胞球,收集细胞球制成单细胞悬液,利用Aldefluor试剂结合流式细胞术来分选心脏球体细胞中的SSCloAldebr细胞(ALDH-1阳性细胞),通过增殖能力、克隆形成、表型分析及定向分化能力鉴定其干细胞(SC)的特性.结果 裸鼠心脏细胞无血清培养可形成细胞球,球体细胞中可检测到ALDH-1阳性细胞的存在;ALDH-1阳性细胞具有高增殖性、高克隆形成率及定向分化的能力,具有SC的特性.结论 裸鼠心脏中存在CSC;ALDH-1可以作为CSC有效的标志物.%Objective To investigate whether acetaldehyde dehydrogenase-1 ( ALDH-1 ) may be used as an effective marker for sorting of cardiac stem cells (CSC). Methods Cells were separated from the heart of nude mice and cultured, and then collected to prepare single cell suspension. Utilizing Aldefluor reagent in conjunction with flow cytometry, SSCloAldebr cells (ALDH-1 positive cells) were sorted from collected cardiac cells. Characteristics of the cardiac stem cells were identified by analyzing reproductive capacity, clone formation, phenotypes and oriented differentiation of the sorted cells. Results Through serum-free culture cardiac cells from the heart of nude mice formed heter-cell spheres. In spheroid cells ALDH-1 positive cells were found. ALDH-1 positive cells possessed characteristics of stem cells including high reproductive capacity, high clone forming rate and ability for oriented differentiation. Conclusion Cardiac stem cells exist in the heart of nude mice, and ALDH-1 may be used as an effective marker for cardiac stem cells.

  9. 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression.

    Science.gov (United States)

    Wetzel, Jana; Scheibner, Olaf; Burmester, Anke; Schimek, Christine; Wöstemeyer, Johannes

    2009-01-01

    The NADP-dependent 4-dihydrotrisporin-dehydrogenase is a (-) mating-type-specific enzyme in the pathway from beta-carotene to trisporic acid. This substance and its isomers and derivatives represent the general system of sexual communication in zygomycetes. The (-) mating type of Mucor mucedo was stimulated by trisporic acid and the enzyme was purified by ion exchange and affinity chromatography. Several peptides of the 26-kDa protein, digested with trypsin, were sequenced by mass spectrometry. Oligonucleotides based on protein sequence data were used for PCR amplification of genomic DNA. The primary PCR fragment was sequenced and the complete gene, TSP2, was isolated. A labeled TSP2 hybridization probe detects a single-copy gene in the genome of M. mucedo. Northern blot analysis with RNAs from different growth stages reveals that the expression of the gene depends on the developmental stage of the mycelium in both mating types of M. mucedo. At the enzyme level, activity is found exclusively in the (-) mating type. However, renaturation of proteins in sodium dodecyl sulfate-containing gels revealed the TSP2 gene product in both mating types. Analyzing the protein sequence places the enzyme in the short chain dehydrogenase superfamily. Thus, it has an evolutionary origin distinct from that of the previously isolated 4-dihydromethyltrisporate dehydrogenase, which belongs to the aldo/keto reductase superfamily. Apart from the TSP2 genes in the three sequenced zygomycetous genomes (Phycomyces blakesleeanus, Rhizopus oryzae, and Mucor circinelloides), the closest relative is the Myxococcus xanthus CsgA gene product, which is also a short chain dehydrogenase, involved in C signaling and fruiting body formation.

  10. 4-Dihydrotrisporin-Dehydrogenase, an Enzyme of the Sex Hormone Pathway of Mucor mucedo: Purification, Cloning of the Corresponding Gene, and Developmental Expression▿

    Science.gov (United States)

    Wetzel, Jana; Scheibner, Olaf; Burmester, Anke; Schimek, Christine; Wöstemeyer, Johannes

    2009-01-01

    The NADP-dependent 4-dihydrotrisporin-dehydrogenase is a (−) mating-type-specific enzyme in the pathway from β-carotene to trisporic acid. This substance and its isomers and derivatives represent the general system of sexual communication in zygomycetes. The (−) mating type of Mucor mucedo was stimulated by trisporic acid and the enzyme was purified by ion exchange and affinity chromatography. Several peptides of the 26-kDa protein, digested with trypsin, were sequenced by mass spectrometry. Oligonucleotides based on protein sequence data were used for PCR amplification of genomic DNA. The primary PCR fragment was sequenced and the complete gene, TSP2, was isolated. A labeled TSP2 hybridization probe detects a single-copy gene in the genome of M. mucedo. Northern blot analysis with RNAs from different growth stages reveals that the expression of the gene depends on the developmental stage of the mycelium in both mating types of M. mucedo. At the enzyme level, activity is found exclusively in the (−) mating type. However, renaturation of proteins in sodium dodecyl sulfate-containing gels revealed the TSP2 gene product in both mating types. Analyzing the protein sequence places the enzyme in the short chain dehydrogenase superfamily. Thus, it has an evolutionary origin distinct from that of the previously isolated 4-dihydromethyltrisporate dehydrogenase, which belongs to the aldo/keto reductase superfamily. Apart from the TSP2 genes in the three sequenced zygomycetous genomes (Phycomyces blakesleeanus, Rhizopus oryzae, and Mucor circinelloides), the closest relative is the Myxococcus xanthus CsgA gene product, which is also a short chain dehydrogenase, involved in C signaling and fruiting body formation. PMID:18931040

  11. Identification and bioinformatics analysis of lactate dehydrogenase genes fromEchinococcus granulosus

    Institute of Scientific and Technical Information of China (English)

    Gang Lu; Yajun Lu; Lihua Li; Lixian Wu; Zhigang Fan; Dazhong Shi; Hu Wang; Xiumin Han

    2010-01-01

    Objective:To identify full length cDNA sequence of lactate dehydrogenase(LDH) from adultEchinococcus granulosus (E. granulosus) and to predict the structure and function of its encoding protein using bioinformatics methods.Methods: With the help ofNCBI, EMBI, Expasy and other online sites, the open reading frame (ORF), conserved domain, physical and chemical parameters, signal peptide, epitope, topological structures of the protein sequences were predicted and a homology tertiary structure model was created; VectorNTI software was used for sequence alignment, phylogenetic tree construction and tertiary structure prediction. Results: The target sequence was1 233 bp length with a996 bp biggestORFencoding331 amino acids protein with typicalL-LDH conserved domain. It was confirmed as full length cDNA of LDH fromE. granulosus and named asEgLDH (GenBank accession number:HM748917). The predicted molecular weight and isoelectric point of the deduced protein were3 5516.2Da and6.32 respectively. Compared withLDHs fromTaenia solium, Taenia saginata asiatica, Spirometra erinaceieuropaei, Schistosoma japonicum, Clonorchis sinensis and human, it showed similarity of 86%, 85%, 55%, 58%, 58% and 53%, respectively. EgLDH contained3putative transmembrane regions and4 major epitopes (54aa-59aa,81aa-87aa,97aa-102aa,307aa-313aa), the latter were significant different from the corresponding regions of humanLDH. In addition, someNAD and substrate binding sites located on epitopes54aa-59aa and97aa-102aa, respectively. Tertiary structure prediction showed that3 key catalytic residues105R, 165D and192H forming a catalytic center near the epitope97aa-102aa, mostNAD and substrate binding sites located around the center.Conclusions: The full length cDNA sequences of EgLDH were identified. It encoded a putative transmembrane protein which might be an ideal target molecule for vaccine and drugs.

  12. 4-Dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene.

    Science.gov (United States)

    Czempinski, K; Kruft, V; Wöstemeyer, J; Burmester, A

    1996-09-01

    We have purified the NADP-dependent 4-dihydromethyltrisporate dehydrogenase from the zygomycete Mucor mucedo. The enzyme is involved in the biosynthesis of trisporic acid, the sexual hormone of zygomycetes, which induces the first steps of zygophore development. Protein was obtained from the (-) mating type of M. mucedo after induction with trisporic acid, and purified by gel filtration and affinity chromatography steps. On SDS-PAGE a band with an apparent molecular mass of 33 kDa was ascribed to the enzyme. After transferring onto PVDF membranes the protein was digested with endoprotease Lys-C, and several peptides were sequenced. Oligonucleotides derived from protein sequence data were used for PCR amplification of genomic M. mucedo DNA. The PCR fragment was used as probe for isolation of the corresponding cDNA and complete genomic DNA clones. Comparison of protein and DNA sequence data showed that the cloned fragment corresponded to the purified protein. Search for similarity with protein sequences of the Swiss-Prot database revealed a relationship to enzymes belonging to the aldo/keto reductase superfamily. Southern-blot analysis of genomic DNA with the labelled cloned fragment detected a single-copy gene in both mating types of M. mucedo. PCR with genomic DNA from other zygomycetes gave rise to several fragments. Hybridization analysis with the cloned M. mucedo fragment showed that a fragment of similar length cross-hybridized in Blakeslea trispora (Choanephoraceae) as well as in Parasitella parasitica and Absidia glauca (Mucoraceae). The promoter region of the gene contains DNA elements with similarity to a cAMP-regulated gene of Dictyostelium discoideum.

  13. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gdhA genes of IRC-3 GDH-strain and IRC-8 GDH+ strain were cloned,and they both successfully complemented the nutritional lesion of an E.coli glutamate auxotroph,Q100 GDH-.However,the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3.The gdhA genes of the wild type and mutant origin were sequenced separately.No nucleotide difference was detected between them.Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant.Additionally,no GDH inhibitor was found in the wild type strain IRC-3.It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression.Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the familyⅠ-type hexameric protein,while the GDH of Bacillus subtilis belongs to family II.

  14. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis

    Institute of Scientific and Technical Information of China (English)

    朱冰; 俞冠翘; 朱家璧; 沈善炯

    2000-01-01

    The gdhA genes of IRC-3 GDH strain and IRC-8 GDH+ strain were cloned, and they both successfully complemented the nutritional lesion of an E. coli glutamate auxotroph, Q100 GDH". However, the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3. The gdhA genes of the wild type and mutant origin were sequenced separately. No nucleotide difference was detected between them. Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant. Additionally, no GDH inhibitor was found in the wild type strain IRC-3. It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression. Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the family I -type hexameric protein, while the GDH of Bacillus subtilis belongs to family II.

  15. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    Science.gov (United States)

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-01

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  16. Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE).

    Science.gov (United States)

    Endo, Akihito; Tanaka, Naoto; Oikawa, Yo; Okada, Sanae; Dicks, Leon

    2014-04-01

    Fructophilic strains of Leuconostoc spp. have recently been reclassified to a new genus, i.e., Fructobacillus. Members of the genus are differentiated from Leuconostoc spp. by their preference for fructose on growth, requirement of an electron acceptor for glucose metabolism, and the inability to produce ethanol from the fermentation of glucose. In the present study, enzyme activities and genes involved in ethanol production were studied, since this is the key pathway for NAD(+)/NADH cycling in heterofermentative lactic acid bacteria. Fructobacillus spp. has a weak alcohol dehydrogenase activity and has no acetaldehyde dehydrogenase activity, whereas both enzymes are active in Leuconostoc mesenteroides. The bifunctional alcohol/acetaldehyde dehydrogenase gene, adhE, was described in Leuconostoc spp., but not in Fructobacillus spp. These results suggested that, due to the deficiency of the adhE gene, the normal pathway for ethanol production is absent in Fructobacillus spp. This leads to a shortage of NAD(+), and the requirement for an electron acceptor in glucose metabolism. Fructophilic characteristics, as observed for Fructobacillus spp., are thus due to the absence of the adhE gene, and a phenotype that most likely evolved as a result of regressive evolution. PMID:24352296

  17. The genome of Vibrio cholerae contains two different and functional genes for aspartate semialdehyde dehydrogenases

    Directory of Open Access Journals (Sweden)

    Karen Marrero

    2004-01-01

    Full Text Available En Vibrio cholerae se identificaron dos genes asd, los cuales fueron clonados en Escherichia coli c6097, por complementación del defecto de la deshidrogenasa del aspartato semialdehído (Asd. La actividad de la Asd fue también confirmada in vitro para cada producto génico. Se determinaron las secuencias nucleotídicas y los polipéptidos predichos, los cuales fueron comparados con las secuencias depositadas en las bases de datos Genbank y Swissprot, respectivamente. Cada producto génico pertenece a uno de los dos grupos de homología encontrados para Asd en la base de datos Swissprot. Los genes asd descritos en este trabajo corresponden a los genes VC2036 y VC2107 del cromosoma I del genoma de V. cholerae depositado en el Instituto de Investigaciones Genómicas (TIGR de EE.UU. Se obtuvieron mutantes de cada gen, pero el doble mutante solo se obtuvo en presencia de un gen asd complementario en trans. Estos mutantes fueron caracterizados microbiológicamente, así como su comportamiento in vivo e in vitro, en modelos animales y bajo condiciones de laboratorio.

  18. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    Science.gov (United States)

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124.

  19. Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees.

    Science.gov (United States)

    Wise, C A; Sraml, M; Easteal, S

    1998-01-01

    To test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution, nucleotide sequences were determined for the 1041 bp of the NADH dehydrogenase subunit 2 (ND2) gene in 20 geographically diverse humans and 20 common chimpanzees. Contingency tests of neutrality were performed using four mutational categories for the ND2 molecule: synonymous and nonsynonymous mutations in the transmembrane regions, and synonymous and nonsynonymous mutations in the surface regions. The following three topological mutational categories were also used: intraspecific tips, intraspecific interiors, and interspecific fixed differences. The analyses reveal a significantly greater number of nonsynonymous polymorphisms within human transmembrane regions than expected based on interspecific comparisons, and they are inconsistent with a neutral equilibrium model. This pattern of excess nonsynonymous polymorphism is not seen within chimpanzees. Statistical tests of neutrality, such as TAJIMA's D test, and the D and F tests proposed by FU and LI, indicate an excess of low frequency polymorphisms in the human data, but not in the chimpanzee data. This is consistent with recent directional selection, a population bottleneck or background selection of slightly deleterious mutations in human mtDNA samples. The analyses further support the idea that mitochondrial genome evolution is governed by selective forces that have the potential to affect its use as a "neutral" marker in evolutionary and population genetic studies. PMID:9475751

  20. Sequence analysis and structural characterization of a glyceraldehyde-3-phosphate dehydrogenase gene from the phytopathogenic fungus Eremothecium ashbyi.

    Science.gov (United States)

    Sengupta, Sudeshna; Chandra, T S

    2011-02-01

    Eremothecium ashbyi is a phytopathogenic fungus infesting cotton, soybeans and several other plants. This highly flavinogenic fungus has been phylogenetically characterized, but the genetic aspects of its central metabolic and riboflavin biosynthetic pathways are unknown. An ORF of 996 bp was obtained from E. ashbyi by using degenerate primers for glyceraldehyde-3-phosphate dehydrogenase (GPD) through reverse transcriptase polymerase chain reaction (RT-PCR) and 5'-3' rapid amplification of cDNA ends (RACE-PCR). This nucleotide sequence had a high similarity of 88% with GPD sequence of Ashbya gossypii. The putative GPD peptide of 331-aa had a high similarity of 85% with the GPD sequence from other ascomycetes. The ORF had an unusually strong codon bias with 5 amino acids showing strict preference of a single codon. The theoretical molecular weight for the putative peptide was 35.58 kDa with an estimated pI of 5.7. A neighbor-joining tree showed that the putative peptide from E. ashbyi displayed the highest similarity to GPD of A. gossypii. The gene sequence is available at the GenBank, accession number EU717696. Homology modeling done with Kluyveromyces marxianus GPD (PDB: 2I5P) as template indicated high structural similarity. PMID:20820924

  1. Cloning, sequencing, and functional analysis of the 5'-flanking region of the rat 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase gene.

    Science.gov (United States)

    Lin, H K; Penning, T M

    1995-09-15

    Rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase (3 alpha-HSD/DD) is a member of the aldo-keto reductase gene superfamily. It displays high constitutive expression and inactivates circulating steroid hormones and suppresses the formation of polycyclic aromatic hydrocarbon anti- and syn-diol-epoxides (ultimate carcinogens). To elucidate mechanisms responsible for constitutive expression of the 3 alpha-HSD/DD gene a rat genomic library obtained from adult Sprague-Dawley female liver (HaeIII partial digest) was screened, using a probe corresponding to the 5'-end of the cDNA (-15 to +250), and a 15.8-kb genomic clone was isolated. Sequencing revealed that 6.3 kb contained exon 1 (+16 to +138 bp) plus additional introns and exons. The transcription start site (+1) was located by primer extension analysis, and the initiation codon, ATG, was located at +55 bp. The remaining 9.5 kb represented the 5'-flanking region of the rat 3 alpha-HSD/DD gene. A 1.6-kb fragment of this region was sequenced. A TATTTAA sequence (TATA box) was found at 33 bp upstream from the major transcription start site. cis-acting elements responsible for the constitutive expression of the rat 3 alpha-HSD/DD gene were located on the 5'-flanking region by transient transfection of reporter-gene (chloramphenicol acetyl transferase, CAT) constructs into human hepatoma cells (HepG2). CAT assays identified the basal promoter between (-199 and +55 bp), the presence of a proximal enhancer (-498 to -199 bp) which stimulated CAT activity 6-fold, the existence of a powerful silencer (-755 to -498 bp), and a strong distal enhancer (-4.0 to -2.0 kb) which increased CAT activity by 20-40-fold. A computer search of available consensus sequences for trans-acting factors revealed that a cluster of Oct-sites were uniquely located in the silencer region. Using the negative response element (-797 to -498 bp) as a probe and nuclear extracts from HepG2 cells, three bands were identified by gel mobility shift

  2. Sox3 binds to 11β-hydroxysteroid dehydrogenase gene promoter suggesting transcriptional interaction in catfish.

    Science.gov (United States)

    Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian

    2016-04-01

    In fishes, the expression of steroidogenic enzyme genes and their related transcription factors (TFs) are critical for the regulation of steroidogenesis and gonadal development. 11-KT is the potent androgen and hence, 11β-hsd, enzyme involved in 11-KT production is important. Regulation of 11β-hsd gene was never studied in any fishes. At first 11β-hsd was cloned and recombinant protein was tested for enzyme activity prior to expression and promoter motif analysis. Expression changes revealed stage- and sex-dependent increase in the ontogenic studies. Further, 11β-hsd expression was higher during spawning phase of reproductive cycle and was found to be gonadotropin inducible both in vivo and in vitro. ∼2kb of 5' upstream region of 11β-hsd, was cloned from catfish genomic DNA library and in silico promoter analysis revealed putative TF binding sites such as Sox3, Wt1, Pax2, Dmrt1 and Ad4BP/SF-1. Luciferase reporter assay using the sequential deletion constructs in human embryonic kidney and Chinese hamster ovary cells revealed considerable promoter activity of the constructs containing Sox3, but not with other motifs largely. Site-directed mutagenesis, Sox3 over expression, electrophoretic mobility shift and chromatin immunoprecipitation assays further substantiated the binding of Sox3 to its corresponding cis-acting element in the upstream promoter motif of 11β-hsd. This is the first report to show that Sox3 binds to the 11β-hsd gene promoter and transactivates to regulate male reproduction in a teleost. PMID:26772480

  3. Strong association of a common dihydropyrimidine dehydrogenase gene polymorphism with fluoropyrimidine-related toxicity in cancer patients.

    Directory of Open Access Journals (Sweden)

    Eva Gross

    Full Text Available BACKGROUND: Cancer patients carrying mutations in the dihydropyrimidine dehydrogenase gene (DPYD have a high risk to experience severe drug-adverse effects following chemotherapy with fluoropyrimidine drugs such as 5-fluorouracil (5-FU or capecitabine. The pretreatment detection of this impairment of pyrimidine catabolism could prevent serious, potentially lethal side effects. As known deleterious mutations explain only a limited proportion of the drug-adverse events, we systematically searched for additional DPYD variations associated with enhanced drug toxicity. METHODOLOGY/PRINCIPAL FINDINGS: We performed a whole gene approach covering the entire coding region and compared DPYD genotype frequencies between cancer patients with good (n = 89 and with poor (n = 39 tolerance of a fluoropyrimidine-based chemotherapy regimen. Applying logistic regression analysis and sliding window approaches we identified the strongest association with fluoropyrimidine-related grade III and IV toxicity for the non-synonymous polymorphism c.496A>G (p.Met166Val. We then confirmed our initial results using an independent sample of 53 individuals suffering from drug-adverse-effects. The combined odds ratio calculated for 92 toxicity cases was 4.42 [95% CI 2.12-9.23]; p (trendG with toxicity was particularly present in patients with gastroesophageal and breast cancer, but did not reach significance in patients with colorectal malignancies. CONCLUSION: Our results show compelling evidence that, at least in distinct tumor types, a common DPYD polymorphism strongly contributes to the occurrence of fluoropyrimidine-related drug adverse effects. Carriers of this variant could benefit from individual dose adjustment of the fluoropyrimidine drug or alternate therapies.

  4. Regulation of hexokinase and glucose-6-phosphate dehydrogenase genes expression at norm and pathology

    Directory of Open Access Journals (Sweden)

    Marunych R. Yu.

    2013-03-01

    Full Text Available The increasing of glycolysis in tumors under aerobic conditions is known as Warburg phenomenon; the activity of the pentose phosphate pathway increases also significantly. The pentose phosphate pathway and glycolysis, especially their first steps, and the regulatory enzyme 6-phosphofrukto-2-kinase/fructose-2,6-bisphosphatase are influenced by cell signaling systems such as the system of circadian clock, the system of hypoxia-inducible factor and unfolded protein response system, that allow malignant cells to adapt to stress factors such as hypoxia, ischemia and influence of low molecular agents. The review enlightens the impact of signaling systems on the key enzymes of glycolysis and the pentose phosphate pathway gene expression in normal cells and in malignant cells, and their importance for survival of malignant cells under stress conditions.

  5. Genomic clones of Aspergillus nidulans containing alcA, the structural gene for alcohol dehydrogenase and alcR, a regulatory gene for ethanol metabolism.

    Science.gov (United States)

    Doy, C H; Pateman, J A; Olsen, J E; Kane, H J; Creaser, E H

    1985-04-01

    Our aim was to obtain from Aspergillus nidulans a genomic bank and then clone a region we expected from earlier genetic mapping to contain two closely linked genes, alcA, the structural gene for alcohol dehydrogenase (ADH) and alcR, a positive trans-acting regulatory gene for ethanol metabolism. The expression of alcA is repressed by carbon catabolites. A genomic restriction fragment characteristic of the alcA-alcR region was identified, cloned in pBR322, and used to select from a genomic bank in lambda EMBL3A three overlapping clones covering 24 kb of DNA. Southern genomic analysis of wild-type, alcA and alcR mutants showed that the mutants contained extra DNA at sites near the center of the cloned DNA and are close together, as expected for alcA and alcR. Transcription from the cloned DNA and hybridization with a clone carrying the Saccharomyces cerevisiae gene for ADHI (ADC1) are both confined to the alcA-alcR region. At least one of several species of mature mRNA is about 1 kb, the size required to code for ADH. For all species, carbon catabolite repression overrides control by induction. The overall characteristics of transcription, hybridization to ADC1 and earlier work suggest that alcA consists of a number of exons and/or that the alcA-alcR region represents a cluster of alcA-related genes or sequences.

  6. Three members of the human pyruvate dehydrogenase kinase gene family are direct targets of the peroxisome proliferator-activated receptor beta/delta.

    Science.gov (United States)

    Degenhardt, Tatjana; Saramäki, Anna; Malinen, Marjo; Rieck, Markus; Väisänen, Sami; Huotari, Anne; Herzig, Karl-Heinz; Müller, Rolf; Carlberg, Carsten

    2007-09-14

    The nuclear receptors peroxisome proliferator-activated receptors (PPARs) are known for their critical role in the metabolic syndrome. Here, we show that they are direct regulators of the family of pyruvate dehydrogenase kinase (PDK) genes, whose products act as metabolic homeostats in sensing hunger and satiety levels in key metabolic tissues by modulating the activity of the pyruvate dehydrogenase complex. Mis-regulation of this tightly controlled network may lead to hyperglycemia. In human embryonal kidney cells we found the mRNA expression of PDK2, PDK3 and PDK4 to be under direct primary control of PPAR ligands, and in normal mouse kidney tissue Pdk2 and Pdk4 are PPAR targets. Both, treatment of HEK cells with PPARbeta/delta-specific siRNA and the genetic disruption of the Pparbeta/delta gene in mouse fibroblasts resulted in reduced expression of Pdk genes and abolition of induction by PPARbeta/delta ligands. These findings suggest that PPARbeta/delta is a key regulator of PDK genes, in particular the PDK4/Pdk4 gene. In silico analysis of the human PDK genes revealed two candidate PPAR response elements in the PDK2 gene, five in the PDK3 gene and two in the PDK4 gene, but none in the PDK1 gene. For seven of these sites we could demonstrate both PPARbeta/delta ligand responsiveness in context of their chromatin region and simultaneous association of PPARbeta/delta with its functional partner proteins, such as retinoidXreceptor, co-activator and mediator proteins and phosphorylated RNA polymerase II. In conclusion, PDK2, PDK3 and PDK4 are primary PPARbeta/delta target genes in humans underlining the importance of the receptor in the control of metabolism. PMID:17669420

  7. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family.

    Science.gov (United States)

    Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2012-11-01

    Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described

  8. Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells.

    Science.gov (United States)

    Izawa, Shingo; Sato, Machiko; Yokoigawa, Kumio; Inoue, Yoshiharu

    2004-11-01

    Glycerol is well known as a cryoprotectant similar to trehalose. However, there is little information about the effects of intracellular glycerol on the freeze-thaw stress tolerance of yeast. Through analysis of a quadruple-knockout mutant of glycerol dehydrogenase genes (ara1 Delta gcy1 Delta gre3 Delta ypr1 Delta) in Saccharomyces cerevisiae, we revealed that the decrease in glycerol dehydrogenase activity led to increased levels of intracellular glycerol. We also found that this mutant showed higher tolerance to freeze stress than wild type strain W303-1A. Furthermore, we demonstrated that intracellular-glycerol-enriched cells cultured in glycerol medium acquire tolerance to freeze stress and retain high leavening ability in dough even after frozen storage for 7 days. These results suggest the possibility of using intracellular-glycerol-enriched cells to develop better frozen dough. PMID:15127164

  9. Expression of aldehyde dehydrogenase 1 in colon cancer

    Institute of Scientific and Technical Information of China (English)

    Yi Hou; Yi-Yi Liu; Xiao-Kun Zhao

    2013-01-01

    Objective: To study the expression of ALDH1 in colon cancer and its clinical significance. Methods: The expression of ALDH1 was examined in 98 surgical specimens of primary colonic carcinoma and 15 normal colon tissues with immunohistochemistry method. The correlations of the expression with clinicopathological parameters and prognosis of colon cancer were analyzed.Results:The positive rate of expression of ALDH1 was 76.5% (75/98) in the cancer tissues and 13.3% (2/15) in normal colon tissues. There were an obvious statistical difference (P<0.05) between the two groups. The ALDH1 expression was significantly correlated with the histological grade, TNM stages and lymph node metastasis in colon cancer (P<0.05). It was also related with patients’ survival time, those with positive expressions had a poor prognosis (P<0.05). Conclusions: The results suggeste that the overexpression of ALDH1 plays important roles in proliferation and progression in colon cancer, the ALDH1 may be a valuable marker to predict the biological behavior and trend of metastasis of colon cancer.

  10. 乙醛脱氢酶2在糖尿病大鼠心肌缺血/再灌注损伤中的抗凋亡作用%Anti-apoptotic role of mitochondrial aldehyde dehydrogenase 2 in myocardial ischemia/reperfusion injury in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    王洪巨; 康品方; 叶红伟; 于影; 王晓梅; 高琴

    2012-01-01

    目的 观察乙醛脱氢酶2(ALDH2)在糖尿病大鼠心肌缺血/再灌注凋亡发生中的作用.方法 大鼠分为正常组、糖尿病组和ALDH2激动剂乙醇+糖尿病组.4周后行离体心肌缺血/再灌注(I/R).测定复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量.检测心肌组织细胞ALDH2、caspase-3的活性;RT-PCR测定左心室前壁心尖组织Bcl-2、Bax mRNA的表达.结果 与正常大鼠I/R相比,糖尿病大鼠复灌期冠脉流出液中LDH释放增加,心肌组织caspase-3活性增加,ALDH2活性降低,Bcl-2/Bax mRNA比值降低;与糖尿病大鼠心肌I/R相比,ALDH2激动剂乙醇使得心肌复灌期间冠脉流出液中LDH释放减少,心肌caspase,-3活性降低,ALDH2活性增高,Bcl-2/Bax mRNA比值增高.结论 增强ALDH2在糖尿病大鼠心肌中的表达对缺血/再灌注损伤有明显的保护作用;其机制可能与抑制细胞凋亡的发生有关.%Objective To evaluate the anti-apoptotic effect of aldehyde dehydrogenase 2 (ALDH2) on myocardial ischemia/ reperfusion (I/R) injury in diabetic rats. Methods Normal male SD rats were divided into normal, diabetes and ethanol (the agonist of ALDH2) + diabetes groups. In the latter two groups, diabetes was induced by an intraperitoneal injection of 55 mg/kg STZ. Four weeks after the modeling, myocardial I/R was mimicked ex vivo, and lactate dehydrogenase (LDH) content in the coronary flow was determined. The activities of caspase-3 and ALDH2 were evaluated, and the expressions of Bd-2 and Bax mRNA in the left anterior myocardium were detected using RT-PCR. Results In diabetic group, LDH release and caspase-3 activity were increased, while ALDH2 activity and Bd-2/Bax mRNA expression were decreased as compared to those in normal control group. Compared with the diabetic group, ALDH2 agonist ethanol significantly reduced LDH release and caspase-3 activity, increased ALDH2 activity and Bd-2/Bax mRNA expression. Condusion In diabetic rats, enhanced ALDH2 expression

  11. Molecular cloning and characterization of two inducible NAD⁺-adh genes encoding NAD⁺-dependent alcohol dehydrogenases from Acetobacter pasteurianus SKU1108.

