WorldWideScience

Sample records for alcohol tba biodegradation

  1. Temperature effect on tert-butyl alcohol (TBA) biodegradation kinetics in hyporheic zone soils.

    Science.gov (United States)

    Greenwood, Mark H; Sims, Ronald C; McLean, Joan E; Doucette, William J

    2007-09-19

    Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature. Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. First order mineralization rate constants of TBA at 5 degrees C, 15 degrees C and 25 degrees C were 7.84 +/- 0.14 x 10-3, 9.07 +/- 0.09 x 10-3, and 15.3 +/- 0.3 x 10-3 days-1, respectively (or 2.86 +/- 0.05, 3.31 +/- 0.03, 5.60 +/- 0.14 years-1, respectively). Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A) and activation energy (Ea) of 154 day-1 and 23,006 mol/J, respectively. Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature.

  2. Temperature effect on tert-butyl alcohol (TBA biodegradation kinetics in hyporheic zone soils

    Directory of Open Access Journals (Sweden)

    Sims Ronald C

    2007-09-01

    Full Text Available Abstract Background Remediation of tert-butyl alcohol (TBA in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE, ethyl tert-butyl ether (ETBE, and tert-butyl formate (TBF. The effect of temperature on TBA biodegradation has not been not been published in the literature. Methods Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. Results First order mineralization rate constants of TBA at 5°C, 15°C and 25°C were 7.84 ± 0.14 × 10-3, 9.07 ± 0.09 × 10-3, and 15.3 ± 0.3 × 10-3 days-1, respectively (or 2.86 ± 0.05, 3.31 ± 0.03, 5.60 ± 0.14 years-1, respectively. Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A and activation energy (Ea of 154 day-1 and 23,006 mol/J, respectively. Conclusion Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature.

  3. Aerobic biodegradation of tert-butyl alcohol (TBA) by psychro- and thermo-tolerant cultures derived from granular activated carbon (GAC).

    Science.gov (United States)

    Reinauer, Kimberly M; Zhang, Yang; Yang, Xiaomin; Finneran, Kevin T

    2008-04-01

    Tert-butyl alcohol (TBA) is a metabolite of methyl tert-butyl ether and is itself possibly a fuel oxygenate. The goals of this study were to enrich and characterize TBA-degrading micro-organism(s) from a granular activated carbon (GAC) unit currently treating TBA. The results reported herein describe the first aerobic, TBA-degrading cultures derived from GAC. Strains KR1 and YZ1 were enriched from a GAC sample in a bicarbonate-buffered freshwater medium. TBA was degraded to 10% of the initial concentration (2-5 mM) within 5 days after initial inoculation and was continuously degraded within 1 day of each re-amendment. Resting cell suspensions mineralized 70 and 60% of the TBA within 24 h for KR1 and YZ1, respectively. Performance optimization with resting cells was conducted to investigate kinetics and the extent of TBA degradation as influenced by oxygen, pH and temperature. The most favorable temperature was 37 degrees C; however, TBA was degraded from 4 to 60 degrees C, indicating that the culture will sufficiently treat groundwater without heating. This is also the first report of psychrotolerant or thermotolerant TBA biodegradation. The pH range for TBA degradation ran from 5.0 to 9.0. Phylogenetic data using a partial 16S rRNA gene sequence (570 bases) suggest that the primary members of KR1 and YZ1 include uncharacterized organisms within the genera Hydrogenophaga, Caulobacter, and Pannonibacter.

  4. Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by pure culture UC1.

    Science.gov (United States)

    Pruden, Amy; Suidan, Makram

    2004-08-01

    The effect of a BTEX mixture on the biodegradation of methyl tert-butyl ether (MTBE) and its degradation intermediate, tert-butyl alcohol (TBA) was investigated in the pure bacterial culture UC1, which has been identified to be a strain of the known MTBE-degrader PM1 based on greater than 99% 16S rDNA similarity. Several degradation studies were carried out on UC1 at three initial concentration levels of MTBE or TBA: 6-7; 15-17; and 40-45 mg/l, both with and without BTEX present cumulatively at about half of the MTBE or TBA molar mass in the system. The BTEX mixture was observed not to affect either the rate or the degradation lag period of MTBE or TBA degradation, except that the TBA degradation rate actually increased when BTEX was present initially in the highest concentration studies. When serving as the sole substrate, the MTBE degradation rate ranged from 48 +/- 1.2 to 200 +/- 7.0 mg(MTBE)/g(dw) h, and the TBA degradation rate from 140 +/- 18 to 530 +/- 70 mg(TBA)/g(dw) h. When present with BTEX, MTBE and TBA rates ranged from 46 +/- 2.2 to 210 +/- 14 and 170 +/- 28 to 780 +/- 43 mg(TBA)/g(dw) h, respectively. In studies where varying concentrations of TBA were present with 5 mg/l MTBE, both compounds were degraded simultaneously with no obvious preference for either substrate. In the highest concentration study of TBA with 5 mg/l MTBE, BTEX was also observed to increase the ultimate rate of TBA degradation. In addition to exploring the affect of BTEX, this study also provides general insight into the metabolism of MTBE and TBA by pure culture UC1.

  5. IS YOUR TBA COMING FROM BIODEGRADATION OF MTBE

    Science.gov (United States)

    MTBE (methyl tertiary butyl ether) is present at high concentrations in ground water at many sites where gasoline has been spilled from underground storage tanks. In addition, TBA (tertiary butyl alcohol) is also present at high concentrations in many of the same ground waters. ...

  6. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.

    Science.gov (United States)

    Bradley, Paul M; Landmeyer, James E; Chapelle, Francis H

    2002-10-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  7. MICROCOSM STUDY OF ANAEROBIC BIODEGRADATION OF MTBE AND TBA

    Science.gov (United States)

    Ground water samples collected in at a gasoline spill sites in Orange County, California, suggested that MTBE was being transformed to TBA. In some of the most heavily contaminated wells, the concentration of TBA was higher than the concentration of MTBE (MTBE 2 µg/L and TBA 40,...

  8. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    Science.gov (United States)

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  9. Forensic analysis of tertiary-butyl alcohol (TBA) detections in a hydrocarbon-rich groundwater basin.

    Science.gov (United States)

    Quast, Konrad W; Levine, Audrey D; Kester, Janet E; Fordham, Carolyn L

    2016-04-01

    Tertiary-butyl alcohol (TBA), a high-production volume (HPV) chemical, was sporadically detected in groundwater and coalbed methane (CBM) wells in southeastern Colorado's hydrocarbon-rich Raton Basin. TBA concentrations in shallow water wells averaged 75.1 μg/L, while detections in deeper CBM wells averaged 14.4 μg/L. The detection of TBA prompted a forensic investigation to try to identify potential sources. Historic and recent data were reviewed to determine if there was a discernable pattern of TBA occurrence. Supplemental samples from domestic water wells, monitor wells, CBM wells, surface waters, and hydraulic fracturing (HF) fluids were analyzed for TBA in conjunction with methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE), proxies for evidence of contamination from reformulated gasoline or associated oxygenates. Exploratory microbiological sampling was conducted to determine if methanotrophic organisms co-occurred with TBA in individual wells. Meaningful comparisons of historic TBA data were limited due to widely varying reporting limits. Mapping of TBA occurrence did not reveal any spatial patterns or physical associations with CBM operations or contamination plumes. Additionally, TBA was not detected in HF fluids or surface water samples. Given the widespread use of TBA in industrial and consumer products, including water well completion materials, it is likely that multiple diffuse sources exist. Exploratory data on stable isotopes, dissolved gases, and microbial profiling provide preliminary evidence that methanotrophic activity may be producing TBA from naturally occurring isobutane. Reported TBA concentrations were significantly below a conservative risk-based drinking water screening level of 8000 μg/L derived from animal toxicity data.

  10. Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing.

    Science.gov (United States)

    Aslett, Denise; Haas, Joseph; Hyman, Michael

    2011-09-01

    Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.

  11. Natural Anaerobic Biodegradation of TBA in Aquifer Sediments at Gasoline Spill Sites

    Science.gov (United States)

    TBA is an important contaminant at spills sites of gasoline that contains MTBE. The impact of TBA is particularly important in Southern California, where the State Action Level for TBA is 12 μg/L and many communities produce ground water for drinking water from an urban landscape...

  12. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media.

    Science.gov (United States)

    Rasa, Ehsan; Chapman, Steven W; Bekins, Barbara A; Fogg, Graham E; Scow, Kate M; Mackay, Douglas M

    2011-11-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    Science.gov (United States)

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.

  14. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.

    Science.gov (United States)

    Wei, Na; Finneran, Kevin T

    2011-04-01

    Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.

  15. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).

    Science.gov (United States)

    Finneran, K T; Lovley, D R

    2001-05-01

    The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.

  16. Excited state intramolecular charge transfer reaction in binary mixtures of water and tertiary butanol (TBA): alcohol mole fraction dependence.

    Science.gov (United States)

    Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit

    2008-02-07

    The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.

  17. Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins.

    Science.gov (United States)

    Bi, Erping; Haderlein, Stefan B; Schmidt, Torsten C

    2005-10-01

    Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.

  18. Polyvinyl alcohol biodegradation under denitrifying conditions

    Czech Academy of Sciences Publication Activity Database

    Marušincová, H.; Husárová, L.; Růžička, J.; Ingr, M.; Navrátil, Václav; Buňková, L.; Koutný, M.

    2013-01-01

    Roč. 84, October (2013), s. 21-28 ISSN 0964-8305 Grant - others:GA ČR(CZ) GAP108/10/0200 Institutional support: RVO:61388963 Keywords : polyvinyl alcohol * biodegradation * denitrification * waste-water treatment * anaerobic * Steroidobacter Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.235, year: 2013

  19. Dynkin TBA's

    International Nuclear Information System (INIS)

    Ravanini, F.; Valleriani, A.; Tateo, R.

    1993-01-01

    The authors prove a useful identity valid for all ADE minimal S-matrices, that clarifies the transformation of the relative thermodynamic Bethe Ansatz (TBA) from its standard form into the universal one proposed by Al. B. Zamolodchikov. By considering the graph encoding of the system of functional equations for the exponentials of the pseudoenergies, they show that any such system having the same form as those for the ADE TBA's, can be encoded on A,D,E,A/Z 2 only. This includes, besides the known ADE diagonal scattering, the set of all SU(2) related magnonic TBA's. They explore this class systematically and find some interesting new massive and massless RG flows. The generalization to classes related to higher rank algebras is briefly presented and an intriguing relation with level-rank duality is signaled

  20. Role of volatilization in changing TBA and MTBE concentrations at MTBE-contaminated sites.

    Science.gov (United States)

    Eweis, Juana B; Labolle, Eric M; Benson, David A; Fogg, Graham E

    2007-10-01

    Tertiary butyl alcohol (TBA) is commonly found as an impurity in methyl tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals especially in the vadose zone, which is a source of contamination to groundwater. Here we show that volatilization, particularly through remediation by vapor extraction, can substantially affect the trends in TBA and MTBE concentrations and the respective mass available to impact groundwater aquifers, through the preferential removal of more volatile compounds, including MTBE, and the apparent enrichment of less volatile compounds like TBA. We demonstrate this phenomenon through numerical simulations of remedial-enhanced volatilization. Results show increases in TBA/MTBE concentration ratios consistent with ratios observed in groundwater at gasoline spill sites. Volatilization is an important, and potentially dominant, process that can result in concentration trends similar to those typically attributed to biodegradation.

  1. Trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) at hydrophobic interfaces: insights from molecular dynamics simulations.

    Science.gov (United States)

    Fiore, Andrew; Venkateshwaran, Vasudevan; Garde, Shekhar

    2013-06-25

    TMAO, a potent osmolyte, and TBA, a denaturant, have similar molecular architecture but somewhat different chemistry. We employ extensive molecular dynamics simulations to quantify their behavior at vapor-water and octane-water interfaces. We show that interfacial structure-density and orientation-and their dependence on solution concentration are markedly different for the two molecules. TMAO molecules are moderately surface active and adopt orientations with their N-O vector approximately parallel to the aqueous interface. That is, not all methyl groups of TMAO at the interface point away from the water phase. In contrast, TBA molecules act as molecular amphiphiles, are highly surface active, and, at low concentrations, adopt orientations with their methyl groups pointing away and the C-O vector pointing directly into water. The behavior of TMAO at aqueous interfaces is only weakly dependent on its solution concentration, whereas that of TBA depends strongly on concentration. We show that this concentration dependence arises from their different hydrogen bonding capabilities-TMAO can only accept hydrogen bonds from water, whereas TBA can accept (donate) hydrogen bonds from (to) water or other TBA molecules. The ability to self-associate, particularly visible in TBA molecules in the interfacial layer, allows them to sample a broad range of orientations at higher concentrations. In light of the role of TMAO and TBA in biomolecular stability, our results provide a reference with which to compare their behavior near biological interfaces. Also, given the ubiquity of aqueous interfaces in biology, chemistry, and technology, our results may be useful in the design of interfacially active small molecules with the aim to control their orientations and interactions.

  2. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions

    International Nuclear Information System (INIS)

    Zembrzuska, Joanna; Budnik, Irena; Lukaszewski, Zenon

    2016-01-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C_1_2E_9 having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C_1_2E_9 as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C_1_2E_9 and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C_1_2E_9, C_1_2E_8, C_1_2E_7 and C_1_2E_6. Apart from the substrate, the homologues C_1_2E_8, C_1_2E_7 and C_1_2E_6, being metabolites of C_1_2E_9 biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C_1_2E_8COOH, C_1_2E_7COOH, C_1_2E_6COOH and C_1_2E_5COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C_1_2E_9 and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a single unit. - Highlights: • Two parallel biodegradation pathways of alcohol ethoxylates have been discovered. • Apart from central fission

  3. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zembrzuska, Joanna, E-mail: Joanna.Zembrzuska@put.poznan.pl; Budnik, Irena, E-mail: Irena.Budnik@gmail.com; Lukaszewski, Zenon, E-mail: zenon.lukaszewski@put.poznan.pl

    2016-07-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C{sub 12}E{sub 9} having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C{sub 12}E{sub 9} as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C{sub 12}E{sub 9} and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C{sub 12}E{sub 9}, C{sub 12}E{sub 8}, C{sub 12}E{sub 7} and C{sub 12}E{sub 6}. Apart from the substrate, the homologues C{sub 12}E{sub 8}, C{sub 12}E{sub 7} and C{sub 12}E{sub 6}, being metabolites of C{sub 12}E{sub 9} biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C{sub 12}E{sub 8}COOH, C{sub 12}E{sub 7}COOH, C{sub 12}E{sub 6}COOH and C{sub 12}E{sub 5}COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C{sub 12}E{sub 9} and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a

  4. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater.

    Science.gov (United States)

    Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora

    2013-01-01

    Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.

  5. In Situ Biodegradation of MTBE and TBA

    Science.gov (United States)

    Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, and air sparging are common treatment technologies in Kansas. The technologies supply oxygen to support ...

  6. Preparation and Biodegradation of Nanocellulose Reinforced Polyvinyl Alcohol Blend Films in Bioenvironmental Media

    OpenAIRE

    Nusaiba Islam; Sharmin Jahan Proma; Ashiqur Rahman; Ashok Kumar Chakraborty

    2017-01-01

    Solution casting method was used to prepare nanocellulose reinforced polyvinyl alcohol (PVOH) from Oil palm empty fruit bunches. Different environmental test were used to investigate the biodegradability of the composite in soil and compost as well as in water and acidic solution. The morphology of the composite was investigated by scanning electron microscopy. The composite film with nanocellulose and without nanocellulose were compared, nanocellulose modified PVOH film showed more highly de...

  7. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    Science.gov (United States)

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  8. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    Science.gov (United States)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  9. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    Science.gov (United States)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did

  10. HYDROLYSIS OF MTBE TO TBA IN GROUND WATER SAMPLES WITH HYDROCHLORIC ACID

    Science.gov (United States)

    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as tert-butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, alcohols are not efficiently transferred to the gas chromatograph for analysis....

  11. Comments on the Mirror TBA

    NARCIS (Netherlands)

    Arutyunov, G.E.; Frolov, S.

    2011-01-01

    We discuss various aspects of excited state TBA equations describing the energy spectrum of the AdS5 S5 strings and, via the AdS/CFT correspondence, the spectrum of scaling dimensions of N = 4 SYM local operators. We observe that auxiliary roots which are used to partially enumerate solutions of the

  12. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  13. IDENTIFYING THE CAUSE OF HIGH CONCENTRATIONS OF TBA IN GROUNDWATER AT GASOLINE SPIILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Monitoring at gasoline spills in Orange County, California has revealed that TBA (tertiary butyl alcohol) is often present at high concentrations in ground water. To manage the hazard associated with the presence of TBA, staff of the UST Local Oversight Program (LOP) of the Oran...

  14. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sabaa, Magdy W.; Abdallah, Heba M.; Mohamed, Nadia A.; Mohamed, Riham R., E-mail: rihamrashad@hotmal.com

    2015-11-01

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. - Highlights: • CMCh/PVA nanocomposites have been evaluated for activity against bacteria and fungi. • TEM showed that these hydrogels have size 3–19 nm. • Nanocomposites increased metal ion uptake and showed selectivity for cadmium ions. • Biodegradation increased as a function of incubation time in SBF solution. • Biodegradation increased with increase in CMCh and clay in nanocomposites.

  15. Biodegradable blends of starch/polyvinyl alcohol/glycerol: multivariate analysis of the mechanical properties

    Directory of Open Access Journals (Sweden)

    Juliano Zanela

    Full Text Available Abstract The aim of the work was to study the mechanical properties of extruded starch/polyvinyl alcohol (PVA/glycerol biodegradable blends using multivariate analysis. The blends were produced as cylindrical strands by extrusion using PVAs with different hydrolysis degrees and viscosities, at two extrusion temperature profiles (90/170/170/170/170 °C and 90/170/200/200/200 °C and three conditioning relative humidities of the samples (33, 53, and 75%. The mechanical properties showed a great variability according to PVA type, as well as the extrusion temperature profile and the conditioning relative humidity; the tensile strength ranged from 0.42 to 5.40 MPa, elongation at break ranged from 10 to 404% and Young’s modulus ranged from 0.93 to 13.81 MPa. The multivariate analysis was a useful methodology to study the mechanical properties behavior of starch/PVA/glycerol blends, and it can be used as an exploratory technique to select of the more suitable PVA type and extrusion temperature to produce biodegradable materials.

  16. Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Flávia Debiagi

    2011-10-01

    Full Text Available Biodegradable foams made from cassava starch, polyvinyl alcohol (PVA, sugarcane bagasse fibers and chitosan were obtained by extrusion. The composites were prepared with formulations determined by a constrained ternary mixtures experimental design, using as variables: (X1 starch / PVA (100 - 70%, (X2 chitosan (0 - 2% and (X3 fibers from sugar cane (0 - 28%. The effects of varying proportions of these three components on foam properties were studied, as well the relationship between their properties and foam microstructure. The addition of starch/PVA in high proportions increased the expansion index and mechanical resistance of studied foams. Fibers addition improved the expansion and mechanical properties of the foams. There was a trend of red and yellow colors when the composites were produced with the highest proportions of fibers and chitosan, respectively. All the formulations were resistant to moisture content increase until 75% relative humidity of storage.

  17. Study of Biodegradability and Mechanical Properties of Polyvinyl Alcohol (PVA Reinforced Celloluse Nanofiber (CNF

    Directory of Open Access Journals (Sweden)

    shobo salehpour

    2018-02-01

    Full Text Available The aim of this study was to improve the properties of polyvinyl alcohol (PVA by using cellulose nanofibers (CNF as a reinforcement. In order to improve the compatibility and miscibility with PVA matrix, freeze drying method was applied. The nanocomposites based on PVA with values 5, 10, 20 and 30wt% of CNF were prepared by freeze-drying and the effect of CNF addition on the mechanical and dynamical mechanical properties, moisture sorption, barrier and biodegradability of the nanocomposites was studied. The tensile strength and elastic modulus of PVA films were improved by the addition of CNF. The nanocomposite with 10wt% nano-fibers had the highest tensile strength and lowest modulus of elasticity and the elongation at break. The results indicated that the storage modulus (E′ of PVA was considerably improved with the introduction of CNF into - polymer matrix. The water vapor permeability decreased from 7.31 to 2.1×10-7 g/m. h. Pa as the CNF percentage increased from 0 to 30%. Also the presence of cellulose nanofibers improved moisture sorption of polyvinyl alcohol. The weight loss of PVA films increased 60% with addition of 30wt% CNF after 90 days of exposure in soil

  18. Laboratory evidence of MTBE biodegradation in Borden aquifer material

    Science.gov (United States)

    Schirmer, Mario; Butler, Barbara J.; Church, Clinton D.; Barker, James F.; Nadarajah, Nalina

    2003-02-01

    Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.

  19. Biodegradable Mulches Based on Poly(vinyl Alcohol, Kenaf Fiber, and Urea

    Directory of Open Access Journals (Sweden)

    Boon Khoon Tan

    2015-07-01

    Full Text Available This paper describes the preparation of poly(vinyl alcohol/kenaf fiber (PVOH/KF composites with entrapped urea. The major FTIR peaks of these composites could be identified. These composites are intended for agricultural applications as biodegradable mulches and could be potential carrier materials for fertilizer. The water solubility, release behavior, chemical properties, and thermal stability of the composites were evaluated. The composites lost 25% of their weight after 7 days in water. In a wet environment, urea was released from the composites through its dissolution in water, and around 57% of the urea was released from the composites in 24 h; Thermagravimetric analysis showed that these composites were stable up 150 C. These composites would be able to withstand rain and protect seedlings from the sun when applied in the field as mulches. For around three to four weeks, these biobased mulches could slowly disintegrate as the PVOH binder was gradually dissolved by moisture, releasing the kenaf fibers to serve as soil fertilizer without leaving any undegradable waste for disposal. Hence, they would not pose any risks to the land or biological systems.

  20. Orbifolded Konishi from the Mirror TBA

    NARCIS (Netherlands)

    de Leeuw, M.; van Tongeren, S.J.

    2011-01-01

    Starting with a discussion of the general applicability of the simplified mirror thermodynamic Bethe ansatz (TBA) equations to simple deformations of the AdS5 × S5 superstring, we proceed to study a specific type of orbifold to which the undeformed simplified TBA equations directly apply. We then

  1. TBA PRODUCTION BY ACID HYDROLYSIS OF MTBE DURING HEATED HEADSPACE ANALYSIS & EVALUATION OF A BASE AS A PRESERVATIVE

    Science.gov (United States)

    At room temperature (20°±3°C), purge and trap samplers provide poor sensitivity for analysis of the fuel oxygenates that are alcohols, such as tertiary butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, they are not efficiently transferred to a gas chr...

  2. Degradation of MTBE and TBA by a new isolate from MTBE-contaminated soil.

    Science.gov (United States)

    Zhang, Rui-Ling; Huang, Guo-Qiang; Lian, Jing-Yan; Li, Xin-Gang

    2007-01-01

    Methyl tert-butyl ether (MTBE), a gasoline additive, possesses serious problems to the environmental health. In the present study, a bacterial culture named A-3 which could effectively degrade MTBE was isolated from the MTBE contaminated soil. The isolate was identified as Chryseobacterium sp., a new species capable of degrading MTBE. In order to enhance its degradation ability, selected environment factors were investigated. The results showed that the optimal temperature was in the range of 25-30 degrees C, the pH was 7.0, the inoculum size was 2 x 10(8) CFU/ml and the optimal concentration of MTBE was from 50 to 100 mg/L. The maximum MTBE utilization rate (upsilon(max)) was 102 nmol MTBE/(mg cell protein x h). Furthermore, it was found that the isolate could also degrade tert-butyl alcohol (TBA). The degradation rates of TBA were much faster than those of MTBE. The additional TBA would lead to the decrease of the initial MTBE degradation rate and the inhibitory effect of TBA increased with the increase of TBA concentration. Similar protein profiles at least seven peptides were demonstrated after SDS-PAGE analysis of crude extracts obtained from the cells growing in MTBE and TBA culture.

  3. Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5.

    Science.gov (United States)

    House, Alan J; Hyman, Michael R

    2010-07-01

    In this study we have examined the effects of individual gasoline hydrocarbons (C(5-10,12,14) n-alkanes, C(5-8) isoalkanes, alicyclics [cyclopentane and methylcyclopentane] and BTEX compounds [benzene, toluene, ethylbenzene, m-, o-, and p-xylene]) on cometabolism of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (TBA) by Mycobacterium austroafricanum JOB5. All of the alkanes tested supported growth and both MTBE and TBA oxidation. Growth on C(5-8) n-alkanes and isoalkanes was inhibited by acetylene whereas growth on longer chain n-alkanes was largely unaffected by this gas. However, oxidation of both MTBE and TBA by resting cells was consistently inhibited by acetylene, irrespective of the alkane used as growth-supporting substrate. A model involving two separate but co-expressed alkane-oxidizing enzyme systems is proposed to account for these observations. Cyclopentane, methylcyclopentane, benzene and ethylbenzene did not support growth but these compounds all inhibited MTBE and TBA oxidation by alkane-grown cells. In the case of benzene, the inhibition was shown to be due to competitive interactions with both MTBE and TBA. Several aromatic compounds (p-xylene > toluene > m-xylene) did support growth and cells previously grown on these substrates also oxidized MTBE and TBA. Low concentrations of toluene (TBA oxidation by alkane-grown cells whereas higher concentrations were inhibitory. The effects of acetylene suggest strain JOB5 also has two distinct toluene-oxidizing activities. These results have been discussed in terms of their impact on our understanding of MTBE and TBA cometabolism and the enzymes involved in these processes in mycobacteria and other bacteria.

  4. From fusion hierarchy to excited state TBA

    International Nuclear Information System (INIS)

    Juettner, G.; Kluemper, A.

    1998-01-01

    Functional relations among the fusion hierarchy of quantum transfer matrices give a novel derivation of the TBA equations, namely without string hypothesis. This is demonstrated for two important models of 1D highly correlated electron systems, the supersymmetric t-J model and the supersymmetric extended Hubbard model. As a consequence, ''the excited state TBA'' equations, which characterize correlation lengths, are explicitly derived for the t-J model. To the authors' knowledge, this is the first explicit derivation of excited state TBA equations for 1D lattice electron systems. (orig.)

  5. Minimum emittance in TBA and MBA lattices

    Science.gov (United States)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  6. Minimum emittance in TBA and MBA lattices

    International Nuclear Information System (INIS)

    Xu Gang; Peng Yuemei

    2015-01-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 3 1/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design. (authors)

  7. EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM

    Science.gov (United States)

    Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...

  8. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Keun-Chan; Stringfellow, William T.

    2003-10-02

    Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split

  9. AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA

    Science.gov (United States)

    MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...

  10. Bound States in the Mirror TBA

    NARCIS (Netherlands)

    Arutyunov, G.E.; Frolov, S.; van Tongeren, S.J.

    2012-01-01

    The spectrum of the light-cone AdS_5 \\times S^5 superstring contains states composed of particles with complex momenta including in particular those which turn into bound states in the decompactification limit. We propose the mirror TBA description for these states. We focus on a three-particle

  11. (Liquid + liquid) phase behavior for systems containing (aromatic + TBA + methylcyclohexane)

    International Nuclear Information System (INIS)

    Ghanadzadeh, H.; Ghanadzadeh, A.

    2004-01-01

    The determination region of solubility of TBA (tert-butanol) with representative compounds of the gasoline was investigated experimentally at temperature of 298.2 K. Type 1 (liquid + liquid) phase diagrams were obtained for (methylcyclohexane + TBA + aromatic compounds). These results were correlated simultaneously by the UNIQUAC model. The values of the interaction parameters between each pair of components in the systems were obtained for the UNIQUAC model using the experimental result. The root mean square deviation (RMSD) between the observed and calculated mole percents was 1.88 for (methylcyclohexane + TBA + benzene), 2.45 for (methylcyclohexane + TBA + toluene) and 2.86 for (methylcyclohexane + TBA + ethylbenzene). The mutual solubility of methylcyclohexane and aromatic compounds (e.g., benzene toluene and ethylbenzene (BTE)) was also investigated by the addition of TBA at temperature of 298.2 K

  12. An ex situ evaluation of TBA- and MTBE-baited bio-traps.

    Science.gov (United States)

    North, Katharine P; Mackay, Douglas M; Annable, Michael D; Sublette, Kerry L; Davis, Greg; Holland, Reef B; Petersen, Daniel; Scow, Kate M

    2012-08-01

    Aquifer microbial communities can be investigated using Bio-traps(®) ("bio-traps"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically "sample" about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4-5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE

  13. An ex situ evaluation of TBA- and MTBE-baited bio-traps

    Science.gov (United States)

    North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.

    2013-01-01

    Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that

  14. Alyssum homolocarpum seed gum-polyvinyl alcohol biodegradable composite film: Physicochemical, mechanical, thermal and barrier properties.

    Science.gov (United States)

    Monjazeb Marvdashti, Leila; Koocheki, Arash; Yavarmanesh, Masoud

    2017-01-02

    Films made from Alyssum homolocarpum seeds gum (AHSG) have poor mechanical and barrier (to oxygen) properties. In the present study poly vinyl alcohol (PVA) was used to improve the physicochemical properties of AHSG films. Results indicated that the addition of PVA significantly increased the moisture content, solubility, elongation at break (EB) and transparency while it decreased the density, oxygen permeability, chroma, water contact angle and Young modulus of AHSG based films. Films with higher AHSG to PVA ratios had lower water vapor permeability (WVP). The light barrier measurements presented low values of transparency at 600nm for PVA/AHSG films, indicating that films were very transparent while they had excellent barrier properties against UV light. Results for FTIR, DSC and SEM showed a clear interaction between PVA and AHSG, forming a new material. These results indicated that PVA/AHSG blend films had good compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. RK-TBA prototype RF source

    International Nuclear Information System (INIS)

    Houck, T.; Anderson, D.; Giordano, G.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail

  16. Glycerol etherification with TBA: high yield to poly-ethers using a membrane assisted batch reactor.

    Science.gov (United States)

    Cannilla, Catia; Bonura, Giuseppe; Frusteri, Leone; Frusteri, Francesco

    2014-05-20

    In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.

  17. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage

    International Nuclear Information System (INIS)

    Bonakdar, Shahin; Emami, Shahriar Hojjati; Shokrgozar, Mohammad Ali; Farhadi, Afshin; Ahmadi, Seyed Amir Hoshiar; Amanzadeh, Amir

    2010-01-01

    Polyurethane was prepared from hexamethylene diisocyanate (HMDI) and polycaprolactone diol (PCL) with stoichiometry ratio of two in a reactor to form prepolymer. Polyvinyl alcohol (PVA) at PVA/prepolymer ratios of 8, 4, 2 and 1 was crosslinked with the former degradable polyester polyurethane. Fourier transform infrared (FTIR) was employed to confirm polyurethane formation during the course of reactions. FTIR spectrum revealed bands at 1729-1733 cm -1 and 3347-3340 cm -1 which indicates carbonyl and NH of amine groups, respectively. Polyurethane formation was also confirmed by the absence of the isocyanate peaks (NCO) at 2270 cm -1 . Dynamic mechanical thermal analysis (DMTA) showed that by increasing prepolymer concentration glass transition temperature decreases from 26 deg. C for PVA to 19 deg. C for sample with PVA/prepolymer ratio of 4 and then it rises up to 31 deg. C. Water uptake measurements illustrated about four fold reduction in swelling ratio of PVA after crosslinking and the sample with equal amounts of PVA and PPU had water uptake of 100%, close to that of a natural cartilage and much less than PVA (425%). All samples had compressive modulus in the range of the articular cartilage (1.9-14.4 MPa). The morphology of the isolated cells on the samples was evaluated by scanning electron microscopy (SEM) and revealed cell attachment and proliferation. The cell viability (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) and GAG expression (dimethylmethylene blue, DMMB) assays with human chondrocytes on the sample with PVA/prepolymer ratio of one showed about 14 and 33% increase in cell viability and GAG expression after 14 days of culture compare to the PVA, respectively.

  18. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Bonakdar, Shahin [Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413 (Iran, Islamic Republic of); Emami, Shahriar Hojjati, E-mail: shahriar16@yahoo.com [Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413 (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13164 (Iran, Islamic Republic of); Farhadi, Afshin [Tehran Azad University of Medical Science, Amiralmomenin Hospital (Iran, Islamic Republic of); Ahmadi, Seyed Amir Hoshiar [Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413 (Iran, Islamic Republic of); Amanzadeh, Amir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13164 (Iran, Islamic Republic of)

    2010-05-10

    Polyurethane was prepared from hexamethylene diisocyanate (HMDI) and polycaprolactone diol (PCL) with stoichiometry ratio of two in a reactor to form prepolymer. Polyvinyl alcohol (PVA) at PVA/prepolymer ratios of 8, 4, 2 and 1 was crosslinked with the former degradable polyester polyurethane. Fourier transform infrared (FTIR) was employed to confirm polyurethane formation during the course of reactions. FTIR spectrum revealed bands at 1729-1733 cm{sup -1} and 3347-3340 cm{sup -1} which indicates carbonyl and NH of amine groups, respectively. Polyurethane formation was also confirmed by the absence of the isocyanate peaks (NCO) at 2270 cm{sup -1}. Dynamic mechanical thermal analysis (DMTA) showed that by increasing prepolymer concentration glass transition temperature decreases from 26 deg. C for PVA to 19 deg. C for sample with PVA/prepolymer ratio of 4 and then it rises up to 31 deg. C. Water uptake measurements illustrated about four fold reduction in swelling ratio of PVA after crosslinking and the sample with equal amounts of PVA and PPU had water uptake of 100%, close to that of a natural cartilage and much less than PVA (425%). All samples had compressive modulus in the range of the articular cartilage (1.9-14.4 MPa). The morphology of the isolated cells on the samples was evaluated by scanning electron microscopy (SEM) and revealed cell attachment and proliferation. The cell viability (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) and GAG expression (dimethylmethylene blue, DMMB) assays with human chondrocytes on the sample with PVA/prepolymer ratio of one showed about 14 and 33% increase in cell viability and GAG expression after 14 days of culture compare to the PVA, respectively.

  19. Elements of a realistic 17 GHz FEL/TBA design

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Halbach, K.; Hoyer, E.H.; Sessler, A.M.; Sternbach, E.J.

    1989-01-01

    Recently, renewed interest in an FEL version of a two-beam accelerator (TBA) has prompted a study of practical system and structure designs for achieving the specified physics goals. This paper presents elements of a realistic design for an FEL/TBA suitable for a 1 TeV, 17 GHz linear collider. 13 refs., 8 figs., 2 tabs

  20. Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate.

