Sample records for alcohol synthesis cu-co

  1. Bimetallic CuCo nanoparticles derived from hydrotalcite supported on carbon fibers for higher alcohols synthesis from syngas (United States)

    Wang, Lianfang; Cao, Ang; Liu, Guilong; Zhang, Lihong; Liu, Yuan


    Higher alcohols synthesis (HAS) is a strong exothermal reaction which leads to the formation of hotspots on the catalysts and the hotspots result in poor selectivity, and Cu-Co based catalysts are one of the most promising to which the formation of Cu-Co alloy is critical. Therefore a new scheme was proposed, based on the excellent thermal conductivity of carbon fibers (CFs) and the uniform mixing of metal ions in layered double hydroxides (LDHs), the latter favors the formation of metallic alloy. Nanocomposites of LDHs and CFs were prepared by using co-precipitation method and used for HAS, and characterized by using FTIR, N2 adsorption-desorption, XRD, TPR, SEM and TEM techniques. In the composites, nanosheets with the typical LDHs morphology are perpendicularly grown on the surface of CFs while intersecting each other, creating a highly open and porous structure. After reduction, Cu-Co-alloy nanoparticles are formed from the LDHs. The resultant catalysts showed high activity and much high selectivity to higher alcohols. The reported methods can be expanded to prepare other LDHs/CFs composites.

  2. Effects of impregnation sequence on the microstructure and performances of Cu-Co based catalysts for the synthesis of higher alcohols

    Institute of Scientific and Technical Information of China (English)

    Siyu Deng; Wei Chu; Huiyuan Xu; Limin Shi; Lihong Huang


    Silica-supported CuCo catalysts were prepared by impregnation method with different impregnation sequence for higher alcohols synthesis. These catalysts were characterized by H2-TPR, XRD, N2 adsorption, XPS techniques and CO selective hydrogenation reaction measurement. The effects of impregnation sequence on the structure and performance of cata-lysts were investigated, and there were important influences on the selectivity to higher alcohols. There was a strong synergistic effect between copper and cobalt for the co-impregnated sample. The CuCo/SiO2 catalyst prepared by co-impregnation showed a better yield of total alcohols, and a higher selectivity to total alcohols which reached 51.5%.

  3. Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Fang; Yuan Liu; Wei Deng; Junhai Liu


    Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La2O2CO3 under H2 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified Co2 C species.

  4. Higher Alcohol Synthesis from Bio-Syngas over Na-Promoted CuCoMn Catalyst%Na促进的CuCoMn催化剂催化生物质合成气合成高醇

    Institute of Scientific and Technical Information of China (English)

    叶同奇; 张朝霞; 徐勇; 颜世志; 朱九方; 刘勇; 李全新


    Na-promoted CuCoMn catalysts were successfully applied to the highly efficient production of higher alcohols from bio-syngas, which was derived from biomass gasification. The influence of Na content and synthesis conditions (temperature, pressure, and gas hourly space velocity (GHSV)) on higher alcohol synthesis was investigated. The CuCoMnNa0.1 catalyst gave the best performance for higher alcohol synthesis. Carbon conversion increased significantly with an increase in temperature at lower than 300 ℃ but alcohol selectivity showed an opposite trend. A higher pressure was found to be beneficial for higher alcohol synthesis. Increasing the GHSV reduced carbon conversion but increased the yield of higher alcohols. The maximum higher alcohol yield that was derived from bio-syngas was 304.6 g · kg-1 · h-1 with the C2+ alcohols (C2-C6 higher alcohols) of 64.4% (w, mass fraction) under the conditions used. The distributions of the alcohols and the hydrocarbons were consistent with Anderson-Schulz-Flory (ASF) plots. Adding Na to the CuCoMn catalysts led to an increase in the selectivity toward the higher alcohols and promoted the dispersion of the active elements, copper and cobalt. X-ray photoelectron spectroscopy (XPS) results suggested that Cu was present as a mixture of Cu+ and Cu0 on the catalyst's surface after use and Co was present as a mixture of Co2+/Co3+ and Co0. With an increase in sodium addition the Cu0/Cu+ ratio and the Co0 intensity both decreased.%研究钠促进的CuCoMn催化剂的特性及其在生物质气化合成气合成高醇中的应用.研究了催化剂中Na含量及合成条件(温度、压力和空速)对生物质基合成气合成高醇性能的影响.发现CuCoMnNa0.1催化剂较适合高醇合成,在300℃以下,随着温度的上升,碳转化率增大,而醇选择性降低.压力的增加有利于醇的合成,增大空速会明显降低碳转化率,但醇时空产率则因转换频率的增加而增大.在所考察的范

  5. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas (United States)

    Niu, T.; Liu, G. L.; Chen, Y.; Yang, J.; Wu, Jiang; Cao, Y.; Liu, Y.


    The composite of graphene and a perovskite-type oxide (PTO) should be an attractive new material, owing to the special properties of graphene and the flexibility of PTO. Both graphene and PTO are promising support for some metallic nanoparticles. Therefore, in this work, taking LaFeO3 as the representative for PTO, a novel composite of graphene sheets-LaFeO3 has been prepared by using hydrothermal synthesis, and bimetallic nanoparticles of Cu-Co have been loaded on the composite. The resultant catalyst is applied to higher alcohols synthesis (HAS) from syngas. The morphology, structure and the state of the bimetallic composite catalyst are characterized by using techniques of SEM, TEM, AFM, XRD, TPR, Raman and N2 adsorption-desorption. For the graphene-LaFeO3 support, the graphene sheets are embedded into the bulk LaFeO3 or uniformly deposited on the surface of the LaFeO3 grains, resulting in high specific surface area. And the mass transferring ability of the bimetallic catalyst is optimized by uniform mixing of graphene and LaFeO3 and the formation of the mesopores. For the active component, the Cu-Co alloy nanoparticles are highly dispersed on the graphene-LaFeO3 composite, which leads to the high activity, high selectivity and excellent stability to higher alcohols.

  6. Influence of high-energy ball-milling on properties of CuCo/ZrO2 catalyst for higher alcohols synthesis%高能球磨对CuCo/ZrO2催化剂合成低碳醇性能的影响

    Institute of Scientific and Technical Information of China (English)

    士丽敏; 邓思玉


    研究高能球磨技术对浸渍法制备CuCo/ZrO2催化剂结构与合成低碳醇性能的影响,借助N2吸附-脱附等温线、扫描电镜、X射线衍射和程序升温还原等测试技术对催化剂进行表征,并以CO加氢合成低碳醇为模型反应对其催化性能进行评价.研究结果表明,催化剂制备过程中引入高能球磨技术可显著提高CuCo/ZrO2催化剂的CO转化率和C2+OH选择性.%The catalytic properties of high-energy ball-milled CuCa/ZrO2 catalysts for the synthesis of higher alcohols from syngas and the effects of high-energy ball-milling method on the structure and per formance of the catalysts were Investigated. The catalysts were characteriied by means of BET,SEM,XRD and H2-IPB techniques. The results indicated that CO conversion and selectivity to C2+OH were enhanced significantly when the high-energy ball-miffing method was used in the process of the catalyst preparation.

  7. Zn、Mo对CuCo基催化剂合成低碳醇性能的促进作用%Catalytic Properties for Higher-alcohol Synthesis of CuCo Based Catalysts Promoted by Transition Elements(Zn,Mo)

    Institute of Scientific and Technical Information of China (English)

    士丽敏; 储伟


    采用超声辅助的反相共沉淀法制备CO加氢合成低碳醇用CuCo基催化剂,研究过渡金属Zn、Mo助剂对CuCo基催化剂结构与性能的影响,借助N2吸附(BET)、X射线衍射(XRD)、程序升温还原(H2-TPR)和程序升温脱附(CO-TPD)等测试技术对催化剂进行表征.结果表明,Zn、Mo均在一定程度上增加了催化剂的比表面积、降低晶粒尺寸且保持Cu-Co尖晶石的主相结构.助剂Zn的添加对比表面积提高有限,降低了催化剂表面对CO物种的吸附量,CO转化率和醇产率有所减少;Mo助剂的存在显著提高了比表面积,促进了铜钴的分散,改善了氧化还原性能,使催化剂的加氢能力、CO转化率和醇产率均显著提高;Zn、Mo助剂的加入均促进了甲醇的形成.%CuCo-based catalysts for CO hydrogenation to higher alcohols were prepared by the ultrasound assisted reverse coprecipitation.Effects of transition elements(Zn,Mo) on the structure and catalytic performance were investigated.The catalysts were characterized by means of X-ray diffraction(XRD),N2 adsorption isotherm(BET),temperature-programmed reduction(H2-TPR) and temperature-programmed desorption(CO-TPD) techniques.The specific surface areas of the experimental catalysts were increased while the crystallite sizes were decreased by the addition Zn and Mo without changing the Cu-Co spinel crystal structure.For the Zn contained catalyst,the increase of specific surface area was limited and amount of adsorbed CO-species was decreased.Both CO conversion and alcohol yield were reduced.For the Mo promoted sample,the specific surface area was increased obviously.Meanwhile,the dispersion of copper and cobalt was promoted and the reducibility was improved.As a result,the hydrogenation ability,CO conversion and alcohol yield were increased significantly.With the addition of Zn and Mo,the contents of methanol in mixed alcohols were increased comparing with that of CuCo

  8. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohol synthesis%射频等离子体对合成低碳醇用CuCoAl催化剂的改性作用

    Institute of Scientific and Technical Information of China (English)

    徐慧远; 储伟; 士丽敏; 张辉; 邓思玉



  9. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Harish, G.S.; Sreedhara Reddy, P., E-mail:


    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm{sup −1}) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  10. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. (United States)

    Prieto, Gonzalo; Beijer, Steven; Smith, Miranda L; He, Ming; Au, Yuen; Wang, Zi; Bruce, David A; de Jong, Krijn P; Spivey, James J; de Jongh, Petra E


    Combining quantum-mechanical simulations and synthesis tools allows the design of highly efficient CuCo/MoO(x) catalysts for the selective conversion of synthesis gas (CO+H2) into ethanol and higher alcohols, which are of eminent interest for the production of platform chemicals from non-petroleum feedstocks. Density functional theory calculations coupled to microkinetic models identify mixed Cu-Co alloy sites, at Co-enriched surfaces, as ideal for the selective production of long-chain alcohols. Accordingly, a versatile synthesis route is developed based on metal nanoparticle exsolution from a molybdate precursor compound whose crystalline structure isomorphically accommodates Cu(2+) and Co(2+) cations in a wide range of compositions. As revealed by energy-dispersive X-ray nanospectroscopy and temperature-resolved X-ray diffraction, superior mixing of Cu and Co species promotes formation of CuCo alloy nanocrystals after activation, leading to two orders of magnitude higher yield to high alcohols than a benchmark CuCoCr catalyst. Substantiating simulations, the yield to high alcohols is maximized in parallel to the CuCo alloy contribution, for Co-rich surface compositions, for which Cu phase segregation is prevented.

  11. Catalytic properties of Cu/Co/Zn/Zr oxides prepared by various methods

    Institute of Scientific and Technical Information of China (English)

    Limin Shi; Wei Chu; Siyu Deng; Huiyuan Xu


    The new Cu-Co based (Cu/Co/Zn/Zr) catalysts for higher-alcohol synthesis were prepared using coprecipitation method, plasma enhanced method and reverse coprecipitation method under ultrasound irradiation. The catalysts were investi-gated by the means of BET, SEM, XRD, H2-TPR and XPS. Catalytic properties of the catalysts prepared by various methods were examined using CO hydrogenation reaction. It was found that plasma enhanced method and reverse coprecipitation method under ultrasound irradiation were both effective in enhancing the catalytic properties of Cu/Co/Zn/Zr mixed oxides. The small particle size, high dispersion of active components, the improvement of specific surface area and surface contents of active phases could account for the excellent performance of the experimental Cu/Co/Zn/Zr catalysts.

  12. Spinel CuCo2O4 Nanoparticles: Facile One-Step Synthesis, Optical, and Electrochemical properties (United States)

    Silambarasan, M.; Padmanathan, N.; Ramesh, P. S.; Geetha, D.


    Nanocrystalline CuCo2O4 spinel structure was prepared by a facile one-step route without any surfactant. The materials physio-chemical properties were systematically investigated with different analytical methods. It is observed that the spinel type CuCo2O4 nanoparticles showed interesting multi-functional features for both optical and electrochemical applications.Typical x-ray diffraction pattern indicates the growth of well-crystalline CuCo2O4 nanoparticles with a cubic spinel structure. From the transmission electron microscope images, a uniform particle distribution with an average size of ˜20 nm can be seen. UV-visible spectrum shows the absorption maximum at 264.5 nm and exhibits an optical band gap 4.02 eV. Electrochemical analysis further reveals the pseudo-capacitive behaviour with the specific capacitance of 290 F g-1 at 2 mA cm-2. In addition, the magnetic study of CuCo2O4 substantiates the presence of room temperature weak ferromagnetic ordering at low magnetic field strength.

  13. Preparation of Copper-Cobalt-Silicon Catalysts for Higher Alcohol Synthesis by Glow Discharge Plasma%射频等离子体技术制备合成低碳醇用新型Cu-Co/SiO_2催化剂

    Institute of Scientific and Technical Information of China (English)

    徐慧远; 储伟; 邓思玉


    采用射频等离子体技术制备新型Cu-Co/SiO_2催化剂.与直接焙烧制备的样品相比,射频等离子体处理提高了催化剂的比表面积,显著增大了活性物种Co的表面含量,有效改进了催化剂的还原性能.以CO加氢合成低碳混合醇为模型反应,在563 K, 5.0 MPa,6000 h~(-1),V(H_2):V(CO)=1.6的条件下,等离子体处理和等离子体处理后再焙烧样品比673 K焙烧样品的催化活性提高30.46%和65.30%,低碳醇的时空收率分别提高58.22%和76.11%.

  14. Efficient Synthesis of Ethanol from CH4 and Syngas on a Cu-Co/TiO2 Catalyst Using a Stepwise Reactor (United States)

    Zuo, Zhi-Jun; Peng, Fen; Huang, Wei


    Ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst is studied using experiments, density functional theory (DFT) and microkinetic modelling. The experimental results indicate that the active sites of ethanol synthesis from CH4 and syngas are Cu and CoO, over which the ethanol selectivity is approximately 98.30% in a continuous stepwise reactor. DFT and microkinetic modelling results show that *CH3 is the most abundant species and can be formed from *CH4 dehydrogenation or through the process of *CO hydrogenation. Next, the insertion of *CO into *CH3 forms *CH3CO. Finally, ethanol is formed through *CH3CO and *CH3COH hydrogenation. According to our results, small particles of metallic Cu and CoO as well as a strongly synergistic effect between metallic Cu and CoO are beneficial for ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst. PMID:27694944

  15. Efficient Synthesis of Optically Active Alcohols

    Institute of Scientific and Technical Information of China (English)

    J.S. Chen; Z.R. Dong; Y.Y. Li; B.Z. Li; Y. Xing; W.Y. Shen; G. Chen; X.Q. Zhang; J. X. Gao


    @@ 1Introduction Optically active secondary alcohols are versatile building blocks for synthesis of unnatural biological active compounds and functional materials. Therefore, study on efficient synthesis of optically active alcohols is becoming an important subject in synthetic organic chemistry. Catalytic asymmetric reduction of carbonyl compounds is a practical method to create chiral alcohols. For the past decades, a large number of catalytic methods have been developed to achieve this goal.

  16. Aliphatic nitro alcohols. Synthesis, chemical transformations and applications

    Energy Technology Data Exchange (ETDEWEB)

    Shvekhgeimer, Mai-Genrikh A [A.N. Kosygin Moscow State Textile Academy, Moscow (Russian Federation)


    The data on the synthesis, chemical transformations and practical use of aliphatic nitro alcohols published over the last 25 years are described systematically and analysed. The bibliography includes 316 references.

  17. Catalytic synthesis of long-chained alcohols from syngas

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt

    This work has been an investigation of the catalytic conversion of syngas into mixed alcohols with Mo-based catalysts. The primary focus has been on the use of alkali promoted cobalt-molybdenum sulfide as a catalyst for the alcohol synthesis. The alcohol synthesis is a possibility...... the user to employ a less thorough and therefore less costly syngas cleaning. To evaluate, to which extent a removal of other components in the raw syngas is necessary, the influence of NH3 and H2O in the feed has also been investigated. Ammonia (741 ppmv) in the feed is observed to cause a general...

  18. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca;


    Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... clusters. Unpromoted, active carbon supported Mo2C exhibits a high activity for CO conversion with hydrocarbons as the dominant products. The K2CO3 promoter plays an essential role in directing the selectivity to alcohols rather than to hydrocarbons. The optimum selectivity toward higher alcohols and total...... supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...

  19. Investigation of syngas interactions in alcohol synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Akundi, M.A.


    The primary objectives of the project are to (a) synthesize, by controlled sequential and co-impregnation techniques, three distinct composition metal clusters (consisting of Cu-Co-Cr and Cu-Fe-Zn): rich in copper (Methanol selective), rich in ferromagnetic metal (Co or Fe-Hydrocarbon selective) and intermediate range (mixed alcohol catalysts); (b) investigate the changes in the magnetic character of the systems due to interaction with CO, through Zero-field Nuclear Magnetic Resonance (ZFNMR) study of cobalt and Magnetic character (saturation magnetization and coercive field) analysis of the composite catalyst of Vibrating Sample Magnetometry (VSM); (c) examine the changes in syngas adsorption character of the catalyst as the composition changes, by FTIR Spectroscopic analysis of CO stretching frequencies; (d) determine the nature and size of these intermetallic clusters by Scanning Electron Microscopy (SEM); and (e) perform catalytic runs on selected samples and analyze the correlations between the physical and chemical characteristics. The catalysts chosen have a greater promise for industrial application than the Rh and Mo based catalysts. Several groups preparing catalysts by synthetic routes have reported divergent results for activity and selectivity. Generally the research has followed an empirical path and less effort is devoted to analyze the mechanisms and the scientific basis. The primary intent of this study is to analyze the nature of the intermetallic and gas-metal interactions and examine the correlations to catalytic properties.

  20. Process for the synthesis of unsaturated alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon


    A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.

  1. Alcoholic Hepatitis Markedly Decreases the Capacity for Urea Synthesis.

    Directory of Open Access Journals (Sweden)

    Emilie Glavind

    Full Text Available Data on quantitative metabolic liver functions in the life-threatening disease alcoholic hepatitis are scarce. Urea synthesis is an essential metabolic liver function that plays a key regulatory role in nitrogen homeostasis. The urea synthesis capacity decreases in patients with compromised liver function, whereas it increases in patients with inflammation. Alcoholic hepatitis involves both mechanisms, but how these opposite effects are balanced remains unclear. Our aim was to investigate how alcoholic hepatitis affects the capacity for urea synthesis. We related these findings to another measure of metabolic liver function, the galactose elimination capacity (GEC, as well as to clinical disease severity.We included 20 patients with alcoholic hepatitis and 7 healthy controls. The urea synthesis capacity was quantified by the functional hepatic nitrogen clearance (FHNC, i.e., the slope of the linear relationship between the blood α-amino nitrogen concentration and urea nitrogen synthesis rate during alanine infusion. The GEC was determined using blood concentration decay curves after intravenous bolus injection of galactose. Clinical disease severity was assessed by the Glasgow Alcoholic Hepatitis Score and Model for End-Stage Liver Disease (MELD score.The FHNC was markedly decreased in the alcoholic hepatitis patients compared with the healthy controls (7.2±4.9 L/h vs. 37.4±6.8 L/h, P<0.01, and the largest decrease was observed in those with severe alcoholic hepatitis (4.9±3.6 L/h vs. 9.9±4.9 L/h, P<0.05. The GEC was less markedly reduced than the FHNC. A negative correlation was detected between the FHNC and MELD score (rho = -0.49, P<0.05.Alcoholic hepatitis markedly decreases the urea synthesis capacity. This decrease is associated with an increase in clinical disease severity. Thus, the metabolic failure in alcoholic hepatitis prevails such that the liver cannot adequately perform the metabolic up-regulation observed in other stressful

  2. Alcoholic Hepatitis Markedly Decreases the Capacity for Urea Synthesis (United States)

    Glavind, Emilie; Aagaard, Niels Kristian; Grønbæk, Henning; Møller, Holger Jon; Orntoft, Nikolaj Worm; Vilstrup, Hendrik; Thomsen, Karen Louise


    Background and Aim Data on quantitative metabolic liver functions in the life-threatening disease alcoholic hepatitis are scarce. Urea synthesis is an essential metabolic liver function that plays a key regulatory role in nitrogen homeostasis. The urea synthesis capacity decreases in patients with compromised liver function, whereas it increases in patients with inflammation. Alcoholic hepatitis involves both mechanisms, but how these opposite effects are balanced remains unclear. Our aim was to investigate how alcoholic hepatitis affects the capacity for urea synthesis. We related these findings to another measure of metabolic liver function, the galactose elimination capacity (GEC), as well as to clinical disease severity. Methods We included 20 patients with alcoholic hepatitis and 7 healthy controls. The urea synthesis capacity was quantified by the functional hepatic nitrogen clearance (FHNC), i.e., the slope of the linear relationship between the blood α-amino nitrogen concentration and urea nitrogen synthesis rate during alanine infusion. The GEC was determined using blood concentration decay curves after intravenous bolus injection of galactose. Clinical disease severity was assessed by the Glasgow Alcoholic Hepatitis Score and Model for End-Stage Liver Disease (MELD) score. Results The FHNC was markedly decreased in the alcoholic hepatitis patients compared with the healthy controls (7.2±4.9 L/h vs. 37.4±6.8 L/h, P<0.01), and the largest decrease was observed in those with severe alcoholic hepatitis (4.9±3.6 L/h vs. 9.9±4.9 L/h, P<0.05). The GEC was less markedly reduced than the FHNC. A negative correlation was detected between the FHNC and MELD score (rho = -0.49, P<0.05). Conclusions Alcoholic hepatitis markedly decreases the urea synthesis capacity. This decrease is associated with an increase in clinical disease severity. Thus, the metabolic failure in alcoholic hepatitis prevails such that the liver cannot adequately perform the metabolic up


    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin EpoxidationUnnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis EnriquezU.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268 Phone: 513-569-773...

  4. Electro-autotrophic synthesis of higher alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Liao, James C.; Cho, Kwang Myung


    The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.

  5. Electro-autotrophic synthesis of higher alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Liao, James C.; Cho, Kwang Myung


    The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.

  6. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)


    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  7. Status and prospects in higher alcohols synthesis from syngas. (United States)

    Luk, Ho Ting; Mondelli, Cecilia; Ferré, Daniel Curulla; Stewart, Joseph A; Pérez-Ramírez, Javier


    Higher alcohols are important compounds with widespread applications in the chemical, pharmaceutical and energy sectors. Currently, they are mainly produced by sugar fermentation (ethanol and isobutanol) or hydration of petroleum-derived alkenes (heavier alcohols), but their direct synthesis from syngas (CO + H2) would comprise a more environmentally-friendly, versatile and economical alternative. Research efforts in this reaction, initiated in the 1930s, have fluctuated along with the oil price and have considerably increased in the last decade due to the interest to exploit shale gas and renewable resources to obtain the gaseous feedstock. Nevertheless, no catalytic system reported to date has performed sufficiently well to justify an industrial implementation. Since the design of an efficient catalyst would strongly benefit from the establishment of synthesis-structure-function relationships and a deeper understanding of the reaction mechanism, this review comprehensively overviews syngas-based higher alcohols synthesis in three main sections, highlighting the advances recently made and the challenges that remain open and stimulate upcoming research activities. The first part critically summarises the formulations and methods applied in the preparation of the four main classes of materials, i.e., Rh-based, Mo-based, modified Fischer-Tropsch and modified methanol synthesis catalysts. The second overviews the molecular-level insights derived from microkinetic and theoretical studies, drawing links to the mechanisms of Fischer-Tropsch and methanol syntheses. Finally, concepts proposed to improve the efficiency of reactors and separation units as well as to utilise CO2 and recycle side-products in the process are described in the third section.

  8. Catalytic synthesis of alcoholic fuels for transportation from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Qiongxiao Wu


    consequently on the catalytic activity. (3) Addition of 3 mol % CO{sub 2} to the H2/CO feed stream leads to a significant loss of activity for the Cu-Ni/SiO2 catalyst contrary to the case for the Cu/ZnO/Al2O3 catalyst. DFT calculations show in accordance with previous surface science studies that oxygen on the surface could lead to an enrichment of the Ni-content in the surface. (4) Silica supported bimetallic Cu-Ni catalysts with different ratios of Cu to Ni have been prepared by impregnation. In situ reduction of Cu-Ni alloys with combined synchrotron XRD and XAS reveal a strong interaction between Cu and Ni, resulting in improved reducibility of Ni as compared to monometallic Ni. At high nickel concentrations silica supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower nickel contents, copper and nickel are separately aggregated and form metallic Cu and Cu-Ni alloy phases. At the same reduction conditions, the particle sizes of reduced Cu-Ni alloys decrease with increasing in Ni content. A maximum methanol productivity of 0.66 kg kgcat-1 h-1 with methanol selectivity up to 99.2 mol % has been achieved for a Cu-Ni/SiO2 catalyst prepared by the deposition-co-precipitation method. There is no apparent catalyst deactivation observed during the tested time on stream (40-100 h), contrary to the observation for the industrial Cu/ZnO/Al2O3 catalyst. For higher alcohol synthesis, the main work has been performed on CO hydrogenation over supported Mo2C. Mo2C supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over supported Mo2C are significantly higher compared to bulk Mo2C. The CO conversion reaches a maximum, when about 20 wt % Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active

  9. Synthesis of amino alcohols through one-popt catalytic boron addition sequences


    Solé Marcé, Cristina


    Amino alcohols are important building blocks extensively employed for the synthesis of natural products, pharmaceuticals, and for the production of chiral auxiliaries or catalysts used in asymmetric synthesis. Organoboranes can be utilized as interesting intermediates in organic chemistry. Taking into consideration the advantages of organoboronic esters and the importance of amino alcohols, four new one-pot routes to synthesize β– or γ–amino alcohols have been developed in this thesis. The fi...

  10. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols (United States)

    Shi, Shi-Liang; Wong, Zackary L.; Buchwald, Stephen L.


    The chirality, or ‘handedness’, of a biologically active molecule can alter its physiological properties. Thus it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation. Despite many advances in asymmetric synthesis, developing general and practical strategies for obtaining all possible stereoisomers of an organic compound that has multiple contiguous stereocentres remains a challenge. Here, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, we synthesized these amino-alcohol products using sequential, copper-hydride-catalysed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino-alcohol products, which contain up to three contiguous stereocentres. We leveraged catalyst control and stereospecificity simultaneously to attain exceptional control of the product stereochemistry. Beyond the immediate utility of this protocol, our strategy could inspire the development of methods that provide complete sets of stereoisomers for other valuable synthetic targets.

  11. Alcoholic fermentation induces melatonin synthesis in orange juice. (United States)

    Fernández-Pachón, M S; Medina, S; Herrero-Martín, G; Cerrillo, I; Berná, G; Escudero-López, B; Ferreres, F; Martín, F; García-Parrilla, M C; Gil-Izquierdo, A


    Melatonin (N-acetyl-5-methoxytryptamine) is a molecule implicated in multiple biological functions. Its level decreases with age, and the intake of foods rich in melatonin has been considered an exogenous source of this important agent. Orange is a natural source of melatonin. Melatonin synthesis occurs during alcoholic fermentation of grapes, malt and pomegranate. The amino acid tryptophan is the precursor of all 5-methoxytryptamines. Indeed, melatonin appears in a shorter time in wines when tryptophan is added before fermentation. The aim of the study was to measure melatonin content during alcoholic fermentation of orange juice and to evaluate the role of the precursor tryptophan. Identification and quantification of melatonin during the alcoholic fermentation of orange juice was carried out by UHPLC-QqQ-MS/MS. Melatonin significantly increased throughout fermentation from day 0 (3.15 ng/mL) until day 15 (21.80 ng/mL) reaching larger amounts with respect to other foods. Melatonin isomer was also analysed, but its content remained stable ranging from 11.59 to 14.18 ng/mL. The enhancement of melatonin occurred mainly in the soluble fraction. Tryptophan levels significantly dropped from 13.80 mg/L (day 0) up to 3.19 mg/L (day 15) during fermentation. Melatonin was inversely and significantly correlated with tryptophan (r = 0.907). Therefore, the enhancement in melatonin could be due to both the occurrence of tryptophan and the new synthesis by yeast. In summary, the enhancement of melatonin in novel fermented orange beverage would improve the health benefits of orange juice by increasing this bioactive compound.

  12. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)


    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  13. In situ investigation of catalysts for alcohol synthesis

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Sharafutdinov, Irek; Wu, Qiongxiao

    The need for studying catalyst under realistic conditions is emphasized both by academic and industrial research. Acquiring highly resolved local information from materials under realistic environments by means of Transmission Electron Microscopy (TEM) has been found to be essential in connecting...... microscopic and macroscopic properties of materials, e.g. relating catalytic performance with crystal structure and morphology. This study presents extensive characterization of NiGa and CuNi alloys during catalyst formation, alcohol synthesis, and accelerated aging experiments. The characterization platform...... for observation in a gaseous environment. By using heating holders, dynamic information about catalysts in their working state can be gained using a variety of TEM techniques. The presented platform successfully illustrates the capability of correlating the dynamic changes in structural phase and particle size...

  14. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase. (United States)

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan


    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  15. High octane ethers from synthesis gas-derived alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; DeTavernier, S.; Johannson, M.; Kieke, M.; Bastian, R.D.


    The temperature dependence of ether synthesis, particularly unsymmetric methylisobutylether (MIBE), was carried out over the Nafion-H microsaddles (MS) catalyst. The principal product formed under the rather severe reaction conditions of 1100 psig pressure and temperatures in the range of 123--157{degree}C was the expected MIBE formed directly by coupling the methanol/isobutanol reactants. In addition, significantly larger quantities of the dimethylether (DME) and hydrocarbon products were observed than were obtained under milder reaction conditions. Deactivation of the Nafion-H MS catalyst was determined by periodically testing the catalyst under a given set of reaction conditions for the synthesis of MIBE and MTBE from methanol/isobutanol = 2/1, i.e. 123{degree}C, 1100 psig, and total GHSV = 248 mol/kg cat/hr. After carrying out various tests over a period of 2420 hr, with intermittant periods of standing under nitrogen at ambient conditions, the yields of MIBE and MTBE had decreased by 25% and 41%, respectively. In order to gain insight into the role of the surface acidity in promoting the selective coupling of the alcohols to form the unsymmetric ether, the strengths of the acid sites on the catalysts are still being probed by calorimetric titrations in non-aqueous solutions. 11 refs., 13 figs., 9 tabs.

  16. Quantitative XPS analysis of silica-supported Cu Co oxides (United States)

    Cesar, Deborah V.; Peréz, Carlos A.; Schmal, Martin; Salim, Vera Maria M.


    Copper-cobalt oxides with Cu/Co=5:5, 15:15 and 35:35 bulk ratio have been prepared by deposition-precipitation method at constant pH from copper and cobalt nitrate solutions. Different oxides were obtained by decomposition of the precursors at 673 K for 7 h in air and analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD data showed the formation of different oxide phases; for the bulk atomic ratio of 15Cu:15Co, a phase containing Cu and Co with spinel-like structure was observed, while the other bimetallic oxides presented CuO and Co 3O 4 as distinct phases. The XPS qualitative analysis has shown that all samples exhibited Cu 2+ and Co 3+ species at the surface. The Cu-Co spinel presented a displacement in Cu 2p binding energy value. A mathematical model was proposed from relative intensity ratios, which allowed the determination of the oxide particle thickness and the fraction of coverage at the support. This model described accurately the system and showed that cobalt improved the copper dispersion.

  17. Fructose derived pyridyl alcohol ligands: synthesis and application in the asymmetric diethylzinc addition to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Yong-Gui; DAI, Li-Xin; HOU, Xue-Long


    Easily available chiral ketones were employed for the synthesis of optically active pyridyl alcohols, which were applied in the asymmetric diethylzinc addition to aldehydes, up to 89.4%e.e. was obtained using D-fructose-derived pyridyl alcohol.

  18. Selective bromochlorination of a homoallylic alcohol for the total synthesis of (−)-anverene (United States)

    Seidl, Frederick J


    Summary The scope of a recently reported method for the catalytic enantioselective bromochlorination of allylic alcohols is expanded to include a specific homoallylic alcohol. Critical factors for optimization of this reaction are highlighted. The utility of the product bromochloride is demonstrated by the first total synthesis of an antibacterial polyhalogenated monoterpene, (−)-anverene. PMID:27559385

  19. Asymmetric synthesis of tertiary alcohols by the use of tricarbonylchromium (O) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, O.R.; Gomes Costa, M.R.; Marcelo Curto, M.J. [Instituto Nacional de Engenharia e Tecnolgia Industrial, Queluz (Portugal)] [and others


    The demand for homochiral compounds by the pharmaceutical and related industries has stimulated great interest in the development of asymmetric methodology for organic synthesis. The authors report herein the stereoselective synthesis of tertiary benzylic alcohols. These homochiral tertiary alcohols could be obtained by stereoselective addition to the carbonyl function of chiral [(aryl)Cr(CO){sub 3}] ketones. The syntheses of these ketones were performed by reaction of lithiated (arene)Cr(CO){sub 3} complexes with acyl halides or aldehydes followed by Swern oxidation of the alcohols obtained.

  20. X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation (United States)

    Ma, Lun; Zou, Xiaoju; Bui, Brian; Chen, Wei; Song, Kwang Hyun; Solberg, Timothy


    Copper and cobalt co-doped ZnS (ZnS:Cu,Co) afterglow nanoparticles were conjugated to photosensitizer tetrabromorhodamine-123 (TBrRh123) and efficient energy transfer from the nanoparticles to TBrRh123 was observed. In addition to their X-ray excited luminescence, the ZnS:Cu,Co nanoparticles also show long lasting afterglow, which continuously serve as a light source for photodynamic therapy (PDT) activation. Compared to TBrRh123 or ZnS:Cu,Co alone, the ZnS:Cu,Co-TBrRh123 conjugates show low dark toxicity but high X-ray induced toxicity to human prostate cancer cells. The results indicate that the ZnS:Cu,Co afterglow nanoparticles have a good potential for PDT activation.

  1. Alcohol synthesis from CO or CO.sub.2 (United States)

    Hu, Jianli [Kennewick, WA; Dagle, Robert A [Richland, WA; Holladay, Jamelyn D [Kennewick, WA; Cao, Chunshe [Houston, TX; Wang, Yong [Richland, WA; White, James F [Richland, WA; Elliott, Douglas C [Richland, WA; Stevens, Don J [Richland, WA


    Methods for producing alcohols from CO or CO.sub.2 and H.sub.2 utilizing a palladium-zinc on alumina catalyst are described. Methods of synthesizing alcohols over various catalysts in microchannels are also described. Ethanol, higher alcohols, and other C.sub.2+ oxygenates can produced utilizing Rh--Mn or a Fisher-Tropsch catalyst.

  2. Electrochemical deposition and modification of Cu/Co-Cu multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, M.; Gebert, A.; Herrich, M.; Krause, A.; Cziraki, A.; Schultz, L


    Multilayers of Cu/Co-Cu were electrodeposited from a citrate electrolyte on quartz with Au and Si substrates with a Permalloy/Cu seedlayer by means of the potentiostatic double-pulse technique simultaneously controlled by microgravimetric measurements. The influence of a superimposed magnetic field and of annealing conditions on the microstructure has been studied. When an external magnetic field is parallel-orientated toward the electrode, an increase of the Cu deposition rate was observed due to magnetohydrodynamic effects. In contrast, the deposition rate of Co decreases. Microstructural investigations have shown that both a superimposed uniform magnetic field up to 600 mT and an inhomogeneous field of an SmCo permanent magnet change the microstructure and improve the GMR effect. X-ray diffraction measurements revealed that all grains are arranged in the <1 1 1> direction in contrast to layers formed without magnetic field with only 75% of the grains having a (1 1 1) texture. Isothermal heat treatment at different temperatures increases the GMR effect corresponding to an increase of grain size with preferred (1 1 1) orientation.

  3. Alcohol (United States)

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  4. Alcohol (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  5. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. (United States)

    Lan, Ethan I; Liao, James C


    Microbial production of fuel and chemical feedstock is a promising approach to solving energy and environmental problems. n-Butanol, isobutanol and other higher alcohols are of particular interest because they can serve as both fuel and chemical feedstock. Alternative resources such as CO2, syngas, waste protein, and lignocellulose are currently being investigated for their potential to produce these compounds. Except for lignocellulose, utilization of such alternative resource has not been examined extensively. This review aims to summarize the development of metabolic pathways for efficient synthesis of these higher alcohols and the current status of microbial strain development for the conversion of diverse resources into higher alcohols.

  6. Spin-valve magnetoresistance in Co/Si/(Co/Cu/Co) multilayers

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong-lie; LI Guan-xiong


    A series of Co/Si/(Co/Cu/Co) multilayers and Co/Si/Co sandwiches were prepared by high vacuum electron-beam evaporation. It was found that a Si spacer (≥0.9nm) could greatly decrease the interlayer coupling in Co/Si/Co sandwiches and there was no magnetoresistance(MR) or spin-valve MR in them due to the high resistivity of Si spacer. While in Co/Si/(Co/Cu/Co) multilayers, we observed a spin-valve MR of about 0.5% through a nominal 2.7nm Si spacer at room temperature. The spin-valve MR in Co/Si/(Co/Cu/Co) multilayers was attributed to the enhanced spin polarization of conduction electrons caused by the top Co/Cu/Co sandwich with GMR mechanism and high spin-dependent scattering at Co/Cu interface.

  7. Enantioselective alcohol synthesis using ketoreductases, lipases or an aldolase

    NARCIS (Netherlands)

    Sorgedrager, M.J.


    The demand for optically pure secondary alcohols, which has grown rapidly in recent years, has spurred the development of adequate enantioselective synthetic procedures. Although there are various chemical methods available, biocatalysts are increasingly applied due to their natural characteristic t

  8. Synthesis of (E,E)-Germacrane Sesquiterpene Alcohols via Enolate-Assisted 1,4-Fragmentation

    NARCIS (Netherlands)

    Minnaard, Adriaan J.; Wijnberg, Joannes B.P.A.; Groot, Aede de


    An efficient method has been developed for the synthesis of (E,E)-germacrane sesquiterpene alcohols. The key step in these syntheses involves the enolate-assisted 1,4-fragmentation of properly functionalized perhydro-1-naphthalenecarboxaldehydes with 1 equiv of sodium tert-amylate as base, to give t

  9. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk


    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems...... chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do...... not show any significant differences in reactivity, which indicates that the same catalytically active species is operating. The reaction is believed to proceed by initial dehydrogenation of the primary alcohol to the aldehyde that stays coordinated to ruthenium and is not released into the reaction...

  10. Separation of Primary Alcohols and Saturated Alkanes from Fisher-Tropsch Synthesis Products

    Institute of Scientific and Technical Information of China (English)

    Suqiao Li; Zhongli Tang⁎; Fujun Zhou; Wenbin Li; Xigang Yuan


    abstract A method for separating primary alcohols and saturated alkanes from the products of Fisher-Tropsch synthesis is developed. The separation scheme consists of three steps:(1) the raw material is pre-separated by fractional distillation into four fractions according to normal boiling points;(2) appropriate extractants are selected to sep-arate the primary alcohols from the saturated alkanes in each fraction;(3) the extractants are recovered by azeotropic distillation and the primary alcohols in the extract phase are purified. Based on the proposed method, the total recovery rates of the primary alcohols and the saturated alkanes are 86.23%and 84.62%respectively. © 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  11. Effect of cobalt promoter on Co—Mo—K/C catalysts used for mixed alcohol synthesis

    Institute of Scientific and Technical Information of China (English)

    JunBao; MingJiang; TianduoHu; TaoLiu; Yan-ningXie; ZhongruiLi; YiluF


    The structures of sulfided Co-Mo-K/C catalysts were studied by menas of X-ray diffraction (XRD),laser Raman spectra(LRS),and X-ray absorption fine structure(XAFS).Activities for alcohol synthesis via CO hydrogenation were used to characterize the catalytic performance of these catalysts.On the activeated carbon support,molybdenum is mainly resent as MoS2 species which shrinks with the cobalt loading,While cobalt is mainly present in the form of “Co-Mo-S”phase at the low Co loading and partly in a Co9S8--like structure at higher Co loading.The catalysts exhibit outstanding performance for higher alcohol synthesis due to addition of the promotion of cobalt.The catalysts exhibit outstanding performance for higher alcohol synthesis due to the addition of the promotion of cobalt.The activity for alcohol formation is optimized at a Co/Mo atomic ratio of 0.5.Co species operate as s synergistic system,rather than independently from the MoS2 phase.2001 Elsevier Science B.V.All rights reserved.

  12. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xing-Wu, E-mail: [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China); Zhang, Yun-Peng; He, Li [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Liu, Chun-ge [Department of Transportation and Municipal Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China)


    Highlights: Black-Right-Pointing-Pointer We use a new method (laser cladding) to prepare high-entropy alloy. Black-Right-Pointing-Pointer We gained small microstructure under rapid solidification condition. Black-Right-Pointing-Pointer We studied corrosion resistance of AlCrFeCuCo high-entropy alloy in two different liquids. - Abstract: The AlCrFeCuCo high-entropy alloys were prepared by the laser cladding method. The microstructure and corrosion resistance property of AlCrFeCuCo high-entropy alloy were researched by scanning electron microscopy, X-ray diffraction and electrochemical workstation. The results show that, under the rapid solidification small microstructure gained, the morphology of AlCrFeCuCo high entropy alloy is simple, the phase mainly compose of FCC and BCC; elements segregated in the alloys; the alloy shows excellent corrosion resistance, along with the increase of the scanning speed, alloy corrosion resistance performance shows a enhancement in the first and then weakened trend. The corrosion resistance performance of AlCrFeCuCo high-entropy alloys in 1 mol/L NaCl solution is better than in 0.5 mol/L H{sub 2}SO{sub 4} solution.

  13. Probe molecule studies: Active species in alcohol synthesis. Final report, July 1993--July 1994

    Energy Technology Data Exchange (ETDEWEB)

    Blackmond, D.G.; Wender, I.; Oukaci, R.; Wang, Jian


    The objectives of this project are to investigate the role(s) of cobalt and copper in constructing the active sites for the formation of higher alcohols from CO/H{sub 2} over the Co-Cu based catalysts by using different reduction treatments and applying selected characterization tools such as TPR, TPD, XRD and XPS as well as to generate mechanistic information on the reaction pathway(s) and key intermediate(s) of higher alcohol synthesis from CO/H{sub 2} over Co-Cu/ZnO catalysts by the approach of in-situ addition of a probe molecule (nitromethane).

  14. Amide Synthesis from Alcohols and Amines by the Extrusion of Dihydrogen

    DEFF Research Database (Denmark)

    Nordstrøm, Lars Ulrik Rubæk; Vogt, Henning; Madsen, R.


    An environmentally friendly method for synthesis of amides is presented where a simple ruthenium catalyst mediates the direct coupling between an alcohol and an amine with the liberation of two molecules of dihydrogen. The active catalyst is generated in situ from an easily available ruthenium...... complex, an N-heterocyclic carbene and a phosphine. The reaction allows primary alcohols to be coupled with primary alkyamines to afford the corresponding secondary amides in good yields. The amide formation presumably proceeds through a catalytic cycle where the intermediate aldehyde and hemiaminal...

  15. Synthesis and biocidal activity of modified poly(vinyl alcohol

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy


    Full Text Available Functionalized polymers and their polymer nature give them more advantages than the corresponding small molecules. In this respect, polymeric ammonium and phosphonium salts were prepared by chemical modifications of poly(vinyl alcohol (PVA aiming to explore their antimicrobial activities against pathogenic bacteria and fungi. The modifications were performed by chloroacetylation with chloroacetyl chloride. Incorporation of the ammonium and phosphonium salts was conducted by the reaction of chloroacetylated poly(vinyl alcohol (CPVA with triethylamine (TEA, triphenylphosphine (TPP, and tributylphosphine (TBP. The antimicrobial activity of the polymers against variety of test microorganisms was examined by the cut plug and viable cell counting methods of shake cultures of 10 times dilute nutrient broth and Sabouraud’s media, seeded with the test microorganisms. It was found that the immobilized polymers exhibited antimicrobial activity against the Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella sp. and Salmonella typhi and Gram positive bacteria (Bacillus subtilis and B. cereus and the dermatophyte fungus (Trichophyton rubrum. The growth inhibition of the test microorganisms (ratio of surviving cell number, M/C varied according to the composition of the active group in the polymer and the test organism. It increased by increasing the concentration of the polymer. Triphenyl phosphonium salt of the modified poly(vinyl alcohol exhibited the most biocidal activity against both Gram-negative and Gram-positive bacteria after 24 h.

  16. Highly diastereoselective synthesis of enantiopure β-trifluoromethyl β-amino alcohols from chiral trifluoromethyl oxazolidines (Fox). (United States)

    Simon, Julien; Chelain, Evelyne; Brigaud, Thierry


    The organolithium species addition to 2-hydroxymethyl fluorinated oxazolidines (Fox) provides a highly diastereoselective and straightforward route for the synthesis of enantiopure trifluoromethyl β-amino alcohols quaternarized at the β-position.

  17. Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Rathore; Giridhar Madras [Indian Institute of Science, Bangalore (India). Department of Chemical Engineering


    Biodiesel is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. The synthesis of biodiesel from edible oils like palm oil and groundnut oil and from crude non-edible oils like Pongamia pinnata and Jatropha curcas was investigated in supercritical methanol and ethanol without using any catalyst from 200 to 400{sup o}C at 200 bar. The variables affecting the conversion during transesterification, such as molar ratio of alcohol to oil, temperature and time were investigated in supercritical methanol and ethanol. Biodiesel was also synthesized enzymatically with Novozym-435 lipase in presence of supercritical carbon dioxide. The effect of reaction variables such as temperature, molar ratio, enzyme loading and kinetics of the reaction was investigated for enzymatic synthesis in supercritical carbon dioxide. Very high conversions (>80%) were obtained within 10 min and nearly complete conversions were obtained at within 40 min for the synthesis of biodiesel in supercritical alcohols. However, conversions of only 60-70% were obtained in the enzymatic synthesis even after 8 h. 48 refs., 8 figs., 1 tab.