    Science.gov (United States)

    Masud, Uraiwan; Matsushita, Kazunobu; Theeragool, Gunjana

    2011-11-01

    The cytosolic NAD⁺-dependent alcohol dehydrogenases (NAD⁺-ADHs) are induced in the quinoprotein ADH-(PQQ-ADH) defective Acetobacter pasteurianus SKU1108 mutant during growth in an ethanol medium. The adhI and adhII genes, which encode NAD⁺-ADH I and ADH II, respectively, of this strain have been cloned and characterized. Sequence analyses have revealed that the adhI gene consists of 1029 bp coding for 342 amino acids, which share 99.71% identity with the same protein from A. pasteurianus IFO 3283. Conversely, the adhII gene is composed of 762 bp encoding for a polypeptide of 253 amino acids, which exhibit 99.60% identity with the A. pasteurianus IFO 3283 protein. ADH I is a member of the group I Zn-dependent long-chain ADHs, while the ADH II belongs to the group II short-chain dehydrogenase/reductase NAD⁺-ADHs. The NAD⁺-adh gene disruptants exhibited a growth reduction when grown in an ethanol medium. In Escherichia coli, ethanol induced adhI and adhII promoter activities by approximately 1.5 and 2.0 times, respectively, and the promoter activity of the adhII gene exceeded that of the adhI gene by approximately 3.5 times. The possible promoter regions of the adhI and adhII genes are located at approximately 81-105 bp and 74-92 bp, respectively, from their respective ATG start codons. Their repressor regions might be located in proximity to these promoters and may repress gene expression in the wild-type, where the membrane-bound ADH effectively functions.

  12. Selective Enzymatic Reduction of Aldehydes

    Directory of Open Access Journals (Sweden)

    Patrizia Di Gennaro

    2006-05-01

    Full Text Available Highly selective enzymatic reductions of aldehydes to the corresponding alcohols was performed using an E. coli JM109 whole cell biocatalyst. A selective enzymatic method for the reduction of aldehydes could provide an eco-compatible alternative to chemical methods. The simplicity, fairly wide scope and the very high observed chemoselectivity of this approach are its most unique features.

  13. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome

    DEFF Research Database (Denmark)

    Banner, Jytte; Gregersen, N; Kølvraa, S;

    1993-01-01

    syndrome is still a matter of controversy. The present study investigated 120 well-defined cases of sudden infant death syndrome in order to detect the frequency of the most common disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase (G985) compared with the frequency...... in the general population. A highly specific polymerase chain reaction assay was applied on dried blood spots. No over-representation of homo- or heterozygosity for G985 appears to exist in such a strictly defined population, for which reason it may be more relevant to look at a broader spectrum of clinical...

  14. 植物肉桂醇脱氢酶及其基因研究进展%Research Progress of Cinnamyl Alcohol Dehydrogenase and Its Gene

    Institute of Scientific and Technical Information of China (English)

    张鲁斌; 谷会; 弓德强; 常金梅

    2011-01-01

    肉桂醇脱氢酶(cinnamyl alcohol dehydrogenase,CAD)作为植物次生代谢特别是木质素合成的关键酶,与植物生长发育和抵御病原菌入侵关系密切,研究CAD基因表达调控及其与组织木质化的关系具有重要的植物生理学意义.该文综述了植物CAD的蛋白特征、酶学性质、基因分布和分类、基因结构和表达调控以及CAD表达与木质素合成的关系,为研究CAD在植物生长发育和抗病中的作用提供理论指导.%As a critical enzyme in secondary metabolism of plants,especially in the important reaction of the biosynthesis of lignin,cinnamyl alcohol dehydrogenase (CAD) has the close relationship with plant development and resistance pathogen invasion. It has the significant biological meaning to research the CAD gene expression and regulation and related lignification. The molecular structure,enzymatic characters,gene distribution and classification,gene structure and expression regulation of CAD, and the relationships lignification in plants were reviewed,in order to provide a theoretical guidance for the study of CAD in plant development and disease resistant.

  15. Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000.

    Science.gov (United States)

    Elkhalfi, Bouchra; Araya-Garay, José Miguel; Rodríguez-Castro, Jorge; Rey-Méndez, Manuel; Soukri, Abdelaziz; Serrano Delgado, Aurelio

    2013-06-01

    The gammaproteobacterium Pseudomonas syringae pv. tomato DC3000 is the causal agent of bacterial speck, a common disease of tomato. The mode of infection of this pathogen is not well understood, but according to molecular biological, genomic and proteomic data it produces a number of proteins that may promote infection and draw nutrients from the plant. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major enzyme of carbon metabolism that was reported to be a surface antigen and virulence factor in other pathogenic microorganisms, but its possible role in the infection process of P. syringae has so far not been studied. Whole-genome sequence analyses revealed the occurrence in this phytopathogenic bacterium of three paralogous gap genes encoding distinct GAPDHs, namely two class I enzymes having different molecular mass subunits and one class III bifunctional D-erythrose-4-phosphate dehydrogenase/GAPDH enzyme. By using genome bioinformatics data, as well as alignments of both DNA and deduced protein sequences, the three gap genes of P. syringae were one-step cloned with a His-Tag in pET21a vector using a PCR-based strategy, and its expression optimized in Escherichia coli BL21 to achieve high yield of the heterologous proteins. In accordance with their distinct molecular phylogenies, these bacterial gap genes encode functional GAPDHs of diverse molecular masses and nicotinamide-coenzyme specificities, suggesting specific metabolic and/or cellular roles. PMID:23507306

  16. Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Vianey-Saban, C;

    1996-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) is one of four straight-chain acyl-CoA dehydrogenase (ACD) enzymes, which are all nuclear encoded mitochondrial flavoproteins catalyzing the initial step in fatty acid beta-oxidation. We have used the very fast, Rapid Amplification of cDNA Ends (RACE......) based strategy to obtain the sequence of cDNAs encoding human VLCAD from placenta and fibroblasts. Alignment of the predicted amino acid sequence of human VLCAD with those of the other human ACD enzymes revealed extensive sequence homology. Moreover, human VLCAD and human acyl-CoA oxidase showed...... extensive sequence homology corroborating the notion that these genes are evolutionarily related. Southern blot analysis of genomic DNA from hybrid cell lines was used to localize the VLCAD gene to human chromosome 17p11.2-p11.13105. Using Northern and Western blot analysis to investigate the tissue...

  17. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    Science.gov (United States)

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  18. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66

    OpenAIRE

    Muhammad Naveed; Iftikhar Ahmed; Nauman Khalid; Abdul Samad Mumtaz

    2014-01-01

    Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and roo...

  19. Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage.

    Science.gov (United States)

    Sivapragasam, Smitha; Grove, Anne

    2016-05-01

    The gene encoding Streptomyces coelicolor xanthine dehydrogenase regulator (XdhR) is divergently oriented from xdhABC, which encodes xanthine dehydrogenase (Xdh). Xdh is required for purine salvage pathways. XdhR was previously shown to repress xdhABC expression. We show that XdhR binds the xdhABC-xdhR intergenic region with high affinity (Kd ∼ 0.5 nM). DNaseI footprinting reveals that this complex formation corresponds to XdhR binding the xdhR gene promoter at two adjacent sites; at higher protein concentrations, protection expands to a region that overlaps the transcriptional and translational start sites of xdhABC. While substrates for Xdh have little effect on DNA binding, GTP and ppGpp dissociate the DNA-XdhR complex. Progression of cells to stationary phase, a condition associated with increased (p)ppGpp production, leads to elevated xdhB expression; in contrast, inhibition of Xdh by allopurinol results in xdhB repression. We propose that XdhR is a direct target of (p)ppGpp, and that expression of xdhABC is upregulated during the stringent response to promote purine salvage pathways, maintain GTP homeostasis and ensure continued (p)ppGpp synthesis. During exponential phase growth, basal levels of xdhABC expression may be achieved by GTP serving as a lower-affinity XdhR ligand.

  20. Alcohol, Aldehydes, Adducts and Airways.

    Science.gov (United States)

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  1. Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions.

    Science.gov (United States)

    Sung, Chang-Keun; Kim, Seung-Mi; Oh, Chang-Jin; Yang, Sun-A; Han, Byung-Hee; Mo, Eun-Kyoung

    2012-07-01

    The present study, taraxerone (d-friedoolean-14-en-3-one) was isolated from Sedum sarmentosum with purity 96.383%, and its enhancing effects on alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were determined: EC(50) values were 512.42 ± 3.12 and 500.16 ± 3.23 μM for ADH and ALDH, respectively. In order to obtain more information on taraxerone related with the alcohol metabolism, 40% ethanol (5 mL/kg body weight) with 0.5-1mM of taraxerone were administered to mice. The plasma alcohol and acetaldehyde concentrations of taraxerone-treated groups were significantly lowered than those of the control group (p<0.01): approximately 20-67% and 7-57% lowered for plasma alcohol and acetaldehyde, respectively. Compare to the control group, the ADH and ALDH expressions in the liver tissues were abruptly increased in the taraxerone-treated groups after ethanol exposure. In addition, taraxerone prevented catalase, superoxide dismutase, and reduced glutathione concentrations from the decrease induced by ethanol administration with the concentration dependent manner.

  2. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    Science.gov (United States)

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  3. Cloning and Sequence Analysis of a Glucose-6-Phosphate Dehydrogenase Gene PsG6PDH from Freezing-tolerant Populus suaveolens

    Institute of Scientific and Technical Information of China (English)

    Lin Yuan-zhen; Lin Shan-zhi; Zhang Wei; Zhang Qian; Zhang Zhi-yi; Guo Huan

    2005-01-01

    A 1207 hp cDNA fragment (PsG6PDH) was amplified by PT-PCR from cold-induced total Pna of the freexing-tolerant P. Suaveolens, using primers based on the highly comserved region of published plant glucose-6-phosphate dehydrogenase (G6PDH)genes. The sepuence analysis showed that PsG6PDH coding region had 1 101 bp and encoded 367 predicted aminoacid residues. Moreover, the nucleotide sequence of psG6PDH showed 83%,82%,79%,79% and 78% identity, and the derived amino acid sequence shared 44.2%,44.7%,42.0%,40.5% and 43.9% identity with those of the Solanum tuberosum, Nicotiana tabacum, Triticum aestivum, Oryxa sativa and Arabidopsis thaliana, respectively. The results show that PsG6PDH is a new member of G6PDH gene family and belongs to cytosolic G6PDH gene. This is the first report on clonign of the G6PDH gene from woody plants.

  4. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    Science.gov (United States)

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.

  5. KLF15 Is a Transcriptional Regulator of the Human 17β-Hydroxysteroid Dehydrogenase Type 5 Gene. A Potential Link between Regulation of Testosterone Production and Fat Stores in Women

    OpenAIRE

    Du, Xiaofei; Rosenfield, Robert L.; Qin, Kenan

    2009-01-01

    Context: Kruppel-like factor 15 (KLF15) is a newly discovered transcription factor that plays an important role in glucose homeostasis and lipid accumulation in cells. We present evidence for KLF15 as a transcriptional regulator of the human 17β-hydroxysteroid dehydrogenase type 5 gene (HSD17B5) and its potential role in the pathogenesis of hyperandrogenism.

  6. Experimentally increased codon bias in the Drosophila Adh gene leads to an increase in larval, but not adult, alcohol dehydrogenase activity.

    Science.gov (United States)

    Hense, Winfried; Anderson, Nathan; Hutter, Stephan; Stephan, Wolfgang; Parsch, John; Carlini, David B

    2010-02-01

    Although most amino acids can be encoded by more than one codon, the synonymous codons are not used with equal frequency. This phenomenon is known as codon bias and appears to be a universal feature of genomes. The translational selection hypothesis posits that the use of optimal codons, which match the most abundant species of isoaccepting tRNAs, results in increased translational efficiency and accuracy. Previous work demonstrated that the experimental reduction of codon bias in the Drosophila alcohol dehydrogenase (Adh) gene led to a significant decrease in ADH protein expression. In this study we performed the converse experiment: we replaced seven suboptimal leucine codons that occur naturally in the Drosophila melanogaster Adh gene with the optimal codon. We then compared the in vivo ADH activities imparted by the wild-type and mutant alleles. The introduction of optimal leucine codons led to an increase in ADH activity in third-instar larvae. In adult flies, however, the introduction of optimal codons led to a decrease in ADH activity. There is no evidence that other selectively constrained features of the Adh gene, or its rate of transcription, were altered by the synonymous replacements. These results are consistent with translational selection for codon bias being stronger in the larval stage and suggest that there may be a selective conflict over optimal codon usage between different developmental stages.

  7. Performance of Glutamate Dehydrogenase and Triose Phosphate Isomerase Genes in the Analysis of Genotypic Variability of Isolates of Giardia duodenalis from Livestocks

    Directory of Open Access Journals (Sweden)

    Natália M. N. Fava

    2013-01-01

    Full Text Available Giardia duodenalis is a small intestinal protozoan parasite of several terrestrial vertebrates. This work aims to assess the genotypic variability of Giardia duodenalis isolates from cattle, sheep and pigs in the Southeast of Brazil, by comparing the standard characterization between glutamate dehydrogenase (gdh and triose phosphate isomerase (tpi primers. Fecal samples from the three groups of animals were analyzed using the zinc sulphate centrifugal flotation technique. Out of 59 positive samples, 30 were from cattle, 26 from sheep and 3 from pigs. Cyst pellets were stored and submitted to PCR and nested-PCR reactions with gdh and tpi primers. Fragment amplification of gdh and tpi genes was observed in 25 (42.4% and 36 (61.0% samples, respectively. Regarding the sequencing, 24 sequences were obtained with gdh and 20 with tpi. For both genes, there was a prevalence of E specific species assemblage, although some isolates have been identified as A and B, by the tpi sequencing. This has also shown a larger number of heterogeneous sequences, which have been attribute to mixed infections between assemblages B and E. The largest variability of inter-assemblage associated to the frequency of heterogeneity provided by tpi sequencing reinforces the polymorphic nature of this gene and makes it an excellent target for studies on molecular epidemiology.

  8. Byssochlamys nivea with patulin-producing capability has an isoepoxydon dehydrogenase gene (idh) with sequence homology to Penicillium expansum and P. griseofulvum.

    Science.gov (United States)

    Dombrink-Kurtzman, Mary Ann; Engberg, Amy E

    2006-09-01

    Nucleotide sequences of the isoepoxydon dehydrogenase gene (idh) for eight strains of Byssochlamys nivea were determined by constructing GenomeWalker libraries. A striking finding was that all eight strains of B. nivea examined had identical nucleotide sequences, including those of the two introns present. The length of intron 2 was nearly three times the size of introns in strains of Penicillium expansum and P. griseofulvum, but intron 1 was comparable in size to the number of nucleotides present in introns 1 and 2 of P. expansum and P. griseofulvum. A high degree of amino acid homology (88%) existed for the idh genes of the strains of B. nivea when compared with sequences of P. expansum and P. griseofulvum. There were many nucleotide differences present, but they did not affect the amino acid sequence because they were present in the third position. The identity of the B. nivea isolates was confirmed by sequencing the ITS/partial LSU (28 S) rDNA genes. Four B. nivea strains were analysed for production of patulin, a mycotoxin found primarily in apple juice and other fruit products. The B. nivea strains produced patulin in amounts comparable to P. expansum strains. Interest in the genus Byssochlamys is related to the ability of its ascospores to survive pasteurization and cause spoilage of heat-processed fruit products worldwide.

  9. Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: Null mutations in the PDHX gene associated with unusual expression of the testis-specific PDHA2 gene in her somatic cells

    OpenAIRE

    Pinheiro, Ana; Silva, Maria João; Pavlu-Pereira, Hana; Florindo, Cristina; Barroso, Madalena; Marques, Bárbara; Correia, Hildeberto; Oliveira, Anabela; Gaspar, Ana; Tavares de Almeida, Isabel; Rivera, Isabel

    2016-01-01

    Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and s...

  10. Pyruvate dehydrogenase kinase 2 and 4 gene deficiency attenuates nociceptive behaviors in a mouse model of acute inflammatory pain.

    Science.gov (United States)

    Jha, Mithilesh Kumar; Rahman, Md Habibur; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Lee, Won-Ha; Suk, Kyoungho

    2016-09-01

    Pyruvate dehydrogenase (PDH) kinases (PDKs) 1-4, expressed in peripheral and central tissues, regulate the activity of the PDH complex (PDC). The PDC is an important mitochondrial gatekeeping enzyme that controls cellular metabolism. The role of PDKs in diverse neurological disorders, including neurometabolic aberrations and neurodegeneration, has been described. Implications for a role of PDKs in inflammation and neurometabolic coupling led us to investigate the effect of genetic ablation of PDK2/4 on nociception in a mouse model of acute inflammatory pain. Deficiency in Pdk2 and/or Pdk4 in mice led to attenuation of formalin-induced nociceptive behaviors (flinching, licking, biting, or lifting of the injected paw). Likewise, the pharmacological inhibition of PDKs substantially diminished the nociceptive responses in the second phase of the formalin test. Furthermore, formalin-provoked paw edema formation and mechanical and thermal hypersensitivities were significantly reduced in Pdk2/4-deficient mice. Formalin-driven neutrophil recruitment at the site of inflammation, spinal glial activation, and neuronal sensitization were substantially lessened in the second or late phase of the formalin test in Pdk2/4-deficient animals. Overall, our results suggest that PDK2/4 can be a potential target for the development of pharmacotherapy for the treatment of acute inflammatory pain. © 2016 Wiley Periodicals, Inc. PMID:26931482

  11. Polymorphisms of dihydropyrimidine dehydrogenase gene and clinical outcomes of gastric cancer patients treated with fluorouracil-based adjuvant chemotherapy in Chinese population

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ping; LU Zu-hong; TONG Na; ZHANG Zheng-dong; XU Pei-pei; PENG Miao-xin; ZHANG Wen-jing; WANG Shuai; BAI Zhi-bin; CHEN Bao-an; FENG Ji-feng; YAN Feng; JIANG Zhi; ZHONG Yue-jiao; WU Jian-zhong; CHEN Lu

    2012-01-01

    Background Dihydropyrimidine dehydrogenase (DPD),a key enzyme involved in the catabolism of 5-fluorouracil (5-FU),is the attractive candidate for pharmacogenetic research on efficacies and toxicities of 5-FU.The aim of this study is to explore the association between polymorphisms of dihydropyrimidine dehydrogenase gene (DPYD) and clinical outcomes of gastric cancer patients treated with fluorouracil-based adjuvant chemotherapy in the Chinese population.Methods Three hundred and sixty-two patients with gastric cancer in the Chinese population were treated with fluorouracil-based adjuvant chemotherapy.The single nucleotide polymorphic genotypes of DPYD were determined by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) using DNA samples isolated from peripheral blood collected before treatment.Results The average response rate for chemotherapy was 46.7%.A significantly different distribution of the rs1801159 (x2=8.76,P=0.012) genotypes was observed.Homozygous genotype rs1801159A/A was over-represented in responsive patients.Conversely,carriers of the rs1801159A/G genotype were prevalent in non-responsive patients.In the haplotype association analysis,there was significant difference in global haplotype distribution between the groups (x2=3.96,P=0.0465).Conclusions These results suggest that polymorphisms of rs1801159 in DPYD may be used as valuable predictors of the response to fluorouracil-based chemotherapy for gastric cancer patients in the Chinese population.Well-designed,comprehensive,and prospective studies on determining these polymorphisms of DPYD as predictive markers for gastric cancer in response to fluorouracil-based therapies are warranted.

  12. The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors

    DEFF Research Database (Denmark)

    Husemoen, Lise Lotte Nystrup; Fenger, Mogens; Friedrich, Nele;

    2008-01-01

    . In a Caucasian population, we examined the association of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genetic variants with alcohol drinking habits, biomarkers of alcohol exposure, and risk factors for cardiovascular disease. METHODS: The study population consisted of 1,216 Danish men and women......-MCV), and lipids]. ADH and ALDH gene variants were determined by standard techniques. Data were analyzed by regression analyses adjusted for relevant confounders. RESULTS: Self-reported alcohol drinking was significantly associated with increasing levels of ALAT, E-MCV, high-density lipoprotein cholesterol...

  13. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  14. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function.The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabitis elegans with notable improvements in reproduction, whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression.We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals and without affecting their respiration rate and ATP content.We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g. NDUFV1, NDUFS1, NDUFS6, NDUFS8 or GRIM-19 human orthologs in wild type animals is significantly reduced in the Ndi1p expressing worm.All together these results open up the perspective to identify new genes involved in complex I function, assembly or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

  15. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  16. Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Guangming, E-mail: zgming@hnu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li Zhen, E-mail: happylizhen@yeah.ne [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Tang Lin; Wu Mengshi; Lei Xiaoxia; Liu Yuanyuan; Liu Can; Pang Ya; Zhang Yi [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2011-05-01

    Highlights: > Gold nanoparticles/multiwalled carbon nanotubes/poly (1,5-naphthalenediamine) modified electrode was fabricated. > The sensor was applied for the detection of cellobiose dehydrogenase genes. > An effective method to distribute MWCNTs and attach to the electrode was proposed. > The composite films greatly improved the sensitivity and enhanced the DNA immobilization. > The DNA biosensor exhibited fairly high sensitivity and quite low detection limit. - Abstract: An electrochemical sensor based on gold nanoparticles (GNPs)/multiwalled carbon nanotubes (MWCNTs)/poly (1,5-naphthalenediamine) films modified glassy carbon electrode (GCE) was fabricated. The effectiveness of the sensor was confirmed by sensitive detection of cellobiose dehydrogenase (CDH) gene which was extracted from Phanerochaete chrysosporium using polymerase chain reaction (PCR). The monomer of 1,5-naphthalenediamine was electropolymerized on the GCE surface with abundant free amino groups which enhanced the stability of MWCNTs modified electrode. Congo red (CR)-functionalized MWCNTs possess excellent conductivity as well as high solubility in water which enabled to form the uniform and stable network nanostructures easily and created a large number of binding sites for electrodeposition of GNPs. The continuous GNPs together with MWCNTs greatly increased the surface area, conductivity and electrocatalytic activity. This electrode structure significantly improved the sensitivity of sensor and enhanced the DNA immobilization and hybridization. The thiol modified capture probes were immobilized onto the composite films-modified GCE by a direct formation of thiol-Au bond and horseradish peroxidase-streptavidin (HRP-SA) conjugates were labeled to the biotinylated detection probes through biotin-streptavidin bond. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the film assembly and DNA hybridization processes

  17. Acute hyperglycemia exacerbates myocardial ischemia/reperfusion injury by inhibiting aldehyde dehydrogenase 2 activity in rats%急性高血糖通过抑制 ALDH2活性加重大鼠心肌缺血/再灌注损伤

    Institute of Scientific and Technical Information of China (English)

    李明华; 王甲莉; 徐峰; 袁秋环; 刘宝山; 庞佼佼; 张运; 陈玉国

    2015-01-01

    及心肌细胞凋亡。%Objective To investigate the activity changes and actions of aldehyde dehydrogenase 2 (ALDH2)in myocardial ischemia/reperfusion injury exacerbated by acute hyperglycemia.Methods A total of 48 male Wistar rats were randomly divided into 4 groups:sham operation (SHAM)group,normal saline control (CON)group,high blood glucose (HG)group,and HG with Alda-1 administration (HG +Alda-1)group,with 12 animals in each group. The left anterior descending artery (LAD)was occluded for 30 minutes followed by 1 hour reperfusion to establish my-ocardial ischemia-reperfusion rat models.Acute hyperglycemia rat models were established via jugular vein injection of 50% glucose (3 g /kg)during the ischemia period.Blood glucose levels were maintained at 20-28 mmol/L throughout the experiment by administration of glucose with trace pumping[4 mL/(kg·h)]during ischemia and reperfusion peri-od.The rats in CON group and HG +Alda-1 group were given normal saline (6 mL/kg).The rats in HG +Alda-1 group were given Alda-1 (8.5 mg /kg)with trace pumping during ischemia and reperfusion.After reperfusion,ALDH2 activity of heart was detected with colorimetric method,changes of myocardial tissue morphology were observed with HE staining,myocardial infarction size was determined with TTC staining,and myocardial cell apoptosis was tested with TUNEL method.Results Blood glucose level was significantly increased in HG group compared with that of CON group [(23.4 ±0.21 )vs (5.8 ±0.21 )mmol/L,P <0.01 ].Compared with CON group,the activity of ALDH2 in HG group was markedly decreased [(69.1 ±5.16)% vs (87.0 ±4.30)%,P <0.05].Myocardial infarct size of HG group was remarkably increased compared with the CON group [(38.2 ±3.30)% vs (26.8 ±2.53)%, P <0.05].Compared with HG group,myocardial infarct size of HG +Alda-1 group was notedly decreased [(27.8 ± 2.50)% vs (38.2 ±3.30)%,P <0.05].Myocardial apoptosis index of HG group was significantly higher than that of CON group [(16.1 ±0.83)% vs (13.1 ±0.39)%,P <0

  18. 急性高血糖通过抑制 ALDH2活性加重大鼠心肌缺血/再灌注损伤%Acute hyperglycemia exacerbates myocardial ischemia/reperfusion injury by inhibiting aldehyde dehydrogenase 2 activity in rats

    Institute of Scientific and Technical Information of China (English)

    李明华; 王甲莉; 徐峰; 袁秋环; 刘宝山; 庞佼佼; 张运; 陈玉国

    2015-01-01

    Objective To investigate the activity changes and actions of aldehyde dehydrogenase 2 (ALDH2)in myocardial ischemia/reperfusion injury exacerbated by acute hyperglycemia.Methods A total of 48 male Wistar rats were randomly divided into 4 groups:sham operation (SHAM)group,normal saline control (CON)group,high blood glucose (HG)group,and HG with Alda-1 administration (HG +Alda-1)group,with 12 animals in each group. The left anterior descending artery (LAD)was occluded for 30 minutes followed by 1 hour reperfusion to establish my-ocardial ischemia-reperfusion rat models.Acute hyperglycemia rat models were established via jugular vein injection of 50% glucose (3 g /kg)during the ischemia period.Blood glucose levels were maintained at 20-28 mmol/L throughout the experiment by administration of glucose with trace pumping[4 mL/(kg·h)]during ischemia and reperfusion peri-od.The rats in CON group and HG +Alda-1 group were given normal saline (6 mL/kg).The rats in HG +Alda-1 group were given Alda-1 (8.5 mg /kg)with trace pumping during ischemia and reperfusion.After reperfusion,ALDH2 activity of heart was detected with colorimetric method,changes of myocardial tissue morphology were observed with HE staining,myocardial infarction size was determined with TTC staining,and myocardial cell apoptosis was tested with TUNEL method.Results Blood glucose level was significantly increased in HG group compared with that of CON group [(23.4 ±0.21 )vs (5.8 ±0.21 )mmol/L,P <0.01 ].Compared with CON group,the activity of ALDH2 in HG group was markedly decreased [(69.1 ±5.16)% vs (87.0 ±4.30)%,P <0.05].Myocardial infarct size of HG group was remarkably increased compared with the CON group [(38.2 ±3.30)% vs (26.8 ±2.53)%, P <0.05].Compared with HG group,myocardial infarct size of HG +Alda-1 group was notedly decreased [(27.8 ± 2.50)% vs (38.2 ±3.30)%,P <0.05].Myocardial apoptosis index of HG group was significantly higher than that of CON group [(16.1 ±0.83)% vs (13.1 ±0.39)%,P

  19. Identification of a new human mtDNA polymorphism (A14290G in the NADH dehydrogenase subunit 6 gene

    Directory of Open Access Journals (Sweden)

    M. Houshmand

    2006-06-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity. The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid. We looked for base conservation using DNA star software (MEGALIGN program as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%. This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.

  20. Cloning, Sequencing and Characterization of 3-Hydroxybuty- rate Dehydrogenase Encoding Gene (bdh A) in Bradyrhizobium japonicum USDA110 Strain

    Institute of Scientific and Technical Information of China (English)

    DAI Mei-xue; WU Bo; BAI Xue-liang; ZHANG Cheng-gang; MA Qing-sheng; Charles Trevor C

    2002-01-01

    The current study describes the molecular characterization of a clone which can restore the ability of bdhA mutant strains NGRPA2 and Rm11107 to utilize 3-hydroxybutyrate as a sole carbon source (Hbu+). This clone was screened out by complementation experiment from Bradyrhizobium japonicum USDA110 genomic library, and the presence of bdhA gene in the clone was verified by Bdh assay and Southern blot analysis. Furthermore, the entire sequence of bdhA gene was sequenced and the sequence was deposited in GenBank database under the accession number AY077581. bdhA gene comprises 789 base pairs and encodes Bdh with 262 amino acid of MW 27.59 kDa. Interposon ΩKm was inserted into the bdh A ORF at EcoR I site and the bdhA mutant was constructed in B .japonicum by homologous recombination. Plant assay result did not show obvious effects of mutation of bdhA gene on nodulation and nitrogen-fixation.