    Science.gov (United States)

    Guggi, Davide; Langoth, Nina; Hoffer, Martin H; Wirth, Michael; Bernkop-Schnürch, Andreas

    2004-07-08

    D-glucosamine and chitosan were modified by the immobilization of thiol groups utilizing 2-iminothiolane. The toxicity profile of the resulting D-glucosamine-TBA (4-thiobutylamidine) conjugate, of chitosan-TBA conjugate and of the corresponding unmodified controls was evaluated in vitro. On the one hand, the cell membrane damaging effect of 0.025% solutions of the test compounds was investigated via red blood cell lysis test. On the other hand, the cytotoxity of 0.025, 0.25 and 0.5% solutions of the test compounds was evaluated on L-929 mouse fibroblast cells utilizing two different bioassays: the MTT assay (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide), which assess the mitochondrial metabolic activity of the cells, and the BrdU-based enzyme-linked immunosorbent assay, which measures the incorporation in the DNA of 5-bromo-2'-deoxyuridine and consequently the cell proliferation. Results of the red blood cell lysis test showed that both thiolated compounds displayed a lower membrane damaging effect causing a significantly lower haemoglobine release than the unmodified compounds. Data obtained by the MTT assay and the BrdU assay revealed a concentration dependent relative cytotoxicity for all tested compounds. The covalent linkage of the TBA-substructure to D-glucosamine did not cause a significant increase in cytotoxicity, whereas at higher concentrations a slightly enhanced cytotoxic effect was caused by the derivatisation of chitosan. In conclusion, the -TBA derivatives show a comparable toxicity profile to the corresponding unmodified compounds, which should not compromise their future use as save pharmaceutical excipients.

  1. Limitations in MTBE biodegradation; Etapes limitantes dans la biodegradation du MTBE

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle, F.; Francois, A.; Garnier, L.; Godefroy, D.; Mathis, H.; Piveteau, P.; Monot, F. [Institut Francais du Petrole (IFP), Dept. Biotechnologie et Chimie de la Biomasse, 92 - Rueil-Malmaison (France)

    2003-08-01

    The methyl tert-butyl ether (MTBE) metabolic pathway was partially elucidated in Mycobacterium austroafricanum IFP 2012 by identifying the degradation intermediates. Several enzymatic activities were specifically induced during growth on MTBE. Among those required for the first steps of MTBE degradation to tert-butyl alcohol (TBA), the same monooxygenase was responsible for the oxidation of both MTBE and TBA, with a low affinity for TBA (Km = 1.1 mM). An esterase was involved in the hydrolysis of tert-butyl formate (TBF). The slowness of the degradation of MTBE by M. austroafricanum IFP 2012 was the result of complex interactions, especially the negative effect of TBF formed during MTBE oxidation on the MTBE/TBA mono-oxygenase and the absence of TBA oxidation in the presence of residual MTBE. Moreover, concerning the downstream steps of MTBE metabolism, Co{sup ++} ions were required for the degradation of 2-hydroxy-isobutyric acid (HIBA) formed by oxidation of TBA as shown by the low growth yield on HIBA in the absence of cobalt. (authors)

  2. Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry.

    Science.gov (United States)

    Yuan, Y; Wang, H F; Sun, H F; Du, H F; Xu, L H; Liu, Y F; Ding, X F; Fu, D P; Liu, K X

    2007-12-01

    Methyl tert-butyl ether (MTBE) is a currently worldwide used octane enhancer substituting for lead alkyls and gasoline oxygenate. Our previous study using doubly (14)C-labeled MTBE [(CH(3))(3) (14)CO(14)CH(3)] has shown that MTBE binds DNA to form DNA adducts at low dose levels in mice. To elucidate the mechanism of the binding reaction, in this study, the DNA adducts with singly (14)C-labeled MTBE, which was synthesized from (14)C-methanol and tert-butyl alcohol (TBA), or (14)C-labeled TBA in mice have been measured by ultra sensitive accelerator mass spectrometry. The results show that the methyl group of MTBE and tert-butyl alcohol definitely form adducts with DNA in mouse liver, lung, and kidney. The methyl group of MTBE is the predominant binding part in liver, while the methyl group and the tert-butyl group give comparable contributions to the adduct formation in lung and kidney.

  3. A lifetime as TBA in Uganda.

    Science.gov (United States)

    Kanabahita, C

    1993-01-01

    A 64-year old traditional birth attendant (TBA), Zowe Namasiga, in Kyobe county in the Rakai district of Uganda, delivered her 1st baby when she was 12 years old. She learned how to deliver babies by watching her father deliver babies. She married at 14 and had 7 children of her own. She delivered 2 of her own children all alone. She attended a 1-week workshop for TBAs hosted by World Vision International and attended by 52 other TBAs. The medical services that exist in rural Uganda and tend to be of low quality. The leading problem for pregnant women in Rakai district in insufficient transport. The closest clinic is 8 miles away from where the workshop was held, but it has no midwives and the staff are not trained to deliver babies. The ratio of midwife to women of reproductive age in Rakai district is 1:5000. Ms. Namasiga has to refer high risk patients to Kitovu Hospital, a distance of 62 km. In the workshop, illustrations of male and female reproductive systems helped them learn that the uterus is not connected to the digestive system. The TBAs learned about the importance of hygiene and of encouraging women to seek prenatal care and to receive tetanus toxoid injections. The workshop taught them how to identify high risk women and to refer them to the hospital. Few women go to the hospital, though, because town midwives do not treat them kindly. One participant described how she keeps premature babies alive: wraps them and places them in a circle of 5-liter metal cans filled with warm water. TBAs are concerned about AIDS. In fact, the last grandchild Ms. Namasiga delivered was born to parents with AIDS. She delivers babies with her bare hands, but now asks for payment so she can buy gloves to protect her cracked hands. Most TBAs care for AIDS orphans. TBAs assist at 90% of deliveries in this rural district.

  4. Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions.

    Science.gov (United States)

    van der Waals, Marcelle J; Pijls, Charles; Sinke, Anja J C; Langenhoff, Alette A M; Smidt, Hauke; Gerritse, Jan

    2018-04-01

    The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.

  5. Backbone modified TBA analogues endowed with antiproliferative activity.

    Science.gov (United States)

    Esposito, Veronica; Russo, Annapina; Amato, Teresa; Varra, Michela; Vellecco, Valentina; Bucci, Mariarosaria; Russo, Giulia; Virgilio, Antonella; Galeone, Aldo

    2017-05-01

    The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. RK-TBA studies at the RTA test facility

    International Nuclear Information System (INIS)

    Lidia, S.; Anderson, D.; Eylon, S.; Henestroza, E.; Houck, T.; Reginato, L.; Vanecek, D.; Westenskow, G.

    1997-01-01

    Construction of a prototype RF power source based on the RK-TBA concept, called the RTA, has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The status of the prototype is presented, specifically the 1-MV, 1.2-kA induction electron gun and the pulsed power system that are in assembly. The RTA program theoretical effort, in addition to supporting the development of the prototype, has been studying optimization parameters for the application of the RK-TBA concept to higher-energy linear colliders. An overview of this work is presented. copyright 1997 American Institute of Physics

  7. Alcohol

    Science.gov (United States)

    ... because that's how many accidents occur. What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  8. Alcohol

    Science.gov (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  9. Alcohol

    International Nuclear Information System (INIS)

    Navarro Junior, L.

    1988-01-01

    The alcohol production as a secondary energy source, the participation of the alcohol in Brazilian national economic and social aspects are presented. Statistical data of alcohol demand compared with petroleum by-products and electricity are also included. (author)

  10. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.

    Science.gov (United States)

    Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

  11. Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface.

    Science.gov (United States)

    Federle, T W; Ventullo, R M; White, D C

    1990-12-01

    The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained

  12. IS HCI THAT IS USED AS A PRESERVATIVE CREATING FALSE POSITIVES FOR TBA IN GROUND WATER

    Science.gov (United States)

    Will hydrochloric acid produce false positives for TBA? Yes, if you heat the sample to get a lower detection limit for TBA. Conventional purge and trap methods at ambient temperature have a reporting limit for TBA between 50 and 100 g/liter. This is higher than the provisiona...

  13. In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite.

    NARCIS (Netherlands)

    Wang, M.; Li, Y.; Wu, J.; Xu, F.; Zuo, Y.; Jansen, J.A.

    2008-01-01

    A novel porous composite material composed of hydroxyapatite, poly(vinyl alcohol) (PVA), and gelatin (Gel) was fabricated by emulsification. Scanning electron microscopy showed that the material had a well-interconnected porous structure including many macropores (100-500 microm) and micropores

  14. Excited TBA equations I: Massive tricritical Ising model

    International Nuclear Information System (INIS)

    Pearce, Paul A.; Chim, Leung; Ahn, Changrim

    2001-01-01

    We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II

  15. Invloeden op de uitkomst van de TBA-herbeoordelingsoperatie

    NARCIS (Netherlands)

    Muijen, P. van; Tilburg, N.J.; Smulders, P.G.W.

    1999-01-01

    In dit artikel worden de resultaten beschreven van een steekproefonderzoek naar de invloeden op de uitkomst van de eenmalige beoordeling in het kader van de Wet Terugdringing Beroep op de Arbeidsongeschiktheidsverzekeringen (TBA). Onderzocht is wat de invloed is van de zes persoons- en

  16. Conformational and bioactivity analysis of insulin: freeze-drying TBA/water co-solvent system in the presence of surfactant and sugar.

    Science.gov (United States)

    Zhang, Yong; Deng, Yingjie; Wang, Xueli; Xu, Jinghua; Li, Zhengqiang

    2009-04-17

    Despite the extensive research into the freeze-drying of aqueous solutions of proteins, it remains unknown whether proteins can survive the lyophilization process in a water-organic co-solvent system and how the process and additives affect the structural stability and activity of the proteins. In the present study, a conformational analysis of insulin in the absence/presence of bile salt and trehalose was carried out, before and after freeze-drying of a tert-butyl alcohol (TBA)/water co-solvent system at volume ratios of TBA to water ranging from 50/50 to 0/100. The study involved the use of ultraviolet derivative and fluorescence spectroscopy, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Also the bioactivity of insulin was evaluated in vivo using the streptozotocin (STZ)-induced diabetic mice as an animal model. Initial investigations indicate that the extent of the structural change of insulin depends significantly both on the TBA content and on the concentration of additives, such as sodium deoxycholate, prior to lyophilization. This could be accounted for by the phase behavior properties of the TBA/water co-solvent system, surface denaturation together with the selective and/or forced dispersion of insulin during phase separation. Lyophilized insulin in the presence of bile salt and trehalose retained more of its bioactivity and native-like structure in the solid state compared with that in the absence of additives at various TBA/water ratios, although in all cases there was a major and reversible rearrangement of secondary structure after rehydration, except for insulin at 50% TBA (v/v). Furthermore, both lyophilization in non-eutectic systems and less structural changes in the formulation process lead to more bioactivity.

  17. Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes

    Science.gov (United States)

    McKelvie, Jennifer R.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2007-12-01

    Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The δ 13C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of - 31.3 ± 0.5‰ ( n = 40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in 13C of MTBE by 40.6‰, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 μg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of δ 13C for TBA in groundwater samples in the "With ethanol lane" was - 26.0 ± 1.0‰ ( n = 32). Uniform δ 13C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of - 9.2‰ to - 15.6‰, and values of δ 13C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year - 1 ( n = 18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year - 1 calculated using contaminant mass-discharge for the "With ethanol lane".

  18. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites.

    Science.gov (United States)

    Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E

    2015-01-01

    Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends. © 2014 GSI Environmental Inc. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  19. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    Science.gov (United States)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  20. Tensile and Water Absorption Properties of Biodegradable Composites Derived from Cassava Skin/ Polyvinyl Alcohol with Glycerol as Plasticizer

    International Nuclear Information System (INIS)

    Dayangku Intan Munthoub; Wan Aizan Wan Abdul Rahman

    2011-01-01

    Natural organic and abundant resources biopolymers received more attention due to their low cost, availability and degradability after usage. Cassava skin was used as natural fillers to the polyvinyl alcohol (PVA). Cassava skin/ poly vinyl alcohol blends were compounded using melt extrusion twin screw extruder and test samples were prepared using the compression method. Various ratios of cassava skin and glycerol were investigated to identify suitable composition based on the water absorption and tensile properties. The water absorption of the cassava skins/ PVA samples increased at higher composition of cassava skin due to their hydrophilic properties but decrease with glycerol content. The strength of the cassava skins/ PVA samples increased with the higher composition of cassava skin up to 70 wt % while gradually decreased with the increasing composition of glycerol. The Young modulus increased with glycerol content but decreased with fibre loading up to 70 wt %. Elongation at break decreased with fibre loading and glycerol up to 70 wt % and 30 phr, respectively. (author)

  1. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  2. Biodegradation behaviors and water adsorption of poly(vinyl alcohol)/starch/carboxymethyl cellulose/clay nanocomposites

    Science.gov (United States)

    Taghizadeh, Mohammad Taghi; Sabouri, Narges

    2013-09-01

    The focus of this work is to study the effect of sodium montmorillonite (MMT-Na) clay content on the rate and extent of enzymatic hydrolysis polyvinyl alcohol (PVA)/starch (S)/carboxymethyl cellulose (CMC) blends using enzyme cellulase. The rate of glucose production from each nanocomposite substrates was most rapid for the substrate without MMT-Na and decreased with the addition of MMT-Na for PVA/S/CMC blend (51.5 μg/ml h), PVA/S/CMC/1% MMT (45.4 μg/ml h), PVA/S/CMC/3% MMT (42.8 μg/ml h), and PVA/S/CMC/5% MMT (39.2 μg/ml h). The results of this study have revealed that films with MMT-Na content at 5 wt.% exhibited a significantly reduced rate and extent of hydrolysis. Enzymatic degradation behavior of MMT-Na containing nanocomposites of PVA/S/CMC was based on the determinations of weight loss and the reducing sugars. The degraded residues have been characterized by various analytical techniques, such as Fourier transform infrared spectroscopy, scanning electronic microscopy, and UV-vis spectroscopy.

  3. [Alcohol].

    Science.gov (United States)

    Zima, T

    1996-07-14

    Alcohol is one of the most widely used addictive substances. It can be assumed that everybody encounters alcohol--ethanol in various forms and concentrations in the course of their lives. A global and social problem of our civilization is alcohol consumption which has a rising trend. Since 1989 the consumption of alcoholic beverages is rising and the mean annual consumption of concentrated ethanol per head is cea 10 litres. In ethanol abuse the organism is damaged not only by ethanol alone but in particular by substances formed during its metabolism. Its detailed knowledge is essential for the knowledge and investigations of the metabolic and toxic effect of ethanol on the organism. Ingested alcohol is in 90-98% eliminated from the organism by three known metabolic pathways: 1-alcohol dehydrogenase, 2-the microsomal ethanol oxidizing system and 3-catalase. Alcohol is a frequent important risk factor of serious "diseases of civilization" such as IHD, hypertension, osteoporosis, neoplastic diseases. Cirrhosis of the liver and chronic pancreatitis are the well known diseases associated with alcohol ingestion and also their most frequent cause. It is impossible to list all organs and diseases which develop as a result of alcohol consumption. It is important to realize that regular and "relatively" small amounts in the long run damage the organism and may be even fatal.

  4. Clinical Significance of Detection of Serum TBA and ALP in Diagnosis of Intrahepatic Cholestasis of Pregnancy

    International Nuclear Information System (INIS)

    Xiong Chuanzheng; Zhu Haibo; Deng jianping

    2009-01-01

    To investigate the clinical value of serum total bile acid (TBA) and alkaline phosphatase (ALP) in diagnosis of intahrpatic cholestasis of pregnancy (ICP), the serum levels of TBA, ALP and cholyglycine (CG) in 47 cases with intahrpatic cholestasis of pregnancy and 60 normal pregnant women were tested by biochemistry analysis and radioimmunoassay. The results showed that the serum levels of TBA and ALP in patients with intahrpatic cholestasis of pregnancy were significantly higher than that of normal pregnancy women. There was a positively correlation between TBA and ALP with CG. The combined determination of serum TBA and ALP could be useful in the diagnosis of intahrpatic cholestasis of pregnancy. Automatic biochemistry analysis of TBA and ALP is more simple and rapid than CG detected by radioimmunoassay,and it is suitable for clinical laboratory application. (authors)

  5. Mass transfer analysis for terephthalic acid biodegradation by ...

    African Journals Online (AJOL)

    Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...

  6. Fluctuating micro-heterogeneity in water–tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies

    International Nuclear Information System (INIS)

    Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman

    2014-01-01

    Water–tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x TBA ≈ 0.03–0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x TBA ≈ 0.05. We note that “islands” of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x TBA ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level

  7. Alcohol

    Science.gov (United States)

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria to change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  8. Alcohol

    Science.gov (United States)

    ... to do. Wondering if adding a glass of wine or beer might help lower your blood glucose if it is high? The effects of alcohol can be unpredictable and it is not recommended as a treatment for high blood glucose. The risks likely outweigh any benefit that may be seen in blood glucose alone. ...

  9. TBA-like integral equations from quantized mirror curves

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan); Zakany, Szabolcs [Département de Physique Théorique, Université de Genève,Genève, CH-1211 (Switzerland)

    2016-03-15

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local ℙ{sup 2}. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  10. TBA-like integral equations from quantized mirror curves

    Science.gov (United States)

    Okuyama, Kazumi; Zakany, Szabolcs

    2016-03-01

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  11. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply.

    Science.gov (United States)

    Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira

    2012-03-30

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. On the mechanism of TBA block of the TRPV1 channel.

    Science.gov (United States)

    Oseguera, Andrés Jara; Islas, León D; García-Villegas, Refugio; Rosenbaum, Tamara

    2007-06-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a nonselective cation channel activated by capsaicin and responsible for thermosensation. To date, little is known about the gating characteristics of these channels. Here we used tetrabutylammonium (TBA) to determine whether this molecule behaves as an ion conduction blocker in TRPV1 channels and to gain insight into the nature of the activation gate of this protein. TBA belongs to a family of classic potassium channel blockers that have been widely used as tools for determining the localization of the activation gate and the properties of the pore of several ion channels. We found TBA to be a voltage-dependent pore blocker and that the properties of block are consistent with an open-state blocker, with the TBA molecule binding to multiple open states, each with different blocker affinities. Kinetics of channel closure and burst-length analysis in the presence of blocker are consistent with a state-dependent blocking mechanism, with TBA interfering with closing of an activation gate. This activation gate may be located cytoplasmically with respect to the binding site of TBA ions, similar to what has been observed in potassium channels. We propose an allosteric model for TRPV1 activation and block by TBA, which explains our experimental data.

  13. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  14. Biodegradação de alcoóis, ftalatos e adipatos em um solo tropical contaminado Biodegradation of alcohol, phthalates and adipates in a tropical soil

    Directory of Open Access Journals (Sweden)

    Ieda Domingues Ferreira

    2010-01-01

    Full Text Available The adipic and phthalic acid esters are plasticizers, have low water solubility, high partition octanol/water coefficients (Kow and accumulate in soil and sediments. These compounds are considered teratogenic, carcinogenic and endocrine disruptors chemicals. This study evaluated the bioremediation of tropical soil contaminated with plasticizers process wastes, in aerobic conditions, with and without introduction of acclimated bacteria. It was selected 200 kg of contaminated tropical soil for the biodegradation study. The plasticizers concentrations in soil ranged between 153 mgDOA/kg up to 15552 mgDIDP/kg and after 90 days of biodegradation, the lower removal efficiencies were 72% with a 1-2 log simultaneous bacterial growth.

  15. Outstanding effects on antithrombin activity of modified TBA diastereomers containing an optically pure acyclic nucleotide analogue.

    Science.gov (United States)

    Scuotto, M; Persico, M; Bucci, M; Vellecco, V; Borbone, N; Morelli, E; Oliviero, G; Novellino, E; Piccialli, G; Cirino, G; Varra, M; Fattorusso, C; Mayol, L

    2014-07-28

    Herein, we report optically pure modified acyclic nucleosides as ideal probes for aptamer modification. These new monomers offer unique advantages in exploring the role played in thrombin inhibition by a single residue modification at key positions of the TBA structure.

  16. Biodegradable Polydepsipeptides

    Directory of Open Access Journals (Sweden)

    Jintang Guo

    2009-02-01

    Full Text Available This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  17. The downfall of TBA-354 - a possible explanation for its neurotoxicity via mass spectrometric imaging.

    Science.gov (United States)

    Ntshangase, Sphamandla; Shobo, Adeola; Kruger, Hendrik G; Asperger, Arndt; Niemeyer, Dagmar; Arvidsson, Per I; Govender, Thavendran; Baijnath, Sooraj

    2017-10-13

    1. TBA-354 was a promising antitubercular compound with activity against both replicating and static Mycobacterium tuberculosis (M.tb), making it the focal point of many clinical trials conducted by the TB Alliance. However, findings from these trials have shown that TBA-354 results in mild signs of reversible neurotoxicity; this left the TB Alliance with no other choice but to stop the research. 2. In this study, mass spectrometric methods were used to evaluate the pharmacokinetics and spatial distribution of TBA-354 in the brain using a validated liquid chromatography tandem-mass spectrometry (LCMS/MS) and mass spectrometric imaging (MSI), respectively. Healthy female Sprague-Dawley rats received intraperitoneal (i.p.) doses of TBA-354 (20 mg/kg bw). 3. The concentrationtime profiles showed a gradual absorption and tissue penetration of TBA-354 reaching the C max at 6 h post dose, followed by a rapid elimination. MSI analysis showed a time-dependent drug distribution, with highest drug concentration mainly in the neocortical regions of the brain. 4. The distribution of TBA-354 provides a possible explanation for the motor dysfunction observed in clinical trials. These results prove the importance of MSI as a potential tool in preclinical evaluations of suspected neurotoxic compounds.

  18. The value of peri-interventional procedure serum bile acid (TBA) detection in patients with primary liver cancer

    International Nuclear Information System (INIS)

    Fan Chen; Liu Yizhi

    2005-01-01

    Objective: To investigate the clinical value of peri-interventional procedure serum bile acid (TBA) detection in patients with primary liver cancer. Methods: The serum TBA was examined peri-operatively in 160 patients with primary liver cancer for testing the correlations between TBA, liver function, the degree of hepatocirrhosis, interventional therapy method and hepatic failure. Results: The preoperative mean value of serum TBA increased significantly in comparing with that of the control group (P<0.01). The preoperative value of serum TBA in different Child grading patients with primary liver cancer were different significantly (P<0.01), Child A< Child B< Child C, the increased degree of serum TBA corresponded with Child grading of the liver function and the cirrhotic degree of liver. In patients with liver function of Child B and C, the postoperative mean values of serum TBA in different interventional therapy methods were different significantly (P<0.01). Comparing with that of the patients without hepatic failure, the postoperative value of serum TBA in the patients with hepatic failure increased significantly (P<0.01). Conclusions: The value of serum TBA can sensitively and accurately reflect liver reserve ability and damage degree of peri-interventional procedure liver function. Hepatic failure can be detected in time and the prognosis of the patients with primary liver cancer can be predicted by testing the value of serum TBA continually. (authors)

  19. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  20. Formation of zinc-peptide spherical microparticles during lyophilization from tert-butyl alcohol/water co-solvent system.

    Science.gov (United States)

    Qian, Feng; Ni, Nina; Chen, Jia-Wen; Desikan, Sridhar; Naringrekar, Vijay; Hussain, Munir A; Barbour, Nancy P; Smith, Ronald L

    2008-12-01

    To understand the mechanism of spherical microparticle formation during lyophilizing a tert-Butyl alcohol (TBA)/water solution of a zinc peptide adduct. A small peptide, PC-1, as well as zinc PC-1 at (3:2) and (3:1) ratios, were dissolved in 44% (wt.%) of TBA/water, gradually frozen to -50 degrees C over 2 h ("typical freezing step"), annealed at -20 degrees C for 6 h ("annealing step"), and subsequently lyophilized with primary and secondary drying. Zinc peptide (3:1) lyophile was also prepared with quench cooling instead of the typical freezing step, or without the annealing step. Other TBA concentrations, i.e., 25%, 35%, 54% and 65%, were used to make the zinc peptide (3:1) adduct lyophile with the typical freezing and annealing steps. The obtained lyophile was analyzed by Scanning Electron Microscopy (SEM). The zinc peptide solutions in TBA/water were analyzed by Differential Scanning Calorimeter (DSC). The surface tension of the TBA/water co-solvent system was measured by a pendant drop shape method. With typical freezing and annealing steps, the free peptide lyophile showed porous network-like structure that is commonly seen in lyophilized products. However, with increasing the zinc to peptide ratio, uniform particles were gradually evolved. Zinc peptide (3:1) adduct lyophiles obtained from 25%, 35% and 44% TBA exhibit a distinctive morphology of uniform and spherical microparticles with diameters of approximately 3-4 microm, and the spherical zinc peptide particles are more predominant when the TBA level approaches 20%. Adopting quench cooling in the lyophilization cycle leads to irregular shape fine powders, and eliminating the annealing step causes rough particles surface. When TBA concentration increases above 54%, the lyophiles demonstrate primarily irregular shape particles. A proposed mechanism of spherical particle formation of the 3:1 zinc peptide encompasses the freezing of a TBA/water solution (20-70% TBA) causing the formation of a TBA hydrate

  1. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  2. Effects of particle size and heating time on thiobarbituric acid (TBA) test of soybean powder.

    Science.gov (United States)

    Lee, Youn-Ju; Yoon, Won-Byong

    2013-06-01

    Effects of particle size and heating time during TBA test on the thiobarbituric acid reactive substance (TBARS) of soybean (Glycine Max) powder were studied. Effects of processing variables involved in the pulverization of soybean, such as the temperature of soybean powder, the oxygen level in the vessel, and the pulverisation time, were investigated. The temperature of the soybean powder and the oxygen level had no significant influence on the TBARS (pTBA test significantly affected the TBARS. Change of TBARS during heating was well described by the fractional conversion first order kinetics model. A diffusion model was introduced to quantify the effect of particle size on TBARS. The major finding of this study was that the TBA test to estimate the level of the lipid oxidation directly from powders should consider the heating time and the mean particle sizes of the sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Clinical significance of changes of serum TBA, CG, HA levels in neonate with parenteral nutrition

    International Nuclear Information System (INIS)

    Huang Weiliang; Zhou Jiongying; Zhang Xiaoyi; Lv Weihua; Ma Yunbao; He Qizhi

    2010-01-01

    Objective: To study the clinical significance of changes of serum levels of TBA, CG, HA in neonate with parenteral nutrition. Methods: Serum total bile acid (TBA, with biochemistry) and CG, HA (with RIA) contents were measured in 52 neonates (full-term 32, preterm 20) with parenteral nutrition and 28 neonates (full-term 16, preterm 12) without parenteral nutrition (as controls). Results: Before parenteral nutrition,the serum TBA, CG and HA levels in full-term neonates were not significantly different from those in the controls (P>0.05). After parenteral nutrition,serum levels were significantly higher than those before parenteral nutrition (P<0.01). The levels in pre-term neonates were significantly higher after parenteral nutrition than those in full-term neonates (P<0.05). Conclusion: Long term parenteral nutrition might be harmful to hepatic and gall bladder function in neonates especially in premature ones. (authors)

  4. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis.

    Science.gov (United States)

    Upton, A M; Cho, S; Yang, T J; Kim, Y; Wang, Y; Lu, Y; Wang, B; Xu, J; Mdluli, K; Ma, Z; Franzblau, S G

    2015-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10(-7). In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. Copyright © 2015, American

  5. Re-examining authoritative knowledge in the design and content of a TBA training in India.

    Science.gov (United States)

    Saravanan, Sheela; Turrell, Gavin; Johnson, Helen; Fraser, Jennifer; Patterson, Carla Maree

    2012-02-01

    Since the 1990s, the TBA training strategy in developing countries has been increasingly seen as ineffective and hence its funding was subsequently reallocated to providing skilled attendants during delivery. The ineffectiveness of training programmes is blamed on TBAs lower literacy, their inability to adapt knowledge from training and certain practices that may cause maternal and infant health problems. However most training impact assessments evaluate post-training TBA practices and do not assess the training strategy. There are serious deficiencies noted in information on TBA training strategy in developing countries. The design and content of the training is vital to the effectiveness of TBA training programmes. We draw on Jordan's concept of 'authoritative knowledge' to assess the extent to which there is a synthesis of both biomedical and locally practiced knowledge in the content and community involvement in the design of TBA a training programme in India. The implementation of the TBA training programme at the local level overlooks the significance of and need for a baseline study and needs assessment at the local community level from which to build a training programme that is apposite to the local mother's needs and that fits within their 'comfort zone' during an act that, for most, requires a forum in which issues of modesty can be addressed. There was also little scope for the training to be a two way process of learning between the health professionals and the TBAs with hands-on experience and knowledge. The evidence from this study shows that there is an overall 'authority' of biomedical over traditional knowledge in the planning and implementation process of the TBA training programme. Certain vital information was not covered in the training content including advice to delay bathing babies for at least six hours after birth, to refrain from applying oil on the infant, and to wash hands again before directly handling mother or infant. Information on

  6. Proceedings of biodegradation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of Biodegradation. Topics include:biodegradation using the tools of biotechnology, basic science aspects of biodegradation, the physiological characteristics of microorganisms, the use of selective techniques that enhance the process of microbial evolution of biodegradative genes in nature, the genetic characteristics of microorganisms allowing them to biodegrade both natural and synthetic toxic chemicals, the molecular techniques that allow selective assembly of genetic segments form a variety of bacterial strains to a single strain, and methods needed to advance biodegradation research as well as the high-priority chemical problems important to the Department of Defense or to the chemical industry

  7. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    Science.gov (United States)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  8. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    International Nuclear Information System (INIS)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-01-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties. - Highlights: • Poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends were prepared as new packaging film. • The blends are superior to PLA in oxygen gas barrier property. • The blends are suitable for gamma ray sterilization and maintain useful mechanical properties. • The blends are perfectly transparent

  9. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    Directory of Open Access Journals (Sweden)

    Elena Vlad

    2012-01-01

    Full Text Available Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  10. Excited state TBA and renormalized TCSA in the scaling Potts model

    Science.gov (United States)

    Lencsés, M.; Takács, G.

    2014-09-01

    We consider the field theory describing the scaling limit of the Potts quantum spin chain using a combination of two approaches. The first is the renormalized truncated conformal space approach (TCSA), while the second one is a new thermodynamic Bethe Ansatz (TBA) system for the excited state spectrum in finite volume. For the TCSA we investigate and clarify several aspects of the renormalization procedure and counter term construction. The TBA system is first verified by comparing its ultraviolet limit to conformal field theory and the infrared limit to exact S matrix predictions. We then show that the TBA and the renormalized TCSA match each other to a very high precision for a large range of the volume parameter, providing both a further verification of the TBA system and a demonstration of the efficiency of the TCSA renormalization procedure. We also discuss the lessons learned from our results concerning recent developments regarding the low-energy scattering of quasi-particles in the quantum Potts spin chain.

  11. Simplified TBA equations of the AdS5 × S5 mirror model

    NARCIS (Netherlands)

    Arutyunov, G.E.; Frolov, S.

    2009-01-01

    We use the recently found integral representation for the dressing phase in the kinematic region of the mirror theory to simplify the TBA equations for the AdS5 × S5 mirror model. The resulting set of equations provides an efficient starting point for both analytic and numerical studies.

  12. MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE AND TBA IN GROUND WATER

    Science.gov (United States)

    Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE or TBA to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typica...

  13. Biodegradation of lubricant oil

    African Journals Online (AJOL)

    M

    2012-09-25

    Sep 25, 2012 ... lubricating oil, showed high biodegradation efficiency for different used lubricating oils. Capability of ..... amount after biodegradation showed no difference in the .... products polluted sites in Elele, Rivers State, Ngeria.

  14. MONITORED NATURAL ATTENUATION OF TERTIARY BUTYL ALCOHOL (TBA) IN GROUND WATER AT GASOLINE SPILL SITES

    Science.gov (United States)

    The state agencies that implement the Underground Storage Tank program rely heavily on Monitored Natural Attenuation (MNA) to clean up contaminants such as benzene and methyl tertiary butyl ether (MTBE) at gasoline spill sites. This is possible because the contaminants are biolo...

  15. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  16. Teste de TBA aplicado a carnes e derivados: métodos tradicionais, modificados e alternativos TBA test applied to meats and their products: traditional, modified and alternative methods

    Directory of Open Access Journals (Sweden)

    Cibele Cristina Osawa

    2005-08-01

    Full Text Available The TBA test is essential to quality control of fat-containing food, being the test most applied to evaluate lipid peroxidation in fishery, meat and poultry products. It estimates malonaldehyde, a secondary oxidation product, by reacting with 2-thiobarbituric acid, forming a coloured complex, measured spectrophotometrically atlambda = 532 nm. Results are expressed as mg malonaldehyde per kg sample or frequently as "TBA value". There are four ways of quantifying it: by lipid extraction, direct heating, distillation or heat-acid extraction. This review intends to point out traditional, modified and alternative TBA test methods, besides enumerating advantages and drawbacks of each one.

  17. Surface-coated fly ash used as filler in biodegradable poly(vinyl alcohol) composite films: Part 1-The modification process

    International Nuclear Information System (INIS)

    Nath, D.C.D.; Bandyopadhyay, S.; Gupta, S.; Yu, A.; Blackburn, D.; White, C.

    2010-01-01

    The surfaces of fly ash (FA) particles were modified by surfactant, sodium lauryl sulphate (SLS) and used in fabrication of composite films with polyvinyl alcohol (PVA). Both unmodified fly ash (FA) and modified fly ash (SLS-FA) samples were examined using a range of analytical tools including X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The distribution patterns of SLS-FA particles were shifted to the higher regions compared to FA by adding 1.2-4.2 μm in the ranges between 2 and 25 μm, whereas the modification process reduced the size of the particles over 25 μm due to grinding during the activation process. The increased 1.2-4.2 μm in average can be considered the thickness of the surfactant on the SLS-FA surface. On the oxides based chemical analysis by XRF, the compositions were almost unchanged. SEM and TEM were visualised the irregular sizes morphology mostly spherical of the particles, although it is impossible to capture the images of exactly same particles in modified and unmodified forms. The composite films reinforced with SLS-FA showed 33% higher strength than those of FA filled films. The enhancement of tensile strength attributed from the level of physical bonding between SLS-FA and PVA surfaces.

  18. TBA equations for the mass gap in the O(2r) non-linear σ-models

    International Nuclear Information System (INIS)

    Balog, Janos; Hegedues, Arpad

    2005-01-01

    We propose TBA integral equations for 1-particle states in the O(n) non-linear σ-model for even n. The equations are conjectured on the basis of the analytic properties of the large volume asymptotics of the problem, which is explicitly constructed starting from Luscher's asymptotic formula. For small volumes the mass gap values computed numerically from the TBA equations agree very well with results of three-loop perturbation theory calculations, providing support for the validity of the proposed TBA system

  19. A mini-library of TBA analogues containing 3'-3' and 5'-5' inversion of polarity sites.

    Science.gov (United States)

    Esposito, V; Galeone, A; Mayol, L; Randazzo, A; Virgilio, A; Virno, A

    2007-01-01

    Several researches have been devoted to structure-activity relationship and to post-SELEX modifications of the thrombin binding aptamer (TBA), one of the first aptamers discovered by the SELEX methodology. However, no studies on TBA dealing with the effects of introduction of inversion of polarity sites have been reported yet. In this frame, we have undertaken the synthesis and the study of a mini-library composed of several TBA analogues containing a 3'-3' or a 5'-5' inversion of polarity site at different positions into the sequence. Particularly, in this article, we present preliminary results about their structural and biological properties.