  18. Efficient Synthesis of Primary Nitrocarbamates of Sugar Alcohols: From Food to Energetic Materials. (United States)

    Axthammer, Quirin J; Klapötke, Thomas M; Krumm, Burkhard


    The synthesis of various new polyvalent nitrocarbamates derived from sugar alcohols was accomplished by an economically benign two-step synthesis. The precursor carbamates were synthesized with the reagent chlorosulfonyl isocyanate (CSI) and further nitrated using mixed acid. The starting materials, sugar alcohols, are renewable biomass, mainly used in food and cosmetic industry. The structures of one carbamate and one nitrocarbamate were exemplary described by single-crystal X-ray-analysis. The heat of formation is calculated by the use of isodesmic reactions and the energetic performance data were estimated. All compounds were fully characterized by elemental analysis, vibrational spectroscopy, (1)H, (13)C, and (14/15)N NMR spectroscopy and thermal analysis (DSC). The nitrocarbamates exhibit good detonation performance and have significantly lower sensitivities compared to the commonly used nitrate ester explosive PETN.

  19. Synthesis of MoO3 and its polyvinyl alcohol nanostructured film

    Indian Academy of Sciences (India)

    Arunkumar Lagashetty; Vijayanand Havanoor; S Basavaraja; A Venkataraman


    The synthesis of ultrafine MoO3 through a self-propagating combustion route employing polyethylene glycol as fuel is reported. The precursor molybdenum oxalate is employed in this study for the conversion of the precursor to ultrafine MoO3 particles. The solvent casting method is adopted for the synthesis of MoO3 dispersed polyvinyl alcohol nanostructured film (MoO3–PVA). These synthesized MoO3 and their composite samples are characterized for their structure, morphology, bonding and thermal behaviour by XRD, SEM, IR and DSC techniques, respectively. The distribution of MoO3 in polyvinyl alcohol gives a crystalline polymer, a compact structure and an increase in glass transition temperature.

  20. Camphor Sulfonic Acid-hydrochloric Acid Codoped Polyaniline/polyvinyl Alcohol Composite: Synthesis and Characterization


    Jorge Enrique Osorio-Fuente; Carlos Gómez-Yáñez; María de los Ángeles Hernández-Pérez; Fidel Pérez-Moreno


    A complementary dopant system formed by hydrochloric and camphor sulfonic (CSA) acids was used in the in-situ synthesis of a polyaniline (PANi)/polyvinyl alcohol (PVA) composite. The conductivity measurements showed that the use of CSA either as single dopant or codopant caused a decrement up to 2 orders of magnitude on the overall conductivity as well as an improvement on thermal stability. The PANi/PVA composites were characterized by spectroscopic and thermal analysis. Conducting emeraldin...

  1. Synthesis of boron nitride from boron containing poly(vinyl alcohol) as ceramic precursor

    Indian Academy of Sciences (India)

    M Das; S Ghatak


    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).

  2. Alcohol

    NARCIS (Netherlands)

    Hendriks, H.F.; Tol, A. van


    Alcohol consumption affects overall mortality. Light to moderate alcohol consumption reduces the risk of coronary heart disease; epidemiological, physiological and genetic data show a causal relationship. Light to moderate drinking is also associated with a reduced risk of other vascular diseases an

  3. Synthesis and properties of physically crosslinked poly (vinyl alcohol) hydrogels

    Institute of Scientific and Technical Information of China (English)

    MA Ru-yin; XIONG Dang-sheng


    The present study is an investigation of the properties of poly (vinyl alcohol), which would be a better contact lens material than conventional HEMA in some ways. A transparent PVA hydrogel was prepared from a PVA solution in a mixed solvent consisting of water and a water-miscible organic solvent, DMSO, by the freezing-thawing method. The water content, visible light transmittance, mechanical and swelling properties of the hydrogels were evaluated as a function of PVA concentration and number of freeze-thaw cycles. The results show that the properties of PVA hydrogels depend on the polymer concentration, the number of freeze-thaw cycles and the addition of the organic solvent.

  4. Synthesis of daidzin analogues as potential agents for alcohol abuse. (United States)

    Gao, Guang-Yao; Li, Dian-Jun; Keung, Wing Ming


    Daidzin, the active principle of an herbal remedy for 'alcohol addiction', has been shown to reduce alcohol consumption in all laboratory animals tested to date. Correlation studies using structural analogues of daidzin suggests that it acts by raising the monoamine oxidase (MAO)/mitochondrial aldehyde dehydrogenase (ALDH-2) activity ratio (J. Med. Chem. 2000, 43, 4169). Structure-activity relationship (SAR) studies on the 7-O-substituted analogues of daidzin have revealed structural features important for ALDH-2 and MAO inhibition (J. Med. Chem. 2001, 44, 3320). We here evaluated effects of substitutions at 2, 5, 6, 8, 3' and 4' positions of daidzin on its potencies for ALDH-2 and MAO inhibition. Results show that analogues with 4'-substituents that are small, polar and with hydrogen bonding capacities are most potent ALDH-2 inhibitors, whereas those that are non-polar and with electron withdrawing capacities are potent MAO inhibitors. Analogues with a 5-OH group are less potent ALDH-2 inhibitors but are more potent MAO inhibitors. All the 2-, 6-, 8- and 3'-substituted analogues tested so far do not inhibit ALDH-2 and/or have decreased potencies for MAO inhibition. This, together with the results obtained from previous studies, suggests that a potent antidipsotropic analogue would be a 4',7-disubstituted isoflavone. The 4'-substituent should be small, polar, and with hydrogen bonding capacities such as, -OH and -NH(2); whereas the 7-substituent should be a straight-chain alkyl with a terminal polar function such as -(CH(2))(n)-OH with 2 or =4.

  5. Spin momentum transfer effects observed in electrodeposited Co/Cu/Co nanowires

    DEFF Research Database (Denmark)

    Blon, T.; Mátéfi-Tempfli, Mária; Piraux, L.;


    Spin-transfer torque effects are reported in nanowires consisting in Co/Cu/Co trilayers electrodeposited on an anodic alumina template. Using a nanolithography process based on electrically controlled nanoindentation of the alumina template, we are able to investigate the spin transport propertie...

  6. Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter (United States)

    Jiang, Xiaoli; Wang, Yinling; Li, Maoguo


    The solvent plays an important role in a given chemical reaction. Since most reaction in nature occur in the mixed-solvent systems, a comprehensive principle for solvent optimization was required. By calculating the Hansen solubility parameters (HSP) distance Ra, we designed a model experiment to explore the influence of mixed solvents on the chemical synthesis. The synthesis of polydopamine (PDA) in the water-alcohol system was chosen as model. As predicted, the well-dispersed PDA spheres were obtained in selected solvents with smaller Ra values: methanol/water, ethanol/water and 2-propanol/water. In addition, the mixed solvent with smaller Ra values gave a higher conversion of dopamine. The strategy for mixed solvent selection is might be useful to choose optimal reaction media for efficient chemical synthesis.

  7. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Feeley, O.C.; Johansson, M.A.


    The objective of the proposed research is to synthesize oxygenated fuel ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from coal-derived H{sub 2}/CO/CO{sub 2} synthesis via alcohol mixtures that are rich in methanol and 2-methyl-1-proanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. Both organic and inorganic catalysts will be investigated, and the better catalysts will be subjected to long term performance studies. The project is divided into the following three tasks: (1) synthesis of high octane ethers from alcohol mixtures containing predominantly methanol and 2-methyl-1-propanol over superacid resins, (2) inorganic catalysts for the synthesis of high octane ethers form alcohols, and (3) long term performance and reaction engineering for scale-up of the alcohols-to-ether process. A summary of technical progress is provided in this report.

  8. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenation. The metal area based activity for a Cu-Ni/SiO2 catalyst is at the same level as a Cu/ZnO/Al2O3 model...... bimetallic Cu-Ni catalysts with different ratios of Cu to Ni have been prepared by impregnation. In situ reduction of Cu-Ni alloys with combined synchrotron XRD and XAS reveal a strong interaction between Cu and Ni, resulting in improved reducibility of Ni as compared to monometallic Ni. At high nickel...

  9. Alcohol (United States)

    ... changes that come from drinking alcohol can make people do stupid or embarrassing things, like throwing up or peeing on themselves. Drinking also gives people bad breath, and no one enjoys a hangover. ...

  10. Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Edwin L. Kugler


    Full Text Available Activated carbon (AC-supported molybdenum catalysts, either with or without a potassium promoter, were prepared by the incipient wetness impregnation method. The materials were characterized using differential thermal analysis (DTA and temperature programmed reduction (TPR, and were used for mixed alcohol synthesis from syngas (CO+H2. DTA results showed that a new phase, related to the interaction between Mo species and the AC support, is formed during the calcination of the Mo/AC catalyst, and the introduction of a K promoter has noticeable effect on the interaction. TPR results indicated that the Mo is more difficult to reduce after being placed onto the AC support, and the addition of a K promoter greatly promotes the formation of Mo species reducible at relatively low temperatures, while it retards the generation of Mo species that are reducible only at higher temperatures. These differences in the reduction behavior of the catalysts are atributed to the interaction between the active components (Mo and K and the support. Potassium-doping significantly promotes the formation of alcohols at the expense of CO conversion, especially to hydrocarbons. It is postulated that Mo species with intermediate valence values (averaged around +3.5 are more likely to be the active phase(s for alcohol synthesis from CO hydrogenation, while those with lower Mo valences are probably responsible for the production of hydrocarbons.

  11. Continuous low-temperature methanol synthesis from syngas using alcohol promoters

    Energy Technology Data Exchange (ETDEWEB)

    Prasert Reubroycharoen; Tetsuji Yamagami; Tharapong Vitidsant; Yoshiharu Yoneyama; Motoaki Ito; Noritatsu Tsubaki [Toyama University, Toyama (Japan). Department of Material System & Life Science, School of Engineering


    Continuous low-temperature methanol synthesis from syngas containing CO{sub 2} on various Cu/ZnO catalysts was investigated by using a semibatch autoclave reactor. Methanol was easily produced at a temperature as low as 443 K and with a pressure of 50 bar with the aid of 2-butanol, which showed a very high efficiency with a one-pass yield of 47.0% and a selectivity of 98.9%. Methanol itself used as alcohol promoter exhibited a higher activity than other 1-alcohols because it has the lowest spatial effect. 2-Alcohols, however, exhibited the highest conversion among the same carbon number because of its well-balanced effects produced by their of electronic and spatial factors. The one-pass conversion was improved by increasing the catalyst weight because no thermodynamic limitations existed at low temperatures. The continuous low-temperature methanol synthesis is a very promising process because completely purified syngas is not necessary. 23 refs., 3 figs., 4 tabs.

  12. Effect of Alcohol Structure on the Optimum Condition for Novozym 435-Catalyzed Synthesis of Adipate Esters

    Directory of Open Access Journals (Sweden)

    Mohd Basyaruddin Abdul Rahman


    Full Text Available Immobilized Candida antarctica lipase B, Novozym 435, was used as the biocatalyst in the esterification of adipic acid with four different isomers of butanol (n-butanol, sec-butanol, iso-butanol, and tert-butanol. Optimum conditions for the synthesis of adipate esters were obtained using response surface methodology approach with a four-factor-five-level central composite design concerning important reaction parameters which include time, temperature, substrate molar ratio, and amount of enzyme. Reactions under optimized conditions has yielded a high percentage of esterification (>96% for n-butanol, iso-butanol, and sec-butanol, indicating that extent of esterification is independent of the alcohol structure for primary and secondary alcohols at the optimum conditions. Minimum reaction time (135 min for achieving maximum ester yield was obtained for iso-butanol. The required time for attaining maximum yield and also the initial rates in the synthesis of di-n-butyl and di-sec-butyl adipate were nearly the same. Immobilized Candida antarctica lipase B was also capable of esterifying tert-butanol with a maximum yield of 39.1%. The enzyme is highly efficient biocatalyst for the synthesis of adipate esters by offering a simple production process and a high esterification yield.

  13. Facile synthesis of β-diketone alcohols for combined functionality: initiation, catalysis, and luminescence. (United States)

    Zhang, Xuepeng; Cui, Minxin; Zhou, Rui; Chen, Changle; Zhang, Guoqing


    Primary alcohol-functionalized β-diketones (bdks) are successfully synthesized via facile one-step Claisen condensation between aromatic monoketones and ε-caprolactone (ε-CL). To demonstrate application potentials, these bdk alcohols are used to chelate with various Lewis acids, including Tb (III), Eu (III), and B (III). It is discovered that the resulting Tb (III) and Eu (III) diketonate complexes can serve as both catalysts and initiators for ring-opening polymerization (ROP) under solvent-free conditions, using lactide monomer as an example. The polylactides (PLAs) thus obtained exhibit luminescence properties characteristic of Tb (III) and Eu (III), respectively. On the other hand, boron-chelated diketone can initiate ROP of lactide in the presence of Sn(oct)2 , and affords a PLA material with dual-emission, i.e., fluorescence and room temperature phosphorescence. The synthesis described here represents a shortcut for the preparation of bdk-based macroligands and subsequent functional materials.

  14. Biocatalytic Synthesis of Chiral Alcohols and Amino Acids for Development of Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel


    Full Text Available Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become increasingly important in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes derived there from for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities. In this article, biocatalytic processes are described for the synthesis of chiral alcohols and unntural aminoacids for pharmaceuticals.

  15. Synthesis of Energetic Nitrocarbamates from Polynitro Alcohols and Their Potential as High Energetic Oxidizers. (United States)

    Axthammer, Quirin J; Krumm, Burkhard; Klapötke, Thomas M


    A new synthesis strategy for the preparation of energetic carbamates and nitrocarbamates starting from readily available polynitro alcohols is introduced. The efficient synthesis of mainly new carbamates was performed with the reactive chlorosulfonyl isocyanate (CSI) reagent. The carbamates were nitrated using mixed acid to form the corresponding primary nitrocarbamates. The thermal stability of all synthesized compounds was studied using differential scanning calorimetry, and the energies of formation were calculated on the CBS-4 M level of theory. Detonation parameters and propulsion properties were determined with the software package EXPLO5 V6.02. Furthermore, for all new substances single-crystal X-ray diffraction studies were performed and are presented and discussed as Supporting Information.

  16. Influence of Si buffer layer on the giant magnetoresistance effect in Co/Cu/Co sandwiches

    Institute of Scientific and Technical Information of China (English)

    李冠雄; 沈鸿烈; 沈勤我; 李铁; 邹世昌


    The Co/Cu/Co sandwiches with a semiconductor Si buffer layer were prepared by high vacuum electron-beam evaporation. The influence of the Si buffer layer with different thickness on the giant magnetoresistance (GMR) effect in the Co/Cu/Co sandwiches was investigated. It was found that the GMR showed an obvious anisotropy when the thickness of Si buffer layer was larger than or equal to 0.9 nm, and that the GMR was basically isotropic with an Si buffer layer thinner than 0.9 nm. The anisotropic behavior of GMR can be ascribed to the in-plane magnetic anisotropy in the sandwiches. Due to the interdiffusion at the Si buffer/Co interface, a Co2Si interface layer with a good (301) texture formed and induced the in-plane magnetic anisotropy in the sandwiches. The dependence of the crystalline texture of the sandwiches on the thickness of Si buffer layer was also studied.

  17. Magnetic and Structural Properties in Co/Cu/Co Sandwiches with Ni and Cr Buffer Layers

    Institute of Scientific and Technical Information of China (English)


    The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented polycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.

  18. Growth of High-Quality Decagonal Al-Cu-Co Quasicrystals from Ternary Melt

    Institute of Scientific and Technical Information of China (English)

    FAN Zhen-Jun; PAN Feng; ZHANG Dian-Lin


    By changing the initial elements, we obtain high-quality samples of A1-Cu-Co decagonal quasicrystals with a wide range of composition. The sizes of the samples are typically several centimetres in length and 2-3mm in diameter. These samples are identified to be decagonal single grains by powder x-ray diffraction method, and the composition is homogeneous confirmed by EDX and chemical method.

  19. [Determination of low-carbon alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis by gas chromatography]. (United States)

    Gai, Qingqing; Wu, Peng; Shi, Yulin; Bai, Yu; Long, Yinhua


    A method for the determination of low-carbon (C1-C8) alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis was developed by gas chromatography. It included the optimization of separation conditions, the precision and accuracy of determination, and the use of correction factors of the analytes to ethanol for quantification. The aqueous products showed that the correlation coefficients for ethanol in different content ranges were above 0.99, which means it had good linear correlations. The spiked recoveries in the aqueous samples of Fischer-Tropsch synthesis were from 93.4% to 109.6%. The accuracy of the method can satisfy the requirement for the analysis of the aqueous samples of Fischer-Tropsch synthesis. The results showed that the total mass fractions of the major low-carbon alcohols, aldehydes, ketones in aqueous products of Fischer-Tropsch synthesis were about 3%-12%, and the contents of ethanol were the highest (about 1.7%-7.3%). The largest share of the total proportion was n-alcohols, followed by isomeric alcohols, aldehydes and ketones were the lowest. This method is simple, fast, and has great significance for the analysis of important components in aqueous products of Fischer-Tropsch synthesis.

  20. Structural diversity of copper-CO2 complexes: infrared spectra and structures of [Cu(CO2)n]- clusters. (United States)

    Knurr, Benjamin J; Weber, J Mathias


    We  present infrared spectra of  [Cu(CO2)n](-) (n = 2-9) clusters in the wavenumber range 1600-2400 cm(-1). The CO stretching modes in this region encode the structural nature of the cluster core and are interpreted with the aid of density functional theory. We find a variety of core species in [Cu(CO2)n](-) clusters, but the dominant core structure is a [Cu(CO2)2](-) core where the two CO2 ligands are bound to the Cu atom in a bidentate fashion. We compare the results of [Cu(CO2)n](-) clusters to those of other [M(CO2)n](-) clusters (M = Au, Ag, Co, Ni) to establish trends of how the metal-CO2 interaction depends on the metal partner.

  1. Nanostructured CuCo2O4 cathode for intermediate temperature solid oxide fuel cells via an impregnation technique (United States)

    Shao, Lin; Wang, Pengxiang; Zhang, Qi; Fan, Lishuang; Zhang, Naiqing; Sun, Kening


    Spinel structure CuCo2O4 nanoparticles are coated onto porous 10mol% scandia stabilized zirconia (SSZ) framework via a solution impregnation process. X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy and current-voltage performance measurements have been used to characterize impregnated CuCo2O4 cathodes. The CuCo2O4 nano-particles are uniformly distributed on the surface of the porous SSZ backbones, thus increasing the length of the triple phase boundaries (TPBs). As expected, the polarization resistance of impregnated nanostructured CuCo2O4 is as low as 0.087 Ωcm2 in air at 800 °C, and delivers a high peak power density of 1136 mW cm-2.

  2. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others


    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  3. High octane ethers from synthesis gas-derived alcohols. Final technical report, September 25, 1990--December 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.


    The objective of the research was to develop the methodology for the catalytic synthesis of ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been previously demonstrated by us to occur over superacid catalysts to yield MIBE and smaller amounts of MTBE at moderate pressures and a mixture of methanol and isobutene at low pressures. A wide range of organic resin catalysts and inorganic oxide and zeolite catalysts have been investigated for activity and selectivity in directly coupling alcohols, principally methanol and isobutanol, to form ethers and in the dehydration of isobutanol to isobutene in the presence of methanol. All of these catalysts are strong acids, and it was found that the organic and inorganic catalysts operate in different, but overlapping, temperature ranges, i.e. mainly 60--120{degrees}C for the organic resins and 90--175{degrees}C for the inorganic catalysts. For both types of catalysts, the presence of strong acid centers is required for catalytic activity, as was demonstrated by lack of activity of fully K{sup +} ion exchanged Nafion resin and zirconia prior to being sulfated by treatment with sulfuric acid.

  4. Highly enantioselective synthesis of fluorinated gamma-amino alcohols through proline-catalyzed cross-Mannich reaction. (United States)

    Fustero, Santos; Jiménez, Diego; Sanz-Cervera, Juan F; Sánchez-Roselló, María; Esteban, Elisabet; Simón-Fuentes, Antonio


    A new, simple route for the synthesis of fluorinated beta-alkyl gamma-amino alcohols in optically pure form in only two steps and featuring proline catalysis from inexpensive and readily available starting materials is described. The applied strategy allows for the introduction of diversity into both the beta-fluoroalkyl and alpha-alkyl groups of these compounds. [reaction: see text

  5. Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2011 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Rummel, Becky L.


    Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Research during FY 2011 continued to examine the performance of RhMn catalysts on alternative supports including selected zeolite, silica, and carbon supports. Catalyst optimization continued using both the Davisil 645 and Merck Grade 7734 silica supports. Research also was initiated in FY 2011, using the both Davisil 645 silica and Hyperion CS-02C-063 carbon supports, to evaluate the potential for further improving catalyst performance, through the addition of one or two additional metals as promoters to the catalysts containing Rh, Mn, and Ir.

  6. Poly(aniline-co--aminobenzoic acid) deposited on poly(vinyl alcohol): Synthesis and characterization

    Indian Academy of Sciences (India)

    S Adhikari; P Banerji


    In this work, we have deposited poly(aniline-co--aminobenzoic acid) on poly(vinyl alcohol) (PVA) by in situ polymerization. The polymerization was effected within maleic acid (MA) cross-linked PVA hydrogel. The copolymer was obtained by oxidative polymerization of aniline hydrochloride and -aminobenzoic acid using ammonium persulfate as an oxidant. Instead of conventional solution polymerization, here synthesis was carried out on APS soaked MA cross-linked PVA (MA–PVA) film where the polymer was in situ deposited in its conducting form. The composite film was characterized by Fourier transform infra red (FT–IR) and ultraviolet visible (UV–VIS) spectroscopy and electrical measurements. Surface morphology of the composite films was studied by field emission scanning electron microscopy (FESEM). The variation of conductivity of the films was studied.

  7. Giant magnetoresistance effect in Ni buffered Co/Cu/Co sandwich

    Institute of Scientific and Technical Information of China (English)

    LI; Tie(李铁)


    The effects of Ni buffer layer on the giant magnetoresistance structure of Co/Cu/Co sandwich are investigated systematically in this paper.It is found that Ni buffer layer can induce the crystallization of the lower Ni/Co layer and produce small coercivity,thus enlarging the difference in the magnetic behavior between the two magnetic layers in the sandwich.Moreover,the use of the Ni buffer layer can also improve the interface flatness in the sandwich.All these factors enhance the sensitivity of the Ni buffered sandwich.``

  8. Molecular Dynamics Simulation of Icosahedral Transformations in Solid Cu-Co Clusters

    Institute of Scientific and Technical Information of China (English)

    LI Guo-Jian; WANG Qiang; LIU Tie; LI Dong-Gang; LU Xiao; HE Ji-Cheng


    We study the icosahedral transformations of solid Cu-Co clusters with different initial configurations by using molecular dynamics with the embedded atom method.It is found that the formation of symmetric icosahedral cluster is strongly related to the atomic number and initial configuration.The transformation originates from the surface into the interior of the cluster and is a structural change which is rapid and diffusionless.The icosahedral clusters with any composition and configuration,such as core-shell or three-shell cluster,can be prepared by the means of solid-solid phase transition in bimetallic dusters.

  9. Tuning the Synthesis of Manganese Oxides Nanoparticles for Efficient Oxidation of Benzyl Alcohol (United States)

    Fei, Jingyuan; Sun, Lixian; Zhou, Cuifeng; Ling, Huajuan; Yan, Feng; Zhong, Xia; Lu, Yuxiang; Shi, Jeffrey; Huang, Jun; Liu, Zongwen


    The liquid phase oxidation of benzyl alcohol is an important reaction for generating benzaldehyde and benzoic acid that are largely required in the perfumery and pharmaceutical industries. The current production systems suffer from either low conversion or over oxidation. From the viewpoint of economy efficiency and environmental demand, we are aiming to develop new high-performance and cost-effective catalysts based on manganese oxides that can allow the green aerobic oxidation of benzyl alcohol under mild conditions. It was found that the composition of the precursors has significant influence on the structure formation and surface property of the manganese oxide nanoparticles. In addition, the crystallinity of the resulting manganese nanoparticles was gradually improved upon increasing the calcination temperature; however, the specific surface area decreased obviously due to pore structure damage at higher calcination temperature. The sample calcined at the optimal temperature of 600 °C from the precursors without porogen was a Mn3O4-rich material with a small amount of Mn2O3, which could generate a significant amount of {O}_2- species on the surface that contributed to the high catalytic activity in the oxidation. Adding porogen with precursors during the synthesis, the obtained catalysts were mainly Mn2O3 crystalline, which showed relatively low activity in the oxidation. All prepared samples showed high selectivity for benzaldehyde and benzoic acid. The obtained catalysts are comparable to the commercial OMS-2 catalyst. The synthesis-structure-catalysis interaction has been addressed, which will help for the design of new high-performance selective oxidation catalysts.

  10. Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source

    Directory of Open Access Journals (Sweden)

    Francisco Espinosa-Magaña


    Full Text Available Carbon nanotubes with single and few walls are highly appreciated for their technological applications, regardless of the limited availability due to their high production cost. In this paper we present an alternative process that can lead to lowering the manufacturing cost of CNTs of only few walls by means of the use of the spray pyrolysis technique. For this purpose, ferrocene is utilized as a catalyst and aliphatic alcohols (methanol, ethanol, propanol or butanol as the carbon source. The characterization of CNTs was performed by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The study of the synthesized carbon nanotubes (CNTs show important differences in the number of layers that constitute the nanotubes, the diameter length, the quantity and the quality as a function of the number of carbons employed in the alcohol. The main interest of this study is to give the basis of an efficient synthesis process to produce CNTs of few walls for applications where small diameter is required.

  11. Synthesis, characterization, and catalytic activity of Rh-based lanthanum zirconate pyrochlores for higher alcohol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Abdelsayed, Victor; Shekhawat, Dushyant; Poston, James A.; Spivey, James J.


    Two lanthanum zirconate pyrochlores (La{sub 2}Zr{sub 2}O{sub 7}; LZ) were prepared by Pechini method and tested for higher alcohols selectivity. In one, Rh was substituted into the pyrochlore lattice (LRZ, 1.7 wt%) while for the second, Rh was supported on an unsubstituted La{sub 2}Zr{sub 2}O{sub 7} (R/LZ, 1.8 wt%). X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) results show that the surface reducibility depends on whether the Rh is in (or supported on) the LZ pyrochlore. Rhodium in the LRZ is more reducible than rhodium supported on the R/LZ pyrochlore, likely due to the presence of a perovskite phase (LaRhO{sub 3}; identified by XRD), in which rhodium is more reducible. The formation of the perovskite accompanies that of the pyrochlore. CO hydrogenation results show higher ethanol selectivity for R/LZ than LRZ, possibly due to the strong interaction between Rh and LZ on the R/LZ, forming atomically close Rh{sup +}/Rh{sup 0} sites, which have been suggested to favor ethanol production.

  12. Synthesis of magnetic and multiferroic materials from polyvinyl alcohol-based gels (United States)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.


    This review article summarizes results on the synthesis of the magnetic materials including modified nickel ferrite (Ni0.9Co0.1Cu0.1Fe1.9O4-δ), yttrium iron garnet (Y3Fe5O12), lanthanum-containing manganites (MxLa1-xMnO3 (M=Pb, Ba or Sr; x=0.3-0.35)), and multiferroics (BiFeO3 and BiFe0.5Mn0.5O3) from polyvinyl alcohol-based gels. It is shown that the ammonium nitrate accelerates destruction of organic components of xerogels and thus Ni0.9Co0.1Cu0.1Fe1.9O4-δ and BiFeO3 can be prepared at record low temperatures (100 and 250 °C, respectively) which are 200-300 °C lower compared to the process where air is used as an oxidizing agent. As for the synthesis of Y3Fe5O12, MxLa1-xMnO3 and BiFe0.5Mn0.5O3, the presence of NH4NO3 favors formation of foreign phases, which ultimately complicate reaction mechanisms and lead to the higher temperature to synthesize target products. Developed methods provide nanoscale magnetic and multiferroic materials with an average particle size of ∼20-50 nm.

  13. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries (United States)

    Wang, Peng-Xiang; Shao, Lin; Zhang, Nai-Qing; Sun, Ke-Ning


    Extremely high energy density and environment friendly reaction make Li-O2 batteries a promising energy storage system. In order to improve the energy efficiency and cycle life of Li-O2 battery, spinel mesoporous CuCo2O4 was successfully synthesized by a facile hydrothermal method and investigated in Li-O2 batteries. The electrochemical measurements show that mesoporous CuCo2O4 possess higher oxygen reduction and oxygen evolution activity than bulk CuCo2O4 both in alkaline and non-aqueous solution. Owing to the inherent catalytic activity, high conductivity and facile mass transfer of mesoporous CuCo2O4, Li-O2 battery shows enhanced electrochemical performances, including much lower charge overpotential and a high capacity up to 5288 mAh g-1. When restricting the discharge capacity at 500 mAh g-1, it could operate over 80 cycles and exhibit superior cycle stability. These results indicate that mesoporous CuCo2O4 nanoparticles are appropriate bifunctional catalysts for Li-O2 batteries.

  14. LDA +U calculation of electronic and thermoelectric properties of doped CuCoO 2 (United States)

    Knížek, K.


    Doped CuCoO2 is a candidate oxide material for thermoelectric power generation. The evolution of the band structure and thermoelectric properties of CuCoO2 upon hole and electron doping in the CoO2 layer and hole doping at the Cu site were calculated by the local-density approximation (LDA) and LDA +U methods and using standard Boltzmann theory. The doping was simulated by the virtual atom approximation and the supercell approach and the results were compared with previous calculations using the rigid band approximation. The calculated thermopowers are comparable for the virtual atom and rigid band approximations, but the thermopower obtained from the supercell calculation is significantly lower. The reason is the similar energy of Co and Cu d orbitals and the hybridization of symmetrically related Co a1 g and Cu dz2 orbitals. As a consequence, both cations contribute to the bands around the Fermi level and hence a substitution at any of the cation sites alters the band structure at EF and affects the thermoelectric properties. Our results show that in the case of hole doping, higher thermopower is obtained for substitution at the Cu site than in the CoO2 layer.

  15. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    Energy Technology Data Exchange (ETDEWEB)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V., E-mail: [Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tamil Nadu (India)


    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  16. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol and poly (vinyl alcohol/silica using indigenous electrospinning set up

    Directory of Open Access Journals (Sweden)

    K. Sasipriya


    Full Text Available Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol and poly (vinyl alcohol/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol and poly (vinyl alcohol/silica sol fibers were characterized by Scanning electron microscopy (SEM, Atomic force microscopy (AFM and Fourier transform infra red spectroscopy (FTIR. According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up.

  17. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie


    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  18. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany


    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  19. Evaluation of Promoters for Rhodium-Based Catalysts for Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.; White, James F.; Gray, Michel J.; Stevens, Don J.


    Pacific Northwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially-available catalysts or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially-available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. A total of 28 tests were conducted to evaluate 22 different promoters as well as an unpromoted catalyst. The following general trends were observed for the test results: • The highest carbon selectivity to C2+ oxygenates occurred at the lowest reaction temperatures and accompanying lowest space time yields (STYs). • The lowest carbon selectivity to C2+ oxygenates occurred at the highest reaction temperatures because of high carbon conversion to hydrocarbons. • The highest C2+-oxygenate STYs occurred between 300°C and 325°C, with the gas hourly space velocity (GHSV) adjusted when necessary to maintain carbon conversion ranges between ~ 30 and 40 percent. Higher carbon selectivity to hydrocarbons at higher temperatures resulted in lower C2+-oxygenate STYs. • When catalysts were heated to between 300°C and 325°C the catalysts showed evidence of some deactivation with respect to C2+ oxygenate productivity, accompanied by reduced chain growth for the hydrocarbon products. The degree of deactivation and the temperature at which it occurred varied between the different catalysts tested. Of all of the catalysts evaluated, the Li-promoted catalysts had the highest carbon selectivity to C2+ oxygenates (47 percent) under the conditions at which the maximum C2+-oxygenate STYs were obtained.

  20. Dehydrogenative Synthesis of Imines from Alcohols and Amines Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert


    be applied to a variety of primary alcohols and amines and can be combined with a subsequent addition reaction. A deuterium labeling experiment indicates that the catalytically active species is a ruthenium dihydride. The reaction is believed to proceed by initial dehydrogenation of the alcohol......A new method for the direct synthesis of imines from alcohols and amines is described where hydrogen gas is liberated. The reaction is catalyzed by the ruthenium N-heterocyclic carbene complex [RuCl2(IiPr)(p-cymene)] in the presence of the ligand DABCO and molecular sieves. The imination can...... to the aldehyde, which stays coordinated to ruthenium. Nucleophilic attack of the amine affords the hemiaminal, which is released from ruthenium and converted into the imine....

  1. Ultrasound assisted N-bromosuccinimde catalyzed one pot condensation approach for synthesis of Bis(indolylmethanes from primary alcohols

    Directory of Open Access Journals (Sweden)

    Prakash Chhattise


    Full Text Available A simple, efficient protocol for one pot synthesis of bis(indolylmethanes from primary alcohols is investigated with N-bromosuccinimde as a catalyst under ultrasound irradiation. Alcohols can be converted into carbonyl compounds by removal of hydrogen in presence of N-bromosuccinimde as an oxidant and can react in situ with indole to give desired bis(indolylmethanes. In the reported one pot multicomponent condensation reaction N-bromosuccinimde promotes the oxidation of alcohol to aldehyde, facilitating the subsequent condensation with indole to afford bis(indolyl methanes in good to excellent yields. The inexpensiveness and easy handling are some of important feature of N-bromosuccinimde. The by-product N-succinimide can be easily recovered and recycled to N-bromosuccinimide.

  2. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Menszak, J.; Johansson, M.A.; Feeley, O.C.; Kim, D.


    The results shown in Figures 10 and 11 demonstrate that the formation of butenes was very sensitive to the alcohol partial pressure. A small elevation of the alcohol pressure suppressed the formation of butenes rather drastically at both 90 and 117{degree}C. The synthesis rates of DME, MIBE, and MTBE ethers were not significantly affected at 90{degree}C, although there was a trend to increase the space time yield of DME as the alcohol pressure was increased. At the reaction temperature of 117{degree}C, all of the ethers showed increasing productivities as the pressure of the reactants was increased (Figure 11). An isotope labelling experiment was carried out to provide mechanistic insight into the manner in which methanol and isobutanol react together to form DME, MIBE, and MTBE ethers and to determine if MTBE were derived from MIBE.

  3. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum

    DEFF Research Database (Denmark)

    Deserno, Lorenz; Beck, Anne; Huys, Quentin J. M.


    Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non......-drug-related stimuli towards drug-related stimuli. Such ‘hijacked’ dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs......, but not in alcohol-dependent patients. Moderator analyses showed that the magnitude of the association between dopamine synthesis capacity and RPE coding depended on the amount of chronic, habitual alcohol intake. Despite the relatively small sample size, a power analysis supports the reported results. Using...

  4. Synthesis of alkynes and alkynyl iodides bearing a protected amino alcohol moiety as functionalized amino acids precursors

    Institute of Scientific and Technical Information of China (English)

    AYED; Charfedinne; PICARD; Julien; LUBIN-GERMAIN; Nadège; UZIEL; Jacques; AUGE; Jacques


    Amino acid precursors in protected amino alcohol form are important synthons that can be used as building-blocks for the hemisynthesis of non-natural amino acids.Serine can be used as a common starting material for the synthesis of such compounds differently protected.Particularly,protected amino alcohols bearing an ethynyl and/or an iodoethynyl group can be used in cross-couplings,in 1,3-dipolar cycloadditions and/or in Nozaki-Hiyama-Kishi type reactions.We thus demonstrated that the efficiently protected amino alcohols derived from serine can be coupled to a sugar derivative by an indium mediated alkynylation reaction.The conditions of this coupling are compatible with such functionalized derivatives and allow envisaging an access to C-glycosylated amino acids.

  5. NBS/DBU mediated one-pot synthesis of α-acyloxyketones from benzylic secondary alcohols and carboxylic acids. (United States)

    Zhu, Minghui; Wei, Wei; Yang, Daoshan; Cui, Hong; Cui, Huanhuan; Sun, Xuejun; Wang, Hua


    A simple and efficient one-pot NBS/DBU-mediated method has been developed for the synthesis of α-acyloxyketones from various benzylic secondary alcohols and carboxylic acids. Through this methodology, a series of α-acyloxyketones could be obtained in good to excellent yields under mild conditions. Importantly, this new reaction avoids the direct usage of toxic metal catalysts or potentially dangerous peroxide oxidants.

  6. Synthesis of short-chain diols and unsaturated alcohols from secondary alcohol substrates by the Rieske nonheme mononuclear iron oxygenase MdpJ. (United States)

    Schäfer, Franziska; Schuster, Judith; Würz, Birgit; Härtig, Claus; Harms, Hauke; Müller, Roland H; Rohwerder, Thore


    The Rieske nonheme mononuclear iron oxygenase MdpJ of the fuel oxygenate-degrading bacterial strain Aquincola tertiaricarbonis L108 has been described to attack short-chain tertiary alcohols via hydroxylation and desaturation reactions. Here, we demonstrate that also short-chain secondary alcohols can be transformed by MdpJ. Wild-type cells of strain L108 converted 2-propanol and 2-butanol to 1,2-propanediol and 3-buten-2-ol, respectively, whereas an mdpJ knockout mutant did not show such activity. In addition, wild-type cells converted 3-methyl-2-butanol and 3-pentanol to the corresponding desaturation products 3-methyl-3-buten-2-ol and 1-penten-3-ol, respectively. The enzymatic hydroxylation of 2-propanol resulted in an enantiomeric excess of about 70% for the (R)-enantiomer, indicating that this reaction was favored. Likewise, desaturation of (R)-2-butanol to 3-buten-2-ol was about 2.3-fold faster than conversion of the (S)-enantiomer. The biotechnological potential of MdpJ for the synthesis of enantiopure short-chain alcohols and diols as building block chemicals is discussed.

  7. Reaction kinetics for synthesis of sec-butyl alcohol catalyzed by acid-functionalized ionic liquid

    Institute of Scientific and Technical Information of China (English)

    Ting Qiu; Wenli Tang; Chenggang Li; Chengming Wu; Ling Li


    The acid-functionalized ionic liquid ([HSO3Pmim]HSO4) was synthesized by a two-step method. Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR) show that the synthesis method is feasible and high purity of ionic liquid can be obtained. Using [HSO3Pmim]HSO4 as the catalyst, we studied the reaction kinetics of synthesizing sec-butyl alcohol from sec-butyl acetate and methanol by transesterification in a high-pressure batch reactor. The effects of temperature, initial molar ratio of methanol to ester, and catalyst concentration on the conversion of sec-butyl acetate were studied. Based on its possible reaction mechanism, a ho-mogeneous kinetic model was established. The results show that the reaction heatΔH is 10.94 × 103 J·mol−1, so the reaction is an endothermic reaction. The activation energies Ea+and Ea−are 60.38 × 103 and 49.44 × 103 J·mol−1, respectively.

  8. Quarterly Technical Progress Report - Investigation of Syngas Interaction in Alcohol Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Murty A. Akundi


    This report presents the work done on " Investigation of Syngas Interaction in Alcohol Synthesis Catalysts" during the last quarter. The major activity during this period is on FTIR absorption studies of Co/Cr catalysts using CO as a probe molecule. Transition metals cobalt and copper play significant roles in the conversion of syngas (CO + H2 ) to liquid fuels. With a view to examine the nature of interaction between CO and metal, the FTIR spectra of CO adsorbed on Co-Cr2 O3 composites were investigated. The results indicate that as cobalt loading increases, the intensity of the CO adsorption bands increase and several vibrational modes seem to be promoted. Heat treatment of the sample revealed two distinct processes of adsorption. Bands due to physisorption disappeared while bands due to chemisorption not only increased in intensity but persisted even after desorption. It seems that the physisorption process is more active when the catalyst is fresh and is hindered when carbidic/carbonyl formations occur on the metal surfaces.

  9. Thermodynamic models to predict gas-liquid solubilities in the methanol synthesis, the methanol-higher alcohol synthesis, and the Fischer-Tropsch synthesis via gas-slurry processes

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M


    Various thermodynamic models were tested concerning their applicability to predict gas-liquid solubilities, relevant for synthesis gas conversion to methanol, higher alcohols, and hydrocarbons via gas-slurry processes. Without any parameter optimization the group contribution equation of state (GCEO

  10. Catalytic Thermal Decomposition of Ammonium Perchlorate by Cu/Co/Fe Mixed Oxides Derived from Layered Double Hydroxides%Cu/Co/Fe水滑石衍生的复合氧化物催化高氯酸铵热分解的研究

    Institute of Scientific and Technical Information of China (English)

    刘洪博; 黄志勇; 郭冰之; 矫庆泽


    Cu/Co/Fe mixed oxides (Cu/Co/Fe-MOs) were prepared by calcining the precursors of Cu/Co/Fe layered double hydroxides (Cu/Co/Fe-LDHs),and were used as new catalysts for the thermal decomposition of ammonium perchlorate (AP).The catalytic activity was investigated using differential thermal analysis (DTA) and thermal gravimetric analyzer coupled with an online mass spectrometer (TG-MS).The results reveal that Cu/Co/Fe-MOs exhibit CuFe2O4 and (CoFe2)O4 phase with high specific surface area of 70~110 m2·g-1.The Cu/Co/Fe-MOs have homogenous particles with crystallite size of 20~30 nm.The thermal decomposition temperature of AP can be lowered by 139 ℃ with 4wt% of Cu/Co/Fe-MOs calcined at 400 ℃.The improvement in thermal decomposition of AP by Cu/Co/Fe-MOs catalysts is achieved via the superoxide ion (O2-) adsorbed on the surface of Cu/Co/Fe-MOs.%以Cu/Co/Fe水滑石(Cu/Co/Fe-LDHs)为前驱体经过焙烧制备了Cu/Co/Fe复合氧化物(Cu/Co/Fe-MOs).利用DTA和TG-MS研究了Cu/Co/Fe-MOs作为新型催化剂对高氯酸铵热分解的催化性能.结果表明,Cu/Co/Fe-MOs呈现为CuFe2O4和(CoFe2)O4晶相,具有70~110 m2·g-1的比表面积.晶粒大小均匀,尺寸在20~30 nm.添加4wt%的400℃焙烧得到的Cu/Co/Fe-MOs催化剂使高氯酸铵热分解反应的温度降低了139℃.Cu/Co/Fe-MOs是通过吸附在金属氧化物表面的超氧离子(O2-)来加速高氯酸铵热分解的.

  11. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gargouri Youssef


    Full Text Available Abstract Background Waxes are esters of long-chain fatty acids and long-chain alcohols. Their principal natural sources are animals (sperm whale oil and vegetables (jojoba which are expensive and not easily available. Wax esters synthesized by enzymatic transesterification, using palm stearin as raw material, can be considered as an alternative to natural ones. Results Palm stearin is a solid fraction obtained by fractionation of palm oil. Palm stearin was esterified with cetyl alcohol to produce a mixture of wax esters. A non-commercial immobilized lipase from Rhizopus oryzae was used as biocatalyst. Response surface methodology was employed to determine the effects of the temperature (30-50°C, the enzyme concentration (33.34-300 IU/mL, the alcohol/palm stearin molar ratio (3-7 mol/mol and the substrate concentration (0.06-0.34 g/mL on the conversion yield of palm stearin. Under optimal conditions (temperature, 30°C; enzyme concentration, 300 IU/mL; molar ratio 3 and substrate concentration 0.21 g/mL a high conversion yield of 98.52% was reached within a reaction time of 2 h. Conclusions Response surface methodology was successfully applied to determine the optimum operational conditions for synthesis of palm stearin based wax esters. This study may provide useful tools to develop economical and efficient processes for the synthesis of wax esters.

  12. Poly(furfuryl alcohol) nanospheres: a facile synthesis approach based on confinement effect of polymer and a template for synthesis of metal oxide hollow nanospheres

    Indian Academy of Sciences (India)

    Wei-Zhi Wang; Zhi-Qiang Li; Kong-Lin Wu; Ya-Jing Lu; Ya-Fei Xu; Xin-Jie Song


    This paper describes a facile hydrothermal approach to the large-scale synthesis of well-dispersed poly(furfuryl alcohol) (PFA) nanospheres with an average diameter of 350 nm in the presence of poly(vinyl pyrrolidone) (PVP). Scanning electron microscopy and transmission electron microscopy studies showed that different morphologies of PFA could be obtained by adjusting the ratio of PVP and furfuryl alcohol (FA). As a whole, the results demonstrate that PVP plays a key role in controlling the polymerization process of FA. The confinement effect of PVP is proposed to explain the formation process of PFA nanospheres. Furthermore, the as-prepared PFA nanospheres have a functional surface that allow them to act as an ideal template for fabricating metal oxide hollow nanospheres.

  13. Synthesis, Characterization, Anti-Inflammatory and in Vitro Antimicrobial Activity of Some Novel Alkyl/Aryl Substituted Tertiary Alcohols

    Directory of Open Access Journals (Sweden)

    Rafiuzzaman SaeedulHaq


    Full Text Available The synthesis of some novel alkyl/aryl substituted tertiary alcohols was accomplished in two steps. The synthetic route involves preparation of Grignard reagents by treating alkyl/aryl bromides with magnesium turnings in dry ether. Then substituted chalcones were reacted with the Grignard reagents to afford alkyl/aryl substituted tertiary alcohols 1-10. The structures of the synthesized compounds were assigned on the basis of FT-IR, 1H-NMR, 13C-NMR and mass spectroscopic data. The in vivo anti-inflammatory activity of the synthesized compounds was evaluated using the carrageenan-induced hind paw edema method and was compared with that of ibuprofen. Some of the newly synthesized compounds showed promising anti-inflammatory activity. The tertiary alcohols 1-10 were also screened for antibacterial activity against ten bacterial strains using seven Gram-positive and three Gram-negative bacteria and for antifungal activity against Aspergillus Flavus, Aspergillus Niger and Aspergillus pterus. Tertiary alcohols 1-10 were found to exhibit good to excellent antimicrobial activities compared to levofloxacin and fluconazole used as standard drugs.

  14. Leaching of a Cu-Co ore from Congo using sulphuric acidhydrogen peroxide leachants

    Directory of Open Access Journals (Sweden)

    Seo S.Y.