  1. Synthesis of 5'-Aldehyde Oligonucleotide.

    Science.gov (United States)

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  2. High Level Expression of Glucose-6-phosphate Dehydrogenase Gene PsG6PDH from Populus suaveolens in E. coli

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the functions of the gene PsG6PDH and the mechanisms underlying freezing tolerance of Populus suaveolens, the recombinant expression vector pET-G (pET30a-G6PDH), which contained full encoding region of PsG6PDH gene, was established. The recombinant was identified by lawn-PCR and double enzyme digestion and then transformed into expression host XA90 and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 100 kD polypeptide of G6PDH fusion protein. The results showed that the expressed amount of the fusion protein culminated after 1 mmol·L-1 IPTG treatment for 4 h and that pET-G product was predominately soluble and not extra-cellular secreting.

  3. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Knudsen, Jan Dines; Johanson, Ted; Eliasson Lantz, Anna;

    2015-01-01

    by placing it in strains with different ability to reoxidise NADH, and applying different environmental conditions. Flow cytometric analysis of reporter strains expressing green fluorescent protein (GFP) under the control of the GPD2 promoter was used to determine the promoter activity at the single...... mapping revealed conditions where the GPD2 promoter was either completely inactive or hyperactive, which has implications for its implementation in future biotechnological applications such as for process control of heterologous gene expression....

  4. Cloning and Expression of S-mandelate Dehydrogenase Gene%S-扁桃酸脱氢酶基因的克隆及表达

    Institute of Scientific and Technical Information of China (English)

    曾贞; 杨军方; 杨成丽; 王鹏; 李大力

    2012-01-01

    S-mandelate dehydrogenase ( SMDH) can catalyze S-mandelic acid to benzoylformic acid. The SMDH nucleotide gene (mdlA) was cloned from DNA of Pseudomonas putida NUST by PCR, and the amplicon was inserted into prokaryotic expression vector pET-30a ( + ). This recombinant was transformed into E. Coli BL21 (DE3) and then highly expressed by induction of IPTG. The result of SDS-PAGE showed that the molecular weight of cloned SMDH was about 43kDa. The recombinant strain could catalyze S-mandelate to benzoylformic acid.%S-扁桃酸脱氢酶能够选择性催化S-扁桃酸生成苯甲酰甲酸.通过PCR扩增获得Pseudomonas putida NUST的S-扁桃酸脱氢酶全长基因(mdlA),并构建了表达载体pET30a(+)-mdlA,转化大肠杆菌E coli BL21 (DE3)后,经异丙基-β-D-硫代吡喃半乳糖苷(IPTG)诱导获得表达,SDS-PAGE结果显示表达蛋白为43kDa.所以工程菌细胞具有转化S-扁桃酸生成苯甲酰甲酸能力.

  5. A Phytophthora sojae gene of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induced in host infection and its anti-oxidative function in yeast

    Institute of Scientific and Technical Information of China (English)

    ZENG Juan; WANG Yuanchao; SHEN Gui; ZHENG Xiaobo

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein well defined in eukaryotes, especially in mammalian and Saccharomyces cerevisiae. Using the method of suppression subtractive hybridization (SSH), we identified a Phytophthora sojae cDNA coding GAPDH, which was up-regulated during the early stage of soybean infection. The termed PsGapdh gene possessed three copies in the P. sojae genome. Its amino acid sequence harbored overall conserved domain of GADPH, homologous closest to GapC1 of Achlya bisexualis (oomycete) and adjoined to GapC2s of Odontella sinensis and Phaeodactylum tricornutum (diatom), on the C-Ⅱbranch of subfamily GapC in phylogeny tree of GAPDH. The transcriptional level of PsGapdh was up-regulated throughout early infection. Heterogenous expression of PsGapdh in the yeast tdh1-deleted mutant could rescue growth arrest under continuous exposure to H2O2. These results indicated active roles of PsGapdh in pathogen-host interaction and anti-oxidation.

  6. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.

    Science.gov (United States)

    Lee, Won-Heong; Park, Jin-Byung; Park, Kyungmoon; Kim, Myoung-Dong; Seo, Jin-Ho

    2007-08-01

    Whole-cell conversion of cyclohexanone to epsilon-caprolactone was attempted by recombinant Escherichia coli BL21(DE3) expressing cyclohexanone monooxygenase (CHMO) of Acinetobacter calcoaceticus NCIMB 9871. High concentrations of cyclohexanone and epsilon-caprolactone reduced CHMO-mediated bioconversion of cyclohexanone to epsilon-caprolactone in the resting recombinant E. coli cells. Metabolically active cells were employed by adopting a fed-batch culture to improve the production of epsilon-caprolactone from cyclohexanone. A glucose-limited fed-batch Baeyer-Villiger oxidation where a cyclohexanone level was maintained less than 6 g/l resulted in a maximum epsilon-caprolactone concentration of 11.0 g/l. The maximum epsilon-caprolactone concentration was improved further to 15.3 g/l by coexpression of glucose-6-phosphate dehydrogenase, an NADPH-generating enzyme encoded by the zwf gene which corresponded to a 39% enhancement in epsilon-caprolactone concentration compared with the control experiment performed under the same conditions.

  7. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas

    Science.gov (United States)

    Chung, Taemoon; Na, Juri; Kim, Young-il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy. PMID:27446484

  8. A recombinant plasmid of composite cysteine proteinase inhibitor/glyceraldehyde-3-phosphate dehydrogenase gene of periodic Brugia malayi functions on DNA immunity in the host

    Directory of Open Access Journals (Sweden)

    Z Fang

    2016-01-01

    Full Text Available Objectives: Both cysteine proteinase inhibitors (CPIs and glyceraldehyde-3-phosphate dehydrogenase (GAPDH play important roles in the pathogenesis of parasites and their relationship with the hosts. We constructed a new eukaryotic recombinant expression plasmid pcDNA3.1(+-BmCPI/BmGAPDH of periodic Brugia malayi for investigation of the DNA vaccine-elicited immune responses. Materials and Methods: We cloned a gene encoding the CPIs and GAPDH from periodic B. malayi into vector pcDNA3.1. The composited plasmid or the control was injected into the tibialis anterior muscle of the hind leg in BALB/c mice, respectively. The target genes were detected by reverse transcription-polymerase chain reaction in muscle tissues. The stimulation index (SI of T-lymphocyte proliferation and the levels of interferon-gamma (INF-g and interleukin-4 ( IL-4 in serum were detected by thiazolyl blue tetrazolium blue and enzyme-linked immunosorbent assays. Results: The pcDNA3.1(+-BmCPI/BmGAPDH was amplified from muscle tissues of the mice after immunisation. The SI of the immunised group was significantly higher than that of the two control groups (P < 0.05. The levels of INF-g and IL-4 of pcDNA3.1(+-BmCPI/BmGAPDH group were both higher than those of the two control groups (P < 0.05. The level of INF-g of pcDNA3.1(+-BmCPI/BmGAPDH group was significantly higher than that of pcDNA3.1(+-BmCPI/CpG group (P < 0.05. Conclusions: We conclude that the recombinant plasmid pcDNA3.1(+-BmCPI/BmGAPDH could elicit specific humoural and cellular immune responses in mice.

  9. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G;

    1993-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a serious and potentially fatal inherited defect in the beta-oxidation of fatty acids. Approximately 80% of patients with MCAD deficiency are homozygous for a single disease-causing mutation (G985). The remaining patients (except for a few...... tested in the PCR-based assay. The T157 mutation was identified in one of these families, which had an MCAD-deficient child who died unexpectedly in infancy. Our results indicate that the mutation is rare. It is, however, noteworthy that a homologous mutation has previously been identified in the short...

  10. The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr.

    Science.gov (United States)

    Carlini, D B; Chen, Y; Stephan, W

    2001-01-01

    To gain insights into the relationship between codon bias, mRNA secondary structure, third-codon position nucleotide distribution, and gene expression, we predicted secondary structures in two related drosophilid genes, Adh and Adhr, which differ in degree of codon bias and level of gene expression. Individual structural elements (helices) were inferred using the comparative method. For each gene, four types of randomization simulations were performed to maintain/remove codon bias and/or to maintain or alter third-codon position nucleotide composition (N3). In the weakly expressed, weakly biased gene Adhr, the potential for secondary structure formation was found to be much stronger than in the highly expressed, highly biased gene Adh. This is consistent with the observation of approximately equal G and C percentages in Adhr ( approximately 31% across species), whereas in Adh the N3 distribution is shifted toward C (42% across species). Perturbing the N3 distribution to approximately equal amounts of A, G, C, and T increases the potential for secondary structure formation in Adh, but decreases it in Adhr. On the other hand, simulations that reduce codon bias without changing N3 content indicate that codon bias per se has only a weak effect on the formation of secondary structures. These results suggest that, for these two drosophilid genes, secondary structure is a relatively independent, negative regulator of gene expression. Whereas the degree of codon bias is positively correlated with level of gene expression, strong individual secondary structural elements may be selected for to retard mRNA translation and to decrease gene expression. PMID:11606539

  11. Microsphere coated substrate containing reactive aldehyde groups

    Science.gov (United States)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  12. 温泉环境宏基因组文库中醛脱氢酶基因的克隆及分析%Cloning and Analysis of Aldehyde Dehydrogenase Gene from Hot Spring Metagenomic Library

    Institute of Scientific and Technical Information of China (English)

    谌容; 王秋岩; 杨兵; 魏东芝; 谢恬

    2010-01-01

    甲基丙二酸半醛脱氢酶(MMSDH)是唯一需要CoA的一类醛脱氢酶.采用免培养-PCR技术结合基因组步移从宏基因组中成功分离一条MMSDH,获得的MMSDH在序列上具有醛脱氢酶的10个保守模块,以芽胞杆菌的MMSDH为模板预测其三维结构.研究证实采用免培养-PCR技术及基因组步移在微生物基因研究中具有重要的价值,且为新酶的筛选技术提供一条简单有效的途径.

  13. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  14. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity.

    Science.gov (United States)

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A

    2015-09-01

    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  15. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  16. Expression of the glutamate dehydrogenase gene from Lactobacillus plantarum in Escherichia coli%植物乳杆菌谷氨酸脱氢酶基因在大肠杆菌中的表达

    Institute of Scientific and Technical Information of China (English)

    田喜梅; 谢琼; 黄仁慧; 陶雪莹; 万翠香; 魏华

    2016-01-01

    构建植物乳杆菌谷氨酸脱氢酶基因原核表达载体,表达并纯化蛋白。本研究以植物乳杆菌ZDY 2013基因组DNA为模板,PCR 扩增谷氨酸脱氢酶基因,连接到表达载体 pET-32a(+)上,重组质粒转入大肠杆菌 BL21(DE3)中,经 IPTG诱导表达和镍柱亲和层析后获得目的蛋白,活性测定显示该蛋白具有谷氨酸脱氢酶的活性。同时,对表达菌株的酸耐受性测定结果表明,细胞对 pH 4.5的酸胁迫耐受性提高1.4倍。实验结果为深入研究植物乳杆菌ZDY 2013谷氨酸脱氢酶保护细胞抵御酸胁迫提供有益的参考。%The expression vector of the glutamate dehydrogenase gene from Lactobacillus plantarum in Escherichia coli was constructed.The recombinant protein was induced and purified.The glutamate dehy-drogenase gene was amplified by PCR from the genomic DNA of L.plantarum ZDY 2013,then was insert-ed into the expression plasmid pET-32a (+).The recombinant plasmid was transformed into E.coli BL21 (DE3).The host bacteria containing recombinant plasmid was grown and induced with IPTG and the com-bined protein was purified using Ni-NTA affinity chromatography.The glutamate dehydrogenase activity was determined to confirm the protein identity.At the same time,the survival rate of cells under acid stress was determined,and the results showed it was increased by 1 .4-fold in the host bacteria containing recom-binant plasmid at pH 4.5.This study would provide a reference to study glutamate dehydrogenase protect L.plantarum ZDY 2013 resist stress.

  17. Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran

    Science.gov (United States)

    Reaghi, Saber; Haghighi, Ali; Harandi, Majid Fasihi; Spotin, Adel; Arzamani, Kourosh; Rouhani, Soheila

    2016-01-01

    Aim: Fascioliasis is one of the most zoonotic diseases with global extension. As the epidemiological distribution of Fasciola may lead to various genetic patterns of the parasite, the aim of this study is to identify Fasciola hepatica based on spermatogenesis, and phylogenetic analysis using mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I [ND1] and cytochrome oxidase subunit I) gene marker. Materials and Methods: In this study, 90 F. hepatica collected from 30 cattle at slaughterhouse located in three different geographical locations in the North-East of Iran were evaluated based on spermatogenetic ability and internal transcribed spacer 1 gene restriction fragment length polymorphism pattern. Genetic diversity and phylogenetic relationship using mtDNA gene marker for the isolates from the North-East of Iran, and other countries were then analyzed. Results: Partial sequences of mtDNA showed eight haplotypes in both genes. The phylogenic analysis using neighbor joining as well as maximum likelihood methods showed similar topologies of trees. Pairwise fixation index between different F. hepatica populations calculated from the nucleotide data set of ND1 gene are statistically significant and show the genetic difference. Conclusion: F. hepatica found in this region of Iran has different genetic structures through the other Fasciola populations in the world. PMID:27733809

  18. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase product

  19. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    Science.gov (United States)

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  20. Stereoselective synthesis of (R)-phenylephrine using recombinant Escherichia coli cells expressing a novel short-chain dehydrogenase/reductase gene from Serratia marcescens BCRC 10948.

    Science.gov (United States)

    Peng, Guan-Jhih; Kuan, Yi-Chia; Chou, Hsiao-Yi; Fu, Tze-Kai; Lin, Jia-Shin; Hsu, Wen-Hwei; Yang, Ming-Te

    2014-01-20

    (R)-Phenylephrine [(R)-PE] is an α1-adrenergic receptor agonist and is widely used as a nasal decongestant to treat the common cold without the side effects of other ephedrine adrenergic drugs. We identified a short-chain dehydrogenase/reductase (SM_SDR) from Serratia marcescens BCRC 10948 that was able to convert 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) into (R)-PE. The SM_SDR used NADPH and NADH as cofactors with specific activities of 17.35±0.71 and 5.57±0.07mU/mg protein, respectively, at 30°C and pH 7.0, thereby indicating that this enzyme could be categorized as an NADPH-preferring short-chain dehydrogenase/reductase. Escherichia coli strain BL21 (DE3) expressing SM_SDR could convert HPMAE into (R)-PE with more than 99% enantiomeric excess. The productivity and conversion yield were 0.57mmolPE/lh and 51.06%, respectively, using 10mM HPMAE. Fructose was the most effective carbon source for the conversion of HPMAE to (R)-PE.

  1. No evidence of mutations in the genes for type I and type II 3{beta}-hydroxysteroid dehydrogenase (3{beta}HSD) in nonclassical 3{beta}HSD deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Zerah, M.; Mani, P.; Schram, P. [New York Hospital-Cornell Medical Center, New York, NY (United States)] [and others

    1994-12-01

    Nonclassical 3{beta}-hydroxysteroid dehydrogenase/{Delta}{sup 5}-{Delta}{sup 4}-isomerase deficiency (NC3{beta}HSDD) has been diagnosed in hyperandrogenic women with an increasing frequency during the last 14 yr. Fifteen menarcheal women with androgen excess syndrome, previously diagnosed with NC3{beta}HSDD were studied, in 12 after discontinuation of glucocorticoid treatment, in 2 patients never treated with glucocorticoids, and in 1 both before and after glucocorticoid therapy. Molecular DNA analysis was also performed in 6 of the patients, using the strategy successfully used to detect point mutations in the type II 3{beta}-hydroxysteriod dehydrogenase (3{beta}HSD) gene, which are responsible for classical 3{beta}HSD deficiency. This strategy consists of the direct sequencing of polymerase chain reaction-amplified DNA fragments corresponding to the complete coding sequence and all intron-exon junctions and to the 5{prime}- and 3{prime}-noncoding region of this gene. We were unable to demonstrate any mutation of the type II 3{beta}HSD gene in these 6 patients. To gain additional information about potential mutations, direct sequencing of the type I 3{beta}HSD gene was also performed using this same strategy, and no mutations were found. The present study strongly suggests that unlike the salt-losing and nonsalt-losing forms of classical 3{beta}HSD deficiency, NC3{beta}HSDD is not due to a mutant type II 3{beta}HSD enzyme. However, the possibility remains of a mutation(s) in the unsequenced regions of the type II 3{beta}HSD gene or elsewhere, such as in a gene for modulatory protein, playing a specific role in the expression of the type II 3{beta}HSD gene. On the other hand, knowing the multiple hormonal controls to which 3{beta}HSD activity is subject, it cannot be excluded that at least in some cases, NC3{beta}HSDD may be an acquired defect, the result of endogenous or environmental factors. 41 refs., 2 figs., 2 tabs.

  2. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  3. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  4. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  5. Function Identification of Vanillin Dehydrogenase Gene in Pseudomonas fluorescens%荧光假单胞菌香兰素脱氢酶基因功能的验证

    Institute of Scientific and Technical Information of China (English)

    赵建芬; 张广

    2007-01-01

    验证了荧光假单胞菌(Pseudomonas fluorescens ATCC13525)香兰素脱氢酶基因(vanillin dehydrogenase gene,vdh)的功能.基因vdh表达产物(Vdh)的活性测定结果显示Vdh具有很高的活性,而且不经IPTG诱导的Vdh也具有同样高的活性.经过4 h的体外酶促反应,重组蛋白Vdh能把95%以上的香兰素转化为香兰素酸,从而验证了vdh基因的表达产物具有香兰素脱氢酶的功能.同时发现NAD +是从香兰素到香兰素酸体外转化必不可少的因素.

  6. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Extance, Jonathan; Crennell, Susan J; Eley, Kirstin; Cripps, Roger; Hough, David W; Danson, Michael J

    2013-10-01

    Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD(+) pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 Å resolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.

  7. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  8. Pyruvate Dehydrogenase Kinase 4

    OpenAIRE

    Cadoudal, Thomas; Distel, Emilie; Durant, Sylvie; Fouque, Françoise; Blouin, Jean-Marc; Collinet, Martine; Bortoli, Sylvie; Forest, Claude; Benelli, Chantal

    2008-01-01

    OBJECTIVE—Pyruvate dehydrogenase complex (PDC) serves as the metabolic switch between glucose and fatty acid utilization. PDC activity is inhibited by PDC kinase (PDK). PDC shares the same substrate, i.e., pyruvate, as glyceroneogenesis, a pathway controlling fatty acid release from white adipose tissue (WAT). Thiazolidinediones activate glyceroneogenesis. We studied the regulation by rosiglitazone of PDK2 and PDK4 isoforms and tested the hypothesis that glyceroneogenesis could be controlled ...

  9. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang [Univ. of Illinois, Chicago, IL (United States)

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  10. Identification and mRNA expression of two 17β-hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals.

    Science.gov (United States)

    Zhang, Yingying; Wang, Qing; Ji, Yinglu; Zhang, Qian; Wu, Huifeng; Xie, Jia; Zhao, Jianmin

    2014-05-01

    17β-Hydroxysteroid dehydrogenases (17β-HSDs) are multifunctional enzymes involved in the metabolism of steroids, fatty acids, retinoids and bile acid. In this study, two novel types of 17β-HSDs (named as MgHsd17b10 and MgHsd17b12) were cloned from Mytilus galloprovincialis by using rapid amplification of cDNA ends (RACE) approaches. Sequence analysis showed that MgHsd17b10 and MgHsd17b12 encoded a polypeptide of 259 and 325 amino acids, respectively. Phylogenetic analysis revealed that MgHsd17b10 and MgHsd17b12 were evolutionarily clustered with other invertebrate 17β-HSD type 10 and 17β-HSD type 12 homologues. The MgHsd17b10 and MgHsd17b12 transcripts could be detected in all examined tissues with higher expression levels in digestive glands and gonad. After exposed to endocrine disrupting chemicals (Bisphenol A or 2,2',4,4'-tetrabromodiphenyl ether), the expression of MgHsd17b10 and MgHsd17b12 transcripts was both down-regulated in digestive glands. These findings suggest that MgHsd17b10 and MgHsd17b12 perhaps play an important role in the endocrine regulation of M. galloprovincialis.

  11. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Science.gov (United States)

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  12. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Science.gov (United States)

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. PMID:26595095

  13. Molecular genetic analysis of human alcohol dehydrogenase

    OpenAIRE

    Duester, G; Wesley Hatfield, G.; Smith, M.

    1985-01-01

    Human alcohol dehydrogenase (ADH) consists of a complex group of isozymes encoded by at least five non-identical genes, two of which have previously been shown through enzymatic analysis to possess polymorphic variants. Using a cDNA probe the ADH2gene encoding the β subunit of human ADH was mapped to human chromosome 4. The cDNA probe for ADH2 was also used to detect a restriction fragment length polymorphism present in human populations. This polymorphism may help establish whether certain A...

  14. Allylation of Aromatic Aldehyde under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu-Mei; JIA,Xue-Feng; WANG,Jin-Xian

    2004-01-01

    @@ Allylation of carbonyl compounds is one of the most interesting processes for the preparation of homoallylic alcohols. Over the past few decades, many reagents have been developed for such reactions[1~3]. In this paper, we first report allylic zinc reagent 1, which can be prepared from zinc dust and allyl bromide conveniently in THF, and reacted with aromatic aldehyde to give homo-allylic alcohols under microwave irradiation.

  15. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    Science.gov (United States)

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  16. 玉米NADP+-异柠檬酸脱氢酶基因克隆和特征分析%Cloning and Character Analysis of NADP+-Dependent Isocitrate Dehydrogenase Gene in Maize

    Institute of Scientific and Technical Information of China (English)

    袁进成; 宋晋辉; 瓮巧云; 马海莲; 王凌云; 刘颖慧

    2015-01-01

    异柠檬酸脱氢酶(IDH)是三羧酸循环中最关键和最有意义的限速酶,在生物体的三羧酸循环代谢反应中起重要的作用。我们从玉米中克隆了一个新的异柠檬酸脱氢酶基因,命名为ZmIDH2并对其特征进行初步研究。ZmIDH2基因全长1643 bp,开放阅读框1236 bp,编码412个氨基酸,同时克隆了IDH2基因组DNA,全长3463 bp,具有11个内含子和12个外显子。进化树分析表明该基因在生物进化中高度保守,与植物的细胞质IDH2基因的亲缘关系较近。半定量RT-PCR结果显示ZmIDH2基因在玉米中是组成型表达的,在根和幼胚中的表达量较高。胁迫处理玉米植株,表明在干旱和高盐条件下ZmIDH2基因表达量明显提高, ZmIDH2酶活性也受盐和干旱诱导。%NADP+-dependent isocitrate dehydrogenase (IDH) catalyzes the reversible conversion of isocitrate toα-ketoglutarate and plays an essential rate-limiting step in the citric acid cycle. In this report a cytosolic NADP+dependent isocitrate dehydrogenase gene from maize has been cloned. The analysis of the nucleotide sequence revealed an open reading frame of 1 236 bp and encoding 412 amino acids. The ZmIDH2 had a 12-extron/11-intron genomic structure and a genomic length of 3 463 bp. The amino acid sequence displayed high homology with those from other plants such as rice and Arabidopsis. The gene was transcripted in all tissues tested, with the high amount of ZmIDH2 transcript being found in root and embryo. Semi RT-PCR and enzyme active analyses showed that ZmIDH2 was induced by drought and salt stress both in transcription and enzyme level.

  17. Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, Mogens; Roepstorff, P.;

    2002-01-01

    strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG 1363 and the gapA overexpressing strain the GAPDH activity...

  18. Cloning and characterization of glycerol - 3 - phosphate dehydrogenase gene (RcGPDH) from castor bean%蓖麻三磷酸甘油脱氢酶基因(RcGPDH)的克隆及功能分析

    Institute of Scientific and Technical Information of China (English)

    弭宪杰; 徐荣华; 刘爱忠; 吴丁; 田波

    2011-01-01

    In order to elucidate the role of glycerol - 3 - phosphate dehydrogenase gene (RcGPDH) from castor bean in castor oil accumulation, we designed primers according to express sequence tags (EST) and cloned the full cDNA of RcGPDH gene by RACE (rapid - amplification of cDNA ends). The yeast expression vector pY-ES2.1 /V5 - His - TOPO - RcGPDH was constructed and transformed to wild yeast strain BY4742, using plas-mid pYES2. 1 / V5 - His/lacZ as control. We drew the growth curves of transformed yeast strains with spectro-photometer at 600nm, and determined their oil content using vanillin method. Results showed that they grew stably after cultured 18h, but the strain with RcGPDH gene grew slower than control. The oil content didn't change between the two yeast strains, which suggested that RcGPDH gene was not involved in yeast oil accumulation. These results suggested that other GPDH homologous genes may be involved in triacylglycerls (TAG) synthesis in castor seeds.%为了阐明蓖麻三磷酸甘油脱氢酶基因(glycerol -3 - phosphate dehydrogenase,RcGPDH)在蓖麻油累积过程中的作用,本研究根据已报道的蓖麻种子表达序列标签(Expressed Sequence Tags,EST)设计引物,通过RACE(rapid - amplification of cDNA ends)方法克隆蓖麻RcGPDH基因的全长并对其序列进行分析,构建了该基因的酵母表达载体pYES2.1/V5 - His - TOPO - RcGPDH,以载体pYES2.1/V5 - His/lacZ质粒DNA为对照,转化酵母野生型菌株BY4742,运用分光光度法测定转基因酵母的生长曲线,通过香草醛法测定稳定生长期的转基因酵母的油脂含量.结果表明,转基因菌株比转空载体对照菌株生长慢,两者均在培养18h后进入平台期;两个菌株的油脂含量没有明显的差别,表明RcGPDH基因对酵母油脂的累积没有起到积极的作用,在蓖麻种子中可能还存在另一个GPDH同源基因参与三脂酰甘油(TAG)的合成.

  19. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17{alpha}-methyldihydrotestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.L.; Thomason, R.G.; Lee, D.M.; Brill, J.L.; Price, B.B.; Carr, G.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States); Versteeg, D.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States)], E-mail: versteeg.dj@pg.com

    2008-04-28

    Concentration and time-dependent changes in hepatic gene expression were examined in adult, female zebrafish (Danio rerio) exposed to 0, 0.1, 0.7, 4.9 {mu}g/L of a model androgen, 17{alpha}-methyldihydrotestosterone (MDHT). At 24 and 168 h, fish were sacrificed and liver was extracted for gene expression analysis using custom Affymetrix GeneChip Zebrafish Genome Microarrays. In an effort to link gene expression changes to higher levels of biological organization, blood was collected for measurement of plasma steroid hormones (17{beta}-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. Body and ovary weight were also measured. A significant reduction in E2 occurred at 24 h (0.7 and 4.9 {mu}g/L) and 168 h (4.9 {mu}g/L) following MDHT exposure. In contrast, T was significantly increased at 24 h (4.9 {mu}g/L) and 168 h (0.1, 0.7, 4.9 {mu}g/L). 171 and 575 genes were significantly affected in a concentration-dependent manner at either 24 or 168 h by MDHT exposure at p {<=} 0.001 and p {<=} 0.01, respectively. Genes involved in retinoic acid metabolism (e.g. aldehyde dehydrogenase 8, member A1; retinol dehydrogenase 12), steroid biosynthesis and metabolism (e.g. hydroxysteroid (11{beta}) dehydrogenase 2; hydroxy-delta-5-steroid dehydrogenase, 3 beta-), hormone transport (e.g. sex hormone binding globulin), and regulation of cell growth and proliferation (e.g. N-myc downstream regulated gene 1; spermidinespermine N(1)-acetyltransferase) were affected by MDHT exposure. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to androgenic substances. Genes identified in this study provide information on the potential mode of action of strong androgens in female fish. In addition, when used for screening of EDC's, these genes may also serve as sensitive markers of exposure to androgenic compounds.

  20. Molecular Differentiation of Fasciola Species and Characterization of Genetic Diversity of F. gigantica Using NADH Dehydrogenase I (ND1 Gene in the Endemic Areas of Iran.

    Directory of Open Access Journals (Sweden)

    Shabnam Tadayon

    2015-03-01

    Full Text Available Fasciola hepatica and F. gigantica are the causative agents of fasciolosis in domestic animals and humans. Based on the morphometric criteria, differential diagnosis between them is problematic. In addition, intermediate forms of Fasciola have been found in Iran, which makes the differentiation more difficult. The aim of the present study was to provide molecular evidence for the existence of F. gigantica in Iran using sequencing analysis of ND1 and PCR-RFLP analysis of ITS2 regions and to study the intraspecies variations of F. gigantica based on mitochondrial ND1 gene polymorphism.Forty Fasciola spp. samples collected from four distinct provinces (Fars, Khuzestan, Gilan, Khorasan Razavi in Iran were collected for morphological and molecular characterization. In molecular method, PCR-RFLP analysis of ITS2 using pagI restriction enzyme was used as a screening approach for F. gigantica differentiation. Then mitochondrial DNA sequence variations in the ND1 gene were used for phylogenetic analysis.Based on the morphometric criteria and RFLP analysis, 14 parasitic samples were initially identified to be F. gigantica. Phylogenetic results showed that there are at least 10 different genotypes of F. gigantica in Iran, which are different from those existing in the GenBank. Twenty-six points out of 410 base pairs of sequenced ND1 gene in 10 varieties of F. gigantica were diagnosed to be polymorphic. From 26 points of polymorphism, only eight resulted in the post-translational amino acid changes in ND1 gene product structure.Data revealed noticeable genetic diversity (up to 4.63% between different varieties of F. gigantica in Iran.