  20. Observation on the biodegradation and bioremediation potential of methyl t-butyl ether

    International Nuclear Information System (INIS)

    Salanitro, J.; Wisniewski, H.; McAllister, P.

    1995-01-01

    There have been few reports documenting evidence for the biodegradation of the fuel oxygenate alkyl ether, methyl t-butyl ether (MTBE) in groundwater, soils, and biosludges. Partial (or complete) microbial breakdown of MTBE has been observed in an anaerobic subsoil, a river sediment under methanogenic conditions, a cyclohexane-degrading bacterial consortium and a pure culture of the methylotroph, Methylisnus trichosporium OB3b. An aerobic bacterial enrichment (BC-1) isolated from an industrial transient (non-accumulating) metabolic intermediate. The studies suggest that MTBE is cleaved by BC-1 to TBA which is then metabolized via isopropanol and acetone. There is little information on the occurrence of indigenous MTBE-degraders in groundwater, soils and activated sludges. Preliminary evidence has been obtained, however, from a marketing terminal groundwater site that naturally-occurring MTBE-degraders are present in some monitoring wells. Microcosm experiments with groundwater from this aquifer show that MTBE is aerobically degraded (no TBA formed) with a first-order decay rate (0.31/day) similar to BTEX. Also, MTBE did not inhibit the intrinsic biodegradation potential of BTEX in groundwater microcosms. In summary, the data presented indicate that MTBE biodegradation has been observed in some environmental media. Further work is needed to assess the feasibility of using indigenous or derived aerobic and anaerobic MTBE-degrading cultures for treating fuel ethers in groundwaters or wastewater with in-situ or ex-situ bioremediation technologies

  1. Lignin biodegradation by the ascomycete Chrysonilia sitophila.

    Science.gov (United States)

    Rodríguez, J; Ferraz, A; Nogueira, R F; Ferrer, I; Esposito, E; Durán, N

    1997-01-01

    The lignin biodegradation process has an important role in the carbon cycle of the biosphere. The study of this natural process has developed mainly with the use of basidiomycetes in laboratory investigations. This has been a logical approach since most of the microorganisms involved in lignocellulosic degradation belong to this class of fungi. However, other microorganisms such as ascomycetes and also some bacteria, are involved in the lignin decaying process. This work focuses on lignin biodegradation by a microorganism belonging to the ascomycete class, Chrysonilia sitophila. Lignin peroxidase production and characterization, mechanisms of lignin degradation (lignin model compounds and lignin in wood matrix) and biosynthesis of veratryl alcohol are outstanding. Applications of C. sitophila for effluent treatment, wood biodegradation and single-cell protein production are also discussed.

  2. Expanding the potential of G-quadruplex structures: formation of a heterochiral TBA analogue.

    Science.gov (United States)

    Virgilio, Antonella; Varra, Michela; Scuotto, Maria; Capuozzo, Antonella; Irace, Carlo; Mayol, Luciano; Esposito, Veronica; Galeone, Aldo

    2014-03-21

    In order to expand the potential applications of G-quadruplex structures, we explored the ability of heterochiral oligodeoxynucleotides based on the thrombin-binding aptamer (TBA) sequence to fold into similar complexes, with particular focus on their resistance in biological environments. A combination of CD and NMR techniques was used. Similarly to TBA, the ODN ggTTggtgtggTTgg (lower case letters indicate L residues) is able to fold into a chair-like antiparallel G-quadruplex structure, but has a slightly higher thermal stability. The discovery that heterochiral ODNs are able to form stable G-quadruplex structures opens up new possibilities for their development in several fields, as aptamers, sensors and, as recently shown, as catalysts for enantioselective reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    Science.gov (United States)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  4. Epitope mapping and immunological characterization of a major allergen TBa in tartary buckwheat.

    Science.gov (United States)

    Ren, Xiaoxia; Zhang, Xin; Li, Yuying; Wang, Zhuanhua

    2010-09-01

    Predicted by an antigenic program, full-length tartary buckwheat allergen (TBa) is divided into six fragments: E1, E2, E12, E3, E4 and E34. Immunological assays revealed that E1 has the greatest binding activity to patients' serum IgE. Five mutants of E1 gene (L39R, L42R, L47R, V52R and L54R) were constructed using site-directed mutagenesis and each protein was expressed in Escherichia coli BL21. Following purification by Ni(2+) affinity chromatography, ELISA and dot-blot were performed for wild type E1 and its mutants using sera from buckwheat allergic patients and healthy controls. Mutants L42R, L47R, and L54R had weaker IgE binding activity to patient's sera than wild-type E1 implying that Leu42, Leu47, and Leu54 might be involved in the allergic activity of TBa.

  5. TBA equations for excited states in the sine-Gordon model

    International Nuclear Information System (INIS)

    Balog, Janos; Hegedus, Arpad

    2004-01-01

    We propose thermodynamic Bethe ansatz (TBA) integral equations for multi-particle soliton (fermion) states in the sine-Gordon (massive Thirring) model. This is based on T-system and Y-system equations, which follow from the Bethe ansatz solution in the light-cone lattice formulation of the model. Even and odd charge sectors are treated on an equal footing, corresponding to periodic and twisted boundary conditions, respectively. The analytic properties of the Y-system functions are conjectured on the basis of the large volume solution of the system, which we find explicitly. A simple relation between the TBA Y-functions and the counting function variable of the alternative non-linear integral equation (Destri-de Vega equation) description of the model is given. At the special value β 2 = 6π of the sine-Gordon coupling, exact expressions for energy and momentum eigenvalues of one-particle states are found

  6. SIRT1 exhibits antioxidative effects in HT22 cells induced by tert-butyl alcohol.

    Science.gov (United States)

    Ma, Junxiang; Song, Dongmei; Zhang, Yuanyuan; Chen, Li; Zhang, Shixuan; Jia, Jiaxin; Chen, Tian; Guo, Caixia; Tian, Lin; Gao, Ai; Niu, Piye

    2018-02-01

    Tertiary butyl alcohol (TBA) is a principal metabolite of methyl tertiary-butyl ether (MTBE), a common pollutant worldwide in the ground or underground water, which is found to produce nervous system damage. Nevertheless, few data regarding the effects of TBA has been reported. Studies indicated that oxidative stress plays a pivotal role in MTBE neurotoxic mechanism. Sirtuin 1 (SIRT1) has been reported to exert a neuroprotective effect on various neurologic diseases via resistance to oxidative stress by deacetylating its substrates. In this study, we examined levels of oxidative stress after exposure to TBA for 6 h in HT22 cells and HT22 cells with SIRT1 silencing (transfected with SIRT1 siRNA) or high expression (preconditioned with agonists SRT1720). We found that TBA activated oxidative stress by increasing generation of intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and Oxidized glutathione (GSSG), and decreasing contents of superoxide dismutase (SOD) and glutathione reductase (GSH). In additional, levels of TBA-induced oxidative stress were aggravated when SIRT1 silenced but alleviated when SIRT1 enhanced. Our study indicated that SIRT1 mitigated oxidative stress induced by TBA. © 2017 Wiley Periodicals, Inc.

  7. Synthesis, structural studies and biological properties of new TBA analogues containing an acyclic nucleotide.

    Science.gov (United States)

    Coppola, Teresa; Varra, Michela; Oliviero, Giorgia; Galeone, Aldo; D'Isa, Giuliana; Mayol, Luciano; Morelli, Elena; Bucci, Maria-Rosaria; Vellecco, Valentina; Cirino, Giuseppe; Borbone, Nicola

    2008-09-01

    A new modified acyclic nucleoside, namely N(1)-(3-hydroxy-2-hydroxymethyl-2-methylpropyl)-thymidine, was synthesized and transformed into a building block useful for oligonucleotide (ON) automated synthesis. A series of modified thrombin binding aptamers (TBAs) in which the new acyclic nucleoside replaces, one at the time, the thymidine residues were then synthesized and characterized by UV, CD, MS, and (1)H NMR. The biological activity of the resulting TBAs was tested by Prothrombin Time assay (PT assay) and by purified fibrinogen clotting assay. From a structural point of view, nearly all the new TBA analogues show a similar behavior as the unmodified counterpart, being able to fold into a bimolecular or monomolecular quadruplex structure depending on the nature of monovalent cations (sodium or potassium) coordinated in the quadruplex core. From the comparison of structural and biological data, some important structure-activity relationships emerged, particularly when the modification involved the TT loops. In agreement with previous studies we found that the folding ability of TBA analogues is more affected by modifications involving positions 4 and 13, rather than positions 3 and 12. On the other hand, the highest anti-thrombin activities were detected for aptamers containing the modification at T13 or T12 positions, thus indicating that the effects produced by the introduction of the acyclic nucleoside on the biological activity are not tightly connected with structure stabilities. It is noteworthy that the modification at T7 produces an ON being more stable and active than the natural TBA.

  8. The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin.

    Science.gov (United States)

    Menges, R; Muth, G; Wohlleben, W; Stegmann, E

    2007-11-01

    All known gene clusters for glycopeptide antibiotic biosynthesis contain a conserved gene supposed to encode an ABC-transporter. In the balhimycin-producer Amycolatopsis balhimycina this gene (tba) is localised between the prephenate dehydrogenase gene pdh and the peptide synthetase gene bpsA. Inactivation of tba in A. balhimycina by gene replacement did not interfere with growth and did not affect balhimycin resistance. However, in the supernatant of the tba mutant RM43 less balhimycin was accumulated compared to the wild type; and the intra-cellular balhimycin concentration was ten times higher in the tba mutant RM43 than in the wild type. These data suggest that the ABC transporter encoded in the balhimycin biosynthesis gene cluster is not involved in resistance but is required for the efficient export of the antibiotic. To elucidate the activity of Tba it was heterologously expressed in Escherichia coli with an N-terminal His-tag and purified by nickel chromatography. A photometric assay revealed that His(6)-Tba solubilised in dodecylmaltoside possesses ATPase activity, characteristic for ABC-transporters.

  9. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative.

    Science.gov (United States)

    Scuotto, Maria; Rivieccio, Elisa; Varone, Alessia; Corda, Daniela; Bucci, Mariarosaria; Vellecco, Valentina; Cirino, Giuseppe; Virgilio, Antonella; Esposito, Veronica; Galeone, Aldo; Borbone, Nicola; Varra, Michela; Mayol, Luciano

    2015-09-18

    Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13. © Crown copyright 2015.

  10. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  11. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  12. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the ...

  13. Mixing of alcohol and water molecules studied by neutron probe. Structure and dynamics

    International Nuclear Information System (INIS)

    Yoshida, Koji

    2001-01-01

    Structure of water/alcohol mixing solution was studied by three methods such as an isotope-exchanged neutron scattering method, RISM (Reference Interaction Site Model) integral equation and a neutron spin echo method. The principle of methods, experiments and results were reported. The results of experiments of water/tert-butyl alcohol (TBA) solution by the isotope-exchange neutron scattering method showed TBA molecule associated with each other through end methyl group. Especially this effect was the largest at x TBA = 0.06 and decreased with increasing the concentration of TBA. However, hydrogen bonding of TBA was very rare at x TBA = 0.06. By the partial radial distribution function obtained from RISM integral equation, it indicated that the structure of pure TBA became chain structure by hydrogen bond but changed to the structure contacted directly each hydrophobic group with increasing the concentration of water. Water/2-butoxyethanol (BE) mixing solution was measured by a neutron spin echo method. The activation energy of the diffusion coefficients obtained agreed to the energy of hydrogen bonding. The temperature response of diffusion coefficients showed the inverse of the experimental results obtained by the dynamic light scattering method. The difference between two measurement methods was different time scale and space scale. Namely, the object of the neutron scattering method is nano meter and nano second, but one of light scattering method many times over. It was proved from the above results that there was the cluster consisted of the same kind of molecule in the homogeneous two components solution, but the cluster was not stable and constantly exchanged with molecule, where the production and decay of the cluster is repeated at about nano sec. (S.Y.)

  14. COMETABOLIC DEGRADATION OF CHLOROALLYL ALCOHOLS IN BATCH AND CONTINUOUS CULTURES

    NARCIS (Netherlands)

    VANDERWAARDE, JJ; KOK, R; JANSSEN, DB; Waarde, J.J. van der

    1994-01-01

    The biodegradation of chloroallyl alcohols by pure and mixed bacterial cultures was investigated. Only 2-chloroallyl alcohol and cis- and trans-3-chloroallyl alcohol served as growth substrate for pure cultures. The other chloroallyl alcohols could be cometabolically degraded during growth on

  15. Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet.

    Science.gov (United States)

    Cheng, Jun-Hu; Sun, Da-Wen; Pu, Hong-Bin; Wang, Qi-Jun; Chen, Yu-Nan

    2015-03-15

    The suitability of hyperspectral imaging technique (400-1000 nm) was investigated to determine the thiobarbituric acid (TBA) value for monitoring lipid oxidation in fish fillets during cold storage at 4°C for 0, 2, 5, and 8 days. The PLSR calibration model was established with full spectral region between the spectral data extracted from the hyperspectral images and the reference TBA values and showed good performance for predicting TBA value with determination coefficients (R(2)P) of 0.8325 and root-mean-square errors of prediction (RMSEP) of 0.1172 mg MDA/kg flesh. Two simplified PLSR and MLR models were built and compared using the selected ten most important wavelengths. The optimised MLR model yielded satisfactory results with R(2)P of 0.8395 and RMSEP of 0.1147 mg MDA/kg flesh, which was used to visualise the TBA values distribution in fish fillets. The whole results confirmed that using hyperspectral imaging technique as a rapid and non-destructive tool is suitable for the determination of TBA values for monitoring lipid oxidation and evaluation of fish freshness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Grey water biodegradability.

    Science.gov (United States)

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  17. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  18. Improvement of biodegradability of industrial wastewaters by radiation treatment

    International Nuclear Information System (INIS)

    Jo, H.J.; Kim, H.J.; Kim, J.G.; Jung, J.; Choi, J.S.; Park, Y.K.

    2006-01-01

    In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD 5 /COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents. (author)

  19. New insights on the voltage dependence of the KCa3.1 channel block by internal TBA.

    Science.gov (United States)

    Banderali, Umberto; Klein, Hélène; Garneau, Line; Simoes, Manuel; Parent, Lucie; Sauvé, Rémy

    2004-10-01

    We present in this work a structural model of the open IKCa (KCa3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% and 16% of the transmembrane potential difference. We found however that the voltage dependence of the IKCa block by the quaternary ammonium ion TBA applied internally is compatible with an apparent electrical distance delta of 0.49 +/- 0.02 (n = 6) for negative potentials. To reconcile this observation with the electrostatic potential profile predicted for the channel pore, we modeled the IKCa block by TBA assuming that the voltage dependence of the block is governed by both the difference in potential between the channel cavity and the internal medium, and the potential profile along the selectivity filter region through an effect on the filter ion occupancy states. The resulting model predicts that delta should be voltage dependent, being larger at negative than positive potentials. The model also indicates that raising the internal K+ concentration should decrease the value of delta measured at negative potentials independently of the external K+ concentration, whereas raising the external K+ concentration should minimally affect delta for concentrations >50 mM. All these predictions are born out by our current experimental results. Finally, we found that the substitutions V275C and V275A increased the voltage sensitivity of the TBA block, suggesting that TBA could move further into the pore, thus leading to stronger interactions between TBA and the ions in the selectivity filter. Globally, these results support a model whereby the voltage dependence of the TBA block in IKCa is mainly governed by the voltage dependence of the ion occupancy states of the selectivity filter.

  20. MOCVD growth of InP-related materials using TBA and TBP

    International Nuclear Information System (INIS)

    Czub, M.; Strupinski, W.

    1995-01-01

    High quality epitaxial layers of GaAs, InP, AlAs, InGaAs, InGaP, InGaAlP have been grown by low-pressure metalorganic chemical vapor deposition using TMIn, TMGa, TMAl and the less hazardous group V precursors, temperature ranges of 570-650 C and 520-650 C, respectively. The V/III ratio as low as 1.5 was used to grow epilayers of InP. The 77 K mobility of InGaAs lattice matched to InP (grown with TBA) was 72360 cm 2 /(Vs) for n = 1.5 x 10 1 5/cm 3 and the thickness of 2 μm. Comparable photoluminescence parameters of InGaAlP between layers grown with TBP and PH 3 were achieved, but for InGaAlP (TBP) photoluminescence intensity was significantly lower than for InGaAlP (PH 3 ). The promising results allow one to apply of TBA and TBP for developing of device structures. (author)

  1. Biodegradable Sonobuoy Decelerators

    Science.gov (United States)

    2015-06-01

    of Water Temperature and the Presence of Salt on the Disintegration Time of MonoSol A200 PVOH...polyhydroxyalkanoate (PHA). The proposed film would disintegrate , dissolve, and eventually biodegrade to prevent long-term effects on marine life. Ensuring no...Standard Specification for Non-Floating Biodegradable Plastics in the Marine Environment. Results showed that no PHA grades were toxic to the marine

  2. Biodegradable micromechanical sensors

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Greve, Anders; Schmid, Silvan

    of mechanical and thermal properties of polymers. For example, measurements of the resonance frequency of cantilevers were used to characterize thin polymer coatings in various environmental conditions [2]. Also, the influence of humidity on the Young’s modulus of SU-8 was evaluated [3]. However, introduction...... (NIL). Second, we used spray-coating to deposit thin biodegradable films on microcantilevers. Both approaches allowed the determination of the Young’s modulus of the biopolymer. Furthermore, biodegradation by enzymes was investigated....

  3. Alcohol Alert

    Science.gov (United States)

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... 466 KB] No. 81: Exploring Treatment Options for Alcohol Use Disorders [ PDF - 539K] No. 80: Alcohol and HIV/AIDS: ...

  4. Efficacy of topotecan treatment on antioxidant enzymes and TBA-RS levels in submandibular glands of rabbits: an experimental study.

    Science.gov (United States)

    Muluk, Nuray Bayar; Kisa, Uçler; Kaçmaz, Murat; Apan, Alpaslan; Koç, Can

    2005-01-01

    The aim of this study was to investigate the effects of topotecan (Hycamtin), a topoisomerase I inhibiting anticancer agent, on antioxidant enzymes (SOD, CAT, and GSH-Px) and TBA-RS values of the submandibular glands of the rabbits. The study was conveyed in two groups (Group I, II) and control with a total of 24 rabbits. Eight rabbits in group I received intravenous (i.v.) topotecan (0.25 mg/kg once daily) for 3 days. Eight rabbits in group II received i.v. topotecan (0.5 mg/kg once daily) for 3 days. On the 15th day after administration of topotecan, submandibular glands were removed and levels of the SOD, CAT, and GSH-Px and the TBA-RS in the submandibular glands of the rabbits were examined. SOD, CAT, and GSH-Px values were significantly higher in high-dose topotecan group compared to control group (P TBA-RS values were significantly higher in high-dose topotecan group compared to low-dose topotecan group (P TBA-RS values in group II showed that permanent damage was present because of high-dose topotecan administration in the submandibular glands of the rabbits.

  5. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR...

  6. Biodegradable electroactive materials for tissue engineering applications

    Science.gov (United States)

    Guimard, Nathalie Kathryn

    This dissertation focuses on the development of biomaterials that could be used to enhance the regeneration of severed peripheral nerves. These materials were designed to be electroactive, biodegradable, and biocompatible. To render the materials electroactive the author chose to incorporate conducting polymer (CP) units into the materials. Because CPs are inherently non-degradable, the key challenge was to create a CP-based material that was also biodegradable. Two strategies were explored to generate a biodegradable CP-based material. The first strategy centered around the incorporation of both electroactive and biodegradable subunits into a copolymer system. In the context of this approach, two bis(methoxyquaterthiophene)-co-adipic acid polyester (QAPE) analogues were successfully synthesized, one through polycondensation (giving undoped QAPE) and the second through oxidative polymerization (giving doped QAPE-2). QAPE was found to be electroactive by cyclic voltammetry, bioerodible, and cytocompatible with Schwann cells. QAPE was doped with ferric perchlorate, although only a low doping percentage was realized (˜8%). Oxidative polymerization of a bis(bithiophene) adipate permitted the direct synthesis of doped QAPE-2, which was found to have a higher doping level (˜24%). The second strategy pursued with the goal of generating an electroactive biodegradable material involved covalently immobilizing low molecular weight polythiophene chains onto the surface of crosslinked hyaluronic acid (HA) films. HA films are not only biodegradable and biocompatible, but they also provide mechanical integrity to bilayer systems. Dicyclocarbodiimide coupling of carboxylic acids to HA alcohol groups was used to functionalize HA films. The HA-polythiophene composite is still in the early stages of development. However, to date, thiophene has been successfully immobilized at the surface of HA films with a high degree of substitution. The author has also shown that thiophene

  7. Adiabatic compressibility of pseudo-binary aqueous solutions of tert-butyl alcohol and dimethylsulfoxide as a result of ultrasonic investigations

    International Nuclear Information System (INIS)

    Miecznik, Piotr; Kaczmarek, Milena

    2006-01-01

    The tert-butyl alcohol (TBA) and dimethyl sulfoxide (DMSO) are two small molecules geometrically very similar, but having different polar groups. Taking into account the intermolecular interactions in the TBA/H 2 O and DMSO/H 2 O systems, especially in the water-rich region of concentration, the ultrasonic speeds (high accuracy resonance method at the frequency 7.5 MHz) and densities in pseudo-binary mixtures of the system: (TBA + H 2 O + DMSO) with the ratio (TBA + DMSO)/H 2 O = 1/25 have been measured. From these data, various thermodynamical parameters such as adiabatic compressibility, molar volume, thermal expansivity, and the deviation from reference system have been calculated. In addition, the isobaric molar heat capacity to convert adiabatic compressibility to the isothermal one has been measured. All these parameters have been discussed to explain solute-solvent and solute-solute interactions, especially the effect of the complexation process between TBA and DMSO molecules. The composition dependence of these deviations functions was interpreted in the light of the mixing schemes in the aqueous solutions of TBA and DMSO

  8. Adiabatic compressibility of pseudo-binary aqueous solutions of tert-butyl alcohol and dimethylsulfoxide as a result of ultrasonic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Miecznik, Piotr [Institute of Acoustics, Adam Mickiewicz University, Umultowska 85, PL-61-614 Poznan (Poland)]. E-mail: miecznik@main.amu.edu.pl; Kaczmarek, Milena [Institute of Acoustics, Adam Mickiewicz University, Umultowska 85, PL-61-614 Poznan (Poland)

    2006-11-15

    The tert-butyl alcohol (TBA) and dimethyl sulfoxide (DMSO) are two small molecules geometrically very similar, but having different polar groups. Taking into account the intermolecular interactions in the TBA/H{sub 2}O and DMSO/H{sub 2}O systems, especially in the water-rich region of concentration, the ultrasonic speeds (high accuracy resonance method at the frequency 7.5 MHz) and densities in pseudo-binary mixtures of the system: (TBA + H{sub 2}O + DMSO) with the ratio (TBA + DMSO)/H{sub 2}O = 1/25 have been measured. From these data, various thermodynamical parameters such as adiabatic compressibility, molar volume, thermal expansivity, and the deviation from reference system have been calculated. In addition, the isobaric molar heat capacity to convert adiabatic compressibility to the isothermal one has been measured. All these parameters have been discussed to explain solute-solvent and solute-solute interactions, especially the effect of the complexation process between TBA and DMSO molecules. The composition dependence of these deviations functions was interpreted in the light of the mixing schemes in the aqueous solutions of TBA and DMSO.

  9. Biodegradation of selected offshore chemicals

    OpenAIRE

    Wennberg, Aina C.; Petersen, Karina

    2017-01-01

    A review of biodegradation data for specific oil field chemicals and chemical groups were performed in order to evaluate if the current categorisation of these were appropriate based on the biodegradation properties. Data were compiled from databases like ECHA and MITI and from the literature. For compounds with limited or inconclusive test data, biodegradation was also estimated by the BIOWIN models, and the EAWAG-BBD pathway prediction system was used to predict plausible biodegradation pat...

  10. A model of magnetic and relaxation properties of the mononuclear [Pc2Tb](-)TBA+ complex.

    Science.gov (United States)

    Reu, O S; Palii, A V; Ostrovsky, S M; Tregenna-Piggott, P L W; Klokishner, S I

    2012-10-15

    The present work is aimed at the elaboration of the model of magnetic properties and magnetic relaxation in the mononuclear [Pc(2)Tb](-)TBA(+) complex that displays single-molecule magnet properties. We calculate the Stark structure of the ground (7)F(6) term of the Tb(3+) ion in the exchange charge model of the crystal field, taking account for covalence effects. The ground Stark level of the complex possesses the maximum value of the total angular momentum projection, while the energies of the excited Stark levels increase with decreasing |M(J)| values, thus giving rise to a barrier for the reversal of magnetization. The one-phonon transitions between the Stark levels of the Tb(3+) ion induced by electron-vibrational interaction are shown to lead to magnetization relaxation in the [Pc(2)Tb](-)TBA(+) complex. The rates of all possible transitions between the low-lying Stark levels are calculated in the temperature range 14 K

  11. Structure variations of TBA G-quadruplex induced by 2'-O-methyl nucleotide in K+ and Ca2+ environments.

    Science.gov (United States)

    Zhao, Xiaoyang; Liu, Bo; Yan, Jing; Yuan, Ying; An, Liwen; Guan, Yifu

    2014-10-01

    Thrombin binding aptamer (TBA), a 15-mer oligonucleotide of d(GGTTGGTGTGGTTGG) sequence, folds into a chair-type antiparallel G-quadruplex in the K(+) environment, and each of two G-tetrads is characterized by a syn-anti-syn-anti glycosidic conformation arrangement. To explore its folding topology and structural stability, 2'-O-methyl nucleotide (OMe) with the C3'-endo sugar pucker conformation and anti glycosidic angle was used to selectively substitute for the guanine residues of G-tetrads of TBA, and these substituted TBAs were characterized using a circular dichroism spectrum, thermally differential spectrum, ultraviolet stability analysis, electrophoresis mobility shift assay, and thermodynamic analysis in K(+) and Ca(2+) environments. Results showed that single substitutions for syn-dG residues destabilized the G-quadruplex structure, while single substitutions for anti-dG residues could preserve the G-quadruplex in the K(+) environment. When one or two G-tetrads were modified with OMe, TBA became unstructured. In contrast, in Ca(2+) environment, the native TBA appeared to be unstructured. When two G-tetrads were substituted with OMe, TBA seemed to become a more stable parallel G-4 structure. Further thermodynamic data suggested that OMe-substitutions were an enthalpy-driven event. The results in this study enrich our understanding about the effects of nucleotide derivatives on the G-quadruplex structure stability in different ionic environments, which will help to design G-quadruplex for biological and medical applications. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  12. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis.

    Science.gov (United States)

    Tasneen, Rokeya; Williams, Kathy; Amoabeng, Opokua; Minkowski, Austin; Mdluli, Khisimuzi E; Upton, Anna M; Nuermberger, Eric L

    2015-01-01

    New regimens based on two or more novel agents are sought in order to shorten or simplify the treatment of both drug-susceptible and drug-resistant forms of tuberculosis. PA-824 is a nitroimidazo-oxazine now in phase II trials and has shown significant early bactericidal activity alone and in combination with the newly approved agent bedaquiline or with pyrazinamide with or without moxifloxacin. While the development of PA-824 continues, a potential next-generation derivative, TBA-354, has been discovered to have in vitro potency superior to that of PA-824 and greater metabolic stability than that of the other nitroimidazole derivative in clinical development, delamanid. In the present study, we compared the activities of PA-824 and TBA-354 as monotherapies in murine models of the initial intensive and continuation phases of treatment, as well as in combination with bedaquiline plus pyrazinamide, sutezolid, and/or clofazimine. The monotherapy studies demonstrated that TBA-354 is 5 to 10 times more potent than PA-824, but selected mutants are cross-resistant to PA-824 and delamanid. The combination studies revealed that TBA-354 is 2 to 4 times more potent than PA-824 when combined with bedaquiline, and when administered at a dose equivalent to that of PA-824, TBA-354 demonstrated superior sterilizing efficacy. Perhaps most importantly, the addition of either nitroimidazole significantly improved the sterilizing activities of bedaquiline and sutezolid, with or without pyrazinamide, confirming the value of each agent in this potentially universally active short-course regimen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  14. Phthalates biodegradation in the environment.

    Science.gov (United States)

    Liang, Da-Wei; Zhang, Tong; Fang, Herbert H P; He, Jianzhong

    2008-08-01

    Phthalates are synthesized in massive amounts to produce various plastics and have become widespread in environments following their release as a result of extensive usage and production. This has been of an environmental concern because phthalates are hepatotoxic, teratogenic, and carcinogenic by nature. Numerous studies indicated that phthalates can be degraded by bacteria and fungi under aerobic, anoxic, and anaerobic conditions. This paper gives a review on the biodegradation of phthalates and includes the following aspects: (1) the relationship between the chemical structure of phthalates and their biodegradability, (2) the biodegradation of phthalates by pure/mixed cultures, (3) the biodegradation of phthalates under various environments, and (4) the biodegradation pathways of phthalates.

  15. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Van Lier, J.B.

    2010-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different

  16. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different

  17. Systemic approaches to biodegradation.

    Science.gov (United States)

    Trigo, Almudena; Valencia, Alfonso; Cases, Ildefonso

    2009-01-01

    Biodegradation, the ability of microorganisms to remove complex chemicals from the environment, is a multifaceted process in which many biotic and abiotic factors are implicated. The recent accumulation of knowledge about the biochemistry and genetics of the biodegradation process, and its categorization and formalization in structured databases, has recently opened the door to systems biology approaches, where the interactions of the involved parts are the main subject of study, and the system is analysed as a whole. The global analysis of the biodegradation metabolic network is beginning to produce knowledge about its structure, behaviour and evolution, such as its free-scale structure or its intrinsic robustness. Moreover, these approaches are also developing into useful tools such as predictors for compounds' degradability or the assisted design of artificial pathways. However, it is the environmental application of high-throughput technologies from the genomics, metagenomics, proteomics and metabolomics that harbours the most promising opportunities to understand the biodegradation process, and at the same time poses tremendous challenges from the data management and data mining point of view.

  18. Suitability of TBA method for the evaluation of the oxidative effect of non-water-soluble and water-soluble rosemary extracts.

    Science.gov (United States)

    Wada, Mitsuhiro; Nagano, Minori; Kido, Hirotsugu; Ikeda, Rie; Kuroda, Naotaka; Nakashima, Kenichiro

    2011-01-01

    The antioxidative effects of rosemary and grape-seed extracts spiked in human plasma were examined using the thiobarbituric acid (TBA) method. The TBA values of plasma spiked with reagents to generate reactive oxygen species, such as singlet oxygen ((1)O(2)), hydroxyl radicals ((·)OH), peroxynitrite (ONOO(-)), and superoxide anions (O(2)(·-)), were measured by a flow injection analysis method with fluorescence (FL) detection. TBA values obtained by the addition of 50 mg/mL of rosemary extracts for (1)O(2), (·)OH, ONOO(-), and O(2)(·-) increased to 964 ± 65%, 1063 ± 61%, 758 ± 78%, and 698 ± 41%, respectively (n = 3, P TBA-malondialdehyde, could be detected using wavelengths of 532 (λ(ex)) and 553 nm (λ(em)).

  19. Usefulness of determination of serum levels of total bile acids (TBA) and other five markers of liver fibrosis for diagnosis of chronic liver disease

    International Nuclear Information System (INIS)

    Zhou Zhenxian; Geng Quanlin; Gong Xiping; Yang Chenbao

    2003-01-01

    Objective: To evaluate the value of combined determination of serum levels of TBA, PC-III, IV-C, HA, CG and LN in diagnosis of chronic hepatic diseases. Methods: Serum TBA levels were measured with totally automatic enzymatic method and the other five markers with RIA in 118 patients with various types of hepatic diseases as well as in 31 controls. Results: Serum levels of TBA and the other markers were significantly higher in the patients than those in the controls (p<0.01). Among the various types of diseases, values of the tested markers increased along with the increase of the severity of the disease process. Conclusion: Combined measurements of serum levels of TBA and other five markers were of important value for the diagnosis, treatment and outcome prediction of hepatic fibrosis

  20. Advantages of trained TBA and the perception of females and their experiences with reproductive health in two districts of the Luangprabang Province, Lao PDR.

    Science.gov (United States)

    Sirivong, Amone; Silphong, Bouavanh; Simphaly, Niphone; Phayasane, Thongsavath; Bonouvong, Vilaysack; Schelp, Frank P

    2003-12-01

    The study describes reproductive health in two districts of the Luangprabang Province in northern Lao PDR. The aim was to find out whether training traditional birth attendants (TBA) might have an impact on reproductive health. In June/July 2000, a total of 298 women of reproductive age, with children below two years of age, from 30 villages were interviewed by means of a closed questionnaire. In 1996/1997, a training course for TBA was conducted in one of the districts under survey. Information was obtained for demography, symptoms and risks during pregnancy and delivery, antenatal care (ANC), tetanus immunization, food taboos, place of delivery, birth attendant, practising of birth spacing and their attitude towards the services of TBA. The results obtained indirectly pointed towards a high fertility rate and a high rate of child death and abortion. An overwhelming majority of the women delivered at home, attended only by untrained individuals. During pregnancy and after delivery, the women claimed that they often suffered from edema of legs and feet, high fever and hemorrhages. Only 50% of the females in the district where TBA training were conducted, made use of the services of trained TBA. Nevertheless, females in the district with trained TBA, who made use of the TBA service in comparison with women in the same district not using the service of TBA, were 3.8 times more likely to also make use of the ANC service; 3.3 times more likely to seek immunization, and 8.6 times more likely to give colostrum to their new-borns. The educational level of the females proved to be an important factor. Literate women were more likely to practise birth spacing and have been vaccinated. Illiterate women were more likely to be at higher risk for losing a child. In the district without TBA service the loss of a child was less likely among literate than illiterate women. It is concluded that through adequately trained TBA and through their continuous support and supervision, ANC

  1. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  2. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  3. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  4. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    Science.gov (United States)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-06-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.