    Full Text Available A Cu-Co ore from Katinga Province, the Republic of Congo containing 1.5% Co and 1.6% Cu was tested to determine the leachability of Cu and Co using sulphuric acid and hydrogen peroxide mixtures at different conditions. Without hydrogen peroxide, the maximum extraction of copper and cobalt were found to be ~80% and ~15%, respectively when the acid concentration was varied between 0.36 - 1.1M. When hydrogen peroxide was added (0.008-0.042M, Cu recovery was enhanced to ~90%. Recoveries of ~90% of Co could be achieved at 20ºC, using leachants consisting of 0.36M sulphuric acid and 0.025M hydrogen peroxide after 3 hours. The reaction time to reach 90% Co extraction was reduced to less than 2 hours at 30ºC. Stabcal modelling of the Eh-pH diagrams shows the importance of hydrogen peroxide as a reductant. The decrease of solution potential (300-350 mV by adding hydrogen peroxide was confirmed by Eh measurements during the tests. The leaching follows the shrinking core model kinetics, where the rate constant is linearly dependent on hydrogen peroxide concentration in the range 0-0.025M and proportional to (1/r2 where r is the average radius of the mineral particles. The activation energy for the leaching process is 72.3 kJ/mol.

  15. Selective removal and patterning of a Co/Cu/Co trilayer created by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Ulmeanu, M.; Filipescu, M.; Scarisoreanu, N.D.; Georgescu, G.; Rusen, L.; Zamfirescu, M. [National Institute for Laser, Plasma and Radiation Physics, Laser Department, Atomistilor Str. 409, P.O. Box MG-36, Magurele-Bucharest (Romania)


    The selective removal and patterning of a typical pseudo-spin-valve structure, consisting of a Co(20 nm)/ Cu(6 nm)/Co(3 nm) trilayer, by femtosecond laser has been examined in terms of irradiation parameters and layer structure. Ablation thresholds of the individual Co and Cu thin films and the SiO{sub 2}/Si substrate have been measured for single-shot irradiation with a 200 femtosecond (fs) laser pulses of a Ti:sapphire laser operating at 775 nm. Ablation of the entire trilayer structure was characterized by a sequential removal of the layers at a threshold level of fluence of 0.28 J/cm{sup 2}. Atomic Force Microscopy, optical microscopy, profilometry and Sputtered Neutral Mass Spectroscopy were employed to characterize the laser-induced single-shot laser selective removal and patterned areas. As a result, two phenomena were found to characterize the laser process: (i) selective removal of the Co and Cu layer due to the change of the laser fluence and (ii) regular pillars' area of Co/Cu/Co could be achieved in a regular manner with the lowest pillar width size of 1.5 {mu}m. Ablation through the layers was accompanied by the formation of bulges at the edges of the pillars, which was the biggest inconvenience in lowering the pillar size through the femtosecond laser process. (orig.)

  16. Regioselective monochloro substitution in carbohydrates and non-sugar alcohols via Mitsunobu reaction: applications in the synthesis of reboxetine. (United States)

    Dar, Abdul Rouf; Aga, Mushtaq A; Kumar, Brijesh; Yousuf, Syed Khalid; Taneja, Subhash Chandra


    A regioselective high yielding monochloro substitution (chlorohydrin formation) via Mitsunobu reaction is reported. In carbohydrates and sterically hindered non-sugars, only the primary hydroxyl group is chlorinated, whereas in the non-sugar 1,2- and 1,3-alcohols, predominantly the secondary chloride substitution occurs. The versatile methodology provides indirect access to epoxides with the retention of configuration, as against conventional Mitsunobu reaction which generates epoxides with inversion. The methodology was successfully used as a key step in the synthesis of optically active diastereoisomers of the antidepressant drug reboxetine from (R)-2,3-O-cyclohexylidene-d-glyceraldehyde in ∼43% overall yields.

  17. Synthesis of R-3-quinine alcohol by CBS catalysis%CBS催化合成R-3-奎宁醇

    Institute of Scientific and Technical Information of China (English)



    The chiral synthesis technique was applied to prepare R-3-quinine alcohol by catalytic reduction of 3-quinine ketone with the help of CBS catalyst. The yield and ee value were above 92% and 98% .respectively. The proposed synthesis method appeared to be convenient, high-yield, and applicable for industrial purpose.%探讨R-3-奎宁醇的合成工艺.通过手性合成的方法,以3-奎宁酮盐酸盐为原料,经CBS催化剂催化还原得R-3-奎宁醇.收率可达到92%以上,ee值可达98%以上.该合成路线操作步骤简单、收率高,具有工业应用价值.

  18. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route. (United States)

    Homsi, Doris; Rached, Jihane Abou; Aouad, Samer; Gennequin, Cédric; Dahdah, Eliane; Estephane, Jane; Tidahy, Haingomalala Lucette; Aboukaïs, Antoine; Abi-Aad, Edmond


    The performances of different 5Cu/CoxMg6-xAl2 (x = 0; 2; 4; 6) catalysts prepared by the wet impregnation method were investigated in the ethanol steam-reforming reaction (ESR) at 450 °C during 4 h under a steam/ethanol ratio of 3 (S/E = 3). The best catalyst among the prepared solids was 5Cu/Co6Al2 as it showed a complete ethanol conversion and the highest hydrogen and carbon dioxide productivities. However, following 50 h of aging, the catalyst deactivated due to the formation of a high amount of carbonaceous products detected by differential scanning calorimetry/thermogravimetry. On the other hand, the 5Cu/Co2Mg4Al2 catalyst showed a much lower quantity of coke deposition with no deactivation due to the basic character conferred by the magnesium oxide phase.

  19. Expedient synthesis of new cinnoline diones by Ru-catalyzed regioselective unexpected deoxygenation-oxidative annulation of propargyl alcohols with phthalazinones and pyridazinones. (United States)

    Rajkumar, Subramani; Antony Savarimuthu, S; Senthil Kumaran, Rajendran; Nagaraja, C M; Gandhi, Thirumanavelan


    Ruthenium-catalyzed simple, cascade and one-pot synthesis of cinnoline-fused diones has been carried out by the C-H activation of phthalazinones/pyridazinones accomplished by the unusual deoxygenation of propargyl alcohols. The bond selectivity is accredited to the traceless directing nature of the hydroxyl group of propargyl alcohol. A sequential C-H activation, insertion and deoxy-oxidative annulation has been proposed based on the preliminary mechanistic study.

  20. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.


    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  1. Alcoholism and Alcohol Abuse (United States)

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... groups. NIH: National Institute on Alcohol Abuse and Alcoholism

  2. Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training.

    Directory of Open Access Journals (Sweden)

    Evelyn B Parr

    Full Text Available INTRODUCTION: The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS following strenuous exercise with carbohydrate (CHO or protein ingestion. METHODS: In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum followed by continuous (30 min, 63% peak power output (PPO and high intensity interval (10×30 s, 110% PPO cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO, alcohol (1.5 g·kg body mass⁻¹, 12±2 standard drinks co-ingested with protein (ALC-PRO, or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO. Subjects also consumed a CHO meal (1.5 g CHO·kg body mass⁻¹ 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. RESULTS: Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05. Phosphorylation of mTOR(Ser2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05, while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05. Rates of MPS increased above rest for all conditions (∼29-109%, P<0.05. However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05 and with ALC-CHO (37%, P<0.05. CONCLUSION: We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation

  3. Synthesis of stereotetrads by regioselective cleavage of diastereomeric MEM-protected 2-methyl-3,4-epoxy alcohols with diethylpropynyl aluminum. (United States)

    Torres, Wildeliz; Torres, Gerardo; Prieto, José A


    The regioselectivity of the epoxide ring opening of 2-methyl-3,4-epoxy alcohols with diethylpropynylalane has been studied as a function of the C1 alcohol protecting group. An efficient selective method was developed using MEM as the protecting group. The reaction proceeded in a highly regioselective manner providing the useful 1,3-diol motif. The undesired 1,4-diol product produced by some free alcohol diastereomers was not observed. This highly stereoselective method provides access to termini-differentiated stereotetrads, which are essential building bocks for polypropionate synthesis.

  4. Structures and performance of Rh—Mo—K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas

    Institute of Scientific and Technical Information of China (English)

    Zhong-ruiLi; Yi-luFu; 等


    A series of rhodium-modified Mo-K/Al2O3 catalyst samples was prepared by varying the rhodium loading between 0 and 1.0 wt% and maintaining molybdenum and potassium contents as constants.The structures of the samples were charaterized by techniques of XRD.LRS.TPR,XPS and EXAFS and correlated to the catalytic properties of the samples for alcohol synthesis from synthesis gas,It was found the oxidic rhodium-modified samples.a strong interaction of the rhodium modifier with the supported K-Mo-O species occurs.This interaction facilitates the sulfidation and reduction of the supported oxo-molybdenum and leads to a decrease in the size of the molybdenum species and stabilization of the cationic rhodium species on the samples during sulfidation.Upon sulfidation.The sulfided molybdenum species in the rhodium-free sample is manly present as large pateches of MoS2-like slabs with their basal sulfur planes interacting with the support surface.With the modirication of rhodium to the samples.The supported MoS2-like species becomes highly revealed by the decrease in the average size of the sulfided molybdenum species.The interaction of the rhodium species with the molybdenum somponent may cause the basal planes of the MoS2-like species to become oriented perpendicular to the support surface due to favorable bonding of the MoS2edge planes to the support through Mo-O-Al bonds.In comparison with the sulfided sample free of rhodium.the properties of the rhodium-modified samples for alcohol synthesis from synthesis gas are much improved.It most probably results from the synergic interaction of the rhodium with the molybdenum species that gives rise to the appearance of the catalytically active surfaces of sites.The co-existence of cationic and metallic rhodium stabilized by this interaction may be responsible for the increased selectivity for the formation of C2+ alcohols.

  5. The effect of nitrogen doping on mercury oxidation/chemical adsorption on the CuCo2O4(110) surface: a molecular-level description. (United States)

    Mei, Zhijian; Fan, Maohong; Zhang, Ruiqing; Shen, Zhemin; Wang, Wenhua


    Based on density functional theory (DFT) calculations, the detailed mercury oxidation/chemical adsorption mechanisms on the N-doped CuCo2O4(110) surface are studied. The DFT calculations show that Ow (bonded with one Cu(2+) ion and one Co(3+) ion) is far more active than Os (bonded with three Co(3+) ions) and the mercury oxidation/chemical adsorption activation energy (Ea) on the virgin CuCo2O4(110) surface involving Ow is 0.85 eV. The physically adsorbed mercury overcomes the Ea and enters the energy well that plays an important role in mercury oxidation/chemical adsorption. Nitrogen doping can greatly increase the activity of Ow and decrease the activity of Os at the same time, which greatly affect the mercury oxidation/chemical adsorption abilities on the CuCo2O4(110) surface, and the Ea variation of mercury oxidation/chemical adsorption is as follows: 0.85 eV (virgin CuCo2O4(110)) → 0.76 eV (one N-doped CuCo2O4(110)) → 0.69 eV (two N-doped CuCo2O4(110)) → 0.48 eV (three N-doped CuCo2O4(110)). In addition, N-doping can decrease the adsorption energy of mercury and mercuric oxide. The effect of N-doping on the bonding mechanism of mercury adsorption on the CuCo2O4(110) surface is analyzed by the local density of state (LDOS) and the natural bonding orbital (NBO). The calculation results correspond well to the experimental data.

  6. A practical one-pot synthesis of azides directly from alcohols

    Indian Academy of Sciences (India)

    Lalthazuala Rokhum; Ghanashyam Bez


    Alkyl/benzyl azides can be readily synthesized in excellent yields from their corresponding alcohols by stirring a solution of sodium azide in DMSO with a thoroughly ground equimolecular mixture of triphenylphosphine, iodine and imidazole.

  7. Substitution controlled functionalization of ortho-bromobenzylic alcohols via palladium catalysis: synthesis of chromenes and indenols. (United States)

    Mahendar, Lodi; Satyanarayana, Gedu


    An efficient domino Pd-catalyzed transformation of simple ortho-bromobenzyl tertiary alcohols to chromenes is presented. Their formation is believed to proceed via the formation of a five-membered palladacycle, which, in turn, involves in an intermolecular homocoupling with the second ortho-bromobenzyltertiary alcohol to yield the homo-biaryl bond followed by intramolecular C-O bond formation. Interestingly, when there is an allylic substituent on the benzylic carbon atom, a chemoselective switch was observed, which preferred intramolecular Heck coupling and gave indenols. Further, it has been confirmed that the tertiary alcohol functionality is indispensible to give the coupled products, whereas the use of primary/secondary benzylic alcohols furnished the simple carbonyl products via a possible reductive debromination followed by oxidation due to the availability of β-hydrogen(s).

  8. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. (United States)

    Davin, L B; Bedgar, D L; Katayama, T; Lewis, N G


    The residue from Forsythia suspensa stems, upon removal of soluble enzymes, has provided the first evidence for a stereoselective coupling enzyme in lignan biosynthesis. This preparation catalyses the preferred formation (ca 65%) of (+)-[8,8'-14C]pinoresinol from [8-14C]coniferyl alcohol in the absence of exogenously provided cofactors; addition of H2O2 had little effect on enantiomeric composition. However, when NAD and malate were supplied, the stereoselectivity of the coupling reaction was significantly enhanced and pinoresinol consisting of ca 80% of the (+)-antipode was obtained. Clearly, the insoluble residue contains a specific coupling enzyme which catalyses (+)-pinoresinol formation from coniferyl alcohol. By contrast, when [8-14C]sinapyl alcohol was employed as substrate, only racemic syringaresinols were formed: this non-stereoselective peroxidase-catalysed coupling reaction presumably accounts for the low levels of (-)-pinoresinol encountered in this system when coniferyl alcohol is used as a substrate.

  9. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....... spectroscopy were applied for determining the carburization temperature and evaluating the composition of the carbide clusters of different samples through determinations of the Mo-C and Mo-Mo coordination numbers....

  10. Synthesis of Toll-like receptor 4 in Kupffer cells and its role in alcohol-induced liver disease

    Institute of Scientific and Technical Information of China (English)

    左国庆; 龚建平; 刘长安; 吴传新; 李生伟; 戴立里


    Objectives To observe the synthesis of Toll-like receptor (TLR) 4 protein and its mRNA expression in Kupffer cells (KCs) and evaluate the role of TLR 4 in liver injury to rats through alcohol-induced liver disease.Methods Twenty-eight Wistar rats were divided into two groups: ethanol-fed (group E) and control (group C). Group E rats were given ethanol at a dose of 5-12 g@kg-1@d -1, while group C received dextrose. Animals from bot h groups were killed at 4 and 8 weeks. The KCs were isolated and synthesis of T LR 4 protein was determined by laser scanning confocal microscopy. TLR 4 mRNA e xpression in KCs was determined by reverse transcription polymerase chain reacti on (RT-PCR) analysis. The levels of endotoxin, tumor necrosis factor-α (TN F-α) and interleukin-6 (IL-6) in plasma were determined. Changes in liver pathology were observed.Results Laser scanning confocal microscopy showed that the intensity of fluorescence of TLR 4 protein in group E was stronger than group C. Ethanol administration led to a significant increase in TLR 4 mRNA expression in group E compared with grou p C (P<0.05). The concentrations of plasma endotoxin, TNF-α and IL- 6 were higher in group E than in group C (P<0.05). Liver sections from rat s in group E demonstrated marked pathological changes.Conclusion Ethanol administration can lead to the synthesis of TLR 4 protein and its gene expression in KCs, indicating that TLR 4 may play a major role in the development of alcohol-induced liver injury.

  11. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)


    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  12. Effect of Stirring rate on The Synthesis Silver Nanowires using Polyvinyl Alcohol as A Capping Agent by Polyol Process

    Directory of Open Access Journals (Sweden)

    - Junaidi


    Full Text Available Silver nanowires (AgNWs have been successfully synthesized by using polyol process. In this study, the synthesis AgNWs using ethylene glycol (EG as solvent and reductant, silver nitrate (AgNO3 as the metal precursors, and polyvinyl alcohol (PVA as a capping agent and stabilizer without adding chloride ions. The synthesis AgNWs was done by varying the stirring rate about 125, 350, 500, 700, and 1100 rpm. The scanning electron microscopy (SEM showed that the AgNWs optimally formed at a stirring rate of 350 rpm with a diameter of (190 ± 40 nm and a length about (70 ± 20 µm. The silver nanorods (AgNRs formed with diameter and length about (500 ± 20 nm and (20 ± 10 µm for stirring rate of 500 rpm, and (700 ± 30 nm and (20 ± 5 µm for 700 rpm. For the stirring rate of 125 and 1100 rpm only produced silver particles (AgNPs with a diameter of 2 to 3 µm. The X-ray diffraction (XRD and transmission electron microscopy (TEM showed AgNWs has a high crystalline with face-center-cubic (fcc structures. The UV-vis spectra of AgNWs shows that the absorbance peaks at a wavelength of 358 and 380 nm. PVA can be used as a capping agent and stabilizer for the synthesis AgNWs and AgNRs with high aspect ratio.

  13. Microwave-Enhanced Sulphated Zirconia and SZ/MCM-41 Catalyzed Regioselective Synthesis of β-Amino Alcohols Under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Eduardo González-Zamora


    Full Text Available A solvent-free approach for the regioselective synthesis of β-amino alcohols inshorter reaction times and higher yields, compared to conventional heating is described. Itinvolves microwave (MW exposure of undiluted reactants in the presence of sulphatedzirconia (SZ or sulphated zirconia over MCM-41 (SZM as catalyst. Both acid materialscan be easily recovered and reused.

  14. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol. (United States)

    Forster, Denis; DeKleva, Thomas W.


    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  15. α-烯烃羰基合成醇醚性能研究%Study on Properties of Alpha Olefin OXO-synthesis Alcohol Ether

    Institute of Scientific and Technical Information of China (English)



    以内烯烃、α-烯烃羰基合成醇为原料进行乙氧基化和磺化试验,并对产品进行分析,解决了α-烯烃AEO 3凝固点偏高的问题,确定了α-烯烃羰基合成醇生产醇醚的可行性。%Ethoxylation and sulfonation tests with inner olefin and alpha olefin OXO-synthesis alcohol were carried out,the products were analyzed. The problem that alpha olefin AEO3had high freezing point was resolved,and the feasibility to produce alcohol ether with alpha olefin OXO-synthesis alcohol was verified.

  16. [Development of novel methods for synthesis of heterocyclic compounds catalyzed by transition metals in fluorinated alcohols]. (United States)

    Saito, Akio


    New possibilities for catalytic syntheses of lactone derivatives and nitrogen-containing heterocyclic compounds in fluorinated alcohols are described. The cationic Rh(I) catalyst in fluorinated alcohol solvents (hexafluoroisopropanol: HFIP, trifluoroethanol: TFE) brought about not only mild cycloaddition reactions of ester-tethered compounds but also a facile formation of indole derivatives by the aromatic amino-Claisen rearrangement of N-propargyl aniline derivatives. The use of HFIP as an additive exerted a remarkable effect on the Pictet-Spengler reaction catalyzed by the fluorinated surfactant-combined Brønsted acid catalyst in water.

  17. Synthesis of limonene β-amino alcohol derivatives in support of new antileishmanial therapies

    Directory of Open Access Journals (Sweden)

    Stela R Ferrarini


    Full Text Available A series of seven limonene β-amino alcohol derivatives has been regioselectively synthesised in moderate to good yields. Two of these compounds were found to be significantly effective against in vitro cultures of the Leishmania (Viannia braziliensis promastigote form in the micromolar range. The activities found for 3b and 3f were about 100-fold more potent than the standard drug, Pentamidine, in the same test, while limonene did not display any activity. This is the first report of antileishmanial activity by limonene β-amino alcohol derivatives.


    Institute of Scientific and Technical Information of China (English)

    Chun-qing Liu; Yang Liu; Zhong-rong Shen; Ping Xie; Rong-ben Zhang; Chao-bin He; Tai-shung Chung


    A novel alcohol-soluble polyorganosiloxane containing amino side groups, poly[3-(4-aminophenoxy)propylmethylsiloxane] (2), was first prepared by the reduction of nitro groups on 4-nitrophenoxypropyl side chains of poly[3-(4-nitrophenoxy)propylmethylsiloxane] (1). The reaction proceeded easily with nearly 100% conversion. The synthesized alcohol-soluble polymer 2, which has potential application as a precursor for preparing advanced functional polymers, was characterized by FTI1R 1H-NMR, 13C-NMR, 29Si-NMR, VPO and GPC, respectively.

  19. Synthesis of poly(furfuryl alcohol)/montmorillonite nanocomposites by direct in-situ polymerization

    Indian Academy of Sciences (India)

    Djamal Eddine Kherroub; Mohammed Belbachir; Saad Lamouri


    The purpose of this study was to obtain poly(furfuryl alcohol) nanocomposites with Algerian organically modified clay (termed 12-montmorillonite). The formation of poly(furfuryl alcohol) was confirmed by infrared spectroscopy (IR); the prepared nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The evolution of mechanical properties was also studied. The obtained results confirm the intercalation of molecules of salt in the clay layers, and a good interaction with the polymer, showing the formation of intercalated and/or exfoliated structures. The nanocomposites showed higher thermal stability compared to pure polymer, and the mechanical properties presented interesting and promising results.

  20. The continuous acid-catalyzed dehydration of alcohols in supercritical fluids: A new approach to the cleaner synthesis of acetals, ketals, and ethers with high selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.K.; Smail, F.R.; Hitzler, M.G.; Ross, S.K.; Poliakoff, M.


    This report describes a new a continuous method for forming ethers, acetals and ketals using solid acid catalysts, DELOXAN ASP or AMBERLYST 15, and supercritical fluid solvents. In the case of ether formation, the authors observe a high selectivity for linear alkyl ethers with little rearrangement to give branches ethers. Such rearrangement is common in conventional synthesis. The approach is effective for a range of n-alcohols up to n-octanol and also for the secondary alcohol 2-propanol. In the reaction of phenol with an alkylating agent, the continuous reaction can be tuned to give preferential O- or C-alkylation with up to 49% O-alkylation with supercritical propene. The authors also investigate the synthesis of a range of cyclic ethers and show an improved method for the synthesis of THF from 1,4-butandiol under very mild conditions.

  1. Mechanisms mediating the effects of alcohol and HIV anti-retroviral agents on mTORC1,mTORC2 and protein synthesis in myocytes

    Institute of Scientific and Technical Information of China (English)

    Ly; Q; Hong-Brown; Abid; A; Kazi; Charles; H; Lang


    Alcoholism and acquired immune deficiency syndrome are associated with severe muscle wasting.This impairment in nitrogen balance arises from increased protein degradation and a decreased rate of protein synthesis.The regulation of protein synthesis is a complex process involving alterations in the phosphorylation state and protein-protein interaction of various components of the translation machinery and mammalian target of rapamycin(mTOR) complexes.This review describes mechanisms that regulate protein synthesis in cultured C2C12 myocytes following exposure to either alcohol or human immunodeficiency virus antiretroviral drugs.Particular attention is given to the upstream regulators of mTOR complexes and the downstream targets which play an important role in translation.Gaining a better understanding of these molecular mechanisms could have important implications for preventing changes in lean body mass in patients with catabolic conditions or illnesses.

  2. Magnetic behaviour investigation on symmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co

    Institute of Scientific and Technical Information of China (English)

    李铁; 沈鸿烈


    In this paper, we have obtained and investigated the magnetic behaviours of the ferromagnetic layer in thesymmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co by measuring with a vibrating sample magnetometer andanalysing in terms of the multi-domain Ising models. It has been found that some magnetic layer can have quitedifferent magnetic behaviours in different structures of spin valves, depending on the properties of the under-layer. Inour investigation, we have found that the magnetic behaviour of a Co layer depends mainly on the magnetization of theunder-layer, whereas this is not the case for the NiFe layer.

  3. Improved synthesis of cyclic tertiary allylic alcohols by asymmetric 1,2-addition of AlMe3 to enones. (United States)

    Kolb, Andreas; Zuo, Wei; Siewert, Jürgen; Harms, Klaus; von Zezschwitz, Paultheo


    The development of an improved protocol for the enantioselective Rh(I) /binap-catalysed 1,2-addition of AlMe3 to cyclic enones is reported. (31)P NMR analysis of the reaction revealed that the catalyst in its resting state is a chloride-bridged dimer. This insight led to the use of AgBF4 as an additive for in situ activation of the dimeric precatalyst. Thus, the catalyst loading can now be reduced to only 1 mol% with respect to rhodium. Various 5-7-membered cyclic enones can be transformed into tertiary allylic alcohols with excellent levels of enantioselectivity and high yields. The obtained products are versatile synthetic building blocks, shown by a highly enantioselective formal total synthesis of the pheromone (-)-frontalin as well as formation of a bicyclic lactone that has the core structure of the natural flavour component "wine lactone".

  4. Synthesis, characterization and electrical properties of Fe3O4/poly(vinyl alcohol-co-acrylic acid) nanocomposites (United States)

    P, Jayakrishnan; Ramesan, M. T.


    This work focused on the synthesis of magnetite (Fe3O4)/poly(vinyl alcohol-co-acrylic acid) nanocomposite by in situ polymerization. The composite were characterized by FT-IR spectroscopy, XRD, SEM, TGA, AC and DC conductivity measurements. The spectroscopic studies revealed the molecular interaction between the polymer and nanocomposites. SEM, XRD indicated the uniform dispersion of nanoparticle inside the molecular chain of copolymer. TGA studies indicated the excellent thermal stability of copolymer nanocomposites. AC and DC conductivity of nanocomposites were higher than that of the copolymer and conductivity values were significantly increased with increase in concentration of metal oxide nanoparticles. These properties suggest that the polymer composite can be used as multifunctional material for nanoelectronics.

  5. A convenient procedure for the synthesis of allyl and benzyl ethers from alcohols and phenols

    Indian Academy of Sciences (India)

    H Surya Prakash Rao; S P Senthilkumar


    Allyl and benzyl ethers of alcohols can be prepared conveniently and in high yield with allyl and benzyl bromide in the presence of solid potassium hydroxide without use of any solvent. Phenols can be converted to allyl ethers but are inert to benzylation under above conditions.

  6. A Facile One-Pot Synthesis of α-Bromo-α,β-unsaturated Esters from Alcohols

    Directory of Open Access Journals (Sweden)

    Usama Karama


    Full Text Available Treatment ofN-bromosuccinimide (NBS with (carboethoxymethylene triphenylphosphorane (1 in CH2Cl2 followed by the addition of an alcohol in the presence of manganese dioxide under ultrasonic irradiation constitutes a stereoselective one-pot procedure for the preparation of Z-configured α–bromo-α,β-unsaturated esters in good to excellent yield.

  7. Convenient synthesis of hydroxytyrosol and its lipophilic derivatives from tyrosol or homovanillyl alcohol. (United States)

    Bernini, Roberta; Mincione, Enrico; Barontini, Maurizio; Crisante, Fernanda


    Hydroxytyrosol, a naturally occurred o-phenolic compound exhibiting antioxidant properties, was synthesized by a three-step high-yielding procedure from natural and low-cost compounds such as tyrosol or homovanillyl alcohol. First, the efficient chemoselective protection of the alcoholic group of these compounds was performed by using dimethyl carbonate (DMC) as reagent/solvent; second, the oxidation with 2-iodoxybenzoic acid (IBX) or Dess-Martin periodinane reagent (DMP) and in situ reduction with sodium dithionite (Na2S2O4) allowed the preparation of carboxymethylated hydroxytyrosol; finally, by a mild hydrolytic step, hydroxytyrosol was obtained in high yield and purity, as confirmed by NMR spectra and HPLC profile. By using a similar methodology, lipophilic hydroxytyrosol derivatives, utilized as additives in pharmaceutical, food, and cosmetic preparations, were prepared. In fact, at first the chemoselective protection of the alcoholic group of tyrosol and homovanillyl alcohol was performed by using acyl chlorides without any catalyst to obtain the corresponding lipophilic derivatives, and then these compounds were converted in good yield and high purity into the hydroxytyrosol derivatives by oxidative/reductive pathway with IBX or DMP and Na2S2O4.

  8. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor. (United States)

    Kirmair, Ludwig; Seiler, Daniel Leonard; Skerra, Arne


    The thermostable NAD(+)-dependent alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH) was exploited with regard to the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate for biobased polyamide 12 production, from the corresponding long-chain alcohol. Recombinant BsADH was produced in Escherichia coli as a homogeneous tetrameric enzyme and showed high activity towards the industrially relevant substrate ω-hydroxy lauric acid methyl ester (HLAMe) with K M = 86 μM and 44 U mg(-1). The equilibrium constant for HLAMe oxidation to the aldehyde (OLAMe) with NAD(+) was determined as 2.16 × 10(-3) from the kinetic parameters of the BsADH-catalyzed forward and reverse reactions. Since BsADH displayed limited stability under oxidizing conditions, the predominant oxidation-prone residue Cys257 was mutated to Leu based on sequence homology with related enzymes and computational simulation. This substitution resulted in an improved BsADH variant exhibiting prolonged stability and an elevated inactivation temperature. Semi-preparative biocatalysis at 60 °C using the stabilized enzyme, employing butyraldehyde for in situ cofactor regeneration with only catalytic amounts of NAD(+), yielded up to 23 % conversion of HLAMe to OLAMe after 30 min. In contrast to other oxidoreductases, no overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the mutated BsADH offers a promising biocatalyst for the selective oxidation of fatty alcohols to yield intermediates for industrial polymer production.

  9. Synthesis of mesoporous alumina using polyvinyl alcohol template as porosity control additive

    Directory of Open Access Journals (Sweden)

    Zoltán Ecsedi


    Full Text Available The effects of polyvinyl alcohol (PVA template and calcinations temperatures on the characteristics of the alumina films were investigated. The samples were prepared by sol-gel method using aluminium triisopropylate precursor. The variation of microstructure, pore size and pore volume, were determined by nitrogen adsorption/desorption analysis and the macropore size distribution was determined using mercury porosimetry. TEM and SEM were used to observe the texture of these samples and the particle morphology. Experimental observation after drying and annealing shows that it is possible to produce crack free nanoporous alumina films using polyvinyl alcohol template. The obtained alumina samples have macroporous microstructure (with the average pore diameter dav = 34.9 μm, for sample prepared with 42.5 wt% of PVA addition and annealed at 1000°C with high portion of mesopores (with the average pore diameter Dav = 14.0 nm for the same sample.

  10. Synthesis, Characterization and Structure of Chiral Amino Acids and Their Corresponding Amino Alcohols with Camphoric Backbone

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-Fen; HUANG Wei; LI Hui-Hui; YAO Cheng


    Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (lS,3R)-3-amino-2,2,3-trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.

  11. Highly enantio- and diastereoselective synthesis of β-methyl-γ- monofluoromethyl-substituted alcohols

    KAUST Repository

    Yang, Wenguo


    Enanatiopure β-methyl-γ-monofluoromethyl alcohols were prepared from the allylic alkylation between fluorobis(phenylsulfonyl)methane with Morita-Baylis-Hillman carbonates. The reaction was catalyzed by using the Cinchona alkaloid derivative, (DHQD)2AQN. The origin of the stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed stereoselectivity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and Immunosuppressive Activity of New Amino Alcohol Derivatives(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    MI Hao-yu; CUI Lin-lin; ZHANG Qun-li; LI Fang; JIANG Tao; LIANG Yong-tao; WANG En-si


    A series of new amino alcohol derivatives was synthesized and evaluated for their immunosuppressive activity on mouse peripheral blood lymphocytes.The structures were confirmed by means of 1H NMR,13C NMR,IR and MS.Most of the compounds display moderate to potent inhibitory activity.Compound 9d shows the most activity among them that are expected as a powerful candidate for safer immunosuppressant for organ transplantations and the treatment of autoimmune diseases.

  13. Multicomponent versus domino reactions: One-pot free-radical synthesis of β-amino-ethers and β-amino-alcohols

    Directory of Open Access Journals (Sweden)

    Bianca Rossi


    Full Text Available Following an optimized multicomponent procedure, an aryl amine, a ketone, and a cyclic ether or an alcohol molecule are assembled in a one-pot synthesis by nucleophilic radical addition of ketyl radicals to ketimines generated in situ. The reaction occurs under mild conditions by mediation of the TiCl4/Zn/t-BuOOH system, leading to the formation of quaternary β-amino-ethers and -alcohols. The new reaction conditions guarantee good selectivity by preventing the formation of secondary products. The secondary products are possibly derived from a competitive domino reaction, which involves further oxidation of the ketyl radicals.

  14. Solvothermal synthesis of superhydrophobic hollow carbon nanoparticles from a fluorinated alcohol (United States)

    Lyth, S. M.; Ma, W.; Liu, J.; Daio, T.; Sasaki, K.; Takahara, A.; Ameduri, B.


    A new and simple method of synthesizing fluorinated carbon at the gram scale is presented by reacting a fluorinated alcohol with sodium at elevated temperatures in a sealed Teflon reactor. The resulting carbon nanoparticles are around 100 nm in diameter, and display a hollow shell morphology, with a significant amount of fluorine doped into the carbon. The nanoparticles disperse easily in ethanol, and are thermally stable up to 400 °C and 450 °C under air and nitrogen, respectively. The nanoparticle dispersion was printed onto various substrates (paper, cloth, silicon), inducing superhydrophobicity.


    Institute of Scientific and Technical Information of China (English)

    Ya-li Su; Xiu-ru Li; Yue-jin Tong; Yue-sheng Li


    Stable and well-dispersed poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloidal clusters were prepared via the reduction of ruthenium(Ⅲ) chloride by refluxing with low boiling point alcohols. Investigation of the size of Ru colloids by transmission electron microscopy (TEM) indicated that the average diameters could be controlled in the range of 1.2-1.6 nm with relative standard deviations of less than 0.33 by changing the molar ratio of PVP to Ru. The X-ray photoelectron spectroscopy (XPS) characterization verified the formation of elemental ruthenium colloids.

  16. Development of 3-methoxy-4-benzyloxybenzyl alcohol (MBBA) resin as polymer-supported synthesis support: Preparation and benzyl ether cleavage by DDQ oxidation

    Indian Academy of Sciences (India)

    Qiang Huang; Bao-Zhong Zheng; Quan Long


    3-Methoxy-4-benzyloxybenzyl alcohol (MBBA) resin was synthesized by a two-step sequence under microwave irradiation involving the reaction of commercially available Merrifield resin with vanillin, followed by reduction with sodium borohydride. MBBA resin was treated with bromides in the presence of sodium hydride to afford the corresponding resin-bound benzyl ethers. Cleavage of the resin-bound benzyl ethers from the MBBA resin was carried out using 2,3-dichloro-5,6-dicyanobenzoqunone (DDQ) to give the corresponding alcohols in good yields. Moreover, the recovery, regeneration, and reuse of this polymer support could be achieved easily. MBBA resin can be developed as a kind of solid-phase synthesis bead of alcohols.

  17. Microwave-Assisted Synthesis of Chitosan/Polyvinyl Alcohol Silver Nanoparticles Gel for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Hiep


    Full Text Available The purpose of this study was to fabricate chitosan/poly(vinyl alcohol/Ag nanoparticles (CPA gels with microwave-assistance for skin applications. Microwave irradiation was employed to reduce silver ions to silver nanoparticles and to crosslink chitosan (CS with polyvinyl alcohol (PVA. The presence of silver nanoparticles in CPA gels matrix was examined using UV-Vis spectroscopy, transmission electron microscopy, and X-ray diffraction. The interaction of CS and PVA was analysed by Fourier transform infrared spectroscopy. The release of silver ions was determined by atomic absorption spectrometry. The antimicrobial properties of CPA gels against P. aeruginosa and S. aureus were investigated using agar diffusion method. Finally, the biocompatibility and wound-healing ability of the gels were studied using fibroblast cells (in vitro and mice models (in vivo. In conclusion, the results showed that CPA gels were successfully fabricated using microwave irradiation method. These gels can be applied to heal an open wound thanks to their antibacterial activity and biocompatibility.

  18. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    Directory of Open Access Journals (Sweden)

    Leandro Trinta de Farias


    Full Text Available Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00, with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition potential, an experimental central composite design 2² was employed, and three current density intervals (0.11 to 0.60, 0.50 to 1.98 and 2.44 to 9.94 were chosen from the polarization curves for this purpose. The results indicated that the current density (mainly in the range between 0.11 and 0.60 affected significantly all the studied variables. In the intermediate range (0.50 to 1.98, only the average potential was influenced by the current density. On the other hand, the mechanical stirring had a significant effect only on the copper content, for both the lowest (0.11 to 0.60 and the highest current density range (2.44 to 9.94 Indeed, in the last range, none of the studied deposition parameters presented significant influence on the studied variables, except for the copper content. This could probably be explained by the direct incorporation of Cu-Citrate complexes in the coating, which was enhanced at high current values.

  19. Novel triazole alcohol antifungals derived from fluconazole: design, synthesis, and biological activity. (United States)

    Hashemi, Seyedeh Mahdieh; Badali, Hamid; Faramarzi, Mohammad Ali; Samadi, Nasrin; Afsarian, Mohammad Hosein; Irannejad, Hamid; Emami, Saeed


    A series of new triazole alcohol antifungals were designed by replacing one of the triazolyl moiety from fluconazole with a distinct 4-amino-3-mercapto-1,2,4-triazole motif, which is found in some antimicrobial agents. The antimicrobial susceptibility testing of target compounds demonstrated that the direct analogs of fluconazole (difluorophenethyl-triazoles) were less active against fungi, while compound 10h containing dichloro substitutions on both phenyl rings of the molecule had potent activity against yeasts including Candida albicans (four strains) and Cryptococcus neoformans (MICs = 2-8 μg/mL). Also, compound 10h was active against Candida parapsilosis, Epidermophyton floccosum, and Trichophyton mentagrophytes, while it showed no activity against Gram-positive and Gram-negative bacteria. Finally, a molecular docking study suggested that compound 10h interacts suitably with lanosterol 14α-demethylase, which is the key enzyme in ergosterol biosynthesis.

  20. Synthesis of boron carbide nano particles using polyvinyl alcohol and boric acid

    Directory of Open Access Journals (Sweden)

    Amir Fathi


    Full Text Available In this study boron carbide nano particles were synthesized using polyvinyl alcohol and boric acid. First, initial samples with molar ratio of PVA : H3BO3 = 2.7:2.2 were prepared. Next, samples were pyrolyzed at 600, 700 and 800°C followed by heat treatment at 1400, 1500 and 1600°C. FTIR analysis was implemented before and after pyrolysis in order to study the reaction pathway. XRD technique was used to study the composition of produced specimens of boron carbide. Moreover, SEM and PSA analysis were also carried out to study the particle size and morphology of synthesized boron carbide. Finally, according to implemented tests and analyses, carbon-free boron carbide nano particles with an average size of 81 nm and mainly spherical morphology were successfully produced via this method.


    Institute of Scientific and Technical Information of China (English)

    Peng-fei Xue; Ji-bin Wang; Yu-bin Bao; Qiu-ying Li; Chi-fei Wu


    Carbon black (CB)/polymer composites with high refractive index (RI) were fabricated from poly(vinyl alcohol) (PVA) and covalently functionalized nano-CB (PVA-es-CB) by simple esterification reaction.Transmission electron microscopy showed that uniform aggregates of PVA-es-CB nanoparticles with a size smaller than 100 nm formed in the nanocomposite films.Ellipsometric measurements indicated that the PVA-es-CB/PVA composite films had a RI in the range 1.520-1.598 linearly increased with the PVA-es-CB volume content.Theoretical equation based on Lorentz-Lorenz theory provided reasonably close estimation of the refractive indices to the experimentally observed values.The hybrid films also revealed relatively good surface planarity,thermal stability and optical transparency.

  2. Synthesis of Nitrogen-doped Titania by Solvothermal Reactions in Alcohols

    Institute of Scientific and Technical Information of China (English)


    Nitrogen-doped titania nanoparticles were obtained by the homogeneous precipitation in hexamethylenetetraminetitanium trichloride-alcohol aqueous solutions at 90 ℃ followed by heating at 190 ℃. Anatase, rutile and brookite were obtained, where the crystallite size, specific surface area and color greatly changed as 5~50 nm, 20~200 m2/g and light gray to yellow, depending on the solvent and pH. The products after calcination were yellow, indicating doping with nitrogen ion. All colored titania showed photocatalytic activity under visible light irradiation for the oxidative decomposition of nitrogen monoxide in air. Especially, the nanoparticles of anatase type nitrogen-doped titania obtained using methanol aqueous solution showed excellent photocatalytic activity.

  3. Synthesis of Ibuprofen intermediate using alcoholic silver nanoparticles and its kinetics: A greener approach towards drug synthesis (United States)

    Pawar, Sandeep J.; Patil, Shivkumar Y.; Mahulikar, Pramod P.; Zope, Vishvanath S.


    Silver nanoparticles (AgNPs) were prepared and tested for the activity in the catalytic reduction of 4-nitrophenol to 4-aminophenol showing to be exceptionally active. Further, using AgNPs we catalytically synthesized 1-(4-isobutylphenyl)ethanol which is important drug intermediate for the widely used Ibuprofen. The rate constants were determined at temperatures 298 K, 303 K, 308 K, 313 K, 318 K, 232 K correspond to 0.29 min-1, 0.37 min-1, 0.40 min-1, 0.43 min-1, 0.50 min-1, 0.68 min-1, respectively. The activation energy of AgNPs is 23.25 kJ/mol. The number of collisions of reactants in the term of frequency factor was found to be high 1.99 × 108 min-1 and average heat of reaction is 26.1 kJ/mol. The recyclability study of AgNPs in the reduction of 1-(4-isobutylphenyl)ethanone (4-IBPEON) to 1-(4-isobutylphenyl)ethanol (4-IBPE) in six consecutive reaction cycles found to be (0.91 g, 90%), (0.89 g, 88%), (0.87 g, 86%), (0.84 g, 83%), (0.84 g, 83%), (0.81 g, 80%), respectively. We promisingly minimize the waste generated in the synthesis of 4-IBPE by calculation E-factor and atom efficiency and was found to 0.57 and 81.56%, respectively. Reported experimental results were directly relevance to develop theoretical concepts.

  4. Long-Term Testing of Rhodium-Based Catalysts for Mixed Alcohol Synthesis – 2013 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.; Gray, Michel J.; Thompson, Becky L.


    The U.S. Department of Energy’s Pacific Northwest National Laboratory has been conducting research since 2005 to develop a catalyst for the conversion of synthesis gas (carbon monoxide and hydrogen) into mixed alcohols for use in liquid transportation fuels. Initially, research involved screening possible catalysts based on a review of the literature, because at that time, there were no commercial catalysts available. The screening effort resulted in a decision to focus on catalysts containing rhodium and manganese. Subsequent research identified iridium as a key promoter for this catalyst system. Since then, research has continued to improve rhodium/manganese/iridium-based catalysts, optimizing the relative and total concentrations of the three metals, examining baseline catalysts on alternative supports, and examining effects of additional promoters. Testing was continued in FY 2013 to evaluate the performance and long-term stability of the best catalysts tested to date. Three tests were conducted. A long-term test of over 2300 hr duration at a single set of operating conditions was conducted with the best carbon-supported catalyst. A second test of about 650 hr duration at a single set of operating conditions was performed for comparison using the same catalyst formulation on an alternative carbon support. A third test of about 680 hr duration at a single set of operating conditions was performed using the best silica-supported catalyst tested to date.

  5. Lanthanum oxide promoted rhodium/titania and rhodium-platinum/titania catalysts for alcohol formation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Bond, G.C.; Richards, D.G.


    TiO/sub 2/-supported Rh and Rh-Pt catalysts have been studied for the selective formation of oxygenates from synthesis gas. The addition of La/sub 2/O/sub 3/ as a promoter significantly increased the C/sub 2/H/sub 5/OH selectivities and formation rates. Pt addition increased the overall activity and in combination with La/sub 2/O/sub 3/ led to higher alcohol selectivities of 25% compared with 6% for an unpromoted Rh catalyst. A pronounced induction period was observed for CH/sub 3/OH and C/sub 2/H/sub 5/OH formation, attributed to changes in the nature of the catalytically active sites. A simple theoretical model is used to illustrate the parallel trends in C/sub 2/H/sub 5/OH and hydrocarbon formation after the induction period. Temperature-programmed reduction showed that the La/sub 2/O/sub 3/ increased the stability of Rh oxide. The main role of La/sub 2/O/sub 3/ appears to be promotion of the formation of the C/sub 2/H/sub 5/OH precursor, while Pt increased the rate of hydrogenation. 26 refs., 8 figs., 3 tabs.

  6. Understanding Uncertainties in the Economic Feasibility of Transportation Fuel Production using Biomass Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Longwen [Department of Mechanical Engineering, Iowa State University, Ames IA 50010 USA; Li, Boyan [Department of Mechanical Engineering, Iowa State University, Ames IA 50010 USA; Dang, Qi [Department of Mechanical Engineering, Iowa State University, Ames IA 50010 USA; Bioeconomy Institute, Iowa State University, Ames IA 50012 USA; Jones, Susanne [Pacific Northwest National Laboratory, Richland WA 99352 USA; Brown, Robert [Department of Mechanical Engineering, Iowa State University, Ames IA 50010 USA; Bioeconomy Institute, Iowa State University, Ames IA 50012 USA; Wright, Mark M. [Department of Mechanical Engineering, Iowa State University, Ames IA 50010 USA; Bioeconomy Institute, Iowa State University, Ames IA 50012 USA


    This analysis evaluates uncertainties of previously conducted techno-economic analysis of transportation fuel production via biomass gasification and mixed alcohol synthesis. Two scenarios are considered: a state-of-technology scenario utilizing existing technologies and a target scenario representing future advancements in related technologies. Uncertainties of more than ten parameters are investigated, including feedstock price, internal rate of return (IRR), etc. Historical price data of these parameters are fitted with the most appropriate distribution and datasets are generated for each parameter accordingly. These data sets are then utilized to run a Monte-Carlo simulation. The results yield minimum fuel selling prices of $7.02/gal with a standard deviation of 0.49 for the state-of-technology scenario and $4.33/gal with a standard deviation of 0.42 for the target scenario respectively. Feedstock price and IRR have significant impact on the minimum fuel selling price in both scenarios. These findings are indicative of the reduction in biofuel cost and uncertainty achievable with increasing technology maturity.

  7. Ba/ZrO₂ nanoparticles as efficient heterogeneous base catalyst for the synthesis of β-nitro alcohols and 2-amino 2-chromenes

    Indian Academy of Sciences (India)



    Zirconia nanoparticles were synthesized by precipitation, urea hydrolysis, amorphous citrate and combustion synthesis methods. The zirconia surface was subsequently modified by grafting Ba²⁺ species. The Ba²⁺ modified zirconia (Ba/ZrO₂) materials were characterized using XRD, Fourier analysis, UV-vis-DRS, FESEM and HRTEM techniques. XRD study indicated selective stabilization of the tetragonal phase of zirconia in the presence of Ba²⁺ species. Fourier line profile analysis of the XRD peaks revealed that the average crystallite size of the zirconia nanoparticles is in the range of 5-15 nm. The surface area, basicity and barium content of the material depend strongly on the method of synthesis. The Ba/ZrO₂ catalyst prepared by urea hydrolysis method exhibited higher surface area and barium content compared to other samples. The catalytic activity of the Ba/ZrO₂ catalyst was evaluated for synthesis of β-nitro alcohols and 2-amino 2-chromenes. The β-nitro alcohols were synthesized by condensation of aryl aldehydes and nitromethane. Similarly, the 2-amino 2-chromenes were synthesized by condensation of arylaldehydes, α-naphthol and malononitrile. The Ba/ZrO₂ catalyst was found to be highly efficient for synthesis of both classes of compounds providing excellent yield and purity of the products.