  1. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  2. Thymidylate synthase, dihydropyrimidine dehydrogenase, ERCC1, and thymidine phosphorylase gene expression in primary and metastatic gastrointestinal adenocarcinoma tissue in patients treated on a phase I trial of oxaliplatin and capecitabine

    International Nuclear Information System (INIS)

    Over-expression of thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) in tumor tissue is associated with insensitivity to 5-fluorouracil (5-FU). Over-expression of ERCC1 correlates with insensitivity to oxaliplatin (OX) therapy, while high thymidine phosphorylase (TP) levels predict for increased sensitivity to capecitabine (Xel). Biopsies of metastatic tumor were taken before OX (130 mg/m2 day 1) given with Xel (1200–3000 mg/m2 in two divided doses days 1–5 and 8–12) every 3-weeks. Micro-dissected metastatic and primary tumors were analyzed for relative gene expression by real-time quantitative polymerase chain reaction. The clinical protocol prospectively identified the molecular targets of interest that would be tested. Endpoints for the molecular analyses were correlation of median, first and third quartiles for relative gene expression of each target with response, time to treatment failure (TTF), and survival. Among 91 patients participating in this trial; 97% had colorectal cancer. The median number of prior chemotherapy regimens was 2, and most had prior 5-FU and irinotecan. In paired samples, median mRNA levels were significantly higher in metastatic versus primary tumor (-fold): TS (1.9), DPD (3.8), ERCC1 (2.1) and TP (1.6). A strong positive correlation was noted between DPD and TP mRNA levels in both primary (r = 0.693, p < 0.0005) and metastatic tissue (r = 0.697, p < 0.00001). There was an association between TS gene expression and responsive and stable disease: patients whose intratumoral TS mRNA levels were above the median value had significantly greater risk of early disease progression (43% vs 17%), but this did not translate into a significant difference in TTF. ERCC1 gene expression above the third quartile was associated with a shorter TTF (median 85 vs 162 days, p = 0.046). Patients whose TS mRNA levels in metastatic tumor tissue were below the median had a longer overall survival (median 417 vs 294 days, p = 0

  3. Two-Step biocatalytic conversion of an ester to an aldehyde in reverse micelles.

    Science.gov (United States)

    Yang, F; Russell, A J

    1994-02-01

    Lipases from Candida cyclindracea (L-1754) and wheat germ (L-3001) have been used to hydrolyze esters to their corresponding alcohols and acids in reverse micelles. Alcohol dehydrogenase from baker's yeast (YADH) was subsequently used to reduce the alcohol products to aldehydes. Cofactor recycling in the redox reaction was achieved using a sacrificial cosubstrate, as described previously. Four surfactants (sodium dioctylsulfosuccinate, Nonidet P-40 with Triton X-35, polyoxyethylene, 10-cetyl-ether, polyoxyethylene sorbitan trioleate) were employed to determine the effect of amphiphile on ester hydrolysis and redox reaction rates separately. The effect of type of organic solvent, W(0) [(water]/[surfactant)], and substrate concentration on separte enzyme activity were also investigated. A brief investigation of a single phase, two-step reaction catalyzed by the combination of lipase and YADH in reverse micelles is also reported. The activities of the enzymes are significantly different when used together instead of independently. (c) 1994 John Wiley & Sons, Inc.

  4. Fifteen novel mutations in the mitochondrial NADH dehydrogenase subunit 1, 2, 3, 4, 4L, 5 and 6 genes from Iranian patients with Leber's hereditary optic neuropathy (LHON).

    Science.gov (United States)

    Rezvani, Zahra; Didari, Elmira; Arastehkani, Ahoura; Ghodsinejad, Vadieh; Aryani, Omid; Kamalidehghan, Behnam; Houshmand, Massoud

    2013-12-01

    Leber's hereditary optic neuropathy (LHON) is an optic nerve dysfunction resulting from mutations in mitochondrial DNA (mtDNA), which is transmitted in a maternal pattern of inheritance. It is caused by three primary point mutations: G11778A, G3460A and T14484C; in the mitochondrial genome. These mutations are sufficient to induce the disease, accounting for the majority of LHON cases, and affect genes that encode for the different subunits of mitochondrial complexes I and III of the mitochondrial respiratory chain. Other mutations are secondary mutations associated with the primary mutations. The purpose of this study was to determine MT-ND variations in Iranian patients with LHON. In order to determine the prevalence and distribution of mitochondrial mutations in the LHON patients, their DNA was studied using PCR and DNA sequencing analysis. Sequencing of MT-ND genes from 35 LHON patients revealed a total of 44 nucleotide variations, in which fifteen novel variations-A14020G, A13663G, C10399T, C4932A, C3893G, C10557A, C12012A, C13934T, G4596A, T12851A, T4539A, T4941A, T13255A, T14353C and del A 4513-were observed in 27 LHON patients. However, eight patients showed no variation in the ND genes. These mutations contribute to the current database of mtDNA polymorphisms in LHON patients and may facilitate the definition of disease-related mutations in human mtDNA. This research may help to understand the disease mechanism and open up new diagnostic opportunities for LHON.

  5. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer

  6. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Soumabha; Hendricks, P.I. [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Reynolds, J.C. [Centre for Analytical Science, Loughborough University, Loughborough, Leicestershire (United Kingdom); Cooks, R.G., E-mail: cooks@purdue.edu [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)

    2015-02-20

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.

  7. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera.

    Science.gov (United States)

    Sanchita; Singh, Ruchi; Mishra, Anand; Dhawan, Sunita S; Shirke, Pramod A; Gupta, Madan M; Sharma, Ashok

    2015-11-01

    Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.

  8. Purification and characterization of benzyl alcohol- and benzaldehyde- dehydrogenase from Pseudomonas putida CSV86.

    Science.gov (United States)

    Shrivastava, Rahul; Basu, Aditya; Phale, Prashant S

    2011-08-01

    Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD(+) dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD(+), while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K (m) value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K (m) and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.

  9. Regulation of 3β-hydroxysteroid dehydrogenase and sulphotransferase 2A1 gene expression in primary porcine hepatocytes by selected sex-steroids and plant secondary metabolites from chicory (Cichorium intybus L.) and wormwood (Artemisia sp.).

    Science.gov (United States)

    Rasmussen, Martin Krøyer; Ekstrand, Bo

    2014-02-15

    In pigs the endogenously produced compound androstenone is metabolised in the liver in two steps by 3β-hydroxysteroid dehydrogenase (3β-HSD) and sulphotransferase 2A1 (SULT2A1). The present study investigated the effect of selected sex-steroids (0.01-1 μM androstenone, testosterone and estradiol), skatole (1-100 μM) and secondary plant metabolites (1-100 μM) on the expression of 3β-HSD and SULT2A1 mRNA. Additionally the effect of a global methanolic extract of dried chicory root was investigated and compared to previous obtained in vivo effects. Primary hepatocytes were isolated from the livers of piglets (crossbreed: Landrace×Yorkshire and Duroc) and cultured for 24h before treatment for an additionally 24h. RNA was isolated from the hepatocytes and specific gene expression determined by RT-PCR using TaqMan probes. The investigated sex-steroids had no effect on the mRNA expression of 3β-HSD and SULT2A1, while skatole decreased the content of SULT2A1 30% compared to control. Of the investigated secondary plant metabolites artemisinin and scoparone (found in Artemisia sp.) lowered the content of SULT2A1 by 20 and 30% compared to control, respectively. Moreover, we tested three secondary plant metabolites (lactucin, esculetin and esculin) found in chicory root. Lactucin increased the mRNA content of both 3β-HSD and SULT2A1 by 200% compared to control. An extract of chicory root was shown to decrease the expression of both 3β-HSD and SULT2A1. It is concluded that the gene expression of enzymes with importance for androstenone metabolism is regulated by secondary plant metabolites in a complex manner. PMID:24333270

  10. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT and alanine dehydrogenase (AlaDH in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.

  11. Functional analysis of alcS, a gene of the alc cluster in Aspergillus nidulans.

    Science.gov (United States)

    Flipphi, Michel; Robellet, Xavier; Dequier, Emmanuel; Leschelle, Xavier; Felenbok, Béatrice; Vélot, Christian

    2006-04-01

    The ethanol utilization pathway (alc system) of Aspergillus nidulans requires two structural genes, alcA and aldA, which encode the two enzymes (alcohol dehydrogenase and aldehyde dehydrogenase, respectively) allowing conversion of ethanol into acetate via acetyldehyde, and a regulatory gene, alcR, encoding the pathway-specific autoregulated transcriptional activator. The alcR and alcA genes are clustered with three other genes that are also positively regulated by alcR, although they are dispensable for growth on ethanol. In this study, we characterized alcS, the most abundantly transcribed of these three genes. alcS is strictly co-regulated with alcA, and encodes a 262-amino acid protein. Sequence comparison with protein databases detected a putative conserved domain that is characteristic of the novel GPR1/FUN34/YaaH membrane protein family. It was shown that the AlcS protein is located in the plasma membrane. Deletion or overexpression of alcS did not result in any obvious phenotype. In particular, AlcS does not appear to be essential for the transport of ethanol, acetaldehyde or acetate. Basic Local Alignment Search Tool analysis against the A. nidulans genome led to the identification of two novel ethanol- and ethylacetate-induced genes encoding other members of the GPR1/FUN34/YaaH family, AN5226 and AN8390.

  12. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while oxi

  13. 多房棘球蚴线粒体NADH脱氢酶1基因分析及PCR检测方法%Analysis of the mitochondria gene NADH dehydrogenase subunit 1 and development of PCR detection in Echinococcus multilocularis

    Institute of Scientific and Technical Information of China (English)

    杨俊萍; 郭书林; 陈信忠; 龚艳清

    2012-01-01

    目的 扩增多房棘球蚴线粒体NADH脱氢酶亚基1(NADH dehydrogenase subunit1,ND1)基因全序列,测序并进行同源性比较.建立检测多房棘球蚴感染的PCR方法,应用于人和动物感染多房棘球蚴的快速检测和鉴定.方法 根据多房棘球绦虫线粒体DNA全序列,设计引物扩增ND1基因并进行测序,获得多房棘球蚴ND1基因全序列.对该序列与其它常见棘球绦虫的ND1基因序列进行同源性分析.结果 多房棘球蚴线粒体ND1基因序列与国外报告的多房棘球绦虫的同源性达到98.8%,与细粒棘球绦虫的同源性为86.2%,与少节棘球绦虫的同源性为84.6%,与伏氏棘球绦虫的同源性为87.0%.结论 多房棘球蚴线粒体ND1基因与其他棘球绦虫相应基因存在显著差异.PCR方法可以用于多房棘球蚴感染的快速检测和鉴定.%Objective To analyze the whole length of the mitochondria gene ND1 in Echinococcus multilocularis and to develop a PCR method for detecting and identifying E.multilocularis infections in human and animals.Methods According to the whole length of the DNA in E.multilocularis,primers were designed to amplify the mitochondria gene ND1.Results The mitochondria gene ND1 in E.multilocularis we sequenced had 98.8% homology with E.multilocularis,86.2% with E.grarulosus,84.6% with E.oligarthrus,and 87.0% with E.vogeli from abroad.Conclusion There were distinctive variations between E.multilocularis and other Echinococcus spp.PCR technique is a fast method for E.multilocularis detection.

  14. Skeletal Muscle Magnetic Resonance Imaging of the Lower Limbs in Late-onset Lipid Storage Myopathy with Electron Transfer Flavoprotein Dehydrogenase Gene Mutations

    Institute of Scientific and Technical Information of China (English)

    Xin-Yi Liu; Ming Jin; Zhi-Qiang Wang; Dan-Ni Wang; Jun-Jie He; Min-Ting Lin; Hong-Xia Fu

    2016-01-01

    Background:Lipid storage myopathy (LSM) is a genetically heterogeneous group with variable clinical phenotypes.Late-onset multiple acyl-coenzyme A dehydrogenation deficiency (MADD) is a rather common form of LSM in China.Diagnosis and clinical management of it remain challenging,especially without robust muscle biopsy result and genetic detection.As the noninvasion and convenience,muscle magnetic resonance imaging (MRI) is a helpful assistant,diagnostic tool for neuromuscular disorders.However,the disease-specific MRI patterns of muscle involved and its diagnostic value in late-onset MADD have not been systematic analyzed.Methods:We assessed the MRI pattern and fat infiltration degree of the lower limb muscles in 28 late-onset MADD patients,combined with detailed clinical features and gene spectrum.Fat infiltration degree of the thigh muscle was scored while that ofgluteus was described as obvious or not.Associated muscular atrophy was defined as obvious muscle bulk reduction.Results:The mean scores were significantly different among the anterior,medial,and posterior thigh muscle groups.The mean of fat infiltration scores on posterior thigh muscle group was significantly higher than either anterior or medial thigh muscle group (P < 0.001).Moreover,the mean score on medial thigh muscle group was significantly higher than that of anterior thigh muscle group (P < 0.01).About half of the patients displayed fat infiltration and atrophy in gluteus muscles.Of 28 patients,12 exhibited atrophy in medial and/or posterior thigh muscle groups,especially in posterior thigh muscle group.Muscle edema pattern was not found in all the patients.Conclusions:Late-onset MADD patients show a typical muscular imaging pattern of fat infiltration and atrophy on anterior,posterior,and medial thigh muscle groups,with major involvement of posterior thigh muscle group and gluteus muscles and a sparing involvement of anterior thigh compartment.Our findings also suggest that muscle MRI of

  15. Cloning and sequence analysis of the xylitol dehydrogenase gene (xyl2) from Pichia stipitis%树干毕赤酵母(Pichia Stipitis)木糖醇脱氢酶(xyl2)基因克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    孙博; 葛菁萍

    2011-01-01

    According to the character that the sequences of xylitol dehydrogenase are similar, a pair of primers were designed in order to obtain the sequence of the xylitol dehydrogenase gene in Pichia stipitis CICC1960. The fragment was about 1 092 bp that encoding 363 amino acids. Using the softwares of bioinformatics, this sequence was analyzed in the fields of homology, composition of amino acid and hydrohobicity. In addition, calculations of phospholyration sites, conserved domains analysis and secondary and tertiary structure were carried out. The results showed that the fragment was xylitol dehydrogenase gene in Pichia stipitis CICC1960.%根据木糖醇脱氢酶基因序列相似的特点,设计1对引物获得Pichia stipitis CICC1960的木糖醇脱氢酶基因序列,此片段长度为1 092 bp,共编码363个氨基酸.利用生物信息学软件对该序列进行了同源性分析、氨基酸组成分析、疏水性分析、磷酸化位点预测、CDS分析及二、三级结构预测.结果表明,该片段为Pichia stipitis CICC1960的木糖醇脱氢酶基因序列.

  16. 杜氏盐藻甘油醛-3-磷酸脱氢酶基因启动子驱动氯霉素乙酰转移酶基因的表达及其活性检测%Expression and activity detection of chloramphenicol acetyltransferase gene driven by the glyceraldehyde-3-phosphate dehydrogenase gene of Dunaliella salina

    Institute of Scientific and Technical Information of China (English)

    张小毅; 刘巨源; 邱乐乐; 贾岩龙

    2012-01-01

    目的 为建立稳定高效的盐藻生物反应器寻找合适的内源性启动子驱动表达外源基因.方法 克隆鉴定了盐藻甘油醛-3-磷酸脱氢酶(GAPDH)基因5 ′上游区序列并成功构建由盐藻GAPDH基因启动子驱动的氯霉素乙酰转移酶(CAT)基因表达载体pUC-Gcat.利用构建的表达载体电击转化盐藻并在含有氯霉素的培养基中筛选转化藻株.随机挑选稳定转化的盐藻藻株进行CAT酶联免疫吸附测定分析.结果 获得3株稳定转化的盐藻藻株.聚合酶链式反应鉴定和CAT酶联免疫吸附测定分析结果表明,CAT基因已整合到了转化的盐藻基因组中.结论 本研究所克隆的内源性盐藻GAPDH基因启动子能够驱动CAT基因在盐藻中表达.%Objective To explore expression of foreign gene driven by a strong endogenous promoter in order to construct stable and high-performance bioreactors in Dunaliella salina. Methods In the present study, the upstream sequence of glyceraldehyde phosphate dehydrogenase of Dunaliella salina was cloned and identificated. Using electroporation, the alga was transformed with a plasmid pUC-Ccat containing giyceraldehyde-3-phosphate dehydrogenase ( GAPDH) gene promoter of Du-naliella salina and chloramphenicol acetyltransferase ( CAT) gene as a seletable gene. Using the expression vector, the Dunaliella salina cell was translated and the transformational strain was screened in nutrient medium containing chloramphenicol. The stable transformational strain was selected randomly to undertake CAT enzyme linked immunosorbent assay (ELISA). Results Three stable transformational strain were obtained. The results of polymerase chain reaction and CAT ELISA indicated that the CAT gene had been transferred to the alga. Conclusion The results of this paper suggest that the GAPDH gene promoter can work for genetic transformation of Dunaliella salina.

  17. Bioinformatics Analysis on the Structure and Function of Malate Dehydrogenase Gene of Taenia solium%生物信息学法分析猪带绦虫苹果酸脱氢酶结构与功能

    Institute of Scientific and Technical Information of China (English)

    蓝磊; 廖兴江; 黄江; 戴佳琳

    2012-01-01

    目的:分析和预测猪带绦虫苹果酸脱氢酶的结构和特性,用于指导其生物学功能的实验研究.方法:利用美国国家生物技术信息中心和瑞士生物信息学研究所的蛋白分析专家系统中有关基因和蛋白的序列和结构信息分析的工具,结合Pcgene和Vector NTI suite生物信息学分析软件包,从猪带绦虫全长cDNA质粒文库中识别苹果酸脱氢酶基因及其编码区,分析、预测该基因编码的蛋白质的理化特性、翻译后的修饰位点、功能域、亚细胞定位、拓扑结构、二级结构、三维空间构象等.结果:该基因编码332个氨基酸,为全长基因.GenBank中与细粒棘球绦虫苹果酸脱氢酶序列同源性最高,理论分子量为36459.2 Da.预测编码蛋白无跨膜区,无二硫键,稳定性较好.与吸虫属的苹果酸脱氢酶进化关系最近.结论:应用生物信息方法从猪带绦虫成虫Cd-NA文库中筛选出了猪带绦虫核糖体Cdna全长序列并预测得到其结构与功能方面信息.%Objective: To analyze and predict the structure and characteristics of Taenia solium mal-ate dehydrogenase ( MDH) , and so as to guide the experimental research on biological function of MDH. Methods: Tools about informatics analyis on sequences and structures of gene and protein in protein analysis expert system of bioinformatic institute of Switzerland, and those of state biological and technology information center of USA, combined with Pcgene and Vector NTI suite bioinformatics soft-ware pakege were employed to screen Taenia solium MDH gene and encoding region from cDNA plas-mid library to analyze and predict physicochemical properties of its encoding protein, modification site after translation, function domains, subcelluar location, topological structure, secondary structure, and 3D conformation and so on. Results: This gene encoded 332 amino acids, and was a full length gene. It was the most homologues to Taenia echinococcus MDH in Gen

  18. The gamma fibrinogen gene (FGG) maps to chromosome 17 in both cattle and sheep.

    Science.gov (United States)

    Johnson, S E; Barendse, W; Hetzel, D J

    1993-01-01

    The gamma fibrinogen gene (FGG) was localised in both cattle and sheep using in situ hybridisation. The probe employed was a 1-kb bovine cDNA fragment. Based on observations of QFQ-banded chromosome preparations, this locus is on bovine chromosome 17q12-->q13 and on the homologous sheep chromosome 17. This localisation is, to our knowledge, the first assignment to chromosome 17 in either the bovine or ovine genome. In addition to localising FGG to this chromosome, the assignment provisionally maps the previously unassigned syntenic group U23, containing (besides FGG) the genes for mitochondrial aldehyde dehydrogenase 2 (ALDH2), interleukin 2 (IL2), immunoglobulin lambda (IGL), and beta fibrinogen (FGB), to chromosome 17 in cattle and probably to the same chromosome in sheep.

  19. Genes Encoding Enzymes Involved in Ethanol Metabolism

    Science.gov (United States)

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  20. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Vincenzo Marrone

    Full Text Available Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30 were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  1. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  2. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms. PMID:22022485

  3. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    Science.gov (United States)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  4. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    Science.gov (United States)

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Glucose-6-phosphate dehydrogenase deficiency Title Other Names: G6PD ... G6PD deficiency Categories: Newborn Screening Summary Summary Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary ...

  5. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    Energy Technology Data Exchange (ETDEWEB)

    Basen, M; Schut, GJ; Nguyen, DM; Lipscomb, GL; Benn, RA; Prybol, CJ; Vaccaro, BJ; Poole, FL; Kelly, RM; Adams, MWW

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.

  6. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine1[W][OA

    Science.gov (United States)

    Díaz-Sánchez, Ángel G.; González-Segura, Lilian; Mújica-Jiménez, Carlos; Rudiño-Piñera, Enrique; Montiel, Carmina; Martínez-Castilla, León P.; Muñoz-Clares, Rosario A.

    2012-01-01

    Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant Km(BAL) increases and Vmax/Km(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the Vmax/Km(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants. PMID:22345508

  7. Sorbitol dehydrogenase is a zinc enzyme.

    OpenAIRE

    Jeffery, J; Chesters, J; C. Mills; P.J. Sadler; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and poly...

  8. Specific biotinylation of IMP dehydrogenase

    OpenAIRE

    Hoefler, B. Christopher; Gollapalli, Deviprasad R.; Hedstrom, Lizbeth

    2011-01-01

    IMP dehydrogenase (IMPDH) catalyzes a critical step in guanine nucleotide biosynthesis. IMPDH also has biological roles that are distinct from its enzymatic function. We report a biotin-linked reagent that selectively labels IMPDH and is released by dithiothreitol. This reagent will be invaluable in elucidating the moonlighting functions of IMPDH.

  9. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins.

    Science.gov (United States)

    Periyasamy, Sankar; Govindappa, Nagaraj; Sreenivas, Suma; Sastry, Kedarnath

    2013-11-01

    Sorbitol is used as a non-repressive carbon source to develop fermentation process for Mut(s) recombinant clones obtained using the AOX1 promoter in Pichia pastoris. Sorbitol dehydrogenase is an enzyme in the carbohydrate metabolism that catalyzes reduction of D-fructose into D-sorbitol in the presence of NADH. The small stretch of 211bps upstream region of sorbitol dehydrogenase coding gene has all the promoter elements like CAAT box, GC box, etc. It is able to promote protein production under repressive as well as non-repressive carbon sources. In this study, the strength of the sorbitol dehydrogenase promoter was evaluated by expression of two heterologous proteins: human serum albumin and erythrina trypsin inhibitor. Sorbitol dehydrogenase promoter allowed constitutive expression of recombinant proteins in all carbon sources that were tested to grow P. pastoris and showed activity similar to GAP promoter. The sorbitol dehydrogenase promoter was active in all the growth phases of the P. pastoris.

  10. Amine-functionalized porous silicas as adsorbents for aldehyde abatement.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2013-06-26

    A series of aminopropyl-functionalized silicas containing of primary, secondary, or tertiary amines is fabricated via silane-grafting on mesoporous SBA-15 silica and the utility of each material in the adsorption of volatile aldehydes from air is systematically assessed. A particular emphasis is placed on low-molecular-weight aldehydes such as formaldehyde and acetaldehyde, which are highly problematic volatile organic compound (VOC) pollutants. The adsorption tests demonstrate that the aminosilica materials with primary amines most effectively adsorbed formaldehyde with an adsorption capacity of 1.4 mmolHCHO g(-1), whereas the aminosilica containing secondary amines showed lower adsorption capacity (0.80 mmolHCHO g(-1)) and the aminosilica containing tertiary amines adsorbed a negligible amount of formaldehyde. The primary amine containing silica also successfully abated higher aldehyde VOC pollutants, including acetaldehyde, hexanal, and benzaldehyde, by effectively adsorbing them. The adsorption mechanism is investigated by (13)C CP MAS solid-state NMR and FT-Raman spectroscopy, and it is demonstrated that the aldehydes are chemically attached to the surface of aminosilica in the form of imines and hemiaminals. The high aldehyde adsorption capacities of the primary aminosilicas in this study demonstrate the utility of amine-functionalized silica materials for reduction of gaseous aldehydes.

  11. Diplotype Trend Regression Analysis of the ADH Gene Cluster and the ALDH2 Gene: Multiple Significant Associations with Alcohol Dependence

    Science.gov (United States)

    Luo, Xingguang; Kranzler, Henry R.; Zuo, Lingjun; Wang, Shuang; Schork, Nicholas J.; Gelernter, Joel

    2006-01-01

    The set of alcohol-metabolizing enzymes has considerable genetic and functional complexity. The relationships between some alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes and alcohol dependence (AD) have long been studied in many populations, but not comprehensively. In the present study, we genotyped 16 markers within the ADH gene cluster (including the ADH1A, ADH1B, ADH1C, ADH5, ADH6, and ADH7 genes), 4 markers within the ALDH2 gene, and 38 unlinked ancestry-informative markers in a case-control sample of 801 individuals. Associations between markers and disease were analyzed by a Hardy-Weinberg equilibrium (HWE) test, a conventional case-control comparison, a structured association analysis, and a novel diplotype trend regression (DTR) analysis. Finally, the disease alleles were fine mapped by a Hardy-Weinberg disequilibrium (HWD) measure (J). All markers were found to be in HWE in controls, but some markers showed HWD in cases. Genotypes of many markers were associated with AD. DTR analysis showed that ADH5 genotypes and diplotypes of ADH1A, ADH1B, ADH7, and ALDH2 were associated with AD in European Americans and/or African Americans. The risk-influencing alleles were fine mapped from among the markers studied and were found to coincide with some well-known functional variants. We demonstrated that DTR was more powerful than many other conventional association methods. We also found that several ADH genes and the ALDH2 gene were susceptibility loci for AD, and the associations were best explained by several independent risk genes. PMID:16685648

  12. Aldehyde oxidase activity in fresh human skin.

    Science.gov (United States)

    Manevski, Nenad; Balavenkatraman, Kamal Kumar; Bertschi, Barbara; Swart, Piet; Walles, Markus; Camenisch, Gian; Schiller, Hilmar; Kretz, Olivier; Ling, Barbara; Wettstein, Reto; Schaefer, Dirk J; Pognan, Francois; Wolf, Armin; Litherland, Karine

    2014-12-01

    Human aldehyde oxidase (AO) is a molybdoflavoenzyme that commonly oxidizes azaheterocycles in therapeutic drugs. Although high metabolic clearance by AO resulted in several drug failures, existing in vitro-in vivo correlations are often poor and the extrahepatic role of AO practically unknown. This study investigated enzymatic activity of AO in fresh human skin, the largest organ of the body, frequently exposed to therapeutic drugs and xenobiotics. Fresh, full-thickness human skin was obtained from 13 individual donors and assayed with two specific AO substrates: carbazeran and zoniporide. Human skin explants from all donors metabolized carbazeran to 4-hydroxycarbazeran and zoniporide to 2-oxo-zoniporide. Average rates of carbazeran and zoniporide hydroxylations were 1.301 and 0.164 pmol⋅mg skin(-1)⋅h(-1), resulting in 13 and 2% substrate turnover, respectively, after 24 hours of incubation with 10 μM substrate. Hydroxylation activities for the two substrates were significantly correlated (r(2) = 0.769), with interindividual variability ranging from 3-fold (zoniporide) to 6-fold (carbazeran). Inclusion of hydralazine, an irreversible inhibitor of AO, resulted in concentration-dependent decrease of hydroxylation activities, exceeding 90% inhibition of carbazeran 4-hydroxylation at 100 μM inhibitor. Reaction rates were linear up to 4 hours and well described by Michaelis-Menten enzyme kinetics. Comparison of carbazeran and zoniporide hydroxylation with rates of triclosan glucuronidation and sulfation and p-toluidine N-acetylation showed that cutaneous AO activity is comparable to tested phase II metabolic reactions, indicating a significant role of AO in cutaneous drug metabolism. To our best knowledge, this is the first report of AO enzymatic activity in human skin. PMID:25249692

  13. Sorption Behavior of an Aliphatic Series of Aldehydes in the Presence of Poly(ethylene terephthalate) Blends Containing Aldehyde Scavenging Agents

    OpenAIRE

    Suloff, Eric Charles

    2002-01-01

    The quality of many beverages and food products is compromised by the presence of low molecular weight aldehydes. Aldehydes are commonly formed during storage by the oxidation of lipids or are introduced as migrants from polymeric packaging material. The objective of this project was to evaluate the effectiveness of three aldehyde scavenging agents, blended into poly(ethylene terephthalate) (PET) films, in removing an aliphatic series of aldehydes from an acidified aqueous model solution (p...