  5. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    International Nuclear Information System (INIS)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-01-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time

  6. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  7. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    Science.gov (United States)

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  8. Pengaruh Penambahan Kitosan dalam Pembuatan Biodegradable Foam Berbahan Baku Pati

    Directory of Open Access Journals (Sweden)

    Nanik Hendrawati

    2017-05-01

    Full Text Available Biodegradable foam is an alternative packaging to replace the expanded polystyrene foam packaging currently in use.   Starch has been used to produce foam because of  its low cost, low density, low toxicity, and  biodegradability. Chitosan has been added to improve mechanical properties of product . The   effect of  variation on chitosan amount  and  starch types  was investigated in this study.  The amount of  chitosan  was varied as 0; 5; 10; 15; 20; 25; and  30 % w/w and starch types were used in this research were cassava, Corn and sago starch. Biodegradable  foam was produced by using baking process method, all of material (Starch, Chitosan solution,  Magnesium Stearate, Carrageenan, Glyserol, Protein Isolates  dan polyvinil alcohol (PVOH  were mixed with kitchen aid mixer. The mixture was poured  into mold and heated in an oven at 125 oC for 1 hour. Then, foam was tested for its mechanical properties, water absorption  and biodegradability and  morphology (SEM.  The results show that  foam made from sago starch had lower water absortion than those made from cassava and corn starch.   While, foam made from cassava starch  was more biodegradable than the other foam.  Biodegradable foam based sago starch and 30 % w/w of Chitosan adition  gave the  best performence in tensile stress that  is 20 Mpa

  9. Cool excimer laser-assisted angioplasty (CELA) and tibial balloon angioplasty (TBA) in management of infragenicular arterial occlusion in critical lower limb ischemia (CLI).

    Science.gov (United States)

    Sultan, Sherif; Tawfick, Wael; Hynes, Niamh

    2013-04-01

    We aim to compare cool excimer laser-assisted angioplasty (CELA) versus tibial balloon angioplasty (TBA) in patients with critical limb ischemia (CLI) with tibial artery occlusive disease. The primary end point is sustained clinical improvement (SCI) and amputation-free survival (AFS). The secondary end points are binary restenosis, target extremity revascularization (TER), and cost-effectiveness. From June 2005 to October 2010, 1506 patients were referred with peripheral vascular disease and 572 with CLI. A total of 80 patients underwent 89 endovascular revascularizations (EVRs) for tibial occlusions, 47 using TBA and 42 using CELA. All patients were Rutherford category 4 to 6. Three-year SCI was enhanced with CELA (81%) compared to TBA (63.8%; P = .013). Three-year AFS significantly improved with CELA (95.2%) versus TBA (89.4%; P = .0165). Three-year freedom from TER was significantly improved with CELA (92.9%) versus 78.7% TBA (P = .026). Three-year freedom from MACE was comparable in both the groups (P = .455). Patients with CELA had significantly improved quality time without symptoms of disease or toxicity of treatment (Q-TWiST) at 3 years (10.5 months; P = .048) with incremental cost of €2073.19 per quality-adjusted life year gained. Tibial EVR provides exceptional outcome in CLI. The CELA has superior SCI, AFS, and freedom from TER, with improved Q-TWiST and cost-effectiveness.

  10. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    Science.gov (United States)

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  11. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  12. Biodegradation of biodiesel fuels

    International Nuclear Information System (INIS)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-01-01

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO 2 evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO 2 evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO 2 evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO 2 . The test substances were examined for BOD 5 and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD 5 and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD 5 and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p 5 value

  13. [Concentration of glutathione (GSH), ascorbic acid (vitamin C) and substances reacting with thiobarbituric acid (TBA-rs) in single human brain metastases].

    Science.gov (United States)

    Dudek, Henryk; Farbiszewski, Ryszard; Rydzewska, Maria; Michno, Tadeusz; Kozłowski, Andrzej

    2005-01-01

    The aim of the study was to estimate the concentration of glutathione (GSH), ascorbic acid (vitamin C) and thiobarbituric acid (TBA-rs) in single human brain metastases and histologically unchanged nerve tissue. The research was conducted on fragments of neoplasmatic tissue collected from 45 patients undergoing surgery in the Department of Neurosurgery, Medical University of Białystok in years 1996-2002. Concentration of GSH was evaluated using the GSH-400 method, vitamin C using the method of Kyaw and TBA-rs using the method of Salaris and Babs. It has been found that there is a decrease of concentration of GSH and vitamin C and a considerable increase (p TBA-rs in investigated single brain human metastasis in correlation to the concentration of the mentioned above substances in unchanged nerve tissue.

  14. UJI AKTIVITAS ANTIOKSIDAN HASIL DEGRADASI LIGNIN DARI SERBUK GERGAJI KAYU KALBA (Albizia falcataria DENGAN METODE TBA (Thio Barbituric Acid

    Directory of Open Access Journals (Sweden)

    Undri Rastuti

    2010-11-01

    Full Text Available Antioxidants are compounds that can delay, retard or inhibit the oxidation reaction. Lignin is a natural polymer consisting of monomeric substituted phenols. Wood lignin degradation Kalba (Albizia falcataria yields substituted phenol. The purpose of this study was to test the antioxidant activity of compounds of lignin degradation products Kalba using TBA (Thiobarbituric Acid. Wood lignin degradation products Kalba tested antioxidant activity using the TBA method. Phase test phase of this antioxidant activity is sample preparation, determination of the maximum wavelength, determination of equilibrium time, absorbance measurements and determination of the percentage of inhibition. The wavelength maximum for BHT test solution was obtained at 530 nm. The stability of absorbance achieved after 80 minutes equilibrium time. BHT test solution and sample solution containing the degradation of lignin 0.10% (w/v increased but not as sharp as the absorbance of control, this suggests that the degradation of wood lignin Kalba have activity as an antioxidant, which relative minimize 13,70 % compare with BHT.

  15. Synthesis of biodegradable styrene copolymers

    OpenAIRE

    Gevers, Dries; Kobben, Stephan; Junkers, Tanja; Copinet, Alain; Buntinx, Mieke; Peeters, Roos

    2017-01-01

    Polystyrene (PS), a versatile polymer with many applications (e.g. packaging) representing about 10% of the total annual polymer consumption, shows practically no biodegradability. In this study a styrene (ST) based copolymer is synthesized and examined regarding its ability to degrade in a composting test. As second monomer, to introduce biodegradable ester groups, 5,6-benzo-2-metylene-dioxepane (BMDO) has been used in radical copolymerization reactions performed in inert and stirred 10 m...

  16. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2009-01-01

    to investigate the anaerobic biodegradability of MTBE and other gasoline ethers. Inoculums collected from various environments were used, along with different electron acceptors. Only one set of the batch experiments showed a 30-60% conversion of MTBE to tert-butyl alcohol under Fe(III)-reducing conditions...

  17. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Science.gov (United States)

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  18. Evaluation of biodegradable plastics for rubber seedling applications

    Science.gov (United States)

    Mansor, Mohd Khairulniza; Dayang Habibah A. I., H.; Kamal, Mazlina Mustafa

    2015-08-01

    The main negative consequence of conventional plastics in agriculture is related to handling the wastes plasticand the associated environmental impact. Hence, a study of different types of potentially biodegradable plastics used for nursery applications have been evaluated on its mechanical,water absorption propertiesand Fourier transform infra-red (FTIR) spectroscopy. Supplied samples from different companies were designated as SF, CF and CO. Most of the polybags exhibited mechanical properties quite similar to the conventional plastics (polybag LDPE). CO polybag which is based on PVA however had extensively higher tensile strength and water absorption properties. FTIR study revealed a characteristics absorbance of conventional plastic, SF, CF and CO biodegradable polybag are associated with polyethylene, poly(butylene adipate-co-terephthalate) (PBAT), polyethylene and polyvinyl alcohol (PVA) structures respectively.

  19. Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-09-01

    Full Text Available Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE, which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8, accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA. When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition.

  20. Progress of biodegradable metals

    Directory of Open Access Journals (Sweden)

    Huafang Li

    2014-10-01

    Full Text Available Biodegradable metals (BMs are metals and alloys expected to corrode gradually in vivo, with an appropriate host response elicited by released corrosion products, then dissolve completely upon fulfilling the mission to assist with tissue healing with no implant residues. In the present review article, three classes of BMs have been systematically reviewed, including Mg-based, Fe-based and Zn-based BMs. Among the three BM systems, Mg-based BMs, which now have several systems reported the successful of clinical trial results, are considered the vanguards and main force. Fe-based BMs, with pure iron and Fe–Mn based alloys as the most promising, are still on the animal test stage. Zn-based BMs, supposed to have the degradation rate between the fast Mg-based BMs and the slow Fe-based BMs, are a rising star with only several reports and need much further research. The future research and development direction for the BMs are proposed, based on the clinical requirements on controllable degradation rate, prolonged mechanical stability and excellent biocompatibility, by optimization of alloy composition design, regulation on microstructure and mechanical properties, and following surface modification.

  1. Treatment of biodegradable material

    Energy Technology Data Exchange (ETDEWEB)

    Pannell, S D; Greenshields, R N

    1981-05-13

    Biodegradable effluents, e.g. containing carbohydrates and/or proteins, were treated by passing up a tower fermenter tapered at the top and with an aspect ratio of greater than or equal to 3:1. A flocculant microorganism aerobically digested the effluent in the tower and the mixture of treated medium, gas, and surplus microorganism was discharged through an inverted-U-shaped outlet at the top. After separation of the biomass, which could be used as an animal feed, the purified effluent could be discharged. A milk-processing effluent (2.5 g solids/l, of which 65% was sucrose and 35% milk solids) was treated in a fermentation tower (aspect ratio 10:1). Aspergillus niger in the tower readily digested sucrose and at least some lactose as air and NH/sub 4/NO/sub 3/ were added. At least 90% of the casein was trapped by the microorganisms and discharged with them from the tower. The microrganisms were separated with a vibrating sieve giving a final discharged liquid containing 0.2 g solids/l.

  2. ALCOHOL I

    African Journals Online (AJOL)

    Despite the increase in alcohol marketing activities by the transnational alcohol corporations in Nigeria .... were recorded with a digital device with ..... era (i.e., before alcohol industry was es- tablished in ..... university student drinking: A na-.

  3. Hierarchy and Assortativity as New Tools for Binding-Affinity Investigation: The Case of the TBA Aptamer-Ligand Complex.

    Science.gov (United States)

    Cataldo, Rosella; Alfinito, Eleonora; Reggiani, Lino

    2017-12-01

    Aptamers are single stranded DNA, RNA, or peptide sequences having the ability to bind several specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually, they are generated in vitro, although computational approaches have been recently developed for the in silico production. Despite these efforts, the mechanism of aptamer-ligand formation is not completely clear, and producing high-affinity aptamers is still quite difficult. This paper aims to develop a computational model able to describe aptamer-ligand affinity. Topological tools, such as the conventional degree distribution, the rank-degree distribution (hierarchy), and the node assortativity are employed. In doing so, the macromolecules tertiary-structures are mapped into appropriate graphs. These graphs reproduce the main topological features of the macromolecules, by preserving the distances between amino acids (nucleotides). Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex produced in the presence of Na + or K + . The topological analysis is able to detect several differences between complexes obtained in the presence of the two cations, as expected by previous investigations. These results support graph analysis as a novel computational tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, revealing that the resistance is sensitively affected by the presence of sodium or potassium, thus suggesting resistance as a useful physical parameter for testing binding affinity.

  4. Preparation of liposomes containing zedoary turmeric oil using freeze-drying of liposomes via TBA/water cosolvent systems and evaluation of the bioavailability of the oil.

    Science.gov (United States)

    Yang, Zhiwen; Yu, Songlin; Fu, Dahua

    2010-02-01

    The purpose of this study was to enhance the absorption of zedoary turmeric oil (ZTO) in vivo and develop new formulations of a water-insoluble oily drug. This study described a method for preparing ZTO liposomes, which involved freeze-drying (FD) of liposomes with TBA/water cosolvent systems. The TBA/water cosolvent systems were used to investigate a feasible method of liposomes manufacture; the two factors, sugar/lipid mass ratio and TBA content (concentration), of the preparation process were evaluated in this study. The results showed that the addition of TBA content could significantly enhance the sublimation of ice resulting in short FD cycles time, and reduce the entrapment efficiency of liposomes. In addition, the residual TBA solvents levels were determined to be less than 0.37% under all optimum formulations and processing conditions. Several physical properties of liposomes were examined by H-600 transmission electron microscope (TEM) and zetamaster analyser system. The results revealed that the liposomes were smooth and spherical with an average particle size of 457 +/- 7.8 nm and the zeta potential was more than 3.65 Mv. The bioavailability of the liposomes was evaluated in rabbits, compared with the conventional self-emulsifying formulation for oral administration. Compared with the conventional self-emulsifying formulation, the plasma concentration-time profiles with improved sustained-release characteristics were achieved after oral administration of the liposomes with a bioavailability of 257.7% (a good strategy for improving the bioavailability of an oily drug). In conclusion, the present experimental findings clearly demonstrated the usefulness of ZTO liposome vesicles in improving therapeutic efficacy by enhancing oral bioavailability. Our study offered an alternative method for designing sustained-release preparations of oily drugs.

  5. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  6. Black Alcoholism.

    Science.gov (United States)

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  7. Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration.

    Science.gov (United States)

    Mahnama, Hossein; Dadbin, Susan; Frounchi, Masoud; Rajabi, Sareh

    2017-08-01

    Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the cells.

  8. Biodegradable congress 2012; Bioschmierstoff-Kongress 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Within the Guelzower expert discussions at 5th and 6th June, 2012 in Oberhausen (Federal Republic of Germany) the following lectures were held: (1) Promotion of biodegradable lubricants by means of research and development as well as public relations (Steffen Daebeler); (2) Biodegradable lubricants - An overview of the advantages and disadvantages of the engaged product groups (Hubertus Murrenhoff); (3) Standardization of biodegradable lubricants - CEN/DIN standard committees - state of the art (Rolf Luther); (4) Market research for the utilization of biodegradable lubricants and means of proof of sustainability (Norbert Schmitz); (5) Fields of application for high performance lubricants and requirements upon the products (Gunther Kraft); (6) Investigations of biodegradable lubricants in rolling bearings and gears (Christoph Hentschke); (7) Biodegradable lubricants in central lubrication systems Development of gears and bearings of offshore wind power installations (Reiner Wagner); (8) Investigations towards environmental compatibility of biodegradable lubricants used in offshore wind power installations (Tolf Schneider); (9) Development of glycerine based lubricants for the industrial metalworking (Harald Draeger); (10) Investigations and utilization of biodegradable oils as electroinsulation oils in transformers (Stefan Tenbohlen); (11) Operational behaviour of lubricant oils in vegetable oil operation and Biodiesel operation (Horst Hamdorf); (12) Lubrication effect of lubricating oil of the third generation (Stefan Heitzig); (13) Actual market development from the view of a producer of biodegradable lubricants (Frank Lewen); (14) Utilization of biodegradable lubricants in forestry harvesters (Guenther Weise); (15) New biodegradable lubricants based on high oleic sunflower oil (Otto Botz); (16) Integrated fluid concept - optimized technology and service package for users of biodegradable lubricants (Juergen Baer); (17) Utilization of a bio oil sensor to control

  9. Biodegradable poly(lactic acid)

    Indian Academy of Sciences (India)

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning ...

  10. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  11. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  12. Additional Equipment for Soil Biodegradation

    Science.gov (United States)

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for

  13. Komposisi Asam Lemak, Angka Peroksida, dan Angka TBA Fillet Ikan Kakap (Lutjanus sp pada Suhu dan Lama Penyimpanan Berbeda

    Directory of Open Access Journals (Sweden)

    Rahim Husain

    2018-01-01

    Full Text Available Fish has a high nutritional value and is a major food source in many countries. Fish lipid has a high content of polyunsaturated fatty acids (PUFAs, especially eicosapentaenoic acid (EPA; 20: 5n-3 and docosahexsanoic acid (DHA; 22: 6n-3. The objective of this research was to determine fatty acids composition of snapper (Lutjanus sp fillet and its damage during the storage process. The results showed that total of the saturated fatty acids (SFA increased from 4.35% to 25.55%, 28.06%, 32.73%, and 61.75% during storage at 0 °C, 10 °C, 20 °C, 30 °C, and 40 °C, respectively. Total mono-unsaturated fatty acids (MUFA were 23.72%, 23.69%, 14.4%, 22.66%, and 29.4% at storage temperature of 0 °C, 10 °C, 20 °C, 30 °C, and 40 °C. Total PUFA decreased from 25.06% to 15.98%, 14.99%, 10.32%, and 8.84% at 0 °C, 10 °C, 20 °C, 30 °C, and 40 °C. Peroxide value, as primary peroxide of snapper fillet, increased about 10.60 times with an increased in storage temperature from 0 °C to 40 °C. Value of TBA increased 6.60 times with an increased in temperature from 0 °C to 40 °C during 45 days. ABSTRAK Ikan memiliki nilai gizi tinggi dan merupakan sumber makanan utama di banyak negara. Lipid ikan memiliki kandungan tinggi asam tak jenuh ganda (Poly Unsaturated Fatty Acid, PUFA, terutama asam eikosapentanoat (EPA; 20:5n-3 dan asam docosahexsanoat (DHA; 22:6n-3. Penelitian ini bertujuan untuk mengetahui komposisi asam lemak fillet ikan kakap (Lutjanus sp dan kerusakan akibat proses penyimpanan. Hasil analisis asam lemak jenuh (Saturated Fatty Acid, SFA menunjukkan bahwa asam lemak jenuh meningkat dari 4,35% menjadi 25,55%, 28,06%, 32,73%, dan 61,75% selama penyimpanan pada 0 °C, 10 °C, 20 °C, 30 °C, dan 40 °C. Total asam lemak tak jenuh (Mono Unsaturated Fatty Acid, MUFA adalah 23,72%, 23,69, 14,4%, 22,66%, dan 29,4% pada penyimpanan 0 °C, 10 °C, 20 °C, 30 °C, dan 40 °C. Sedangkan total PUFA turun dari 25,05% menjadi 15,98%, 14,99%, 10,32%, dan

  14. Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2011-12-01

    Full Text Available This study investigated the biodegradation of blends films of poly(vinyl alcohol/poly(vinyl chloride (PVA/PVC and poly(vinyl alcohol/poly(caprolactone (PVA/PCL blends films prepared with dimethylformamide under a variety of conditions by respirometry, spectrophotometry (FTIR, scanning electron microscopy (SEM, and contact angle. The films were buried in the garden soil and in the soil mixed with the landfill leachate for 120 days at 28ºC. Significant levels of biodegradation were achieved in fairly short incubation times in the soil. The results indicated that PVA was the most biodegradable film in the soil and in the soil with the leachate.

  15. G quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of the potassium ion.

    Science.gov (United States)

    Nagatoishi, Satoru; Nojima, Takahiko; Galezowska, Elzbieta; Juskowiak, Bernard; Takenaka, Shigeori

    2006-11-01

    The dual-labeled oligonucleotide derivative, FAT-0, carrying 6- carboxyfluorescein (FAM) and 6-carboxytetramethylrhodamine (TAMRA) labels at the 5' and 3' termini of the thrombin-binding aptamer (TBA) sequence 5'-GGT TGG TGT GGT TGG-3', and its derivatives, FAT-n (n=3, 5, and 7) with a spacer at the 5'-end of a TBA sequence of T(m)A (m=2, 4, and 6) have been designed and synthesized. These fluorescent probes were developed for monitoring K(+) concentrations in living organisms. Circular dichroism, UV-visible absorption, and fluorescence studies revealed that all FAT-n probes could form intramolecular tetraplex structures after binding K(+). Fluorescence resonance energy transfer and quenching results are discussed taking into account dye-dye contact interactions. The relationship between the fluorescence behavior of the probes and the spacer length in FAT-n was studied in detail and is discussed.

  16. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.

    Science.gov (United States)

    Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela

    2009-09-01

    In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.

  17. Alcohol Advertising

    OpenAIRE

    Trkovská, Jana

    2017-01-01

    The thesis concerns itself with alcohol advertising. Alcohol is the most widespread habit-forming substance, yet its consumption is permitted in most countries all around the world, possibly restricted by the age of consumers only. Drinking alcohol cannot be either regulated or prohibited today. It has become commonplace for the majority of our lives. Being aware of its apparent risks, however, there is an effort to regulate at least alcohol advertising. The main objective of this work was to...

  18. Simple preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n], n=1, 2 (Q=TBA+, PPN+) and structural characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10].C7H8.

    Science.gov (United States)

    Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona

    2008-02-04

    The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.

  19. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy.

    Science.gov (United States)

    Javan, Bita; Atyabi, Fatemeh; Shahbazi, Majid

    2018-04-12

    This investigation was conducted to construct a hypoxia/colorectal dual-specific bidirectional short hairpin RNA (shRNA) expression vector and to transfect it into the colon cancer cell line HT-29 with PEI/chitosan-TBA nanoparticles for the simultaneous knock down of β-catenin and Bcl-2 under hypoxia. To construct a pRNA-bipHRE-CEA vector, the carcinoma embryonic antigen (CEA) promoter designed in two directions and the vascular endothelial growth factor (VEGF) enhancer were inserted between two promoters for hypoxic cancer specific gene expression. To confirm the therapeutic effect of the dual-specific vector, β-catenin and Bcl-2 shRNAs were inserted downstream of each promoter. The physicochemical properties, the cytotoxicity, and the transfection efficiency of these PEI/chitosan-TBA nanoparticles were investigated. In addition, the antitumor effects of the designed vector on the expression of β-catenin and Bcl-2, cell cycle distribution, and apoptosis were investigated in vitro. The silencing effect of the hypoxia-response shRNA expression vector was relatively low (18%-25%) under normoxia, whereas it was significantly increased to approximately 50%-60% in the HT-29 cell line. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing under hypoxia. Furthermore, MTS assay, fluorescence microscopy images, and flow cytometry analyses confirmed that the PEI/chitosan-TBA blend system provided effective transfection with low cytotoxicity. This novel hypoxia-responsive shRNA expression vector may be useful for RNA interference (RNAi)-based cancer gene therapy in hypoxic colorectal tumors. Moreover, the PEI/chitosan-TBA copolymer might be a promising gene carrier for use in gene transfer in vivo. Copyright © 2017. Published by Elsevier Inc.

  20. Azobenzene versus 3,3',5,5'-tetra-tert-butyl-azobenzene (TBA) at Au(111): characterizing the role of spacer groups.

    Science.gov (United States)

    McNellis, Erik R; Bronner, Christopher; Meyer, Jörg; Weinelt, Martin; Tegeder, Petra; Reuter, Karsten

    2010-06-28

    We present large-scale density-functional theory (DFT) calculations and temperature programmed desorption measurements to characterize the structural, energetic and vibrational properties of the functionalized molecular switch 3,3',5,5'-tetra-tert-butyl-azobenzene (TBA) adsorbed at Au(111). Particular emphasis is placed on exploring the accuracy of the semi-empirical dispersion correction approach to semi-local DFT (DFT-D) in accounting for the substantial van der Waals component in the surface bonding. In line with previous findings for benzene and pure azobenzene at coinage metal surfaces, DFT-D significantly overbinds the molecule, but seems to yield an accurate adsorption geometry as far as can be judged from the experimental data. Comparing the trans adsorption geometry of TBA and azobenzene at Au(111) reveals a remarkable insensitivity of the structural and vibrational properties of the -N[double bond, length as m-dash]N- moiety. This questions the established view of the role of the bulky tert-butyl-spacer groups for the switching of TBA in terms of a mere geometric decoupling of the photochemically active diazo-bridge from the gold substrate.

  1. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  2. Environmental properties of long-chain alcohols. Structure-activity Relationship for Chronic Aquatic Toxicity

    DEFF Research Database (Denmark)

    Schaefers, Christoph; Sanderson, Hans; Boshof, Udo

    2009-01-01

    Daphnia magna reproduction tests were performed with C10, C12, C14 and C15 alcohols to establish a structure-activity relationship of chronic effects of long-chain alcohols. The data generation involved substantial methodological efforts due to the exceptionally rapid biodegradability of the test...

  3. Alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Colin, P

    1961-01-04

    The addition of C/sub 6-10/ alcohols to the fermenting sugar solutions, increased the yield of alcohol by 1.5 to 5%. The best additives were (additive, % additive in sugar solution, % increased in yield of alcohol): hexanol, 0.03, 2.5; heptanol, 0.05, 3; nonanol, 0.01, 3; 2-ethylbutanol, 0.05, 4; 2-ethylhexanol, 0.05, 5; a mixture of C/sub 7-9/ alcohols from the Oxo synthesis, 0.05, 4.5, and a mixture of C/sub 10/ alcohols 0.05, 3.

  4. Biodegradable Implants in Orthopaedics and Traumatology

    OpenAIRE

    YETKIN, Haluk

    2014-01-01

    Biodegradable implants are an alternative to metallic implants and have the advantage of not being necessary to remove once the fracture has healed. Twenty-two patients with fractures were treated with biodegradable implants. There were osteolysis in eleven patients; however, no serious complication was encountered. Although biodegradable implants are expensive, a second surgical procedure to remove the implants is not necessary, relieving the patient of the related costs and risks.

  5. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  6. External validation of EPIWIN biodegradation models.

    Science.gov (United States)

    Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M

    2005-01-01

    The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.

  7. Here today, gone tomorrow: biodegradable soft robots

    Science.gov (United States)

    Rossiter, Jonathan; Winfield, Jonathan; Ieropoulos, Ioannis

    2016-04-01

    One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a broken item and then procure a new one. In the 20th century enlightened environmentalists campaigned for recycling and reuse (R and R). R and R has continued to be an important part of new technology development, but there is still a huge problem of non-recyclable materials being dumped into landfill and being discarded in the environment. The challenge is even greater for robotics, a field which will impact on all aspects of our lives, where discards include motors, rigid elements and toxic power supplies and batteries. One novel solution is the biodegradable robot, an active physical machine that is composed of biodegradable materials and which degrades to nothing when released into the environment. In this paper we examine the potential and realities of biodegradable robotics, consider novel solutions to core components such as sensors, actuators and energy scavenging, and give examples of biodegradable robotics fabricated from everyday, and not so common, biodegradable electroactive materials. The realisation of truly biodegradable robots also brings entirely new deployment, exploration and bio-remediation capabilities: why track and recover a few large non-biodegradable robots when you could speculatively release millions of biodegradable robots instead? We will consider some of these exciting developments and explore the future of this new field.

  8. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  9. Simultaneous adsorption and biodegradation of synthetic melanoidin

    African Journals Online (AJOL)

    Being an antioxidant, melanoidin removal through purely biodegradation has been inadequate. Consequently, in the current study, simultaneous adsorption and biodegradation (SAB) was employed in a stirred tank system to remove melanoidin from synthetic wastewater. Mixed microbial consortium was immobilized onto ...

  10. Biodegradation of bioplastics in natural environments.

    Science.gov (United States)

    Emadian, S Mehdi; Onay, Turgut T; Demirel, Burak

    2017-01-01

    The extensive production of conventional plastics and their use in different commercial applications poses a significant threat to both the fossil fuels sources and the environment. Alternatives called bioplastics evolved during development of renewable resources. Utilizing renewable resources like agricultural wastes (instead of petroleum sources) and their biodegradability in different environments enabled these polymers to be more easily acceptable than the conventional plastics. The biodegradability of bioplastics is highly affected by their physical and chemical structure. On the other hand, the environment in which they are located, plays a crucial role in their biodegradation. This review highlights the recent findings attributed to the biodegradation of bioplastics in various environments, environmental conditions, degree of biodegradation, including the identified bioplastic-degrading microorganisms from different microbial communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biodegradable products by lipase biocatalysis.

    Science.gov (United States)

    Linko, Y Y; Lämsä, M; Wu, X; Uosukainen, E; Seppälä, J; Linko, P

    1998-11-18

    The interest in the applications of biocatalysis in organic syntheses has rapidly increased. In this context, lipases have recently become one of the most studied groups of enzymes. We have demonstrated that lipases can be used as biocatalyst in the production of useful biodegradable compounds. A number of examples are given. 1-Butyl oleate was produced by direct esterification of butanol and oleic acid to decrease the viscosity of biodiesel in winter use. Enzymic alcoholysis of vegetable oils without additional organic solvent has been little investigated. We have shown that a mixture of 2-ethyl-1-hexyl esters can be obtained in a good yield by enzymic transesterification from rapeseed oil fatty acids for use as a solvent. Trimethylolpropane esters were also similarly synthesized as lubricants. Finally, the discovery that lipases can also catalyze ester syntheses and transesterification reactions in organic solvent systems has opened up the possibility of enzyme catalyzed production of biodegradable polyesters. In direct polyesterification of 1,4-butanediol and sebacic acid, polyesters with a mass average molar mass of the order of 56,000 g mol-1 or higher, and a maximum molar mass of about 130,000 g mol-1 were also obtained by using lipase as biocatalyst. Finally, we have demonstrated that also aromatic polyesters can be synthesized by lipase biocatalysis, a higher than 50,000 g mol-1 mass average molar mass of poly(1,6-hexanediyl isophthalate) as an example.

  12. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  13. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    International Nuclear Information System (INIS)

    Yang, Lihui; Zhang, Yongming; Bai, Qi; Yan, Ning; Xu, Hua; Rittmann, Bruce E.

    2015-01-01

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA

  14. [Methodological aspects of evaluation of potential lipid capacity for peroxidation from the serum levels of TBA-active products during iron ion stimulation].

    Science.gov (United States)

    Kulikova, A I; Tugusheva, F A; Zubina, I M; Shepilova, I N

    2008-05-01

    The authors propose a simple and reproducible procedure for using iron ions to stimulate serum lipid peroxidation, with TBA-active products being further determined. The procedure determines the reserve of lipids that can be oxidized during oxidative stress. A combination of direct studies and correlation analysis suggests that low-density lipoproteins and very low-density lipoproteins are the major substrates for lipid peroxidation while high-density lipoproteins show a high resistance to this process. The presented procedure may be used to monitor lipid peroxidation in various conditions and upon various exposures in common laboratory practice.

  15. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Biodegradable and compostable alternatives to conventional plastics

    Science.gov (United States)

    Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.

    2009-01-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060

  17. Biodegradable and compostable alternatives to conventional plastics.

    Science.gov (United States)

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  18. Isopropanol alcohol poisoning

    Science.gov (United States)

    Rubbing alcohol poisoning; Isopropyl alcohol poisoning ... Isopropyl alcohol can be harmful if it is swallowed or gets in the eyes. ... These products contain isopropanol: Alcohol swabs Cleaning supplies ... Rubbing alcohol Other products may also contain isopropanol.

  19. Alcohol Energy Drinks

    Science.gov (United States)

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 33960 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  20. Alcohol and pregnancy

    Science.gov (United States)

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... lead to lifelong damage. DANGERS OF ALCOHOL DURING PREGNANCY Drinking a lot of alcohol during pregnancy can ...

  1. NIAAA Alcohol Treatment Navigator

    Science.gov (United States)

    ... What to Know About Alcohol Treatment What Is Alcohol Use Disorder (AUD)? What Types of Alcohol Treatment Are Available? ... What to Know About Alcohol Treatment What is alcohol use disorder (AUD)? A health condition that can improve with ...

  2. Biodegradable Metals From Concept to Applications

    CERN Document Server

    Hermawan, Hendra

    2012-01-01

    This book in the emerging research field of biomaterials covers biodegradable metals for biomedical applications. The book contains two main parts where each of them consists of three chapters. The first part introduces the readers to the field of metallic biomaterials, exposes the state of the art of biodegradable metals, and reveals its application for cardiovascular implants. It includes some fundamental aspects to give basic understanding on metals for further review on the degradable ones is covered in chapter one. The second chapter introduces the concept of biodegradable metals, it's st

  3. Current trends in biodegradable polyhydroxyalkanoates.

    Science.gov (United States)

    Chanprateep, Suchada

    2010-12-01

    The microbial polyesters known as polyhydroxyalkanoates (PHAs) positively impact global climate change scenarios by reducing the amount of non-degradable plastic used. A wide variety of different monomer compositions of PHAs has been described, as well as their future prospects for applications where high biodegradability or biocompatibility is required. PHAs can be produced from renewable raw materials and are degraded naturally by microorganisms that enable carbon dioxide and organic compound recycling in the ecosystem, providing a buffer to climate change. This review summarizes recent research on PHAs and addresses the opportunities as well as challenges for their place in the global market. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Engineered biosynthesis of biodegradable polymers.

    Science.gov (United States)

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

  6. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    Chitra, S.; Chandran, S.; Sasidhar, P.; Lal, K.B.; Amalraj, R.V.

    1991-01-01

    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  7. Twisting the Mirror TBA

    NARCIS (Netherlands)

    Arutyunov, G.E.; de Leeuw, M.; van Tongeren, S.J.

    2010-01-01

    We study finite-size corrections to the magnon dispersion relation in three models which differ from string theory on AdS5 x S5 in their boundary conditions. Asymptotically, this is accomplished by twisting the transfer matrix in a way which manifestly preserves integrability. In model I all

  8. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  9. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 whi...

  10. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  11. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  12. Alcohol Intolerance

    Science.gov (United States)

    ... ingredients commonly found in alcoholic beverages, especially in beer or wine, can cause intolerance reactions. These include: Sulfites or other preservatives Chemicals, grains or other ingredients Histamine, a byproduct of fermentation or brewing In some cases, reactions can be ...

  13. Alcohol Poisoning

    Science.gov (United States)

    ... than eight breaths a minute) Irregular breathing (a gap of more than 10 seconds between breaths) Blue- ... about alcohol by their parents and who report close relationships with their parents are less likely to ...

  14. Alcoholic neuropathy

    Science.gov (United States)

    ... Frequently inspecting the feet and shoes to reduce injury caused by pressure or objects in the shoes Guarding the extremities to prevent injury from pressure Alcohol must be stopped to prevent ...

  15. Combined use of [TBA][L-ASP] and hydroxypropyl-β-cyclodextrin as selectors for separation of Cinchona alkaloids by capillary electrophoresis.

    Science.gov (United States)

    Zhang, Yu; Yu, Haixia; Wu, Yujiao; Zhao, Wenyan; Yang, Min; Jing, Huanwang; Chen, Anjia

    2014-10-01

    In this paper, a new capillary electrophoresis (CE) separation and detection method was developed for the chiral separation of the four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) using hydroxypropyl-β-cyclodextrin (HP-β-CD) and chiral ionic liquid ([TBA][L-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, HP-β-CD and chiral ionic liquid concentrations, capillary temperature, and separation voltage were investigated. After optimization of separation conditions, baseline separation of the three analytes (cinchonidine, quinine, cinchonine) was achieved in fewer than 7 min in ammonium acetate background electrolyte (pH 5.0) with the addition of HP-β-CD in a concentration of 40 mM and [TBA][L-ASP] of 14 mM, while the baseline separation of cinchonine and quinidine was not obtained. Therefore, the first-order derivative electropherogram was applied for resolving overlapping peaks. Regression equations revealed a good linear relationship between peak areas in first-order derivative electropherograms and concentrations of the two diastereomer pairs. The results not only indicated that the first-order derivative electropherogram was effective in determination of a low content component and of those not fully separated from adjacent ones, but also showed that the ionic liquid appeared to be a very promising chiral selector in CE. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Highly selective solid-phase extraction and large volume injection for the robust gas chromatography-mass spectrometric analysis of TCA and TBA in wines.