  8. Effect of FelCo Mass Ratio on Catalytic Performances of Cu-Fe-Co Based Catalysts for Mixed Alcohols Synthesis%Fe、Co组成对Cu-Fe-Co基混合醇催化剂合成性能的影响

    Institute of Scientific and Technical Information of China (English)

    郭海军; 熊莲; 罗彩容; 丁飞; 陈新德; 陈勇


    A series of Cu-Fe-Co based catalysts with different mass fractions of Fe and Co were prepared by co-impregnation method. The catalytic performances of the catalysts for mixed alcohols synthesis from carbon monoxide hydrogenation were investigated in a fixed bed flow reactor. The samples were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscope (FE-SEM), and H2 temperature-programmed reduction (H2-TPR). The results showed that the addition of a suitable content of Co to the Cu-Fe based catalyst significantly improved the space-time yield (STY) and CO conversion while alcohol selectivity was constant. For the catalyst with a mass fraction of Cu, Fe, and Co of 25%, 22%, and 3%, respectively, a STY of 205.6 g ? Kg"1 ? H"1 and CO conversion of 56.6% were obtained. The XRD, XPS, and TPR results showed that when the Cu content was unchanged, the introduction of some Co contributed to the formation of a small quantity of the CuFe2O4 phase on the surface of catalysts, which promoted the interaction between Cu and Fe, improved the dispersion of active components and enhanced the catalytic activity and STY ofthe mixed alcohols. With an increase of the Co content in the catalyst, the interaction between the metallic components was transformed and the Cu-Co spinel phase was generated, leading to a slight decrease of alcohol selectivity.%采用共浸渍法制备了一系列不同Fe、Co组成的Cu-Fe-Co基混合醇催化剂,对其CO加氢合成混合醇反应性能进行了考察,并采用BET比表面积分析、X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射扫描电子显微镜(FE-SEM)及H2程序升温还原(H2-TPR)等手段对其进行了表征.结果表明:Cu-Fe二元催化剂添加适量的Co可以明显提高催化剂醇的时空收率(STY)、CO转化率,而总醇选择性不变.当活性组分Cu、Fe及助剂Co的质量分数分别为25%、22%、3%

  9. Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel (United States)

    Kuljanin-Jakovljević, Jadranka Ž.; Radosavljević, Aleksandra N.; Spasojević, Jelena P.; Carević, Milica V.; Mitrić, Miodrag N.; Kačarević-Popović, Zorica M.


    In this study, the nanocomposites based on semiconductor lead sulfide (PbS) nanoparticles and poly(vinyl alcohol) (PVA) were investigated. The gamma irradiation induced in situ incorporation of PbS nanoparticles in crosslinked polymer network i.e. PVA hydrogel was performed. PVA hydrogel was previously obtained also under the influence of gamma irradiation. UV-Vis absorption and X-ray diffraction measurements were employed to investigate optical and structural properties of PbS nanoparticles, respectively, and obtained results indicates the presence of nanoparticles with approximately 6 nm in diameter and face centered cubic rock-salt crystal structure. The porous morphology was confirmed by scanning electron microscopy. Swelling data revealed that investigated hydrogels (PVA and PbS-PVA nanocomposite) shows non-Fickian diffusion, indicating that both diffusion and polymer relaxation processes controlled the fluid transport. The values of diffusion coefficients have an order of magnitude 10-9 cm2/s (typical values for water diffusion in polymers) and the best fit with the experimental results showed the Etters approximation. Comparing the thermal properties of PbS-PVA xerogel nanocomposite with PVA xerogel it was observed that incorporation of PbS nanoparticles in crosslinked PVA matrix just slightly enhanced the thermal stability of nanocomposite.

  10. Synthesis, characterization and drug-delivery activity of rifampin anchored poly(vinyl alcohol)

    Indian Academy of Sciences (India)

    Palanichamy Jeyaraman; Balakrishnan Meenarathi; Ramasamy Anbarasan


    Poly(vinyl alcohol) (PVA) has wide applications in film industries owing to the hydrophilicity and biocompatibility. In recent times the application of PVA is extended to drug-delivery field. Unfortunately, the thermal stability of PVA is very poor. In order to increase the thermal stability, the drugs were chemically conjugated with PVA. In the present investigation rifampin (Rif.) a bactericidal antibiotic drug was chemically conjugated with PVA backbone. The resultant Rif.-conjugated PVA was characterized by Fourier transform infrared spectroscopy, UV–visible spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and thermogravimetric analysis (TGA). Finally, the Rif.-conjugated PVA was tested for the drug-release activity. The scanning electron microscope morphology declared the presence of microvoids on the surface of PVA and the same was effectively used for the drug-loading purpose. Mechanical properties of PVA before and after the structural modification process were also tested. The aromatic carbon signal around 120–150 ppm in the 13C NMR confirmed the chemical grafting of Rif. on to the PVA backbone. The TGA confirmed the four-step degradation process for the structurally modified PVA.

  11. Synthesis, characterization and applications of N-quaternized chitosan/poly(vinyl alcohol) hydrogels. (United States)

    Mohamed, Riham R; Abu Elella, Mahmoud H; Sabaa, Magdy W


    Hydrogels composed of N-quaternized chitosan (NQC) and poly(vinyl alcohol) (PVA) in different weight ratios (1:3), (1:1) and (3:1) chemically crosslinked by glutaraldehyde in different weight ratios – 1.0 and 5.0% – have been prepared. The prepared hydrogels were characterized via several analysis tools such as: Fourier transform IR (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Different applications have been done on NQC/PVA hydrogels including; metal ions uptake, swellability in different buffer solutions (pH: 4, 7 and 9), swellability and degradation studies in simulated body fluid (SBF) solutions and antimicrobial activity towards bacteria and fungi. The results indicated that crosslinked NQC/PVA hydrogels with glutaraldehyde (GA) are more thermallystable than non crosslinked hydrogels, NQC/PVA hydrogels swell highly in different buffer solutions as PVA content increases and the antimicrobial activity of NQC/PVA hydrogels is higher than NQC itself.


    Institute of Scientific and Technical Information of China (English)

    Arfat Anis; A.K. Banthia; S. Mondal; A.K. Thakur


    Hybrid proton conducting membranes of poly(vinyl alcohol) (PVA) and phosphomolybdic acid (PMA) were prepared by solution casting method. The effect of PMA doping and PVA crosslinking density on the membrane properties and proton conductivity were investigated. The crosslinking reaction between the hydroxyl group of PVA and the aldehyde group of glutaraldehyde (GA) was characterized by IR spectroscopy. Proton conductivity of the membranes increases with an increase in concentration of the doped PMA and also with an increase in crosslinking density of the membranes. Proton conductivity results indicate that a significant amount of PMA was maintained in the membranes even after several hours of immersion in water. A maximum conductivity of 0.0101 Scm-1 was obtained for the membrane with 33.3 wt% PMA and crosslinking density of 5.825 mol%. X-ray diffraction studies were carried out to investigate the influence of PMA doping and crosslinking density on the nature of the membranes. These properties make them very good candidates for polymer electrolyte membranes for direct methanol fuel cell application.

  13. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chetan P.; Singh, Krishan K. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Manmohan, E-mail: [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Bajaj, Parma N. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)


    A simple wet chemical method has been developed to synthesize selenium nanoparticles (size 100-200 nm), by reaction of sodium selenosulphate precursor with different vinyl monomers, such as acrylamide, N,N'-dimethylene bis acrylamide, methyl methacrylate, sodium acrylate, etc., in aqueous medium, under ambient conditions. Polyvinyl alcohol has been used to stabilize the selenium nanoparticles. Average size of the synthesized selenium nanoparticles can be controlled by adjusting concentration of both the precursors and the stabilizer. Rate of the reaction as well as size of the resultant selenium nanoparticles have been correlated with the functional groups of the different monomers. UV-vis optical absorption spectroscopy, X-ray diffraction, energy dispersive X-rays, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques have been employed to characterize the synthesized selenium nanoparticles. Gas chromatographic analysis of the reaction mixture established the non-catalytic role of the vinyl monomers, which were found to be consumed during the course of the reaction.

  14. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sabaa, Magdy W.; Abdallah, Heba M.; Mohamed, Nadia A.; Mohamed, Riham R., E-mail:


    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. - Highlights: • CMCh/PVA nanocomposites have been evaluated for activity against bacteria and fungi. • TEM showed that these hydrogels have size 3–19 nm. • Nanocomposites increased metal ion uptake and showed selectivity for cadmium ions. • Biodegradation increased as a function of incubation time in SBF solution. • Biodegradation increased with increase in CMCh and clay in nanocomposites.

  15. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering

    Directory of Open Access Journals (Sweden)

    Naghavi Alhosseini S


    scaffolds enhances viability and proliferation of nerve cells, which increases the biocompatibility of the scaffolds. In fact, addition of a small percentage of chitosan to the PVA scaffolds proved to be a promising approach for synthesis of a neural-friendly polymeric blend.Keywords: polyvinyl alcohol, chitosan, polymer blending, nanofibrous scaffolds, neural tissue engineering

  16. Desarrollo calorimétrico del proceso de precipitación en aleaciones Cu-Co-Si

    Directory of Open Access Journals (Sweden)

    Donoso, E.


    Full Text Available Using differential scanning calorimetry (DSC the precipitation processes of supersaturated solid solutions of three Cu-Co-Si alloys, with a constant cobalt composition, were studied. Thermograms, and previous studies, reveal that the decomposition begins with cobalt precipitation. Clustering of cobalt initiates the silicon precipitation, finally Co2Si stoichiometric particles are formed. Volume fractions are determined by the amount of cobalt present in these alloys. It is inferred that surplus silicon atoms retained in the solution increase the reaction rate. Kinetic parameters were calculated by a method based in the Mehl-Johnson-Avrami (MJA formalism. The lower activation energy obtained, associated with cobalt clustering is attributed to the contribution of quenched-in vacancies.

    Mediante calorimetría diferencial de barrido (DSC se estudió el proceso de precipitación de soluciones sólidas supersaturadas de tres aleaciones de Cu-Co-Si, con composición de cobalto constante. Evaluaciones entalpimétricas y estudios previos, revelaron que la descomposición comienza con la precipitación de cobalto. El agrupamiento de átomos de cobalto inicia la precipitación del silicio, formándose finalmente partículas de composición estequiométricas de Co2Si. Las fracciones volumétricas fueron determinadas en función de la cantidad de cobalto presente en estas aleaciones. Se infiere que el superávit de átomos de silicio retenidos en la solución aumenta la velocidad de reacción. Los parámetros cinéticos fueron calculados a partir de un método basado en el formalismo de Mehl- Johnson-Avrami (MJA. La energía de activación más baja obtenida, asociada con el apilamiento de cobalto, se atribuyó a la contribución de las vacantes retenidas por temple.

  17. Rh-Based Mixed Alcohol Synthesis Catalysts: Characterization and Computational Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Karl O.; Glezakou, Vassiliki Alexandra; Rousseau, Roger J.; Engelhard, Mark H.; Varga, Tamas; Colby, Robert J.; Jaffe, John E.; Li, Xiaohong S.; Mei, Donghai; Windisch, Charles F.; Kathmann, Shawn M.; Lemmon, Teresa L.; Gray, Michel J.; Hart, Todd R.; Thompson, Becky L.; Gerber, Mark A.


    The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330°C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab

  18. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao


    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  19. First DMAP-mediated direct conversion of Morita–Baylis–Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates

    Directory of Open Access Journals (Sweden)

    Marwa Ayadi


    Full Text Available An efficient synthesis of a series of γ-ketoallylphosphonates through a direct conversion of both primary and secondary Morita–Baylis–Hillman (MBH alcohols by trialkyl phosphites with or without DMAP, used as additive, and under solvent-free conditions, is described herein for the first time. Subsequently, a highly regioselective Luche reduction of the primary phosphonate 2a (R = H gave the corresponding γ-hydroxyallylphosphonate 5 that further reacted with tosylamines in the presence of diiodine (15 mol % as a catalyst, affording the corresponding SN2-type products 6a–d in 63 to 70% isolated yields. Alternatively, the alcohol 5 produced the corresponding acetate 7 which, mediated by Ce(III, was successfully converted into the corresponding γ-aminoallylphosphonates 8a–d.

  20. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 19, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)



    The objective of Task I is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extenders and octane enhancers. In Task 1, during this reporting period, we encountered and solved a problem in the analysis of the reaction products containing a small amount of heavy components. Subsequently, we continued with the major thrusts of the program. We analyzed the results from our preliminary studies on the packed-bed membrane reactor using the BASF methanol synthesis catalyst. We developed a quantitative model to describe the performance of the reactor. The effect of varying permeances and the effect of catalyst aging are being incorporated into the model. Secondly, we resumed our more- detailed parametric studies on selected non-sulfide Mo-based catalysts. Finally, we continue with the analysis of data from the kinetic study of a sulfided carbon-supported potassium-doped molybdenum-cobalt catalyst in the Rotoberty reactor. We have completed catalyst screening at UCC. The complete characterization of selected catalysts has been started. In Task 2, the fuel blends of alcohol and unleaded test gas 96 (UTG 96) have been made and tests have been completed. The testing includes knock resistance tests and emissions tests. Emissions tests were conducted when the engine was optimized for the particular blend being tested (i.e. where the engine produced the most power when running on the blend in question). The data shows that the presence of alcohol in the fuel increases the fuel`s ability to resist knock. Because of this, when the engine was optimized for use with alcohol blends, the engine produced more power and lower emission rates.

  1. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic CVD technique: Ab initio molecular dynamics simulation (United States)

    Oguri, Tomoya; Shimamura, Kohei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu


    Dissociation of ethanol on a nickel cluster is investigated by ab initio molecular dynamics simulation to reveal the bond dissociation mechanism of carbon source molecules during carbon nanotube synthesis. C-C bonds in only CHxCO fragments are dissociated on the nickel cluster, whereas there is no preferential structure among the fragments for C-O bond dissociation. The dissociation preference is uncorrelated with the bond dissociation energy of corresponding bonds in freestanding molecules but is correlated with the energy difference between fragment molecules before and after dissociation on the nickel surface. Moreover, carbon-chain formation occurs after C-C bond dissociation in a continuous simulation. What determines the chirality of CNTs? What happens at the dissociation stage of carbon source molecules? Regarding the former question, many researchers have pointed out the good epitaxial relationship between a graphite network and a close-packed facet (i.e., fcc(1 1 1) or hcp(0 0 0 1)) of transition metals [17-19]. Therefore, the correlation between the chirality of CNTs and the angle of the step edge on metal (or metal carbide) surfaces has been closely investigated [20-22]. In association with this geometric matching, the epitaxial growth of graphene on Cu(1 1 1) and Ni(1 1 1) surfaces has recently been achieved via CCVD technique [23-25], which is a promising technique for the synthesis of large-area and monolayer graphene.Regarding the latter question, it is empirically known that the yield and quality of CNT products strongly depend on the choice of carbon source molecules and additives. For example, it is well known that the use of ethanol as carbon source molecules yields a large amount of SWNTs without amorphous carbons (called the alcohol CCVD (ACCVD) technique) compared with the CCVD process using hydrocarbons [4]. Moreover, the addition of a small amount of water dramatically enhances the activity and lifetime of the catalytic metal (called the

  2. Microwave-assisted efficient synthesis of 2-arylbenzo[b]furans and 2-ferrocenylbenzo[b]furans from readily prepared propargylic alcohols and -iodophenols

    Indian Academy of Sciences (India)

    Liansheng Wu; Xiaokang Shi; Xiaoyun Xu; Fen Liang; Guosheng Huang


    A simple, efficient and expeditious method for synthesis of 2-arylbenzo[b]furans and 2-ferrocenylbenzo[b]furans from readily prepared propargylic alcohols, -iodophenols and silica gel with the catalyst of PdCl2(PPh3)2 (2 mol%)/CuI (2mol%) and microwave-promoted Sonogashira coupling/cyclization reaction is developed. The methodology can produce good to excellent yields. In addition, this method can also be completed in one-pot with iodobenzene, 2-methyl-3-butyn-2-ol and 2-iodo-4-methylphenol as reactants.

  3. Improved regioselectivity in pyrazole formation through the use of fluorinated alcohols as solvents: synthesis and biological activity of fluorinated tebufenpyrad analogs. (United States)

    Fustero, Santos; Román, Raquel; Sanz-Cervera, Juan F; Simón-Fuentes, Antonio; Cuñat, Ana C; Villanova, Salvador; Murguía, Marcelo


    The preparation of N-methylpyrazoles is usually accomplished through reaction of a suitable 1,3-diketone with methylhydrazine in ethanol as the solvent. This strategy, however, leads to the formation of regioisomeric mixtures of N-methylpyrazoles, which sometimes are difficult to separate. We have determined that the use of fluorinated alcohols such as 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as solvents dramatically increases the regioselectivity in the pyrazole formation, and we have used this modification in a straightforward synthesis of fluorinated analogs of Tebufenpyrad with acaricide activity.

  4. Synthesis of 1,2-cis-homoiminosugars derived from GlcNAc and GalNAc exploiting a β-amino alcohol skeletal rearrangement. (United States)

    Blériot, Yves; Auberger, Nicolas; Jagadeesh, Yerri; Gauthier, Charles; Prencipe, Giuseppe; Tran, Anh Tuan; Marrot, Jérôme; Désiré, Jérôme; Yamamoto, Arisa; Kato, Atsushi; Sollogoub, Matthieu


    The synthesis of 1,2-cis-homoiminosugars bearing an NHAc group at the C-2 position is described. The key step to prepare these α-D-GlcNAc and α-D-GalNAc mimics utilizes a β-amino alcohol skeletal rearrangement applied to an azepane precursor. This strategy also allows access to naturally occurring α-HGJ and α-HNJ. The α-D-GlcNAc-configured iminosugar was coupled to a glucoside acceptor to yield a novel pseudodisaccharide. Preliminary glycosidase inhibition evaluation indicates that the α-D-GalNAc-configured homoiminosugar is a potent and selective α-N-acetylgalactosaminidase inhibitor.

  5. Alcohol Alert (United States)

    ... main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & ... on a single aspect of alcohol abuse and alcoholism. Please click on the desired publication for full ...

  6. Evaluaciones calorimétricas de la precipitación en aleaciones Cu-Co-Si, ricas en Cu

    Directory of Open Access Journals (Sweden)

    Donoso, Eduardo


    Full Text Available The precipitation process of cobalt and silicon atoms from supersaturated solid solutions of Cu-Co-Si for two compositions was studied by differential scanning calorimetry (DSC. Calorimetric traces analysis showed the presence of two overlapping exothermic reactions (stages 1 and 2, which can are attributed to two precipitation processes. First stage correspond to the preceding formation of a cobalt precipitate, while the second stage correspond to the formation of stoichiometric CO2Si composition which takes place by silicon diffusion to the first precipitate. Heat contents during the stages 1 and 2 are proportional to precipitates volume fractions. Activation energies of both precipitates, calculated from the Kissinger method, are consistent with those corresponding to diffussion of Co in Cu and Si in Cu. Both processes can be decribed by the Johnson-Mehl Avrami (JMA equation. Values of n are compatible with precipitate nucleation from the solid solution (stage 1 and with growth of paticles from preexisting Co precipitates. Furthermore,, the kinetic of the concentration decay of Co and Si in the matrix was estimated as function of the transformated fraction for each thermal event and from their respective volume fractions.

    Mediante calorimetría diferencial de barrido (DSC se estudió el proceso de precipitación de átomos de cobalto y silicio a partir de dos soluciones sólidas supersaturadas de Cu-Co- Si. El análisis de las trazas calorimétricas muestra la presencia de dos reacciones exotérmicas traslapadas (etapas 1 y 2, que se interpretan como la formación de dos tipos de precipitados. La primera etapa corresponde a la formación precursora de un precipitado de cobalto, en tanto que la etapa 2 corresponde a la formación de un precipitado de composición estequiométrica CO2Si producido por difusión de silicio hacia la primera partícula. Los calores liberados durante las etapas 1 y 2 son proporcionales a

  7. A facile and general strategy for the synthesis of porous flowerlike Pt-based nanocrystals as effective electrocatalysts for alcohol oxidation (United States)

    Huang, Da-Bing; Yuan, Qiang; He, Pei-Lei; Wang, Kai; Wang, Xun


    In this paper, porous flowerlike Pt-based (Pt, PdPt, RhPt and RhPdPt) nanocrystals were successfully achieved by a simple, economic, environmentally friendly route under the same synthetic conditions at 85 °C. The electrocatalytic properties of these flowerlike Pt-based nanocrystals toward alcohols (glycol, glycerol, methanol and ethanol) oxidation were investigated and they displayed enhanced catalytic performance compared with commercial Pt black. Among them, porous Pd45.5Pt54.5 nanoflowers showed the best catalytic performance with significant mass activity and long-term stability. More importantly, the current synthesis strategy can be easily amplified to gram-scale production.In this paper, porous flowerlike Pt-based (Pt, PdPt, RhPt and RhPdPt) nanocrystals were successfully achieved by a simple, economic, environmentally friendly route under the same synthetic conditions at 85 °C. The electrocatalytic properties of these flowerlike Pt-based nanocrystals toward alcohols (glycol, glycerol, methanol and ethanol) oxidation were investigated and they displayed enhanced catalytic performance compared with commercial Pt black. Among them, porous Pd45.5Pt54.5 nanoflowers showed the best catalytic performance with significant mass activity and long-term stability. More importantly, the current synthesis strategy can be easily amplified to gram-scale production. Electronic supplementary information (ESI) available: Experimental details, digital photos, TEM, XRD, CVs, EDX and tables. See DOI: 10.1039/c6nr04927c

  8. Facile synthesis of bromoallenes via N-bromosuccinimide/CH3SCH3 for the bromination of propargyl alcohols

    Institute of Scientific and Technical Information of China (English)

    Wen Feng Jiang; Xue Song Liu; Xin Du; Jian Wei Wei; Chun Yu Bao


    A novel and convenient way has been developed for the preparation of bromoallenes from propargyl alcohols by the reagent combination of N-bromosuccinimide and dimethyl sulfide.Bromoallenes with high regioselectivity were obtained in a convenient method.

  9. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination. (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier


    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  10. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. (United States)

    Watanabe, Daisuke; Zhou, Yan; Hirata, Aiko; Sugimoto, Yukiko; Takagi, Kenichi; Akao, Takeshi; Ohya, Yoshikazu; Takagi, Hiroshi; Shimoi, Hitoshi


    The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall β-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-β-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-β-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of β-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains.

  11. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a time-dependent manner following electrically stimulated muscle contraction. (United States)

    Steiner, Jennifer L; Lang, Charles H


    Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr(421)/Ser(424) (20-52%), S6K1 Thr(389) (45-57%), and its substrate rpS6 Ser(240/244) (37-72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser(65) was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr(202)/Tyr(204) was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling.

  12. Remobilisation features and structural control on ore grade distribution at the Konkola stratiform Cu-Co ore deposit, Zambia (United States)

    Torremans, K.; Gauquie, J.; Boyce, A. J.; Barrie, C. D.; Dewaele, S.; Sikazwe, O.; Muchez, Ph.


    The Konkola deposit is a high grade stratiform Cu-Co ore deposit in the Central African Copperbelt in Zambia. Economic mineralisation is confined to the Ore Shale formation, part of the Neoproterozoic metasedimentary rocks of the Katanga Supergroup. Petrographic study reveals that the copper-cobalt ore minerals are disseminated within the host rock, sometimes concentrated along bedding planes, often associated with dolomitic bands or clustered in cemented lenses and in layer-parallel and irregular veins. The hypogene sulphide mineralogy consists predominantly of chalcopyrite, bornite and chalcocite. Based upon relationships with metamorphic biotite, vein sulphides and most of the sulphides in cemented lenses were precipitated during or after biotite zone greenschist facies metamorphism. New δ34S values of sulphides from the Konkola deposit are presented. The sulphur isotope values range from -8.7‰ to +1.4‰ V-CDT for chalcopyrite from all mineralising phases and from -4.4‰ to +2.0‰ V-CDT for secondary chalcocite. Similarities in δ34S for sulphides from different vein generations, earlier sulphides and secondary chalcocite can be explained by (re)mobilisation of S from earlier formed sulphide phases, an interpretation strongly supported by the petrographic evidence. Deep supergene enrichment and leaching occurs up to a km in depth, predominantly in the form of secondary chalcocite, goethite and malachite and is often associated with zones of high permeability. Detailed distribution maps of total copper and total cobalt contents of the Ore Shale formation show a close relationship between structural features and higher copper and lower cobalt contents, relative to other areas of the mine. Structural features include the Kirilabombwe anticline and fault zones along the axial plane and two fault zones in the southern limb of the anticline. Cobalt and copper behave differently in relation to these structural features. These structures are interpreted to have

  13. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study (United States)

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath


    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  14. Long-term daily access to alcohol alters dopamine-related synthesis and signaling proteins in the rat striatum. (United States)

    Kashem, Mohammed Abul; Ahmed, Selina; Sarker, Ranjana; Ahmed, Eakhlas U; Hargreaves, Garth A; McGregor, Iain S


    Chronic alcohol exposure can adversely affect neuronal morphology, synaptic architecture and associated neuroplasticity. However, the effects of moderate levels of long-term alcohol intake on the brain are a matter of debate. The current study used 2-DE (two-dimensional gel electrophoresis) proteomics to examine proteomic changes in the striatum of male Wistar rats after 8 months of continuous access to a standard off-the-shelf beer in their home cages. Alcohol intake under group-housed conditions during this time was around 3-4 g/kg/day, a level below that known to induce physical dependence in rats. After 8 months of access rats were euthanased and 2-DE proteomic analysis of the striatum was conducted. A total of 28 striatal proteins were significantly altered in the beer drinking rats relative to controls. Strikingly, many of these were dopamine (DA)-related proteins, including tyrosine hydroxylase (an enzyme of DA biosynthesis), pyridoxal phosphate phosphatase (a co-enzyme in DA biosynthesis), DA and cAMP regulating phosphoprotein (a regulator of DA receptors and transporters), protein phosphatase 1 (a signaling protein) and nitric oxide synthase (which modulates DA uptake). Selected protein expression changes were verified using Western blotting. We conclude that long-term moderate alcohol consumption is associated with substantial alterations in the rat striatal proteome, particularly with regard to dopaminergic signaling pathways. This provides potentially important evidence of major neuroadaptations in dopamine systems with daily alcohol consumption at relatively modest levels.

  15. Alcohol Intolerance (United States)

    ... beer-alcohol.aspx. Accessed Jan. 16, 2015. Alcohol angioedema and uticaria. American Academy of Allergy, Asthma & Immunology. Accessed Jan. 16, 2015. Alcohol and ...

  16. Synthesis of Nickel Hexacyanoferrate Nanoparticles and Their Potential as Heterogeneous Catalysts for the Solvent-Free Oxidation of Benzyl Alcohol

    Institute of Scientific and Technical Information of China (English)

    Shah R. ALI; Prakash CHANDRA; Mamta LATWAL; Shalabh K. JAIN; Vipin K. BANSAL; Sudhanshu P. SINGH


    Nickel hexacyanoferrate nanoparticles were synthesized and characterized using elemental analysis,thermal analysis,infrared spectroscopy,and X-ray diffraction.A FE-SEM image of the nickel hexacyanoferrate showed that it consists of nearly spherical particles with sizes ranging from 30 to 70 nm.The synthesized material was found to be a heterogeneous catalyst useful for the solvent-free oxidation of benzyl alcohol with H2O2 as an oxidant.A 36% conversion of benzyl alcohol to benzaldehyde was achieved under optimized reaction conditions using specific parameters such as the amount of catalyst,the temperature,the benzyl alcohol to H2O2 molar ratio,and the reaction time.

  17. Synthesis of 1,3-Amino Alcohols, 1,3-Diols, Amines, and Carboxylic Acids from Terminal Alkynes. (United States)

    Zeng, Mingshuo; Herzon, Seth B


    The half-sandwich ruthenium complexes 1-3 activate terminal alkynes toward anti-Markovnikov hydration and reductive hydration under mild conditions. These reactions are believed to proceed via addition of water to metal vinylidene intermediates (4). The functionalization of propargylic alcohols by metal vinylidene pathways is challenging owing to decomposition of the starting material and catalytic intermediates. Here we show that catalyst 2 can be employed to convert propargylic alcohols to 1,3-diols in high yield and with retention of stereochemistry at the propargylic position. The method is also amenable to propargylic amine derivatives, thereby establishing a route to enantioenriched 1,3-amino alcohol products. We also report the development of formal anti-Markovnikov reductive amination and oxidative hydration reactions to access linear amines and carboxylic acids, respectively, from terminal alkynes. This chemistry expands the scope of products that can be prepared from terminal alkynes by practical and high-yielding metal-catalyzed methods.

  18. 用于醇类合成的铜基催化剂研究进展%Research Progress on Cu-Based Catalysts for Alcohol Synthesis

    Institute of Scientific and Technical Information of China (English)

    刘克峰; 刘晓彤; 李庆勋; 肖海成; 孔繁华


    Due to the usage or good application prospects of alcohols in health , fuel and environmental fields ,the synthesis of alcohols ,such as methanol ,ethanol and some other higher alcohols ,has drawn considerable interests .Catalytic hydrogenation of syngas or some carbonyl compounds to alcohols is advantageous , as it uses various renewable and nonrenewable carbon resources .By using Rh-based catalysts in the hydrogenation of carbonyl compounds the high selectivity for alcohol could be obtained ,but the prohibitive cost of Rh-based catalyst has spurred the research on less expensive Cu-based alternatives . In this paper , the preparation methods of Cu-based catalysts are reviewed , the influences of supports and promoters on the catalytic performance of Cu-based catalyst are introduced ,and the future research trend is put forward .%鉴于在卫生、燃料和环保领域的应用及其良好的前景,醇类例如甲醇、乙醇和其他一些高碳醇的合成引起了广泛关注。在醇类合成过程中,由于可以有效利用一些可回收或不可回收的含碳物质,合成气和一些含有羰基的化合物催化加氢具有独特的优势;采用铑基催化剂能获得较高的醇类产物选择性,但其价格高昂,目前的研究多集中于价格相对较便宜的铜基催化剂。综述了近年来用于醇类合成的铜基催化剂的制备方法,介绍了催化剂载体和催化助剂对铜基催化剂性能的影响,并展望了铜基催化剂下一步的研究工作。

  19. Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn by Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kawazoe


    Full Text Available Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen.

  20. Alcohol and pregnancy

    Directory of Open Access Journals (Sweden)

    Anna Maria Paoletti


    Full Text Available Alcohol exerts teratogenic effects in all the gestation times, with peculiar features in relationship to the trimester of pregnancy in which alcohol is assumed. Alcohol itself and its metabolites modify DNA synthesis, cellular division, cellular migration and the fetal development. The characteristic facies of feto-alcoholic syndrome (FAS-affected baby depends on the alcohol impact on skull facial development during the first trimester of pregnancy. In association there are cerebral damages with a strong defect of brain development up to the life incompatibility. Serious consequences on fetal health also depends on dangerous effects of alcohol exposure in the organogenesis of the heart, the bone, the kidney, sensorial organs, et al. It has been demonstrated that maternal binge drinking is a high factor risk of mental retardation and of delinquent behaviour. Unfortunately, a lower alcohol intake also exerts deleterious effects on fetal health. In several countries of the world there is a high alcohol use, and this habit is increased in the women. Therefore, correct information has to be given to avoid alcohol use by women in the preconceptional time and during the pregnancy. Preliminary results of a study performed by the authors show that over 80% of pregnant and puerperal women are not unaware that more than 2 glasses of alcohol/week ingested during pregnancy can create neurological abnormalities in the fetus. However, after the information provided on alcoholic fetopathy, all women are conscious of the damage caused by the use of alcohol to the fetus during pregnancy. This study confirms the need to provide detailed information on the negative effects of alcohol on fetal health. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  1. Synthesis and Characterization of a Hydrophilic/Hydrophobic IPN Composed of Poly(vinyl alcohol) and Polystyrene

    Institute of Scientific and Technical Information of China (English)

    Yi Zhen TAN; Man Cai XU; Hai Tao LI


    A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) /polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN was characterized by FT-IR and DSC, and the swelling ratios of the IPN in different solvents were measured.

  2. Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols and Hydroxide Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Santilli, Carola; Makarov, Ilya; Fristrup, Peter;


    Primary alcohols have been reacted with hydroxide and the ruthenium complex [RuCl2(IiPr)(p-cymene)] to afford carboxylic acids and dihydrogen. The dehydrogenative reaction is performed in toluene, which allows for a simple isolation of the products by precipitation and extraction. The transformat...

  3. An Efficient and Facile Procedure for Synthesis of Acetates from Alcohols Catalyzed by Poly(4-vinylpyridinium tribromide)

    Institute of Scientific and Technical Information of China (English)



    Poly(4-vinylpyridinium tribromide) is an efficient catalyst for the conversion of various alcohols to their corresponding acetate derivatives with acetic anhydride.This method has some advantages such as mild reaction conditions,good to excellent yields,and ease of work-up.

  4. Alcohol-induced decrease in muscle protein synthesis associated with increased binding of mTOR and raptor: Comparable effects in young and mature rats

    Directory of Open Access Journals (Sweden)

    Vary Thomas C


    Full Text Available Abstract Background Acute alcohol (EtOH intoxication decreases muscle protein synthesis via inhibition of mTOR-dependent translation initiation. However, these studies have been performed in relatively young rapidly growing rats in which muscle protein accretion is more sensitive to growth factor and nutrient stimulation. Furthermore, some in vivo-produced effects of EtOH vary in an age-dependent manner. The hypothesis tested in the present study was that young rats will show a more pronounced decrement in muscle protein synthesis than older mature rats in response to acute EtOH intoxication. Methods Male F344 rats were studied at approximately 3 (young or 12 (mature months of age. Young rats were injected intraperitoneally with 75 mmol/kg of EtOH, and mature rats injected with either 75 or 90 mmol/kg EtOH. Time-matched saline-injected control rats were included for both age groups. Gastrocnemius protein synthesis and the activity of the mTOR pathway were assessed 2.5 h after EtOH using [3H]-labeled phenylalanine and the phosphorylation of various protein factors known to regulate peptide-chain initiation. Results Blood alcohol levels (BALs were lower in mature rats compared to young rats after administration of 75 mmol/kg EtOH (154 ± 23 vs 265 ± 24 mg/dL. However, injection of 90 mmol/kg EtOH in mature rats produced BALs comparable to that of young rats (281 ± 33 mg/dL. EtOH decreased muscle protein synthesis similarly in both young and high-dose EtOH-treated mature rats. The EtOH-induced changes in both groups were associated with a concomitant reduction in 4E-BP1 phosphorylation, and redistribution of eIF4E between the active eIF4E·eIF4G and inactive eIF4E·4EBP1 complex. Moreover, EtOH increased the binding of mTOR with raptor in a manner which appeared to be AMPK- and TSC-independent. In contrast, although muscle protein synthesis was unchanged in mature rats given low-dose EtOH, compared to control values, the phosphorylation of rpS6

  5. Progress in the Synthesis Methods of Long Chain Alcohol Acrylate%长链醇丙烯酸酯合成方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    毛文娟; 许孝良


    The long chain alcohol acrylate have gained enormous attention among material chemists over the years because of their three-dimensional effect and hydrophilic or hydrophobic macromolecule. They can be used as synthetic organic monomer of various polymers. In this paper, the synthesis methods of long chain alcohol acrylate were reviewed, which provided a fundamental base for the application in biological medicine, materials, surface active agent, etc.%长链醇丙烯酸酯是支链具有空间立体效应以及亲水性或疏水性的大分子,可以用作多种聚合化合物的有机合成单体。本文综述了长链丙烯酸酯的合成方法,为以后进一步研究其在生物医药、材料、表面活性剂等方面的应用提供依据。

  6. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application (United States)

    Jana, Rajkumar; Peter, Sebastian C.


    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  7. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report number 13, October 1--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)



    At WVU, Mo{sub 2}S{sub 3} was produced from gas-phase reactions at 1,100 C. The gas-phase reactor was modified to increase product yields and to decrease particle size. Four Chevrel phases were synthesized for catalytic evaluation. In addition, four supported alkali-modified MoS{sub 2} materials were prepared from a single-source precursor, K{sub 2}Mo{sub 3}S{sub 13}. Screening runs have been carried out on some of these materials and others prepared earlier. At UCC and P, test runs on the reactor system have commenced. Higher alcohols up to butanol were observed and identified at high temperatures. Significant progress has been made on the Monte Carlo uncertainty analysis. Frequency distributions have been determined for all of the equipment blocks for the Texaco gasifier cases. For these cases, there is a 10% chance that the actual installed capital cost could exceed the estimated installed capital cost by $40 million dollars. This work will continue with inclusion of variable costs and prediction of the uncertainties in the return on investment. Modifications to the simulated annealing optimization program have been underway in order to increase the level of certainty that the final result is near the global optimum. Alternative design cases have been examined in efforts to enhance the economics of the production of high alcohols. One such process may be the generation of electric power using combustion turbines fueled by synthesis gas.

  8. 脂肪醇醚硫酸盐直接转化合成醇醚磺酸盐%Synthesis of ethoxylated fatty alcohol sulfonate by direct conversion of ethoxylated fatty alcohol sulfate

    Institute of Scientific and Technical Information of China (English)

    杨铭; 郭奕; 陈楠; 方云; 张丽萍


    Synthesis of ethoxylated fatty alcohol sulfonate (AESO) from direct conversion of ethoxylated fatty alcohol sulfate (AES- 3 ) was studied by using single factor experiment and orthogonal experiment method.The experiment results indicated that the yield of AESO was as high as 75.4% along with only 4.6% of hydrolysis rate of AES under the optimized reaction conditions: n ( SO32 - )∶ n ( AES - 3 ) = 4∶ 1, x ( Na2SO3 ) = 92% and w ( AES - 3 ) = 14% in aqueous solution at 190 ℃ for 4 h.Additionally, three other sulfate salts AES - 2, sodium dodecyl sulfate (SDS) and sodium nonylphenyl polyoxyethylene ether sulfate ( NPS - 4 ) were prepared under the same conditions, and 72.3% ,73.5% and 67.4% product yield was obtained respectively.%采用单因素法和正交分析法研究了脂肪醇聚氧乙烯醚(3)硫酸钠(AES-3)直接转化合成脂肪醇聚氧乙烯醚磺酸钠(AESO)工艺.结果表明,优化反应条件为:ω(AES-3)=14%,n(SO32-):n(AES-3)=4:1,x(Na2SO3)=92%,190℃压热条件下反应4 h,磺化率为75.4%,水解率为4.6%.在上述工艺条件下磺化脂肪醇聚氧乙烯醚(2)硫酸钠、十二烷基硫酸钠和壬基酚聚氧乙烯醚(4)硫酸钠的磺化率分别为72.3%,73.5%和67.4%.

  9. Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. (United States)

    Kang, Wenpei; Tang, Yongbing; Li, Wenyue; Li, Zhangpeng; Yang, Xia; Xu, Jun; Lee, Chun-Sing


    A composite of porous CuCo2O4 nanocubes well wrapped by reduced graphene oxide (rGO) sheets has been synthesized by a facile microwave-assisted solvothermal reaction and applied as anode in lithium ion batteries (LIBs). The porous structure of the CuCo2O4 nanocubes not only provides a high surface area for contact with the electrolyte, but also assists by accommodating volume change upon charging-discharging. Impedance measurements and transmission electron microscopy show that incorporation of rGO further decreases the charge transfer resistance and improves the structural stability of the composite. As an anode material for a LIB, the composite exhibits a high stable capacity of ∼ 570 mA h g(-1) at a current density of 1000 mA g(-1) after 350 cycles. With a high specific surface area and a low charge transfer resistance, the composite anode shows impressive performance especially at high current density. The LIB shows a high capacity of ∼ 450 mA h g(-1) even at a high current density of 5000 mA g(-1), demonstrating the composite's potential for applications in LIBs with long cycling life and high power density.

  10. Charge defects and highly enhanced multiferroic properties in Mn and Cu co-doped BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail:; Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun


    Pure BiFeO{sub 3} (BFO) and Mn, Cu co-doped BiFeO{sub 3} (BFMCO) thin films were deposited on fluorine doped tin oxide (FTO) substrates by a chemical solution deposition method. Detailed investigations were made on the effects of Mn and Cu co-doping on the crystal structure, the defect chemistry, multiferroic properties of the BFO thin films. With the co-doping of Mn and Cu, a structural transition from the rhombohedral (R3c:H) to the biphasic structure (R3c:H + P1) is confirmed by XRD, Rietveld refinement and Raman analysis. X-ray photoelectron spectroscopy (XPS) analysis shows that the coexistence of Fe{sup 2+}/Fe{sup 3+} and Mn{sup 2+}/Mn{sup 3+} ions in the co-doping films are demonstrated. Meanwhile, the way of the co-doping at B-sits is conducive to suppress Fe valence state of volatility and to decrease oxygen vacancies and leakage current. It's worth noting that the co-doping can induce the superior ferroelectric properties (a huge remanent polarization, 2P{sub r} ∼ 220 μC/cm{sup 2} and a relatively low coercive field, 2E{sub c} ∼ 614 kV/cm). The introduction of Mn{sup 2+} and Cu{sup 2+} ions optimizes the magnetic properties of BFO thin films by the biphasic structure and the destruction of spin cycloid.

  11. Development of Self-Organized Polymeric Lewis Acid-Catalysts for the Zero-Emission Synthesis of 2-Amino Alcohols

    Institute of Scientific and Technical Information of China (English)

    J. Inanaga


    @@ 1Introduction β-Amino alcohols are versatile synthetic intermediates for a wide range of biologically active natural and unnatural products. They can also serve as good chiral ligands for some asymmetric metal complex catalysts.The nucleophilic ring-opening of epoxides with an amine is one of the most efficient routes to obtain such β-amino alcohols with 1,2-trans stereochemistry. Therefore, various homogeneous catalysts have been developed for this transformation. Meanwhile, the development of efficient heterogeneous catalysts that can be easily prepared, recovered, and reused without losing their activities has currently received much attention from a practical and environmental point of view, and not a few such reusable heterogeneous catalysts (e. g., supported on inorganic materials or insoluble polymers) have been developed[1]. In general, however, they tend to show lower catalytic activities and selectivities compared to the corresponding homogeneous one, and the preparation of them are often tedious.

  12. Synthesis,characterization and swelling properties of a chemically cross-linked poly(vinyl alcohol) hydrogel

    Institute of Scientific and Technical Information of China (English)

    LI Wenbo; XUE Feng; CHENG Rongshi


    A poly(vinyl alcohol) hydrogel was prepared by coupling poly(vinyl alcohol) with epichlorohydrin as the cross-linking agent.The structure of the hydrogel was characterized by FTIR and GPC techniques.Various amounts of water were added into the dry gel to swell it,and the quantity of water in various states in the partially swollen hydrogel was determined by DSC technique.The analytical results indicate that the water introduced into the dry gel first combines with the hydrophilic groups of the network chains through hydrogen bond forming non-freezable water.The weight ratio of the non-freezable water to dry gel in the hydrogels is about 0.20.After the non-freezable water is saturated,the additional water penetrates the network space and exists simultaneously both in the freezable and free water states until reaching equilibrium swelling.

  13. Reaction and surface characterization study of higher alcohol synthesis catalysts. 9: Pd- and alkali-promoted Zn/Cr-based spinels containing excess ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Minahan, D.M. [Union Carbide Corp., South Charleston, WV (United States); Epling, W.S.; Hoflund, G.B. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering


    A Zn/Cr spinel support material was prepared which contains excess ZnO and then was promoted with 5.9 wt% Pd and varying amounts ranging from 0 to 7 wt % of either K or Cs. Each of these catalysts were tested at four different reactor operating conditions (T of 400 or 440 C and P of 1000 or 1500 psig) for higher alcohol synthesis (HAS) using a syngas feedstream (1:1 CO:H{sub 2}) after reductive pretreatment. High isobutanol production rates in conjunction with low methanol-to-isobutanol mole ratios ({le}1.0) and low hydrocarbon byproduct rates are desired. For the K-promoted catalysts the highest isobutanol production rates are obtained at the higher pressure and temperature settings of 1500 psig and 440 C, and methanol-to-isobutanol mole ratios below the ideal value of 1.0, which is required for downstream methyl tertiary-butyl ether (MTBE) synthesis, are obtained. The Cs-promoted catalysts generally yield higher isobutanol production rates than the K-promoted catalysts. The highest isobutanol production rate of 170 g/kg-h is obtained using the 3 wt% Cs-promoted catalyst at 1000 psig and 440 C. The lower pressure is economically advantageous with regard to process costs. Most importantly, this isobutanol production rate is quite high compared to others presented in the literature and demonstrates that Pd does enhance the synthesis of isobutanol. The catalytic activity remained stable over a 5-day test period for each catalyst. X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) were used to characterize these catalysts. The results obtained from these techniques indicate that pretreating the catalysts in 1 {times} 10{sup {minus}7} Torr of H{sub 2} at 300 C for 4 h causes an enrichment of the near-surface alkali-promotor concentration.

  14. Synthesis of benzyl chlorides and cycloveratrylene macrocycles using benzylic alcohols under homogeneous catalysis by HCl/dioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Marina Vargas-Rodríguez


    Full Text Available The synthesis of benzyl chlorides, cyclic derivatives cyclotriveratrylene and cyclotripiperotrylene were carried out in using the HCl/dioxane system as a catalyst. The reaction proceeded with high selectivity and is sensitive to the number of alkyl and methoxy substituent on the aromatic ring.

  15. Synthesis of Azoxy Dyes and Their Copper Complexes and Their Application on Polyvinyl Alcohol (PVA) Polarizing Film

    Institute of Scientific and Technical Information of China (English)

    LI Ke-bin; HE Jin-xin


    Azoxy dyes and their copper complexes with maximum dichroism in the spectrum range from 550 nm to 700 nm were synthesized and used to prepare polyvinyl alcohol (PVA) polarizing films.These films showed excellent polarizing ability.In addition, a neutral gray polarizing film was prepared by mixing synthesized dichromatic dyes with other dyes.The obtained polarizable film for gray shade was little pervious to light over the visible radiation wavelength region, ranging from 400 nm to 700 nm at cross state, and excellent in the polarizing activities and stable to moisture and heat.