  14. Three-dimensional structures of the three human class I alcohol dehydrogenases

    OpenAIRE

    Niederhut, Monica S.; Gibbons, Brian J.; Perez-Miller, Samantha; Hurley, Thomas D.

    2001-01-01

    In contrast with other animal species, humans possess three distinct genes for class I alcohol dehydrogenase and show polymorphic variation in the ADH1B and ADH1C genes. The three class I alcohol dehydrogenase isoenzymes share ∼93% sequence identity but differ in their substrate specificity and their developmental expression. We report here the first three-dimensional structures for the ADH1A and ADH1C*2 gene products at 2.5 and 2.0 Å, respectively, and the structure of the ADH1B*1 gene produ...

  15. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity

    Directory of Open Access Journals (Sweden)

    Rodriguez Gabriel M

    2012-06-01

    Full Text Available Abstract Background Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde. Results We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD600 (isobutanol vs 0.14 g/L/OD600 (isobutyraldehyde. Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD600 and decreased isobutanol production (0.4 g/L/OD600. By assessing production by

  16. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L

    Directory of Open Access Journals (Sweden)

    Lundgren Anneli

    2011-03-01

    Full Text Available Abstract Background Recently, Artemisia annua L. (annual or sweet wormwood has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. Results The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13 reductase and aldehyde dehydrogenase 1 showed remarkably higher expression (between ~40- to ~500-fold in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures. Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. Conclusions Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes. The expression of dihydroartemisinic aldehyde reductase has been suggested to have a

  17. Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods.

    Directory of Open Access Journals (Sweden)

    Chiara Lauritano

    Full Text Available BACKGROUND: Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods. PRINCIPAL FINDINGS: Here we show that two days of feeding on a strong oxylipin-producing diatom (Skeletonema marinoi is sufficient to inhibit a series of genes involved in aldehyde detoxification, apoptosis, cytoskeleton structure and stress response in the copepod Calanus helgolandicus. Of the 18 transcripts analyzed by RT-qPCR at least 50% were strongly down-regulated (aldehyde dehydrogenase 9, 8 and 6, cellular apoptosis susceptibility and inhibitor of apoptosis IAP proteins, heat shock protein 40, alpha- and beta-tubulins compared to animals fed on a weak oxylipin-producing diet (Chaetoceros socialis which showed no changes in gene expression profiles. CONCLUSIONS: Our results provide molecular evidence of the toxic effects of strong oxylipin-producing diatoms on grazers, showing that primary defense systems that should be activated to protect copepods against toxic algae can be inhibited. On the other hand other classical detoxification genes (glutathione S-transferase, superoxide dismutase, catalase, cytochrome P450 were not affected possibly due to short exposure times. Given the importance of diatom blooms in nutrient-rich aquatic environments these results offer a plausible explanation for the inefficient use of a potentially valuable food resource, the spring diatom bloom, by some copepod species.

  18. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance l

  19. Regulation of human class I alcohol dehydrogenases by bile acids

    OpenAIRE

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver . Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and ...

  20. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant

    Science.gov (United States)

    Mohamed-Hussein, Zeti-Azura; Ng, Chyan Leong

    2016-01-01

    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that’s highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity

  1. Alteration of gene expression by alcohol exposure at early neurulation

    Directory of Open Access Journals (Sweden)

    McClintick Jeanette N

    2011-02-01

    Full Text Available Abstract Background We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Result Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545, adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22, neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg, and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1, and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1. Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO and a closed neural tube (ALC-NTC. Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. Conclusion This study revealed a set of genes vulnerable to alcohol exposure and

  2. 玉米BADH基因的克隆与序列分析%Cloning and Sequencing of BADH Gene from Maize(Zea mays)

    Institute of Scientific and Technical Information of China (English)

    余爱丽; 徐景升; 周会; 张木清; 陈如凯

    2004-01-01

    Betaine was accumulated as a nontoxic and protective osmolyte in water-dificit and salt-stressed plants.Be-taine aldehyde dehydrogenase for glycine betaine synthesis is an important enzyme.The BADH gene of Maizewas cloned by RT-PCR and RACE.The gene is 1 762 bp in length,including an open reading frame of 1 515 bp.Its nucleotide sequence shares 95% with the the partial cDNA of BADH1 from Sorghum bicolor.Its deducedamino acid sequence contains the conserved domain sequence "VTLELGGKSP" of ALDH,and a tripeptide SKLat its C-terminal,a signal targetting to the microbodies.The phylogenetic tree of 20 BADHs was constructed,which corresponds to the classical botanical division of plant,the BADH of maize is closest to the one of Oryza Sativa.GenBank accession No.AY587278.

  3. Molecular Cloning and Bioinformatics Analysis of Dihydrolipoamide Dehydrogenase Gene from Vibrio alginolyticus%溶藻弧菌二氢硫辛酰胺脱氢酶基因克隆及其生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    庞欢瑛; 陈立明; 蔡佳; 汤菊芬; 王蓓; 吴灶和; 简纪常

    2014-01-01

    Primers for PCR cloning were designed according to the whole genome sequence of Vibrio alginolyticus published in GenBank. The dihydrolipoamide dehydrogenase (DLD) gene of V. alginolyticus strain HY9901 was amplified by PCR and cloned into pMD18-T vector to investigate the possibility of DLD as a candidate antigen for vaccine production. Sequence analysis revealed DLD gene (GenBank Number: AGK62253) is 1 428 bp and encodes a putative protein of 475 amino acids. The predicted molecular mass of DLD was 50.998 ku with an estimated pI of 5.51. Using SignalP 4.0 and TMHMM Server 2.0 software, it was predicted that the DLD protein did not contain a signal peptide or a transmembranous region. This protein had one asn-glycosylation site, five protein kinase C phosphorylation site, six casein kinase II phosphorylation site, and so on. To further analyze the evolutionary relationship among DLD, a molecular phylogenetic tree was constructed by using Mega 5.0 software. In this tree, the DLD protein showed high genetic relationship with Vibrio parahaemolyticus. Using Kyte Doolittle-Hydrophilic parameters, Karplus-Schulz flexibility, Emini surface accessibility and antigenic Jameson-Wolf parameters methods, the B-cell preponderant epitopes of DLD might be localized in the regions of 5-10, 106-110, 120-125, 158-163 and 175-180. The three-dimensional structure of DLD was determined by using SWISS-MODEL work-space and it had a similar structure to DLD protein of Escherichia coli. Kegg analysis found that DLD involved nine signaling pathways, such as sugar glycolysis and dysplasia, and so on. These results can provide a basis for further studies on the shared immunogenecity of DLD and vaccine preparation.%根据溶藻弧菌(Vibrio alginolyticus)二氢硫辛酰胺脱氢酶(dihydrolipoamide dehydrogenase,DLD)的基因序列设计1对特异性引物。PCR扩增结果显示,DLD(GenBank登录号AGK62253)全长1428 bp,共编码475个氨基酸残基。根据推导的氨

  4. Tunable Ether Production via Coupling of Aldehydes or Aldehyde/Alcohol over Hydrogen-Modified Gold Catalysts at Low Temperatures.

    Science.gov (United States)

    Pan, Ming; Brush, Adrian J; Dong, Guangbin; Mullins, C Buddie

    2012-09-01

    Ethers are an important group of organic compounds that are primarily prepared via homogeneous catalysis, which can lead to operational and environmental issues. Here we demonstrate the production of ethers via heterogeneous catalysis over H adatom-covered gold at temperatures lower than 250 K. Symmetrical ethers can be formed via a self-coupling reaction of corresponding aldehydes; for example, homocoupling of acetaldehyde and propionaldehyde yields diethyl ether and di-n-propyl ether, respectively. In addition, coupling reactions between alcohols and aldehydes, with different carbon chain lengths, are observed via the production of the corresponding unsymmetrical ethers. A reaction mechanism is proposed, suggesting that an alcohol-like intermediate via partial hydrogenation of aldehydes on the surface plays a key role in these reactions. These surface chemical reactions suggest possible heterogeneous routes to low-temperature production of ethers. PMID:26292142

  5. Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis

    DEFF Research Database (Denmark)

    Moon, Hee-Jung; Tiwari, Manish; Jeya, Marimuthu;

    2010-01-01

    Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to D-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide...... of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated...

  6. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement. PMID:27299603

  7. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.

  8. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases

    NARCIS (Netherlands)

    Smilda, T; Kamminga, AH; Reinders, P; Baron, W; Vlieg, JETV; Beintema, JJ

    2001-01-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D, simulans is more active on secondary than on primary alcohols, although ethanol is i

  9. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  10. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    Directory of Open Access Journals (Sweden)

    Rodríguez-García Ignacio

    2007-02-01

    Full Text Available Abstract Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans.

  11. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  12. Tandem Aldol Condensation – Platinacycle-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids

    OpenAIRE

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2012-01-01

    Tandem aldol condensation of aldehydes with methyl ketones followed by anionic four-electron donor-based (Type I) platinacycle-catalyzed addition reactions of arylboronic acids to form β-arylated ketones is described. Good to excellent yields of β-arylated ketones were obtained for the tandem reactions of aromatic/aliphatic aldehydes, methyl ketones and arylboronic acids, and moderate yields were observed for the tandem reaction with α, β-unsaturated aldehydes as the aldehyde source.

  13. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  14. Unsaturated aldehydes as alkene equivalents in the Diels-Alder reaction

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Robert

    2008-01-01

    A one-pot procedure is described for using alpha,beta-unsaturated aldehydes as olefin equivalents in the Diels-Alder reaction. The method combines the normal electron demand cycloaddition with aldehyde dienophiles and the rhodium-catalyzed decarbonylation of aldehydes to afford cyclohexenes with ...

  15. 胶质瘤患者异柠檬酸脱氢酶基因突变分析%Mutation of isocitrate dehydrogenase gene in Chinese patients with glioma

    Institute of Scientific and Technical Information of China (English)

    潘怡; 齐雪岭; 王雷明; 董荣芳; 张铭; 郑丹枫; 常青; 钟延丰

    2013-01-01

    Objective To investigate mutation status of isocitrate dehydrogenase (IDH) 1 and IDH2 genes in Chinese patients with gliomas in correlation with clinicopathological characteristics.Methods Formalin-fixed and paraffin-embedded (FFPE) tissue samples of 234 gliomas were collected including the matched blood samples in 30 patients.DNA was extracted,followed by PCR-Sanger sequencing to detect IDH1 and IDH2 gene mutations.Immunohistochemistry was performed using mutation-specific antibody recognizing IDH1R132H mutation.Immunostains for p53 and epidermal growth factor receptor (EGFR) were also performed.Oligodendroglial tumors with IDH mutation were double stained with IDH1R132H and GFAP by immunofluorescence to investigate the location of IDH1 R132H expression.Results (1) By IDH1 heterozygous somatic mutation analysis,Arg132His (c:G395A) was found in 31.6% (74 of 234) of the cases.IDH mutations were more frequent in oligoastrocytomas (9/13),anaplastic oligoastrocytomas (7/11),oligodendrogliomas (18/26,69.2%),anaplastic oligodendrogliomas (8/10),and less frequent in diffuse astrocytomas (17/47,36.2%),anaplastic astrocytomas (5/18),and glioblastomas (10/69,14.5%).The mutation rate inversely correlated with the tumor grade in a linear fashion in astrocytic tumors (P =0.007).Primary glioblastomas were characterized by a lower frequency of mutations than secondary glioblastomas (5/55 vs.5/14,P =0.036); IDH mutation was not detected in pilocytic astrocytoma and ependymoma.No IDH2 mutation was identified in this study cohort.(2) Immunohistochemistry of IDH1R132H demonstrated a strong cytoplasmic staining in 80 cases,which was highly correlated with IDH mutation status (P =0.001).IDH1R132H was highly specific to tumor cells.(3) p53 immunostain was significantly correlated the IDH mutation in diffuse astrocytoma,anaplastic astrocytoma and secondary glioblastomas (P =0.007,0.026,0.038 respectively).(4) No correlation between EGFR and IDH mutation was found.Conclusions High

  16. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer

    OpenAIRE

    Opdenaker LM; Arnold KM; Pohlig RT; Padmanabhan JS; Flynn DC; Sims-Mourtada J

    2014-01-01

    Lynn M Opdenaker,1,2 Kimberly M Arnold,1,3 Ryan T Pohlig,3,4 Jayasree S Padmanabhan,1 Daniel C Flynn,1,3 Jennifer Sims-Mourtada1–3 1Center for Translational Cancer Research, Helen F Graham Cancer Center, Christiana Care Health Services, Inc., Newark, Delaware, USA; 2Department of Biological Sciences, 3Department of Medical Laboratory Sciences, 4Biostatistics Core Facility, University of Delaware, Newark, Delaware, USA Abstract: In many types of tumors, especially breast tumors, ald...

  17. Relationship between genetic polymorphisms of alcohol and aldehyde dehydrogenases and esophageal squamous cell carcinoma risk in males

    Institute of Scientific and Technical Information of China (English)

    Chia-Fang Wu; Deng-Chyang Wu; Hon-Ki Hsu; Ein-Long Kao; Jang-Ming Lee; Cheng-Chieh Lin; Ming-Tsang Wu

    2005-01-01

    AIM: To investigate the association between the genetic polymorphisms of ADH2 and ALDH2, lifetime alcohol consumption and esophageal cancer risk in the Taiwanese men.METHODS: Between August 2000 and June 2003, 134 pathologically-proven esophageal squamous cell carcinoma male patients and 237 male controls were recruited from Kaohsiung Medical University Hospital and Kaohsiung Veterans General Hospital in southern Taiwan.ADH2 and ALDH2 polymorphisms were genotyped using PCR-RFLP.RESULTS: Compared to those with ADH2*2/*2,individuals with ADH2*1/*2 and ADH2*1/*1 had 2.28-and 7.14-fold, respectively, increased risk of developing esophageal cancer (95%CI = 1.11-4.68 and 2.76-18.46)after adjusting for alcohol consumption and other covariates. The significant increased risk was also noted among subjects with ALDH2*1/*2 (adjusted OR (AOR)= 5.25, 95%CI = 2.47-11.19), when compared to those with ALDH2*1/*1. The increased risk of esophageal cancer was made greater, when subjects carried both ADH2*1/*1 and ALDH2*1/*2, compared to those with ADH2*1/*2 or ADH2*2/*2 and ALDH2*1/*1 (AOR = 36.79,95%CI = 9.36-144.65). Furthermore, we found a multiplicative effect of lifetime alcoholic consumption and genotypes (ADH2 and ALDH2) on esophageal cancer risk.CONCLUSION: Our findings suggest that polymorphisms of ADH2 and ALDH2 can modify the influence of alcoholic consumption on esophageal cancer risk.

  18. Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Creer Michael H

    2010-03-01

    Full Text Available Abstract Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDHhiLin-, and ALDHloLin- cells following transplantation to NOD/SCID or NOD/SCID β2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDHhiLin- stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDHloLin- committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDHhiLin- cell-treated mice, as compared to PBS and ALDHloLin- cell-treated mice. Conclusions Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.

  19. Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer.

    Science.gov (United States)

    Li, Huihui; Ma, Fei; Wang, Haijuan; Lin, Chen; Fan, Ying; Zhang, Xueyan; Qian, Haili; Xu, Binghe

    2013-12-17

    The stem cell marker ALDH1 has been of particular interest to scientists since it has been successfully used as a marker to isolate cancer stem cells from breast cancers. However, little is known, especially in Chinese breast cancer patients, on whether ALDH1 enrichment is prevalent in certain subtypes of breast cancer. In this study, we performed flow cytometry and immunohistochemistry to measure the expression of ALDH1 in 10 breast cancer cell lines and in a set of tissue microarrays consisting of 101 breast cancer tissues from the Chinese population. The 101 breast cancer tissues included 4 cancer subtypes defined on bases of their ER, PR, and HER2 statuses: triple-negative (25 cases), luminal A (33 cases), luminal B (16 cases) and HER2-overexpressing (HER2-OE, 27 cases). We found that ALDH1 was expressed in 25 of the 101 cases of breast cancer tissues. When the analysis was stratified, we found that the expression of ALDH1 varied significantly among the 4 subtypes, with a higher expression in triple-negative breast cancer (TNBC, p=0.003) than in the other 3 subtypes. In a series of breast cancer cell lines, we also confirmed that ALDH1 activity was mainly found in TNBC cell lines compared with non-TNBC ones (15.6% ± 2.45% vs 5.5% ± 2.58%, p=0.026). These data support the concept that the expression of ALDH1 is higher in TNBC than non-TNBC, which may be clinically meaningful for a better understanding of the poor prognosis of TNBC patients.

  20. Differential expression of aldehyde dehydrogenase 1a1 (ALDH1 in normal ovary and serous ovarian tumors

    Directory of Open Access Journals (Sweden)

    Penumatsa Krishna

    2010-12-01

    Full Text Available Abstract Background We showed there are specific ALDH1 autoantibodies in ovarian autoimmune disease and ovarian cancer, suggesting a role for ALDH1 in ovarian pathology. However, there is little information on the ovarian expression of ALDH1. Therefore, we compared ALDH1 expression in normal ovary and benign and malignant ovarian tumors to determine if ALDH1 expression is altered in ovarian cancer. Since there is also recent interest in ALDH1 as a cancer stem cell (CSC marker, we assessed co-expression of ALDH1 with CSC markers in order to determine if ALDH1 is a potential CSC marker in ovarian cancer. Methods mRNA and protein expression were compared in normal human ovary and serous ovarian tumors using quantitative Reverse-Transcriptase PCR, Western blot (WB and semi-quantitative immunohistochemistry (IHC. ALDH1 enzyme activity was confirmed in primary ovarian cells by flow cytometry (FC using ALDEFLUOR assay. Results ALDH1 mRNA expression was significantly reduced (p Conclusions Total ALDH1 expression is significantly reduced in malignant ovarian tumors while it is relatively unchanged in benign tumors compared to normal ovary. Thus, ALDH1 expression in the ovary does not appear to be similar to breast, lung or colon cancer suggesting possible functional differences in these cancers. Significance These observations suggest that reduced ALDH1 expression is associated with malignant transformation in ovarian cancer and provides a basis for further study of the mechanism of ALDH1 in this process.

  1. Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis

    OpenAIRE

    Müller Gudrun; Eckard Sonja; Funck Dietmar

    2010-01-01

    Abstract Background Proline (Pro) accumulation is a widespread response of prokaryotic and eukaryotic cells subjected to osmotic stress or dehydration. When the cells are released from stress, Pro is degraded to glutamate by Pro-dehydrogenase (ProDH) and Pyrroline-5-carboxylate dehydrogenase (P5CDH), which are both mitochondrial enzymes in eukaryotes. While P5CDH is a single copy gene in Arabidopsis, two ProDH genes have been identified in the genome. Until now, only ProDH1 (At3g30775) had be...

  2. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    Science.gov (United States)

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  3. Cloning and Bioinformatic Analysis of 6-Phogluconate Dehydrogenase Gene from Aspergillus oryzae%米曲霉6-磷酸葡萄糖酸脱氢酶基因(gnd)的克隆及生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    吴晶晶; 洪志宏; 张卡; 陈宏文

    2012-01-01

    采用PCR技术从米曲霉CICC2012菌株基因组中克隆6-磷酸葡萄糖酸脱氢酶基因(gnd),并利用生物信息学手段对其氨基酸序列、进化树、理化性质、蛋白质结构等进行分析.序列测定和分析结果表明.gnd基因序列长为1 723 bp.包含1个1 551 bp的开放阅读框,编码516个氨基酸;gnd基因编码的6PGDH氨基酸序列与黄曲霉6PGDH基因的同源性为99%,存在的丝氨酸、苏氨酸和酪氨酸磷酸化位点分别有11,2和6个;6PGDH蛋白分子量为57.3 kD,等电点为5.63; gnid基因编码蛋白二级结构α-螺旋区域占44.57%,β-折叠区域占12.79%.无规则卷曲区域占42.64%;氨基酸残基11~195位点为NADP+结合区域.%6-Phogluconate dehydrogenase (6PGDH, EC 1.1.1.44) is one of the key enzymes in the pentose phosphate pathway (PPP). In this study, the 6-phogIuconate dehydrogenase gene (gnd) of Aspergillus oryzae CICC2012 was cloned by means of PCR. Subsequently, the bioinformatic methodology was applied to determine the amino acid sequence homology, phylogenetic trees, physical-chemical properties and protein structure of the gene. The results revealed the gene's length to be 1 723 bp, which encompassed an open reading frame with 1 551 bp encoding 516 amino acids. The 6PGDH encoded by gnd showed a 99% homology with the 6PGDH gene of Aspergillus flavus, which had 11 serine phosphorylation sites, 2 threonine phosphorylation sites and 6 tyrosine phosphorylation sites. The 6PGDH had a molecular weight of 57. 3 kD and an isoelectric point of 5. 63. The secondary structure of the gnd protein was 44. 57% alpha helix, 12. 79% beta sheet and 42. 64% random coil. The 11 - 195 amino acid residues appeared to be the NADP+ binding sites.

  4. An efficient and versatile synthesis of aromatic nitriles from aldehydes

    Institute of Scientific and Technical Information of China (English)

    Maryam Hajjami; Arash Ghorbani-Choghamarani; Mohammad Ali Zolfigol; Fatemeh Gholamian

    2012-01-01

    A simple and direct method has been developed for synthesis of nitriles based on one-pot reaction of aromatic aldehydes with three different kind of reagents:CeCl3·7H2O/KI/H2O2,CeCl3·7H2O/KI/UHP and (NH4)2Ce(NO3)6/KI/H2O2 in aqueous ammonia.

  5. 猪带绦虫乳酸脱氢酶A和B的生物信息学比较分析%Bioinformatics Analysis and Comparision of the Genes Encoding Lactate Dehydrogenase A and B from Taenia solium

    Institute of Scientific and Technical Information of China (English)

    杜武英; 戴佳琳; 黄艳; 胡旭初; 余新炳; 徐劲; 廖兴江; 黄江

    2010-01-01

    目的 预测及比较分析猪带绦虫乳酸脱氢酶A(Taenia solium lactate dehydrogenase A,TsLDH-A)和乳酸脱氢酶B(Taenia solium lactate dehydrogenase B,TsLDH-B),用于指导其生物学功能的研究.方法 利用生物信息网站如美国国家生物技术信息中心(NCBI,http://www.ncbi.nlm.nih.gov/)和瑞士生物信息学研究所的蛋白分析专家系统(ExPASY,http://ca.expasy.org/)中有关基因和蛋白的序列和结构信息分析的各种工具,结合其它生物信息学分析软件包,从猪带绦虫成虫全长cDNA质粒文库中识别LDH-A和LDH-B的全长编码基因并对其结构与功能进行生物信息学预测分析.结果 两序列都是包含完整开放阅读框的全长基因,推导出的氨基酸序列与其它物种LDH-A或LDH-B同源基因的氨基酸序列的一致性均大于50%.两者编码的蛋白在编码的氨基酸数目(331)、蛋白的理化性质、L-乳酸脱氢酶结构域、构成LDH酶催化中心的关键氨基酸、包含LDH活性位点的线性表位、无亚细胞定位等方面是一致的,但两者在翻译后的修饰位点、3个跨膜区和其他线性表位方面既相似也有区别.结论 应用生物信息方法从猪带绦虫成虫cDNA文库中筛选出了TsLDH-A和TsLDH-B的cDNA全长序列,并预测和比较了两者结构与功能方面的信息,为进一步研究所编码蛋白的功能奠定了基础.

  6. γ-Unsaturated aldehydes as potential Lilial replacers.

    Science.gov (United States)

    Schroeder, Martin; Mathys, Marion; Ehrensperger, Nadja; Büchel, Michelle

    2014-10-01

    A series of Claisen rearrangements was undertaken in order to find a replacement for Lilial (=3-(4-(tert-butyl)phenyl)-2-methylpropanal), a high-tonnage perfumery ingredient with a lily-of-the-valley odour, which is a CMR2 material [1]. 5,7,7-Trimethyl-4-methyleneoctanal (10), the synthesis of which is described, became the main lead. It possesses an odour which is very close to that of Lilial but lacks its substantivity. Aldehydes with higher molecular weights than that of 10 were, therefore, synthesised in order to boost substantivity and to understand the structural requirements for a 'Lilial' odour. The aldehydes were obtained via Claisen rearrangements of 'exo-methylidene' vinyl ethers, allenyl vinyl ethers, or allenyl allyl ethers. Alternatively, coupling of terminal alkynes with allyl alcohols led to the desired aldehydes. Derivatives of 10 and their sila analogues were also synthesised. The olfactory properties of all synthesised molecules were evaluated for possible structure-odour relationships (SOR). PMID:25329790

  7. Hairpin Ribozyme Genes Curtail Alcohol Drinking: from Rational Design to in vivo Effects in the Rat.

    Science.gov (United States)

    Sapag, Amalia; Irrazábal, Thergiory; Lobos-González, Lorena; Muñoz-Brauning, Carlos R; Quintanilla, María Elena; Tampier, Lutske

    2016-07-12

    Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism.

  8. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Indian Academy of Sciences (India)

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2015-06-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  9. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Indian Academy of Sciences (India)

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2014-12-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  10. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  11. Studies on 2-oxoacid dehydrogenase multienzyme complexes of Azotobacter vinelandii

    NARCIS (Netherlands)

    Bosma, H.J.

    1984-01-01

    In this thesis, some studies on the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes of Azotobacter vinelandii are described; the emphasis strongly lies on the pyruvate dehydrogenase complex.A survey of the literature on 2-oxoacid dehydrogenase complexes is given in chap

  12. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji

    2002-08-27

    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  13. Polymorphisms in alcohol metabolism genes ADH1B and ALDH2, alcohol consumption and colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Marta Crous-Bou

    Full Text Available BACKGROUND: Colorectal cancer (CRC is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. METHODOLOGY/PRINCIPAL FINDINGS: SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC study (OR = 1.47; 95%CI = 1.18-1.81. Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025. A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. CONCLUSIONS/SIGNIFICANCE: Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants.

  14. Polymorphisms in Alcohol Metabolism Genes ADH1B and ALDH2, Alcohol Consumption and Colorectal Cancer

    Science.gov (United States)

    Crous-Bou, Marta; Rennert, Gad; Cuadras, Daniel; Salazar, Ramon; Cordero, David; Saltz Rennert, Hedy; Lejbkowicz, Flavio; Kopelovich, Levy; Monroe Lipkin, Steven; Bernard Gruber, Stephen; Moreno, Victor

    2013-01-01

    Background Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. Methodology/Principal Findings SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. Conclusions/Significance Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants. PMID:24282520

  15. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  16. Effects of aerobic training on pyruvate dehydrogenase and pyruvate dehydrogenase kinase in human skeletal muscle.

    Science.gov (United States)

    LeBlanc, Paul J; Peters, Sandra J; Tunstall, Rebecca J; Cameron-Smith, David; Heigenhauser, George J F

    2004-06-01

    This study examined the effects of short- and long-term aerobic training on the stable up-regulation of pyruvate dehydrogenase (PDH) and PDH kinase (PDK) in human skeletal muscle. We hypothesized that 8 weeks, but not 1 week, of aerobic training would increase total PDH (PDHt) and PDK activities compared to pretraining, and this would be detectable at the level of gene transcription (mRNA) and/or gene translation (protein). Resting muscle biopsies were taken before and after 1 and 8 weeks of aerobic cycle exercise training. PDHt and PDK activities, and their respective protein and mRNA expression, did not differ after 1 week of aerobic training. PDHt activity increased 31% after 8 weeks and this may be partially due to a 1.3-fold increase in PDH-E(1)alpha protein expression. PDK activity approximately doubled after 8 weeks of aerobic training and this was attributed to a 1.3-fold increase in PDK2 isoform protein expression. Similar to 1 week, no changes were observed at the mRNA level after 8 weeks of training. These findings suggest that aerobically trained human skeletal muscle has an increased maximal capacity to utilize carbohydrates, evident by increased PDHt, but increased metabolic control sensitivity to pyruvate through increased contribution of PDK2 to total PDK activity. PMID:15020699

  17. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    OpenAIRE

    Ji Yun Jeong; Nam Ho Jeoung; Keun-Gyu Park; In-Kyu Lee

    2012-01-01

    The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally re...

  18. Screening of aspartate dehydrogenase of bacteria

    OpenAIRE

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  19. 猪带绦虫苹果酸脱氢酶基因的克隆表达及免疫学分析%Expression and purification of malate dehydrogenase gene in Taenia solium and immunologic analysis of the recombinant proteins

    Institute of Scientific and Technical Information of China (English)

    江楠; 席晓兰; 王杰; 戴佳琳; 廖兴江; 黄江

    2011-01-01

    目的 对猪带绦虫苹果酸脱氢酶基因(malate dehydrogenase,MDH)进行克隆,表达及免疫学特性的初步研究.方法 将猪带绦虫MDH基因克隆到原核表达质粒pET-28a(+)中,在大肠埃希菌BL21/DE3中用异丙基-β-D-半乳糖苷(IPTG)诱导表达,表达产物通过十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)进行鉴定,用镍离子金属螯合剂亲和层析柱进行纯化,纯化的重组蛋白用蛋白印迹(Western Blot)进行免疫学分析.结果 成功构建pET-28a(+)-MDH重组质粒,并获得高纯度蛋白,该重组蛋白可被其免疫SD大鼠血清识别,同时也能被感染猪带绦虫的病人及猪、感染牛带绦虫病人及感染亚带绦虫病人血清所识别.结论 猪带绦虫苹果酸脱氢酶基因可在原核表达系统中获得具有免疫学活性的高效表达,为进一步研究该蛋白的功能奠定了基础.%The objective of this study was to clone and express the gene named as malate dehydrogenase gene (MDH) in Taenia Solium, and to analyze the immunogenicity of its recombinant protein. The coding region of MDH was amplified with PCR, cloned into the prokaryotic expression vector pET-28a(+) and expressed in E. coli BL21/DE3 with IPTG induction. In addition, the immunogenicity of the purified recombinant proteins was analyzed by Western blotting. PCR, double enzyme digestion and DNA sequencing confirmed that the recombinant expression plasmid was successfully constructed. The expression products were obtained and purified by His-Ni2+ affinity chromatography. Western blotting analysis of MDH recombinant protein testified that these proteins could be recognized by sera of the patients infected with T. asiatica and T. rhynchus saginatus. Results suggested that the MDH gene of T. solium has been cloned and expressed, and the purified protein has been confirmed with immunogenicity.