    Science.gov (United States)

    Insa, S; Anticó, E; Ferreira, V

    2005-09-30

    A reliable solid-phase extraction (SPE) method for the simultaneous determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wines has been developed. In the proposed procedure 50 mL of wine are extracted in a 1 mL cartridge filled with 50 mg of LiChrolut EN resins. Most wine volatiles are washed up with 12.5 mL of a water:methanol solution (70%, v/v) containing 1% of NaHCO3. Analytes are further eluted with 0.6 mL of dichloromethane. A 40 microL aliquot of this extract is directly injected into a PTV injector operated in the solvent split mode, and analysed by gas chromatography (GC)-ion trap mass spectrometry using the selected ion storage mode. The solid-phase extraction, including sample volume and rinsing and elution solvents, and the large volume GC injection have been carefully evaluated and optimized. The resulting method is precise (RSD (%) TBA, respectively), robust (the absolute recoveries of both analytes are higher than 80% and consistent wine to wine) and friendly to the GC-MS system (the extract is clean, simple and free from non-volatiles).

  17. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  18. Biodegradable lubricants - ''the solution for future?''

    International Nuclear Information System (INIS)

    Jahan, A.

    1997-01-01

    The environmental impact of lubricants use concern the direct effects from spills but also the indirect effects such as their lifetime and the emissions from thermal engines. The biodegradable performances and the toxicity are the environmental criteria that must be taken into account in the development and application of lubricants together with their technical performances. This paper recalls first the definition of biodegradable properties of hydrocarbons and the standardized tests, in particular the CEC and AFNOR tests. Then, the biodegradable performances of basic oils (mineral, vegetal, synthetic esters, synthetic hydrocarbons etc..), finite lubricants (hydraulic fluids..) and engine oils is analyzed according to these tests. Finally, the definition of future standards would take into account all the environmental characteristics of the lubricant: biodegradable performances, energy balance (CO 2 , NOx and Hx emissions and fuel savings), eco-toxicity and technical performances (wearing and cleanliness). (J.S.)

  19. Formulation and Characterization of Biodegradable Medicated ...

    African Journals Online (AJOL)

    PEG)-600, tributyl citrate, PEG-200, PEG-300, PEG-400, PEG-4000, triethyl citrate and castor oil. The gum formulations were characterized for the following parameters: texture profile analysis (TPA), biodegradation, in vitro drug release using a ...

  20. Phyllosphere yeasts rapidly break down biodegradable plastics

    OpenAIRE

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily ...

  1. Biodegradability of polyurethane/polysaccharide blends

    International Nuclear Information System (INIS)

    Mothe, Cheila G.; Leite, Selma G.

    2001-01-01

    Biodegradable polymers for use in environmental waste-management has been the subject of much discussion over the last few years. Polyurethane mixtures with polysaccharide (80/20 and 90/10 w/w ) have been prepared and films obtained. These films were inoculated, according to ASTM G22-76 rule and analysed by thermogravimetry and scanning electronic microscopy (SEM). The results are discussed in terms of thermal degradation and biodegradability. (author)

  2. Anaerobic biodegradation of hexazinone in four sediments

    International Nuclear Information System (INIS)

    Wang Huili; Xu Shuxia; Tan Chengxia; Wang Xuedong

    2009-01-01

    Anaerobic biodegradation of hexazinone was investigated in four sediments (L1, L2, Y1 and Y2). Results showed that the L2 sediment had the highest biodegradation potential among four sediments. However, the Y1 and Y2 sediments had no capacity to biodegrade hexazinone. Sediments with rich total organic carbon, long-term contamination history by hexazinone and neutral pH may have a high biodegradation potential because the former two factors can induce the growth of microorganisms responsible for biodegradation and the third factor can offer suitable conditions for biodegradation. The addition of sulfate or nitrate as electron acceptors enhanced hexazinone degradation. As expected, the addition of electron donors (lactate, acetate or pyruvate) substantially inhibited the degradation. In natural environmental conditions, the effect of intermediate A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)dione] on anaerobic hexazinone degradation was negligible because of its low level.

  3. Alcohol Alert: Genetics of Alcoholism

    Science.gov (United States)

    ... daily rhythm for various functions (e.g., body temperature or blood pressure) that is controlled by certain “ ... A special section delves more deeply into specific classes of genes and their relationship to alcoholism. The ...

  4. Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties

    DEFF Research Database (Denmark)

    Fisk, Peter; Sanderson, Hans; Wildey, Ross

    2009-01-01

    )SARs). This allows predictions of data relating to human and environmental safety profiles and patterns. These alcohols have been shown to be rapidly degradable under standard conditions up to C18. Furthermore, evidence suggests that longer chain lengths are also rapidly biodegradable. While log Kow values suggest......This paper summarises the physicochemical, biodegradation and acute aquatic ecotoxicity properties of long chain aliphatic alcohols. Properties of pure compounds are shown to follow somewhat predictable trends, which are amenable to estimation by quantitative structure-activity relationships ((Q...

  5. Biodegradable Paper Sheeting as Agricultural Covering with Incorporation of Bamboo Pulp Sludge

    Directory of Open Access Journals (Sweden)

    Chuan-Gui Wang

    2014-05-01

    Full Text Available This paper reports the manufacturing process for biodegradable paper sheeting with incorporation of bamboo paper sludge, fibers of poplar woods, and viscose fibers by wet-laid nonwoven technology. The best process conditions included a basis weight of 30 g/m2, a bamboo paper sludge content of 10 wt%, and a polyvinyl alcohol concentration of 4 wt%. The burst strength, tearing resistance, tensile properties, resistance to water, and degradation rate were 220.65 kPa, 60.00 N, 46.10 N, 153 Pa, and 56.18%, respectively, under the best process conditions. The biodegradable paper sheeting can satisfy the demand for replacement of agricultural plastic sheeting used for such purposes as moisture retention of soil and promotion of plant growth.

  6. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    Science.gov (United States)

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.

    Science.gov (United States)

    Devillers, J; Pandard, P; Richard, B

    2013-01-01

    Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.

  8. Use Of Biodegradation Ratios In Monitoring Trend Of Biostimulated Biodegradation In Crude Oil Polluted Soils

    Directory of Open Access Journals (Sweden)

    Okorondu

    2017-03-01

    Full Text Available This study deals with biodegradation experiment on soil contaminated with crude oil. The soil sample sets A BC D E F G were amended with inorganic fertilizer to enhance microbial growth and hydrocarbon degradation moisture content of some of the sets were as well varied. Biodegradation ratios nC17Pr nC18Ph and nC17nC18PrPh were used to monitor biodegradation of soil sets A BC D E F G for a period of 180. The soil samples were each contaminated with the same amount of crude oil and exposed to specific substrate treatment regarding the amount of nutrients and water content over the same period of time. The trend in biodegradation of the different soil sample sets shows that biodegradation ratio nC17nC18PrPh was more reflective of and explains the biodegradation trend in all the sample sets throughout the period of the experiment hence a better parameter ratio for monitoring trend of biostimulated biodegradation. The order of preference of the biodegradation ratios is expressed as nC18Ph nC17Pr nC17nC18 PrPh. This can be a relevant support tool when designing bioremediation plan on field.

  9. Biodegradable films of starch/PVOH/alginate in packaging systems for minimally processed lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Renata Paula Herrera Brandelero

    Full Text Available ABSTRACT Biodegradable packaging may replace non-biodegradable materials when the shelf life of the packaged product is relatively short, as in minimally processed foods. The objective of this work was to evaluate the efficiency of biodegradable films comprising starch/polyvinyl alcohol (PVOH/alginate with the addition of 0 or 0.5% of essential oil of copaiba (EOCP or lemongrass (EOLM compared to poly-vinyl chloride (PVC films in the storage of minimally processed lettuce. Lettuce samples cut into 1-cm strips were placed in polypropylene trays wrapped with biodegradable films and stored at 6 ± 2 °C for 8 days. PVC films were used as controls. The biofilms presented 11.43-8.11 MPa resistance and 11.3-13.22% elongation, with water vapor permeability (WVP of 0.5-4.04 x 10-12 g. s-1.Pa-1.m-1; thus, the films' properties were considered suitable for the application. The lettuce stored in PVC presented minor total soluble solids (TSS, less luminosity (L, higher intensity of yellow color (b, and eight times less mass loss than that stored in biodegradable films. Multivariate analysis showed that the lettuce lost quality after 2 days of storage in PVC films, representing a different result from the other treatments. Lettuce stored in biodegradable films for 2 and 4 days showed a greater similarity with newly harvested lettuce (time zero. The films with or without the addition of essential oil showed similar characteristics. Biodegradable films were considered viable for the storage of minimally processed lettuce.

  10. Recent advances in glyphosate biodegradation.

    Science.gov (United States)

    Zhan, Hui; Feng, Yanmei; Fan, Xinghui; Chen, Shaohua

    2018-06-01

    Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.

  11. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Influence of Concentration and Salinity on the Biodegradability of Organic Additives in Hydraulic Fracturing Fluid

    Science.gov (United States)

    Mouser, P. J.; Kekacs, D.

    2014-12-01

    One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.

  13. Changes of serum levels of prealbumin (PAB), cholinesterase (CHE), total bile acid (TBA) and ALT as related to the severity of inflammatory process and hepatic fibrosis in patients with chronic virus B hepatitis

    International Nuclear Information System (INIS)

    Chi Xiaoxia; Chen Jianxiong; Xiong Ying

    2005-01-01

    Objective: To study the correlationship between the serum levels of PAB, CHE, TBA, ALT and the severity of the disease process in patients with chronic virus B hepatitis. Methods: Serum levels of PAB, CHE, ALT (with biochemical methods) and TBA (with RIA) were examined in 93 patients with biopsy proven virus B hepatitis and 46 controls. Results: The 93 patients were of two groups: a less advanced group (n=51) and a more advanced group (n=42). Serum TBA, ALT levels were significnatly higher and serum PAB, CHE levels were significantly lower in the more advanced group than those in the less advanced group (P 0 to s 4 . Changes of levels of ALT were of no regular pattern, but serum levels of TBA regularly increased and levels of PAB, CHE regularly decreased as the fibrosis grading proceeded from s 0 to s 4 and the differences between the levels in s 4 and any other grading were significant (P<0.01). Conclusion: Combined determination of these serum markers might reflect the degree of inflammatory process and hepatic fibrosis in patients with virus B hepatitis, leading to earlier detection of cirrhosis. (authors)

  14. Biodegradation of oils in uranium deposits

    International Nuclear Information System (INIS)

    Landais, P.

    1989-01-01

    The biodegradation of free hydrocarbons that have migrated in reservoir facies has often been observed in the field of petroleum exploration. This alteration is characterized by the progressive removal by bacteria of the different types of hydrocarbons: n-alkanes, branched alkanes, aromatics, cycloalkanes, etc. One of the most important consequences of biodegradation is the biogenic reduction of sulphate, which has been noticed in several Pb-Zn deposits. Biodegradation of oils spatially associated with uranium mineralizations has been observed in Temple Mountain, Utah, and the Grand Canyon, Arizona, in the United States of America, and in Lodeve in France. It leads to the transformation of fluid oils into solid bitumens. Emphasis is placed on the relationships between the effects of biodegradation on organic matter (oxidation of aromatization) and the nature of aqueous fluids analysed in fluid inclusions trapped in authigenic minerals. Different mechanisms are proposed to explain the transformations of organic matter during biodegradation and their possible links with the ore forming process. (author). 40 refs, 13 figs, 1 tab

  15. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  16. Hydrophobic hydration and anomalous excess partial molar volume of tert-butyl alcohol-water mixture studied by quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Nakada, Masaru; Maruyama, Kenji; Misawa, Masakatsu; Yamamuro, Osamu

    2007-01-01

    Quasielastic neutron scattering has been used to investigate the hydration of alcohol clusters in tert-butyl alcohol-water mixture. The measurements were made in a range of alcohol concentration, x TBA , from 0.0 to 0.17 in mole fraction at 25degC. Fraction, α, of water molecules hydrated to fractal-surface of alcohol clusters in tert-butyl alcohol-water mixture was obtained as a function of alcohol concentration. Average hydration number N WS of tert-butyl alcohol molecule was derived from the value of α as a function of alcohol concentration. The value of N WS for an isolated alcohol molecule in water was 19-21. The anomalous excess partial molar volume of tert-butyl alcohol-water mixture was interpreted successfully by applying the same model with the same values of volume parameter as used for 1-propanol-water mixture, δ 1 (=-0.36 cm 3 ·mol -1 ) and δ 2 (=0.60 cm 3 ·mol -1 ). (author)

  17. Overview of Alcohol Consumption

    Science.gov (United States)

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... experience alcohol’s longer-term effects, which can include: Alcohol use disorder Health problems Increased risk for certain cancers In ...

  18. Biodegradation of 2-ethylhexyl nitrate by Mycobacterium austroafricanum IFP 2173

    International Nuclear Information System (INIS)

    Nicolau, E.

    2008-10-01

    Compounds such as 2-ethylhexyl nitrate (2-EHN) are added to diesel fuel to improve ignition and boost cetane number. The production of 2-EHN reaches around 100000 tons per year in France, principally. Risks associated to its utilization are however poorly known because, in case of accidental release in the environment, nothing is known about its biodegradation. In this study, we aimed at (i) identifying bacterial strains able to degrade 2-EHN and compare their capabilities, (ii) elucidating the degradation pathway, and (iii) identifying the enzymes involved. Biodegradation of 2-EHN was first tested in biphasic cultures under conditions that reduce the toxicity and increase the availability of the hydrophobic substrate. Using optimized culture conditions, we showed that several strains of Mycobacterium austroafricanum were able to degrade 2-EHN. One of the most efficient strain (IFP 2173) which could grow at 2-EHN concentrations up to 6 g.L -1 , was chosen to investigate the degradation pathway. On the basis of carbon balance determination and gas chromatographic (GC) analysis on the culture medium, I found that the degradation of 2-EHN was incomplete and gave rise to the accumulation of a metabolite. This metabolite was identified as β-methyl-γ-butyrolactone by GC-MS and LC-MS/MS analysis. The structure of the lactone indicated that 2-EHN was degraded through a pathway involving the hydroxylation of the methyl group of the main carbon chain, its oxidation into aldehyde an acid and a subsequent cycle of b-oxidation. Enzymes involved in the 2-EHN biodegradation pathway were looked for by a proteomic approach. Analyses by two-dimensional gel electrophoresis showed that, when exposed to 2-EHN, strain IFP 2173 triggered the synthesis of a bunch of enzymes specialized in fatty acid metabolism such as β-oxidation enzymes, as well as alcohol and aldehyde dehydrogenases. An exhaustive analysis of the IFP 2173 proteome resulted in the identification of more than 200

  19. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  20. Anti-Fusarium moniliforme activity and fumonisin biodegradation by corn and silage microflora

    Directory of Open Access Journals (Sweden)

    Simone B. Camilo

    2000-01-01

    Full Text Available Studies were carried out to isolate microorganisms from corn and silage screened for their ability to inhibit F. moniliforme growth (strain 113F in association with fumonisin detoxification. Among 150 isolates four Gram-positive bacilli and one yeast with inhibitory activity were selected. The inhibition zone ranged from 50 to 72.5 mm using cultures, and from 25 to 52.5mm for crude alcoholic extract. The isolates S9, S10, S69 (sporulated bacilli and SE3071 (yeast degraded 43, 48, 83 and 57% of the initial FB1 concentration, respectively. The pH increased gradually in the medium during incubation for biodegradation process.

  1. Biodegradation of resorcinol byPseudomonas sp.

    Institute of Scientific and Technical Information of China (English)

    Nader Hajizadeh; Najibeh Shirzad; Ali Farzi; Mojtaba Salouti; Azra Momeni

    2016-01-01

    ABSTRACT Objective:To investigate the ability ofPseudomonas sp. isolated from East Azarbaijan, Iran in bioremediation of resorcinol. Methods: Resorcinol biodegradation was evaluated using spectrophotometry and confirmed by gas chromatography-mass spectroscopy. Results:This isolate was able to remove up to 37.12% of resorcinol from contaminated water. Reusability experiments had confirmed the biodegradation process which produced seven intermediate compounds. These intermediates were characterized by gas chromatography-mass spectroscopy technique. The products of resorcinol biodegradation were apparently 1, 4-cyclohexadiene, nonadecene, 2-heptadecanone, 1-isopropyl-2-methoxy-4-methylbenzene, hexadecanoic acid, 9-octadecenoic acid, phenol and 5-methyl-2-(1-methylethyl). Conclusions: The findings revealed thatPseudomonas sp. is able to degrade resorcinol. Because of being an indigenous organism, this isolate is more compatible with the climate of the northwest region of Iran and possibly will be used for degradation of other similar aromatic compounds.

  2. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1995-01-01

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  3. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-01-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  4. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  5. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  6. Biodegradability of wheat gluten based bioplastics.

    Science.gov (United States)

    Domenek, Sandra; Feuilloley, Pierre; Gratraud, Jean; Morel, Marie-Hélène; Guilbert, Stéphane

    2004-01-01

    A large variety of wheat gluten based bioplastics, which were plasticized with glycerol, were subjected to biodegradation. The materials covered the total range available for the biochemical control parameter Fi, which expresses the percentage of aggregated proteins. This quantity can be related to the density of covalent crosslinks in the wheat gluten network, which are induced by technological treatments. The biodegradability tests were performed in liquid medium (modified Sturm test) and in farmland soil. All gluten materials were fully degraded after 36 days in aerobic fermentation and within 50 days in farmland soil. No significant differences were observed between the samples. The mineralization half-life time of 3.8 days in the modified Sturm test situated gluten materials among fast degrading polymers. The tests of microbial inhibition experiments revealed no toxic effects of the modified gluten or of its metabolites. Thus, the protein bulk of wheat gluten materials is non-toxic and fully biodegradable, whatever the technological process applied.

  7. Biodegrader metabolic expansion during polyaromatic hydrocarbons rhizoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, C.L.; Susilawati, E.; Kravchenko, A.N. [Dept. of Crop and Soil Sciences, Michigan State Univ., East Lansing, MI (United States); Thomas, J.C. [Dept. of Natural Sciences, Univ. of Michigan-Dearborn, Dearborn, MI (United States)

    2005-04-01

    Root-microbe interactions are considered to be the primary process of polyaromatic hydrocarbon (PAH) phytoremediation, since bacterial degradation has been shown to be the dominant pathway for environmental PAH dissipation. However, the precise mechanisms driving PAH rhizostimulation symbiosis remain largely unresolved. In this study, we assessed PAH degrading bacterial abundance in contaminated soils planted with 18 different native Michigan plant species. Phenanthrene metabolism assays suggested that each plant species differentially influenced the relative abundance of PAH biodegraders, though they generally were observed to increase heterotrophic and biodegradative cell numbers relative to unplanted soils. Further study of > 1800 phenanthrene degrading isolates indicated that most of the tested plant species stimulated biodegradation of a broader range of PAH compounds relative to the unplanted soil bacterial consortia. These observations suggest that a principal contribution of planted systems for PAH bioremediation may be via expanded metabolic range of the rhizosphere bacterial community. (orig.)

  8. Kinetics of monomer biodegradation in soil.

    Science.gov (United States)

    Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria

    2012-01-01

    In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Zhao, S; Pinholt, E M; Madsen, J E

    2000-01-01

    Different types of biodegradable membranes have become available for guided tissue regeneration. The purpose of this study was to evaluate histologically three different biodegradable membranes (Bio-Gide, Resolut and Vicryl) and one non-biodegradable membrane (expanded polytetrafluoroethylene/e-PTFE...... that e-PTFE was well tolerated and encapsulated by a fibrous connective tissue capsule. There was capsule formation around Resolut and Vicryl and around Bio-Gide in the early phase there was a wide inflammatory zone already. e-PTFE and Vicryl were stable materials while Resolut and Bio-Gide fragmented...

  10. Biodegradation of Crystal Violet by Agrobacterium radiobacter

    DEFF Research Database (Denmark)

    Parshetti, G.K.; Parshetti, S.G.; Telke, A.A.

    2011-01-01

    Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine Af-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process...... and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil...

  11. Biodegradation mechanism of linear alkylbenzenesulfonate-14C

    International Nuclear Information System (INIS)

    Kubodera, Tadayoshi; Muto, Toshio; Yamamoto, Tatsuo

    1978-01-01

    The biodegradation of linear alkylbenzenesulfonate- 14 C (LAS- 14 C) tagged with 14 C at the linear side chain was studied on activated sludge by tracer method in addition to the methylene blue method which is widely employed in the biodegradation of LAS. It was found that there were three periods of rapid adsorption period, acclimation period, and degradation process. The radiolysis of dodecylbenzenesulfonate was studied on irradiating by 5000 Ci 60 Co source. The decomposition products were identified by GLC and GC-MS spectrometry after desulfonation. 1-Tetralone, 1-indanone, 4-methyl-1-tetralone, naphthalene et al. were found in them. (author)

  12. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    International Nuclear Information System (INIS)

    Ross, R.J.; Ravenscroft, P.D.

    1996-01-01

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO 2 corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs

  13. Development of Biomarkers for Assessing In Situ RDX Biodegradation Potential

    Science.gov (United States)

    2016-06-10

    the RDX degrading communities in four different soil slurries. The third task examined the microorganisms involved in RDX biodegradation from...RDX biodegradation at two Navy sites. Several key microorganisms were associated with RDX removal in these mixed communities. These phylogenetic and...manuscripts. 1 ABSTRACT Objective The objective was to identify the microorganisms and genes responsible for the biodegradation of RDX (hexahydro

  14. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  15. Anaerobic biodegradability and treatment of Egyption domestic sewage

    NARCIS (Netherlands)

    Elmitwally, T.A.; Al-Sarawey, A.; El-Sherbiny, M.F.; Zeeman, G.; Lettinga, G.

    2003-01-01

    The anaerobic biodegradability of domestic sewage for four Egyptian villages and four Egyptian cities was determined in batch experiments. The results showed that the biodegradability of the Egyptian-villages sewage (73%) was higher than that of the cities (66%). The higher biodegradability of the

  16. Biodegradation of 2-ethylhexyl nitrate by Mycobacterium austroafricanum IFP 2173; Biodegradation du 2-ethylhexyl nitrate par Mycobacterium austroafricanum IFP 2173

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, E

    2008-10-15

    Compounds such as 2-ethylhexyl nitrate (2-EHN) are added to diesel fuel to improve ignition and boost cetane number. The production of 2-EHN reaches around 100000 tons per year in France, principally. Risks associated to its utilization are however poorly known because, in case of accidental release in the environment, nothing is known about its biodegradation. In this study, we aimed at (i) identifying bacterial strains able to degrade 2-EHN and compare their capabilities, (ii) elucidating the degradation pathway, and (iii) identifying the enzymes involved. Biodegradation of 2-EHN was first tested in biphasic cultures under conditions that reduce the toxicity and increase the availability of the hydrophobic substrate. Using optimized culture conditions, we showed that several strains of Mycobacterium austroafricanum were able to degrade 2-EHN. One of the most efficient strain (IFP 2173) which could grow at 2-EHN concentrations up to 6 g.L{sup -1}, was chosen to investigate the degradation pathway. On the basis of carbon balance determination and gas chromatographic (GC) analysis on the culture medium, I found that the degradation of 2-EHN was incomplete and gave rise to the accumulation of a metabolite. This metabolite was identified as {beta}-methyl-{gamma}-butyrolactone by GC-MS and LC-MS/MS analysis. The structure of the lactone indicated that 2-EHN was degraded through a pathway involving the hydroxylation of the methyl group of the main carbon chain, its oxidation into aldehyde an acid and a subsequent cycle of b-oxidation. Enzymes involved in the 2-EHN biodegradation pathway were looked for by a proteomic approach. Analyses by two-dimensional gel electrophoresis showed that, when exposed to 2-EHN, strain IFP 2173 triggered the synthesis of a bunch of enzymes specialized in fatty acid metabolism such as {beta}-oxidation enzymes, as well as alcohol and aldehyde dehydrogenases. An exhaustive analysis of the IFP 2173 proteome resulted in the identification of

  17. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  18. Assessment of the environmental risk of long chain alcohols (LCOH)

    DEFF Research Database (Denmark)

    Belanger, Scott; Sanderson, Hans; Fisk, Peter

    2009-01-01

    to alcohol-based surfactants and as alcohol per se in a wide variety of consumer product applications. Global production volume is approximately 1.58 million metric tonnes. The OECD HPV assessment covers linear to slightly branched LCOH ranging from 6 to 22 alkyl carbons (C). LCOH biodegrade exceptionally...... studies with Daphnia magna demonstrated that between C13 and C15 LCOH solubility became a factor and that the structure-activity relationship was characterized by a toxicity maximum between C13 and C14. Above C14 the LCOH was less toxic and become un-testable due to insolubility. Risk quotients based...

  19. Polyvinyl alcohol/starch composite nanofibers by bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2014-01-01

    Full Text Available Bubble electrospinning exhibits profound prospect of industrialization of macro/ nano materials. Starch is the most abundant and inexpensive biopolymer. With the drawbacks of poor strength, water resistibility, thermal stability and processability of pure starch, some biodegradable synthetic polymers such as poly (lactic acid, polyvinyl alcohol were composited to electrospinning. To the best of our knowledge, composite nanofibers of polyvinyl alcohol/starch from bubble electrospinning have never been investigated. In the present study, nanofibers of polyvinyl alcohol/starch were prepared from bubble electrospinning. The processability and the morphology were affected by the weight ratio of polyvinyl alcohol and starchy. The rheological studies were in agreement with the spinnability of the electrospinning solutions.

  20. Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties

    DEFF Research Database (Denmark)

    Fisk, Peter; Sanderson, Hans; Wildey, Ross

    2009-01-01

    )SARs). This allows predictions of data relating to human and environmental safety profiles and patterns. These alcohols have been shown to be rapidly degradable under standard conditions up to C18. Furthermore, evidence suggests that longer chain lengths are also rapidly biodegradable. While log Kow values suggest...

  1. Radiation modified sago-blends and its potential for biodegradable packaging materials

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Sarada Idris; Khairul Zaman Mohd Dahlan

    2002-01-01

    As a result of rapid population and economic growth, many countries are facing environmental problems created from plastic consumption and those related to garbage disposal. One of the items that is contributing further to this problem would be the foams and plastic wrappers used in packaging. The development of biodegradable packaging material such as foam and film would thus be a step forward in the right direction for the aforementioned industry. This paper highlights work at BTPS on the development of sago blends as alternative biodegradable packaging materials. A study was undertaken to investigate the effect of formulation, mixing temperature and irradiation dosage on expansion of sago starch-polyvinyl alcohol (PVA) and sago-polyvinyl pyrrolidone (PVP) blends based foam. In the beginning foams produced from irradiated hydrogels were achieved by steam expansion in a microwave oven. Some follow-up work using extrusion was also carried out. In the development of starch-based plastic film, the effect of different composition and different irradiation dosage were studied to evaluate films with good tensile properties, elongation, gas permeability and water vapor transmission rate and also the biodegradability of the film using soil burial test. (Author)

  2. Biodegradation of norfloxacin by Penicillium frequentans isolated ...

    African Journals Online (AJOL)

    One norfloxacin-degrading fungi was isolated from soil contaminated by norfloxacin and preliminary identified as Penicillium frequentans. Indoor simulative degradation experiments were carried out to investigate the biodegradation kinetics of norfloxacin with or without NFX3 in soil. The results indicate that the ...

  3. Fabrication of Environmentally Biodegradable Lignin Nanoparticles

    NARCIS (Netherlands)

    Frangville, C.; Rutkevicius, M.; Richter, A.P.; Velev, O.D.; Stoyanov, S.D.; Paunov, V.N.

    2012-01-01

    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The

  4. Cyclodextrin-enhanced biodegradation of phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.-M.; Marlowe, E.M.; Miller-Maier, R.M.; Brusseau, M.L. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1998-07-01

    The effectiveness of in situ bioremediation in many systems may be constrained by low contaminant bioavailability due to limited aqueous solubility or a large magnitude of sorption. The objective of this research was to evaluate the effect of hydroxypropyl-{beta}-cyclodextrin (HPCD) on phenanthrene solubilization and biodegradation. Results showed that analytical-grade HPCD can significantly increase the apparent solubility of phenanthrene. The increase in apparent solubility had a major impact on the biodegradation rate of phenanthrene. For example, in the presence of 10{sup 5} mg L{sup -1} HPCD, the substrate utilization rate increased from 0.17 mg h{sup -1} to 0.93 mg h{sup -1} while the apparent solubility was increased from 1.3 mg L{sup -1} to 161.3 mg L{sup -1}. As a result, only 0.3% of the phenanthrene remained at the end of a 48 h incubation for the highest concentration of HPCD tested (10{sup 5} mg L{sup -1}). In contrast, 45.2% of the phenanthrene remained in the absence of HPCD. Technical-grade HPCD, which contains the biodegradable impurity propylene glycol, also increased the substrate utilization rate, although to a lesser extent than the analytical-grade HPCD. On the basis of these results, it appears that HPCD can significantly increase the bioavailability, and thereby enhance the biodegradation of phenanthrene. 26 refs., 5 figs.

  5. Formulation and characterization of caffeine biodegradable chewing ...

    African Journals Online (AJOL)

    chewing gum delivery system for alertness using ... texture profile analysis (TPA), and also evaluated for biodegradation, microstructure`, in vitro .... human chewing. .... Data are presented as mean ± standard error mean (n=6) .... No conflict of interest associated with this work. ... d), which permit unrestricted use, distribution,.

  6. Biodegradation of chlorobenzoic acids by ligninolytic fungi

    Czech Academy of Sciences Publication Activity Database

    Muzikář, Milan; Křesinová, Zdena; Svobodová, Kateřina; Filipová, Alena; Čvančarová, Monika; Cajthamlová, Kamila; Cajthaml, Tomáš

    2011-01-01

    Roč. 196, - (2011), s. 386-394 ISSN 0304-3894 R&D Projects: GA MŠk 2B06156; GA ČR GA525/09/1058 Institutional research plan: CEZ:AV0Z50200510 Keywords : Chlorobenzoic acid * Polychlorinated biphenyls * Biodegradation Subject RIV: EE - Microbiology, Virology Impact factor: 4.173, year: 2011

  7. Modeling aerobic biodegradation in the capillary fringe.

    Science.gov (United States)

    Luo, Jian; Kurt, Zohre; Hou, Deyi; Spain, Jim C

    2015-02-03

    Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.

  8. Phyllosphere yeasts rapidly break down biodegradable plastics

    Science.gov (United States)

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  9. Preparation of Natural and Synthetic Porous Biodegradable ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Preparation of Natural and Synthetic Porous Biodegradable Scaffolds for Infected Wounds. Characterised for their physical properties, pore size and release kinetics. Release kinetics of bioactive molecules (antibiotics) in a controlled fashion. Release pattern of the ...

  10. Biodegradable Shape Memory Polymers in Medicine.

    Science.gov (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of biodegradation and biocompatibility of collagen ...

    Indian Academy of Sciences (India)

    ever, its fast biodegradation and low mechanical strength are the foremost issues .... containing 250 ml of simulated body fluids (SBFs) with ion concentrations ( ..... [6] Kong M, Chen X G, Xing K and Park H J 2010 Int. J. Food. Microbiol. 144 51.

  12. Biodegradation of synthetic detergents in wastewater

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... carrier gas at 37 psi. Hydrogen and air flow rates were 9 and 13 psi ... 24 h, by filtering the content of each set of test tubes using sterile filter paper while ..... environment-friendly, since it is biodegradable and it would enhance ...

  13. Biodegradable polymersomes for targeted ultrasound imaging

    NARCIS (Netherlands)

    Zhou, W.; Hennink, W.E.; Feijen, J.; Meng, Fenghua; Sam, T; Engbers, G.H.M.; Feijen, Jan

    2006-01-01

    Biodegradable polymersomes with a sub-micron size were prepared by using poly(ethylene glycol)–polylactide (PEG–PDLLA) block-copolymers in aqueous media. Air-encapsulated polymersomes could be obtained by a lyophilization/rehydration procedure. Preliminary results showed that these polymersomes were

  14. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  15. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    Science.gov (United States)

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  16. Improving the biodegradative capacity of subsurface bacteria

    International Nuclear Information System (INIS)

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates

  17. Biodegradation of uranium-contaminated waste oil

    International Nuclear Information System (INIS)

    Hary, L.F.

    1983-01-01

    The Portsmouth Gaseous Diffusion Plant routinely generates quantities of uranium-contaminated waste oil. The current generation rate of waste oil is approximately 2000 gallons per year. The waste is presently biodegraded by landfarming on open field soil plots. However, due to the environmental concerns associated with this treatment process, studies were conducted to determine the optimum biodegradation conditions required for the destruction of this waste. Tests using respirometric flasks were conducted to determine the biodegradation rate for various types of Portsmouth waste oil. These tests were performed at three different loading rates, and on unfertilized and fertilized soil. Additional studies were conducted to evaluate the effectiveness of open field landfarming versus treatment at a greenhouse-like enclosure for the purpose of maintaining soil temperatures above ambient conditions. The respirometric tests concluded that the optimum waste oil loading rate is 10% weight of oil-carbon/weight of soil (30,600 gallons of uranium-contaminated waste oil/acre) on soils with adjusted carbon:nitrogen and carbon:phosphorus ratios of 60:1 and 800:1, respectively. Also, calculational results indicated that greenhouse technology does not provide a significant increase in biodegradation efficiency. Based on these study results, a 6300 ft. 2 abandoned anaerobic digester sludge drying bed is being modified into a permanent waste oil biodegradation facility. The advantage of using this area is that uranium contamination will be contained by the bed's existing leachate collection system. This modified facility will be capable of handling approximately 4500 gallons of waste oil per year; accordingly current waste generation quantities will be satisfactorily treated. 15 refs., 14 figs., 4 tabs

  18. Predicting ready biodegradability of premanufacture notice chemicals.

    Science.gov (United States)

    Boethling, Robert S; Lynch, David G; Thom, Gary C

    2003-04-01

    Chemical substances other than pesticides, drugs, and food additives are regulated by the U.S. Environmental Protection Agency (U.S. EPA) under the Toxic Substances Control Act (TSCA), but the United States does not require that new substances be tested automatically for such critical properties as biodegradability. The resulting lack of submitted data has fostered the development of estimation methods, and the BioWIN models for predicting biodegradability from chemical structure have played a prominent role in premanufacture notice (PMN) review. Until now, validation efforts have used only the Japanese Ministry of International Trade and Industry (MITI) test data and have not included all models. To assess BioWIN performance with PMN substances, we assembled a database of PMNs for which ready biodegradation data had been submitted over the period 1995 through 2001. The 305 PMN structures are highly varied and pose major challenges to chemical property estimation. Despite the variability of ready biodegradation tests, the use of at least six different test methods, and widely varying quality of submitted data, accuracy of four of six BioWIN models (MITI linear, MITI nonlinear, survey ultimate, survey primary) was in the 80+% range for predicting ready biodegradability. Greater accuracy (>90%) can be achieved by using model estimates only when the four models agree (true for 3/4 of the PMNs). The BioWIN linear and nonlinear probability models did not perform as well even when classification criteria were optimized. The results suggest that the MITI and survey BioWIN models are suitable for use in screening-level applications.