  16. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 4, July 1, 1992--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)


    A base case flow sheet for the production of higher alcohols from coal derived synthesis gas has been completed, including an economic analysis. The details of the flow sheet and economics are in Appendix 1. The pay back period for the capital investment for the plant has been calculated as a function of the market price of the product, and this figure is also shown as Figure I in Appendix 1. The estimated installed cost is almost $500 MM, and the estimated annual operating cost is $64 MM. At a price in the vicinity of $1.00/gal for the alcohol product, the pay back period for construction of the plant is four years. These values should be considered preliminary, since many of the capital costs were obtained from other paper studies sponsored by DOE and TVA and very few values could be found from actual plants which were built. This issue is currently being addressed. The most expensive capital costs were found to be the gasifier, the cryogenic air separation plant, the steam/power generation plant and the acid gas/sulfur removal processes taken as a whole. It is planned to focus attention on alternatives to the base case. The problem is that it is less expensive to make syngas from natural gas. Therefore, it is essential to reduce the cost of syngas from coal. This is where the energy park concept becomes important. In order for this process to be economical (at current market and political conditions) a method must be found to reduce the cost of syngas manufacture either by producing energy or by-products. Energy is produced in the base case, but the amount and method has not been optimized. The economic arguments for this concept are detailed in Appendix 2.

  17. 酚醛缩多元聚醇的合成及其性能%Synthesis and Performances of Phenol-aldehyde-polyhydric Alcohols Co-polymer

    Institute of Scientific and Technical Information of China (English)



    采用红外光谱、凝胶渗透色谱等对合成的酚醛缩多元聚醇(PRX)进行结构表征,并研究PRX涂膜的贮存期、物理机械性能、抗化学介质性能和耐热性.结果表明:酚醛树脂中羟甲基与多元聚醇中的羟基发生缩聚反应,形成具有聚醚结构的PRX聚合物.同时,PRX在热固化过程中由于分子链中活泼羟基进一步缩合,产物易交联聚合成膜,该膜具有优异理化性能、耐热性且贮存稳定性较佳.%The paper concerns the synthesis of the Phenol-aldehyde-polyhydric alcohols co-polymer(PRX) using IR,GPC, etc. The storage time, chemistry resistance, heat resistance and physical-mechanical properties of the coating film of PRX are also investigated. The results of IR and GPC test indicate that the polycondensation between hydroxymethies of PR and hydroxyls of polyhydric alcohols, forms the structure of polyether in co-polymer, then the active hydroxyls of PRX in the heat solidifying process could interact with and polymerizated to film. The film has better physical-chemical properties, thermal and storage stability also.

  18. Synthesis and characterization of bimetallic nanocatalysts and their application in selective hydrogenation of citral to unsaturated alcohols

    Indian Academy of Sciences (India)

    S A Ananthan; R Suresh; K Giribabu; V Narayanan


    TiO2-supported bimetallic nanocatalysts were prepared and reduced at two different temperatures, 375°C and 575°C for selective hydrogenation of citral to corresponding unsaturated alcohols (geraniol (GOL) and nerol (NOL)). The nanocatalysts were characterized by difference techniques of Fourier transform infrared spectroscopy (FT-IR), Brunauer, Emmett and Teller (BET) surface area measurement, scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The prepared nanocatalysts are uniformly dispersed with an average particle size of 50-100 nm and zero valence metallic state. Catalysts reduced at higher temperature lead to an increase in selectivity toward unsaturated alcohols (GOL and NOL). The Pt-Ru/TiO2 shows higher activity compared to Pt-Pd/TiO2 and Pt-Au/TiO2 nanocatalysts. In addition, a second metal (Ru) also leads to an increase in GOL and NOL selectivity during citral hydrogenation. Partially generated oxidized second metal species due to the difference in electronegativity, strongly binds the C=O group and also paves the way for selective activation of C=O bond.

  19. S-3-奎宁醇的合成研究%Study on the Synthesis of S-3-Quinine Alcohol

    Institute of Scientific and Technical Information of China (English)



    A new method is reported for synthesizingS-3-quininealcohoL Based on a configuration transformation strategy, the raw material 3-quinineketoneis, in turn, reduced,esterified, and finally hydrolyzed into S-3-quinine alcohol by potassium borohydride, acetyl chloride, and sodium hydroxide, respectively- Subsequently, 1H NMRcharacterization is employed to confirm the S -3 -quinine alcohol and HPLC also reveals that theoverall yield of the desired product isabout 88-96%-The proposedsynthesis method appears to be convenient,high-yielding, and applicable for industrial purpose.%探讨S-3-奎宁醇的合成新工艺.通过构型转化的方法,以3-奎宁酮为原料,经硼氢化钾还原、与乙酰氯成酯、水解得S-3-奎宁醇.其结构经1H NMR等表征证实,总收率可达到88.96%.该合成路线操作步骤简单、收率高,具有工业应用价值.


    Institute of Scientific and Technical Information of China (English)

    魏伟; 李文怀; 杨成; 马育刚; 孙予罕


    Cu/ZrO2 and MoS2 based catalysts were developed for the synthesis of higher alcohols. Modified by the carbon chain growth enhancing elements, both catalyst systems showed the high performance without the obvious deactivation after 2000 h running at 9.0~12.0 MPa and 300~380 ℃, indicating a good prospect for the further development in practical application.


    NARCIS (Netherlands)



    First kinetic results are presented for the gas-slurry methanol-higher alcohol synthesis from CO/CO2/H-2 (syngas) over a CU0.44Zn0.43Al0.12Cs0.031 catalyst (particle size: 50-75 mu m), slurried in n-octacosane. Experimental conditions varied as follows: pressure = 20-80 bar, temperature = 473-573 K,

  2. Compositional Dependence of Electronic Specific Heat in AlCuCo Decagonal Quasicrystals: Evidence for the Hume-Rothery Mechanism of Phase Formation

    Institute of Scientific and Technical Information of China (English)

    FAN Zhen-Jun; JING Xiu-Nian; ZHANG Dian-Lin


    @@ There is no consensus whether the electron density of states of decagonal quasicrystals has a pseudogap at the Fermi energy similar to that of the icosahedron phase. We answer this question by measuring the electronic specific heat coefficient of AlCuCo decagonal single-quasicrystals over a wide range of composition. While the average valence electron number per atom, e/a, for all the resultant samples changes only within 1.5%, from ~ 1.92 to less than 1.95. The specific heat coefficient decreases by 15% with the increasing e/a. The large change and the negative slope give strong evidence for Hume-Rothery mechanism of the decagonal phase.

  3. 40Ar-39Ar Dating of Quartz from Ore in the Baiyangping Cu-Co Polymetallic Ore-Concentrated Area, Lanping Basin, Yunnan

    Institute of Scientific and Technical Information of China (English)

    何明勤; 刘家军; 李朝阳; 李志明; 刘玉平; 杨爱平; 桑海清


    40Ar-39Ar fast neutron activation age spectrum of quartz in ore collected from the Baiyangping Cu-Co polymetallic ore-concentrated area, Lanping Basin, is saddle-shaped. The plateau age, minimum appearance age and isochron age shown on the spectra are 56.53±0.43 Ma, 55.52±1.78 Ma and 55.90±0.29 Ma respectively. The age data are consistent with each other within 1σ uncertainties. Because the given initial 40Ar/36Ar value of 294.7±1.14 is very close to Nier's value (295.5±5), both plateau and isochron ages may be considered as the forming time of quartz. So the age of 55.90-56.53 Ma represents the forming age of ore deposits. It is obvious that the ore deposits were formed during the Early Himalayan period.

  4. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero


    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  5. Synthesis of Fatty Alcohols from Oil Palm Using a Catalyst of Ni-Cu Supported onto Zeolite

    Directory of Open Access Journals (Sweden)

    L. Giraldo


    Full Text Available A series of Ni-Cu supported onto zeolite type ZSM-5 has been synthesized by direct hydrothermal method without template agent and characterized using XRD, FT-IR, NRM mass, SEM, CG and N2 adsorption techniques. The catalytic performance of the obtained materials was evaluated and utilized for the hydrogenation of palm oil at 453 K and 40 atmospheres of pressure. The results show that the samples exhibited typical hexagonal arrangement of mesoporous structure with high surface area and the heteroatoms were probably incorporated into the framework of ZSM-5. Catalytic tests show that the bimetallic incorporated materials were effective as catalysts in the hydrogenation of oil palm producing fatty alcohols typical.

  6. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    Saad Alabbad


    Full Text Available Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.

  7. Synthesis, non-isothermal crystallization and magnetic properties of Co0.75Zn0.25Fe2O4/poly(ethylene-co-vinyl alcohol) nanocomposite

    Indian Academy of Sciences (India)

    Taieb Aouak; Nasrallah M Deraz; Abdullah S Alarifi


    The synthesis of Co0.75Zn0.25Fe2O4/poly(vinyl alcohol-co-ethylene) (ferrite/PEVA) nanocomposite was carried out through two steps: impregnation of the ferrite particules by PEVA and then mixing the ferrite/PEVA impregnated with PEVA solution. A non-isothermal study of the crystallization kinetic of ferrite/PEVA nanocomposite was carried out by differential scanning calorimetry (DSC), scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques. It was observed that the Ozawa equation describes perfectly the primary process of non-isothermal crystallization of ferrite/PEVA system. There is a strong dependence of the ferrite/PEVA composition on the crystallization parameters. The crystallization activation energy (a) calculated from the Xu and Uhlmann model increased by increasing the ferrite content in ferrite/PEVA nanocomposites between 3 and 7wt% and decreased dramatically beyond these values. The results revealed that the ferrite nanoparticles were uniformly distributed throughout the PEVA matrix. The percentage of magnetization of the composite decreases as the concentration of the ferrite increases.

  8. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    Energy Technology Data Exchange (ETDEWEB)



    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  9. National Institute on Alcohol Abuse and Alcoholism (United States)

    Skip to main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use ...

  10. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. (United States)

    Che, Yuchi; Wang, Chuan; Liu, Jia; Liu, Bilu; Lin, Xue; Parker, Jason; Beasley, Cara; Wong, H-S Philip; Zhou, Chongwu


    The development of guided chemical vapor deposition (CVD) growth of single-walled carbon nanotubes provides a great platform for wafer-scale integration of aligned nanotubes into circuits and functional electronic systems. However, the coexistence of metallic and semiconducting nanotubes is still a major obstacle for the development of carbon-nanotube-based nanoelectronics. To address this problem, we have developed a method to obtain predominantly semiconducting nanotubes from direct CVD growth. By using isopropyl alcohol (IPA) as the carbon feedstock, a semiconducting nanotube purity of above 90% is achieved, which is unambiguously confirmed by both electrical and micro-Raman measurements. Mass spectrometric study was performed to elucidate the underlying chemical mechanism. Furthermore, high performance thin-film transistors with an on/off ratio above 10(4) and mobility up to 116 cm(2)/(V·s) have been achieved using the IPA-synthesized nanotube networks grown on silicon substrate. The method reported in this contribution is easy to operate and the results are highly reproducible. Therefore, such semiconducting predominated single-walled carbon nanotubes could serve as an important building block for future practical and scalable carbon nanotube electronics.

  11. Synthesis, Characterization of Mesoporous Al-Mg Composite Oxide and Catalytic Performance for Oxyethylation of Fatty Alcohol

    Institute of Scientific and Technical Information of China (English)

    SONG Wei-ming; DENG Qi-gang; ZHOU De-rui; ZHAO De-feng


    A mesoporous Al-Mg composite oxide with a hexagonal structure was synthesized with aluminium nitrate and magnesium nitrate as the reagents and sodium dodecyl sulfate(SDS) as the template in the presence of ethylenediamine. The XRD, nitrogen adsorption-desorption and TEM studies indicate that the composite has a hexagonal framework structure and an average pore diameter of 2.6 nm. The TG/DTA spectra indicate that the decomposition and the removal of the occluded surfactant of the sample take place in a range of 230-550 ℃. The mesoporous Al-Mg composite oxide exhibites a highly catalytic activity for the oxyethylation of fatty alcohols. Narrow-range distributed ethoxylates are formed in the presence of the mesoporous Al-Mg composite oxide catalyst. The distribution selectivity coefficient(Cs) is 24 when the mesoporous Al-Mg composite oxide was used as a catalyst for the oxyethylation of octanol and the average adduct degree of ethoxylates is 6.4.

  12. Physically crosslinked poly(vinyl alcohol-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy


    Full Text Available Poly(vinyl alcohol, PVA is a polymer of great importance because of its many appealing characteristics specifically for various pharmaceutical and biomedical applications. Physically crosslinked hydrogel membranes composed of different amounts of hydroxyethyl starch (HES in (PVA and ampicillin were prepared by applying freeze–thawing method. This freezing–thawing cycle was repeated for three consecutive cycles. Physicochemical properties of PVA–HES membrane gel such as gel fraction, swelling, morphology, elongation, tensile strength, and protein adsorption were investigated. Introducing HES into freeze–thawed PVA structure affected crystal size distribution of PVA; and hence physicochemical properties and morphological structure have been affected. Increased HES concentration decreased the gel fraction %, maximum strength and break elongation. Indeed it resulted into a significant incrementing of the swelling ability, amount of protein adsorption, broader pore size, and pore distribution of membrane morphological structure. Furthermore, an increase in HES concentration resulted in better and still lower thermal stability compared to virgin PVA and freeze–thawed PVA. The maximum weight loss of PVA–HES hydrogel membranes ranged between 18% and 60% according to HES content, after two days of degradation in phosphate buffer saline (PBS, which indicates they are biodegradable. Thus, PVA–HES hydrogel membranes containing ampicillin could be a novel approach for biomedical application e.g. wound dressing purposes.

  13. Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component

    Energy Technology Data Exchange (ETDEWEB)

    Paduraru, Oana Maria; Ciolacu, Diana; Darie, Raluca Nicoleta; Vasile, Cornelia, E-mail:


    Novel physically cross-linked cryogels containing polyvinyl alcohol (PVA) and various amounts of microcrystalline cellulose were obtained by freezing/thawing technique. The main goal of this study was to improve the properties and the performances of the pure PVA cryogels. The morphological aspects of the cryogels were studied by scanning electron microscopy (SEM). The Fourier transform infrared spectroscopy (FT-IR) was used to reveal the presence of the interactions between the two polymers. Changes in crystallinity of the samples were confirmed by X-ray diffraction (XRD) and by FT-IR spectroscopy. The modification of the thermal behavior induced by cellulose was studied by thermogravimetry. Rheological analysis revealed higher values of storage modulus (G Prime ) for the cryogels containing higher amounts of cellulose. The degree and rate of swelling were controlled by the presence of the natural polymer in the network. The potential application as bioactive compound carriers was tested, using vanillin as an active agent. Highlights: Black-Right-Pointing-Pointer Novel PVA/microcrystalline cellulose cryogels were obtained by freezing/thawing. Black-Right-Pointing-Pointer The main advantage of this technique is that no chemical crosslinker is being used. Black-Right-Pointing-Pointer The presence of cellulose improves the swelling properties and the cryogels' strength. Black-Right-Pointing-Pointer The potential application as carriers for bioactive components was tested.

  14. Facile synthesis of glucose-sensitive chitosan-poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties. (United States)

    Abureesh, Mosab Ali; Oladipo, Akeem Adeyemi; Gazi, Mustafa


    The study describes the development of glucose-sensitive hydrogel and optimization of bovine serum albumin release profile from the hydrogel. To enhance the glucose sensitivity and improve the swelling behaviors of the hydrogel system, boric acid crosslinking, and freeze-thawing cycle techniques were used to prepare chitosan-poly(vinyl alcohol) hydrogel. The structure of the resultant hydrogel was confirmed by scanning electron microscopy and Fourier transform infrared spectroscopy. The experimental results revealed that the swelling of the hydrogel was influenced by the pH of the medium, and the hydrogel displayed explicit glucose-sensitivity under physiological conditions. The values of the diffusion exponent range between 0.34 and 0.44 and the diffusion of water into the gel system are assumed to be pseudo-Fickian in nature. Under optimized conditions, the cumulative Bovine serum albumin (BSA) drug releases ranged between 69.33±1.95% and 86.45±1.16% at 37°C in the presence of glucose and pH 7.4, respectively.

  15. Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. (United States)

    Zhai, Tianliang; Zheng, Qifeng; Cai, Zhiyong; Xia, Hesheng; Gong, Shaoqin


    Superhydrophobic and crosslinked poly(vinyl alcohol) (PVA)/cellulose nanofibril (CNF) aerogel microspheres were prepared via a combination of the water-in-oil (W/O) emulsification process with the freeze-drying process, followed by thermal chemical vapor deposition of methyltrichlorosilane. The oil phase and the cooling agent were judiciously selected to ensure that the frozen ice microspheres can be easily separated from the emulsion system. The silanized microspheres were highly porous with a bulk density ranging from 4.66 to 16.54mg/cm(3). The effects of the solution pH, stirring rate, and emulsifier concentration on the morphology and microstructure of the aerogel microspheres were studied. The highly porous structure of the ultralight aerogel microspheres demonstrated an ultrahigh crude oil absorption capacity (up to 116 times its own weight). This study provides a novel approach for the large-scale preparation of polymeric aerogel microspheres with well-controlled particle sizes that can be used for various applications including oil and chemical spill/leak clean-up.

  16. Meta-analysis of gene expression patterns in animal models of prenatal alcohol exposure suggests role for protein synthesis inhibition and chromatin remodeling (United States)

    Rogic, Sanja; Wong, Albertina; Pavlidis, Paul


    Background Prenatal alcohol exposure (PAE) can result in an array of morphological, behavioural and neurobiological deficits that can range in their severity. Despite extensive research in the field and a significant progress made, especially in understanding the range of possible malformations and neurobehavioral abnormalities, the molecular mechanisms of alcohol responses in development are still not well understood. There have been multiple transcriptomic studies looking at the changes in gene expression after PAE in animal models, however there is a limited apparent consensus among the reported findings. In an effort to address this issue, we performed a comprehensive re-analysis and meta-analysis of all suitable, publically available expression data sets. Methods We assembled ten microarray data sets of gene expression after PAE in mouse and rat models consisting of samples from a total of 63 ethanol-exposed and 80 control animals. We re-analyzed each data set for differential expression and then used the results to perform meta-analyses considering all data sets together or grouping them by time or duration of exposure (pre- and post-natal, acute and chronic, respectively). We performed network and Gene Ontology enrichment analysis to further characterize the identified signatures. Results For each sub-analysis we identified signatures of differential expressed genes that show support from multiple studies. Overall, the changes in gene expression were more extensive after acute ethanol treatment during prenatal development than in other models. Considering the analysis of all the data together, we identified a robust core signature of 104 genes down-regulated after PAE, with no up-regulated genes. Functional analysis reveals over-representation of genes involved in protein synthesis, mRNA splicing and chromatin organization. Conclusions Our meta-analysis shows that existing studies, despite superficial dissimilarity in findings, share features that allow us

  17. Structure of Co—K—Mo/γ—Al2O3 catalysts and their catalytic activity for mixed alcohols synthesis

    Institute of Scientific and Technical Information of China (English)

    Guo-zhuBian; Yi-luFu; 等


    A series of oxideized CO-K-Mo/γ-Al2O3 catalyst samples,prepared by impregnating oxidized K-Mo/γ-Al2O3 samples with an aqueous solution of calculated Co(NO3)2 and then calcining in air at temperatures of 350℃,500℃65℃ and 800℃ respectively,were sulfided and then investigated for the activity in the synthesis of mixed alcohols from CO hydrogenation under conditions of p=5.0MPa,T=350℃ and GHSV=4800h-1 .The results demonstrate that the addition of cobalt promoter is favorable to the formation of higher alcohols and the opimum calcination temperatures after impregnating with Co2+ are about 500-650℃.The structure of Co and Mo species on the oxidized and sulfided samples was determined by X-ray diffraction(XRD),laser Raman spectrum (LRS) and extended X-ray absorption fine structure (EXAFS).For oxidized sample calcined at 350℃ ,cobalt exists as Co3O4 specties and covers the surface of K-Mo-O species,the structure of K-Mo-O species is the same as that in K-Mo/Al2O3 sample.The interaction between cobalt and K-Mo-O species is relatively weak.After sulfidation.Cobalt exists as sulfide crystallites with an octahedral coordinated structure,and molybdenum as MoS2 crystallites.For oxidized samples calcined at 500-650℃,Co component interacts with the K-Mo-O species and destroys the long-range order of the K-Mo-O spectes gradually,After sulfidation.Co tends to exist as a sulfide with tetrahedral coordinated structure and Mo still as MoS2 crystallites.For oxidized sample calcined at 800℃,Co component exists mainly as CoAl2O4 species,most of which cannot be sultided during sulfidation.


    Institute of Scientific and Technical Information of China (English)

    江伟辉; 魏恒勇; 冯果; 周艳华; 于云


    Aluminum titanate has been synthesized at low temperature by nonhydrolytic sol-gel route using titanium tetrachloride and anhydrous aluminum trichloride as raw materials and anhydrous alcohols as oxygen donors. The effects of different anhydrous alcohols and their quantities on the low temperature synthesis of Al2TiO5 were studied. The results show that while the oxygen donor used is in stoichiometric ratio for synthesizing Al2TiO5 at 750 ℃, ethanol is the most effective oxygen donor, followed by isopropanol;n-butyl alcohol is a less effective oxygen donor. In contrast, Al2TiO5 can not be synthesized at low temperatures using methanol or tert-butyl alcohol as oxygen donor due to their high chemical reactivity resulting in hydrolysis reaction. When the quantities of alcohols added exceeding the stoichiometric, the effect on synthesis declined dramatically. However, use of less than the stoichiometricquantity of isopropanol and n-butyl alcohol led to the remarkable enhancement effect in the synthesis of Al2TiO5, but no obvious influence was observed when ethanol was used.%以TiCl4和无水AlCl3为原料,以无水低碳醇为氧供体通过非水解溶胶-凝胶法低温合成了钛酸铝,研究了无水低碳醇种类及用量对钛酸铝合成反应的影响.结果表明:当氧供体按反应式化学计量比用量加入时,在750℃能合成出钛酸铝,其中以乙醇的合成效果最好,异丙醇次之,正丁醇的效果较差;采用甲醇和叔丁醇作氧供体,由于它们的化学活性过大而引发水解反应,不能低温(750 ℃)合成钛酸铝.当醇用量超过化学计量比时,则合成效果显著下降;当醇用量低于化学计量比时,改变乙醇的用量对合成效果影响不明显,而减少异丙醇和正丁醇用量可显著提高钛酸铝的合成效果.

  19. Novel Approaches to the Production of Higher Alcohols From Synthesis Gas. Quarterly report, January 1 - March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, George W


    Effort during this quarter was devoted to three areas: 1) analyzing the data from earlier runs with "zinc chromite"catalyst and three different slurry liquids: decahydronaphthalene (Decalin®, DHN), tetrahydronaphthalene (tetralin, THN) and tetrahydroquinoline (THQ); 2) analyzing newly-obtained data from earlier thermal stability tests on DHN and THN, and 3) carrying out a thermal stability test on THQ. Both the activity and selectivity of "zinc chromite" catalyst depended on the slurry liquid that was used. The catalyst activity for methanol synthesis was in the order: THQ > DHN > THN. Despite the basic nature of THQ, it exhibited the highest dimethyl ether (DME) production rates of the three liquids. Gas chromatography/mass spectroscopy (GC/MS) analyses of samples of THN and DHN were taken at the end of standard thermal stability tests at 375°C. With both liquids, the only measurable compositional change was a minor amount of isomerization. Analysis of a sample of THN after a thermal stability test at 425°C showed a small reduction in molecular weight, and a significant amount of opening of the naphthenic ring. Preliminary data from the tehrmal stability test of THQ showed that this molecule is more stable than DHN, but less stable than THN.

  20. Enhancement of sterol synthesis by the monoterpene perillyl alcohol is unaffected by competitive 3-hydroxy-3-methylglutaryl-CoA reductase inhibition. (United States)

    Cerda, S R; Wilkinson, J; Branch, S K; Broitman, S A


    Monoterpenes such as limonene and perillyl alcohol (PA) are currently under investigation for their chemotherapeutic properties which have been tied to their ability to affect protein isoprenylation. Because PA affects the synthesis of isoprenoids, such as ubiquinone, and cholesterol is the end product of the synthetic pathway from which this isoprenoid pathway branches, we investigated the effects of this compound upon cholesterol metabolism in the colonic adenocarcinoma cell line SW480. PA (1 mM) inhibited incorporation of 14C-mevalonate into 21-26 kDa proteins by 25% in SW480 cells. Cholesterol (CH) biosynthesis was assessed by measuring the incorporation of 14C-acetate and 14C-mevalonate into 27-carbon-sterols. Cells treated with PA (1 mM) exhibited a fourfold increase in the incorporation of 14C-acetate but not 14C-mevalonate into cholesterol. Mevinolin (lovastatin), an inhibitor of 3-hydroxy-3-methylglutaryl-CoA(HMG-CoA) reductase, at 2 microM concentration, inhibited CH synthesis from 14C-acetate by 80%. Surprisingly, concurrent addition of mevinolin and PA did not significantly alter the stimulatory effects of PA. As observed differences in 14C-acetate and 14C-mevalonate precursor labeling could indicate PA affects early pathway events, the effects of this monoterpene on HMG-CoA reductase activity were evaluated. Unexpectedly, 1 mM PA did not stimulate activity of this enzyme. Consistent with its action as a reversibly bound inhibitor, in washed microsomes, 2 microM mevinolin pretreatment increased reductase protein expression causing a 12.7 (+/- 2.4)-fold compensatory HMG-CoA reductase activity increase; concurrent treatment with 1 mM PA attenuated this to a 5.3 (+/- 0.03)-fold increase. Gas chromatographic analysis confirmed CH was the major lipid present in the measured thin-layer chromatography spot. Since 14C-acetate incorporation into free fatty acid and phospholipid pools was not significantly affected by PA treatment, nonspecific changes in whole

  1. Distribution of Cu, Co, As, and Fe in mine waste, sediment, soil, and water in and around mineral deposits and mines of the Idaho Cobalt Belt, USA (United States)

    Gray, John E.; Eppinger, Robert G.


    The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water

  2. Travelling-solvent floating-zone growth of the dilutely Co-doped spin-ladder compound Sr14(Cu, Co)24O41 (United States)

    Bag, Rabindranath; Karmakar, Koushik; Singh, Surjeet


    We present here crystal growth of dilutely Co-doped spin-ladder compounds Sr14(Cu 1-x, Cox)24O41 (x = 0, 0.01, 0.03, 0.05, 0.1) using the Travelling Solvent Floating Zone (TSFZ) technique associated with an image furnace. We carried out detailed microstructure and compositional analysis. The microstructure of the frozen-in FZ revealed two bands: a lower band consisting of well-aligned single-crystalline stripes of the phase Sr14(Cu, Co)24O41 embedded in the eutectic mixture of composition SrO 18% and (Cu, Co)O 82%; and an upper band consisting of a criss-crossed pattern of these stripes. These analyses were also employed to determine the distribution coefficient of the dopants in Sr14Cu24O41. The distribution coefficient turned out to be close to 1, different from Sr2CuO3 reported previously where Co tend to accumulate in the molten zone. Direct access to the composition of the frozen-in zone eliminated any previous ambiguities associated with the composition of the peritectic point of Sr14Cu24O41; and also the eutectic point in the binary SrO-CuO phase diagram. The lattice parameters show an anisotropic variation upon Co-doping with parameters a and b increasing, c decreasing; and with an overall decrease of the unit cell volume. Magnetic susceptibility measurements were carried out on the pristine and the Co-doped crystals along the principal crystallographic axes. The spin susceptibility of the x = 0.01 crystal exhibits a strong anisotropy, which is in stark contrast with the isotropic behaviour of the pristine crystal. This anisotropy seems to arise from the intradimer exchange interaction as inferred from the anisotropy of the dimer contribution to the susceptibility of the Co-doped crystal. The Curie-tail in the magnetic susceptibility of Sr14(Cu 1-x, Cox)24O41 (x = 0, 0.01, 0.03, 0.05, 0.1) crystals (field applied parallel to the ladder) was found to scale with Co-doping - the scaling is employed to confirm a homogeneous distribution of Co in a x = 0

  3. Alcohol Abuse (United States)

    ... even small amounts of alcohol may hurt an unborn child)Drink alcohol while you are looking after ... shakes, being very suspicious), and can even include death. This is why you need your doctor’s care ...

  4. One-pot hydrothermal synthesis and characterization of CoFe{sub 2}O{sub 4} nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar, E-mail:


    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe{sub 2}O{sub 4} NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe{sub 2}O{sub 4} NPs with (C{sub 4}H{sub 9}){sub 3}N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe{sub 2}O{sub 4} was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  5. Alcohol Test

    Institute of Scientific and Technical Information of China (English)


    The recent alcohol tax increase poses a challenge to China’s white spirits makers Alcohol, rather than wine, is an in-dispensable component to Chinese table culture. The financial crisis has failed to affect white spirits sales, but an alcohol tax increase might.

  6. Alcohol Poisoning (United States)

    ... t be awakened is at risk of dying. Alcohol poisoning is an emergency If you suspect that someone has alcohol poisoning — even if you don't see the ... immediately. Never assume the person will sleep off alcohol poisoning. Be prepared to provide information. If you ...

  7. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip


    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  8. Analysis of Cu, Co, V and Zn in coastal waters of the East China Sea by inductively coupled plasma mass spectrometry (ICP-MS) (United States)

    Yang, Rujun; Ning, Yutong; Zhang, Aibin; Li, Yan; Su, Han


    In this study, a simple method for the simultaneous determination of trace metals (Cu, V, Co, Zn) in coastal seawater using the Mg(OH)2 coprecipitation inductively coupled plasma mass spectrometry (ICP-MS) was developed. This multi-element method enables the simultaneous extraction of four metals, particularly Co and V. The recoveries of Cu, Co, V and Zn after Mg(OH)2 coprecipitation were 73%, 96%, 94% and 92%, which means that our procedure was well-suited to the determination of these four trace metals. The detection limits were 3.81, 0.18, 6.09 and 1.91 nmol L-1, respectively. Then, applying this method to the simultaneous determination of these four metals in coastal water samples from the East China Sea revealed that the concentrations of Cu, Zn, Co and V were higher in bottom waters compared to water at other depths, and higher concentrations were generally observed at the Yangtze River estuary. Additionally, example vertical profiles of dissolved trace metal concentrations for the East China Sea in spring and autumn are compared. These findings indicate that Zn had the greatest seasonal variation followed by Cu, V and Co. For Zn and Co, the concentrations were higher during spring than during autumn. For Cu and V, the seasonal variation in the concentrations was opposite.

  9. Training and recovery behaviors of exchange bias in FeNi/Cu/Co/FeMn spin valves at high field sweep rates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, D.Z. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Kapelrud, A.; Saxegaard, M. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Wahlstroem, E., E-mail: [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway)


    Training and recovery of exchange bias in FeNi/Cu/Co/FeMn spin valves have been studied by magnetoresistance curves with field sweep rates from 1000 to 4800 Oe/s. It is found that training and recovery of exchange field are proportional to the logarithm of the training cycles and recovery time, respectively. These behaviors are explained within the model based on thermal activation. For the field sweep rates of 1000, 2000 and 4000 Oe/s, the relaxation time of antiferromagnet spins are 61.4, 27.6, and 11.5 in the unit of ms, respectively, much shorter than the long relaxation time ({approx}10{sup 2}s) in conventional magnetometry measurements. - Highlights: Black-Right-Pointing-Pointer We measure antiferromagnet (AFM) spin dynamic behaviors at high field sweep rates. Black-Right-Pointing-Pointer Increasing the field sweep rates will reduce the AFM recovery and relaxation time. Black-Right-Pointing-Pointer AFM spin is in millisecond timescale, shorter the conventional report ({approx}10{sup 2}-10{sup 4}).

  10. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)


    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  11. Structure and Redox Properties of VCe0.95M0.05 (M=Cu, Co, Mn, Fe and Cr) Mixed Oxides

    Institute of Scientific and Technical Information of China (English)

    钟依均; 罗孟飞


    The mixed oxides, VCe and VCe0.95M0.05 (M=Cu, Co, Mn, Fe and Cr), we re prepared by sol-gel method. The structure and redox properties of these mixe d oxides were characterized by XRD, Raman, XPS and TPR techniques. The main phas e is tetragonal VCeO4 phase in all samples. The substitution of Fe, Mn, Cu or Co for Ce results in the formation of CeO2 or monoclinic VCeO4 phase. The XP S result indicates that valence of V is +5+δ(δ<1) in VCe0.95Co0 .05, VCe0.95Mn0.05, VCe0.95Cr0.05 and VCe0.95Fe 0.05 samples compared with VCe , on the contrary, valence of V is +5-δ (δ<1) in VCe0.95Cu0.05 sample. The Fe, Co, Cr and Mn enhanc e the reduction of V5+ in VCeO4, whereas Cu inhibits this reduction.

  12. Influence of the temperature on the synthesis of CdS quantum dots stabilized with poly (vinil alcohol); Influencia da temperatura na sintese de pontos quanticos de sulfeto de cadmio estabilizados por poli (alcool vinilico)

    Energy Technology Data Exchange (ETDEWEB)



    Semiconductor nanoparticles (Quantum Dots, QDs) have been the subject of recent research by presenting quantum properties. This property has stimulated the study of these particles in biological applications such as bookmarks, which creates the necessity of using different synthesis routes resulting in biocompatible systems. Thus, this study aimed to evaluate the effect of temperature on the properties of QDs cadmium sulfide, aqueous route using poly (vinyl alcohol), a biocompatible polymer, such as stabilizing agent. The characterization of particles produced was performed by UV-Vis spectroscopy and photoluminescence (PL) spectra for obtaining the absorption and emission, respectively and Transmission microscopy (TEM) for analysis of the diameter of the nanocrystals. (author)

  13. Alcoholic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Gonzalo; Guzzo-Merello; Marta; Cobo-Marcos; Maria; Gallego-Delgado; Pablo; Garcia-Pavia


    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy(ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM.

  14. Effect of Doping Cerium in the Support of Catalyst Pd-Co/Cu-Co-Mn Mixed Oxides on the Oxidative Carbonylation of Phenol%掺杂Ce对Pd-Co/Cu-Co-Mn混合氧化物催化体系氧化羰基化法合成碳酸二苯酯

    Institute of Scientific and Technical Information of China (English)

    梁英华; 郭红霞; 陈红萍; 吕敬德; 张波波


    Effect of doping cerium in the support on the catalytic activity and side product of the reaction in the oxidative carbonylation of phenol to diphenyl carbonate (DPC) over the catalyst Pd-Co/Cu-Co-Mn mixed oxides was studied. The specific surface areas, crystal phase, valency, and content of the element on the surface of the catalysts were determined, and the products were detected by gas chromatograph/mass spectrometry (GC-MS). It is found that the catalyst without Ce shows higher activity than that with Cc, and the yields of DPC for the two catalysts can reach 30% and 23%, respectively. However, doping cerium can prevent the formation of 2-hydroxyphenyl benzoate and p-bromophenyl phenyl carbonate.

  15. Alcohol and pregnancy (United States)

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... When a pregnant woman drinks alcohol, the alcohol travels through her blood and into the baby's blood, tissues, and organs. Alcohol breaks down much more slowly in ...

  16. Regioselective SN2' Mitsunobu reaction of Morita-Baylis-Hillman alcohols: A facile and stereoselective synthesis of α-alkylidene-β-hydrazino acid derivatives. (United States)

    Xu, Silong; Shang, Jian; Zhang, Junjie; Tang, Yuhai


    A highly regioselective SN2' Mitsunobu reaction between Morita-Baylis-Hillman (MBH) alcohols, azodicarboxylates, and triphenylphosphine is developed, which provides an easy access to α-alkylidene-β-hydrazino acid derivatives in high yields and good stereoselectivity. This reaction represents the first direct transformation of MBH alcohols into hydrazines.

  17. (+)-camphor-derived tri- and tetradentate amino alcohols; synthesis and application as ligands in the nickel catalyzed enantioselective conjugate addition of diethylzinc

    NARCIS (Netherlands)

    Vries, André H.M. de; Imbos, Rosalinde; Feringa, Bernard


    Several novel tri- and tetradentate amino alcohol ligands, all derived from (+)-camphor, have been synthesized by using specific N-alkylation procedures. The amino alcohols were employed as chiral ligands in the nickel catalyzed conjugate additions of diethylzine to chalcone and cyclohexenone as mod

  18. Microstructure of AIFeCuCoNiCr High-entropy Alloy with Multi-principal Elements%多主元高熵合金AlFeCuCONiCr的微观结构

    Institute of Scientific and Technical Information of China (English)

    郭娜娜; 孙宏飞; 王刚; 牛占蕊; 袁博; 李忠丽


    依据多主元高熵合金的设计理念,采用真空电弧炉熔炼等摩尔比多主元高熵合金AlFeCuCoNiCr,研究合金的组织结构。研究发现:A1FeCuCoNiCr合金的铸态组织是典型的树枝晶,并有纳米析出相和非晶相形成;合金存在严重的成分偏析现象,铜偏聚于枝晶间;合金形成了简单的面心立方+体心立方(FCC+BCC)结构和少量金属间化合物。%According to the design concept of high-entropy alloy with multi principal elements, A1FeCuCoNiCr high-entropy alloy was prepared by vacuum arc melting in equimolar ratio to investigate the microstructure. The results showed that the alloy was typical dendritic structure; nanoprecipitates and amorphous phase appeared in alloy; the composition segregation was very serious, Cu gathered in the interdendritic region; the alloy was composed of FCC, BCC and a little intermetallic compounds.

  19. 脂肪醇聚氧乙烯醚磺酸盐的合成研究进展%Research and Progress in Synthesis of Fatty Alcohol Polyoxyethylene Ether Sulfonate

    Institute of Scientific and Technical Information of China (English)

    汪学良; 刘猛帅; 赵地顺; 刘美端; 张娟; 任培兵


    介绍了三次采油用新型阴-非离子表面活性剂——脂肪醇聚氧乙烯醚磺酸盐,叙述了其在高温高矿化度油藏开采中表现出的优良性能及其广阔的应用前景.重点归纳总结了国内外有关脂肪醇聚氧乙烯醚磺酸盐类表面活性剂的合成研究,并分析各合成工艺路线的优缺点,最后展望了该新型阴-非离子表面活性剂的研究方向.%The tertiary oil recovery by using new anionic-nonionic surfactant-fatty alcohol polyoxyethylene ether sulfonate was introduced. The excellent properties and applications of the surfactant in high temperature and high salinity reservoir were prospected. Assessment on the synthesis of fatty alcohol polyoxyethylene ether sulfonate in China and international area was highlighted. The advantages and disadvantages of the synthesis process routes were analyzed. Moreover,the application prospect and trends of the research work of this surfactant were discussed.

  20. Subcellular localization of vanillyl-alcohol oxidase in Penicillium simplicissimum

    NARCIS (Netherlands)

    Fraaije, MW; Sjollema, KA; Veenhuis, M; van Berkel, WJH; Berkel, Willem J.H. van


    Growth of Penicillium simplicissimum on anisyl alcohol, veratryl alcohol or 3-(methoxymethyl)phenol, is associated with the synthesis of relatively large amounts of the hydrogen peroxide producing flavoprotein vanillyl-alcohol oxidase (VAO), Immunocytochemistry revealed that the enzyme has a dual lo

  1. Alcohol fuels program technical review

    Energy Technology Data Exchange (ETDEWEB)



    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  2. Synthesis of higher alcohols from CO2 hydrogenation over a PtRu/Fe2O3 catalyst under supercritical condition. (United States)

    He, Zhenhong; Qian, Qingli; Zhang, Zhaofu; Meng, Qinglei; Zhou, Huacong; Jiang, Zhiwei; Han, Buxing


    Hydrogenation of CO(2) to alcohols is of great importance, especially when producing higher alcohols. In this work, we synthesized heterogeneous PtRu/Fe(2)O(3), in which the Pt and Ru bimetallic catalysts were supported on Fe(2)O(3). The catalyst was used to catalyse CO(2) hydrogenation to alcohols. It was demonstrated that the activity and selectivity could be tuned by the bimetallic composition, and the catalyst with a Pt to Ru molar ratio of 1:2 (Pt(1)Ru(2)/Fe(2)O(3)) had high activity and selectivity at 200°C, which is very low for heterogeneous hydrogenation of CO(2) to produce higher alcohols. The conversion and the selectivity increased with increasing pressures of CO(2) and/or H(2). The catalyst could be reused at least five times without any obvious change in activity or selectivity.

  3. The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)


    Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

  4. Alcohol during Pregnancy (United States)

    ... Home > Pregnancy > Is it safe? > Alcohol during pregnancy Alcohol during pregnancy E-mail to a friend Please ... and fetal alcohol spectrum disorders. How does drinking alcohol during pregnancy affect your baby's health? Drinking alcohol ...

  5. Alcohol Energy Drinks (United States)

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 24018 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  6. Rhodium-Catalyzed/Copper-Mediated Tandem C(sp(2))-H Alkynylation and Annulation: Synthesis of 11-Acylated Imidazo[1,2-a:3,4-a']dipyridin-5-ium-4-olates from 2H-[1,2'-Bipyridin]-2-ones and Propargyl Alcohols. (United States)

    Li, Ting; Wang, Zhiqiang; Xu, Kun; Liu, Wenmin; Zhang, Xu; Mao, Wutao; Guo, Yongming; Ge, Xiaolin; Pan, Fei


    A rhodium-catalyzed/copper-mediated tandem C(sp(2))-H alkynylation and intramolecular annulation of 2H-[1,2'-bipyridin]-2-ones with propargyl alcohols for the synthesis of 11-acylated imidazo[1,2-a:3,4-a']dipyridin-5-ium-4-olates is described.

  7. The promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jie; Cai, Qiuxia; Wan, Yan; Wan, Shaolong; Wang, Li; Lin, Jingdong; Mei, Donghai; Wang, Yong


    In this study, the promotional effects of cesium promoter on higher alcohol (C2+OH) synthesis from syngas over Cs-Cu/ZnO/Al2O3 catalysts were investigated using a combined experimental and theoretical density functional theory (DFT) calculation method. In the presence of cesium, the C2+OH productivity increases from 77.1 g•kgcat-1•h-1 to 157.3 g•kgcat-1•h-1 at 583 K due to the enhancement of the initial C–C bond formation. Detailed analysis of chain growth probabilities (CGPs) confirms that initial C–C bond formation is the rate-determining step in the temperature range of 543-583 K. Addition of cesium promoter significantly increases the productivities of 2-methyl-1-propanol, while the CGPs values (C3* to 2-methyl-C3*) is almost unaffected. With the assistance of cesium promoter, the CGPs of the initial C–C bond formation step (C1* to C2*) could be increased from 0.13 to 0.25 at 583 K. DFT calculations indicate that the initial C–C bond formation is mainly contributed by the HCO+HCO coupling reaction over the ZnCu(211) model surface. In the presence of the Cs2O, the stabilities of key reaction intermediates such as HCO and H2CO are enhanced which facilitates both HCO+HCO and HCO+H2CO coupling reaction steps with lower activation barriers over the Cs2O-ZnCu(211) surface. The promotional effects of cesium on the C2+OH productivity are also benefited from the competitive CH+HCO coupling reaction over CH hydrogenation that leads to lower alkane formation. In addition, Bader charge analysis suggests that the presence of cesium ions would facilitate the nucleophilic reaction between HCO and H2CO for initial C–C bond formation. This work was supported by the National Natural Science Foundation of China (No. 91545114 and No. 91545203). We appreciate the joint PhD scholarship support from the China Scholarship Council. The authors would also like to thank the support from Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM). DM

  8. Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Mortensen, Peter Mølgaard; Trane, Rasmus


    stabilization of the product distribution and ensures that higher alcohols are the dominant reaction products. With less than 57 ppmv H2S in the feed the stabilization of the product distribution is much slower, and methanol is the dominant product. An investigation of the reaction kinetics indicates a high CO...... coverage and low hydrogen coverage. Hydrogen sulfide in the syngas feed generally promotes chain growth for both alcohols and hydrocarbons, but lowers the alcohol selectivity by enhancing the hydrocarbon formation. The highest alcohol productivity reached in these investigations was 0.276 g/g cat......./h, and this was achieved at 350 °C, 100 bar, GHSV = 5244 h−1, Feed: 49.9 vol% H2, 50.1 vol% CO. Finally it is found that sulfur fed to the reactor as H2S is incorporated into the condensed alcohol product, and the incorporation of sulfur species into the product continues for some time after H2S has been removed from...

  9. Diversity-Oriented Synthesis Based on the DPPP-Catalyzed Mixed Double-Michael Reactions of Electron-Deficient Acetylenes and β-Amino Alcohols

    Directory of Open Access Journals (Sweden)

    Yi Chiao Fan


    Full Text Available In this study, we prepared oxizolidines through 1,3-bis(diphenylphosphino-propane (DPPP–catalyzed mixed double-Michael reactions of b-amino alcohols with electron-deficient acetylenes. These reactions are very suitable for the diversity-oriented parallel syntheses of oxizolidines because: (i they are performed under mild metal-free conditions and (ii the products are isolated without complicated work-up. To demonstrate the applicability of mixed double-Michael reactions for the preparation of five-membered-ring heterocycles, we prepared 60 distinct oxazolidines from five β-amino alcohols and 12 electron-deficient acetylenes. We synthesized 36 of these 60 oxazolidines in enantiomerically pure form from proteinogenic amino acid–derived β-amino alcohols.

  10. A Multidisciplinary Approach Toward the Rapid and Preparative-Scale Biocatalytic Synthesis of Chiral Amino Alcohols: A Concise Transketolase-/omega-Transaminase-Mediated Synthesis of (2S,3S)-2-Aminopentane-1,3-diol

    DEFF Research Database (Denmark)

    Smith, M.E.B; Chen, B.H.; Hibbert, E.G


    Chiral amino alcohols represent an important class of value-added biochemicals and pharmaceutical intermediates. Chemical routes to such compounds are generally step intensive, requiring environmentally unfriendly catalysts and solvents. This work describes a multidisciplinary approach to the rap...