  20. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  1. Pentitol phosphate dehydrogenases: Discovery, characterization and use in D-arabitol and xylitol production by metabolically engineered Bacillus subtilis

    OpenAIRE

    Povelainen, Mira

    2008-01-01

    The ultimate goal of this study has been to construct metabolically engineered microbial strains capable of fermenting glucose into pentitols D-arabitol and, especially, xylitol. The path that was chosen to achieve this goal required discovery, isolation and sequencing of at least two pentitol phosphate dehydrogenases of different specificity, followed by cloning and expression of their genes and characterization of recombinant arabitol and xylitol phosphate dehydrogenases. An enzyme of ...

  2. Association of ADH and ALDH Genes With Alcohol Dependence in the Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD) Sample

    Science.gov (United States)

    Kuo, Po-Hsiu; Kalsi, Gursharan; Prescott, Carol A.; Hodgkinson, Colin A.; Goldman, David; van den Oord, Edwin J.; Alexander, Jeffry; Jiang, Cizhong; Sullivan, Patrick F.; Patterson, Diana G.; Walsh, Dermot; Kendler, Kenneth S.; Riley, Brien P.

    2008-01-01

    Background: The genes coding for ethanol metabolism enzymes [alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH)] have been widely studied for their influence on the risk to develop alcohol dependence (AD). However, the relation between polymorphisms of these metabolism genes and AD in Caucasian subjects has not been clearly established. The present study examined evidence for the association of alcohol metabolism genes with AD in the Irish Affected Sib Pair Study of alcohol dependence. Methods: We conducted a case–control association study with 575 independent subjects who met Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, AD diagnosis and 530 controls. A total of 77 single nucleotide polymorphisms (SNPs) in the seven ADH (ADH1-7) and two ALDH genes (ALDH1A1 and ALDH2) were genotyped using the Illumina GoldenGate protocols. Several statistical procedures were implemented to control for false discoveries. Results: All markers with minor allele frequency greater than 0.01 were in Hardy–Weinberg equilibrium. Numerous SNPs in ADH genes showed association with AD, including one marker in the coding region of ADH1C (rs1693482 in exon6, Ile271Gln). Haplotypic association was observed in the ADH5 and ADH1C genes, and in a long haplotype block formed by the ADH1A and ADH1B loci. We detected two significant interactions between pairs of markers in intron 6 of ADH6 and intron 12 of ALDH2 (p = 5 × 10−5), and 5′ of both ADH4 and ADH1A (p = 2 × 10−4). Conclusion: We found evidence for the association of several ADH genes with AD in a sample of Western European origin. The significant interaction effects between markers in ADH and ALDH genes suggest possible epistatic roles between alcohol metabolic enzymes in the risk for AD. PMID:18331377

  3. Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha

    NARCIS (Netherlands)

    Klei, I.J. van der; Faber, K.N.; Keizer-Gunnink, I.; Gietl, C.; Harder, W.; Veenhuis, M.

    1993-01-01

    We have studied the fate of the watermelon (Citrullus vulgaris Schrad.) glyoxysomal enzyme, malate dehydrogenase (gMDH), after synthesis in the methylotrophic yeast, Hansenula polymorpha. The gene encoding the precursor form of gMDH (pre-gMDH) was cloned in an H. polymorpha expression vector downstr

  4. n-3多不饱和脂肪酸脱氢酶基因fat-1在人肺癌细胞H460内的表达%The Effect of n -3 Fatty Acid Dehydrogenase Gene fat - 1 Expression on Human Lung Cancer Cell H460

    Institute of Scientific and Technical Information of China (English)

    李芳芳; 葛银林; 李艳君; 单虎

    2011-01-01

    n-3多不饱和脂肪酸脱氢酶基因fat -1来自于秀丽线虫(C.elegans).为检测该基因在人肺癌细胞H460中的表达效果,本项研究构建了哺乳动物表达载体peDNA3.1(+)myc - HisA - fat -1,以Xfet polymer介导法转染到人肺癌细胞H460中,RT - PCR检测到有效的异源基因表达,MTT法证实基因表达能有效地抑制肺癌细胞的增殖率(P<0.05),气相色谱分析基因表达前后细胞中n - 6/n -3多不饱和脂肪酸比例降低(P<0.05),为将该基因用于癌症的转基因治疗奠定了基础.%fat -1 gene is a kind of n - 3 fatty acid dehydrogenase gene from Caenorhabditis elegans. In this stud-y, the eukaryotic expression vector pcDNA3.1 ( + ) myc - HisA - fat - 1 was constructed and expressed in human lung cancer cell H460. RT - PCR results showed that fat - 1 gene could expressed effectively in H460 cell and cell proliferation rate was markedly inhibited ( P <0.05). Moreover, fat - 1 gene could significantly decreased the ratio of cellular n -6 /n -3 PUFAs ( P <0.05).

  5. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed.

  6. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  7. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    OpenAIRE

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2013-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptid...

  8. An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva.

    Science.gov (United States)

    Tan, S G; Ashton, G C

    1976-01-01

    Glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) from human saliva has been demonstrated by the zymogram technique. Three phenotypes were found. Family and population studies suggested that these phenotypes are the products of an autosomal locus with two alleles Sgd-1 and Sgd-2. PMID:950237

  9. Alcohol drinking habits, alcohol dehydrogenase genotypes and risk of acute coronary syndrome

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Hansen, J.L.; Gronbaek, M.;

    2010-01-01

    Aims: The risk of myocardial infarction is lower among light-to-moderate drinkers compared with abstainers. Results from some previous studies, but not all, suggest that this association is modified by variations in genes coding for alcohol dehydrogenase (ADH). We aimed to test this hypothesis......). Results: Higher alcohol intake (measured as amount or drinking frequency) was associated with lower risk of acute coronary syndrome; however, there was no evidence that these finding were modified by ADH1B or ADH1C genotypes. Conclusions: The importance of functional variation in alcohol dehydrogenase...

  10. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil;

    2007-01-01

    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  11. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil;

    2007-01-01

    ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...... changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. CONCLUSION: This mutation was also found in two...

  12. Analysis and comparison of fragrant gene sequence in some rice cultivars

    Directory of Open Access Journals (Sweden)

    Karami Noushafarin

    2016-01-01

    Full Text Available It is known that the fragrant trait in rice (Oryza sativa L. is largely controlled by fgr gene on chromosome 8 and it has been specified that the existence of an 8 bp deletion and three single nucleotide polymorphism (SNP in exon 7 is effective on this trait. In this study, sequence alignment analysis of fgr exon7 on chromosome 8 for 11 different fragrant and non-fragrant cultivars revealed that 5 aromatic rice cultivars carried 3 SNPs and 8 bp deletion in exon7 which terminates prematurely at a TAA stop codon. However, 5 of the non-aromatics showed a sequence identical to the published Nipponbare, being non-fragrant Japonica variety sequence. An exception among them was Bejar, which had 8 bp deletion and 3SNPs but it was non-aromatic. Sequencing can determine nucleotide alignment of a gene and give beneficial information about gene function. In silico prediction showed proteins sequences alignment of fgr gene for Khazar and Domsiah genotypes were different. Betaine aldehyde dehydrogenase complete enzyme belongs to Khazar non-fragrant genotype that has complete length and 503 amino acids while non-functional BADH2 enzyme for Domsiah fragrant genotype has 251 amino acids that result in accumulate 2-acetyl-1-pyrroline (2AP and produces aroma in fragrant genotypes.

  13. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    OpenAIRE

    Phillips, T. K.; Clarke, Stuart M.; Castro Arroyo, Miguel Ángel; Millán, Carmen; Medina, Santiago

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7, C 9 and C 11) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue...

  14. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C7, C9 and C11) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C7 homologue the p2 plane group is preferred.

  15. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.

  16. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Science.gov (United States)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  17. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I.

    Science.gov (United States)

    Joët, T; Cournac, L; Horvath, E M; Medgyesy, P; Peltier, G

    2001-04-01

    Tobacco (Nicotiana tabacum var Petit Havana) ndhB-inactivated mutants (ndhB-) obtained by plastid transformation (E.M. Horvath, S.O. Peter, T. Joët, D. Rumeau, L. Cournac, G.V. Horvath, T.A. Kavanagh, C. Schäfer, G. Peltier, P. MedgyesyHorvath [2000] Plant Physiol 123: 1337-1350) were used to study the role of the NADH-dehydrogenase complex (NDH) during photosynthesis and particularly the involvement of this complex in cyclic electron flow around photosystem I (PSI). Photosynthetic activity was determined on leaf discs by measuring CO2 exchange and chlorophyll fluorescence quenchings during a dark-to-light transition. In the absence of treatment, both non-photochemical and photochemical fluorescence quenchings were similar in ndhB- and wild type (WT). When leaf discs were treated with 5 microM antimycin A, an inhibitor of cyclic electron flow around PSI, both quenchings were strongly affected. At steady state, maximum photosynthetic electron transport activity was inhibited by 20% in WT and by 50% in ndhB-. Under non-photorespiratory conditions (2% O2, 2,500 microL x L(-1) CO2), antimycin A had no effect on photosynthetic activity of WT, whereas a 30% inhibition was observed both on quantum yield of photosynthesis assayed by chlorophyll fluorescence and on CO2 assimilation in ndhB-. The effect of antimycin A on ndhB- could not be mimicked by myxothiazol, an inhibitor of the mitochondrial cytochrome bc1 complex, therefore showing that it is not related to an inhibition of the mitochondrial electron transport chain but rather to an inhibition of cyclic electron flow around PSI. We conclude to the existence of two different pathways of cyclic electron flow operating around PSI in higher plant chloroplasts. One of these pathways, sensitive to antimycin A, probably involves ferredoxin plastoquinone reductase, whereas the other involves the NDH complex. The absence of visible phenotype in ndhB- plants under normal conditions is explained by the complement of these two

  18. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    OpenAIRE

    Ramin Rezaei; Mohammadi, Mohammad K; Tahereh Ranjbar

    2011-01-01

    Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  19. Long-term exercise modulates hippocampal gene expression in senescent female mice.

    Science.gov (United States)

    Alvarez-López, María Jesús; Castro-Freire, Marco; Cosín-Tomás, Marta; Sanchez-Roige, Sandra; Lalanza, Jaume F; Del Valle, Jaume; Párrizas, Marcelina; Camins, Antonio; Pallás, Merce; Escorihuela, Rosa María; Kaliman, Perla

    2013-01-01

    The senescence-accelerated SAMP8 mouse is considered a useful non-transgenic model for studying aspects of progressive cognitive decline and Alzheimer's disease (AD). Using SAMR1 mice as controls, here we explored the effects of 6 months of voluntary wheel running in 10-month-old female SAMP8 mice. Exercise in SAMP8 mice improved phenotypic features associated with premature aging (i.e., skin color and body tremor) and enhanced vascularization and BDNF gene expression in the hippocampus compared with controls. With the aim of identifying genes involved in brain aging responsive to long-term exercise, we performed whole genome microarray studies in hippocampus from sedentary SAMP8 (P8sed), SAMR1 (R1sed), and exercised SAMP8 (P8run) mice. The genes differentially expressed in P8sed versus R1sed were considered as putative aging markers (i) and those differentially expressed in P8run versus P8sed were considered as genes modulated by exercise (ii). Genes differentially expressed in both comparisons (i and ii) were considered as putative aging genes responsive to physical exercise. We identified 34 genes which met both criteria. Gene ontology analysis revealed that they are mainly involved in functions related to extracellular matrix maintenance. Selected genes were validated by real-time quantitative PCR assays, i.e., collagen type 1 alpha 1 (col1a1), collagen type 1 alpha 2 (col1a2), fibromodulin (fmod), prostaglandin D(2) synthase (ptgds), and aldehyde dehydrogenase (Aldh1a2). As a whole, our study suggests that exercise training during adulthood may prevent or delay gene expression alterations and processes associated with hippocampal aging in at-risk subjects. PMID:23168450

  20. The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases

    DEFF Research Database (Denmark)

    Zaganas, Ioannis; Pajecka, Kamilla; Nielsen, Camilla Wendel;

    2013-01-01

    Glutamate dehydrogenase (GDH) uses ammonia to reversibly convert α-ketoglutarate to glutamate using NADP(H) and NAD(H) as cofactors. While GDH in most mammals is encoded by a single GLUD1 gene, humans and other primates have acquired a GLUD2 gene with distinct tissue expression profile. The two h...... of the kidney during systemic acidosis. The reverse could apply for conditions of local or systemic hyperammonemia or alkalosis....

  1. Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Kilstrup, Mogens; Roepstorff, Peter;

    2002-01-01

    strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG1363 and the gapA overexpressing strain the GAPDH activity...

  2. Cloning and expression of glucose 3-dehydrogenase from Halomonas sp. alpha-15 in Escherichia coli.

    Science.gov (United States)

    Kojima, K; Tsugawa, W; Sode, K

    2001-03-23

    The gene encoding glucose 3-dehydrogenase (G3DH) from Halomonas sp. alpha-15 was cloned and expressed in Escherichia coli. An open reading frame of 1686 nucleotides was shown to encode G3DH. The flavine adenine dinucleotide binding motif was found in the N-terminal region of G3DH. The deduced primary structure of G3DH showed about 30% identity to sorbitol dehydrogenase from Gluconobacter oxydans and 2-keto-d-gluconate dehydrogenases from Erwinia herbicola and Pantoea citrea. The folding prediction of G3DH suggested that the 3D structure of G3DH was similar with cholesterol oxidase from Brevibacterium sterolicum or glucose oxidase from Aspergillus niger. PMID:11263965

  3. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim-3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  4. Iodine-Catalyzed Prins Cyclization of Homoallylic Alcohols and Aldehydes

    Directory of Open Access Journals (Sweden)

    Luiz F. Silva

    2013-09-01

    Full Text Available The iodine-catalyzed Prins cyclization of homoallylic alcohols and aldehydes was investigated under metal-free conditions and without additives. Anhydrous conditions and inert atmosphere are not required. The reaction of 2-(3,4-dihydronaphthalen-1-ylpropan-1-ol and 21 aldehydes (aliphatic and aromatic in CH2Cl2 in the presence of 5 mol % of iodine gave 1,4,5,6-tetrahydro-2H-benzo[f]isochromenes in 54%–86% yield. Under similar conditions, the Prins cyclization of six alcohols containing an endocyclic double bond (primary, secondary, or tertiary led to dihydropyrans in 52%–91% yield. The acyclic homoallylic alcohols gave 4-iodo-tetrahydropyran in 29%–41% yield in the presence of 50 mol % of iodine. This type of substrate is the main limitation of the methodology. The relative configuration of the products was assigned by NMR and X-ray analysis. The mechanism and the ratio of the products are discussed, based on DFT calculations.

  5. Affinity chromatography of bacterial lactate dehydrogenases.

    Science.gov (United States)

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  6. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  7. 杜仲肉桂醇脱氢酶基因全长cDNA克隆及序列分析%Cloning and Sequence Analysis of the Full-length cDNA of Cinnamyl Alcohol Dehydrogenase Gene from Eucommia ulmoides Olive

    Institute of Scientific and Technical Information of China (English)

    赵丹; 李晓毓; 陈建; 赵德刚

    2012-01-01

    以杜仲(Eucommia ulmoides Olive)4、5月份新长成的杜仲幼嫩叶片为材料,在克隆一段肉桂醇脱氢酶(cinnamyl alcohol dehydrogenase,CAD)基因的基础上,以杜仲cDNA为模板,采用cDNA末端快速扩增法(Rapid amplification of cDNA Ends,RACE)克隆了5'端828 bp和3'端798 bp cDNA序列,经5'RACE产物和3'RACE产物序列拼接,获得全长为1243 bp的杜仲CAD cDNA序列,开放阅读框编码243个氨基酸,命名为EuCAD(GenBank登录号:DQ142643).与GenBank中序列比对分析发现,该cDNA序列与苹果树、桉树、红橡树中的CAD基因序列同源性均为81%,预测编码的氨基酸序列与苹果树、桉树、红橡树的同源性分别为73%、70%和70%,因此认为是杜仲肉桂醇脱氢酶基因.该基因为首次从杜仲中克隆,为探索木质素的合成调控机理奠定基础.%Cinnamyl alcohol dehydrogenase ( CAD) plays an important role in the lignin biosynthesis. Cloning and sequence analysis of this gene ( CAD) from Eucommia ulmoides Olive were carried out by Rapid Amplification of cDNA Ends ( RACE) in the current work. The sequence analysis showed that the full-length cDNA of CAD contained 1243 bp, whose open reading frame ( ORF ) predicted a protein of 243 amino acids. The cDNA blast in GenBank showed 81% homology with Malus domestica, Eucalyptus gunnii, and Quercus suber, and amino acid blast demonstrated 73% , 70% , 70% homology with that of just-mentioned species, respectively , suggesting that full-length cDNA was authentic Eucommia CAD. The Cloning of Eucommia CAD may facilitate to unravel the synthetical mechanism of lignin in plant.

  8. 高效表达木糖醇脱氢酶基因酿酒酵母的构建及木酮糖发酵的初步研究%Construction of Saccharomyces cerevisiae Strain Expressing Xylitol Dehydrogenase Gene Efficiently and Primary Study of Its Xylulose Fermentation

    Institute of Scientific and Technical Information of China (English)

    陈高云; 刘敏; 叶凯; 张元忠; 涂振东; 于孟斌

    2011-01-01

    通过RT—PCR方法克隆得到Candidatropicalis木糖醇脱氢酶基因xyl2,将该基因连入酵母表达载体pYES2的诱导型启动子GAL1下,构建表达质粒pYES2-xyl2;同时用从Pichiapastoris中克隆获取的甘油醛磷酸脱氢酶基因GAP换下GAL1基因,构建含组成型启动子GAP基因的表达质粒pYES2-GAP—xyl2;通过电转化法将其依次转入酿酒酵母S.cerevisiaeINVSc1,山梨醇培养基上筛选的转化子经木糖醇梯度驯化培养,筛选出1株耐木糖醇浓度为20%的酿酒酵母重组菌株ZCX4和1株在半乳糖诱导下耐木糖醇浓度为15%的重组菌株YDX2。酶活测定表明。重组菌株ZCX4比酶活0.621U/mg(蛋白),是YDX2比酶活的2.29倍。摇瓶发酵结果显示,重组菌株ZCX4木糖醇消耗76.46g/L,木糖醇消耗率为76.46%,是重组茵株YDX2木糖醇消耗率的1.63倍,说明木糖醇脱氢酶实现了高效表达。%Yeast expression vector pYES2-xyl2 was constructed by cloning xylitol dehydrogenase gene xyl2, which originated from Candida tropicalis and placed under the inducible promoter GALl of the vector. Meanwhile, the other yeast expression vector pYES2-GAP-xyI2 containing the constitutive strong promoter GAP gene instead ofGAL gene was constructed. The plasmids containing xyl2 gene were transformed into industrial strain of S.cerevisiae INVScl by electroporation. The recombinant transformants ZCX4 and YDX2 grew well on plates in condition of high-concentration xylitol. The xylitol dehydrogenase specific activity of recombinant strain ZCX4 was 0.621 U/mg protein, 2.39 times as much as the recombinant strain YDX2, In addition, flask-shaking fermentation results revealed that the consumption of xylitol for ZCX4 was 76.46 g/L, 1.63 times as much as the recombinant strain YDX2. The results demonstrated that the recombinant stain could utilize xylitol efficiently by xylulose fermentation.

  9. Overexpression of ω-3 Fatty Acid Dehydrogenase Gene Protects MouseEmbryonic Fibrocytes from ω-6 PUFAs-induced Apoptosis%过表达ω-3多不饱和脂肪酸脱氢酶基因fat-1保护小鼠胚胎成纤维细胞避免凋亡

    Institute of Scientific and Technical Information of China (English)

    李芳芳; 葛银林; 薛美兰; 张金玉; 李泉; 单虎

    2011-01-01

    ω-3 polyunsaturated fatty acids (ω-3PUFAs ) are important for the normal function of mammals. However, it is difficult to gain ω-3 PUFAs in human body and there is no ω-3 PUFAs dehydrogenase in vivo to catalyze ω-6PUFAs into ω-3PUFAs. But the expressed product of fat-1 gene from Caenorhabditis elegan is ω-3 PUFAs dehydrogenase. Hence, to express fat-l gene in mouse embryonic fibrocyte is the aim of this study. First, the eukaryotic expression vector pEGFPC1-fat-l , containing fat-l gene cDNA was constructed and transfected into mouse embryonic fibrocyte. Then the expression level was detected by RT-PCR and Laser Scanning Confocal Microscope, the change of cellular ω-6PUFAs /ω-3PUFAs ratio was examined by gas chromatography, the inhibiting rate of cells proliferation was observed by MTT method, and cell apoptosis was evaluated by flow cytometry. Results showed that the cells proliferation rate was higher and cells apoptosis magnitude was lower than those in the control cells. In conclusion, fat-l gene could significantly decrease the ratio of cellular ω-3PUFAs / w-3PUFAs and inhibit apoptosis of the 3T3 cell. It shows strong cell-protective effects on mouse embryonic fibrocyte.%由于膳食原因,人体摄入ω-6PUFAs/ω-3 PUFAs比例过高,脂类代谢严重失衡.鉴于ω-3PUFAs获取困难而且人体无催化ω-6PUFAs向ω-3PUFAs转化的ω-3多不饱和脂肪酸脱氢酶,本研究体外扩增来源于秀丽线虫(Caenorhabditis elegans)的ω-3多不饱和脂肪酸脱氢酶基因(fat-I)cDNA,构建了真核表达载体pEGFPCl-fat-1,将该基因转染入小鼠胚胎成纤维细胞;激发荧光与RT-PCR方法检测转染pEGFPC1-fat-1细胞表达该基因,气相色谱分析显示该转染细胞中ω-6PUFAs/ω-3PUFAs的比例降低;细胞抑制率实验显示转染细胞的MTT吸光值升高(P<0.05);双染法流式细胞仪分析转染细胞凋亡降低,结果表明fat-1基因即使在高浓度ω-6PUFAs的细胞毒作用下,

  10. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  11. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C;

    1996-01-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patc...

  12. Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water.

    Science.gov (United States)

    Liu, Mingxin; Li, Chao-Jun

    2016-08-26

    The first example of homogeneous copper-catalyzed aerobic oxidation of aldehydes is reported. This method utilizes atmospheric oxygen as the sole oxidant, proceeds under extremely mild aqueous conditions, and covers a wide range of various functionalized aldehydes. Chromatography is generally not necessary for product purification. PMID:27505714

  13. Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes

    DEFF Research Database (Denmark)

    Thygesen, Mikkel Boas; Sørensen, Kasper Kildegaard; Cló, Emiliano;

    2009-01-01

    Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell.......Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell....

  14. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    OpenAIRE

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism.

  15. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8.

    Science.gov (United States)

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensisACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  16. Genetic inactivation of pyruvate dehydrogenase kinases improves hepatic insulin resistance induced diabetes.

    Directory of Open Access Journals (Sweden)

    Rongya Tao

    Full Text Available Pyruvate dehydrogenase kinases (PDK1-4 play a critical role in the inhibition of the mitochondrial pyruvate dehydrogenase complex especially when blood glucose levels are low and pyruvate can be conserved for gluconeogenesis. Under diabetic conditions, the Pdk genes, particularly Pdk4, are often induced, and the elevation of the Pdk4 gene expression has been implicated in the increased gluconeogenesis in the liver and the decreased glucose utilization in the peripheral tissues. However, there is no direct evidence yet to show to what extent that the dysregulation of hepatic Pdk genes attributes to hyperglycemia and insulin resistance in vivo. To address this question, we crossed Pdk2 or Pdk4 null mice with a diabetic model that is deficient in hepatic insulin receptor substrates 1 and 2 (Irs1/2. Metabolic analyses reveal that deletion of the Pdk4 gene had better improvement in hyperglycemia and glucose tolerance than knockout of the Pdk2 gene whereas the Pdk2 gene deletion showed better insulin tolerance as compared to the Pdk4 gene inactivation on the Irs1/2 knockout genetic background. To examine the specific hepatic effects of Pdks on diabetes, we also knocked down the Pdk2 or Pdk4 gene using specific shRNAs. The data also indicate that the Pdk4 gene knockdown led to better glucose tolerance than the Pdk2 gene knockdown. In conclusion, our data suggest that hepatic Pdk4 may be critically involved in the pathogenesis of diabetes.

  17. Genetic inactivation of pyruvate dehydrogenase kinases improves hepatic insulin resistance induced diabetes.

    Science.gov (United States)

    Tao, Rongya; Xiong, Xiwen; Harris, Robert A; White, Morris F; Dong, Xiaocheng C

    2013-01-01

    Pyruvate dehydrogenase kinases (PDK1-4) play a critical role in the inhibition of the mitochondrial pyruvate dehydrogenase complex especially when blood glucose levels are low and pyruvate can be conserved for gluconeogenesis. Under diabetic conditions, the Pdk genes, particularly Pdk4, are often induced, and the elevation of the Pdk4 gene expression has been implicated in the increased gluconeogenesis in the liver and the decreased glucose utilization in the peripheral tissues. However, there is no direct evidence yet to show to what extent that the dysregulation of hepatic Pdk genes attributes to hyperglycemia and insulin resistance in vivo. To address this question, we crossed Pdk2 or Pdk4 null mice with a diabetic model that is deficient in hepatic insulin receptor substrates 1 and 2 (Irs1/2). Metabolic analyses reveal that deletion of the Pdk4 gene had better improvement in hyperglycemia and glucose tolerance than knockout of the Pdk2 gene whereas the Pdk2 gene deletion showed better insulin tolerance as compared to the Pdk4 gene inactivation on the Irs1/2 knockout genetic background. To examine the specific hepatic effects of Pdks on diabetes, we also knocked down the Pdk2 or Pdk4 gene using specific shRNAs. The data also indicate that the Pdk4 gene knockdown led to better glucose tolerance than the Pdk2 gene knockdown. In conclusion, our data suggest that hepatic Pdk4 may be critically involved in the pathogenesis of diabetes. PMID:23940800

  18. Cloning and Bioinformatic Analysis of Glucose-6-phosphate 1-dehydrogenase Gene(gsdA) from Aspergillus oryzae%米曲霉6-磷酸葡萄糖脱氢酶基因 gsdA 的克隆及生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    刘薇; 吴晶晶; 陈宏文

    2012-01-01

      6-磷酸葡萄糖脱氢酶催化6-磷酸葡萄糖生成6-磷酸葡萄糖酸,并生成NADPH,是微生物胞内磷酸戊糖途径(PPP)的关键酶。本研究以食品安全菌米曲霉CICC2012为材料,克隆获得6-磷酸葡萄糖脱氢酶基因(GenBank登录号:JN123468)。序列分析表明,该酶是由222个氨基酸组成的亲水性蛋白;128~134位氨基酸序列DHYLGKE为活性区域;170~176位氨基酸序列GTEGRGG可能为辅因子结合位点。进化树分析表明,米曲霉6-磷酸葡萄糖脱氢酶同其他丝状真菌及酵母的G6PDH较相似%  Glucose-6-phosphate 1-dehydrogenase(G6PDH) is one of the key enzymes in pentose phosphate pathway(PPP). Here, the gene encoding G6PDH is cloned from Aspergillus oryzae CICC2012. This gene was sequenced and submitted to GenBank(accession number: JN123468). The sequence was analyzed bioinformatically. The results show that G6PDH from A. oryzae is a hydrophilic enzyme consisting of 222 amino acids. The sequence from 128 to 134(DHYLGKE) is the active site, and the sequences from 170 to 176(GTEGRGG) is the possible site of coenzyme binding. The phylogenetic tree shows that G6PDH of A. oryzae is similar to other filamentous fungi and the yeast one, while distinguished from the bacterial type, the plant one, and the human one.

  19. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  20. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. PMID:27459246

  1. Molecular Response to Toxic Diatom-Derived Aldehydes in the Sea Urchin Paracentrotus lividus

    Directory of Open Access Journals (Sweden)

    Stefano Varrella

    2014-04-01

    Full Text Available Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs, which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations, as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes.