  19. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  20. Alcoholism and Suicide.

    Science.gov (United States)

    Roy, Alec; Linnoila, Markku

    1986-01-01

    Reviews knowledge about suicide in alcoholism: how commonly suicide among alcoholics occurs; which alcoholics commit suicide and why; suicide among alcoholic women and alcoholic physicians; possible predisposing biological factors; possible linkages with depression, adverse life events, and personality disorder; and future research and directions.…

  1. BTEX biodegradation by bacteria from effluents of petroleum refinery.

    Science.gov (United States)

    Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2010-09-15

    Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and

  2. Alcoholic Liver Disease

    Science.gov (United States)

    ... may be increased in women because their digestive system may be less able to process alcohol, thus increasing the amount of alcohol reaching the liver. Genetic makeup Genetic makeup is thought to be involved because alcoholic liver disease often ...

  3. Alcohol Use Screening

    Science.gov (United States)

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Alcohol Use Screening (AUDIT-C) - Instructions The following questions ... this tool, there is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following ...

  4. Alcohol Use Disorders

    Science.gov (United States)

    ... alcohol use disorder” or AUD. AUD is a chronic relapsing brain disease characterized by compulsive alcohol use, loss of control over alcohol intake, and a negative emotional state when not using. ...

  5. Current knowledge on biodegradable microspheres in drug delivery.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  6. Fetal Alcohol Spectrum Disorders (FASDs): Alcohol Use Quiz

    Science.gov (United States)

    ... Links to Other Websites About Us More CDC Alcohol Topics CDC Alcohol Portal Excessive Alcohol Use Binge ... of alcohol screening and counseling for all women Alcohol Use Quiz Recommend on Facebook Tweet Share Compartir ...

  7. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-09-27

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.

  8. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs. PMID:28904262

  9. Research of the biodegradability of degradable/biodegradable plastic material in various types of environments

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2017-04-01

    Full Text Available Research was carried out in order to assess biodegradability of degradable/biodegradable materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive or made of polyethylene (PE with the addition of pro-oxidant additive (d2w additive, advertised as 100% degradable or certifi ed as compostable within various types of environments. Research conditions were: (i controlled composting environment – laboratory-scale, (ii real composting conditions – domestic compost bin, (iii real composting conditions – industrial composting plant and (iv landfill conditions. The results demonstrate that the materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive or made of polyethylene (PE with the addition of pro-oxidant additive (d2w additive or advertised as 100% degradable did not biodegrade in any of the above-described conditions and remained completely intact at the end of the tests. Biodegradation of the certified compostable plastic bags proceeded very well in laboratory-scale conditions and in real composting conditions – industrial composting plant, however, these materials did not biodegrade in real composting conditions – domestic compost bin and landfill conditions.

  10. Modeling ready biodegradability of fragrance materials.

    Science.gov (United States)

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.

  11. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    Science.gov (United States)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  12. Biodegradation of polyurethane derived from castor oil

    Directory of Open Access Journals (Sweden)

    José M. Cangemi

    2008-09-01

    Full Text Available The aim of this research was to study the biodegradation of a polymer derived from castor oil, which is a renewable, natural material that is a practical alternative for the replacement of traditional polyurethane foams. Due to its molecular structure, which contains polyester segments derived from vegetable oil, the polymeric surface is susceptible to microorganism attack. This study tested the biological degrading agent that was in contact with the microorganisms resulting from microbiological grease degrading agents, when foam was inoculated. Solid-media agar-plate tests were conducted for their potential to evaluate the biodegradation of polymeric particles by specific strains of microorganisms during 216 hours. The growth rate was defined. This technique provides a way of distinguishing the degradation abilities of microorganisms from the degradability of materials.

  13. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    Energy Technology Data Exchange (ETDEWEB)

    Ross, R J [Donlar Corporation (United States); Ravenscroft, P D [BP Exploration Operating Company, (United Kingdom)

    1997-12-31

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO{sub 2} corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs.

  14. Biodegradation of hydrocarbons exploiting spent substrate from ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... Key words: Bioremediation, diesel, laccase, veratryl alcohol oxidase, Pleurotus ostreatus. ... Abbreviations: Lac, Laccases; MnP, Manganese peroxidases; VP, versatile peroxidases; VAO, veratryl alcohol oxidases; SMS, ..... Hacia un desarrollo sostenible del sistema de producción-consumo de los hongos ...

  15. Coatings and Biodegradable and Bioasorbable Films

    Science.gov (United States)

    2006-12-28

    Dielectric Spectroscopy ," Polymers for Biomedical Applications Symposium, ACS Fall 2006 Meeting, San Francisco, CA. 25 Novel Biodegradable Films Based on...groups upon cross-linking with HDI. The Figl2. Positron annihilation assessment hydroxyl groups are known to form fairly strong of free volume behavior of...1.26 e volume is accumulated upon cooling. Probing free- "A volume with positron life time spectroscopy 1.25 (PALS) showed that indeed, cross-linked

  16. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.

    Science.gov (United States)

    Phillips, Theresa M; Seech, Alan G; Lee, Hung; Trevors, Jack T

    2005-08-01

    The organochlorine pesticide Lindane is the gamma-isomer of hexachlorocyclohexane (HCH). Technical grade Lindane contains a mixture of HCH isomers which include not only gamma-HCH, but also large amounts of predominantly alpha-, beta- and delta-HCH. The physical properties and persistence of each isomer differ because of the different chlorine atom orientations on each molecule (axial or equatorial). However, all four isomers are considered toxic and recalcitrant worldwide pollutants. Biodegradation of HCH has been studied in soil, slurry and culture media but very little information exists on in situ bioremediation of the different isomers including Lindane itself, at full scale. Several soil microorganisms capable of degrading, and utilizing HCH as a carbon source, have been reported. In selected bacterial strains, the genes encoding the enzymes involved in the initial degradation of Lindane have been cloned, sequenced, expressed and the gene products characterized. HCH is biodegradable under both oxic and anoxic conditions, although mineralization is generally observed only in oxic systems. As is found for most organic compounds, HCH degradation in soil occurs at moderate temperatures and at near neutral pH. HCH biodegradation in soil has been reported at both low and high (saturated) moisture contents. Soil texture and organic matter appear to influence degradation presumably by sorption mechanisms and impact on moisture retention, bacterial growth and pH. Most studies report on the biodegradation of relatively low (< 500 mg/kg) concentrations of HCH in soil. Information on the effects of inorganic nutrients, organic carbon sources or other soil amendments is scattered and inconclusive. More in-depth assessments of amendment effects and evaluation of bioremediation protocols, on a large scale, using soil with high HCH concentrations, are needed.

  17. Enzymes of Candida tropicalis yeast biodegrading phenol

    OpenAIRE

    Koubková, Zuzana

    2011-01-01

    Effluents of industrial wastewaters from oil refineries, paper mills, dyes, ceramic factories, resins, textiles and plastic contain high concentrations of aromatic compounds, which are toxic to organisms. Degradation of these compounds to tolerant limits before releasing them into the environment is an urgent requirement. Candida tropicalis yeast is an important representative of eucaryotic microorganisms that are able to utilize phenol. During the first phase of phenol biodegradation, cytopl...

  18. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    Science.gov (United States)

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  19. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Biodegradation of tert-butylphenyl diphenyl phosphate

    International Nuclear Information System (INIS)

    Heitkamp, M.A.; Freeman, J.P.; Cerniglia, C.E.

    1986-01-01

    The biodegradation of tert-butylphenyl diphenyl phosphate (BPDP) was examined in microcosms containing sediment and water from five different ecosystems as part of studies to elucidate the environmental fate of phosphate ester flame retardants. Biodegradation of [ 14 C]BPDP was monitored in the environmental microcosms by measuring the evolution of 14 CO 2 . Over 37% of BPDP was mineralized after 8 weeks in microcosms from an ecosystem which had chronic exposure to agricultural chemicals. In contrast, only 1.7% of BPDP was degraded to 14 CO 2 in samples collected from a noncontaminated site. The exposure concentration of BPDP affected the percentage which was degraded to 14 CO 2 in microcosms from the two most active ecosystems. Mineralization was highest at a concentration of 0.1 mg of BPDP and was inhibited with 10- and 100-fold higher concentrations of BPDP. The authors observed adaptive increases in both microbial populations and phosphoesterase enzymes in some sediments acclimated to BPDP. Chemical analyses of the residues in the microcosms indicated undegraded BPDP and minor amounts of phenol, tert-butylphenol, diphenyl phosphate, and triphenyl phosphate as biodegradation products. These data suggest that the microbial degradation of BPDP results from at least three catabolic processes and is highest when low concentrations of BPDP are exposed to sediment microorganisms of eutrophic ecosystems which have high phosphotri- and diesterase activities and previous exposure to anthropogenic chemicals

  1. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  2. Corexit 9500 Enhances Oil Biodegradation and Changes ...

    Science.gov (United States)

    While COREXIT 9500 is widely applied after oil spills for its reported dispersing activity, there is still a debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on microbial communities. To better understand the impact of COREXIT 9500 on the structure and activity levels of hydrocarbon degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at cryophilic and mesophilic conditions and using both DNA and RNA extracts as sequencing templates. Oil biodegradation patterns in both cryophilic and mesophilic enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). A slight increase in biodegradation was observed in the presence of COREXIT at both 25°C and 5°C experiments. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia was dominated by unclassified members of the Vibrio, Pseudoidiomarina, Marinobacter, Alcanivorax, and Thallassospira species, while the 5°C consortia were dominated by several genera of Flavobacteria, Alcanivorax and Oleispira. With the exception of Vibrio-like species, members of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, was also found in these enrichments. RNA-based sequencing of 25°C

  3. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  4. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-08-01

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  5. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  6. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  7. Biodegradable materials as binders for IVth generation moulding sands

    OpenAIRE

    K. Major-Gabry

    2015-01-01

    This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the...

  8. "Rational" management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus.

    Science.gov (United States)

    Papazi, Aikaterini; Kotzabasis, Kiriakos

    2013-01-01

    The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp - no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp - one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp - two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as "smart" bioenergetic "machines", that have the ability to continuously "calculate" the energy reserves and "use" the most energetically

  9. Biodegradable magnesium-alloy stent:current situation in research

    International Nuclear Information System (INIS)

    Chen Hua; Zhao Xianxian

    2011-01-01

    In recent years, permanent metal stents are employed in the majority of interventional therapies; nevertheless, such kind of stents carries the problems of thrombosis and restenosis. Therefore, the biodegradable magnesium alloy stent has become the focus of attention. Theoretically, it has overcome the problems caused by permanent metal stents, so it is the development direction to use the biodegradable magnesium alloy in future. The authors believe that biodegradable magnesium alloy stents will be widely used in interventional procedures for many diseases. (authors)

  10. An assessment of biodegradability of quaternary carbon-containing fragrance compounds: comparison of experimental OECD screening test results and in silico prediction data.

    Science.gov (United States)

    Seyfried, Markus; Boschung, Alain

    2014-05-01

    An assessment of biodegradability was carried out for fragrance substances containing quaternary carbons by using data obtained from Organisation for Economic Co-operation and Development (OECD) 301F screening tests for ready biodegradation and from Biowin and Catalogic prediction models. Despite an expected challenging profile, a relatively high percentage of common-use fragrance substances showed significant biodegradation under the stringent conditions applied in the OECD 301F test. Among 27 test compounds, 37% met the pass level criteria after 28 d, while another 26% indicated partial breakdown (≥20% biodegradation). For several compounds for which structural analogs were available, the authors found that structures that were rendered less water soluble by either the presence of an acetate ester or the absence of oxygen tended to degrade to a lesser extent compared to the primary alcohols or oxygenated counterparts under the test conditions applied. Difficulties were encountered when attempting to correlate experimental with in silico data. Whereas the Biowin model combinations currently recommended by regulatory agencies did not allow for a reliable discrimination between readily and nonbiodegradable compounds, only a comparably small proportion of the chemicals studied (30% and 63% depending on the model) fell within the applicability domain of Catalogic, a factor that critically reduced its predictive power. According to these results, currently neither Biowin nor Catalogic accurately reflects the potential for biodegradation of fragrance compounds containing quaternary carbons. © 2014 SETAC.

  11. Biodegradation of endosulfan by mixed bacteria culture strains of ...

    African Journals Online (AJOL)

    Biodegradation of endosulfan by mixed bacteria culture strains of Pseudomonas aeruginosa and Staphylococcus aureus. Nsidibeabasi Calvin Nwokem, Calvin Onyedika Nwokem, Casmir Emmanuel Gimba, Beatrice Nkiruka Iwuala ...

  12. Critical evaluation of biodegradable polymers used in nanodrugs

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  13. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  14. Fetal alcohol syndrome

    Science.gov (United States)

    ... a baby when a mother drinks alcohol during pregnancy. Causes Using alcohol during pregnancy can cause the same risks as using alcohol in general. But it poses extra risks to the unborn baby. When a pregnant woman drinks ... use during pregnancy. Larger amounts of alcohol appear to increase the ...

  15. Turning to alcohol?

    International Nuclear Information System (INIS)

    Reiboro, S.K.

    1998-01-01

    Brazil is examining whether turning to alcohol could solve its problems. The fuel alcohol producers are lobbying hard for the government to increase the use of alcohol to fuel the country's cars. Not only does using alcohol reduce CO 2 , runs the argument, but the Kyoto agreement might just attract international financing for the project. (author)

  16. Clearinghouse: alcohol and poppers.

    Science.gov (United States)

    1999-03-01

    Ten articles from magazines and journals are referenced on the subjects of alcohol and poppers. Topics include alcohol consumption and HIV/AIDS-related risky sexual behavior, alcohol and drug abuse, and self-esteem, gender, and alcohol use. Contact information is provided.

  17. Children of Alcoholics.

    Science.gov (United States)

    Krois, Deborah Helen

    Although alcoholism has long been considered a serious problem, the impact of parental alcoholism on children has only recently begun to receive attention from researchers and clinicians. A review of the empirical literature on children of alcoholics was conducted and it was concluded that children raised in an alcoholic family are at increased…

  18. Fetal Alcohol Exposure

    Science.gov (United States)

    ... categories: 4 » Fetal Alcohol Syndrome (FAS) » Partial FAS (pFAS) » Alcohol-Related Neurodevelopmental Disorder (ARND) » Alcohol-Related Birth ... either prenatally, after birth, or both Partial FAS (pFAS) Partial FAS (pFAS) involves prenatal alcohol exposure, and ...

  19. Effect of benzene and ethylbenzene on the transcription of methyl-tert-butyl ether degradation genes of Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2016-09-01

    Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.

  20. Internet Alcohol Marketing and Underage Alcohol Use.

    Science.gov (United States)

    McClure, Auden C; Tanski, Susanne E; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D

    2016-02-01

    Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13-2.78 and odds ratio 2.15; 95% confidence interval, 1.06-4.37 respectively) but not with initiation of ever drinking. Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. Copyright © 2016 by the American Academy of Pediatrics.

  1. Internet Alcohol Marketing and Underage Alcohol Use

    Science.gov (United States)

    McClure, Auden C.; Tanski, Susanne E.; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D.

    2016-01-01

    BACKGROUND AND OBJECTIVE Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. METHODS A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. RESULTS At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13–2.78 and odds ratio 2.15; 95% confidence interval, 1.06–4.37 respectively) but not with initiation of ever drinking. CONCLUSIONS Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. PMID:26738886

  2. Alcohol and Breastfeeding

    DEFF Research Database (Denmark)

    Haastrup, Maija Bruun; Pottegård, Anton; Damkier, Per

    2014-01-01

    While the harmful effects of alcohol during pregnancy are well-established, the consequences of alcohol intake during lactation have been far less examined. We reviewed available data on the prevalence of alcohol intake during lactation, the influence of alcohol on breastfeeding......, the pharmacokinetics of alcohol in lactating women and nursing infants and the effects of alcohol intake on nursing infants. A systematic search was performed in PubMed from origin to May 2013, and 41 publications were included in the review. Approximately half of all lactating women in Western countries consume...... alcohol while breastfeeding. Alcohol intake inhibits the milk ejection reflex, causing a temporary decrease in milk yield. The alcohol concentrations in breast milk closely resemble those in maternal blood. The amount of alcohol presented to nursing infants through breast milk is approximately 5...

  3. Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Moradian, Zohreh

    2014-01-01

    Highlights: • Surface tension of non-ideal binary systems of alcohol/DMSO determined. • The surface tension data of binary mixtures were correlated with five equations. • The interaction energy values were calculated by using LWW model. • The U 12 value shows different behavior for two systems with increasing temperature. - Abstract: Surface tension of binary mixtures of tert-butyl alcohol (TBA) and iso-amyl alcohol (IAA) with DMSO (dimethyl sulfoxide) were measured over the entire concentration range at pressure of 82.5 kPa at temperatures between (298.15 and 328.15) K. Correlating the surface tension and surface tension deviation of the above mentioned binary systems was performed with empirical and thermodynamic based models. The average relative error obtained from the comparison of experimental and calculated surface tension values for the two binary systems with five models at various temperatures is less than 2%. The effect of temperature on the interaction energy values in binary mixtures has been used to obtain information about solute structural effects on DMSO. Also, the experimental data were used to evaluate the nature and type of intermolecular interactions in binary mixtures

  4. Cobalt-chitosan: Magnetic and biodegradable heterogeneous ...

    Indian Academy of Sciences (India)

    for selective aerobic oxidation of alkyl arenes and alcohols. AHMAD SHAABANI∗ ... of waste are important.2 Numerous homogeneous cat- alysts are widely used for aerobic oxidation, ... much attention has been focused on immobilization of.

  5. Preparation of new biodegradable materials by grafting of polycarprolactone onto starch and their biodegradability studies

    International Nuclear Information System (INIS)

    Najemi, L.; Zerroukhi, A.; Jeanmaire, T.; Raihane, M.; Chamkh, F.; Qatibi, A.; Bennisse, R.

    2009-01-01

    The starch is a natural polymer which has the advantage of being biodegradable, renewable in quantity unlimited at very accessible prices. However its poor mechanical properties, depending on its hydrophobic character, and also its absorption of water restrict is applicability considerable especially for packing. (Author)

  6. Biodegradation kinetics for pesticide exposure assessment.

    Science.gov (United States)

    Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J

    2001-01-01

    Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is

  7. Biodegradation of bacterial polysaccharides adsorbed on montmorillonite

    International Nuclear Information System (INIS)

    Guckert, A.; Tok, H.H.; Jacquin, F.

    1977-01-01

    In this research, by means of a model, a study was made of the biodegradation of microbial organic compounds adsorbed on clays, with a parallel experiment on Fontainebleau sand serving as the control. During incubation the three classes of organic matter ( 14 C-labelled glucose, 14 C-labelled polysaccharides and 14 C-labelled microbial cells) mineralize more actively in the presence of sand than in the presence of clay, since the latter provides protection against biodegradation. Mineralization of the adsorbed organic compounds, however, is marked by clear-cut differences after three weeks - glucose (55%)>polysaccharides (43%)>microbial organisms (7.3%). After incubation, chemical extraction of the organo-mineral complexes by alkaline solvents shows only water-soluble and alkali-soluble products in the case of sand; conversely, in that of montmorillonite the bulk of the 14 C was found in the non-extractable fraction or humin (18.1% of the initial 14 C for glucose, 27.3% for the polysaccharides, and 67.6% for the microbial organisms). A second incubation carried out after a phase in which there was drying and remoistening of the organo-mineral complexes, brings to light the important part played by climatic alternations during the biodegradation process. A new mineralization phase is observed, affecting more the bacterial organisms (14.1%) than the polysaccharides (6.3%), with the glucose-base complexes occupying an intermediate position (11.2%). The chemical fractioning of the organo-mineral complexes following re-incubation shows the stability of 14 C in humin very clearly, especially in the case of polysaccharides, where the mineralization phase relates primarily to the products extractable with alkalis. (author)

  8. Geochemical indicators of anaerobic biodegradation of BTEX

    International Nuclear Information System (INIS)

    Wilson, J.T.; Kampbell, D.; Hutchins, S.; Wilson, B.; Kennedy, L.G.

    1992-01-01

    In the late 1970s, a leaking underground pipeline released petroleum hydrocarbons to a shallow, water-table aquifer in Kansas. Approximately six acres surrounding the release contain hydrocarbons at residual saturation. Parts of the release have acclimated and are carrying out anaerobic biodegradation of benzene, toluene, and the xylenes, Analysis of ground water from monitoring wells in areas that have acclimated reveal high concentrations of methane, less than -.1/liter oxygen, millimolar concentrations of acetate, and strongly reducing redox potentials. There is also a marked shift in the radio of the concentration of individual compounds to the total concentration of petroleum hydrocarbons

  9. Molecular basis of biodegradation of chloroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sangodkar, U M.X.; Aldrich, T L; Haugland, R A; Johnson, J; Rothmel, R K; Chakrabarty, A M [Illinois Univ., Chicago (USA). Coll. of Medicine; Chapman, P J [Environmental Protection Agency, Gulf Breeze, FL (USA). Microbial Ecology and Biotechnology

    1989-01-01

    Chlorinated aromatic hydrocarbons are widely used in industry and agriculture, and comprise the bulk of environmental pollutants. Although simple aromatic compounds are biodegradable by a variety of degradative pathways, their halogenated counterparts are more resistant to bacterial attack and often necessitate evolution of novel pathways. An understanding of such evolutionary processes is essential for developing genetically improved strains capable of mineralizing highly chlorinated compounds. This article provides an overview of the genetic aspects of dissimilation of chloroaromatic compounds and discusses the potential of gene manipulation to promote enhanced evolution of the degradation pathways. (orig.).

  10. Development of biodegradable fungicide by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Kim, Dong Sub [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by pot experiment and It was promising to prevent pepper, Chinese cabbage and radish from anthrax, phytophthora and root rot

  11. Development of biodegradable fungicide by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngkeun; Kim, Dongsub

    2012-03-15

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by field test and it was promising to prevent Chinese cabbage and radish from phytophthora and root rot.

  12. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  13. Development of biodegradable fungicide by radiation

    International Nuclear Information System (INIS)

    Lee, Young Keun; Kim, Dong Sub

    2011-01-01

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by pot experiment and It was promising to prevent pepper, Chinese cabbage and radish from anthrax, phytophthora and root rot

  14. Biodegradation of the Nitramine Explosive CL-20

    OpenAIRE

    Trott, Sandra; Nishino, Shirley F.; Hawari, Jalal; Spain, Jim C.

    2003-01-01

    The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobact...

  15. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y.Y.; Wang, Zhuo Lin; Uosukainen, E.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M. [Raisio Group Oil Milling Industry, Raisio (Finland)

    1996-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  16. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y Y; Wang, Zhuo Lin; Uosukainen, E; Seppaelae, J [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M [Raisio Group Oil Milling Industry, Raisio (Finland)

    1997-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  17. Biodegradation of polyurethanes; Polyurethane no biseibutsu bunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kinpara, N; Ando, M; Ohira, Z [Suzuki Motor Corp., Shizuoka (Japan); Nakajima, T; Nakahara, T [University of Tsukuba, Tsukuba (Japan)

    1997-10-01

    Different types of Polyurethane (PUR) are used for various industrial products and are used in increasing quantities every year. We experimented with biodegradation of PURs to dispose of industrial wastes. 2 strains of fungi and 1 strain of bacteria which were seemed to have the ability to degrade PURs well were isolated from various soils and waste water. These strains could degrade ester-type PUR and PUR made from a mixture of ester and ether. However, these strains could not degrade ether-type PUR. From Scanning Electron Microscopy observation, it is suggested that the microbial degradation proceeded in at least 2 patterns. 4 refs., 8 figs., 2 tabs.

  18. Development of biodegradable fungicide by radiation

    International Nuclear Information System (INIS)

    Lee, Young Jeun; Kim, Dong Sub

    2010-01-01

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Sixteen antifungal microbes were isolated and 4 antifungal activity enhanced mutants were induced by using radiation. P. lentimorbus WJ5a17 had 41% higher antifungal activity than the wild type. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified

  19. Development of biodegradable fungicide by radiation

    International Nuclear Information System (INIS)

    Lee, Youngkeun; Kim, Dongsub

    2012-03-01

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by field test and it was promising to prevent Chinese cabbage and radish from phytophthora and root rot

  20. WWTP respirometric application. Toxicity and biodegradability studies

    International Nuclear Information System (INIS)

    Aguilar Sanchis, M. I.; Llorens Pascual del Riquelme, M.; Meseguer Zapata, V. F.; Ortuno Sandoval, J.; Perez martin, A. B.; Saez Mercader, J.

    2009-01-01

    Respirometry is the measurements of the oxygen consumption of microorganisms present in activated sludge, which can be related to both biomass growth and substrate consumption to obtain energy. Yh parameter (biomass/substrate yield), denominated heterotrophic biomass yield coefficient, express the portion of substrate transformed to biomass. eight municipal wastewater treatment plants (WWTP) with different activated sludge biological treatment were selected to study wastewater biodegradability by measuring respiration rate in dynamic mode. The selection of the WWTP was based on the aeration system operating in the biological reactor. Besides, the effect of heavy metals and some organic compounds on biological process has been studied. (Author) 12 refs.

  1. Hydrocarbons biodegradation in unsaturated porous medium; Biodegradation des hydrocarbures en milieu poreux insature

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C

    2007-12-15

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  2. Advances in Biodegradation of Multiple Volatile Organic Compounds

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.

    2017-12-01

    Bioremediation of soil and groundwater containing multiple contaminants remains a challenge in environmental science and engineering because complete biodegradation of all components is necessary but very difficult to accomplish in practice. This presentation provides a brief overview on advances in biodegradation of multiple volatile organic compounds (VOCs) including chlorinated ethylenes, benzene, toluene and dichloromethane (DCM). Case studies on aerobic biodegradation of benzene, toluene and DCM, and integrated anaerobic-aerobic biodegradation of 7 contaminants, specifically, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), DCM, benzene and toluene will be provided. Recent findings based on systematic laboratory experiments indicated that aerobic toluene degradation can be enhanced by co-existence of benzene. Propioniferax, not a known benzene, toluene and DCM degrader can be a key microorganism that involves in biodegradation when the three contaminants co-exist. Integrated anaerobic-aerobic biodegradation is capable of completely degrading the seven VOCs with initial concentrations less than 30 mg/L. Dehalococcoides sp., generally considered sensitive to oxygen, can survive aerobic conditions for at least 28 days, and can be activated during the subsequent anaerobic biodegradation. This presentation may provide a systematic information about biodegradation of multiple VOCs, and a scientific basis for the complete bioremediation of multiple contaminants in situ.

  3. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  4. Biodegradability of unused lubricating brake fluids in fresh and ...

    African Journals Online (AJOL)

    The biodegradability of four unused lubricating brake fluids (Total brake fluid, Allied brake fluid, Oando brake fluid and Ate brake fluid) was carried out in fresh and marine water obtained from Isiokpo stream and Bonny river of the Niger Delta, South South Nigeria. Biodegradability, of the brake fluids were obtained after a 56 ...

  5. Biodegradation of clofibric acid and identification of its metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setubal do Instituto Politecnico de Setubal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); Oehmen, A. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, G. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnologica (IBET), Av. da Republica (EAN), 2784-505 Oeiras (Portugal); Noronha, J.P. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-11-30

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: Black-Right-Pointing-Pointer Clofibric acid is biodegradable. Black-Right-Pointing-Pointer Mainly heterotrophic bacteria degraded the clofibric acid. Black-Right-Pointing-Pointer Metabolites of clofibric acid biodegradation were identified. Black-Right-Pointing-Pointer The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L{sup -1}), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including {alpha}-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. {alpha}-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  6. Biodegradation of clofibric acid and identification of its metabolites

    International Nuclear Information System (INIS)

    Salgado, R.; Oehmen, A.; Carvalho, G.; Noronha, J.P.; Reis, M.A.M.

    2012-01-01

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: ► Clofibric acid is biodegradable. ► Mainly heterotrophic bacteria degraded the clofibric acid. ► Metabolites of clofibric acid biodegradation were identified. ► The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L −1 ), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  7. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  8. Biodegradable elastomers for biomedical applications and regenerative medicine

    NARCIS (Netherlands)

    Bat, Erhan; Zhang, Zheng; Feijen, Jan; Grijpma, Dirk W.; Poot, Andre A.

    Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After

  9. Fungal biodegradation of plantain peel for broiler finisher feeding: In ...

    African Journals Online (AJOL)

    ... protein, cholesterol and glucose were significantly (P<0.05) affected by the treatments. Fungal biodegradation of PPL using A.niger has the potential of enhancing feed intake, nutrient digestibility and the body weight gain of broiler finisher. Keywords: Aspergillus niger, biodegradation, nutrient enhancement and broilers.

  10. Biodegradable hollow fibres for the controlled release of drugs

    NARCIS (Netherlands)

    Schakenraad, J.M.; Oosterbaan, J.A.; Nieuwenhuis, P.; Molenaar, I.; Olijslager, J.; Potman, W.; Eenink, M.J.D.; Feijen, Jan

    1988-01-01

    Biodegradable hollow fibres of poly-l-lactic acid (PLLA) filled with a suspension of the contraceptive hormone levonorgestrel in castor oil were implanted subcutaneously in rats to study the rate of drug release, rate of biodegradation and tissue reaction caused by the implant. The in vivo drug

  11. Biodegradation of penicillin-G wastewater using Phanerochate ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... emission of toxic substances and formation of sludge. In recent years, a white rot fungus, ... sporium as a potential microorganism for the biodegrade- tion of polychlorinated ... 1990), paper mill bleach plant effluent (Fukui, 1992) and spentwash (Fahy et al., ..... Studies on biodegradation of toxic compounds.

  12. Global alcohol policy and the alcohol industry.

    Science.gov (United States)

    Anderson, Peter

    2009-05-01

    The WHO is preparing its global strategy on alcohol, and, in so doing, has been asked to consult with the alcohol industry on ways it could contribute in reducing the harm done by alcohol. This review asks which is more effective in reducing harm: the regulatory approaches that the industry does not favour; or the educational approaches that it does favour. The current literature overwhelmingly finds that regulatory approaches (including those that manage the price, availability, and marketing of alcohol) reduce the risk of and the experience of alcohol-related harm, whereas educational approaches (including school-based education and public education campaigns) do not, with industry-funded education actually increasing the risk of harm. The alcohol industry should not be involved in making alcohol policy. Its involvement in implementing policy should be restricted to its role as a producer, distributor, and marketer of alcohol. In particular, the alcohol industry should not be involved in educational programmes, as such involvement could actually lead to an increase in harm.

  13. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  14. Biodegradation of creosote compounds: Comparison of experiments at different scales

    DEFF Research Database (Denmark)

    Broholm, K.; Arvin, Erik

    2001-01-01

    of the pyrroles on the biodegradation of benzene, and the biodegradation of benzothiophene occurs only in the presence of a primary substrate. The experiments show that some biodegradation processes of organic compounds may be common to different microorganisms.......This paper compares the results of biodegradation experiments with creosote compounds performed at different scales. The experiments include field observations, field experiments, large-scale intact laboratory column experiments, model fracture experiments, and batch experiments. Most...... of the experiments were conducted with till or ground water from the field site at Ringe on the island of Funen. Although the experiments were conducted on different scales, they revealed that some phenomena-e.g., an extensive biodegradation potential of several of the creosote compounds, the inhibitory influence...

  15. Best conditions for biodegradation of diesel oil by chemometric tools

    Directory of Open Access Journals (Sweden)

    Ewa Kaczorek

    2014-01-01

    Full Text Available Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences. These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7. Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for "lower" alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane.

  16. Best conditions for biodegradation of diesel oil by chemometric tools

    Science.gov (United States)

    Kaczorek, Ewa; Bielicka-Daszkiewicz, Katarzyna; Héberger, Károly; Kemény, Sándor; Olszanowski, Andrzej; Voelkel, Adam

    2014-01-01

    Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7). Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for “lower” alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane. PMID:24948922

  17. Biodegradation of PuEDTA and Impacts on Pu Mobility

    International Nuclear Information System (INIS)

    Xun, Luying; Bolton, Jr. Harvey

    2001-01-01

    Ethylenediaminetetraacetate (EDTA) and nitrilotriacetate (NTA) are synthetic chelating agents, which can form strong water-soluble complexes with radionuclides and metals and has been used to decontaminate and process nuclear materials. Synthetic chelating agents were co-disposed with radionuclides (e.g., 60Co, Pu) and heavy metals enhancing their transport in the subsurface. An understanding of EDTA biodegradation is essential to help mitigate enhanced radionuclide transport by EDTA. The objective of this research is to develop fundamental data on factors that govern the biodegradation of radionuclide-EDTA. These factors include the dominant EDTA aqueous species, the biodegradation of various metal-EDTA complexes, the uptake of various metal-EDTA complexes into the cell, the distribution and mobility of the radionuclide during and after EDTA biodegradation, and the enzymology and genetics of EDTA biodegradation

  18. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  19. [Progress on biodegradation of polylactic acid--a review].

    Science.gov (United States)

    Li, Fan; Wang, Sha; Liu, Weifeng; Chen, Guanjun

    2008-02-01

    Polylactic acid is a high molecular-weight polyester made from renewable resources such as corn or starch. It is a promising biodegradable plastic due to its mechanical properties, biocompatibility and biodegradability. To achieve natural recycling of polylactic acid, relative microorganisms and the underlying mechanisms in the biodegradation has become an important issue in biodegradable materials. Up to date, most isolated microbes capable of degrading polylactic acid belong to actinomycetes. Proteases secreted by these microorganisms are responsible for the degradation. However, subtle differences exist between these polylactic acid degrading enzymes and typical proteases with respect to substrate binding and catalysis. Amino acids relative to catalysis are postulated to be highly plastic allowing their catalytic hydrolysis of polylactic acid. In this paper we reviewed current studies on biodegradation of polylactic acid concerning its microbial, enzymatic reactions and the possible mechanisms. We also discussed the probability of biologically recycling PLA by applying highly efficient strains and enzymes.

  20. Consumo de alcohol alcoholismo

    OpenAIRE

    Rodríguez Páez, Pablo E.; Fundación Valle de Lili

    1999-01-01

    ¿Qué es el alcohol?/¿Cómo actual el alcohol en el organismo?/¿Qué efectos causa?/Efectos por el consumo crónico/¿El consumo de alcohol durante el embarazo afecta el embrión?/¿Qué otras consecuencias tiene el consumo de alcohol?/¿Cuándo se considera que una persona tiene problemas con su consumo de alcohol?/¿Cuándo se debe sospechar que alguien tiene problemas con el consumo de alcohol?/Características del saber beber adecuadamente?/¿Cuales son las alternativas de tratamiento para este problem...