  11. Silver(I)-Catalyzed Synthesis of β-Oxopropylcarbamates from Propargylic Alcohols and CO2 Surrogate: A Gas-Free Process. (United States)

    Song, Qing-Wen; Zhou, Zhi-Hua; Yin, Hong; He, Liang-Nian


    The utilization of carbon dioxide poses major challenges owing to its high thermodynamic stability and kinetic inertness. To circumvent these problems, a simple reaction system is reported comprising ammonium carbamates as carbon dioxide surrogates, propargylic alcohols, and a silver(I) catalyst, for the effective conversion of a wide range of alcohols and secondary amines into the corresponding β-oxopropylcarbamates. A key feature of this strategy includes quantitative use of a carbon resource with high product yields under gas-free and mild reaction conditions. Notably, this catalytic protocol also works well for the carboxylative cyclization of propargylic amines and carbon dioxide surrogates to afford 2-oxazolidinones.

  12. Synthesis and characterization of particles derived of poly(vinyl alcohol) (PVA) for treatment of embolization and chemoembolization;Sintese e caracterizacao de particulas derivadas de poli(alcool vinilico) (PVA) para embolizacao e quimioembolizacao

    Energy Technology Data Exchange (ETDEWEB)

    Semenzim, Vinicius L.; Basso, Glaucia G.; Passos, Rodrigo A.; Nery, Jose G. [UNESP, Sao Jose do Rio Preto, SP (Brazil); Agreli, Guilherme; Oliveira, Ana P.M.L.; Kawasaki-Oyama, Rosa S.; Braile, Domingo M., E-mail: nery@ibilce.unesp.b [Braile Biomedica Industria e Comercio Representacoes S.A., Sao Jose do Rio Preto, SP (Brazil)


    The most effective way to treat cancerous tumors is by surgically removing them. However in some types of cancer, such as liver and uterine cancer, more than two-thirds of patients have no indication for surgery due to the size and location of the tumor, such as into the blood vessels. Doctors and researchers have invested in alternative and less invasive methods such as chemoembolization. The objectives of this research project are the synthesis and characterization of poly(vinyl alcohol) (PVA) particles for use in cancer treatment. PVA particles will be combined with chemotherapeutic agent Doxorubicin, drug commonly used in the treatment of cancers and carcinomas. The particles, obtained by controlled polymerization reaction followed by saponification, were characterized by SEM, XRD and NMR-CP/MAS. The functionalization of the particles with the drug is the next step of this study. (author)


    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  14. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol (United States)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan


    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  15. Synthesis of ZrO2-HfO2-Y2O3-Sc2O3 Nano-Particles by Sol-Gel Technique in Aqueous Solution of Alcohol

    Institute of Scientific and Technical Information of China (English)


    Agglomeration-free nanosized ZrO2-HfO2-Y2O3-Sc2O3 composite powders were successfully synthesized by Sol-Gel technique in heated aqueous solution of alcohol, using analytically pure ZrOCl2·8H2O, HfOCl2·8H2O, Y(NO3)3·6H2O, and Sc2O3 as raw materials. The effect of synthesis condition on the size and dispersity of the composite powders was investigated by means of XRD, TEM, and TG-DSC techniques. The results showed that well-dispersed predecessor of ZrO2-HfO2-Y2O3-Sc2O3 composite nanopowders could be obtained. The optional condition: PEG6000 as dispersant was 1%, alcohol/H2O ratio was 5/1, metallic ion concentration in whole solution was 0.5 mol·L-1 and the pH value of the solution was 12. After calcined at 620 ℃, the powder obtained was in uniform cubic structure, and its average particle size was about 13 nm, which was good for producing nanocrystalline solid electrolyte.

  16. Efficient and versatile catalysis of N-alkylation of heterocyclic amines with alcohols and one-pot synthesis of 2-aryl substituted benzazoles with newly designed ruthenium(II) complexes of PNS thiosemicarbazones. (United States)

    Ramachandran, Rangasamy; Prakash, Govindan; Selvamurugan, Sellappan; Viswanathamurthi, Periasamy; Malecki, Jan Grzegorz; Ramkumar, Venkatachalam


    Ruthenium(II) carbonyl complexes with phosphine-functionalized PNS type thiosemicarbazone ligands [RuCl(CO)(EPh3)(L)] (1-6) (E = P or As, L = 2-(2-(diphenylphosphino)benzylidene) thiosemicarbazone (PNS-H), 2-(2-(diphenylphosphino)benzylidene)-N-methylthiosemicarbazone (PNS-Me), 2-(2-(diphenylphosphino)benzylidene)-N-phenylthiosemicarbazone (PNS-Ph)) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-Vis, (1)H, (13)C, (31)P-NMR) as well as ESI mass spectrometry. The molecular structures of complexes 1, 2 and 6 were identified by means of single-crystal X-ray diffraction analysis. The analysis revealed that all the complexes possess a distorted octahedral geometry with the ligand coordinating in a uni-negative tridentate PNS fashion. All the ruthenium complexes (1-6) were tested as catalyst for N-alkylation of heteroaromatic amines with alcohols. Notably, complex 2 was found to be a very efficient and versatile catalyst towards N-alkylation of a wide range of heterocyclic amines with alcohols. Complex 2 can also catalyze the direct amination of 2-nitropyridine with benzyl alcohol to the corresponding secondary amine. Furthermore, a preliminary examination of performance for N,N-dialkylation of diamine showed promising results, giving good conversion and high selectivity. In addition, N-alkylation of ortho-substituted anilines (-NH2, -OH and -SH) led to the one-pot synthesis of 2-aryl substituted benzimidazoles, benzoxazoles and benzothiazoles, also revealing the catalytic activity of complex 2.

  17. Mn、Cu共掺ZnO磁性的研究%Magnetic Properties of Mn, Cu Co-doped ZnO Crystals

    Institute of Scientific and Technical Information of China (English)

    韦志仁; 李哲; 胡志鹏; 罗小平; 高平; 王伟伟; 董国义


    In this paper, Mn, Cu co-doped ZnO crystals were synthesized by hydrothermal method with 3mol/L-1KOH as mineralizer, the fill factor of 35%, reaction temperature of 430℃, and time of 24h.When the Zn(OH)2 mixed with Mn, Cu were used as precursor, the shape of the most crystals was column. The positive polar +c{0001}, negative polar -c{000(1-)}, negative pyramidal face -p{ 10(1-)(1-)},and column face m { (1-)010 } were exposed. The length of the column crystals was 30-50μm. Some of the crystals shape were hexagonal cone. The negative polar -c{000(1-)}, positive pyramidal face +p{10(1-)1},and column face m{(1-)010} were exposed. The length of the hexagonal cone crystals was 100μm. And the length to the diameter was 5:1. When the ZnO mixed with Mn, Cu were used as precursor, the length of the column crystals was 10-30μm. The hexagonal shape of all the crystals became asymmetry. The concentration of Mn2+ in ZnO was 3.19at% ,1.62at%, respectively,when the precursor was ZnO and Zn (OH) 2 by the EDX. But the Cu ions were not found. Although the morphology of the crystals was affected by Mn, Cu doped, antiferromagnet was observed by the SQUID.%本文采用水热法,分别以ZnO、Zn(OH)2为前驱物,添加一定量的MnCl4·4H2O和CuSO4·2H2O,3mol/LKOH作矿化剂,温度430℃,填充度35%,反应24h,制备了Mn、Cu共掺ZnO晶体.当前驱物为Zn(OH)2时,所得晶体大部分为短柱状晶体,显露正负极面{0001}、{000(1-)}、负锥面-P{10(1-)(1-)}和柱面m{(1-)010},长度约为30~50 μm.少部分晶体为单锥六棱柱状,显露正锥面P{10(1-)1},柱面m{(1-)010},负极面-c{000(1-)},晶体的长度约为100μm,长径比为5∶1.当ZnO用作前驱物时,短柱状晶体长度大约为10~30μm,晶体的六棱对称性都出现较大的偏差.X射线荧光能谱分析表明,前驱物为ZnO、Zn(OH)2时,Mn离子含量在分别为3.19%和1.62%原子分数,没有检测到Cu离子.虽然Mn、Cu离子的掺入会明显影响晶体形态,磁性测量显示掺杂Mn、Cu的ZnO仍为反铁磁.

  18. 黑液高温气化合成混合醇的操作条件分析%Operation Conditions Analysis of Higher Alcohol Synthesis via Syngas from High Temperature Gasification of Black Liquor

    Institute of Scientific and Technical Information of China (English)

    王逊; 高峻; 孙振丽


    采用Aspen plus模拟含碳气体净化流程,得到净化气中CO2含量与H2S含量、吸收剂流量、再生器热负荷的关系;对基于K/MoS2催化剂和固定床反应器的混合醇合成过程进行模拟和产物预报、优化黑液高温气化制备混合醇的合成条件,得到反应气CO2含量、催化剂装填比、反应温度、反应压力对CO单程转化率、总醇选择性、烃选择性、CO2选择性、总醇时空产率、C2+醇质量分数的影响规律.结果表明,为改善混合醇反应性能和降低公用工程消耗,适宜的合成条件为:合成温度310 ~ 330℃、催化剂装填比20 ~ 30 g·h/mol、合成压力9~11 MPa、反应气CO2含量1.6%.%The objective of the paper is to optimize the operation conditions of higher alcohol synthesis via raw syngas from high temperature gasification of black liquor. The process of CO2 removal from syngas is simulated by commercial software Aspen plus. The variations of H2S content, absorbent consumption and heat load for absorbent regeneration with CO2 content in clean singes (reactant) are analyzed. The synthesis process is analyzed based on the model of a fixed bed reactor and K/MoS2 catalyst. Products distributions and yields are predicted. The influence of operation conditions, including CO2 content in reactant, catalyst loading, reaction temperature and pressure on CO conversion ratio, selectivities of alcohol, hydrocarbon, CO2 and ester, mass content of C2 + alcohol and space time yield are studied by sensitive studies. Analysis results show that the optimum operation conditions of the reactor are: temperature 310~330℃ , pressure 9~11 MPa, catalyst loading ratio 20 ~30 g·h/mol and CO2 content 1. 6% .

  19. Neuromuscular disorders in chronic alcohol intoxication

    Directory of Open Access Journals (Sweden)

    A. Yu. Emelyanova


    Full Text Available The paper reviews the present-day Russian and foreign literature on neuromuscular disorders in chronic alcohol intoxication. The most common manifestations of alcohol disease include alcoholic polyneuropathy (PNP and alcohol-induced skeletal muscle injury. The clinical polymorphism of alcoholic PNP is discussed. The paper considers a chronic sensory automatic form due to the direct toxic effects of ethanol and its metabolites during long-term alcohol intoxication, as well as acute/subacute sensorimotor neuropathy, the basis for the pathogenesis of which is B group vitamins, predominantly thiamine, deficiency that develops in the presence of drinking bouts concurrent with malnutrition and/or alcohol-related gastrointestinal tract diseases. In addition to nonuse of alcohol and a properly balanced diet, antioxidant therapy with alphalipoic acid and neurotropic B group vitamins is considered to be pathogenetic therapy for neuropathy. The most common and least studied clinicalform of alcohol-induced musculoskeletal injury is chronic alcoholic myopathy (AM, the diagnostic standard for which is morphometricand immunohistochemical examination of a muscle biopsy specimen. The morphological base for this form of myopathy is predominantly type 2 muscle fiber atrophy caused by impaired protein synthesis and a decreased regenerative potential of muscle fiber. The efficacy of antioxidants and leucine-containing amino acid mixtures in the treatment of chronic AM is discussed.

  20. Total Synthesis of (-)-Conolutinine. (United States)

    Feng, Xiangyang; Jiang, Guangde; Xia, Zilei; Hu, Jiadong; Wan, Xiaolong; Gao, Jin-Ming; Lai, Yisheng; Xie, Weiqing


    The first enantioselective synthesis of (-)-conolutinine was achieved in 10 steps. The synthesis featured a catalytic asymmetric bromocyclization of tryptamine to forge the tricycle intermediate. Hydration of an alkene catalyzed by Co(acac)2 was also employed as a key step to diastereoselectively introduce the tertiary alcohol moiety. The absolute configuration of (-)-conolutinine was established to be (2S,5aS,8aS,13aR) based on this asymmetric total synthesis.

  1. AlFeCuCoNiCrTix高熵合金的退火组织及硬度变化%Study on Behaviors of Annealed Microstructure and Hardness Development in AlFeCuCoNiCrTix High-entropy Alloys

    Institute of Scientific and Technical Information of China (English)

    刘贵仲; 李伟; 罗晓艳; 郭景杰



  2. Synthesis of his-quaternary ammonium peroxotungstates (peroxomolybdates)and their catalytic activity in oxidation of alcohols by aqueous H2O2

    Institute of Scientific and Technical Information of China (English)

    SHI Xianying; WEI Junfa


    Three kinds of bis-quaternary ammonium salts of peroxotungstate and peroxomolybdate,such as PhCH2NO(O2)2(C2O4)] and PhCH2N(CH2)6NCH2Ph [MoO(O2)2(C2Oa)],have been synthesized and characterized.Their catalytic activity in the oxidation of cyclohexanol and benzyl alcohol was investigated with only aqueous 30% hydrogen peroxide.The results show that the bis-quaternary ammonium peroxotungstates are excellent catalysts in the oxidation of benzyl alcohol and cyclohexanol under moderate conditions.However,the catalytic ability of bis-quaternary ammonium peroxomolybadates is relatively poor.The yields of benzyl acid,benzaldehyde,and cyclohexanone reached up to 93.0%,93.6%,and 91.7%,respectively.

  3. A novel dinuclear schiff base copper complex as an efficient and cost effective catalyst for oxidation of alcohol: Synthesis, crystal structure and theoretical studies

    Indian Academy of Sciences (India)

    Atena Naeimi; Samira Saeednia; Mehdi Yoosefian; Hadi Amiri Rudbari; Viviana Mollica Nardo


    An environmentally friendly protocol is described for an economic, practical laboratory-scale oxidation of primary and secondary alcohols to aldehydes and ketones, using a bis-chloro-bridged binuclear Cu(II) complex [(HL)Cu(2-Cl)2Cu(HL)]*1.5 CH3OH as catalyst. The catalyst was prepared in situ from commercially available reagents and is characterized by single crystal X-ray analysis, FT-IR, UV-visible spectra, mass spectrometry, and powder x-ray diffraction (PXRD). The geometry of the complex has been optimized using the B3LYP level of theory confirming the experimental data. Our results demonstrated well the efficiency, selectivity and stability of this new catalyst in the oxidation of alcohols in ethanol and tert-butyl hydroperoxide (tBuOOH) as a green solvent and oxidant, respectively. Turnover number and reusability have proven the high efficiency and relative stability of the catalyst.

  4. Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. (United States)

    He, Zhenhong; Qian, Qingli; Ma, Jun; Meng, Qinglei; Zhou, Huacong; Song, Jinliang; Liu, Zhimin; Han, Buxing


    The effect of water on CO2 hydrogenation to produce higher alcohols (C2-C4) was studied. Pt/Co3O4, which had not been used previously for this reaction, was applied as the heterogeneous catalyst. It was found that water and the catalyst had an excellent synergistic effect for promoting the reaction. High selectivity of C2-C4 alcohols could be achieved at 140 °C (especially with DMI (1,3-dimethyl-2-imidazolidinone) as co-solvent), which is a much lower temperature than reported previously. The catalyst could be reused at least five times without reducing the activity and selectivity. D2O and (13)CH3OH labeling experiments indicated that water involved in the reaction and promoted the reaction kinetically, and ethanol was formed via CH3OH as an intermediate.

  5. Synthesis and activity of (R)-(-)-m-trimethylacetoxy-alpha-[(methylamino)methyl]benzyl alcohol hydrochloride: a prodrug form of (R)-(-)-phenylephrine. (United States)

    Yuan, S S; Bador, N


    Optically pure (R)-(-)-m-trimethylacetoxy-alpha-[(methylamino)methyl]benzyl alcohol hydrochloride was synthesized by the following sequence: (R)-(-)-phenylephrine was condensed with acetone in the presence of calcium carbide to give an oxazolidine derivative and then treated with thallous ethoxide in ether followed by trimethylacetyl chloride to yield the phenolic ester. Finally, the oxazolidine ring was cleaved by one equivalent of hydrogen chloride in ethanol. Condensation of phenylephrine with benzaldehyde, with or without solvents, gave either 1,1,2-trimethyl-4,6-dihydroxy-1,2,3,4-tetrahydroisoquinoline or a mixture of side-chain oxazolidine and the tetrahydroisoquinoline. Condensation of epinephrine with opianic acid in pyridine also gave a tetrahydroisoquinoline only. When applied on rabbit eyes, the prodrug (R)-(-)-m-trimethylacetoxy-alpha[(methylamino)methyl]benzyl alcohol hydrochloride exhibited an unexpected, three times higher mydriatic activity than the corresponding racemic prodrug and was 15 times more active than the parent, (R)-(-)-phenylephrine.

  6. Influence of various alcohol on the hydrothermal synthesis of SAPO-56 molecular sieve%醇对水热合成SAPO-56分子筛的影响

    Institute of Scientific and Technical Information of China (English)

    宋孟璐; 董贺新; 韩丽; 陈宜俍; 詹予忠


    A series of SAPO-56 molecular sieve were synthesized by hydrothermal method with methanol, ethanol,n-propanol,n-butyl alcohol,iso-propanol and ethylene glycol partly substituting water,respective-ly. The effects of alcohols and their amounts on the product purity and morphology were investigated. The results showed that methanol strongly influenced the synthesis of SAPO-56 molecular sieves,SAPO-20 mo-lecular sieves were obtained when methanol exceeds 12 . 5%. When using n-propanol substituting 12 . 5%water,a mixture containing considerable SAPO-17 was formed. Further increasing n-propanol resulted in mixtures of SAPO-17,SAPO-41 and SAPO-20. When using ethanol,iso-propanol,n-butyl alcohol and gly-col ethylene substituting 12. 5% water,almost pure SAPO-56 molecular sieves could still be synthesized. With the increasing of alcohol substitution in the synthesis system,SAPO-17,SAPO-41 and SAPO-20 mix-tures were produced. The addition of alcohols also notably influenced the morphology of SAPO-56 molecu-lar sieves,and the products may transform from usual hexagonal plate into thicker cutter top hexagonal bi-pyramid or hexagonal bipyramid.%分别以甲醇、乙醇、丙醇、丁醇、异丙醇和乙二醇替代部分水,采用静态水热法合成SAPO-56分子筛,考察了不同醇及醇替代量对产物纯度和形貌的影响。结果表明,甲醇强烈影响 SAPO-56分子筛的合成,甲醇替代水12.5%以上产物为SAPO-20分子筛。丙醇替代水12.5%即有相当量的SAPO-17杂晶生成,进一步增加丙醇逐步生成SAPO-17、SAPO-41和SAPO-20等杂晶。乙醇、异丙醇、正丁醇、乙二醇替代水12.5%仍可合成较纯净的SAPO-56分子筛。随着反应体系中醇替代量的增加,同样逐步生成SAPO-17、SAPO-41和SAPO-20等杂晶。添加醇对SAPO-56分子筛的形貌也有很大影响,通常产物会由六方片状变成较厚的切顶六方双锥或六方双锥。

  7. Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil


    Muhammad Usman Minhas; Mahmood Ahmad; Liaqat Ali; Muhammad Sohail


    Background of the Study The propose of the present work was to develop chemically cross-linked polyvinyl alcohol-co-poly(methacrylic acid) hydrogel (PVA-MAA hydrogel) for pH responsive delivery of 5-Fluorouracil (5-FU). Methods PVA based hydrogels were prepared by free radical copolymerization. PVA has been cross-linked chemically with monomer (methacrylic acid) in aqueous medium, cross-linking agent was ethylene glycol di-methacrylate (EGDMA) and benzoyl peroxide was added as reaction initia...

  8. Synthesis of 1,2-allenic ketones through oxidation of homopropargyl alcohols with CrO3(cat.)/TBHP under MWI

    Institute of Scientific and Technical Information of China (English)

    Xin Ying Zhang; Ying Ying Qu; Yang Yang Wang; Xue Sen Fan


    A Cr3 catalyzed oxidation of homopropargyl alcohols with tert-butyl hydroperoxide under microwave irradiation was found to be an efficient and rapid alternative for the preparation of 1,2-allenic ketones. The advantages of this procedure include short reaction time, less adverse impact on the environment and reasonably high efficiency. (c) 2010 Published by Elsevier B.V. on behalf of Chinese Chemical Society.

  9. Synthesis and Characterization of Dehydroabietic Acid-alcohol Spice Esters%去氢枞酸醇类香料酯的合成与表征

    Institute of Scientific and Technical Information of China (English)

    覃珊; 段文贵; 赖刚; 吴光燧; 马长花


    以去氢枞酸为原料,经去氢枞酸酰氯与醇类香料的O-酰化反应,合成得到去氢枞酸肉桂酯、去氢枞酸葑醇酯、去氢枞酸龙脑酯和去氢枞酸薄荷酯等4种去氢枞酸醇类香料酯,其中去氢枞酸肉桂酯和去氢枞酸葑醇酯为新化合物.目标产物的适宜合成条件为:反应时间10 h,反应温度95~100℃,反应物n(醇)∶n(酰氯)=1.2∶1.采用IR、UV、NMR和MS等方法对目标产物进行了结构表征.%Four types of dehydroabietic acid-alcohol spice esters, i. e. dehydroabietic acid-cinamic alcohol ester, dehydroabietic acid-fenchol ester, dehydroabietic acid-bomeol ester and dehydroabietic acid-menthol ester, were synthesized by O-acylation reaction of dehydroabietyl acyl chloride and alcohol spices using dehydroabietic acid as starting material. Suitable synthetic conditions of the target products were found to be as follows: reaction time 10 h, reaction temperature 95-100℃, molar ratio of react-ants 1.2:1 (alcohol: chloride). The target products were characterized by means of IR, UV, NMR, and MS.

  10. Palladium-catalyzed dehydrative heck olefination of secondary aryl alcohols in ionic liquids: towards a waste-free strategy for tandem synthesis of stilbenoids. (United States)

    Kumar, Rakesh; Shard, Amit; Bharti, Richa; Thopate, Yogesh; Sinha, Arun Kumar


    All in one: a tandem strategy has been developed wherein secondary aryl alcohols are directly coupled with aryl halides to provide stilbenoids through a dehydrative Heck sequence in the ionic liquid [hmim]Br, and with water as a by-product under microwave irradiation. Classical methods do not permit this sequence to proceed in one pot, and some methods require multiple steps. hmim=1-n-hexyl-3-methylimidazolium.

  11. A novel polyvinyl alcohol hydrogel functionalized with organic boundary lubricant for use as low-friction cartilage substitute: synthesis, physical/chemical, mechanical, and friction characterization. (United States)

    Blum, Michelle M; Ovaert, Timothy C


    A novel material design was developed by functionalizing polyvinyl alcohol hydrogel with an organic low-friction boundary lubricant (molar ratios of 0.2, 0.5, and 1.0 moles of lauroyl chloride). The hydrogels were fabricated using two different techniques. First, the boundary lubricant was initially functionalized to the polymer, then the hydrogels were created by physically crosslinking the reacted polymer. Second, hydrogels were initially created by crosslinking pure polyvinyl alcohol, with the functionalization reaction performed on the fully formed gel. After the reaction, Fourier transform infrared spectroscopy and attenuated total reflectance spectra revealed a clear ester peak, the diminishment of the alcohol peak, and the amplification of the alkyl peaks, which confirmed attachment of the hydrocarbon chains to the polymer. Additional chemical characterization occurred through elemental analysis where an average increase of 22% carbon and 40% hydrogen provided further confirmation of attachment. Physical characterization of the boundary lubricant functionalized hydrogels was performed by water content and contact angle measurements. Water content dependency showed that method 1 had a direct relationship with boundary lubricant concentration, and method 2 displayed an inverse relationship. The contact angle increased as boundary lubricant concentration increased for the pure matrix material for both processing methods, suggesting that the hydrocarbons produced surface properties that mimic natural cartilage, and contact behavior of the biphasic system was dependent on processing method. Friction tests demonstrated a significant decrease in friction coefficient, with a maximum decrease of 70% and a minimum decrease of 24% for boundary lubricant functionalized hydrogels compared with nonfunctionalized polyvinyl alcohol hydrogels.

  12. Design, synthesis, and subtype selectivity of 3,6-disubstituted β-carbolines at Bz/GABA(A)ergic receptors. SAR and studies directed toward agents for treatment of alcohol abuse. (United States)

    Yin, Wenyuan; Majumder, Samarpan; Clayton, Terry; Petrou, Steven; VanLinn, Michael L; Namjoshi, Ojas A; Ma, Chunrong; Cromer, Brett A; Roth, Bryan L; Platt, Donna M; Cook, James M


    A series of 3,6-disubstituted β-carbolines was synthesized and evaluated for their in vitro affinities at α(x)β(3)γ(2) GABA(A)/benzodiazepine receptor subtypes by radioligand binding assays in search of α(1) subtype selective ligands to treat alcohol abuse. Analogues of β-carboline-3-carboxylate-t-butyl ester (βCCt, 1) were synthesized via a CDI-mediated process and the related 6-substituted β-carboline-3-carboxylates 6 including WYS8 (7) were synthesized via a Sonogashira or Stille coupling processes from 6-iodo-βCCt (5). The bivalent ligands of βCCt (32 and 33) were also designed and prepared via a palladium-catalyzed homocoupling process to expand the structure-activity relationships (SAR) to larger ligands. Based on the pharmacophore/receptor model, a preliminary SAR study on 34 analogues illustrated that large substituents at position-6 of the β-carbolines were well tolerated. As expected, these groups are proposed to project into the extracellular domain (L(Di) region) of GABA(A)/Bz receptors (see 32 and 33). Moreover, substituents located at position-3 of the β-carboline nucleus exhibited a conserved stereo interaction in lipophilic pocket L(1), while N(2) presumably underwent a hydrogen bonding interaction with H(1). Three novel β-carboline ligands (βCCt, 3PBC and WYS8), which preferentially bound to α1 BzR subtypes permitted a comparison of the pharmacological efficacies with a range of classical BzR antagonists (flumazenil, ZK93426) from several different structural groups and indicated these β-carbolines were 'near GABA neutral antagonists'. Based on the SAR, the most potent (in vitro) α(1) selective ligand was the 6-substituted acetylenyl βCCt (WYS8, 7). Earlier both βCCt and 3PBC had been shown to reduce alcohol self-administration in alcohol preferring (P) and high alcohol drinking (HAD) rats but had little or no effect on sucrose self-administration.(1-3) Moreover, these two β-carbolines were orally active, and in addition, were

  13. Alcohol and Hepatitis (United States)

    ... Home » Living with Hepatitis » Daily Living: Alcohol Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one of the ...

  14. Alcohol and Hepatitis (United States)

    ... code here Enter ZIP code here Daily Living: Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one ... related to choices you make about your lifestyle . Alcohol and fibrosis Fibrosis is the medical term for ...

  15. Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols

    NARCIS (Netherlands)

    Meenakshisundaram, Sankar; He, Qian; Dawson, Simon; Nowicka, Ewa; Lu, Li; Bruijnincx, Pieter C. A.; Beale, Andrew M.; Kiely, Christopher J.; Weckhuysen, Bert M.


    The synthesis and functionalization of imines and amines are key steps in the preparation of many fine chemicals and for pharmaceuticals in particular. Traditionally, metal complexes are used as homogeneous catalysts for these organic transformations. Here we report gold-palladium and ruthenium-pall

  16. 多聚磷酸法合成醇醚磷酸单酯%Synthesis of alcohol ether phosphate monoester phosphate by polyphosphoric acid method

    Institute of Scientific and Technical Information of China (English)

    徐进云; 宁庆然; 郑帼; 孙玉; 彭浩凯


    采用直接酯化法,以多聚磷酸和脂肪醇醚为原料合成了高含量单醇醚磷酸酯,并设计正交实验考察了合成工艺条件对单酯含量和醇醚转化率的影响;研究了不同单酯含量、pH值和含油率对芳砜纶纤维的抗静电性影响,并利用环境扫描电子显微镜和扫描隧道显微镜对醚磷酸酯钾盐浸丝处理后的芳砜纶纤维表面形貌特征进行了表征.结果表明:醇醚和多聚磷酸酯化反应的最优化条件为投料比3∶1,反应温度80℃,反应时间4 h,此时磷酸酯产品中单酯质量分数为91.8%,醇醚转化率为95%;磷酸酯钾盐的单酯含量和纤维表面的含油率比磷酸酯钾盐的pH值对芳砜纶纤维的抗静电性能影响大,综合考虑,纤维最佳含油率为0.3%,磷酸酯钾盐单酯含量越高,纤维的抗静电性能越好.%The high monoester content of alcohol ether phosphate was synthesized by direct esterification,using polyphosphoric acid and fatty alcohol ether as starting materials. The conditions on content of monoester and conversion rate of alcohol ether were investigated by orthogonal experimental analyses. In addition,the influences on the antistatic property of polysulfonamide fiber (PSF) by monoester content,pH value and oil content were explored. Simultaneously, environmental scanning electron microscope (ESEM) and scanning tunneling microscope (STM) were used to characterize the surface topography of PSF after dipping treatment by alcohol ether phosphate. The results showed that the optimum of esterification was the ratio of alcohol ether to polyphosphoric acid is 3∶1,the reaction temperature is 80 ℃ and the reaction time is 4 h,with the monoester content of optimal product and the percent conversion of alcohol ether being 91.8%! and 95%! respectively. Furthermore,the monoester content and oil content had greater impact on antistatic property PSF of than the pH value,and the best oil content was 0.3%!and

  17. First examples of oxidizing secondary alcohols to ketones in the presence of the disulfide functional group: synthesis of novel diketone disulfides. (United States)

    Fang, X; Bandarage, U K; Wang, T; Schroeder, J D; Garvey, D S


    The disulfide functionality is present in a number of organic compounds of interest in the fields of both chemistry and biology. Because the disulfide group is known to be highly susceptible to further oxidation by a wide range of agents, performing a chemoselective oxidation without further oxidizing the disulfide moiety poses a synthetic challenge. Reported herein are the first examples of such a chemoselective oxidation in which a series of novel secondary alcohol disulfides 2a-f have been converted to the corresponding symmetrical diketones 3a-f utilizing a modified Swern oxidation.

  18. Comparative Studies on Conventional and Ultrasound-Assisted Synthesis of Novel Homoallylic Alcohol Derivatives Linked to Sulfonyl Dibenzene Moiety in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Mohamed F. Mady


    Full Text Available Novel homoallylic alcohols incorporating sulfone moieties were synthesized by the treatment of different carbonyl compounds with allylic bromides in aqueous media via sonochemical Barbier-type reaction conditions. Sulfonation of α-bromoketones with sodium benzenesulfinate in presence of CuI/2,6-lutidine rapidly gave β-keto-sulfones in good yields. In general, ultrasound irradiation offered the advantages of high yields, short reaction times, and simplicity compared to the conventional methods. The structures of all the compounds were confirmed by analytical and spectral data.

  19. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization (United States)

    Han, Chunming; Xiao, Wenjiao; Zhao, Guochun; Ao, Songjian; Zhang, Jien; Qu, Wenjun; Du, Andao


    The timing and genesis of the major Ni-Cu-Co sulfide deposit in the Xiangshan intrusion have been studied based on newly obtained in-situ U-Pb, Hf and Re-Os isotopic analyses. The SIMS U-Pb zircon ages of the gabbro hosting the Ni-Cu-Co sulfide deposit indicate that the Xiangshan intrusion was emplaced at 279.6 ± 1.1 Ma (95% confidence level, MSWD = 1.30, n = 15). On the basis of combined geological and geochronological evidence, we suggest that the Xiangshan and other adjacent Ni-Cu deposits were formed in the same period. Sulphides have low common Os concentrations and high Re/Os ratios, similar to sulphide ores from the Duluth, Sally Malay and Voisey Bay complexes. The Re-Os isotopic data from the disseminated and massive ores from the Xiangshan intrusion do not form a single isochron, as they have different initial Os ratios. The Hf and Os isotopic data suggest that the Xiangshan intrusion and associated Ni-Cu-Co mineralization were derived from crustally contaminated mantle melts. The geochemical data show a tholeiitic affinity and a strong suprasubduction zone signature with negative Nb, Sr, and Ti anomalies similar to N-MORB and E-MORB. We suggest that the mafic-ultramafic rocks and associated Ni-Cu mineralization of the Eastern Tianshan orogen formed in an Alaska-type subduction zone-arc setting. Some diagnostic features of ridge-trench interaction are present in the Chinese East Tianshan orogen (e.g. granites, adakites, high-Mg andesites, near-trench magmatism, Alaskan-type mafic-ultramafic complexes, high-temperature metamorphic belts that prograde rapidly from low-grade belts, and orogenic gold deposits). The above distinctive rock groups are probably related to the same thermal event, ridge subduction, as in the Cenozoic orogen of Alaska. We suggest that ridge subduction is the most plausible mechanism to provide the necessary heat. Ridge subduction provides an important promising model for understanding many aspects of the evolution of the Chinese

  20. Synthesis and pharmacological evaluation of some dual-acting amino-alcohol ester derivatives of flurbiprofen and 2-[1,1'-biphenyl-4-yl]acetic acid: a potential approach to reduce local gastrointestinal toxicity. (United States)

    Halen, Parmeshwari Kuldeep Kumar; Chagti, Kewal Krishna; Giridhar, Rajani; Yadav, Mange Ram


    The search for safer non-steroidal anti-inflammatory drugs (NSAIDs) continues with the failure of anticipated 'ideal' anti-inflammatory agents, the coxibs, on long-term usage. Increased gastric motility and acidity due to the free carboxy group are involved in the etiology of gastric toxicity, common to conventional NSAIDs. Keeping this fact in mind, it was planned to modify some of the conventional NSAIDs to amino-alcohol ester derivatives, which satisfied the structural requirements for these compounds to possess anticholinergic activity in the intact form. Besides blocking the acidic carboxylic group, incorporation of anticholinergic acivity in these molecules was expected to reduce the gastric toxicity by decreasing gastric acid secretion and motility. Synthesis and pharmacological evaluation of six different N,N-disubstituted amino-ethyl ester derivatives, structurally resembling the amino-alcohol ester class of anticholinergic agents, each for [1,1'-biphenyl]-4-acetic acid (3) and flurbiprofen (10), have been reported as potential substitutes for these NSAIDs, with improved therapeutic profile. All the ester derivatives were found to have sufficient chemical stability in buffers (pH 2.0 and 7.4), ensuring them to be absorbed as intact moieties from the gastrointestinal tract. A significant reduction in ulcerogenic potency in comparison to the parent drugs with a slightly higher anti-inflammatory potency suggests that the majority of these candidates have an improved therapeutic profile over their parent drugs. Hence, a promising novel approach, different from the conventional prodrug concept, has been successfully worked out to overcome the local gastric toxicity, yielding therapeutically better compounds for long-term oral anti-inflammatory therapy.

  1. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid/Poly(vinyl alcohol IPN Hydrogel and Its Drug Controlled Release

    Directory of Open Access Journals (Sweden)

    Jingqiong Lu


    Full Text Available Modified poly(aspartic acid/poly(vinyl alcohol interpenetrating polymer network (KPAsp/PVA IPN hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid grafting 3-aminopropyltriethoxysilane (KH-550 and poly(vinyl alcohol (PVA as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The thermal stability was analyzed by thermogravimetric analysis (TGA. The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN, and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid and 62.5 wt% at pH = 7.4 (simulated intestinal fluid, respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  2. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release. (United States)

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng


    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  3. Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol

    Indian Academy of Sciences (India)

    A Fallah Shojaei; K Tabatabaeian; M A Zanjanchi; H Fallah Moafi; N Modirpanah


    Powder samples of Ag/ZnO nanocomposite containing different amounts of Ag were synthesized by co-precipitation method. The synthesized samples were characterized by XRD, SEM, EDX and TEM techniques. The XRD results revealed that all the samples show wurtzite hexagonal phase of ZnO. The TEM micrographs of the samples showed that size of Ag-ZnO nanoparticles was in the range of 30–50 nm. Catalytic activity was tested using liquid-phase selective oxidation of benzylic alcohols to aldehydes. The influence of some parameters such as optimum weight of Ag, catalyst dosage, oxidant and various solvents were studied. The superior catalytic performance of the Ag/ZnO nanocomposite was observed in microwave condition compared to that performed in reflux condition. The catalysts were recycled three times in the oxidation of alcohols and little change in the conversion efficiency was observed. The highly dispersed Ag metal particles on ZnO surface was considered to be responsible for the catalytic activity.

  4. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne


    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  5. Alcohol abuse and glycoconjugate metabolism

    Directory of Open Access Journals (Sweden)

    Sylwia Chojnowska


    Full Text Available The relationship between alcohol consumption and glycoconjugate metabolism is complex and multidimensional. This review summarizes the advances in basic and clinical research on the molecular and cellular events involved in the metabolic effects of alcohol on glycoconjugates (glycoproteins, glycolipids, and proteoglycans. We summarize the action of ethanol, acetaldehyde, reactive oxygen species (ROS, nonoxidative metabolite of alcohol — fatty acid ethyl esters (FAEEs, and the ethanol-water competition mechanism, on glycoconjugate biosynthesis, modification, transport and secretion, as well as on elimination and catabolism processes. As the majority of changes in the cellular metabolism of glycoconjugates are generally ascribed to alterations in synthesis, transport, glycosylation and secretion, the degradation and elimination processes, of which the former occurs also in extracellular matrix, seem to be underappreciated. The pathomechanisms are additionally complicated by the fact that the effect of alcohol intoxication on the glycoconjugate metabolism depends not only on the duration of ethanol exposure, but also demonstrates dose- and regional-sensitivity. Further research is needed to bridge the gap in transdisciplinary research and enhance our understanding of alcohol- and glycoconjugate-related diseases.

  6. BF3醇或醚络合物催化合成高活性聚异丁烯%Synthesis of HR-PIB catalyzed by BF3-alcohol/ether complexes

    Institute of Scientific and Technical Information of China (English)

    董科; 刘振; 程瑞华; 刘柏平


    The synthesis of highly reactive low molecular weight poly-isobutylene(HR-PIB)is catalyzed in laboratory by BF3-alcohol/ether liquid complexes, which can be easily purchased from the market. The impacts of polymerization conditions on the reaction such as complex concentration, temperature, polymerization time, and solvent polarity are investigated with these BF3catalysts respectively. The results show that both catalysts are able to initiate isobutylene polymerization in hexane solvent to prepare HR-PIB in a low molecular mass of500-5000 and theα-double bond content above80%. The BF3-alcohol complexes, however, show much higher catalytic activity than BF3-ether complexes, among which, the BF3-ethanol complex represents the highest activity. The polymer synthesized by BF3-ether complexes, on the other hand, has much narrower relative molecular mass distribution than that obtained from BF3-alcohol complexes. Moreover, the relative molecular mass of the HR-PIB could be increased by lowering the polymerization temperature or concentration of the BF3 complexes.%采用市售的BF3醚类和BF3醇类液体络合物直接进行异丁烯聚合的小试研究。以这两类BF3络合物为催化剂,研究了络合物加入量、聚合温度、聚合时间及溶剂极性等对异丁烯聚合的影响。结果表明:当以正己烷为溶剂时,两种络合物均能有效合成相对分子质量在500~5000,α-双键含量在80%以上的高活性低相对分子质量聚异丁烯,但BF3醇络合物比BF3醚络合物具有更高的催化活性。其中,BF3乙醇络合物的活性最高,而采用BF3醚络合物为催化剂得到的聚异丁烯则具有更窄的相对分子质量分布。此外,降低聚合温度或BF3浓度可提高聚异丁烯的相对分子质量。

  7. Acridin-9-ylmethoxycarbonyl (Amoc): A New Photochemically Removable Protecting Group for Alcohols

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Bo; TANG Wen-Jian; YU Jing-Yu; SONG Qin-Hua


    Synthesis and photochemistry of acridin-9-ylmethoxycarbonyl (Amoc) as a new photochemically removable protecting group for alcohols were described. Three carbonates of alcohols 1-3 were synthesized through condensation of 9-hydroxymethylacridine and chloroformates of alcohols, including benzyl alcohol, phenethyl alcohol and one galactose derivative. The photolysis of protected alcohols can efficiently release the corresponding alcohol in the efficiencies (Qu1ε) of 100-200 (quantum yield Qu1=0.011-0.023, and molar absorptivity ε=9.1 × 103-9.8 × 103 mol-1·L·cm-1) under 360 nm light.

  8. S-adenosyl-L-methionine for alcoholic liver diseases

    DEFF Research Database (Denmark)

    Rambaldi, A; Gluud, C


    Alcohol is a major cause of liver disease in the Western world today. S-adenosyl-L-methionine (SAMe) acts as a methyl donor for all known biological methylation reactions and participates in the synthesis of glutathione, the main cellular anti-oxidant. Randomised clinical trials have addressed...... the question whether SAMe has any efficacy in patients with alcoholic liver diseases....

  9. S-adenosyl-L-methionine for alcoholic liver diseases

    DEFF Research Database (Denmark)

    Rambaldi, A; Gluud, C


    Alcohol is a major cause of liver disease and disrupts methionine and oxidative balances. S-adenosyl-L-methionine (SAMe) acts as a methyl donor for methylation reactions and participates in the synthesis of glutathione, the main cellular antioxidant. Randomised clinical trials have addressed...... the question whether SAMe may benefit patients with alcoholic liver diseases....

  10. Rapid Capacity Growth of Long Chain Fatty Alcohols

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying


    @@ Long chain fatty alcohols here are referring to those alcohols with more than six carbon atoms per molecular.They are basic chemical raw materials for the synthesis of surfactants,detergents, plasticizers and various other fine chemicals and are extensively used in textile, household chemicals, papermaking, foodstuffs,pharmaceuticals and leather manufacturing sectors.

  11. New phosphine-diamine and phosphine-amino-alcohol tridentate ligands for ruthenium catalysed enantioselective hydrogenation of ketones and a concise lactone synthesis enabled by asymmetric reduction of cyano-ketones

    Directory of Open Access Journals (Sweden)

    Fuentes José A


    Full Text Available Abstract Enantioselective hydrogenation of ketones is a key reaction in organic chemistry. In the past, we have attempted to deal with some unsolved challenges in this arena by introducing chiral tridentate phosphine-diamine/Ru catalysts. New catalysts and new applications are presented here, including the synthesis of phosphine-amino-alcohol P,N,OH ligands derived from (R,S-1-amino-2-indanol, (S,S-1-amino-2-indanol and a new chiral P,N,N ligand derived from (R,R-1,2-diphenylethylenediamine. Ruthenium pre-catalysts of type [RuCl2(L(DMSO] were isolated and then examined in the hydrogenation of ketones. While the new P,N,OH ligand based catalysts are poor, the new P,N,N system gives up to 98% e.e. on substrates that do not react at all with most catalysts. A preliminary attempt at realising a new delta lactone synthesis by organocatalytic Michael addition between acetophenone and acrylonitrile, followed by asymmetric hydrogenation of the nitrile functionalised ketone is challenging in part due to the Michael addition chemistry, but also since Noyori pressure hydrogenation catalysts gave massively reduced reactivity relative to their performance for other acetophenone derivatives. The Ru phosphine-diamine system allowed quantitative conversion and around 50% e.e. The product can be converted into a delta lactone by treatment with KOH with complete retention of enantiomeric excess. This approach potentially offers access to this class of chiral molecules in three steps from the extremely cheap building blocks acrylonitrile and methyl-ketones; we encourage researchers to improve on our efforts in this potentially useful but currently flawed process.

  12. The Voisey's Bay Ni-Cu-Co Sulfide Deposit,Labrador,Canada:Emplacement of Silicate and Sulfide-Laden Magmas into Spaces Created within a Structural Corridor%The Voisey's Bay Ni-Cu-Co Sulfide Deposit,Labrador, Canada: Emplacement of Silicate and Sulfide-Laden Magmas into Spaces Created within a Structural Corridor

    Institute of Scientific and Technical Information of China (English)

    Peter C.Lightfoot; Dawn Evans-Lamswood; Robert Wheeler


    Abstract:The Voisey's Bay Ni-Cu-Co sulfide deposit is hosted in a 1.34 Ga mafic intrusion that is part of the Nain Plutonic Suite in Labrador,Canada.The Ni-Cu-Co sulfide mineralization is associated with magmatic breccias that are typically contained in weakly mineralized olivine gabbros,troctolites and ferrogabbros,but also occur as veins in adjacent paragneiss.The mineralization is associated with a dyke-like body which is termed the feeder dyke.This dyke connects the shallow differentiated Eastern Deeps chamber in the east to a deeper intrusion in the west termed the Western Deeps Intrusion.Where the conduit is connected to the Eastern Deeps Intrusion,the Eastern Deeps Deposit is developed at the entry line of the dyke along the steep north wall of the Eastern Deeps Intrusion.The Eastern Deeps Deposit is surrounded by a halo of moderately to weakly mineralized Variable-Textured Troctolite (VTT) that reaches a maximum thickness above the ENE-WSW axis of the Eastern Deeps Deposit.At depth to the west,the conduit is adjacent to the south side of the Western Deeps Intrusion,where the dyke and intrusion contain disseminated magmatic sulfide mineralization.The Reid Brook Zone plunges to the east within the dyke,and both the dyke and adjacent paragneiss are mineralized.The Ovoid Deposit comprises a bowl-shaped body of massive sulfide where the dyke widens near to the present-day surface.It is not clear whether this deposit was developed as a widened-zone within the conduit or at the entry point into a chamber that is now lost to erosion.The massive sulfides and breccia sulfides of the Eastern Deeps are petrologically and chemically different when compared to the disseminated sulfides in the VTT; there is a marked break in Ni tenor (Ni content in 100% sulfide,abbreviated to [Ni] 100) and Ni/Co of sulfide between the two.The boundary of the sulfide types is often marked by strong sub-horizontal alignment of heavily digested and metamorphosed paragneiss fragments

  13. The synthesis of novel pH-sensitive poly(vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications. (United States)

    Mc Gann, Michael J; Higginbotham, Clement L; Geever, Luke M; Nugent, Michael J D


    Physically cross-linked hydrogels composed of 75% poly(vinyl alcohol) PVA and 25% poly(acrylic acid) were prepared by a freeze/thaw treatment of aqueous solutions. Between 0.5 and 1wt% of aspirin was incorporated into the systems. The purpose of the research was the development of a novel pH-sensitive hydrogel composite for the delivery of aspirin to wounds. Extensive research has being conducted on freeze/thaw poly(vinyl alcohol) hydrogels for use in active pharmaceutical ingredient (API) delivery. However very little research has been reported on the effects of an API on the overall properties of a freeze/thaw hydrogel. From the rheological analysis undertaken it was apparent that aspirin has a limiting effect on the formation of hydrogen bonding leading to hydrogels with reduced mechanical strength. To counteract this, a novel hydrogel system was developed encompassing a reinforcing film in the centre of the hydrogels. Freezing profiles were obtained to gain a better knowledge of the freezing behaviour of the hydrogels during the formation stage. Thermograms obtained from modulated differential scanning calorimetry (MDSC) indicated that the aspirin lowered the glass transition temperatures (T(g)) of the constituent polymers. The pH-sensitive nature of the hydrogels was apparent from solvent uptake studies carried out. Increasing alkaline media led to a greater degree of swelling due to increased ionisation of PAA. The hydrogels exhibited non-Fickian release kinetics. The release rates were relatively slow with total release achieved at between 30 and 40 h. The quantity of drug incorporated was found to influence the release rates considerably.