  2. Synthesis of bio-based aldehyde from seaweed polysaccharide and its interaction with bovine serum albumin.

    Science.gov (United States)

    Kholiya, Faisal; Chaudhary, Jai Prakash; Vadodariya, Nilesh; Meena, Ramavatar

    2016-10-01

    Here, we demonstrate a successful synthesis of bio-based aldehyde namely dialdehyde-carboxymethylagarose (DCMA) using carboxymethyagarose (CMA). Further reaction parameters (i.e. reaction temperature, pH and periodate concentration) were optimized to achieve maximum aldehyde content and product yield. The synthesis of DCMA was confirmed by employing FTIR, (1)H NMR, XRD, SEM, AFM, TGA, DSC, EA and GPC techniques. To investigate the aldehyde functionality, DCMA was allowed to interact with BSA and obtained results were found to be comparable with that of synthetic aldehyde (Formaldehyde). Further interaction of DCMA with BSA was confirmed by using UV-vis, FTIR, fluorescent spectroscopy, CD and DLS analysis. Results of this study revealed that bio-based aldehyde behaves like formaldehyde. This study adds value to abundant marine biopolymers and opens the new research area for polymer researchers. PMID:27312639

  3. Preliminary Study on Silent ofSaccharomyces cerevisiae Alcohol Dehydrogenase II Gene%酿酒酵母ADH2基因沉默菌株构建的初步研究

    Institute of Scientific and Technical Information of China (English)

    林燕环

    2015-01-01

    本实验通过构建酿酒酵母ADH2基因沉默表达载体,电转化法转化酿酒酵母工程菌Y01,获得酿酒酵母ADH2基因沉默突变株S01。发酵实验结果表明沉默突变株乙醇产量相对较低。说明沉默突变株体内乙醇合成途径受到干扰。%The main purpose of this research is to construct a ADH2 gene silencing strain S01 by the method of constructing ADH2 gene silencing expression vector than transformed intoSaccharomyces cerevisiae Y01. The results showed that the ethanol production of the mutant strain was relatively low. The alcohol metabolic pathway in this transformant si interfered.

  4. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently in

  5. Sjögren-Larsson syndrome: novel mutations in the ALDH3A2 gene in a French cohort.

    Science.gov (United States)

    Sarret, Catherine; Rigal, Mélanie; Vaurs-Barrière, Catherine; Dorboz, Imen; Eymard-Pierre, Eléonore; Combes, Patricia; Giraud, Geneviève; Wanders, Ronald J A; Afenjar, Alexandra; Francannet, Christine; Boespflug-Tanguy, Odile

    2012-01-15

    Sjogren-Larsson syndrome (SLS) is a rare autosomal recessive disorder characterized by ichthyosis, spastic di- or tetraplegia and mental retardation due a defect of the fatty aldehyde dehydrogenase (FALDH), related to mutations in the ALDH3A2 gene. In this study, we screened a French cohort of patients with Sjögren-Larsson syndrome (SLS) for mutations in the ALDH3A2 gene. The five unrelated patients with typical SLS all present mutations in this gene. Three novel mutations were identified whereas three other ones were previously described. We also realized functional analyses at the mRNA level for two splice site mutations to study their deleterious consequences. Two of the previously described mutations had already been identified in the same region of Europe, suggesting a putative founder effect. We suggest that, (1) when clinical and MR features are present, direct sequencing of the ALDH3A2 gene in SLS is of particular interest without necessity of a skin biopsy for enzymatic assay in order to propose genetic counsel and (2) identification of mutations already described in the same population with putative founder effects may simplify genetic analysis in this context.

  6. 日本结缕草ZjADH基因的克隆及表达分析%Cloning and Expression of an Alcohol Dehydrogenase Gene (Zj ADH)from Zoysia j aponica

    Institute of Scientific and Technical Information of China (English)

    滕珂; 李俊; 张兰; 郭蔚尔; 许立新; 晁跃辉

    2016-01-01

    采用 RACE 技术从日本结缕草中克隆出1个乙醇脱氢酶基因,命名为 Zj ADH (GenBank 登录号为KT596065)。Zj ADH 与甘蔗、美洲蒺藜草和沟叶结缕草等 ADH 基因同源性均在90%以上,进化分析表明其与沟叶结缕草亲缘关系最近。亚细胞定位结果显示,Zj ADH 定位于细胞质。实时荧光定量分析结果表明,Zj ADH 在日本结缕草根中表达量最高,Zj ADH 可响应 ABA、MeJA 和 SA 的诱导,在低温、干旱和高盐胁迫中发挥重要作用。%The AD H gene,Zj AD H ,was isolated from Zoysia j aponica by RACE method and then submitted to the GenBank (Accession number KT596065 ). Zj AD H shared a high level of similarity (more than 90% homology)with other AD H genes in Saccharum hybrid ,Cenchrus americanus and Zoy-sia matrella. Phylogenetic analysis showed that ZjADHis was the closest to ZmADH. Subcellular locali-zation of ZjADH was performed by Agrobacterium-mediated transient expression assay in N. benthami-ana. The results demonstrated that ZjADHis localized in the cytoplasm. Quantitative real time PCR was carried out to investigate the expression pattern of Zj AD H. The expression level of Zj AD H was much higher in root,and could be strongly induced by cold,drought or NaCl stresses. Exogenous ABA,MeJA or SA treatment could also up-regulate the expression of Zj AD H as well. Taken together,Zj AD H is a valuable gene in the study of abiotic stresses tolerance of Zoysia j aponica. This study paves the way to further study the Zj AD H in Zoysia j aponica.

  7. DNA-Templated Introduction of an Aldehyde Handle in Proteins

    DEFF Research Database (Denmark)

    Kodal, Anne Louise Bank; Rosen, Christian Bech; Mortensen, Michael Rosholm;

    2016-01-01

    Many medical and biotechnological applications rely on labeling of proteins, but one key challenge is the production of homogeneous and site-specific conjugates. This can rarely be achieved by mere residue-specific random labeling, but requires genetic engineering. Using site-selective DNA......-templated reductive amination we create DNA-protein conjugates with control over labeling stoichiometry without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing coupling of a second reactive DNA strand to the vicinity of a protein metal......-binding site. Here, we demonstrate DNA-templated reductive amination for His6-tagged proteins and native metal-binding proteins, including IgG1 antibodies. We also use a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde to proteins. This functions as a handle...

  8. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T.K. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Clarke, S.M., E-mail: stuart@bpi.cam.ac.u [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Bhinde, T. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Castro, M.A.; Millan, C. [Instituto Ciencia de los Materiales de Sevilla, Departamento de Quimica Inorganica (CSIC-Universidad de Sevilla) (Spain); Medina, S. [Centro de Investigacion, Tecnologia e Innovacion de la Universidad de Sevilla (CITIUS), Sevilla (Spain)

    2011-03-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C{sub 7}, C{sub 9} and C{sub 11}) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C{sub 11} homologue is determined to have a plane group of either p2, pgb or pgg, and for the C{sub 7} homologue the p2 plane group is preferred.

  9. Reduction of Aldehydes and Ketones with Potassium Borohydride as Reductant

    Institute of Scientific and Technical Information of China (English)

    罗慧谋; 李毅群

    2005-01-01

    A series of aldehydes and ketones were reduced by potassium borohydride in an ionic liquid/water ([bmim]PF6/H2O) biphasic system to afford corresponding alcohol with high purity in excellent yields. The ionic liquid/water biphasic system could promote the chemoselectivity and the substituents such as nitro group and chlorine remained intact. Aromatic ketones were not as active as aromatic aldhydes and cyclic ketones owing to their higher steric hindrance. The ionic liquid could be recycled and reused. This protocol has notable advantages of no need of phase transfer catalyst and organic solvents, mild conditions, simple operation, short reaction time, ease work-up, high yields and recycling of the ionic liquid.

  10. Role of the Molybdoflavoenzyme Aldehyde Oxidase Homolog 2 in the Biosynthesis of Retinoic Acid: Generation and Characterization of a Knockout Mouse▿ †

    Science.gov (United States)

    Terao, Mineko; Kurosaki, Mami; Barzago, Maria Monica; Fratelli, Maddalena; Bagnati, Renzo; Bastone, Antonio; Giudice, Chiara; Scanziani, Eugenio; Mancuso, Alessandra; Tiveron, Cecilia; Garattini, Enrico

    2009-01-01

    The mouse aldehyde oxidase AOH2 (aldehyde oxidase homolog 2) is a molybdoflavoenzyme. Harderian glands are the richest source of AOH2, although the protein is detectable also in sebaceous glands, epidermis, and other keratinized epithelia. The levels of AOH2 in the Harderian gland and skin are controlled by genetic background, being maximal in CD1 and C57BL/6 and minimal in DBA/2, CBA, and 129/Sv strains. Testosterone is a negative regulator of AOH2 in Harderian glands. Purified AOH2 oxidizes retinaldehyde into retinoic acid, while it is devoid of pyridoxal-oxidizing activity. Aoh2−/− mice, the first aldehyde oxidase knockout animals ever generated, are viable and fertile. The data obtained for this knockout model indicate a significant role of AOH2 in the local synthesis and biodisposition of endogenous retinoids in the Harderian gland and skin. The Harderian gland's transcriptome of knockout mice demonstrates overall downregulation of direct retinoid-dependent genes as well as perturbations in pathways controlling lipid homeostasis and cellular secretion, particularly in sexually immature animals. The skin of knockout mice is characterized by thickening of the epidermis in basal conditions and after UV light exposure. This has correlates in the corresponding transcriptome, which shows enrichment and overall upregulation of genes involved in hypertrophic responses. PMID:18981221

  11. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    Science.gov (United States)

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages. PMID:25340465

  12. Quantification of Carnosine-Aldehyde Adducts in Human Urine.

    Science.gov (United States)

    da Silva Bispo, Vanderson; Di Mascio, Paolo; Medeiros, Marisa

    2014-10-01

    Lipid peroxidation generates several reactive carbonyl species, including 4-hydroxy-2-nonenal (HNE), acrolein (ACR), 4-hydroxy-2-hexenal (HHE) and malondialdehyde. One major pathwayof aldehydes detoxification is through conjugation with glutathione catalyzed by glutathione-S-transferases or, alternatively, by conjugation with endogenous histidine containing dipeptides, such as carnosine (CAR). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of CAR- ACR, CAR-HHE and CAR-HNE adducts in human urinary samples from non-smokers young adults. Standard adducts were prepared and isolated by HPLC. The results showed the presence of a new product from the reaction of CAR with ACR. This new adduct was completely characterized by HPLC/MS-MSn, 1H RMN, COSY and HSQC. The new HPLC/MS/MS methodology employing stable isotope-labeled internal standards (CAR-HHEd5 and CAR-HNEd11) was developed for adducts quantification. This methodology permits quantification of 10pmol CAR-HHE and 1pmol of CAR-ACR and CAR-HNE. Accurate determinations in human urine sample were performed and showed 4.65±1.71 to CAR-ACR, 5.13±1.76 to CAR-HHE and 5.99±3.19nmol/mg creatinine to CAR-HNE. Our results indicate that carnosine pathways can be an important detoxification route of a, ß -unsaturated aldehydes. Moreover, carnosine adducts may be useful as redox stress indicator. PMID:26461323

  13. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    Energy Technology Data Exchange (ETDEWEB)

    Girio, F.M.; Amaral-Collaco, M.T. [INETI, Lisboa (Portugal); Pelica, F. [ITQB, Oeiras (Portugal)

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  14. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    OpenAIRE

    Yi, Xia; Gu, Hanqi; Gao, Qiuqiang; Liu, Z. Lewis; Bao, Jie

    2015-01-01

    Background Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenolic aldehyde inhibitors are rare. For ethanologenic strains, Zymomonas mobilis ZM4 is high in ethanol productivity and genetic manipulation feasibility, but sensitive to phenolic aldehyde inhibitors....

  15. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  16. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom.

  17. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals

    DEFF Research Database (Denmark)

    Galuszka, P.; Frebort, I.; Sebela, M.;

    2001-01-01

    An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purified...... wheat enzyme is a monomer 60 kDa, its N-terminal amino-acid sequence shows similarity to hypothetical cytokinin oxidase genes from Arabidopsis thaliana, but not to the enzyme from maize. N-6-isopentenyl-2-(2-hydroxyethylamino)-9-methyladenine is the best substrate from all the cytokinins tested....... Interestingly, oxygen was not required and hydrogen peroxide not produced during the catalytic reaction, so the enzyme behaves as a dehydrogenase rather than an oxidase. This was confirmed by the ability of the enzyme to transfer electrons to artificial electron acceptors, such as phenazine methosulfate and 2...

  18. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.

    Directory of Open Access Journals (Sweden)

    María Agustina Domínguez-Martín

    Full Text Available The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42 catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  19. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat.

    Science.gov (United States)

    Ma, Qing-Hu

    2010-06-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step in the biosynthesis of monolignols. In the present study, a cDNA encoding a CAD was isolated from wheat, designated as TaCAD1. A genome-wide data mining in the wheat EST database revealed another 10 CAD-like homologues, namely TaCAD2 to TaCAD11. A phylogenetic analysis showed that TaCAD1 belonged to the bona fide CAD group involved in lignin synthesis. Two other putative CADs from the wheat genome (TaCAD2 and TaCAD4) also belonged to this group and were very close to TaCAD1, but lacked C-terminal domain, suggesting that they are pseudogenes. DNA gel blot analysis for the wheat genome showed two to three copies of CAD related to TaCAD1, but RNA gel blot analysis revealed only single band for TaCAD1, which was highly expressed in stem, with quite low expression in leaf and undetectable expression in root. The predicted three-dimension structure of TaCAD1 resembled that of AtCAD5, but two amino acid substitutions were identified in the substrate binding region. Recombinant TaCAD1 protein used coniferyl aldehyde as the most favoured substrate, also showed high efficiencies toward sinapyl and p-coumaryl aldehydes. TaCAD1 was an enzyme being pH-dependent and temperature-sensitive, and showing a typical random catalysing mechanism. At the milky stage of wheat, TaCAD1 mRNA abundance, protein level and enzyme activity in stem tissues were higher in a lodging-resistant cultivar (H4546) than in lodging-sensitive cultivar (C6001). These properties were correlated to the lignin contents and lodging indices of the two cultivars. These data suggest that TaCAD1 is the predominant CAD in wheat stem for lignin biosynthesis and is critical for lodging resistance.

  20. α,β-Unsaturated aldehyde of hyaluronan--Synthesis, analysis and applications.

    Science.gov (United States)

    Buffa, Radovan; Šedová, Petra; Basarabová, Ivana; Moravcová, Martina; Wolfová, Lucie; Bobula, Tomáš; Velebný, Vladimír

    2015-12-10

    Hyaluronic acid (HA) modified with an aldehyde group (HA-CHO or HA-aldehyde) has been extensively used for various biomedical applications. The main advantage of the aldehyde moieties is the ability to react with a wide range of amino compounds under physiological conditions. Reactions of aldehydes with primary amines in water are reversible and equilibrium is thoroughly shifted towards starting aldehyde and amine. This work presents an unique modification of HA: α,β-unsaturated aldehyde of HA (4,5-anhydro-6(GlcNAc)-oxo HA or ΔHA-CHO), which allows the primary amines to be attached to HA more effectively in comparison to the saturated HA-CHO. Higher hydrolytic stability is caused by the conjugation of imine with an adjacent --C=C-- double bond. Two strategies for the preparation of unsaturated HA-aldehyde were developed and chemical structures were studied in details. Cross-linked materials prepared from this precursor are biocompatible and suitable for applications in drug delivery and regenerative medicine. PMID:26428127

  1. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain and intestine of the swamp eel, Monopterus albus, exposed to freshwater, terrestrial conditions, environmental ammonia or salinity stress

    Directory of Open Access Journals (Sweden)

    C Y Toh

    2011-12-01

    Full Text Available The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can survive long period of emersion, has high environmental and tissue ammonia tolerance, and acclimate from fresh to brackish water. This study was undertaken to clone and sequence gdh expressed in the liver, intestine and brain of M. albus, to verify whether more than one form of gdh were expressed, and to examine the gdh mRNA expressions in these three organs in fish exposed to various adverse conditions using quantitative real-time PCR. Only one gdh gene sequence, consisted of a 133 bp 5’ UTR, a CDS region spanning 1629 bp and a 3’ UTR of approximately 717 bp, was obtained from the liver, intestine and brain of M. albus. The translated Gdh amino acid sequence from the liver of M. albus had 542 residues and was confirmed to be Gdh1a. It had sequence identity of >90% with Oncorhynchus mykiss Gdh1a, Salmo salar Gdh1a1, Bostrychus sinensis Gdh1a and Tribolodon hakonensis Gdh1a, and formed a monophyletic clade with B. sinensis Gdh1a, Tetraodon nigroviridis Gdh1a, Chaenocephalus aceratus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2 and O. mykiss Gdh1a. An increase in mRNA expression of gdh1a could be essential for increased glutamate production in support of increases in glutamine synthesis under certain environmental condition. Indeed, exposure of M. albus to 1 day of terrestrial conditions or 75 mmol l-1 NH4Cl, but not brackish water, resulted in a significant increase in gdh1a mRNA expression in the liver. However, exposure to brackish water, but not terrestrial conditions or 75 mmol l-1 NH4Cl, lead to a significant increase in the intestinal mRNA expression of gdh1a. By contrast, all the three experimental conditions had no significant effects on the mRNA expression of gdh1a in the brain of M. albus. Our results indicate for the first time that gdh mRNA expression was differentially up-regulated in the liver and intestine of M. albus, in responses to ammonia toxicity and

  2. Antimony(v) cations for the selective catalytic transformation of aldehydes into symmetric ethers, α,β-unsaturated aldehydes, and 1,3,5-trioxanes.

    Science.gov (United States)

    Arias Ugarte, Renzo; Devarajan, Deepa; Mushinski, Ryan M; Hudnall, Todd W

    2016-07-01

    1-Diphenylphosphinonaphthyl-8-triphenylstibonium triflate ([][OTf]) was prepared in excellent yield by treating 1-lithio-8-diphenylphosphinonaphthalene with dibromotriphenylstiborane followed by halide abstraction with AgOTf. This antimony(v) cation was found to be stable toward oxygen and water, and exhibited exceptional Lewis acidity. The Lewis acidity of [][OTf] was exploited in the catalytic reductive coupling of a variety of aldehydes into symmetric ethers of type in good to excellent yields under mild conditions using Et3SiH as the reductant. Additionally, [][OTf] was found to selectively catalyze the Aldol condensation reaction to afford α-β unsaturated aldehydes () when aldehydes with 2 α-hydrogen atoms were used. Finally, [][OTf] catalyzed the cyclotrimerization of aliphatic and aromatic aldehydes to afford the industrially-useful 1,3,5 trioxanes () in good yields, and with great selectivity. This phosphine-stibonium motif represents one of the first catalytic systems of its kind that is able to catalyze these reactions with aldehydes in a controlled, efficient manner. The mechanism of these processes has been explored both experimentally and theoretically. In all cases the Lewis acidic nature of the antimony(v) cation was found to promote these reactions. PMID:27326797

  3. Novel Essential Role of Ethanol Oxidation Genes at Low Temperature Revealed by Transcriptome Analysis in the Antarctic Bacterium Pseudomonas extremaustralis.

    Science.gov (United States)

    Tribelli, Paula M; Solar Venero, Esmeralda C; Ricardi, Martiniano M; Gómez-Lozano, Maria; Raiger Iustman, Laura J; Molin, Søren; López, Nancy I

    2015-01-01

    Temperature is one of the most important factors for bacterial growth and development. Cold environments are widely distributed on earth, and psychrotolerant and psychrophilic microorganisms have developed different adaptation strategies to cope with the stress derived from low temperatures. Pseudomonas extremaustralis is an Antarctic bacterium able to grow under low temperatures and to produce high amounts of polyhydroxyalkanoates (PHAs). In this work, we analyzed the genome-wide transcriptome by RNA deep-sequencing technology of early exponential cultures of P. extremaustralis growing in LB (Luria Broth) supplemented with sodium octanoate to favor PHA accumulation at 8°C and 30°C. We found that genes involved in primary metabolism, including tricarboxylic acid cycle (TCA) related genes, as well as cytochromes and amino acid metabolism coding genes, were repressed at low temperature. Among up-regulated genes, those coding for transcriptional regulatory and signal transduction proteins were over-represented at cold conditions. Remarkably, we found that genes involved in ethanol oxidation, exaA, exaB and exaC, encoding a pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the cytochrome c550 and an aldehyde dehydrogenase respectively, were up-regulated. Along with RNA-seq experiments, analysis of mutant strains for pqqB (PQQ biosynthesis protein B) and exaA were carried out. We found that the exaA and pqqB genes are essential for growth under low temperature in LB supplemented with sodium octanoate. Additionally, p-rosaniline assay measurements showed the presence of alcohol dehydrogenase activity at both 8°C and 30°C, while the activity was abolished in a pqqB mutant strain. These results together with the detection of ethanol by gas chromatography in P. extremaustralis cultures grown at 8°C support the conclusion that this pathway is important under cold conditions. The obtained results have led to the identification of novel components involved

  4. Novel Essential Role of Ethanol Oxidation Genes at Low Temperature Revealed by Transcriptome Analysis in the Antarctic Bacterium Pseudomonas extremaustralis

    Science.gov (United States)

    Tribelli, Paula M.; Solar Venero, Esmeralda C.; Ricardi, Martiniano M.; Gómez-Lozano, Maria; Raiger Iustman, Laura J.; Molin, Søren; López, Nancy I.

    2015-01-01

    Temperature is one of the most important factors for bacterial growth and development. Cold environments are widely distributed on earth, and psychrotolerant and psychrophilic microorganisms have developed different adaptation strategies to cope with the stress derived from low temperatures. Pseudomonas extremaustralis is an Antarctic bacterium able to grow under low temperatures and to produce high amounts of polyhydroxyalkanoates (PHAs). In this work, we analyzed the genome-wide transcriptome by RNA deep-sequencing technology of early exponential cultures of P. extremaustralis growing in LB (Luria Broth) supplemented with sodium octanoate to favor PHA accumulation at 8°C and 30°C. We found that genes involved in primary metabolism, including tricarboxylic acid cycle (TCA) related genes, as well as cytochromes and amino acid metabolism coding genes, were repressed at low temperature. Among up-regulated genes, those coding for transcriptional regulatory and signal transduction proteins were over-represented at cold conditions. Remarkably, we found that genes involved in ethanol oxidation, exaA, exaB and exaC, encoding a pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the cytochrome c550 and an aldehyde dehydrogenase respectively, were up-regulated. Along with RNA-seq experiments, analysis of mutant strains for pqqB (PQQ biosynthesis protein B) and exaA were carried out. We found that the exaA and pqqB genes are essential for growth under low temperature in LB supplemented with sodium octanoate. Additionally, p-rosaniline assay measurements showed the presence of alcohol dehydrogenase activity at both 8°C and 30°C, while the activity was abolished in a pqqB mutant strain. These results together with the detection of ethanol by gas chromatography in P. extremaustralis cultures grown at 8°C support the conclusion that this pathway is important under cold conditions. The obtained results have led to the identification of novel components involved

  5. Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB, Dendroctonus valens.

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Gu

    Full Text Available The red turpentine beetle (RTB, Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae, is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing.We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP, six chemosensory proteins (CSP, four sensory neuron membrane proteins (SNMP, 22 odorant receptors (OR, four gustatory receptors (GR, three ionotropic receptors (IR, and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis.The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary

  6. The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction

    Science.gov (United States)

    Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.

    1991-12-01

    MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.

  7. Transformations of several monoterpenoids in the presence of aldehydes in supercritical solvents

    Science.gov (United States)

    Anikeev, V. I.; Sivcev, V. P.; Il'ina, I. V.; Korchagina, D. V.; Statsenko, O. B.; Volcho, K. P.; Salakhutdinov, N. F.

    2013-03-01

    The reactivity of verbenol epoxide and isopulegol in supercritical solvents in the presence of aromatic aldehydes was studied using a flow type reactor and a heterogeneous catalyst (Al2O3) or no catalyst. The intramolecular transformations or interactions of reagents with the solvent prevailed in all cases; the yield of the products of intermolecular reactions of terpenoids with aldehydes was up to 1%. The aldehydes did not interact with verbenol epoxide but produced a considerable effect on the distribution of its isomerization products.

  8. MOLECULAR MODELLING OF HUMAN ALDEHYDE OXIDASE AND IDENTIFICATION OF THE KEY INTERACTIONS IN THE ENZYME-SUBSTRATE COMPLEX

    Directory of Open Access Journals (Sweden)

    Siavoush Dastmalchi

    2005-05-01

    Full Text Available Aldehyde oxidase (EC 1.2.3.1, a cytosolic enzyme containing FAD, molybdenum and iron-sulphur cluster, is a member of non-cytochrome P-450 enzymes called molybdenum hydroxylases which is involved in the metabolism of a wide range of endogenous compounds and many drug substances. Drug metabolism is one of the important characteristics which influences many aspects of a therapeutic agent such as routes of administration, drug interaction and toxicity and therefore, characterisation of the key interactions between enzymes and substrates is very important from drug development point of view. The aim of this study was to generate a three-dimensional model of human aldehyde oxidase (AO in order to assist us to identify the mode of interaction between enzyme and a set of phethalazine/quinazoline derivatives. Both sequence-based (BLAST and inverse protein fold recognition methods (THREADER were used to identify the crystal structure of bovine xanthine dehydrogenase (pdb code of 1FO4 as the suitable template for comparative modelling of human AO. Model structure was generated by aligning and then threading the sequence of human AO onto the template structure, incorporating the associated cofactors, and molecular dynamics simulations and energy minimization using GROMACS program. Different criteria which were measured by the PROCHECK, QPACK, VERIFY-3D were indicative of a proper fold for the predicted structural model of human AO. For example, 97.9 percentages of phi and psi angles were in the favoured and most favoured regions in the ramachandran plot, and all residues in the model are assigned environmentally positive compatibility scores. Further evaluation on the model quality was performed by investigation of AO-mediated oxidation of a set of phthalazine/quinazoline derivatives to develop QSAR model capable of describing the extent of the oxidation. Substrates were aligned by docking onto the active site of the enzyme using GOLD technology and then

  9. Studies of aldehydes in an atmosphere simulation chamber

    Energy Technology Data Exchange (ETDEWEB)

    Bossmeyer, J.

    2006-05-15

    recommendations at near-ambient concentration levels. However, the measured yields of the product aldehydes in the NO{sub 3} reactions with propanal and butanal disagreed with model calculations. This discrepancy originated from the model assumptions made for the kinetics of peroxyacyl nitrates in the degradation mechanism of the aldehydes. (orig.)

  10. Developmental expression of Xenopus short-chain dehydrogenase/reductase 3

    OpenAIRE

    Kam, Richard Kin Ting; Chen, Yonglong; Chan, Sun On; Chan, Wood Yee; Dawid, Igor B.; Hui ZHAO

    2010-01-01

    During early embryonic development, the retinoic acid signaling pathway coordinates with other signaling pathways to regulate body axis patterning and organogenesis. The production of retinoic acid requires two enzymatic reactions, the first of which is the oxidization of vitamin A (all-trans-retinol) to all-trans-retinal, mediated in part by the short-chain dehydrogenase/reductase. Through DNA microarrays, we have identified a gene in Xenopus laevis, which shares a high sequence similarity t...

  11. The CBS subdomain of inosine 5’-monophosphate dehydrogenase regulates purine nucleotide turnover†

    OpenAIRE

    Pimkin, Maxim; Markham, George D.

    2008-01-01

    Inosine 5’-monophosphate dehydrogenase (IMPDH) catalyzes the rate limiting step in guanine nucleotide biosynthesis. IMPDH has an evolutionary conserved CBS subdomain of unknown function. The subdomain can be deleted without impairing the in vitro IMPDH catalytic activity and is the site for mutations associated with human retinitis pigmentosa. A guanine-prototrophic Escherichia coli strain, MP101, was constructed with the subdomain sequence deleted from the chromosomal gene for IMPDH. The ATP...

  12. XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph “Candidatus Methylomirabilis oxyfera”

    OpenAIRE

    Wu, Ming L.; Wessels, Hans J. C. T.; Pol, Arjan; Op den Camp, Huub J. M.; Mike S.M. Jetten; van Niftrik, Laura; Keltjens, Jan T.

    2014-01-01

    “Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gram-negative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one...

  13. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  14. Maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of recurrent pregnancy loss.

    Science.gov (United States)

    Sata, F; Yamada, H; Kishi, R; Minakami, H

    2012-10-01

    Epidemiological studies have suggested that the condition of recurrent pregnancy loss (RPL) may be multifactorial, with both genetic predisposition and environmental factors potentially involved in its pathogenesis. The aim of this study is to elucidate the associations between maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of RPL. This case-control study, which involved 116 cases with two or more instances of RPL and 306 fertile controls, was performed in the city of Sapporo, Japan. The associations between eight single nucleotide polymorphisms of folate, alcohol and energy metabolism-related genes [methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), alcohol dehydrogenase 1B (ADH1B), aldehyde dehydrogenase 2 (ALDH2), beta-3-adrenergic receptor (ADRB3) and peroxisome proliferator-activated receptor gamma (PPARG)], and RPL were assessed. Without consideration of cigarette smoking or alcohol use, the risk of RPL significantly decreased in women with the MTHFR rs1801133 TT, MTR rs1805087 AG or ALDH2 rs671 AA genotype (P < 0.05). The risk of RPL associated with cigarette smoking and alcohol use decreased significantly in women carrying the MTHFR rs1801133 T allele [odds ratio (OR), 0.51; 95% confidence interval (CI), 0.27-0.95]. Similarly, the risk of RPL significantly decreased in women carrying the MTR rs1805087 G allele (OR, 0.44; 95% CI, 0.23-0.85). Our findings suggest that maternal gene polymorphisms related to folate metabolism may decrease the risk of RPL. Molecular epidemiological studies are needed to unequivocally elucidate the multifactorial effects of both genetic and environmental factors on human fecundity. PMID:25102261

  15. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  16. Does acute exposure to aldehydes impair pulmonary function and structure?