  1. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Ariba [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Khan, Abdul Samad; Shahzadi, Lubna; Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore (Pakistan); Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Qureshi, Zafar-ul-Ahsan [Veterinary Research Institute, Lahore (Pakistan); Manzoor, Faisal; Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2015-11-01

    Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. - Highlights: • Novel non-steroidal anti-inflammatory drug encapsulated biodegradable electrospun nanocomposite scaffolds were synthesized. • Heat treatment displayed great influence on the morphology of scaffolds. • Fiber diameter was decreased and pore size was increased after heat

  2. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration

    International Nuclear Information System (INIS)

    Wei Yan; Zhang Xuehui; Hu Xiaoyang; Deng Xuliang; Song Yu; Lin Yuanhua; Han Bing; Wang Xinzhi

    2011-01-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe 3 O 4 /chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe 3 O 4 nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe 3 O 4 nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe 3 O 4 /CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe 3 O 4 , CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe 3 O 4 loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe 3 O 4 nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe 3 O 4 nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe 3 O 4 nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe 3 O 4 /CS/PVA nanofibrous membranes can be one of promising biomaterials for facilitation of osteogenesis.

  3. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration

    International Nuclear Information System (INIS)

    Farooq, Ariba; Yar, Muhammad; Khan, Abdul Samad; Shahzadi, Lubna; Siddiqi, Saadat Anwar; Mahmood, Nasir; Rauf, Abdul; Qureshi, Zafar-ul-Ahsan; Manzoor, Faisal; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2015-01-01

    Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. - Highlights: • Novel non-steroidal anti-inflammatory drug encapsulated biodegradable electrospun nanocomposite scaffolds were synthesized. • Heat treatment displayed great influence on the morphology of scaffolds. • Fiber diameter was decreased and pore size was increased after heat

  4. Alcoholic hepatitis.

    Science.gov (United States)

    Damgaard Sandahl, Thomas

    2014-10-01

    Alcoholic hepatitis (AH) is an acute inflammatory syndrome causing significant morbidity and mortality. The prognosis is strongly dependent on disease severity, as assessed by clinical scoring systems. Reliable epidemiological data as well as knowledge of the clinical course of AH are essential for planning and resource allocation within the health care system. Likewise, individual evaluation of risk is desirable in the clinical handling of patients with AH as it can guide treatment, improve patient information, and serve as strata in clinical trials. The present PhD thesis is based on three studies using a cohort of nearly 2000 patients diagnosed with AH in Denmark from 1999 to 2008 as a cohort, in a population-based study design. The aims of this thesis were as follows. (1) To describe the incidence and short- and long-term mortality, of AH in Denmark (Study I). (2) To validate and compare the ability of the currently available prognostic scores to predict mortality in AH (Study II). (3) To investigate the short- and long-term causes of death of patients with AH (Study III). During the study decade, the annual incidence rate in the Danish population rose from 37 to 46 per 106 for men and from 24 to 34 per 106 for women. Both short- and long-term mortality rose for men and women, and the increase in short-term mortality was attributable to increasing patient age and prevalence of cirrhosis. Our evaluation of the most commonly used prognostic scores for predicting the mortality of patients with AH showed that all scores performed similarly, with Area under the Receiver Operator Characteristics curves giving values between 0.74 and 0.78 for 28-day mortality assessed on admission. Our study on causes of death showed that in the short-term (thesis provides novel warranted epidemiological information about AH that shows increasing incidence and mortality rates. Consequently, it reiterates the fact that AH is a life-threatening disease and suggests that AH is an

  5. Biodegradation of nonylphenol in river sediment

    International Nuclear Information System (INIS)

    Yuan, S.Y.; Yu, C.H.; Chang, B.V.

    2004-01-01

    We investigated the biodegradation of nonylphenol monoethoxylate (NP1EO) and nonylphenol (NP) by aerobic microbes in sediment samples collected at four sites along the Erren River in southern Taiwan. Aerobic degradation rate constants (k 1 ) and half-lives (t 1/2 ) for NP (2 μg g -1 ) ranged from 0.007 to 0.051 day -1 and 13.6 to 99.0 days, respectively; for NP1EO (2 μg g -1 ) the ranges were 0.006 to 0.010 day -1 and 69.3 to 115.5 days. Aerobic degradation rates for NP and NP1EO were enhanced by shaking and increased temperature, and delayed by the addition of Pb, Cd, Cu, Zn, phthalic acid esters (PAEs), and NaCl, as well as by reduced levels of ammonium, phosphate, and sulfate. Of the microorganism strains isolated from the sediment samples, we found that strain JC1 (identified as Pseudomonas sp.) expressed the best biodegrading ability. Also noted was the presence of 4'-amino-acetophenone, an intermediate product resulting from the aerobic degradation of NP by Pseudomonas sp. - The effects of manipulating several factors on nonylphenol and nonylphenol monoethoxylate degradation in river sediment were analysed

  6. Fabrication of environmentally biodegradable lignin nanoparticles.

    Science.gov (United States)

    Frangville, Camille; Rutkevičius, Marius; Richter, Alexander P; Velev, Orlin D; Stoyanov, Simeon D; Paunov, Vesselin N

    2012-12-21

    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The first method is based on precipitation of low-sulfonated lignin from an ethylene glycol solution by using diluted acidic aqueous solutions, which yields lignin NPs that are stable over a wide range of pH. The second approach is based on the acidic precipitation of lignin from a high-pH aqueous solution which produces NPs stable only at low pH. Our study reveals that lignin NPs from the ethylene glycol-based precipitation contain densely packed lignin domains which explain the stability of the NPs even at high pH. We characterised the properties of the produced lignin NPs and determined their loading capacities with hydrophilic actives. The results suggest that these NPs are highly porous and consist of smaller lignin domains. Tests with microalgae like Chlamydomonas reinhardtii and yeast incubated in lignin NP dispersions indicated that these NPs lack measurable effect on the viability of these microorganisms. Such biodegradable and environmentally compatible NPs can find applications as drug delivery vehicles, stabilisers of cosmetic and pharmaceutical formulations, or in other areas where they may replace more expensive and potentially toxic nanomaterials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Immunological Response to Biodegradable Magnesium Implants

    Science.gov (United States)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  8. Polymeric Biodegradable Stent Insertion in the Esophagus

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2016-04-01

    Full Text Available Esophageal stent insertion has been used as a well-accepted and effective alternative to manage and improve the quality of life for patients diagnosed with esophageal diseases and disorders. Current stents are either permanent or temporary and are fabricated from either metal or plastic. The partially covered self-expanding metal stent (SEMS has a firm anchoring effect and prevent stent migration, however, the hyperplastic tissue reaction cause stent restenosis and make it difficult to remove. A fully covered SEMS and self-expanding plastic stent (SEPS reduced reactive hyperplasia but has a high migration rate. The main advantage that polymeric biodegradable stents (BDSs have over metal or plastic stents is that removal is not require and reduce the need for repeated stent insertion. But the slightly lower radial force of BDS may be its main shortcoming and a post-implant problem. Thus, strengthening support of BDS is a content of the research in the future. BDSs are often temporarily effective in esophageal stricture to relieve dysphagia. In the future, it can be expect that biodegradable drug-eluting stents (DES will be available to treat benign esophageal stricture, perforations or leaks with additional use as palliative modalities for treating malignant esophageal stricture, as the bridge to surgery or to maintain luminal patency during neoadjuvant chemoradiation.

  9. Production of biodegradable plastic from agricultural wastes

    Directory of Open Access Journals (Sweden)

    N.A. Mostafa

    2018-05-01

    Full Text Available Agricultural residues management is considered to be a vital strategy in order to accomplish resource conservation and to maintain the quality of the environment. In recent years, biofibers have attracted increasing interest due to their wide applications in food packaging and in the biomedical sciences. These eco-friendly polymers reduce rapidly and replace the usage of the petroleum-based synthetic polymers due to their safety, low production costs, and biodegradability. This paper reports an efficient method for the production of the cellulose acetate biofiber from flax fibers and cotton linters. The used process satisfied a yield of 81% and 54% for flax fibers and cotton linters respectively (based on the weight of the cellulosic residue used. The structure of the produced bioplastic was confirmed by X-ray diffraction, FT-IR and gel permeation chromatography. Moreover, this new biopolymer is biodegradable and is not affected by acid or salt treatment but is alkali labile. A comparison test showed that the produced cellulose acetate was affected by acids to a lesser extent than polypropylene and polystyrene. Therefore, this new cellulose acetate bioplastics can be applied in both the food industry and medicine. Keywords: Cotton linters, Flax fibers, Cellulose acetate, Preparation, Characterization

  10. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  11. Design Considerations for Developing Biodegradable Magnesium Implants

    Science.gov (United States)

    Brar, Harpreet S.; Keselowsky, Benjamin G.; Sarntinoranont, Malisa; Manuel, Michele V.

    The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. The complexity arises from the fact that biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and micro structure, and its effect on cellular behavior can be a difficult and time intensive process. A systems design approach driven by thermodynamics has the power to provide significant contributions in developing the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations and hurdles for developing new magnesium alloys for use as biodegradable implant materials [1].

  12. Hydrocarbon biodegradation in intertidal wetland sediments.

    Science.gov (United States)

    McGenity, Terry J

    2014-06-01

    Intertidal wetlands, primarily salt marsh, mangrove and mudflats, which provide many essential ecosystem services, are under threat on numerous fronts; a situation that is made worse by crude-oil pollution. Microbes are the main vehicle for remediation of such sediments, and new discoveries, such as novel biodegradation pathways, means of accessing oil, multi-species interactions, and community-level responses to oil addition, are helping us to understand, predict and monitor the fate of oil. Despite this, there are many challenges, not least because of the heterogeneity of these ecosystems and the complexity of crude oil. For example, there is growing awareness about the toxicity of the oxygenated products that result from crude-oil weathering, which are difficult to degrade. This review highlights how developments in areas as diverse as systems biology, microbiology, ecology, biogeochemistry and analytical chemistry are enhancing our understanding of hydrocarbon biodegradation and thus bioremediation of oil-polluted intertidal wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  14. Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Kaminski, M. D.; Chen, H.; Torno, M.; Taylor, L.; Rosengart, A. J.; Univ. of Chicago

    2007-05-14

    The objective of this study was to develop high magnetization, biodegradable/biocompatible polymer-coated magnetic nanospheres for biomedical applications. Magnetic spheres were prepared by a modified single oil-in-water emulsion-solvent evaporation method utilizing highly-concentrated hydrophobic magnetite and poly(d,l lactide-co-glycolide) (PLGA). Hydrophobic magnetite prepared using oleic acid exhibited high magnetite concentrations (84 wt.%) and good miscibility with biopolymer solvents to form a stable oily suspension. The oily suspension was then emulsified within an aqueous solution containing poly(vinyl alcohol). After rapid evaporation of the organic solvent, we obtained solid magnetic nanospheres. We characterized these spheres in terms of external morphology, microstructure, size and zeta potential, magnetite content and distribution within the nanospheres, and magnetic properties. The results showed good encapsulation where the magnetite distorted the smooth surface morphology only at the highest magnetite concentrations. The mean diameter was 360-370 nm with polydispersity indices of 0.12-0.20. We obtained high magnetite content (40-60%) and high magnetization (26-40 emu/g). The high magnetization properties were obtained while leaving sufficient polymer to retain drugs making these biodegradable spheres suitable as a potential platform for the design of magnetically-guided drug delivery and other in vivo biomagnetic applications.

  15. Mechanical Properties and Biodegradability of the Kenaf/Soy Protein Isolate-PVA Biocomposites

    Directory of Open Access Journals (Sweden)

    Jong Sung Won

    2015-01-01

    Full Text Available The effective utilization of original natural fibers as indispensable components in natural resins for developing novel, low-cost, eco-friendly biocomposites is one of the most rapidly emerging fields of research in fiber-reinforced composite. The objective of this study is to investigate the interfacial adhesion properties, water absorption, biodegradation properties, and mechanical properties of the kenaf/soy protein isolate- (SPI- PVA composite. Experimental results showed that 20 wt% poly (vinyl alcohol (PVA and 8 wt% glutaraldehyde (GA created optimum conditions for the consolidation of the composite. The increase of interfacial shear strength enhanced the composites flexural and tensile strength of the kenaf/SPI-PVA composite. The kenaf/SPI-PVA mechanical properties of the composite also increased with the content of cross-linking agent. Results of the biodegradation test indicated that the degradation time of the composite could be controlled by the cross-linking agent. The degradation rate of the kenaf/SPI-PVA composite with the cross-linking agent was lower than that of the composite without the cross-linking agent.

  16. Comparative tests on the biodegradation of secondary alkane sulphonate, using 14C-labelled preparations

    International Nuclear Information System (INIS)

    Loetzsch, K.; Neufahrt, A.; Taeuber, G.

    1979-01-01

    The biodegradability of 14 C-labelled and unlabelled secondary alkane sulphonates (SAS) and an unlabelled alkyl benzene sulphonate as well as ar ring-labelled sodium-4-(dodecyl-(4'))-benzene sulphonate (LAS) was tested over a period of 12 days with slight germ introduction under aerobic conditions (Hach apparatus). In the 'one-pot method' (simultaneous determination of MBAS, DOC and BSB) with the unlabelled A-surfactants, it was shown that biodegradation of both substances started at different speeds and is almost finished after 15 days in the case of SAS and after 30 days in the case of LAS. The tests with radioactively labelled secondary alkane sulphonate showed that the greater part of the surfactant carbon is quickly degraded to CO 2 . It therefore behaves like uniformly labelled stearate or like a stearyl alcohol ethoxylate uniformly labelled in the alkyl chain. Both were included in the tests as reference substances. The dissimilation processes of the ring-labelled linear alkyl benzene sulphonate are delayed. Here, CO 2 formation started only after a few days. (orig.) [de

  17. Co-concentration effect of silane with natural extract on biodegradable polymeric films for food packaging.

    Science.gov (United States)

    Bashir, Anbreen; Jabeen, Sehrish; Gull, Nafisa; Islam, Atif; Sultan, Misbah; Ghaffar, Abdul; Khan, Shahzad Maqsood; Iqbal, Sadia Sagar; Jamil, Tahir

    2018-01-01

    Novel biodegradable films were prepared by blending guar gum, chitosan and poly (vinyl alcohol) having mint (ME) and grapefruit peel (GE) extracts and crosslinked with nontoxic tetraethoxysilane (TEOS). The co-concentration effect of TEOS with natural extracts on the films was studied. FTIR analysis confirmed the presence of incorporated components and the developed interactions among the polymer chains. The surface morphology of the films by SEM showed the hydrophilic character due to porous network structure. The films having both ME and GE with maximum amount of crosslinker (100μL), showed maximum swelling (58g/g) and stability while the optical properties showed increased protection against UV light. This film sample showed compact network structure which enhanced the ultimate tensile strength (40.03MPa) and elongation at break (104.8%). ME/GE conferred the antioxidant properties determined by radical scavenging activity and total phenolic contents (TPC) as ME films have greater TPC compared to GE films. The soil burial test exhibited the degradation of films rapidly (6days) confirming their strong microbial activity in soil. The lower water vapour transmission rate and water vapour permeability showed better shelf life; hence, these biodegradable films are environmental friendly and have potential for food and other packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  19. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    International Nuclear Information System (INIS)

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2016-01-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  20. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  1. Radiation modified sago-blends and its potential for biodegradable packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Idris, S.; Dahlan, K.Z. [Malaysian Institute for Nuclear Technology Research, Bangi, Kajang (Malaysia); Wongsuban, B.; Adzahan, N.M.; Ithnin, L. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Serdang (Malaysia)

    2002-03-01

    This paper describes work at MINT on the characterisation and development of sago blends as alternative biodegradable packaging materials. A study was undertaken to investigate the effect of formulation, mixing temperature and irradiation dosage on expansion of sago starch-polyvinyl alcohol (PVA) and sago-polyvinyl pyrrolidone (PVP) blends based foam. The foams were produced by microwaving irradiated hydrogels prepared by mixing sago starch with aqueous PVA or PVP. In the development of starch-based plastic, the effect of different composition and different irradiation dosage were studied to evaluate films with good tensile properties, elongation, gas permeability and water vapor transmission rate and also the biodegradability of the film using soil burial test. In another development, irradiation i.e. microwave, electron beam and gamma, has been investigated as a means of degrading the starch granules, which leads to an increase in the amount soluble materials leached. Results showed that irradiation caused an increase in leaching, and a concomitant drastic reduction in swelling volumes of starch granules. It is also showed that the strength of starch gels and viscosity decreased as the levels of irradiation was increased. The degraded starches will be incorporated as an ingredient in the fish cracker and characterized its properties. (author)

  2. Biodegradable and bioactive CGP/PVA film for fungal growth inhibition.

    Science.gov (United States)

    Silva, Bárbara Dumas S; Ulhoa, Cirano J; Batista, Karla A; Di Medeiros, Maria Carolina; Da Silva Filho, Rômulo Roosevelt; Yamashita, Fabio; Fernandes, Kátia F

    2012-07-01

    In this study, chitinolytic enzymes produced by Trichoderma asperellum were immobilized on a biodegradable film manufactured with a blend of cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA), and tested as a fungal growth inhibitor. The film was produced by casting a blend of CGP and PVA solution on glass molds. The CGP/PVA film showed 68% water solubility, tensile strength of 23.7 MPa, 187.2% elongation and 52% of mass loss after 90 days in soil. The presence of T-CWD enzymes immobilized by adsorption or covalent attachment resulted in effective inhibition of fungal growth. Sclerotinia sclerotiorum was the most sensitive organism, followed by Aspergillus niger and Penicillium sp. SEM micrograph showed that the presence of immobilized T-CWD enzymes on CGP/PVA film produced morphological modifications on vegetative and germinative structures of the microorganisms, particularly hyphae disruption and changes of spores shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Women and Alcohol

    Science.gov (United States)

    ... turn JavaScript on. Feature: Rethinking Drinking Women and Alcohol Past Issues / Spring 2014 Table of Contents Women react differently than men to alcohol and face higher risks from it. Pound for ...

  4. Alcohol and Cancer Risk

    Science.gov (United States)

    ... or more than 14 drinks per week for men. What is the evidence that alcohol drinking is a cause of cancer? Based on extensive reviews of research studies , there is a strong scientific consensus of an association between alcohol drinking ...

  5. Genetics of Alcoholism.

    Science.gov (United States)

    Zhu, Ena C; Soundy, Timothy J; Hu, Yueshan

    2017-05-01

    Consuming excessive amounts of alcohol has the potential to modify an individual's brain and lead to alcohol dependence. Alcohol use leads to 88,000 deaths every year in the U.S. alone and can lead to other health issues including cancers, such as colorectal cancer, and mental health problems. While drinking behavior varies due to environmental factors, genetic factors also contribute to the risk of alcoholism. Certain genes affecting alcohol metabolism and neurotransmitters have been found to contribute to or inhibit the risk. Geneenvironment interactions may also play a role in the susceptibility of alcoholism. With a better understanding of the different components that can contribute to alcoholism, more personalized treatment could cater to the individual. This review discusses the major genetic factors and some small variants in other genes that contribute to alcoholism, as well as considers the gene-environmental interactions. Copyright© South Dakota State Medical Association.

  6. Children of alcoholics

    Directory of Open Access Journals (Sweden)

    Robert Oravecz

    2002-09-01

    Full Text Available The author briefly interprets the research – results, referring to the phenomenon of children of alcoholics, especially the psychological and psychopathological characteristics of children of alcoholics in adolescence and young adulthood. The author presents a screening study of adolescents. The sample contains 200 high school students at age 18. The aim of the survey was to discover the relationship between alcohol consumption of parents, PTSD - related psychopathological symptoms and reported life quality of their children. The study confirmed the hypothesis about a substantial correlation between high alcohol consumption of parents, higher psychopathological symptom - expression and lower reported life quality score of their children. Higher PTSD-related symptomatology in children of alcoholics is probably resulted by home violence, which is very often present in family of alcoholics. The article also evaluated the results regarding suicide ideation of children of alcoholics, which is definitely more frequent and more intense than in their peers living in non alcohol – dependent families.

  7. an Unrecorded Alcohol Beverage

    African Journals Online (AJOL)

    NICO

    Chemical analysis of volatile compounds fromkhadi, an unrecorded alcoholic beverage from Botswana, was ... quality, some of them may be contaminated and toxic, thereby ... home-brewed alcoholic beverages exist in Botswana and are.

  8. Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Alcohol can harm your baby at any stage during a pregnancy. That includes the earliest stages, before ... can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Children who are born with ...

  9. Benzyl Alcohol Topical

    Science.gov (United States)

    Benzyl alcohol lotion is used to treat head lice (small insects that attach themselves to the skin) in adults ... children less than 6 months of age. Benzyl alcohol is in a class of medications called pediculicides. ...

  10. What We Fund - Alcohol

    International Development Research Centre (IDRC) Digital Library (Canada)

    NCDP

    Analysis of the regulatory environment (national ... Predicting and evaluating policy impact. PA. N ... constrain the use of a holistic approach engaging ... alcohol, and ultra-processed food and drink industries, ... Alcohol and Other Drugs, 2003.

  11. Alcohol Facts and Statistics

    Science.gov (United States)

    ... Standard Drink? Drinking Levels Defined Alcohol Facts and Statistics Print version Alcohol Use in the United States: ... 1238–1245, 2004. PMID: 15010446 National Center for Statistics and Analysis. 2014 Crash Data Key Findings (Traffic ...

  12. Alcohol use disorder

    Science.gov (United States)

    ... have problems with alcohol if you: Are a young adult under peer pressure Have depression, bipolar disorder , anxiety disorders , or schizophrenia Can easily obtain alcohol Have low self-esteem Have problems with relationships Live a stressful lifestyle ...

  13. Alcoholism and Lesbians

    Science.gov (United States)

    Gedro, Julie

    2014-01-01

    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and…

  14. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-01-01

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines

  15. Biodegradation studies of diesel-contaminated soils and sediments

    International Nuclear Information System (INIS)

    Schlauch, M.; Clark, D.

    1992-01-01

    Radian Corporation is currently remediating the Atchison, Topeka and Sante Fe Railway Superfund site in Clovis, New Mexico. Biodegradation of the petroleum hydrocarbon-contaminated soils and sediments was chosen as the remedial alternative. In order to evaluate the optimum conditions for full-scale bioremediation at this site, Radian designed and implemented various laboratory and field studies. The initial laboratory treatability study was conducted to determine if hydrocarbons in both soils and sediments could be biodegraded using indigenous microorganisms, and determine that the soil were biodegradable, while the sediments were not due to inhibitory factors. To further evaluate the biodegradability6 of the sediments, a laboratory study was initiated which introduced chloride-resistant microbes. The study showed that the sediment bioremediation was possibly by utilizing these microbes; however, the cost was not favorable. Finally, a field plot study was initiated to determine how soil biodegradation would proceed in field conditions, to optimize influencing factors such as moisture and nutrient levels and bioseed addition, and to investigate alternate methods of bioremediating the sediments. Results showed that hydrocarbons in the soils biodegraded much faster in the field than in the lab, and that hydrocarbons in sediments applied to biotreated soils containing acclimated microorganisms were successfully biodegraded

  16. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  17. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    Full Text Available Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  18. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  19. Processing biodegradable waste by applying aerobic digester EWA

    Directory of Open Access Journals (Sweden)

    Đokić Dragoslav

    2014-01-01

    Full Text Available The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of biodegradable waste, including sewage sludge and animal products produced in accordance with European Union regulations. Fermenter is intended to be used for combustion in boilers for solid fuels with humidity of biomaterials below 30%.

  20. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  1. Lignin Biodegradation with Laccase-Mediator Systems

    International Nuclear Information System (INIS)

    Christopher, Lew Paul; Yao, Bin; Ji, Yun

    2014-01-01

    Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low-molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential “breakthrough” applications for lignin valorization. Here, we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  2. Corrosion mechanism applicable to biodegradable magnesium implants

    Energy Technology Data Exchange (ETDEWEB)

    Atrens, Andrej, E-mail: Andrejs.Atrens@uq.edu.au [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia); Liu Ming; Zainal Abidin, Nor Ishida [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia)

    2011-12-15

    Much of our understanding of the Mg corrosion mechanism is based on research using aggressive chloride based solutions like 3% NaCl, which are appropriate for understand the corrosion for applications such as auto construction. The chloride ions tend to cause break down of the partly protective surface film on the Mg alloy surface. The corrosion rate increases with exposure time until steady state is reached, which may take several weeks. An overview is provided of the aspects which determine the corrosion of Mg alloys: (i) measurement details; (ii) impurity elements Fe, Ni, Cu and Co; (iii) second phases; (iv) surface films and surface condition and (v) stress corrosion cracking (SCC). This understanding is used to help understand Mg corrosion for Mg as a biodegradable implant for medical applications. Solutions that elucidate these applications tend to form surface films and the corrosion rate tends to decrease with immersion time.

  3. Biodegradation of polyester. Polyester no bunkai sei

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwa, Y. (Agency of Industrial Science and Technology, Tokyo (Japan). Fermentation Research Inst.)

    1991-09-10

    Penicillium sp. 14-3 and penicillium sp. 26-1 can degrade various kinds of polyester. The results of studies made on hydrolysis of polyester by enzyme, hydrolysis of polyester by various kinds of lipase, and degradation of ester type polyurethane by microbes and lipase are introduced. For the improvement of physical properties of aliphatic polyester, aromatic-aliphatic polyester copolymers (CPE) have been synthesized to study the biodegradability. Copolymer in which a number of polyamide (nylon) are alternately introduced (CPAE) to aliphatic polyester has been developed. The result of studies made on the degradability of a blended body of PCL and natural high polymer, and on the collapsibility by lipase of high polymer materials including aliphatic polyamide are introduced. 26 refs., 5 figs., 1 tab.

  4. Lignin Biodegradation with Laccase-Mediator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Christopher, Lew Paul, E-mail: lew.christopher@sdsmt.edu [Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, Rapid City, SD (United States); Department of Civil and Environmental Engineering, South Dakota School of Mines & Technology, Rapid City, SD (United States); Yao, Bin [Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, Rapid City, SD (United States); Ji, Yun [Department of Chemical Engineering, University of North Dakota, Grand Forks, ND (United States)

    2014-03-31

    Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low-molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential “breakthrough” applications for lignin valorization. Here, we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  5. Biodegradability of Poly(hydroxyalkanoate Materials

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2009-08-01

    Full Text Available Poly(hydroxyalkanoate (PHA, which is produced from renewable carbon resources by many microorganisms, is an environmentally compatible polymeric material and can be processed into films and fibers. Biodegradation of PHA material occurs due to the action of extracellular PHA depolymerase secreted from microorganisms in various natural environments. A key step in determining the overall enzymatic or environmental degradation rate of PHA material is the degradation of PHA lamellar crystals in materials; hence, the degradation mechanism of PHA lamellar crystals has been studied in detail over the last two decades. In this review, the relationship between crystal structure and enzymatic degradation behavior, in particular degradation rates, of films and fibers for PHA is described.

  6. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  7. Biodegradation of concrete intended for their decontamination

    International Nuclear Information System (INIS)

    Jestin, A.

    2005-05-01

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  8. Generalized TBA and generalized Gibbs

    NARCIS (Netherlands)

    Mossel, J.; Caux, J.-S.

    2012-01-01

    We consider the extension of the thermodynamic Bethe Ansatz to cases in which additional terms involving higher conserved charges are added to the Hamiltonian, or in which a distinction is made between the Hamiltonian used for time evolution and that used for defining the density matrix. Writing

  9. Biodegradation of hydrocarbons exploiting spent substrate from ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the mushroom substrate of P. ostreatus in a microcosm for the bioremediation of an agricultural soil contaminated with diesel. We evaluated the participation of microbial populations and specific enzymatic lacasses, manganese peroxidases, versatile peroxidases, veratryl alcohol ...

  10. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams.

    Science.gov (United States)

    Álvarez-Barragán, Joyce; Domínguez-Malfavón, Lilianha; Vargas-Suárez, Martín; González-Hernández, Ricardo; Aguilar-Osorio, Guillermo; Loza-Tavera, Herminia

    2016-09-01

    Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm(-1)) and N-H bonds (1,540 and 1,261 cm(-1)), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU. Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of polyurethanes are reported, and

  11. Optimizing BTEX biodegradation under denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.

    1991-01-01

    Leaking underground storage tanks are a major source of ground water contamination by petroleum hydrocarbons. Gasoline and other fuels contain benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX), which are hazardous compounds, regulated by the U.S. Environmental Protection Agency (EPA). Laboratory tests were conducted to determine optimum conditions for benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX) biodegradation by aquifer microorganisms under denitrifying conditions. Microcosms, constructed with aquifer samples from Traverse City, Michigan, were amended with selected concentrations of nutrients and one or more hydrocarbons. Toluene, ethylbenzene, m-xylene, and p-xylene, were degraded to below 5 micrograms/L when present as sole source substrates; stoichiometric calculations indicated that nitrate removal was sufficient to account for 70 to 80% of the compounds being mineralized. o-Xylene was recalcitrant when present as a sole source substrate, but was slowly degraded in the presence of the other hydrocarbons. Benzene was not degraded within one year, regardless of whether it was available as a sole source substrate or in combination with toluene, phenol, or catechol. Pre-exposure to low levels of BTEX and nutrients had variable effects, as did the addition of different concentrations of ammonia and phosphate. Nitrate concentrations as high as 500 mg/L NO3-N were slightly inhibitory. These data indicate that nitrate-mediated biodegradation of BTEX at Traverse City can occur under a variety of environmental conditions with rates relatively independent of nutrient concentrations. However, the data reaffirm that benzene is recalcitrant under strictly anaerobic conditions in these samples

  12. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  13. Genetics and alcoholism.

    Science.gov (United States)

    Edenberg, Howard J; Foroud, Tatiana

    2013-08-01

    Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

  14. On molybdenum (6) alcoholates

    International Nuclear Information System (INIS)

    Turova, N.Ya.; Kessler, V.G.

    1990-01-01

    Synthesis techniques for molybdenum (6) alcoholates of MoO(OR) 4 (1) and MoO 2 (OR) 2 (2) series by means of exchange interaction of corresponding oxychloride with MOR (M=Li, Na) are obtained. These techniques have allowed to prepare 1(R=Me, Et, i-Pr) and 2(R=Me, Et) with 70-98 % yield. Methylates are also prepared at ether interchange of ethylates by methyl alcohol. Metal anode oxidation in corresponding alcohol may be used for 1 synthesis. Physicochemical properties of both series alcoholates, solubility in alcohols in particular, depend on their formation conditions coordination polymerism. Alcoholates of 1 are rather unstable and tend to decomposition up to 2 and ether. It is suggested to introduce NaOR microquantities to stabilize those alcoholates

  15. Alcohol and atherosclerosis

    DEFF Research Database (Denmark)

    Tolstrup, Janne; Grønbaek, Morten

    2007-01-01

    Light to moderate alcohol intake is known to have cardioprotective properties; however, the magnitude of protection depends on other factors and may be confined to some subsets of the population. This review focuses on factors that modify the relationship between alcohol and coronary heart disease...... (CHD). The cardioprotective effect of alcohol seems to be larger among middle-aged and elderly adults than among young adults, who do not have a net beneficial effect of a light to moderate alcohol intake in terms of reduced all-cause mortality. The levels of alcohol at which the risk of CHD is lowest...... and the levels of alcohol at which the risk of CHD exceeds the risk among abstainers are lower for women than for men. The pattern of drinking seems important for the apparent cardioprotective effect of alcohol, and the risk of CHD is generally lower for steady versus binge drinking. Finally, there is some...

  16. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation

    Directory of Open Access Journals (Sweden)

    Basudev Sahana

    2010-08-01

    Full Text Available Basudev Sahana, Kousik Santra, Sumit Basu, Biswajit MukherjeeDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, IndiaAbstract: The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide-85:15 (PLGA was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.Keywords: biodegradable, nanoparticles, PLGA, stability, tamoxifen citrate

  17. Changes in sleep characteristics and airway obstruction in OSAHS patients with multi-level obstruction following simple UPPP, UPPP-GA, or UPPP-TBA: a prospective, single-center, parallel group study.

    Science.gov (United States)

    Chen, Shicai; Shi, Song; Xia, Yanghui; Liu, Fei; Chen, Donghui; Zhu, Minhui; Li, Meng; Zheng, Hongliang

    2014-01-01

    To investigate changes in S3 sleep and the apnea hypopnea index (AHI), SpO2 desaturation and CT90, and to determine changes in the degree of airway collapse and in the cross-sectional area of the retropalatal and lingual region in obstructive sleep apnea hypopnea syndrome patients. All subjects underwent overnight polysomnography and were evaluated using Müller's test and magnetic resonance imaging at baseline, 3, and 12 months following surgery. The mean S3 scores in patients receiving uvulopalatopharyngoplasty combined with genioglossus advancement (UPPP-GA) or UPPP combined with tongue base advancement using the Repose™ system (UPPP-TBA) noticeably increased. Marked improvement was seen in the mean AHI, LSO2, and CT90 scores 3 and 12 months following surgery compared to baseline. Airway collapsed by 25-50% in the greatest proportion undergoing surgery at the tongue base. UPPP-GA and UPPP-TBA more effectively improve S3 sleep, and mean AHI, LSO2, and CT90 scores. In addition, they effectively alleviate airway obstruction by improving the cross-sectional area of these regions. © 2014 S. Karger AG, Basel.

  18. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.

    Science.gov (United States)

    Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  19. Compounds interaction on biodegradation of toluene and methyl ...

    African Journals Online (AJOL)

    MEK) mixtures in a composite bead biofilter was investigated. The biodegradation rate of two compounds in the exponential growth phase and stationary phase for the single compound and two compounds mixing systems was determined.

  20. Biodegradation Potential of Oil-based Drill Cuttings Encapsulated ...

    African Journals Online (AJOL)

    Michael Horsfall

    significant attention has been turned toward encouraging ... impact indicators for biodegradation of wastes and environmental assessment (Videla, 1996; Godley. 2003; Stein ... Nitrate and sulphate concentration of samples was determined.

  1. Microbial biodegradable potato starch based low density polyethylene

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Key words: Low density polyethylene, fungi, biodegradable polymer, Pseudomonas aeruginosa. ... particle such as CO2 or water by microorganism's activities. ... package and production of bags, composites and agricultural.