  14. One-Pot Synthesis of Dialkyl Hexane-1,6-Dicarbamate from 1,6-Hexanediamine, Urea, and Alcohol over Zinc-Incorporated Berlinite (ZnAlPO4 Catalyst

    Directory of Open Access Journals (Sweden)

    Da-Lei Sun


    Full Text Available Dialkyl hexane-1,6-dicarbamate was synthesized, for the first time, by a one-pot reaction of 1,6-hexanediamine (HDA, urea, and alcohols, including methanol, ethanol, propanol, and butanol, in a self-designed batch reactor, using zinc-incorporated berlinite (ZnAlPO4 as a catalyst. The yield of dibutyl hexane-1,6-dicarbamate (2 was systematically investigated as a function of Zn/Al molar ratio, reaction temperature, reaction time, catalyst usage and urea/HDA/butanol molar ratio. Based on these studies, the optimized reaction conditions were as follows: molar ratio urea/HDA/butanol = 2.6:1:8.6, catalyst usage = 3.0 g, reaction temperature = 493 K, reaction time = 6 h and reaction pressure = 1.2 MPa; a yield of 2 of 89.7% was achieved over the ZnAlPO4 (molar ratio Zn/Al = 0.04 catalyst. The catalysts were characterized by X-ray photoelectric spectroscopy (XPS and scanning electron microscope (SEM. Additionally, based on these experimental results, it was also proposed that the catalysis recycle of the one-pot synthesis of 2 from urea, HDA, and butanol over the ZnAlPO4 catalyst.

  15. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, Nayanmoni [Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Babu, Punuri Jayasekhar [Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Mahanta, Chandan [Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Bora, Utpal, E-mail: [Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India)


    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles. - Highlights: • The present study depicts the green synthesis of AgNPs using Nyctanthes arbortristis. • AuNPs found to be biocompatible and can be used for biomedical applications. • The FTIR, TGA and DTA results showed that AgNPs are bounded by organic coating. • The synthesized AgNPs showed antibacterial activity on E. Coli MTCC 443. • We investigated the antioxidant activity for both EFE and AgNPs.

  16. Synthesis of β-methylene phenethyl alcohol%β-亚甲基苯乙醇的合成工艺

    Institute of Scientific and Technical Information of China (English)

    奚强; 冯薇伟; 胡杨; 余利民; 陈建


    To improve the yield of the β-methylene phenethyl alcohol and avoid the disadvantages including harsh conditions,hard to control the reaction process,difficult purification and low yield in the present routes,an approach to synthesize β-methylene phenethyl alcohol was investigated with phenylacetaldehyde as the raw material by methylenation and hydrogen transfer reaction.The effects of molar ratio of material,amount of catalyst and reaction temperature on the yield of the product were discussed.the yield of β-methylene phenethyl alcohol reached 86 % with purity of over 98.5 % when the methylenation was carried out at 50 ℃ for 16 h and ratio of n(plenylacetaldehyde) ∶ n(formaldehyde) ∶n(organic amine salt)=1 ∶ 1.2 ∶ 0.2,formaldehyde,isopropanol and water were distilled from the reaction liquid by vacuum evaporation and the intermediate product was directly used without further purification; the hydrogen transfer reaction was carried out at 60-65 ℃ for 12 h with n(intermediate):n(aluminum isopropoxide)=1 ∶ 0.1,the concentrate was extracted by ethyl acetate and water.The structure of the product was confirmed by 1H NMR.This process has the characteristics of mild reaction conditions,simple operation,easy to be isolated and purified,high total yield,which is feasible for industrialization.%针对β-亚甲基苯乙醇合成工艺中反应条件较苛刻、操作较复杂、产物难分离纯化和总收率偏低的问题,以苯乙醛为原料,经亚甲基化反应和均相氢转移还原反应两步合成了β-亚甲基苯乙醇.分别考察了两步反应投料比、催化剂的用量和反应温度等条件对产物收率的影响.结果表明,亚甲基化反应在50℃,投料比为n(苯乙醛)∶n(甲醛)∶n(二甲胺盐酸盐)=1∶1.2∶0.2的条件下反应16h最佳,反应液经减压蒸出甲醛、异丙醇和水,中间产物无需进一步纯化,直接用于还原反应;氢转移还原反应于60~65℃下反应12 h,投料比n(α-亚

  17. Alcoholic liver disease (United States)

    Liver disease due to alcohol; Cirrhosis or hepatitis - alcoholic; Laennec's cirrhosis ... Alcoholic liver disease occurs after years of heavy drinking. Over time, scarring and cirrhosis can occur. Cirrhosis is the ...

  18. Breath alcohol test (United States)

    Alcohol test - breath ... There are various brands of breath alcohol tests. Each one uses a different method to test the level of alcohol in the breath. The machine may be electronic or manual. One ...

  19. Behind the Label "Alcoholic." (United States)

    Wright, Deborah M.


    Relates individual's personal story of her childhood influenced by her parent's alcoholism, her own alcoholism as a young adult, and her experiences with counseling. Asks others not to reject her because of the label "alcoholic." (ABL)

  20. 十二烷基苄醇聚氧乙烯醚的合成及性能%Synthesis and physicochemical properties of ethoxylated lauryl benzyl alcohol

    Institute of Scientific and Technical Information of China (English)

    陆颖; 刘雪锋; 方云


    Ethoxylated lauryl benzyl alcohol (LBAEOn) ,was synthesized starting from n - dodecylbenzene by a three - step process including chloromethylation, hydrolysis and ethoxylation. Structure of the LBAEOn was characterized by FTIR and 1HNMR, and number of EO moles adducted n =9.5. Distribution of EO mole number in the LBAEO, was characterized by ESI - MS. Critical micelle concentration ( cmc) and surface tension at cmc (γcmc) of the product is 1. 83 × 10-6 mol · L-1 and 39. 0 mN ? m-1 respectively, which were measured by surface tension method at 25 ℃. In comparison with common nonionic surfactants such as ethoxylated fatty alcohol ( AEO9) and ethoxylated nonyl phenol ( NPEO10) , surface activity of the LBAEOn is higher while the foaming power is lower and lime soap dispersing power is similar. Solubilization capacity to octanol of the LBAEOn is higher,and wetting power is lower.%以十二烷基苯为原料,经氯甲基化、水解及环氧乙基化等步骤得到平均乙氧基(EO)数为9.5的十二烷基苄醇聚氧乙烯醚(LBAEOn).分别用FTlR和1HNMR表征了产物LBAEOn的结构特征,并用ESI - MS确定了LBAEOn中的EO分布.以表面张力法测得在25℃时LBAEOn的cmc和γcmc分别为1.83×10-6mol·L-1和39.0 mN·m-1;与脂肪醇聚氧乙烯醚(AEO9)和壬基酚聚氧乙烯醚(NPEO10)相比较,除钙皂分散性能大致相当以外,LBAEOn的表面活性较好、发泡力较低、对正辛醇的增溶能力较强和对帆布的润湿性能较差.

  1. Bone changes in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)


    Alcoholism has been associated with growth impairment,osteomalacia, delayed fracture healing, and asepticnecrosis (primarily necrosis of the femoral head), butthe main alterations observed in the bones of alcoholicpatients are osteoporosis and an increased risk offractures. Decreased bone mass is a hallmark of osteoporosis,and it may be due either to decreased bone synthesis and/or to increased bone breakdown. Ethanolmay affect both mechanisms. It is generally acceptedthat ethanol decreases bone synthesis, and most authorshave reported decreased osteocalcin levels (a "marker" ofbone synthesis), but some controversy exists regardingthe effect of alcohol on bone breakdown, and, indeed,disparate results have been reported for telopeptideand other biochemical markers of bone resorption.In addition to the direct effect of ethanol, systemicalterations such as malnutrition, malabsorption, liverdisease, increased levels of proinflammatory cytokines,alcoholic myopathy and neuropathy, low testosteronelevels, and an increased risk of trauma, play contributoryroles. The treatment of alcoholic bone disease should beaimed towards increasing bone formation and decreasingbone degradation. In this sense, vitamin D and calciumsupplementation, together with biphosphonates areessential, but alcohol abstinence and nutritional improvementare equally important. In this review we study thepathogenesis of bone changes in alcoholic liver diseaseand discuss potential therapies.

  2. Genetics and alcoholism


    Edenberg, Howard J; Foroud, Tatiana


    Alcohol is widely consumed, but excessive use creates serious physical, psychological and social problems and contributes to many diseases. Alcoholism (alcohol dependence, alcohol use disorders) is a maladaptive pattern of excessive drinking leading to serious problems. Abundant evidence indicates that alcoholism is a complex genetic disease, with variations in a large number of genes affecting risk. Some of these genes have been identified, including two genes of alcohol me...


    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova


    Full Text Available The article considers the questions of the relationship between the amount of the consumed alcohol, the type of alcoholic beverage, pattern of alcohol consumption and the blood pressure level. The article presents data on the positive effect of alcohol intake restrictions and recommendations for permissible limits of alcohol consumption. New possibilities of drug therapy aimed at limiting alcohol consumption are being reported.

  4. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren


    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may...... be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking...... and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men...

  5. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. (United States)

    Gogoi, Nayanmoni; Babu, Punuri Jayasekhar; Mahanta, Chandan; Bora, Utpal


    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles.

  6. Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) by flocculation/adsorption. (United States)

    Habiba, Umma; Siddique, Tawsif A; Joo, Tan Chin; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M


    A chitosan/polyvinyl alcohol (PVA)/zeolite composite was fabricated in this study. The composite was analyzed through field emission scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis, and weight loss test. FTIR and XRD results revealed a strong interaction among chitosan, PVA, and zeolite. Weight loss test results indicated that the composite was stable in acidic and basic media. Congo red was removed through flocculation, and the removal rate was 94% at an initial concentration of 100mg/L for a dose of 1g/L. The removal rate of methyl orange was controlled by adsorption at an initial concentration of less than 100mg/L. Flocculation occurred at high concentrations. The removal rate was also 94% at an initial concentration of 500mg/L for a dose of 5g/L. The adsorption behavior of the composite for the removal of methyl orange and Cr(VI) was described by using a pseudo-second-order kinetic model. The adsorption capacity of the composite for Cr(VI) was 450mg/g. Therefore, the synthesized composite exhibited versatility during the removal of dyes and heavy metals.

  7. Synthesis and Characterization of Uniform Spherical Nanoporous TiO2 Aerogel Templated by Cellulose Alcohol-Gel with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Zhiming Liu


    Full Text Available The spherical nanoporous TiO2 aerogels were prepared by a simple ethanol-thermal method, using spherical cellulose alcohol-gel as the template. The morphology, crystalline structure, pore size, specific surface area, and the photocatalytic activity of obtained TiO2 aerogel were separately characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, N2 adsorption-desorption isotherms, and double beam UV-VIS spectrophotometer. The characteristics of TiO2 aerogels presented uniform sphere shape, good internal structural morphology, high specific surface area (ranging from 111.88 to 149.95 m2/g, and good crystalline anatase phase. Moreover, methyl orange dye was used as the target pollutant to characterize the photocatalytic activities and the adsorption performance. The photocatalytic experiment shows that the obtained spherical TiO2 aerogels had a higher degradation ratio of 92.9% on methyl orange dye compared with aspherical TiO2 aerogels prepared from other concentrations of tetrabutyl orthotitanate (TBOT.

  8. Photoinduced synthesis of single-digit micrometer-size spheroidal calcite composites in the presence of partially hydrolyzed poly(vinyl alcohol) (United States)

    Nishio, Takashi; Naka, Kensuke


    Photoinduced crystallization of calcium carbonate (CaCO3), which was based on the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphyenyl)propionic acid) under alkaline conditions of pH 8.4 and 10 was studied for preparation of CaCO3 composite particles in single-digit micrometer-sizes. In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol%) was used as a precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. After the UV irradiation for 50 min, calcite spheroids in single-digit micrometer-sizes were obtained as major products at pH 8.4. The obtained calcite spheroids contained organic components of about 10 wt%. The comparison of the characteristics of the CaCO3 obtained at pH 8.4 and 10 suggests that the nucleation and crystallization of both vaterite and calcite continuously took place in a moderated supersaturation owing to the CO2 hydration equilibrium as long as the photodecarboxylation of KP continued. Consequently, the aggregation-based crystal growth in the presence of PVAPS seemed to enable the formation of the spheroidal composites of calcite in single-digit micrometer-sizes.

  9. One-pot synthesis of imines from nitroaromatics and alcohols by tandem photocatalytic and catalytic reactions on Degussa (Evonik) P25 titanium dioxide. (United States)

    Hirakawa, Hiroaki; Katayama, Miyu; Shiraishi, Yasuhiro; Sakamoto, Hirokatsu; Wang, Kunlei; Ohtani, Bunsho; Ichikawa, Satoshi; Tanaka, Shunsuke; Hirai, Takayuki


    Photoirradiation (λ > 300 nm) of Degussa (Evonik) P25 TiO2, a mixture of anatase and rutile particles, in alcohols containing nitroaromatics at room temperature produces the corresponding imines with very high yields (80-96%). Other commercially available anatase or rutile TiO2 particles, however, exhibit very low yields (anatase and rutile particles were isolated from P25 TiO2 by the H2O2/NH3 and HF treatments to clarify the activity of these two step reactions. Photocatalysis experiments revealed that the active sites for photocatalytic reactions on P25 TiO2 are the rutile particles, promoting efficient reduction of nitrobenzene on the surface defects. In contrast, catalysis experiments showed that the anatase particles isolated from P25 TiO2 exhibit very high activity for condensation of aldehyde and aniline, because the number of Lewis acid sites on the particles (73 μmol g(-1)) is much higher than that of other commercially available anatase or rutile particles (rutile and anatase particles, thus producing imines with very high yields.

  10. Alcohol: impact on sports performance and recovery in male athletes. (United States)

    Barnes, Matthew J


    Alcohol is the most commonly used recreational drug globally and its consumption, often in large volume, is deeply embedded in many aspects of Western society. Indeed, athletes are not exempt from the influence alcohol has on society; they often consume greater volumes of alcohol through bingeing behaviour compared with the general population, yet it is often expected and recommended that athletes abstain from alcohol to avoid the negative impact this drug may have on recovery and sporting performance. While this recommendation may seem sensible, the impact alcohol has on recovery and sports performance is complicated and depends on many factors, including the timing of alcohol consumption post-exercise, recovery time required before recommencing training/competition, injury status and dose of alcohol being consumed. In general, acute alcohol consumption, at the levels often consumed by athletes, may negatively alter normal immunoendocrine function, blood flow and protein synthesis so that recovery from skeletal muscle injury may be impaired. Other factors related to recovery, such as rehydration and glycogen resynthesis, may be affected to a lesser extent. Those responsible for the wellbeing of athletes, including the athlete themselves, should carefully monitor habitual alcohol consumption so that the generic negative health and social outcomes associated with heavy alcohol use are avoided. Additionally, if athletes are to consume alcohol after sport/exercise, a dose of approximately 0.5 g/kg body weight is unlikely to impact most aspects of recovery and may therefore be recommended if alcohol is to be consumed during this period.

  11. Alcohol Alert: Link Between Stress and Alcohol (United States)

    ... body at even greater risk for harm. Ongoing stress, or chronic, heavy alcohol use, may impair the body’s ability ... J.A., and Chard, K.M. Alcohol and stress in the military. Alcohol Research: ... suicide ideation and attempts associated with adverse childhood experiences. ...

  12. Health risks of alcohol use (United States)

    Alcoholism - risks; Alcohol abuse - risks; Alcohol dependence - risks; Risky drinking ... Beer, wine, and liquor all contain alcohol. If you are drinking any of these, you are using alcohol. Your drinking patterns may vary, depending on who you are with ...

  13. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.


    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  14. Novel synthesis of thick wall coatings of titania supported Bi poisoned Pd catalysts and application in selective hydrogenation of acetylene alcohols in capillary microreactors. (United States)

    Cherkasov, Nikolay; Ibhadon, Alex O; Rebrov, Evgeny V


    Catalysis in microreactors allows reactions to be performed in a very small volume, reducing the environmental problems and greatly intensifying the processes through easy pressure control and the elimination of heat- and mass-transfer limitations. In this study, we report a novel method for the controlled synthesis of micrometre-thick mesoporous TiO2 catalytic coatings on the walls of long channels (>1 m) of capillary microreactors in a single deposition step. The method uses elevated temperature and introduces a convenient control parameter of the deposition rate (displacement speed controlled by a stepper motor), which allows deposition from concentrated and viscous sols without channel clogging. A capillary microreactor wall-coated with titania supported Bi-poisoned Pd catalyst was obtained using the method and used for the semihydrogenation of 2-methyl-3-butyn-2-ol providing 93 ± 1.5% alkene yield for 100 h without deactivation. Although the coating method was applied only for TiO2 deposition, it is nonetheless suitable for the deposition of volatile sols.

  15. Synthesis of New Antifungal Triazole Alcohol(Ⅰ)%新型三氮唑醇类抗真菌药物合成(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    楚勇; 吕丁; 徐鸣夏; 王晓莉


    In order to seek a safer drug with greater efficacy against systemic fungal infections,the 3D-quantitative structure-activity relationships (3D-QSAR) of 122 reported antifungal azoles were studied using a technique of comparative molecule field analysis (CoMFA).These selected compounds belonged to all the different structural classes and were representative.The results of CoMFA model revealed that a bulky substituent or a substituent with high density of negative charge connected with the C-3 position of 2-phenyl triazole alcohol antifungal agents caused a potency-enhancing effect against fungi.Thus,because of their antifungal activities,big molecules and high density of negative charge,some indole and quinolinone derivatives were designed and synthesized and then were conjugated to phenyl triazolylpropanol moiey at the C-3 position to get two new structure types of triazolylpropanol derivatives Ⅰa~Ⅰd and Ⅱa~Ⅱd.All the objective compounds were firstly reported and confirmed by 1H-NMR,IR and MS.The pharmacological tests of them are being in process.%在运用比较分子力场分析法(CoMFA)对122个氮唑类抗真菌化合物进行三维定量关系(3D-QSAR)研究的基础上设计合成了4个1-(1H-1,2,4-三唑-1-基)-2-(2,4-二氟苯基)-3-(3-取代-1H-吲哚-1-基)-2-丙醇化合物和4个1-(1H-1,2,4-三唑-1-基)-2-(2,4-二氟苯基)-3-(3-取代苯基-4(1H)-取代喹啉酮-1-基)-2-丙醇化合物。所有目标化合物均未见文献报道,结构经1H-NMR、IR和MS确证。其体外抑菌实验正在进行中。

  16. First-principles study of N/Cu co-dop ed anatase TiO2%N/Cu共掺杂锐钛矿型TiO2第一性原理研究∗

    Institute of Scientific and Technical Information of China (English)

    杨军; 苗仁德; 章曦


    基于密度泛函理论的第一性原理平面波超软赝势法,采用局域自旋密度近似加Hubbard U值方法研究了纯锐钛矿型TiO2, N, Cu单掺杂TiO2及N/Cu共掺杂TiO2的晶体结构、电子结构和光学性质。研究结果表明,掺杂后晶格发生相应畸变,晶格常数变大。 N和Cu的掺杂在TiO2禁带中引入杂质能级,禁带宽度发生相应改变。对于N掺杂TiO2禁带宽度减小较弱,而Cu掺杂和N/Cu共掺TiO2禁带宽度显著降低,导致吸收光谱明显红移,光学催化性增强,有利于实际应用。%Using the first-principles plane-wave ultra-soft pseudo-potential method based on the density functional theory, the structures, electronic-structures and optical properties of pure anatase TiO2, N (Cu) doped TiO2, and N/Cu co-doped TiO2 crystal are studied by the local-spin density approximation plus Hubbard U method. It is shown that the lattice constants become larger because of the lattice distortion caused by doping. Impurity levels in the band gap of TiO2 are introduced by N and Cu doping, and the forbidden band width is correspondingly changed. For N doped TiO2, the reduction of the band gap is weak, while the N/Cu co-doped TiO2 band gap decreases remarkably. It leads to a red shift of visible absorption spectrum and enhances optical catalysis. The effect is useful for the practical application of photo-catalytic.

  17. Alcohol and Breastfeeding

    DEFF Research Database (Denmark)

    Haastrup, Maija Bruun; Pottegård, Anton; Damkier, Per


    While the harmful effects of alcohol during pregnancy are well-established, the consequences of alcohol intake during lactation have been far less examined. We reviewed available data on the prevalence of alcohol intake during lactation, the influence of alcohol on breastfeeding......, the pharmacokinetics of alcohol in lactating women and nursing infants and the effects of alcohol intake on nursing infants. A systematic search was performed in PubMed from origin to May 2013, and 41 publications were included in the review. Approximately half of all lactating women in Western countries consume...... alcohol while breastfeeding. Alcohol intake inhibits the milk ejection reflex, causing a temporary decrease in milk yield. The alcohol concentrations in breast milk closely resemble those in maternal blood. The amount of alcohol presented to nursing infants through breast milk is approximately 5...

  18. Total Synthesis of Naloxone

    Institute of Scientific and Technical Information of China (English)

    HU Wen-Xiang; WANG Jian-Ying; XU Ming


    @@ Naloxone (1) is one of the 14-hydroxyl substituted opium antagonists which are valuable medications for treat ment of opiate abuse, opiate overdose, and alcohol addiction. Here, the total synthesis of naloxone was described. We selected 2,6-dihydroxynaphalene (2) as the starting material.

  19. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    van den Heuvel, RHH; Fraaije, MW; Laane, C; van Berkel, WJH; Heuvel, Robert H.H. van den; Berkel, Willem J.H. van


    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated conv


    Energy Technology Data Exchange (ETDEWEB)

    Seetala V. Naidu; Upali Siriwardane


    We have developed and streamlined the experimental systems: (a) Laser-induced solution deposition (LISD) photosynthesis, ball-milling, and chemical synthesis of Fe, Co, and Cu nanoparticle catalysts; (b) Sol-gel method for mesoporous {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, hybrid alumina/silica granular supports; (c) Three sol-gel/oil-drop catalyst preparation methods to incorporate metal nanoparticles into mesoporous 1 mm granular supports; (d) Low-cost GC-TCD system with hydrogen as carrier gas for the determination of wide spectrum of alkanes produced during the F-T reactions; and (e) Gas-flow reactor and microchannel reactor for fast screening of catalysts. The LISD method could produce Co, Cu, and Fe (5 nm) nanoparticles, but in milligram quantities. We could produce nanoparticles in gram quantities using high-energy ball milling and chemical synthesis methods. Ball milling gave wide particle size distribution compared to the chemical synthesis method that gave almost uniform size ({approx}5 nm) particles. Metal nanoparticles Cu, Co, Fe, Cu/Co, Cu/Fe and Co/Fe were loaded (2-12 wt%) uniformly into {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, or alumina/silica hybrid supports by combined sol-gel/oil-drop methods followed by calcination and hydrogenation steps, prior to syngas FT reaction studies. The properties of metal loaded {gamma}-Al{sub 2}O{sub 3} granules were compared for the two precursors: aluminum tri-sec-butoxide (ALTSB) and aluminum tri-iso-propoxide (ALTIP). The effect of solgel supports alumina, silica, and alumina/silica hybrid were examined on catalytic properties. Metal loading efficiencies for pure metal catalysts increased in the order Co, Cu and Fe in agreement with solubility of metal hydroxides. In case of mixed metals, Co and Cu seams to interfere and reduce Fe metal loading when metal nitrate solutions are used. The solubility differences of metal hydroxides would not allow precise control of metal loading. We have overcome this problem by

  1. Preparation of Copper-Cobalt Catalyst by Glow Discharge Plasma for Lower Alcohols Synthesis%射频等离子体技术制备合成低碳醇用铜钴基催化剂

    Institute of Scientific and Technical Information of China (English)

    徐慧远; 储伟; 士丽敏; 张辉; 周俊



  2. Effect of Transition Metals (Cu, Co and Fe) on the Autothermal Reforming of Methane over Ni/Ce0.2Zr0.1Al0.7Oδ Catalyst

    Institute of Scientific and Technical Information of China (English)


    The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst.The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS.Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature,and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ was found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts.Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ.

  3. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes. (United States)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren; Tybjaerg-Hansen, Anne; Grønbaek, Morten


    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men with the ADH1B.1/1 genotype compared to men with the ADH1B.1/2 genotype. Furthermore, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1/1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1/1 genotype was 67 and 62% among the white population compared with 9 and 24% among the East Asian population.

  4. Synthesis and characterization of Cd{sub x}Mn{sub 1-x}S nanoparticles stabilized with poly(vinyl alcohol); Sintese e caracterizacao de pontos quanticos de Cd{sub x}Mn{sub 1-x}S estabilizados com poli(alcool vinilico)

    Energy Technology Data Exchange (ETDEWEB)



    Colloidal luminescent semiconductor nanocrystals, also known as quantum dots, have attracted considerable attention due to their significant potential application. The doping of nanocrystalline semiconductors with divalent manganese ions results in new optical properties of these semimagnetic semiconductor quantum dots. In this work we report the synthesis and characterization Cd{sub x}Mn{sub 1-x}S nanoparticles using poly(vinyl alcohol) as stabilizing agent. Different fractions of Cd{sup 2+}/Mn{sup 2+} ions were investigated aiming the production of stable nanoparticles with different photoluminescence properties. (author)

  5. Deciding to quit drinking alcohol (United States)

    ... quitting drinking; Quitting drinking; Quitting alcohol; Alcoholism - deciding to quit ... drinking problem when your body depends on alcohol to function and your drinking is causing problems with ...

  6. Alcohol Dependence and Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Karl Mann


    Full Text Available Alcohol dependence is a disabling condition that has a high prevalence, but in Europe only a small fraction of the people diagnosed with alcohol abuse and dependence are treated, representing the widest treatment gap, as compared with other mental disorders. Early diagnosis and monitoring of alcoholic liver disease (ALD is still insufficiently solved. Although ALD is the most common cause for liver disease in the Western world, it largely remains underestimated and underdiagnosed for many reasons. The recent introduction of non-invasive elastographic techniques such as transient elastography (TE has significantly improved the early diagnosis of alcoholic liver cirrhosis (ALC. As demonstrated in the literature, inflammation-associated liver stiffness (LS rapidly decreases during alcohol detoxification, and is also directly correlated to change in LS in both abstinent and relapsing patients. Newly published data show that LS could be used to monitor and validate hepatoprotective effects during nalmefene usage. Nalmefene is an opioid system modulator that diminishes the reinforcing effects of alcohol, helping the patient to reduce drinking. Three randomised, multicentre, double-blind, placebo-controlled, parallelgroup Phase III studies were designed to assess the efficacy and safety of nalmefene in reducing alcohol consumption. Patients with a high or very high drinking risk level (DRL at baseline and randomisation show a clinically significant effect from nalmefene treatment, which is generally well tolerated. Moreover, reduced alcohol consumption supported by nalmefene in combination with psychosocial support may indeed help to reduce the alcohol-related burden and the large treatment gap.

  7. Stereochemistry of Pd(II)-Catalyzed THF Ring Formation of ε-Hydroxy Allylic Alcohols and Synthesis of 2,3,5-Trisubstituted and 2,3,4,5-Tetrasubstituted Tetrahydrofurans. (United States)

    Murata, Yuki; Uenishi, Jun'ichi


    Pd(II)-catalyzed ring formation of 2,3,5-trisubstituted and 2,3,4,5-tetrasubstituted tetrahydrofurans is described. Oxypalladation of a chiral ε-hydroxy allylic alcohol provides a 5-alkenyltetrahydrofuran ring in excellent yields via a 5-exo-trigonal process. Nine substrates including six secondary allylic alcohols and three primary allylic alcohols with or without an additional secondary hydroxy substituent at the γ-position have been examined. Their structures are restricted by a 2,2,4,4-tetraisopropyl-1,3,5,2,4-trioxadisilocane ring. The stereochemistry of the resulting tetrahydrofuran products was determined by chemical transformation. The reaction mechanism is discussed on the basis of the stereochemical results. The steps in the chiral allylic alcohol directed or the nucleophilic alcohol directed facial selection for the formation of the alkene-Pd(II)-π-complex, the cis-oxypalladation, and a syn-elimination mechanism account for the observed stereochemistry of the reaction.

  8. Evaluation de la contamination de la chaîne trophique par les éléments traces (Cu, Co, Zn, Pb, Cd, U, V et As dans le bassin de la Lufira supérieure (Katanga/RD Congo

    Directory of Open Access Journals (Sweden)

    Katemo Manda, B.


    Full Text Available Evaluation of Contamination of the Food Chain by Trace Elements (Cu, Co, Zn, Pb, Cd, U, V and As in the Basin of the Upper Lufira (Katanga/DR Congo. Seven trace elements (Cu, Co, Zn, Cd, Pb, U, V and As were analyzed using a HR ICP-MS in samples of water, plankton, leaves of Phragmites australis, muscle and gills of three fish species (Oreochromis macrochir, Tilapia rendalli, Clarias gariepinus collected in the basin of the upper Lufira. The results indicate a high copper (70.9 ppm and cobalt (32.3 ppm content in the effluent of complex hydrometallurgical Shituru. If contamination of rivers decreases with distance from the pollution source, the values are very high in lake Tshangalele for plankton and leaves of P. australis. For fish, the results indicate that Pb, U, V, Cu, Co and Cd accumulates preferentially in the gills but Zn accumulates more in the muscles. As accumulates in the same order of magnitude in both organs. These results confirm the pollution of the basin by the effluents from Lufira complex hydrometallurgical Shituru.

  9. Alcohol homograph priming in alcohol-dependent inpatients

    NARCIS (Netherlands)

    Woud, M.L.; Salemink, E.; Gladwin, T.E.; Wiers, R.W.H.J.; Becker, E.S.; Lindenmeyer, J.; Rinck, M.


    Aim: Alcohol dependency is characterized by alcohol-related interpretation biases (IBs): Individuals with high levels of alcohol consumption generate more alcohol-related than alcohol-unrelated interpretations in response to ambiguous alcohol-related cues. However, a response bias could be an altern

  10. Alcohol Use and Older Adults (United States)

    ... version of this page please turn Javascript on. Alcohol Use and Older Adults Alcohol and Aging Adults of any age can have ... Escape (Esc) button on your keyboard.) What Is Alcohol? Alcohol, also known as ethanol, is a chemical ...

  11. Gold-Catalyzed Synthesis of Heterocycles (United States)

    Arcadi, Antonio


    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  12. Alcohol in moderation

    DEFF Research Database (Denmark)

    Mueller, Simone; Lockshin, Larry; Louviere, Jordan J.


    Purpose: The study examines the market potential for low and very low alcohol wine products under two different tax regimes. The penetration and market share of low alcohol wine are estimated under both tax conditions. Consumers’ alcoholic beverage purchase portfolios are analysed and those...... products identified, which are jointly purchased with low alcohol wines. The effect of a tax increase on substitution patterns between alcoholic beverages is examined. Methodology: In a discrete choice experiment, based on their last purchase, consumers select one or several different alcoholic beverages...... volume is estimated under the current tax regime. Between six to eight percent of consumers are expected to adopt low alcohol wine alternatives as part of their alcoholic beverage portfolio. Consumers of cask wine and light beer are more likely and consumers of medium-full strength beer and spirits...

  13. Myths about drinking alcohol (United States)

    ... gov/ency/patientinstructions/000856.htm Myths about drinking alcohol To use the sharing features on this page, ... We know much more about the effects of alcohol today than in the past. Yet, myths remain ...

  14. Benzyl Alcohol Topical (United States)

    Benzyl alcohol lotion is used to treat head lice (small insects that attach themselves to the skin) in adults ... children less than 6 months of age. Benzyl alcohol is in a class of medications called pediculicides. ...

  15. Alcohol Use Screening (United States)

    ... Centers Diseases + Condition Centers Mental Health Medical Library Alcohol Use Screening (AUDIT-C) - Instructions The following questions ... this tool, there is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following ...

  16. Women and Alcohol (United States)

    ... turn JavaScript on. Feature: Rethinking Drinking Women and Alcohol Past Issues / Spring 2014 Table of Contents Women react differently than men to alcohol and face higher risks from it. Pound for ...

  17. Alcohol Facts and Statistics (United States)

    ... Standard Drink? Drinking Levels Defined Alcohol Facts and Statistics Print version Alcohol Use in the United States: ... 1245, 2004. PMID: 15010446 11 National Center for Statistics and Analysis. 2014 Crash Data Key Findings (Traffic ...

  18. Children of alcoholics

    Directory of Open Access Journals (Sweden)

    Robert Oravecz


    Full Text Available The author briefly interprets the research – results, referring to the phenomenon of children of alcoholics, especially the psychological and psychopathological characteristics of children of alcoholics in adolescence and young adulthood. The author presents a screening study of adolescents. The sample contains 200 high school students at age 18. The aim of the survey was to discover the relationship between alcohol consumption of parents, PTSD - related psychopathological symptoms and reported life quality of their children. The study confirmed the hypothesis about a substantial correlation between high alcohol consumption of parents, higher psychopathological symptom - expression and lower reported life quality score of their children. Higher PTSD-related symptomatology in children of alcoholics is probably resulted by home violence, which is very often present in family of alcoholics. The article also evaluated the results regarding suicide ideation of children of alcoholics, which is definitely more frequent and more intense than in their peers living in non alcohol – dependent families.

  19. Alcohol and Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Gao Yinglan; Song Jingyu; Jin Junshuo; Zhong Xiuhong; Ren Xiangshan; Liu Shuangping


    Objectives To study the relationship between alcohol and atherosclerosis (AS).Methods The paper reviewed the mechanism of the alcohol leading to AS from four aspects such as the introduction of alcohol and AS, imbalance of oxidationantioxidation system, oxygen free radical (OFR) and endothelium cell (EC) apoptosis, apoptosis and AS.Results Excessive alcohol could lead to imbalance of oxidation-antioxidation system, and increase OFR, in the meanwhile, OFR could lead to EC apoptosis,which could lead to AS.

  20. Alcohol and liver

    Institute of Scientific and Technical Information of China (English)

    Natalia Osna


    @@ Liver is a primary site of ethanol metabolism, which makes this organ susceptible to alcohol-induced damage.Alcoholic liver disease (ALD) has many manifestations and complicated pathogenesis. In this Topic Highlight, we included the key reviews that characterize new findings about the mechanisms of ALD development and might be of strong interest for clinicians and researchers involved in liver alcohol studies.

  1. Alcoholism and Lesbians (United States)

    Gedro, Julie


    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and…

  2. Television: Alcohol's Vast Adland. (United States)


    Concern about how much television alcohol advertising reaches underage youth and how the advertising influences their attitudes and decisions about alcohol use has been widespread for many years. Lacking in the policy debate has been solid, reliable information about the extent of youth exposure to television alcohol advertising. To address this…

  3. Hispanic Alcoholic Treatment Considerations. (United States)

    Costello, Raymond M.


    A path analytic model for Hispanic alcoholics relating socioclinical prognostic variables to outcome following treatment in a therapeutic community differs markedly from that fitted to Anglo alcoholics. The differential relationship of education to alcoholism severity and outcome was noted specifically as reflecting different racial-ethnic paths…

  4. Fetal Alcohol Exposure (United States)

    ... her child’s genetic make-up, and changes in gene activity caused by prenatal alcohol exposure. NIH . . . Turning Discovery Into Health ® National Institute on Alcohol Abuse and Alcoholism www. niaaa. nih. gov • 301.443.3860 Interventions ...

  5. Alcohol and Minority Youth. (United States)

    Wright, Roosevelt, Jr.; Watts, Thomas D.


    Maintains that minority youth who use (or abuse) alcohol in American society deal with using alcohol, being minority, and being young, three dimensions viewed by society with mixed, sometimes hostile and/or fearful reactions. Suggests that examining alcoholism among minority youth involves coming to grips with poverty, education, income, and life…

  6. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance (United States)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming


    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  7. Genetics and alcoholism. (United States)

    Edenberg, Howard J; Foroud, Tatiana


    Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

  8. [Physical diseases in alcoholism]. (United States)

    Takase, Kojiro


    Rapid excessive alcohol drinking frequently causes disturbance of consciousness due to head trauma, brain edema, hypoglycemia, hyponatremia, hepatic coma and so on, provoked by acute alcohol intoxication. Rapid differential diagnosis and management are extremely important to save a life. On the other hands, the chronic users of alcohol so called alcoholism has many kinds of physical diseases such as liver diseases (i.e., fatty liver, alcoholic hepatitis, alcoholic liver cirrhosis and miscellaneous liver disease), diabetes mellitus, injury to happen in drunkenness, pancreas disease (i.e., acute and chronic pancreatitis and deterioration of chronic pancreatitis), gastrontestinal diseases (i.e., gastroduodenal ulcer), and so on. Enough attention should be paid to above mentioned diseases, otherwise they would turn worse more with continuation and increase in quantity of the alcohol. It should be born in its mind that the excessive drinking becomes the weapon threatening life.

  9. A Sustainable Multicomponent Pyrimidine Synthesis. (United States)

    Deibl, Nicklas; Ament, Kevin; Kempe, Rhett


    Since alcohols are accessible from indigestible biomass (lignocellulose), the development of novel preferentially catalytic reactions in which alcohols are converted into important classes of fine chemicals is a central topic of sustainable synthesis. Multicomponent reactions are especially attractive in organic chemistry as they allow the synthesis of large libraries of diversely functionalized products in a short time when run in a combinatorial fashion. Herein, we report a novel, regioselective, iridium-catalyzed multicomponent synthesis of pyrimidines from amidines and up to three (different) alcohols. This reaction proceeds via a sequence of condensation and dehydrogenation steps which give rise to selective C-C and C-N bond formations. While the condensation steps deoxygenate the alcohol components, the dehydrogenations lead to aromatization. Two equiv of hydrogen and water are liberated in the course of the reactions. PN5P-Ir-pincer complexes, recently developed in our laboratory, catalyze this sustainable multicomponent process most efficiently. A total of 38 different pyrimidines were synthesized in isolated yields of up to 93%. Strong points of the new protocol are its regioselectivity and thus the immediate access to pyrimidines that are highly and unsymmetrically decorated with alkyl or aryl substituents. The combination of this novel protocol with established methods for converting alcohols to nitriles now allows to selectively assemble pyrimidines from four alcohol building blocks and 2 equiv of ammonia.

  10. Determination of the Absolute Stereochemistry of Secondary Alcohols: An Advanced Organic Chemistry Experiment for Undergraduate Students. (United States)

    Bandaranayake, Wickramasinghe M.


    Describes experiments which can be completed in five four-hour laboratory sessions, including two synthesis (alpha-phenylbutyric and alpha-phenylbutyric acid anhydride) and determining the absolute stereochemistry of secondary alcohols using the synthetic products. (JN)

  11. Alcohol disrupts sleep homeostasis. (United States)

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep


    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  12. Alcohol Expectancies in Young Adult Sons of Alcoholics and Controls. (United States)

    Brown, Sandra A.; And Others

    Adolescent offspring of alcoholics have been found to have higher alcohol reinforcement expectancies than do teenagers from nonalcoholic families. In particular, those with a positive family history of alcoholism expect more cognitive and motor enhancement with alcohol consumption. This study examined the alcohol expectancies of 58 matched pairs…

  13. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Murilo Foppa


    Full Text Available Observational studies have attributed a protective effect to alcohol consumption on the development of atherosclerosis and cardiovascular morbidity and mortality. Alcohol intake in the amount of one to two drinks per day results in an estimated 20-40% reduction in cardiovascular events. An additional protective effect, according to major cohort studies, has been attributed to wine, probably due to antioxidant effects and platelet antiaggregation agents. On the other hand, the influence of different patterns of alcohol consumption and environmental factors may explain a great part of the additional effect of wine. Protection may be mediated by modulation of other risk factors, because alcohol increases HDL-C, produces a biphasic response on blood pressure, and modulates the endothelial function, while it neither increases body weight nor impairs glucose-insulin homeostasis. Alcohol may also have a direct effect on atherogenesis. Despite these favorable effects, the current evidence is not enough to justify prescribing alcohol to prevent cardiovascular disease.

  14. [Alcohol and nutrition]. (United States)

    Maillot, F; Farad, S; Lamisse, F


    Alcoholism and alcohol-associated organ injury is one of the major health problems worldwide. Alcohol may lead to an alteration in intermediary metabolism and the relation between alcohol intake and body weight is a paradox. The effect of alcohol intake on resting metabolic rate, assessed by indirect calorimetry, and lipid oxidation, is still controversial. Small quantities of ethanol seem to have no effect on body weight. Ingestion of moderate amounts may lead to an increase in body weight, via a lipid-oxidizing suppressive effect. Chronic intake of excessive amounts in alcoholics leads to a decrease in body weight, probably via increased lipid oxidation and energy expenditure. Chronic ethanol abuse alters lipid-soluble (vitamins A, D and E) and water-soluble (B-complex vitamins, vitamin C) vitamins status, and some trace elements status such as magnesium, selenium or zinc.

  15. Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Dai Jin Kim


    Full Text Available For a long time, alcohol was thought to exert a general depressant effect on the central nervous system (CNS. However, currently the consensus is that specific regions of the brain are selectively vulnerable to the acute effects of alcohol. An alcohol-induced blackout is the classic example; the subject is temporarily unable to form new long-term memories while relatively maintaining other skills such as talking or even driving. A recent study showed that alcohol can cause retrograde memory impairment, that is, blackouts due to retrieval impairments as well as those due to deficits in encoding. Alcoholic blackouts may be complete (en bloc or partial (fragmentary depending on severity of memory impairment. In fragmentary blackouts, cueing often aids recall. Memory impairment during acute intoxication involves dysfunction of episodic memory, a type of memory encoded with spatial and social context. Recent studies have shown that there are multiple memory systems supported by discrete brain regions, and the acute effects of alcohol on learning and memory may result from alteration of the hippocampus and related structures on a cellular level. A rapid increase in blood alcohol concentration (BAC is most consistently associated with the likelihood of a blackout. However, not all subjects experience blackouts, implying that genetic factors play a role in determining CNS vulnerability to the effects of alcohol. This factor may predispose an individual to alcoholism, as altered memory function during intoxication may affect an individual‟s alcohol expectancy; one may perceive positive aspects of intoxication while unintentionally ignoring the negative aspects. Extensive research on memory and learning as well as findings related to the acute effects of alcohol on the brain may elucidate the mechanisms and impact associated with the alcohol- induced blackout.

  16. Alcoholism and Diabetes Mellitus


    Soo-Jeong Kim; Dai-Jin Kim


    Chronic use of alcohol is considered to be a potential risk factor for the incidence of type 2 diabetes mellitus (T2DM), which causes insulin resistance and pancreatic β-cell dysfunction that is a prerequisite for the development of diabetes. However, alcohol consumption in diabetes has been controversial and more detailed information on the diabetogenic impact of alcohol seems warranted. Diabetes, especially T2DM, causes dysregulation of various metabolic processes, which includes a defect i...

  17. Alcohol use and menopause. (United States)

    Wilsnack, Richard W; Wilsnack, Sharon C


    Clinicians should periodically assess their menopausal patients' alcohol use. Specific health hazards from excessive alcohol consumption, as well as potential benefits of low-level consumption (for cardiovascular disease, bone health, and type 2 diabetes), should be discussed with their patients who drink. The information in this Practice Pearl can help clinicians provide evidence-based guidance about alcohol consumption and its relationship to common health concerns.

  18. Affordability of alcohol and alcohol-related mortality in Belarus. (United States)

    Razvodovsky, Yury E


    Alcohol abuse has numerous adverse health and social consequences. The consumer response to changes in alcohol affordability is an important issue on alcohol policy debates. Studies from many countries have shown an inverse relationship between alcohol prices and alcohol consumption in the population. There are, however, suggestions that increasing the price of alcohol by rising taxes may have limited effect on alcohol-related problems, associated with long-term heavy drinking. The aim of the present study was to evaluate the relationship between alcohol affordability and alcohol-related mortality rates in post-Soviet Belarus. For this purpose trends in alcohol-related mortality rates (mortality from liver cirrhosis, pancreatitis, alcoholism and alcohol psychoses) and affordability of vodka between 1990 and 2010 were compared. The time series analysis revealed that 1% increase in vodka affordability is associated with an increase in liver cirrhosis mortality of 0,77%, an increase in pancreatitis mortality of 0.53%, an increase in mortality from alcoholism and alcohol psychoses of 0,70%. The major conclusion emerging from this study is that affordability of alcohol is one of the most important predictor of alcohol-related problems in a population. These findings provide additional evidence that decreasing in affordability of alcohol is an effective strategy for reducing alcohol consumption and alcohol-related harm.

  19. Alcohol Alert: Alcohol's Damaging Effects on the Brain (United States)

    ... Alcohol abuse and alcoholism. In: Nixon, S.J., ed. Neuropsychology for Clinical Practice. Washington, DC: American Psychological Press, ... alcoholic men: Relationships to changes in brain structure. Neuropsychology 14:178–188, 2000. (38) Rosenbloom, M. ; Sullivan, ...

  20. Significant residual fluorinated alcohols present in various fluorinated materials. (United States)

    Dinglasan-Panlilio, Mary Joyce A; Mabury, Scott A


    Polyfluorinated telomer alcohols and sulfonamides are classes of compounds recently identified as precursor molecules to the perfluorinated acids detected in the environment. Despite the detection and quantification of these volatile compounds in the atmosphere, their sources remain unknown. Both classes of compounds are used in the synthesis of various fluorosurfactants and incorporated in polymeric materials used extensively in the carpet, textile, and paper industries. This study has identified the presence of residual unbound fluoro telomer alcohols (FTOHs) in varying chain lengths (C6-C14) in several commercially available and industrially applied polymeric and surfactant materials. NMeFOSE, a perfluoroalkyl sulfonamido alcohol, was also detected in a commercially available carpet protector product. A method was developed to remove these residual compounds from polymeric and surfactant materials by dispersion in water and stripping of the volatiles using a constant flow of air and trapping on XAD resin. Using gas chromatography mass spectrometry analysis, it was determined that the fluorinated materials examined consist of 0.04-3.8% residual alcohols on a fluoro alcohol to dry mass basis. These values indicate that residual alcohols, left unreacted and unbound from the manufacturing process of fluorinated polymers and surfactants, could be a significant source of the polyfluorinated telomer alcohols and sulfonamides released into the environment. This study suggests that elimination or reduction of these residual alcohols from all marketed fluorinated polymers and fluorosurfactants is key in reducing the prevalence of perfluorinated acids formed in the environment.