    Science.gov (United States)

    Abreu, Mariana de; Neto, Alcendino Cândido; Carvalho, Giovanna; Casquillo, Natalia Vasconcelos; Carvalho, Niedja; Okuro, Renata; Ribeiro, Gabriel C Motta; Machado, Mariana; Cardozo, Aléxia; Silva, Aline Santos E; Barboza, Thiago; Vasconcellos, Luiz Ricardo; Rodrigues, Danielle Araujo; Camilo, Luciana; Carneiro, Leticia de A M; Jandre, Frederico; Pino, Alexandre V; Giannella-Neto, Antonio; Zin, Walter A; Corrêa, Leonardo Holanda Travassos; Souza, Marcio Nogueira de; Carvalho, Alysson R

    2016-07-15

    Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1β, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group. PMID:27102012

  17. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. PMID:26342346

  18. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  19. Human 3β-hydroxysteroid dehydrogenase deficiency seems to affect fertility but may not harbor a tumor risk

    DEFF Research Database (Denmark)

    Burckhardt, Marie-Anne; Udhane, Sameer S; Marti, Nesa;

    2015-01-01

    CONTEXT: 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis...

  20. D- and L-lactate dehydrogenases during invertebrate evolution

    Directory of Open Access Journals (Sweden)

    Stillman Jonathon H

    2008-10-01

    Full Text Available Abstract Background The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(--lactate and D(+-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh. Results Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view that the main isozymes (LDH-A, LDH-B and LDH-C evolved through a series of gene duplications after the vertebrates diverged from tunicates. We report several gene duplication events in the crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were found in both vertebrates and invertebrates. Conclusion The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the evolution of L-Ldh has been punctuated by

  1. Uncatalyzed Condensation Reactions between Aromatic Aldehydes and Thiobarbituric Acid in Water

    Institute of Scientific and Technical Information of China (English)

    Bing Qin YANG; Jun LU; Min TIAN

    2003-01-01

    A series of 5-arylidene thiobarbituric acids were prepared from aromatic aldehydes and thiobarbituric acid in water without catalyst conditions in good yields. The structures were characterized by elemental analysis, IR and 1H NMR spectra.

  2. ARA-aldehyde and ABA-trans-diol in apple fruits

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (USA))

    1989-04-01

    We have isolated ABA-aldehyde and ABA-t-diol from postharvest apple fruits, cv. Granny Smith and confirmed their structure by GC-MS. These putative ABA biosynthetic precursors incorporate {sup 18}O to a similar degree as ABA during 48 hours under {sup 18}O{sub 2} atmospheres. The presence of significant amounts of ABA-aldehyde can explain the unique {sup 18}O labeling pattern of ABA in this tissue, where a majority of ABA molecules containing {sup 18}O is labeled in the 1{prime}-hydroxyl group and not in the side chain carboxyl group, the primary site of incorporation for stressed leaves. Exchange of the carbonyl oxygen of ABA-aldehyde with water would decrease {sup 18}O enrichment in the side chain. Results of {sup 18}O{sub 2} experiments and feeding studies using hexadeutero-ABA-aldehyde will be presented and the biosynthetic relationship of these compounds discussed.

  3. Ambient Ionic Liquids Used in the Reduction ofAldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Dan Qian XU; Shu Ping LUO; Bao You LIU; Zhen Yuan XU; Yin Chu SHEN

    2004-01-01

    The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.

  4. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.

    Science.gov (United States)

    Orozco, Lina M; Renz, Michael; Corma, Avelino

    2016-09-01

    Aldehydes possess relatively high chemical energy, which is the driving force for disproportionation reactions such as Cannizzaro and Tishchenko reactions. Generally, this energy is wasted if aldehydes are transformed into carboxylic acids with a sacrificial oxidant. Here, we describe a cascade reaction in which the surplus energy of the transformation is liberated as molecular hydrogen for the oxidation of heptanal to heptanoic acid by water, and the carboxylic acid is transformed into potentially industrially relevant symmetrical ketones by ketonic decarboxylation. The cascade reaction is catalyzed by monoclinic zirconium oxide (m-ZrO2 ). The reaction mechanism has been studied through cross-coupling experiments between different aldehydes and acids, and the final symmetrical ketones are formed by a reaction pathway that involves the previously formed carboxylic acids. Isotopic studies indicate that the carboxylic acid can be formed by a hydride shift from the adsorbed aldehyde on the metal oxide surface in the absence of noble metals. PMID:27539722

  5. Tetrabutylammonium fluoride promoted regiospecific reactions of trimethylsilyl-o-carborane with aldehydes

    International Nuclear Information System (INIS)

    Trimethylsilyl-o-carborane serves as o-carborane carbanion upon fluoride ion promoted reaction with carbonyl compounds. Thus, in the presence of tetrabutylammonium fluoride, trimethylsilyl-o-carborane undergoes facile, unprecedented, carbodesilylation with aromatic and aliphatic aldehydes. (author)

  6. Study on physico-chemical properties of dialdehyde yam starch with different aldehyde group contents

    International Nuclear Information System (INIS)

    Dialdehyde yam starches (DASs) are prepared and characterized. Compared with native starch, viscosity average molecular weight of DASs decreases, and the extent of degradation depends on content of the aldehyde groups. Fourier transform infrared (FT-IR) spectra confirm that the characteristic peak for C=O group at 1732 cm-1 is enhanced with the increasing of content of the aldehyde groups. Scanning electron microscopy (SEM) micrographs show that the surface of starch granules becomes wrinkled. X-ray diffraction (XRD) patterns clearly indicate that their crystallinity decreases with the increasing content of the aldehyde groups before they become amorphous at higher oxidation states. The experimental results of thermogravimetric analysis (TGA) show that DASs have poor stability as compared to native starch. With the increase in content of the aldehyde groups, the thermal stability of DAS declines gradually. According to the results of differential scanning calorimetry (DSC), gelatinization temperature (To and Tp) of DASs are increased, whereas the gelatinization enthalpy decreased.

  7. Organocatalytic enantioselective Michael addition reactions of fluoromalonates with α,β-unsaturated aldehydes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new organocatalytic enantioselective Michael addition of α-fluoromalonate to enals has been developed.The process is efficiently catalyzed by readily available chiral diphenylpyrolinol TES ether under mild reaction conditions to afford versatile highly enantioenriched fluorinated aldehydes.

  8. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)

    2014-02-15

    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  9. Cloning and Expression of Pyruvate Dehydrogenase E 1-α Subunit Gene (pdha) in Mycoplasma ovipneumoniae and Its Immunologic Activity Evaluation%绵羊肺炎支原体(Mycoplasma ovipneumoniae)丙酮酸脱氢酶E1-α亚单位基因(pdha)的克隆、表达及其免疫学活性测定

    Institute of Scientific and Technical Information of China (English)

    许健; 储岳峰; 高鹏程; 赵萍; 贺英; 剡根强; 逯忠新

    2012-01-01

    丙酮酸脱氢酶α-亚单位(PDHA)在病原体丙酮酸脱氢酶的催化过程中发挥着重要作用.为表达绵羊肺炎支原体(Mycoplasma ovipneumoniae)PDHA蛋白并测定其免疫学活性,应用PCR方法扩增出绵羊肺炎支原体pdha基因并对其序列进行分析,将pdha基因中色氨酸密码子TGA优化为TGG后进行全基因合成,插入到pET32-a(+)载体上,构建了pET3 2-a(+ )-pdha重组质粒,将重组质粒转化到大肠杆菌(Escherichia coli)BL21中诱导表达PDHA蛋白,并通过免疫印迹及小鼠(Mus musculus)免疫试验对其免疫学活性进行测定.结果pdha基因全长1 125 bp,编码375 aa,(G+C)%为34.76%,第304~306位、379~381位、586~588位、592~594位、625~627位、811~813位、889~891位及964~966位TGA在支原体中编码色氨酸而不是作为终止密码子;基因序列比对及进化树分析显示,绵羊肺炎支原体pdha基因与10种支原体的pdha基因序列同源性为32.6%~85.3%,氨基酸序列同源性为39.3%~90.6%,基因序列和氨基酸序列均与猪肺炎支原体(M.hyopneumoniae)有同源性,分别为85.3%和90.6%;绵羊肺炎支原体pdha基因在33℃、IPTG 0.25 mmol/L诱导6h的表达条件下,表达量最高;重组的PDHA蛋白可与绵羊肺炎支原体高免血清具有免疫印迹条带,在免疫小鼠后血清抗体效价与对照组相比,均显著升高(P<0.05).本实验首次成功克隆表达了绵羊肺炎支原体pdha基因,并证明其重组PDHA蛋白具有较好的免疫学活性.为绵羊支原体肺炎基因工程疫苗及诊断研究提供候选靶标.%Pyruvate dehydrogenase El-a subunit (PDHA) plays an important role in the catalytic activity of pyruvate dehydrogenase of pathogens. In order to characterize the immunologic activity of the PDHA of Mycoplasma ovipneumoniae, we amplified and sequenced the pdha gene of M. Ovipneumoniae. After optimized with TGG instead of TGA for coding the amino acid of tryptophane, the pdha gene

  10. 家蚕乙醇脱氢酶基因的表达特征及乙醇在蚕体内的代谢分析%Expressional Profile of Alcohol Dehydrogenase Genes and Metabolic Analysis of Ethanol in Bombyx mori Larvae

    Institute of Scientific and Technical Information of China (English)

    杜丽; 王长春; 徐云敏; 李玉欣; 何宁佳

    2012-01-01

    Alcohol dehydrogenase (ADH) is a critical ethanol metabolic enzyme in organisms. Bioinformatics analysis showed that there are 7 ADH coding genes in the silkworm (Bombyx mori) genome ( BmADH1 ~ BmADH7). Semi-quantitative RT-PCR indicated that BmADH2, BmADH3, BmADHA and BmADH5 had high expression level in silk gland of day 3 silkworm larvae of the 5th instar and BmADH1 , BmADH6 and BmADH7 had high expression level in fat body. After day 3 silkworm larvae of the 5th instar were treated with 28% or 56% ethanol via direct injection and oral feeding, the metabolism of ethanol in silkworm larvae as well as the variations of ADH gene expression and ADH enzyme activity in fat body were investigated. Semi-quantitative RT-PCR analysis indicated that the expressions of BmADH1, BmADH6 and BmADH1 genes were up-regulated in silkworm fat body after being treated by direct injection of 56% ethanol, while the expressions of these three genes remained unchanged after treatment with 28% ethanol. Enzyme activity assay revealed that ADH enzyme activities were predominantly increased in silkworm fat body at 1 h after treatment with 28% or 56% ethanol (P<0. 05). Gas chromatography analysis showed that ethanol was quickly converted into acetaldehyde in the larval hemolymph. These results indicate that, after silkworm larvae receive stimulation of high concentration ethanol, the expression of ADH genes is up-regulated in fat body, and the increased ADH enzyme activities participate in ethanol metabolic process to protect the larvae from being harmed by high concentration ethanol.%乙醇脱氢酶(alcohol dehydrogenase,ADH)是生物体内重要的乙醇代谢酶.生物信息学分析显示家蚕基因组中存在7个ADH编码基因(BmADH1 ~ BmADH7),半定量RT-PCR检测BmADH2、BmADH3、BmADH4和BmADH5在家蚕5龄第3天幼虫的丝腺中表达水平较高,BmADH1、BmADH6、BmADH7在脂肪体中高水平表达.利用直接注射和口器灌喂2种方式,对家蚕5龄第3

  11. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  12. Parallel Kinetic Resolution of Racemic Aldehydes by Use of Asymmetric Horner-Wadsworth-Emmons Reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Jensen, Jakob Feldthusen; Humble, Rikke Eva;

    2000-01-01

    A racemic aldehyde can undergo parallel kinetic resolution (PKR) by simultaneous reaction with two different chiral phosphonates, differing either in the structure of the chiral auxiliary or in the structure of the phosphoryl group (i.e., one (E)- and one (Z)-selective reagent). This strategy all...... allows conversion of a racemic aldehyde to two different, synthetically useful chiral products with essentially doubled material throughput and similar or improved selectivities as compared to conventional kinetic resolution....

  13. Garner’s aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

    OpenAIRE

    Mikko Passiniemi; Koskinen, Ari M P

    2013-01-01

    Since its introduction to the synthetic community in 1984, Garner’s aldehyde has gained substantial attention as a chiral intermediate for the synthesis of numerous amino alcohol derivatives. This review presents some of the most successful carbon chain elongation reactions, namely carbonyl alkylations and olefinations. The literature is reviewed with particular attention on understanding how to avoid the deleterious epimerization of the existing stereocenter in Garner’s aldehyde.

  14. Formation of Aldehyde and Ketone Compounds during Production and Storage of Milk Powder

    OpenAIRE

    Weijun Wang; Lanwei Zhang; Yanhua Li

    2012-01-01

    Certain aldehyde and ketone compounds can be used as indicators, at a molecular level, of the oxidized flavor of milk powder instead of sensory evaluation. This study investigated the formation of aldehyde and ketone compounds as affected by the heat-related processing and storage of milk powder. The compounds were extracted by solid phase microextraction fiber and determined using gas chromatography-mass spectrometry. In the results, higher contents of hexanal, 2-heptanone, octanal and 3-oct...

  15. Chromatographic Methods for the Analyses of 2-Halofatty Aldehydes and Chlorohydrin Species of Lysophosphatidylcholine

    OpenAIRE

    Albert, Carolyn J; Anbukumar, Dhanalakshmi S.; Messner, Maria C.; Ford, David A.

    2008-01-01

    Plasmalogens are targeted by hypohalous acids resulting in the production of 2-chlorofatty aldehydes, 2-bromofatty aldehydes and chlorohydrin species of lysophosphatidylcholine. These novel lipids have required the development of techniques for their purification and quantification. Thin layer chromatography, high performance liquid chromatography and gas chromatography of these lipids and their derivatives have provided a battery of tools for their analyses. These lipids have been quantified...

  16. Flavour release of aldehydes and diacetyl in oil/water systems

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Bredie, W. L. P.; Stahnke, Louise Heller;

    2000-01-01

    The concentration- and time-dependent release of three C-6-aldehydes, six C-9-aldehydes and diacetyl was studied in model systems. The systems were water, rapeseed oil and oil-in-water emulsions. Dynamic headspace sampling was used to collect the volatile compounds. In the concentration...... compounds was dependent on the chain length, the degree of unsaturation as well as the characteristics of the model system. (C) 2000 Elsevier Science Ltd. All rights reserved....

  17. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Directory of Open Access Journals (Sweden)

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  18. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Science.gov (United States)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  19. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  20. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    Science.gov (United States)

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed. PMID:24411140

  1. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zaldivar, J.; Ingram, L.O. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science; Martinez, A. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science]|[Univ. Nacional Autonoma de Mexico (Mexico). Inst. de Biotecnologia

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  2. [Fatty aldehydes of the plasmalogenic form of phosphatidylethanolamine in the vertebrate brain].

    Science.gov (United States)

    Kruglova, E E

    1979-01-01

    Studies have been made on the composition of fatty aldehydes of plasmalogen form of ethanolamine phospholipid in the brain of 28 fish species (13 cartilaginous and 15 teleost species, exhibiting different level of organization of the nervous system, marine and freshwater, dwelling in different habitats), as well as in the brain of other vertebrates. It was found that in all primitive species of cartilaginous fish high degree of unsaturation of fatty aldehydes is observed; in higher species the degree of unsaturation is much lower. The highest degree of unsaturation of fatty aldehydes was demonstrated for abyssal species of cartilaginous and teleost fishes. In warm-water species which dwell in the upper layers, unlike all other fishes investigated, almost all fatty aldehydes are saturated. The ratio of unsaturated and saturated fatty aldehydes in fish brain depends on the entity of phylogenetic and ecological factors. Studies on other vertebrates show that in warm-blooded animals saturated fatty aldehydes predominate, whereas in cold-blooded-unsaturated ones are more abundant. PMID:314210

  3. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.

    Science.gov (United States)

    Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente

    2016-01-27

    Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.

  4. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  5. Isolation and Expression Analysis of Plastidic Glucose-6-phosphate Dehydrogenase Gene from Rice (Oryza sativa L.)%水稻质体葡萄糖-6-磷酸脱氢酶基因的克隆与表达研究

    Institute of Scientific and Technical Information of China (English)

    侯夫云; 黄骥; 陆驹飞; 王州飞; 张红生

    2006-01-01

    Glucose-6-phosphate dehydrogenase is a rate-limiting enzyme of pentose phosphate pathway, existing in cytosolic and plastidic compartments of higher plants. A novel gene encoding plastidic glucose-6-phosphate dehydrogenase was isolated from rice (Oryza sativa L.) and designated OsG6PDH2 in this article. Through semiquantitative RT-PCR approach it was found that OsG6PDH2 mRNA was weakly expressed in rice leaves, stems, immature spikes or flowered spikes, and a little higher in roots.However, the expression of OsG6PDH2 in rice seedlings was significantly induced by dark treatment. The complete opening reading frame (ORF) of OsG6PDH2 was inserted into pET30a (+), and expressed in Escherichia coli strain BL21 (DE3). The enzyme activity assay of transformed bacterial cells indicated that OsG6PDH2 encoding product had a typical function of glucose-6-phosphate dehydrogenase.%戊糖磷酸途径是高等植物中重要的代谢途径,主要生理功能是产生NADPH以及供核酸代谢的磷酸戊糖.葡萄糖-6-磷酸脱氢酶(G6PDH)是戊糖磷酸途径的关键酶,广泛存在于高等植物细胞的细胞质和质体中.本研究首次从水稻(Oryzasativa L.)幼苗中分离了核编码的质体G6PDH基因OsG6PDH2,序列分析表明OsG6PDH2编码一个具有588个氨基酸残基的多肽,等电点为8.5,分子量66 kDa.OsG6PDH2的N端有1个70个氨基酸的信号肽,推测的裂解位点为Gly55和Val56,表明OsG6PDH2编码产物可能定位于质体.多序列比较的结果表明OsG6PDH2与拟南芥、烟草、马铃薯质体G6PDH的一致性分别达81%、87%、83%.进化关系说明水稻OsG6PDH2与拟南芥(AtG6PDH3)、马铃薯(StG6PDH1)处于高等植物P2型质体G6PDH分支上,暗示了OsG6PDH2可能是一个P2型的质体蛋白.Matinspector程序分析表明,OsG6PDH2在起始密码子上游含有一个bZIP转录因子识别位点、一个ABA应答元件、一个CRT/DRE元件和1个W-box元件.半定量RT-PCR分析表明,OsG6PDH2在水稻根、茎、叶和幼

  6. Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea

    Directory of Open Access Journals (Sweden)

    Vanisree Mulabagal

    2011-01-01

    Full Text Available Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO and cyclooxygenase (COX-1 and COX-2 enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 g/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 g/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50 at 9.7 g/mL. The analogs showed only marginal LPO activity at 6.25 g/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 g/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 g/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 g/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities.

  7. Flavin Adenine Dinucleotide Status and the Effects of High-Dose Riboflavin Treatment in Short-Chain Acyl-CoA Dehydrogenase Deficiency

    NARCIS (Netherlands)

    B.T. Maldegem; M. Duran; R.J.A. Wanders; H.R. Waterham; F.A. Wijburg

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inborn error, biochemically characterized by increased plasma butyrylcarnitine (C4-C) concentration and increased ethylmalonic acid (EMA) excretion and caused by rare mutations and/or common gene variants in the SCAD encoding gene. Although

  8. l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum▿

    OpenAIRE

    Blombach, Bastian; Schreiner, Mark E.; Holátko, Jiří; Bartek, Tobias; Oldiges, Marco; Eikmanns, Bernhard J.

    2007-01-01

    Corynebacterium glutamicum was engineered for the production of l-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum ΔaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amount...

  9. Phenotypic and Neuropathological Characterization of Fetal Pyruvate Dehydrogenase Deficiency.

    Science.gov (United States)

    Pirot, Nathalie; Crahes, Marie; Adle-Biassette, Homa; Soares, Anais; Bucourt, Martine; Boutron, Audrey; Carbillon, Lionel; Mignot, Cyril; Trestard, Laetitia; Bekri, Soumeya; Laquerrière, Annie

    2016-03-01

    To distinguish pyruvate dehydrogenase deficiency (PDH) from other antenatal neurometabolic disorders thereby improving prenatal diagnosis, we describe imaging findings, clinical phenotype, and brain lesions in fetuses from 3 families with molecular characterization of this condition. Neuropathological analysis was performed in 4 autopsy cases from 3 unrelated families with subsequent biochemical and molecular confirmation of PDH complex deficiency. In 2 families there were mutations in the PDHA1 gene; in the third family there was a mutation in the PDHB gene. All fetuses displayed characteristic craniofacial dysmorphism of varying severity, absence of visceral lesions, and associated encephaloclastic and developmental supra- and infratentorial lesions. Neurodevelopmental abnormalities included microcephaly, migration abnormalities (pachygyria, polymicrogyria, periventricular nodular heterotopias), and cerebellar and brainstem hypoplasia with hypoplastic dentate nuclei and pyramidal tracts. Associated clastic lesions included asymmetric leukomalacia, reactive gliosis, large pseudocysts of germinolysis, and basal ganglia calcifications. The diagnosis of PDH deficiency should be suspected antenatally with the presence of clastic and neurodevelopmental lesions and a relatively characteristic craniofacial dysmorphism. Postmortem examination is essential for excluding other closely related entities, thereby allowing for biochemical and molecular confirmation. PMID:26865159

  10. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli.

    Science.gov (United States)

    Bzik, D J; Fox, B A; Gonyer, K

    1993-05-01

    A Plasmodium falciparum gene is described which encodes lactate dehydrogenase activity (P. falciparum LDH). The P. falciparum LDH gene contains no introns and is present in a single copy on chromosome 13. P. falciparum LDH was expressed in all asexual blood stages as a 1.6-kb mRNA. The predicted 316 amino acid protein coding region of P. falciparum LDH was inserted into the prokaryotic expression vector pKK223-3 and a 33-kDa protein having LDH activity was synthesized in Escherichia coli. P. falciparum LDH primary structure displays high amino acid similarity (50-57%) to vertebrate and bacterial LDH, but lacks the amino terminal extension observed in all vertebrate LDH. The majority of amino acid residues implicated in substrate and coenzyme binding and catalysis of other LDH are well conserved in P. falciparum LDH. However, several notable differences in amino acid composition were observed. P. falciparum LDH contained several distinctive single amino acid insertions and deletions compared to other LDH enzymes, and most remarkably, it contained a novel insertion of 5 amino acids within the conserved mobile loop region near arginine residue 109, a residue which is known to make contact with pyruvate in the ternary complex of other LDH. These results suggest that novel features of P. falciparum LDH primary structure may be correlated with previously characterized and distinctive kinetic, biochemical, immunochemical, and electrophoretic properties of P. falciparum LDH. PMID:8515777

  11. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    DEFF Research Database (Denmark)

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site...

  12. NAD(H recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens and lactate dehydrogenase (LDH; from Bacillus stearothermophilus was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.

  13. Polymorphism of alcohol metabolizing gene ADH3 predisposes to development of alcoholic pancreatitis in North Indian population

    Directory of Open Access Journals (Sweden)

    Divya eSingh

    2015-12-01

    Full Text Available Background and aim- Genetic factors regulating alcohol metabolism could predispose in developing alcoholic pancreatitis (ACP. Studies revealed that alcohol could be metabolized by both ways, oxidative and non-oxidative. The main oxidative pathway includes alcohol dehydrogenase (ADH, aldehyde dehydrogenase (ALDH and cytochrome P450 enzyme. We investigated whether polymorphism in these alcohol metabolizing enzyme genes could be associated with alcoholic pancreatitis and is the purpose of our study. Method- Patients with alcoholic pancreatitis (ACP (n=72, tropical calcific pancreatitis (TCP (n=75, alcoholic controls (AC (n=40 and healthy controls (HC (n=100 were included in the study. Blood samples were collected from the subjects in EDTA coated vials. DNA was extracted and genotyping for ADH3, ALDH2 and CYP2E1 was done by PCR-RFLP (polymerase chain reaction- restriction fragment length polymorphism. The products were analyzed by gel electrophoresis. Result- The frequency distribution of ADH3*1/*1 genotype was significantly higher in ACP group (59.7% compared with TCP (38.7%, HC (42% and AC (37.5% and was found to be associated with increased risk of alcoholic pancreatitis. There was no statistically significant difference between the frequency distribution of ADH3*1/*1, ADH3*1/*2 and ADH3*2/*2 genotype between TCP and HC and healthy alcoholics. ALDH2 gene was monomorphic in our population, and the frequencies for CYP2E1 intron 6 Dra I polymorphism were comparable in all four groups. Conclusion- This study shows that carriers of ADH3*1/*1 individuals consuming alcohol are at higher risk for alcoholic pancreatitis than those with other genotypes such as ADH3*1/*2 and ADH3*2/*2.

  14. Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI

    Science.gov (United States)

    Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.

    Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental

  15. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  16. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    Directory of Open Access Journals (Sweden)

    Ji Yun Jeong

    2012-10-01

    Full Text Available The pyruvate dehydrogenase complex (PDC activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes.

  17. Transcriptional regulation of pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Jeong, Ji Yun; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2012-10-01

    The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes. PMID:23130316

  18. Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Line K Bay

    Full Text Available BACKGROUND: Understanding the mechanisms by which natural populations cope with environmental stress is paramount to predict their persistence in the face of escalating anthropogenic impacts. Reef-building corals are increasingly exposed to local and global stressors that alter nutritional status causing reduced fitness and mortality, however, these responses can vary considerably across species and populations. METHODOLOGY/PRINCIPAL FINDINGS: We compare the expression of 22 coral host genes in individuals from an inshore and an offshore reef location using quantitative Reverse Transcription-PCR (qRT-PCR over the course of 26 days following translocation into a shaded, filtered seawater environment. Declines in lipid content and PSII activity of the algal endosymbionts (Symbiodinium ITS-1 type C2 over the course of the experiment indicated that heterotrophic uptake and photosynthesis were limited, creating nutritional deprivation conditions. Regulation of coral host genes involved in metabolism, CO2 transport and oxidative stress could be detected already after five days, whereas PSII activity took twice as long to respond. Opposing expression trajectories of Tgl, which releases fatty acids from the triacylglycerol storage, and Dgat1, which catalyses the formation of triglycerides, indicate that the decline in lipid content can be attributed, at least in part, by mobilisation of triacylglycerol stores. Corals from the inshore location had initially higher lipid content and showed consistently elevated expression levels of two genes involved in metabolism (aldehyde dehydrogenase and calcification (carbonic anhydrase. CONCLUSIONS/SIGNIFICANCE: Coral host gene expression adjusts rapidly upon change in nutritional conditions, and therefore can serve as an early signature of imminent coral stress. Consistent gene expression differences between populations indicate that corals acclimatize and/or adapt to local environments. Our results set the stage

  19. Detoxification potential and expression analysis of eutypine reducing aldehyde reductase (VrALR) during progressive drought and recovery in Vigna radiata (L.) Wilczek roots.

    Science.gov (United States)

    Sengupta, Debashree; Mudalkar, Shalini; Reddy, Attipalli R

    2012-10-01

    Generation of reactive oxygen species (ROS) in plants is an inevitable consequence of adverse environmental cues and the ability to detoxify deleterious by-products of ROS-mediated oxidation reactions reflect an important defence strategy to combat abiotic stress. Here, we have cloned the eutypine reducing aldehyde reductase gene (VrALR) from Vigna radiata (L.) Wilczek roots. We have expressed and purified the VrALR protein and analyzed its enzyme kinetic parameters and catalytic efficiency with three different substrates to confirm its identity. The functional characterization of this enzyme was unravelled through heterologous expression of the gene in Escherichia coli BL21 and an oxidative stress-sensitive Saccharomyces cerevisiae mutant strain, W3O3-1-A. Finally, the endogenous VrALR enzyme activity and the mRNA expression patterns of the VrALR gene in the roots of V. radiata in response to progressive drought stress in vivo was studied to correlate the ROS-detoxifying role of this important enzyme under the influence of progressive drought stress. Our results, for the first time, demonstrate that eutypine reducing VrALR provides varying degree of stress tolerance in bacteria, yeast systems and also plays a promising protective role against oxidative stress in V. radiata roots during gradual water deprivation. The present study provides an unequivocal evidence to understand the crucial role of aldehyde reductase ROS-detoxifying system which is highly essential for developing stress tolerance in economically important crop plants. PMID:22837052

  20. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration.

    Science.gov (United States)

    Gauer, Sabrina; Wang, Zhijie; Otten, Harm; Etienne, Mathieu; Bjerrum, Morten Jannik; Lo Leggio, Leila; Walcarius, Alain; Giffhorn, Friedrich; Kohring, Gert-Wieland

    2014-04-01

    A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an L-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with D-glucitol oxidation to D-fructose but also converted L-glucitol to D-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for L-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a D-sorbitol dehydrogenase (EC 1.1.1.14).