  2. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge

    Czech Academy of Sciences Publication Activity Database

    Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, Marie

    2015-01-01

    Roč. 111, Jan (2015), s. 176-184 ISSN 0141-3910 Institutional support: RVO:61388963 Keywords : poly(ethylene terephthalate) * copolymers * sludge * biodegradation * hydrolysis * waste Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.120, year: 2015

  3. Biodegradation of phenol-formaldehyde resins modified with commercial lignins

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M.; Nicolau, V. V. [Universidad Tecnologica Nacional (UTN), Cordoba (Argentina); Sponon, M.; Estenoz, D.A. [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC/UNL/CONICET), Santa Fe (Argentina)

    2014-07-01

    Full text: In this work the biodegradation of partially-modified resols with 10% w/w of sodium lignosulfonate and 10 and 20 % w/w of Kraft lignin type is studied. The experimental work involved preliminary studies of biodegradation in Petri dish (clear zones), the degradation of resols by enzymatic attack of Pseudomonas aeruginosa under aerobic conditions for a period of 200 days and the characterization of the polymers before and after biodegradation by FT-IR and RMN spectroscopy, gas chromatography (GC) and scanning electron microscopy (SEM). The number of viable cells showed a significant increase during the process. However, the gravimetric analysis was not sufficient to check the biodegradation. The results indicated that endocellular enzymes could be involved. It was observed that the presence of low concentrations of toxic substances released during degradation of the material may have inhibitory effects. Resoles were synthesized in Centro S. A. San Francisco Cordoba, Argentina. (author)

  4. Biodegradation and bioresorption of poly(-caprolactone) nanocomposite scaffolds

    CSIR Research Space (South Africa)

    Mkhabela, V

    2015-08-01

    Full Text Available confirmed the elemental composition of the scaffolds. The phase composition of the scaffolds was shown by XRD, which also indicated a decrease in crystallinity with the introduction of nanoclay. Biodegradability studies which were conducted in simulated...

  5. Biodegradation of hydrocarbon compounds in Agbabu natural bitumen

    African Journals Online (AJOL)

    Infrared spectral changes and gravimetric analysis from the preliminary biodegradability study carried out on Agbabu Natural Bitumen showed the vulnerability of the bitumen to some bacteria: Pseudomonas putrefaciens, Pseudomonas nigrificans, Bacillus licheniformis, Pseudomonas fragi and Achromobacter aerogenes.

  6. State-of-the-art of biodegradable composite materials

    International Nuclear Information System (INIS)

    Baley, Ch.; Grohens, Y.; Pillin, I.

    2004-01-01

    Nowadays, the market demand for environment friendly materials is in strong growth. The biodegradable composites (biodegradable fibres and polymers) mainly extracted from renewable resources will be a major contributor to the production of new industrial high performance products partially solving the problem of waste management. At the end of the lifetime, a structural bio-composite could be be crushed and recycled through a controlled industrial composting process. This the state-of-the-art report focuses on the biopolymers the vegetable fibres properties, the mechanisms of biodegradation and the examples of biodegradable composites. Eco-design of new products requires these new materials for which a life cycle analysis is nevertheless necessary to validate their environmental benefits. (authors)

  7. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Courant, T; Roullin, V G; Andry, M C [Institut de Chimie Moleculaire de Reims, CNRS UMR 6229, UFR Pharmacie Reims, 51 rue Cognacq-Jay, F-51100 Reims (France); Cadiou, C; Chuburu, F [Institut de Chimie Moleculaire de Reims, CNRS UMR 6229, UFR des Sciences Exactes et Naturelles, Batiment 18-Europol' Agro, BP 1039, F-51687 Reims Cedex 2 (France); Delavoie, F [Laboratoire de Microscopie Electronique Analytique, INSERM UMRS 926, 21 rue Clement Ader, F-51685 Reims Cedex 2 (France); Molinari, M [Laboratoire de Microscopies et d' Etudes des Nanostructures, UFR des Sciences, Universite de Reims Champagne-Ardenne, 21 rue Clement Ader, F-51685 Reims Cedex 2 (France); Gafa, V, E-mail: gaelle.roullin@univ-reims.fr, E-mail: francoise.chuburu@univ-reims.fr [EA4303 ' Inflammation et Immunite de l' Epithelium Respiratoire' , IFR53, UFR de Pharmacie, Universite de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, F-51100 Reims (France)

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  8. Mechanical strength and stiffness of biodegradable and titanium osteofixation systems

    NARCIS (Netherlands)

    Buijs, Gerrit J.; van der Houwen, Eduard B.; Bos, Rudulf R. M.; Verkerke, Gijsbertus J.

    Purpose: To present relevant mechanical data to simplify the selection of an osteofixation system for situations requiring immobilization in oral and maxillofacial surgery. Materials and Methods: Seven biodegradable and 2 titanium osteofixation systems were investigated. The plates and screws were

  9. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The influence of nonionic surfactant Brij 30 on biodegradation of ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... polluted air stream using biological process is highly efficient and has low ... Brij 30 was the most biodegradable surfactant among Brij 30, Tween 80 and ... The filter material contained surfactants that would enhance the ...

  11. Base Oils Biodegradability Prediction with Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Malika Trabelsi

    2010-02-01

    Full Text Available In this paper, we apply various data mining techniques including continuous numeric and discrete classification prediction models of base oils biodegradability, with emphasis on improving prediction accuracy. The results show that highly biodegradable oils can be better predicted through numeric models. In contrast, classification models did not uncover a similar dichotomy. With the exception of Memory Based Reasoning and Decision Trees, tested classification techniques achieved high classification prediction. However, the technique of Decision Trees helped uncover the most significant predictors. A simple classification rule derived based on this predictor resulted in good classification accuracy. The application of this rule enables efficient classification of base oils into either low or high biodegradability classes with high accuracy. For the latter, a higher precision biodegradability prediction can be obtained using continuous modeling techniques.

  12. Fluorene biodegradation potentials of Bacillus strains isolated from ...

    African Journals Online (AJOL)

    Fluorene biodegradation potentials of Bacillus strains isolated from tropical ... Bacillus strains, putatively identified as Bacillus subtilis BM1 and Bacillus amyloliquefaciens BR1 were ... African Journal of Biotechnology, Vol 13(14), 1554-1559 ...

  13. Biodegradation of detergents by aquatic bacterial flora from Otamiri ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Full Length Research Paper. Biodegradation of detergents by ... releases toxins and decreases oxygen in waterways and decrease in the breeding ... of chemicals to microbial degradation and simulation test, which provide ...

  14. Biodegradation of phenol by a newly isolated marine bacterial strain ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-26

    Dec 26, 2011 ... Full Length Research Paper. Biodegradation of phenol ... screen bacteria with potential for phenol degradation from sea water, mud and sand. .... poisonous compound media, such as phenol (Santos et al., 2001). For instance ...

  15. Potential for biodegradation of polycyclic aromatic hydrocarbons by ...

    African Journals Online (AJOL)

    WiTT

    2012-05-08

    May 8, 2012 ... Full Length Research Paper. Biodegradation of ... organic compounds, including some organometallic ... is a major source of toxic PAHs that contributes signi- ficantly to ... microorganisms for bioremediation of hydrocarbon-.

  16. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles

    International Nuclear Information System (INIS)

    Courant, T; Roullin, V G; Andry, M C; Cadiou, C; Chuburu, F; Delavoie, F; Molinari, M; Gafa, V

    2010-01-01

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  17. Alcohol Alert: Link Between Stress and Alcohol

    Science.gov (United States)

    ... patients to better address how stress affects their motivation to drink. Early screening also is vital. For ... C.; Hong, K.A.; et al Enhanced negative emotion and alcohol craving, and altered physiological responses following ...

  18. Alcoholism and Alcohol Abuse - Multiple Languages

    Science.gov (United States)

    ... PDF Strong Family Relationships Can Prevent Alcohol and Drug Use Among Teens - دری (Dari) MP3 Karen Chemical Dependency Taskforce of Minnesota What Is Addiction? - English PDF What Is Addiction? - دری (Dari) PDF ...

  19. Fixation of zygomatic and mandibular fractures with biodegradable plates

    OpenAIRE

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    Context: In this prospective study, 13 randomly selected patients underwent treatment for zygomatic?complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. Aims: To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. Materials and Methods: In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and sc...

  20. Processing biodegradable waste by applying aerobic digester EWA

    OpenAIRE

    Đokić, Dragoslav; Lugić, Zoran; Terzić, Dragan; Jevtić, Goran; Milenković, Jasmina; Húrka, Miroslav; Stanisavljević, Rade

    2014-01-01

    The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac) was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of bi...

  1. Evaluation of Biosolids for Use in Biodegradable Transplant Containers

    OpenAIRE

    Stone, Peyton Franklin

    2017-01-01

    Sustainability practices are leading to the development and use of alternative products in the floriculture and wastewater industries, such as the use of biodegradable containers instead of plastic containers. The objective of this research was to evaluate the efficacy of using digested biosolids from a regional wastewater treatment plant as an ingredient in creating a biodegradable transplant biocontainer. The biosolids were tested for metals limits as specified by the U.S. EPA Part 503 Rule...

  2. Computational analysis for biodegradation of exogenously depolymerizable polymer

    Science.gov (United States)

    Watanabe, M.; Kawai, F.

    2018-03-01

    This study shows that microbial growth and decay in a biodegradation process of exogenously depolymerizable polymer are controlled by consumption of monomer units. Experimental outcomes for residual polymer were incorporated in inverse analysis for a degradation rate. The Gauss-Newton method was applied to an inverse problem for two parameter values associated with the microbial population. A biodegradation process of polyethylene glycol was analyzed numerically, and numerical outcomes were obtained.

  3. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20)

    OpenAIRE

    Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed

    2009-01-01

    The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the...

  4. Removal of Textile Dyestufes From Wastewater by Adsorptive Biodegradation

    OpenAIRE

    KAPDAN, İlgi KARAPINAR; KARGI, Fikret

    2000-01-01

    Removal of dyestuffs from a synthetic wastewater by adsorptive biodegradation was investigated in this study. The dyestuff adsorption capacities of granular, powdered activated carbon (GAC and PAC) and low-cost adsorbents such as zeolite, wood chips and wood ash were evaluated in order to obtain a low-cost adsorbent for use in an activated sludge unit. Then various activated sludge cultures were tested for biodegradation of a selected dyestuff. An activated sludge unit with the selected activ...

  5. Fully Biodegradable Biocomposites with High Chicken Feather Content

    OpenAIRE

    Aranberri, Ibon; Montes, Sarah; Azcune, Itxaso; Rekondo, Alaitz; Grande, Hans-Jürgen

    2017-01-01

    The aim of this work was to develop new biodegradable polymeric materials with high loadings of chicken feather (CF). In this study, the effect of CF concentration and the type of biodegradable matrix on the physical, mechanical and thermal properties of the biocomposites was investigated. The selected biopolymers were polylactic acid (PLA), polybutyrate adipate terephthalate (PBAT) and a PLA/thermoplastic copolyester blend. The studied biocomposites were manufactured with a to...

  6. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453 (Russian Federation); Kapralov, Alexandr A. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Michael, Zachary P.; Burkert, Seth C. [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shurin, Michael R. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Star, Alexander [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shvedova, Anna A., E-mail: ats@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-05-15

    Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells – myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase – to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and ‘unmasking’ of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. - Highlights: • Nanoparticles can be degraded by

  7. Alcohol Advertising and Alcohol Consumption by Adolescents

    OpenAIRE

    Henry Saffer; Dhaval Dave

    2003-01-01

    The purpose of this paper is to empirically estimate the effects of alcohol advertising on adolescent alcohol consumption. The theory of brand capital is used to explain the effects of advertising on consumption. The industry response function and the evidence from prior studies indicate that the empirical strategy should maximize the variance in the advertising data. The approach in this paper to maximizing the variance in advertising data is to employ cross sectional data. The Monitoring th...

  8. Alcohol and pregnancy

    Directory of Open Access Journals (Sweden)

    Anna Maria Paoletti

    2013-06-01

    Full Text Available Alcohol exerts teratogenic effects in all the gestation times, with peculiar features in relationship to the trimester of pregnancy in which alcohol is assumed. Alcohol itself and its metabolites modify DNA synthesis, cellular division, cellular migration and the fetal development. The characteristic facies of feto-alcoholic syndrome (FAS-affected baby depends on the alcohol impact on skull facial development during the first trimester of pregnancy. In association there are cerebral damages with a strong defect of brain development up to the life incompatibility. Serious consequences on fetal health also depends on dangerous effects of alcohol exposure in the organogenesis of the heart, the bone, the kidney, sensorial organs, et al. It has been demonstrated that maternal binge drinking is a high factor risk of mental retardation and of delinquent behaviour. Unfortunately, a lower alcohol intake also exerts deleterious effects on fetal health. In several countries of the world there is a high alcohol use, and this habit is increased in the women. Therefore, correct information has to be given to avoid alcohol use by women in the preconceptional time and during the pregnancy. Preliminary results of a study performed by the authors show that over 80% of pregnant and puerperal women are not unaware that more than 2 glasses of alcohol/week ingested during pregnancy can create neurological abnormalities in the fetus. However, after the information provided on alcoholic fetopathy, all women are conscious of the damage caused by the use of alcohol to the fetus during pregnancy. This study confirms the need to provide detailed information on the negative effects of alcohol on fetal health. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  9. Saponification of fatty slaughterhouse wastes for enhancing anaerobic biodegradability.

    Science.gov (United States)

    Battimelli, Audrey; Carrère, Hélène; Delgenès, Jean-Philippe

    2009-08-01

    The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste--aeroflotation fats and flesh fats from animal carcasses--was studied in order to improve the waste's anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions. The results showed little increase in the total volume of biogas, indicating a good biodegradability of the raw wastes. Mean biogas volume reached 1200 mL/g VS which represented more than 90% of the maximal theoretical biogas potential. Raw fatty wastes were slowly biodegraded whereas pretreated wastes showed improved initial reaction kinetics, indicating a better initial bio-availability, particularly for mesophilic runs. The effects observed for raw wastes with ethanol as co-substrate depended on the process temperature: in mesophilic conditions, an initial improvement was observed whereas in thermophilic conditions a significant decrease in biodegradability was observed.

  10. Using Biowin, Bayes, and batteries to predict ready biodegradability.

    Science.gov (United States)

    Boethling, Robert S; Lynch, David G; Jaworska, Joanna S; Tunkel, Jay L; Thom, Gary C; Webb, Simon

    2004-04-01

    Whether or not a given chemical substance is readily biodegradable is an important piece of information in risk screening for both new and existing chemicals. Despite the relatively low cost of Organization for Economic Cooperation and Development tests, data are often unavailable and biodegradability must be estimated. In this paper, we focus on the predictive value of selected Biowin models and model batteries using Bayesian analysis. Posterior probabilities, calculated based on performance with the model training sets using Bayes' theorem, were closely matched by actual performance with an expanded set of 374 premanufacture notice (PMN) substances. Further analysis suggested that a simple battery consisting of Biowin3 (survey ultimate biodegradation model) and Biowin5 (Ministry of International Trade and Industry [MITI] linear model) would have enhanced predictive power in comparison to individual models. Application of the battery to PMN substances showed that performance matched expectation. This approach significantly reduced both false positives for ready biodegradability and the overall misclassification rate. Similar results were obtained for a set of 63 pharmaceuticals using a battery consisting of Biowin3 and Biowin6 (MITI nonlinear model). Biodegradation data for PMNs tested in multiple ready tests or both inherent and ready biodegradation tests yielded additional insights that may be useful in risk screening.

  11. Bioavailability and biodegradation kinetics of organics in soil

    International Nuclear Information System (INIS)

    Tabak, H.H.; Govind, R.; Gao, Chao; Kim, In-soo; Lai, Lei

    1992-01-01

    As EPA begins to remediate Superfund sites using permanent treatment technologies, such as bioremediation, a fundamental understanding of the kinetics and the factors that control the rate of bioremediation will be required. Biological treatment technologies hold considerable promise for safe, economical, on-site treatment of toxic wastes. A variety of biological treatment systems designed to degrade or detoxify environmental contaminants are currently being developed and marketed. Knowledge of the kinetics of biodegradation is essential to the evaluation of the persistence of most organic pollutants in soil. Furthermore, measurement of biodegradation kinetics can provide useful insights into the favorable range of the important environmental parameters for improvement of the microbiological activity and consequently the enhancement of contaminant biodegradation. A major effort is currently underway to clean up aquifers and soils that are contaminated by organic chemicals, which has generated increased interest in the development of in situ bioremediation technologies. Although considerable data exists for rates of biodegradation in aquatic environments, there is little information on biodegradation kinetics in soil matrices, where irreversible binding to the soil phase may limit the chemicals bioavailability and ultimate degradation. Knowledge on biodegradation kinetics in soil environments can facilitate decisions on the efficacy of in situ bioremediation. 6 refs., 3 figs., 2 tabs

  12. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  13. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  14. Biodegradation of tributyl phosphate by granular biofilms

    International Nuclear Information System (INIS)

    Joshi, Hiren M.; Nancharaiah, Y.V.; Venugopalan, V.P.

    2009-01-01

    Full text: Tributyl phosphate (TBP) is used as plasticizer for cellulose esters, lacquers, plastic and vinyl resins and as a solvent extractant of rare earth metals. In nuclear power industry, it is used as a solvent for the extraction of uranium and plutonium salts during fuel reprocessing. TBP does not occur naturally in the environment. It is sparingly soluble in water and once released into soil or aquatic systems, is only moderately biodegradable. There are many proposed mechanisms for TBP biodegradation, which involve stepwise enzymatic hydrolysis to orthophosphate and n-butanol and mono-oxygenase based transformation and then degradation. Microbial processes involving multispecies consortia offer better choice over monoculture processes for degradation of complex wastes. Processes based on immobilized microbial consortia are characterized by significantly reduced settling time, high stability in presence of varying organic load, effective mineralization and amenability to bioaugmentation, which make them a good choice for bioremediation and waste water treatment. The objective of this study was to investigate the suitability of aerobic microbial granules (also known as granular biofilms) for efficient biodegradation of TBP. For this purpose, we set up 4 litre cylindrical sequencing batch reactors (SBR) in triplicates and inoculated them with sludge (mean sludge size ∼ 60 mm) obtained from an operating wastewater treatment plant. The SBRs were operated on a 6h cycle with 66% volumetric exchange ratio. The reactors were fed with synthetic waste water along with 90 mM acetate and 0.5 mM TBP. The concentration of TBP was slowly raised to 2mM. After 3 months of operation, microbial granules (mean size: 2.05 mm) capable of TBP degradation were observed in the reactors. Gas chromatographic analysis of samples showed that after 6h of operational cycle 2 mM initial concentration of TBP was reduced to 0.2 mM, after which there was no further degradation. Cessation

  15. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Murilo Foppa

    2001-02-01

    Full Text Available Observational studies have attributed a protective effect to alcohol consumption on the development of atherosclerosis and cardiovascular morbidity and mortality. Alcohol intake in the amount of one to two drinks per day results in an estimated 20-40% reduction in cardiovascular events. An additional protective effect, according to major cohort studies, has been attributed to wine, probably due to antioxidant effects and platelet antiaggregation agents. On the other hand, the influence of different patterns of alcohol consumption and environmental factors may explain a great part of the additional effect of wine. Protection may be mediated by modulation of other risk factors, because alcohol increases HDL-C, produces a biphasic response on blood pressure, and modulates the endothelial function, while it neither increases body weight nor impairs glucose-insulin homeostasis. Alcohol may also have a direct effect on atherogenesis. Despite these favorable effects, the current evidence is not enough to justify prescribing alcohol to prevent cardiovascular disease.

  16. Alcohol, aggression, and violence

    Directory of Open Access Journals (Sweden)

    Darja Škrila

    2005-09-01

    Full Text Available Background: The association between alcohol and aggression has long been recognized, but the systematic research to understand the causal basis for this relationship and the processes that underlie it has only been undertaken in the past 25 years. In the article the most important mechanisms, by which alcohol affects behavior, are explained. Aggression in persons with alcohol dependence and the connection between antisocial (dissocial personality disorder, alcohol and aggression are described. In addition different forms of aggression or violence, that have been committed under the influence of alcohol, such as inter-partner violence, sexual assault, child abuse, crime and traffic accidents are described.Conclusions: The research findings can be used in the prevention and treatment of alcohol-related aggression.

  17. Alcohol in moderation

    DEFF Research Database (Denmark)

    Mueller, Simone; Lockshin, Larry; Louviere, Jordan J.

    2011-01-01

    products identified, which are jointly purchased with low alcohol wines. The effect of a tax increase on substitution patterns between alcoholic beverages is examined. Methodology: In a discrete choice experiment, based on their last purchase, consumers select one or several different alcoholic beverages......Purpose: The study examines the market potential for low and very low alcohol wine products under two different tax regimes. The penetration and market share of low alcohol wine are estimated under both tax conditions. Consumers’ alcoholic beverage purchase portfolios are analysed and those...... into a purchase basket. An experimental design controlled the beverages’ price variation. Applying an intra-individual research design, respondents’ purchases were simulated under current and increased taxes. Findings: A market potential for low and very low wine products of up to ten percent of the wine market...

  18. Evaluation of the biodegradation of Alaska North Slope oil in microcosms using the biodegradation model BIOB

    Directory of Open Access Journals (Sweden)

    Jagadish eTorlapati

    2014-05-01

    Full Text Available We present the details of a numerical model, BIOB that is capable of simulating the biodegradation of oil entrapped in the sediment. The model uses Monod kinetics to simulate the growth of bacteria in the presence of nutrients and the subsequent consumption of hydrocarbons. The model was used to simulate experimental results of Exxon Valdez oil biodegradation in laboratory columns (Venosa et al. (2010. In that study, samples were collected from three different islands: Eleanor Island (EL107, Knight Island (KN114A, and Smith Island (SM006B, and placed in laboratory microcosms for a duration of 168 days to investigate oil bioremediation through natural attenuation and nutrient amendment. The kinetic parameters of the BIOB model were estimated by fitting to the experimental data using a parameter estimation tool based on Genetic Algorithms (GA. The parameter values of EL107 and KN114A were similar whereas those of SM006B were different from the two other sites; in particular biomass growth at SM006B was four times slower than at the other two islands. Grain size analysis from each site revealed that the specific surface area per unit mass of sediment was considerably lower at SM006B, which suggest that the surface area of sediments is a key control parameter for microbial growth in sediments. Comparison of the BIOB results with exponential decay curves fitted to the data indicated that BIOB provided better fit for KN114A and SM006B in nutrient amended treatments, and for EL107 and KN114A in natural attenuation. In particular, BIOB was able to capture the initial slow biodegradation due to the lag phase in microbial growth. Sensitivity analyses revealed that oil biodegradation at all three locations were sensitive to nutrient concentration whereas SM006B was sensitive to initial biomass concentration due to its slow growth rate. Analyses were also performed to compare the half-lives of individual compounds with the decay rate of the overall PAH.

  19. Alcohol Consumption in Students

    OpenAIRE

    Tran, Cathy

    2010-01-01

    Drinking behaviour among university students is a serious public health concern. Reasons for drinking are complex and many factors contribute to this behaviour. Previous research has established links between personality factors and alcohol consumption and also between metacognitions and alcohol consumption. Few studies have looked into how personality traits and metacognitions interact. This study investigated the relationships between personality, metacognitions and alcohol consumption in a...

  20. Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Dai Jin Kim

    2009-11-01

    Full Text Available For a long time, alcohol was thought to exert a general depressant effect on the central nervous system (CNS. However, currently the consensus is that specific regions of the brain are selectively vulnerable to the acute effects of alcohol. An alcohol-induced blackout is the classic example; the subject is temporarily unable to form new long-term memories while relatively maintaining other skills such as talking or even driving. A recent study showed that alcohol can cause retrograde memory impairment, that is, blackouts due to retrieval impairments as well as those due to deficits in encoding. Alcoholic blackouts may be complete (en bloc or partial (fragmentary depending on severity of memory impairment. In fragmentary blackouts, cueing often aids recall. Memory impairment during acute intoxication involves dysfunction of episodic memory, a type of memory encoded with spatial and social context. Recent studies have shown that there are multiple memory systems supported by discrete brain regions, and the acute effects of alcohol on learning and memory may result from alteration of the hippocampus and related structures on a cellular level. A rapid increase in blood alcohol concentration (BAC is most consistently associated with the likelihood of a blackout. However, not all subjects experience blackouts, implying that genetic factors play a role in determining CNS vulnerability to the effects of alcohol. This factor may predispose an individual to alcoholism, as altered memory function during intoxication may affect an individual‟s alcohol expectancy; one may perceive positive aspects of intoxication while unintentionally ignoring the negative aspects. Extensive research on memory and learning as well as findings related to the acute effects of alcohol on the brain may elucidate the mechanisms and impact associated with the alcohol- induced blackout.

  1. Fetal Alcohol Syndrome "Chemical Genocide."

    Science.gov (United States)

    Asetoyer, Charon

    In the Northern Plains of the United States, 100% of Indian reservations are affected by alcohol related problems. Approximately 90% of Native American adults are currently alcohol users or abusers or are recovering from alcohol abuse. Alcohol consumption has a devastating effect on the unborn. Fetal Alcohol Syndrome (FAS) is an irreversible birth…

  2. Alcohol-related interpretation bias in alcohol-dependent patients

    NARCIS (Netherlands)

    Woud, M.L.; Pawelczack, S.; Rinck, M.; Lindenmeyer, J.; Souren, P.M.; Wiers, R.W.H.J.; Becker, E.S.

    2014-01-01

    Background Models of addictive behaviors postulate that implicit alcohol-related memory associations and biased interpretation processes contribute to the development and maintenance of alcohol misuse and abuse. The present study examined whether alcohol-dependent patients (AP) show an

  3. Melt electrospinning of biodegradable polyurethane scaffolds

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  4. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microbial ecology of bacterially mediated PCB biodegradation

    International Nuclear Information System (INIS)

    Pettigrew, C.A. Jr.

    1989-01-01

    The roles of plasmid mediated and consortia mediated polychlorinated biphenyl (PCB) biodegradation by bacterial populations isolated from PCB contaminated freshwater sediments were investigated. PCB degrading bacteria were isolated by DNA:DNA colony hybridization, batch enrichments, and chemostat enrichment. Analysis of substrate removal and metabolite production were done using chlorinated biphenyl spray plates, reverse phase high pressure liquid chromatography, Cl - detection, and 14 C-labeled substrate mineralization methods. A bacterial consortium, designated LPS10, involved in a concerted metabolic attack on chlorinated biphenyls, was shown to mineralize 4-chlorobiphenyl (4CB) and 4,4'-dichlorobiphenyl (4,4' CB). The LPS10 consortium was isolated by both batch and chemostat enrichment using 4CB and biphenyl (BP) as sole carbon source and was found to have tree bacterial isolates that predominated; these included: Pseudomonas, testosteroni LPS10A which mediated the breakdown of 4CB and 4,4' CB to the putative meta-cleavage product and subsequently to 4-chlorobenzoic acid (4CBA), an isolate tentatively identified as an Arthrobacter sp. LPS10B which mediated 4CBA degradation, and Pseudomonas putida by A LPS10C whose role in the consortium has not been determined

  6. Biogeochemistry of anaerobic crude oil biodegradation

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  7. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  8. BIODEGRADATION DURING CONTAMINANT TRANSPORT IN POROUS MEDIA. 3. APPARENT CONDITION-DEPENDENCY OF GROWTH-RELATED COEFFICIENTS. (R825415)

    Science.gov (United States)

    AbstractThe biodegradation of organic contaminants in the subsurface has become a major focus of attention, in part, due to the tremendous interest in applying in situ biodegradation and natural attenuation approaches for site remediation. The biodegradation and trans...

  9. Alcohol advertising and youth.

    Science.gov (United States)

    Saffer, Henry

    2002-03-01

    The question addressed in this review is whether aggregate alcohol advertising increases alcohol consumption among college students. Both the level of alcohol-related problems on college campuses and the level of alcohol advertising are high. Some researchers have concluded that the cultural myths and symbols used in alcohol advertisements have powerful meanings for college students and affect intentions to drink. There is, however, very little empirical evidence that alcohol advertising has any effect on actual alcohol consumption. The methods used in this review include a theoretical framework for evaluating the effects of advertising. This theory suggests that the marginal effect of advertising diminishes at high levels of advertising. Many prior empirical studies measured the effect of advertising at high levels of advertising and found no effect. Those studies that measure advertising at lower, more disaggregated levels have found an effect on consumption. The results of this review suggest that advertising does increase consumption. However, advertising cannot be reduced with limited bans, which are likely to result in substitution to other available media. Comprehensive bans on all forms of advertising and promotion can eliminate options for substitution and be potentially more effective in reducing consumption. In addition, there is an increasing body of literature that suggests that alcohol counteradvertising is effective in reducing the alcohol consumption of teenagers and young adults. These findings indicate that increased counteradvertising, rather than new advertising bans, appears to be the better choice for public policy. It is doubtful that the comprehensive advertising bans required to reduce advertising would ever receive much public support. New limited bans on alcohol advertising might also result in less alcohol counteradvertising. An important topic for future research is to identify the counteradvertising themes that are most effective with

  10. Alcohol and older drivers' crashes.

    Science.gov (United States)

    2014-09-01

    Researchers have examined the effects of alcohol consumption : on older adults functioning, and some have : addressed alcohols effects on older drivers crash risk. : Generally, the findings have shown that alcohol is less : likely to be a fa...

  11. Alcohol's Effects on the Body

    Science.gov (United States)

    ... Effects on the Body Alcohol's Effects on the Body Drinking too much – on a single occasion or ... your health. Here’s how alcohol can affect your body: Brain: Alcohol interferes with the brain’s communication pathways, ...

  12. Alcohol Use and Hepatitis C

    OpenAIRE

    Peters, Marion G.; Terrault, Norah A.

    2002-01-01

    Excess alcohol consumption can worsen the course and outcome of chronic hepatitis C. It is important to distinguish between alcohol abuse, which must be treated on its own merits, and the effect of alcohol use on progression, severity, and treatment of hepatitis C. Most studies on the effects of alcohol on hepatitis C have focused on patients, with high levels of daily alcohol intake. Indeed, the adverse effects of light and moderate amounts of alcohol intake on hepatitis C virus (HCV) infect...

  13. Drugs and Alcohol

    Science.gov (United States)

    Scott, Victor F.

    1978-01-01

    Millions of people in this country take medications, and millions drink alcohol. Both are drugs and have effects on the organs and systems with which they or their metabolites come in contact. This short article discusses some of the combined effects of prescribed drugs and alcohol on some systems, with special emphasis on the liver. PMID:712865

  14. Molecular basis of alcoholism.

    Science.gov (United States)

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy. © 2014 Elsevier B.V. All rights reserved.

  15. Fetal Alcohol Syndrome.

    Science.gov (United States)

    Zerrer, Peggy

    The paper reviews Fetal Alcohol Syndrome (FAS), a series of effects seen in children whose mothers drink alcohol to excess during pregnancy. The identification of FAS and its recognition as a major health problem in need of prevention are traced. Characteristics of children with FAS are described and resultant growth retardation, abnormal physical…

  16. Alcoholism and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Soo-Jeong Kim

    2012-04-01

    Full Text Available Chronic use of alcohol is considered to be a potential risk factor for the incidence of type 2 diabetes mellitus (T2DM, which causes insulin resistance and pancreatic β-cell dysfunction that is a prerequisite for the development of diabetes. However, alcohol consumption in diabetes has been controversial and more detailed information on the diabetogenic impact of alcohol seems warranted. Diabetes, especially T2DM, causes dysregulation of various metabolic processes, which includes a defect in the insulin-mediated glucose function of adipocytes, and an impaired insulin action in the liver. In addition, neurobiological profiles of alcoholism are linked to the effects of a disruption of glucose homeostasis and of insulin resistance, which are affected by altered appetite that regulates the peptides and neurotrophic factors. Since conditions, which precede the onset of diabetes that are associated with alcoholism is one of the crucial public problems, researches in efforts to prevent and treat diabetes with alcohol dependence, receives special clinical interest. Therefore, the purpose of this mini-review is to provide the recent progress and current theories in the interplay between alcoholism and diabetes. Further, the purpose of this study also includes summarizing the pathophysiological mechanisms in the neurobiology of alcoholism.

  17. Alcohol and Choice.

    Science.gov (United States)

    Kraushaar, Kevin W.

    Increased constraints on access to alcohol resulted from the closure of the sole hotels in two "experimental" towns. This afforded a natural experiment to study the effects of the change in availability of alcohol on consumption. Dependent measures were derived from public records of liquor sales by all licensed premises, and from…

  18. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    DA LUZ PROTASIO L.

    2001-01-01

    Full Text Available Atherosclerosis is manifested as coronary artery disease (CAD, ischemic stroke and peripheral vascular disease. Moderate alcohol consumption has been associated with reduction of CAD complications. Apparently, red wine offers more benefits than any other kind of drinks, probably due to flavonoids. Alcohol alters lipoproteins and the coagulation system. The flavonoids induce vascular relaxation by mechanisms that are both dependent and independent of nitric oxide, inhibits many of the cellular reactions associated with atherosclerosis and inflammation, such as endothelial expression of vascular adhesion molecules and release of cytokines from polymorphonuclear leukocytes. Hypertension is also influenced by the alcohol intake. Thus, heavy alcohol intake is almost always associated with systemic hypertension, and hence shall be avoided. In individuals that ingest excess alcohol, there is higher risk of coronary occlusion, arrhythmias, hepatic cirrhosis, upper gastrointestinal cancers, fetal alcohol syndrome, murders, sex crimes, traffic and industrial accidents, robberies, and psychosis. Alcohol is no treatment for atherosclerosis; but it doesn't need to be prohibited for everyone. Thus moderate amounts of alcohol (1-2 drinks/day, especially red wine, may be allowed for those at risk for atherosclerosis complications.

  19. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V

    2015-11-01

    Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.

  20. Anoxic denitrification of BTEX: Biodegradation kinetics and pollutant interactions.

    Science.gov (United States)

    Carvajal, Andrea; Akmirza, Ilker; Navia, Daniel; Pérez, Rebeca; Muñoz, Raúl; Lebrero, Raquel

    2018-05-15

    Anoxic mineralization of BTEX represents a promising alternative for their abatement from O 2 -deprived emissions. However, the kinetics of anoxic BTEX biodegradation and the interactions underlying the treatment of BTEX mixtures are still unknown. An activated sludge inoculum was used for the anoxic abatement of single, dual and quaternary BTEX mixtures, being acclimated prior performing the biodegradation kinetic tests. The Monod model and a Modified Gompertz model were then used for the estimation of the biodegradation kinetic parameters. Results showed that both toluene and ethylbenzene are readily biodegradable under anoxic conditions, whereas the accumulation of toxic metabolites resulted in partial xylene and benzene degradation when present both as single components or in mixtures. Moreover, the supplementation of an additional pollutant always resulted in an inhibitory competition, with xylene inducing the highest degree of inhibition. The Modified Gompertz model provided an accurate fitting for the experimental data for single and dual substrate experiments, satisfactorily representing the antagonistic pollutant interactions. Finally, microbial analysis suggested that the degradation of the most biodegradable compounds required a lower microbial specialization and diversity, while the presence of the recalcitrant compounds resulted in the selection of a specific group of microorganisms. Copyright © 2018 Elsevier Ltd. All rights reserved.