  1. Alcohol consumption, cardiovascular health, and endothelial function markers. (United States)

    Bau, Paulo F D; Bau, Claiton H D; Rosito, Guido A; Manfroi, Waldomiro C; Fuchs, Flávio D


    Cardiovascular diseases are among the worldwide leading causes of shorter life expectancy and loss of quality of life. Thus, any influence of diet or life habits on the cardiovascular system may have important implications for public health. Most world populations consume alcoholic beverages. Since alcohol may have both protective and harmful effects on cardiovascular health, the identification of biochemical mechanisms that could explain such paradoxical effects is warranted. The vascular endothelium is the target of important mediating pathways of differential ethanol concentrations, such as oxidative stress, lipoproteins, and insulin resistance. Alcohol-induced endothelial damage or protection may be related to the synthesis or action of several markers, such as nitric oxide, cortisol, endothelin-1, adhesion molecules, tumor necrosis factor alpha, interleukin-6, C-reactive protein, and haemostatic factors. The expression of these markers is consistent with the J-shaped curve between alcohol consumption and cardiovascular health. However, there is genetic and phenotypic heterogeneity in alcohol response, and despite the apparent beneficial biochemical effects of low doses of ethanol, there is not enough clinical and epidemiological evidence to allow the recommendation to consume alcoholic beverages for abstemious individuals. Considering the potential for addiction of alcoholic beverage consumption and other negative consequences of alcohol, it would be worthwhile to identify substances able to mimic the beneficial effects of low doses of ethanol without its adverse effects.

  2. Methods for sequestering carbon dioxide into alcohols via gasification fermentation (United States)

    Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean


    The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

  3. Synthesis, structural characterization, and benzyl alcohol oxidation activity of mononuclear manganese(II) complex with 2,2'-bipyridine: [Mn(bipy)2(ClO4)2


    KANİ, İbrahim; KURTÇA, Mehmet


    A manganese(II) complex of 2,2'-bipyridine (bipy) was synthesized and characterized by X-ray diffraction, IR, and UV-vis spectroscopy. The activity of the complex was tested for oxidation of benzyl alcohols using t-BuOOH as an oxidant in organic solvents and in an organic/water biphasic system (hexane/H2O, toluene/H2O). The effect of solvent, temperature, oxidant, and some additives (KBr, N(C4H9)Br, and N-bromosuccinimide) on the oxidation of benzyl alcohol is reported. The res...

  4. FastStats: Alcohol Use (United States)

    ... this? Submit What's this? Submit Button NCHS Home Alcohol Use Recommend on Facebook Tweet Share Compartir Data ... alcoholic liver disease deaths: 19,388 Number of alcohol-induced deaths, excluding accidents and homicides: 30,722 ...

  5. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels (United States)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.


    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the "bound" water in hydrogels is 50-70% and independent of gel fraction content. In addition to "bound" and "free" states, water in hydrogels is also present in the intermediate state.

  6. Molecular basis of alcoholism. (United States)

    Most, Dana; Ferguson, Laura; Harris, R Adron


    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.

  7. Alcoholism and diabetes mellitus. (United States)

    Kim, Soo-Jeong; Kim, Dai-Jin


    Chronic use of alcohol is considered to be a potential risk factor for the incidence of type 2 diabetes mellitus (T2DM), which causes insulin resistance and pancreatic β-cell dysfunction that is a prerequisite for the development of diabetes. However, alcohol consumption in diabetes has been controversial and more detailed information on the diabetogenic impact of alcohol seems warranted. Diabetes, especially T2DM, causes dysregulation of various metabolic processes, which includes a defect in the insulin-mediated glucose function of adipocytes, and an impaired insulin action in the liver. In addition, neurobiological profiles of alcoholism are linked to the effects of a disruption of glucose homeostasis and of insulin resistance, which are affected by altered appetite that regulates the peptides and neurotrophic factors. Since conditions, which precede the onset of diabetes that are associated with alcoholism is one of the crucial public problems, researches in efforts to prevent and treat diabetes with alcohol dependence, receives special clinical interest. Therefore, the purpose of this mini-review is to provide the recent progress and current theories in the interplay between alcoholism and diabetes. Further, the purpose of this study also includes summarizing the pathophysiological mechanisms in the neurobiology of alcoholism.

  8. Alcoholism and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Soo-Jeong Kim


    Full Text Available Chronic use of alcohol is considered to be a potential risk factor for the incidence of type 2 diabetes mellitus (T2DM, which causes insulin resistance and pancreatic β-cell dysfunction that is a prerequisite for the development of diabetes. However, alcohol consumption in diabetes has been controversial and more detailed information on the diabetogenic impact of alcohol seems warranted. Diabetes, especially T2DM, causes dysregulation of various metabolic processes, which includes a defect in the insulin-mediated glucose function of adipocytes, and an impaired insulin action in the liver. In addition, neurobiological profiles of alcoholism are linked to the effects of a disruption of glucose homeostasis and of insulin resistance, which are affected by altered appetite that regulates the peptides and neurotrophic factors. Since conditions, which precede the onset of diabetes that are associated with alcoholism is one of the crucial public problems, researches in efforts to prevent and treat diabetes with alcohol dependence, receives special clinical interest. Therefore, the purpose of this mini-review is to provide the recent progress and current theories in the interplay between alcoholism and diabetes. Further, the purpose of this study also includes summarizing the pathophysiological mechanisms in the neurobiology of alcoholism.

  9. Children of Alcoholics (United States)

    ... 11) • Abuse of drugs or alcohol; or • Aggression towards other children • Risk taking behaviors • Depression or suicidal thoughts or behavior Some children of alcoholics may cope by taking the role of responsible "parents" within the family and among friends. They may ...

  10. Fetal Alcohol Spectrum Disorder (United States)

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.


    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  11. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)



    Full Text Available Atherosclerosis is manifested as coronary artery disease (CAD, ischemic stroke and peripheral vascular disease. Moderate alcohol consumption has been associated with reduction of CAD complications. Apparently, red wine offers more benefits than any other kind of drinks, probably due to flavonoids. Alcohol alters lipoproteins and the coagulation system. The flavonoids induce vascular relaxation by mechanisms that are both dependent and independent of nitric oxide, inhibits many of the cellular reactions associated with atherosclerosis and inflammation, such as endothelial expression of vascular adhesion molecules and release of cytokines from polymorphonuclear leukocytes. Hypertension is also influenced by the alcohol intake. Thus, heavy alcohol intake is almost always associated with systemic hypertension, and hence shall be avoided. In individuals that ingest excess alcohol, there is higher risk of coronary occlusion, arrhythmias, hepatic cirrhosis, upper gastrointestinal cancers, fetal alcohol syndrome, murders, sex crimes, traffic and industrial accidents, robberies, and psychosis. Alcohol is no treatment for atherosclerosis; but it doesn't need to be prohibited for everyone. Thus moderate amounts of alcohol (1-2 drinks/day, especially red wine, may be allowed for those at risk for atherosclerosis complications.

  12. Alcohol and atherosclerosis

    DEFF Research Database (Denmark)

    Tolstrup, Janne; Grønbaek, Morten


    Light to moderate alcohol intake is known to have cardioprotective properties; however, the magnitude of protection depends on other factors and may be confined to some subsets of the population. This review focuses on factors that modify the relationship between alcohol and coronary heart diseas...

  13. Leisure and Alcohol Expectancies. (United States)

    Carruthers, Cynthia P.


    Presents the results of a study that investigated the ways individuals expected drinking to affect their leisure experiences, and the relationship of those expectancies to alcohol consumption patterns. Data from a sample of 144 adults indicated they expected alcohol to positively affect their leisure experiences. (SM)

  14. Pentoxifylline for alcoholic hepatitis

    DEFF Research Database (Denmark)

    Whitfield, Kate; Rambaldi, Andrea; Wetterslev, Jørn


    BACKGROUND: Alcoholic hepatitis is a life-threatening disease, with an average mortality of approximately 40%. There is no widely accepted, effective treatment for alcoholic hepatitis. Pentoxifylline is used to treat alcoholic hepatitis, but there has been no systematic review to assess its effects....... OBJECTIVES: To assess the benefits and harms of pentoxifylline in alcoholic hepatitis. SEARCH STRATEGY: The Cochrane Hepato-Biliary Group Controlled Trials Register, The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, LILACS......,, and full text searches were conducted until August 2009. Manufacturers and authors were contacted. SELECTION CRITERIA: All randomised clinical trials of pentoxifylline in participants with alcoholic hepatitis compared to control were selected for inclusion. DATA COLLECTION AND ANALYSIS: Two...

  15. Alcohol consumption in adolescents

    Directory of Open Access Journals (Sweden)

    Ilona Plevová


    Full Text Available Aim: To determine the level of alcohol consumption in a selected group of adolescents. Design: A descriptive cross-sectional study. Methods: The data were obtained using a part of the standardized ESPAD questionnaire for assessing consumption of alcoholic beverages. The sample comprised 422 students from seven secondary schools of different types in the city of Ostrava. For statistical analysis, the chi-squared test and Fisher's exact test (for n ≤ 5 were used. The data were processed using Stata v. 10. Results: More than half of respondents first tried alcohol before the age of 15. The most frequent alcohol-related problems were unprotected sex, decreased school performance and problems with parents or friends. Incomplete families were found to be an important factor in adolescents preferring and more frequently drinking beer. Conclusion: The study confirmed results reported by the Europe-wide survey ESPAD, namely that adolescents start to drink alcohol as early as before they turn fifteen.

  16. Homocysteine and alcoholism. (United States)

    Bleich, S; Degner, D; Javaheripour, K; Kurth, C; Kornhuber, J


    Chronic alcohol consumption can induce alterations in the function and morphology of most if not all brain systems and structures. However, the exact mechanism of brain damage in alcoholics remains unknown. Partial recovery of brain function with abstinence suggests that a proportion of the deficits must be functional in origin (i.e. plastic changes of nerve cells) while neuronal loss from selected brain regions indicates permanent and irreversible damage. There is growing evidence that chronic alcoholism is associated with a derangement in the sulfur amino acid metabolism. Recently, it has been shown that excitatory amino acid (EAA) neurotransmitters and homocysteine levels are elevated in patients who underwent withdrawal from alcohol. Furthermore, it has been found that homocysteine induces neuronal cell damage by stimulating NMDA receptors as well as by producing free radicals. Homocysteine neurotoxicity via overstimulation of N-methyl-D-aspartate receptors may contribute to the pathogenesis of both brain shrinkage and withdrawal seizures linked to alcoholism.

  17. Alcohol and sex. (United States)

    Vijayasenan, M E


    Diminished sexual functioning among individuals dependent upon alcohol has been assessed. Ninety-seven male patients entered the study, all inpatients as the unit for treatment of alcoholism and drug addiction (Villa 6) in Porirua Hospital, Porirua. The sexual ability of these patients before the development of alcoholism was also rated for the same items and this rating was used as a control. Of the 97 patients, 69 (71 percent) suffered from sexual dysfunction for a period more than 12 months prior to admission to hospital. The disturbances noted were diminished sexual desire (58 percent of patients), erectile impotence (16 percent), premature ejaculation (4 percent), ejaculatory in competence (22 percent). A high proportion of the alcoholics showed signs of sexual deviation-19 percent having performed sexual crimes and a further 28 percent having repeated thought of sexual crimes. The possible causes of alcohol induced sexual dysfunction are discussed.

  18. Docosahexaenoic acid prevents trans-10, cis-12 conjugated linoleic acid-induced non-alcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation (United States)

    Background: Concomitant supplementation with docosahexaenoic acid (22:6 n-3; DHA) prevented t10, c12- conjugated linoleic acid (CLA)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Effective dose of DHA and mechanisms involved are poorly understood. Methods: We examined abi...

  19. 78 FR 42530 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review..., Ph.D., Scientific Review Officer, National Institute on Alcohol Abuse & Alcoholism,...

  20. 76 FR 78014 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review...., Scientific Review Administrator, National Institutes on Alcohol Abuse & Alcoholism, National Institutes...

  1. 75 FR 10808 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis... Officer, National Institute on Alcohol Abuse & Alcoholism, National Institutes of Health, 5635...

  2. 78 FR 42529 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review....D., Scientific Review Administrator, National Institutes on Alcohol Abuse & Alcoholism,...

  3. 75 FR 57473 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis... Officer, National Institute on Alcohol Abuse and Alcoholism, Office of Extramural Activities,...

  4. 75 FR 24961 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meetings (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis... Extramural Activities, National Institutes of Health, National Institute on Alcohol Abuse & Alcoholism,...

  5. 76 FR 26308 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review..., Scientific Review Administrator, National Institutes On Alcohol Abuse & Alcoholism National, Institutes...

  6. 75 FR 63494 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis..., Extramural Project Review Branch, EPRB, National Institute on Alcohol Abuse and Alcoholism,...

  7. 77 FR 22794 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review..., Ph.D., Scientific Review Administrator, National Institutes on Alcohol Abuse & Alcoholism...

  8. Co-Cu Nanoparticles: Synthesis by Galvanic Replacement and Phase Rearrangement during Catalytic Activation. (United States)

    Nafria, Raquel; Genç, Aziz; Ibáñez, Maria; Arbiol, Jordi; de la Piscina, Pilar Ramírez; Homs, Narcís; Cabot, Andreu


    The control of the phase distribution in multicomponent nanomaterials is critical to optimize their catalytic performance. In this direction, while impressive advances have been achieved in the past decade in the synthesis of multicomponent nanoparticles and nanocomposites, element rearrangement during catalyst activation has been frequently overseen. Here, we present a facile galvanic replacement-based procedure to synthesize Co@Cu nanoparticles with narrow size and composition distributions. We further characterize their phase arrangement before and after catalytic activation. When oxidized at 350 °C in air to remove organics, Co@Cu core-shell nanostructures oxidize to polycrystalline CuO-Co3O4 nanoparticles with randomly distributed CuO and Co3O4 crystallites. During a posterior reduction treatment in H2 atmosphere, Cu precipitates in a metallic core and Co migrates to the nanoparticle surface to form Cu@Co core-shell nanostructures. The catalytic behavior of such Cu@Co nanoparticles supported on mesoporous silica was further analyzed toward CO2 hydrogenation in real working conditions.

  9. Synthetic Applications of Chiral Unsaturated Epoxy Alcohols Prepared by Sharpless Asymmetric Epoxidation

    Directory of Open Access Journals (Sweden)

    María Moreno


    Full Text Available An overview of the synthesis and applications of chiral 2,3-epoxy alcohols containing unsaturated chains is presented. One of the fundamental synthetic routes to these compounds is Sharpless asymmetric epoxidation, which is reliable, highly chemoselective and enables easy prediction of the product enantioselectivity. Thus, unsaturated epoxy alcohols are readily obtained by selective oxidation of the allylic double bond in the presence of other carbon-carbon double or triple bonds. The wide availability of epoxy alcohols with unsaturated chains, the versatility of the epoxy alcohol functionality (e.g. regio- and stereo-selective ring opening; oxidation; and reduction, and the arsenal of established alkene chemistries, make unsaturated epoxy alcohols powerful starting materials for the synthesis of complex targets such as biologically active molecules. The popularization of ring-closing metathesis has further increased their value, making them excellent precursors to cyclic compounds.

  10. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.


    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...

  11. Kinetics of volatile metabolites during alcoholic fermentation of cane molasses by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Cachot, T.; Mueller, M.; Pons, M.N. (Centre National de la Recherche Scientifique, 54 - Nancy (France). Lab. des Sciences du Genie Chimique)


    The kinetics of ethanol, acetaldehyde, ethyl acetate and fusel alcohols during alcoholic fermentations on cane molasses by Saccharomyces cerevisiae have been obtained via an in-situ gas membrane sensor connected to a gas chromatograph. Various operation parameters have been investigated such as inoculum rate, molasses concentration, operation mode (batch, fed-batch). The modification of fusel alcohols kinetics in response to addition of amino acids has been studied as well as the assimilation of two intermediary aldehydes (isovaleraldehyde and isobutyraldehyde) in the fusel alcohol synthesis pathway. (orig.).

  12. The Liver-Brain Axis of Alcohol-Mediated Neurodegeneration: Role of Toxic Lipids

    Directory of Open Access Journals (Sweden)

    Suzanne M. de la Monte


    Full Text Available Alcohol abuse causes progressive toxicity and degeneration in liver and brain due to insulin resistance, which exacerbates oxidative stress and pro-inflammatory cytokine activation. Alcohol-induced steatohepatitis promotes synthesis and accumulation of ceramides and other toxic lipids that cause insulin resistance. Ceramides can readily cross the blood-brain barrier, and ceramide exposure causes neurodegeneration with insulin resistance and oxidative stress, similar to the effects of alcohol. Therefore, in addition to its direct neurotoxic effects, alcohol misuse establishes a liver-brain axis of neurodegeneration mediated by toxic lipid trafficking across the blood-brain barrier, leading to progressive white matter degeneration and cognitive impairment.

  13. Alcoholism: genes and mechanisms. (United States)

    Oroszi, Gabor; Goldman, David


    Alcoholism is a chronic relapsing/remitting disease that is frequently unrecognized and untreated, in part because of the partial efficacy of treatment. Only approximately one-third of patients remain abstinent and one-third have fully relapsed 1 year after withdrawal from alcohol, with treated patients doing substantially better than untreated [1]. The partial effectiveness of strategies for prevention and treatment, and variation in clinical course and side effects, represent a challenge and an opportunity to better understand the neurobiology of addiction. The strong heritability of alcoholism suggests the existence of inherited functional variants of genes that alter the metabolism of alcohol and variants of other genes that alter the neurobiologies of reward, executive cognitive function, anxiety/dysphoria, and neuronal plasticity. Each of these neurobiologies has been identified as a critical domain in the addictions. Functional alleles that alter alcoholism-related intermediate phenotypes include common alcohol dehydrogenase 1B and aldehyde dehydrogenase 2 variants that cause the aversive flushing reaction; catechol-O-methyltransferase (COMT) Val158Met leading to differences in three aspects of neurobiology: executive cognitive function, stress/anxiety response, and opioid function; opioid receptor micro1 (OPRM1) Asn40Asp, which may serve as a gatekeeper molecule in the action of naltrexone, a drug used in alcoholism treatment; and HTTLPR, which alters serotonin transporter function and appears to affect stress response and anxiety/dysphoria, which are factors relevant to initial vulnerability, the process of addiction, and relapse.

  14. Vanadium catalyzed direct synthesis of imines from amines or alcohols and amines by an aerobic oxidative reaction under mild conditions%温和条件下钒催化氧化胺、醇和胺直接合成亚胺

    Institute of Scientific and Technical Information of China (English)

    王连月; 陈波; 任兰会; 张恒耘; 吕迎; 高爽


    The direct synthesis of imines from amines or alcohols and amines by vanadium catalyzed aerobic oxidation was developed. Without an additive or promoter, various symmetrical and unsymmetrical imines were obtained in good to excellent yields under mild conditions with air as an environmen‐tally benign oxidant. The catalyst is very easy to prepare and use, and this catalytic system is also effective for the synthesis of heteroatom‐containing imines.%开发了钒催化氧化胺、醇和胺直接合成亚胺催化体系,无须额外的添加剂或促进剂,空气作为环境友好的氧源,温和条件下,能高收率地得到各种对称和非对称亚胺,并且催化剂非常容易制备和使用。该催化体系对含杂原子亚胺的合成也非常有效。

  15. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions (United States)

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.


    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  16. Synthesis of Alcohols and Alkanes from CO and H2 over MoS2/γ-Al2O3 Catalyst in a Packed Bed with Continuous Flow

    Directory of Open Access Journals (Sweden)

    Yi-Hung Chen


    Full Text Available Effects of reaction conditions on the production of alcohols (AOHs and alkanes (Alk from CO and H2, which can be obtained from the gasification of biomass, using a molybdenum sulfide (MoS2-based catalyst of MoS2/γ-Al2O3 were studied. A high-pressure fixed packed bed (HPFPB was employed to carry out the reaction. The results indicate that the conversion of CO (XCO and specific production rates of alcohol (SPRAOH and alkane (SPRAlk are highly depended on temperature (T. In T = 423–573 K, maximum yield of alcohols (YAOH and SPRAOH occur at T = 523 K. In the meantime, well performance gives the selectivity of ethanol (SEtOH of 52.0 C%. For the studies on varying H2/CO mole ratio (MH/C from 1 to 4 at 523 K, the appropriate MH/C to produce EtOH is 2, giving higher ratios of SPRAOH/SPRAlk and YAOH/YAlk than those with other MH/C. As for varying the total gas flow rates (QG of 300, 450, 600 to 900 cm3 min−1 tested at T = 523 K and MH/C = 2, the lower QG provides longer reaction time (or gaseous retention time, tR thus offering higher XCO, however lower productivity. For setting pressure (PST = 225–540 psi, a supply of higher pressure is equivalent to providing a larger amount of reactants into the reaction system, this thus suggests the use of higher PST should give both higher XCO and productivity. The assessment of the above results indicates that the MoS2/γ-Al2O3 catalyst favors the production of alcohols over alkanes, especially for ethanol. The information obtained is useful for the proper utilization of biomass derived gases of CO and H2.


    NARCIS (Netherlands)



    The kinetics of the conversion of syngas (CO/CO2/H-2) to a methanol-higher alcohol mixture over a Cs-Cu/ZnO/Al2O3, catalyst were measured at a pressure of 5-100 bar, a temperature of 200-300 degrees C, a H-2/CO ratio in the feed of 0.66-4.37, a mole fraction of CO2 in the feed of 0-0.114 and a space


    Directory of Open Access Journals (Sweden)

    A. O. Yusupova


    Full Text Available Alcohol abuse and particularly extension of alcohol consumption in alcohol diseas increases the risk of cardiac arrhythmias development and aggravates existing arrhythmias. Patients do not always receive the necessary specific treatment due to lack of detection of the ethanol genesis of these arrhythmias. Management of patients with alcohol abuse and alcohol dependence, including its cardiac complications among other cardiac arrhythmias should use both antiarrhythmic and anti-alcohol drugs and antidepressants. Such issues as diagnosis and management of patients with alcohol-induced cardiac arrhythmias are presented.

  19. SNP- and haplotype analysis of the tryptophan hydroxylase 2 gene in alcohol-dependent patients and alcohol-related suicide. (United States)

    Zill, Peter; Preuss, Ulrich W; Koller, Gabrielle; Bondy, Brigitta; Soyka, Michael


    Several lines of evidence indicate that disturbances of the central serotonergic system are involved in the pathophysiology of alcohol dependence and suicidal behavior. Recent studies have indicated that a newly identified second isoform of the tryptophan hydroxylase gene (TPH2) is preferentially involved in the rate limiting synthesis of neuronal serotonin. Genetic variations in the TPH2 gene have been associated with an increased risk for major depression and suicidal behavior. We performed single SNP (single nucleotide polymorphism), linkage disequilibrium and haplotype studies on 353 alcohol-dependent patients of whom 102 individuals had a history of at least one suicide attempt and 305 healthy controls with 20 SNPs covering the entire gene region of TPH2. Neither single SNP-, nor haplotype analysis could detect significant associations with alcohol dependence and/or suicidal behavior among alcohol-dependent patients. One major haplotype block of strong linkage disequilibrium between introns 5 and 8 of the TPH2 gene has been found in alcoholics and controls, which is in concordance with recent reports. In conclusion, our results suggest that single SNPs, respectively, haplotypes of the TPH2 gene are unlikely to play a major role in the pathophysiology of alcohol dependence or the alcoholism-related phenotype suicidal behavior. Further analysis are needed to confirm these results.

  20. Degradation of fluorotelomer alcohols

    DEFF Research Database (Denmark)

    Ellis, David A; Martin, Jonathan W; De Silva, Amila O


    Human and animal tissues collected in urban and remote global locations contain persistent and bioaccumulative perfluorinated carboxylic acids (PFCAs). The source of PFCAs was previously unknown. Here we present smog chamber studies that indicate fluorotelomer alcohols (FTOHs) can degrade...

  1. Alcohol en snelverkeer.

    NARCIS (Netherlands)

    Esser, P.H.


    Dr Esser voert diverse redenen aan om zo snel mogelijk te starten met ademanalyse op tijden en plaatsen dat bestuurders, die alcohol gebruikt hebben, verwacht kunnen worden. Hij wijst op de preventieve waarde hiervan. Zie ook A 1469.

  2. When alcohol acts

    DEFF Research Database (Denmark)

    Demant, Jakob


      Sociological studies into alcohol use seem to find it difficult to deal with the substance itself. Alcohol tends to be reduced to a symbol of a social process and in this way the sociological research loses sight of effects beyond the social. This paper suggests a new theoretical approach...... to the study of alcohol and teenagers' (romantic) relationships, inspired by actor-network theory (ANT). The central feature of ANT is to search for relationships, or rather networks, between all things relevant to the phenomenon. All material and semantic structures, things, persons, discourses, etc....... that influence a given situation are described as actants and are entered into the analysis. The aim of this paper is to propose a way of including materiality in sociological analyses of alcohol and to explore ways of using focus group interview material in ANT-inspired analysis. By analyzing a girl...

  3. Alcohol advertising and youth. (United States)

    Martin, Susan E; Snyder, Leslie B; Hamilton, Mark; Fleming-Milici, Fran; Slater, Michael D; Stacy, Alan; Chen, Meng-Jinn; Grube, Joel W


    This article presents the proceedings of a symposium at the 2001 Research Society on Alcoholism meeting in Montreal, Canada. The symposium was organized and chaired by Joel W. Grube. The presentations and presenters were (1) Introduction and background, by Susan E. Martin; (2) The effect of alcohol ads on youth 15-26 years old, by Leslie Snyder, Mark Hamilton, Fran Fleming-Milici, and Michael D. Slater; (3) A comparison of exposure to alcohol advertising and drinking behavior in elementary versus middle school children, by Phyllis L. Ellickson and Rebecca L. Collins; (4) USC health and advertising project: assessment study on alcohol advertisement memory and exposure, by Alan Stacy; and (5) TV beer and soft drink advertising: what young people like and what effects? by Meng-Jinn Chen and Joel W. Grube.

  4. Alcohol use disorder (United States)

    ... be a combination of a person's: Genes Environment Psychology, such as being impulsive or having low self- ... Examine you Ask about your medical and family history Ask about your alcohol use, and if you ...

  5. Electrocatalysts for direct alcohol fuel cells

    Directory of Open Access Journals (Sweden)

    V. Celorrio


    Full Text Available The properties of CNC as well as their surface chemistry can be tuned by an adequate choice of synthesis conditions, favouring the formation of surface oxygen groups. Platinum-based catalysts have been supported on CNCs through different synthesis methods and their catalytic activity has been proven. These results prove that CNCs are promising candidates as alternative to replace Vulcan in order to improve the performance of the direct alcohol fuel cells. In addition, it can be affirmed that the reactivity of Au-Pd core-shell nanostructures toward CO and HCOOH electro-oxidation is not only determined by the composition and structure of Pd overlayer but also by interaction with the support.

  6. Alcohol and liver, 2010

    Institute of Scientific and Technical Information of China (English)

    Natalia; A; Osna


    Liver is known as an organ that is primarily affected by alcohol. Alcoholic liver disease (ALD) is the cause of an increased morbidity and mortality worldwide. Progression of ALD is driven by "second hits". These second hits include the complex of nutritional, pharmacological, genetic and viral factors, which aggravate liver pathology. However, in addition to liver failure, ethanol causes damage to other organs and systems. These extrahepatic manifestations are regulated via the similar hepatitis mechanisms...

  7. Alcohol: Pleasures and Problems. (United States)

    Finn, Peter; Lawson, Jane

    This student booklet is to be used in conjunction with the Teacher Manual and films of the DIAL A-L-C-O-H-O-L series. It presents facts and illustrations on the use of alcohol, and is intended to aid young people in deciding whether or not to drink. This booklet is divided into the following parts: (1) Introduction; (2) The Enjoyment of Drinking;…

  8. Consumo de alcohol


    Luís Gustavo del Sol Padrón; Orestes Álvarez Fernández; Juan De Dios Rivero Berovides


    En este artículo se emite una definición clasificatoria de los individuos que consumen alcohol, según supuestos establecidos por Manconi. Se estratifican las personas atendiendo a los diferentes riesgos para este consumo. Se describen las afectaciones a la salud que produce el consumo de alcohol, y además se plantean las medidas estratégicas para propiciar una conducta efectiva antialcohólica. Por último, se presenta un flujograma para la inter...

  9. A short formal synthesis of squalamine from a microbial metabolite. (United States)

    Kinney, W A; Zhang, X; Williams, J I; Johnston, S; Michalak, R S; Deshpande, M; Dostal, L; Rosazza, J P


    A short formal synthesis of squalamine is described, utilizing the biotransformation product 2, which is available in one step from commercially available 3-keto-23,24-bisnorchol-4-en-22-ol (1). Regioselective C-22 oxidation and C-24 sulfation of the corresponding alcohols in the presence of a free C-7 alcohol make for an efficient preparation of squalamine intermediate 11.

  10. Alcohol-attributable and alcohol-preventable mortality in Denmark

    DEFF Research Database (Denmark)

    Eliasen, Marie; Becker, Ulrik; Grønbæk, Morten


    The aim of the study was to quantify alcohol-attributable and -preventable mortality, totally and stratified on alcohol consumption in Denmark 2010, and to estimate alcohol-related mortality assuming different scenarios of changes in alcohol distribution in the population. We estimated alcohol......-attributable and -preventable fractions based on relative risks of conditions causally associated with alcohol from meta-analyses and information on alcohol consumption in Denmark obtained from 14,458 participants in the Danish National Health Survey 2010 and corrected for adult per capita consumption. Cause-specific mortality...... data were obtained from the Danish Register of Causes of Death. In total, 1,373 deaths among women (5.0 % of all deaths) and 2,522 deaths among men (9.5 % of all deaths) were attributable to alcohol, while an estimated number of 765 (2.8 %) and 583 (2.2 %) deaths were prevented by alcohol...

  11. Alcohol drinking pattern and risk of alcoholic liver cirrhosis

    DEFF Research Database (Denmark)

    Askgaard, Gro; Grønbæk, Morten; Kjær, Mette Skalshøi


    BACKGROUND & AIMS: Alcohol is the main contributing factor of alcoholic cirrhosis, but less is known about the significance of drinking pattern. METHODS: We investigated the risk of alcoholic cirrhosis among 55,917 participants (aged 50-64 years) in the Danish Cancer, Diet, and Health study (1993......-2011). Baseline information on alcohol intake, drinking pattern, and confounders was obtained from a questionnaire. Follow-up information came from national registers. We calculated hazard ratios (HRs) for alcoholic cirrhosis in relation to drinking frequency, lifetime alcohol amount, and beverage type. RESULTS......: We observed 257 and 85 incident cases of alcoholic cirrhosis among men and women, respectively, none among lifetime abstainers. In men, HR for alcoholic cirrhosis among daily drinkers was 3.65 (95% CI: 2.39; 5.55) compared to drinking 2-4 days/week. Alcohol amount in recent age periods (40-49 and 50...

  12. Perspectives on the neuroscience of alcohol from the National Institute on Alcohol Abuse and Alcoholism. (United States)

    Reilly, Matthew T; Noronha, Antonio; Warren, Kenneth


    Mounting evidence over the last 40 years clearly indicates that alcoholism (alcohol dependence) is a disorder of the brain. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has taken significant steps to advance research into the neuroscience of alcohol. The Division of Neuroscience and Behavior (DNB) was formed within NIAAA in 2002 to oversee, fund, and direct all research areas that examine the effects of alcohol on the brain, the genetic underpinnings of alcohol dependence, the neuroadaptations resulting from excessive alcohol consumption, advanced behavioral models of the various stages of the addiction cycle, and preclinical medications development. This research portfolio has produced important discoveries in the etiology, treatment, and prevention of alcohol abuse and dependence. Several of these salient discoveries are highlighted and future areas of neuroscience research on alcohol are presented.

  13. Heterogeneous catalytic process for alcohol fuels from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Minahan, D.M.; Nagaki, D.A.


    This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art. The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.

  14. An investigation of the effects of CeO2 crystal planes on the aerobic oxidative synthesis of imines from alcohols and amines%纳米二氧化铈催化制备亚胺

    Institute of Scientific and Technical Information of China (English)

    张志鑫; 王业红; 王敏; 吕建民; 李利花; 张哲; 李名润; 蒋景阳; 王峰


    化合物的转化率可达89%以上,亚胺类化合物的选择性可达90%以上.通过水热合成法分别制备了棒状CeO2、立方体CeO2和八面体CeO2,并通过X射线衍射、透射电子显微镜和高分辨透射电子显微镜确证了其结构和形貌,结果表明三种形貌的CeO2均为纯相的CeO2,其中棒状CeO2暴露(110)和(100)晶面,立方体CeO2暴露(100)晶面,八面体CeO2暴露(111)晶面.并以苯甲醇氧化反应和苯甲醇与苯胺反应为探针研究了其催化性能.结果发现:不同形貌的CeO2具有显著不同的催化活性,其中棒状CeO2表现出最优异的催化性能,立方体CeO2和八面体CeO2次之.通过Raman光谱表征了不同形貌CeO2的氧空位性质并比较了它们的氧空位浓度.结果发现:棒状CeO2的氧空位浓度相对值(A595/A462)为0.077,高于立方体CeO2和八面体CeO2.通过比较分析计算可知,在CeO2(110),(100)和(111)三种晶面中,(110)晶面因其具有最多的氧空位而表现出最高的催化活性和优异的氧化还原性质,(110)晶面上亚胺的生成速率为4.618 mmol/(g·h),分别为(100)晶面和(111)晶面上的32倍和49倍.该研究有助于提高认识CeO2基催化材料的低温氧化还原性质.%We herein report the effects of CeO2 crystal planes on the oxidative coupling of alcohols and amines to form imines. CeO2 exhibits significant catalytic activity under mild reaction conditions (60 °C) during the synthesis of 13 different imines, giving>89%conversions and>90%selectivities. The crystal planes of CeO2 greatly affect the catalytic performance. Among the crystal planes investigat-ed (the (110), (100) and (111) planes), the (110) plane shows the strongest redox ability and thus the best catalytic activity, generating a 97%yield of the imine at 60 °C in 2 h, because it contains the highest concentration of oxygen vacancies.

  15. Some Aspects of the Catalytic Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Anil; K.Saikia


    1 Results Catalytic reactions are gaining importance due to its low cost, operational simplicity, high efficiency and selectivity. It is also getting much attention in green synthesis. Many useful organic reactions, including the acylation of alcohols and aldehydes, carbon-carbon, carbon-nitrogen, carbon-sulfur bond forming and oxidation reactions are carried out by catalyst. We are exploring the catalytic acylation of alcohols and aldehydes in a simple and efficient manner. Catalytic activation of unr...

  16. The diagnosis and pathogenesis of chronic alcoholic myopathy

    Directory of Open Access Journals (Sweden)

    Yu. V. Kazantseva


    Full Text Available Peripheral neuromuscular apparatus lesion is a common complication of chronic alcohol intoxication. Alcohol-induced skeletal muscle diseaseis least studied now. A comprehensive clinical, neurophysiological, and morphological examination was made in 42 patients with chronic alcoholintoxication during this study. All the patients underwent skeletal muscle biopsy followed by muscle fiber morphometry. There was both selective type 2 muscle fiber atrophy and diffuse types 1 and 2 muscle fiber atrophic changes. The clinical manifestations of skeletal muscle disease corresponded to the degree of an atrophic process. There was impairment in the main components of protein synthesis at both intracellular and systemic regulation levels.

  17. Dysregulation of skeletal muscle protein metabolism by alcohol (United States)

    Steiner, Jennifer L.


    Alcohol abuse, either by acute intoxication or prolonged excessive consumption, leads to pathological changes in many organs and tissues including skeletal muscle. As muscle protein serves not only a contractile function but also as a metabolic reserve for amino acids, which are used to support the energy needs of other tissues, its content is tightly regulated and dynamic. This review focuses on the etiology by which alcohol perturbs skeletal muscle protein balance and thereby over time produces muscle wasting and weakness. The preponderance of data suggest that alcohol primarily impairs global protein synthesis, under basal conditions as well as in response to several anabolic stimuli including growth factors, nutrients, and muscle contraction. This inhibitory effect of alcohol is mediated, at least in part, by a reduction in mTOR kinase activity via a mechanism that remains poorly defined but likely involves altered protein-protein interactions within mTOR complex 1. Furthermore, alcohol can exacerbate the decrement in mTOR and/or muscle protein synthesis present in other catabolic states. In contrast, alcohol-induced changes in muscle protein degradation, either global or via specific modulation of the ubiquitin-proteasome or autophagy pathways, are relatively inconsistent and may be model dependent. Herein, changes produced by acute intoxication versus chronic ingestion are contrasted in relation to skeletal muscle metabolism, and limitations as well as opportunities for future research are discussed. As the proportion of more economically developed countries ages and chronic illness becomes more prevalent, a better understanding of the etiology of biomedical consequences of alcohol use disorders is warranted. PMID:25759394

  18. Synthesis and characterization of water-dispersed CdSe/CdS core-shell quantum dots prepared via layer-by-layer method capped with carboxylic-functionalized poly(vinyl alcohol)


    Ramanery,Fábio Pereira; Mansur,Alexandra Ancelmo Piscitelli; Mansur,Herman Sander


    The main goal of this work was to synthesize CdSe/CdS (core-shell) nanoparticles stabilized by polymer ligand using entirely aqueous colloidal chemistry at room temperature. First, the CdSe core was prepared using precursors and acid-functionalized poly(vinyl alcohol) as the capping ligand. Next, a CdS shell was grown onto the CdSe core via the layer-by-layer technique. The CdS shell was formed by two consecutive monolayers, as estimated by empirical mathematical functions. The nucleation and...

  19. Oropharynx microbiota among alcoholics and non-alcoholics

    Directory of Open Access Journals (Sweden)

    Valdir Golin

    Full Text Available CONTEXT: The oropharynx microbiota plays an important role in the origin of infections, especially among alcoholics whose airway defenses are impaired. OBJECTIVE: To compare the normal oropharingeal flora in heavy alcohol drinker and non-alcoholics. PATIENTS: 117 persons, 58 heavy alcohol drinkers and 59 non-alcoholics. SETTING: Santa Casa de São Paulo Emergency Service. DESIGN: A blind prospective study. MAIN OUTCOMES MEASURES: Prevalence of aerobic and anaerobic bacteria, and fungi. RESULTS: The study of the oropharynx microbiota among heavy alcohol drinkers demonstrated the presence of anaerobic microorganisms in 84.5% of them, including: Bacteroides sp, Prevotella melaninogenica, Fusobacterium sp, Veilonella sp, Peptostreptococcus sp, Propionibacterium sp, Bifidobacterium sp and Clostridium sp, versus 30.5% (p<0.005 of non-alcoholics. Candida sp was present in 34.5% of heavy alcohol drinkers and 5.1% of non-alcoholics (p<0.005. Enterobacteria predominated among heavy alcohol drinkers (25% compared with non-alcoholics (5.5% only in the age group 14 to 34 years (p<0.05. CONCLUSION: Based upon these results, it was possible to conclude that the knowledge of the oropharynx microbiota among heavy drinkers and non-alcoholics has an important predictive value concerning probable etiologic agents of lower airway infections. Infections caused by anaerobic microorganisms and fungi should be taken into consideration during the choice of empirical therapy for heavy alcohol drinkers.

  20. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani


    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  1. Y-Cu共掺杂ZnO电子结构与光学性质的第一性原理计算%First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO

    Institute of Scientific and Technical Information of China (English)

    袁俊辉; 高博; 汪文; 王嘉赋


    采用基于密度泛函理论(DFT)的第一性原理平面波赝势法研究了本征ZnO、Y和Cu单掺杂ZnO、Y-Cu共掺杂ZnO的电子结构和光学性质。计算结果表明,在本文的掺杂浓度下, Y和Cu单掺杂可以提高ZnO的载流子浓度,从而改善ZnO的导电性, Y-Cu共掺时ZnO半导体进入简并状态,呈现金属性。 Y掺杂ZnO可以提高体系在紫外区域的吸收,而Cu掺杂ZnO在可见光和近紫外区域发生吸收增强现象,其中由于Y离子和Cu离子之间的协同效应, Y-Cu共掺杂ZnO时体系对可见光和近紫外区域的光子能量吸收大幅增加,因此Y-Cu共掺杂ZnO可以用于制作光电感应器件。%Using the pseudo-potential plane-wave based on the density functional theory (DFT), the electronic structures and optical properties of intrinsic ZnO, Y-, Cu-, and Y-Cu co-doped ZnO were studied. The results show that the conductivity of ZnO can be improved by Y and Cu doping because of the increase in carrier concentration under the order of magnitude of the doping concentration in this paper. Y-Cu co-doping leads to degeneration and makes ZnO metal ic. Y-doped ZnO can show enhanced light absorption in the ultraviolet region, while doping with Cu enhances absorption in the visible and near ultraviolet regions. Y-Cu co-doping greatly increases the absorption of visible and near ultraviolet regions owing to the synergistic effect between Y ions and Cu ions, which can be exploited to fabricate the opto-electronic devices.

  2. Invertebrate models of alcoholism. (United States)

    Scholz, Henrike; Mustard, Julie A


    For invertebrates to become useful models for understanding the genetic and physiological mechanisms of alcoholism related behaviors and the predisposition towards alcoholism, several general requirements must be fulfilled. The animal should encounter ethanol in its natural habitat, so that the central nervous system of the organism will have evolved mechanisms for responding to ethanol exposure. How the brain adapts to ethanol exposure depends on its access to ethanol, which can be regulated metabolically and/or by physical barriers. Therefore, a model organism should have metabolic enzymes for ethanol degradation similar to those found in humans. The neurons and supporting glial cells of the model organism that regulate behaviors affected by ethanol should share the molecular and physiological pathways found in humans, so that results can be compared. Finally, the use of invertebrate models should offer advantages over traditional model systems and should offer new insights into alcoholism-related behaviors. In this review we will summarize behavioral similarities and identified genes and mechanisms underlying ethanol-induced behaviors in invertebrates. This review mainly focuses on the use of the nematode Caenorhabditis elegans, the honey bee Apis mellifera and the fruit fly Drosophila melanogaster as model systems. We will discuss insights gained from those studies in conjunction with their vertebrate model counterparts and the implications for future research into alcoholism and alcohol-induced behaviors.

  3. Diabetes mellitus and alcohol. (United States)

    van de Wiel, Albert


    Alcohol influences glucose metabolism in several ways in diabetic patients as well as in non-diabetic patients. Since alcohol inhibits both gluconeogenesis and glycogenolysis, its acute intake without food may provoke hypoglycaemia, especially in cases of depleted glycogen stores and in combination with sulphonylurea. Consumed with a meal including carbohydrates, it is the preferred fuel, which may initially lead to somewhat higher blood glucose levels and hence an insulin response in type 2 diabetic patients. Depending on the nature of the carbohydrates in the meal, this may be followed by reactive hypoglycaemia. Moderate consumption of alcohol is associated with a reduced risk of atherosclerotic disorders. Diabetic patients benefit from this favourable effect as much as non-diabetic patients. Apart from effects on lipid metabolism, haemostatic balance and blood pressure, alcohol improves insulin sensitivity. This improvement of insulin sensitivity may also be responsible for the lower incidence of type 2 diabetes mellitus reported to be associated with light-to-moderate drinking. In case of moderate and sensible use, risks of disturbances in glycaemic control, weight and blood pressure are limited. Excessive intake of alcohol, however, may not only cause loss of metabolic control, but also annihilate the favourable effects on the cardiovascular system.

  4. Stress, epigenetics, and alcoholism. (United States)

    Moonat, Sachin; Pandey, Subhash C


    Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.

  5. Genetics of alcoholism. (United States)

    Edenberg, Howard J; Foroud, Tatiana


    Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD.

  6. 78 FR 65347 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis... Abuse and Alcoholism, 5635 Fishers Lane (Teleconference), Rockville, MD 20855. Contact Person:...

  7. 78 FR 21615 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting (United States)


    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial ] Review... Foster, Ph.D., Scientific Review Administrator, National Institutes on Alcohol Abuse &...

  8. Alcoholic liver disease and pancreatitis: global health problems being addressed by the US National Institute on Alcohol Abuse and Alcoholism. (United States)

    Warren, Kenneth R; Murray, Margaret M


    The review article summarizes the mission of the National Institute on Alcohol Abuse and Alcoholism (NIAAA) with focus on the NIAAA's current and future research version for alcoholic liver disease and alcoholic pancreatitis.

  9. Is the iron regulatory hormone hepcidin a risk factor for alcoholic liver disease?

    Institute of Scientific and Technical Information of China (English)

    Duygu Dee Harrison-Findik


    Despite heavy consumption over a long period of time,only a small number of alcoholics develop alcoholic liver disease. This alludes to the possibility that other factors,besides alcohol, may be involved in the progression of the disease. Over the years, many such factors have indeed been identified, including iron. Despite being crucial for various important biological processes, iron can also be harmful due to its ability to catalyze Fenton chemistry. Alcohol and iron have been shown to interact synergistically to cause liver injury. Iron-mediated cell signaling has been reported to be involved in the pathogenesis of experimental alcoholic liver disease. Hepcidin is an iron-regulatory hormone synthesized by the liver,which plays a pivotal role in iron homeostasis. Both acute and chronic alcohol exposure suppress hepcidin expression in the liver. The sera of patients with alcoholic liver disease, particularly those exhibiting higher serum iron indices, have also been reported to display reduced prohepcidin levels. Alcohol-mediated oxidative stress is involved in the inhibition of hepcidin promoter activity and transcription in the liver. This in turn leads to an increase in intestinal iron transport and liver iron storage. Hepcidin is expressed primarily in hepatocytes.It is noteworthy that both hepatocytes and Kupffer cells are involved in the progression of alcoholic liver disease. However, the activation of Kupffer cells and TNF-α signaling has been reported not to be involved in the down-regulation of hepcidin expression by alcohol in the liver. Alcohol acts within the parenchymal cells of the liver to suppress the synthesis of hepcidin. Due to its crucial role in the regulation of body iron stores, hepcidin may act as a secondary risk factor in the progression of alcoholic liver disease. The clarification of the mechanisms by which alcohol disrupts iron homeostasis will allow for further understanding of the pathogenesis of alcoholic liver disease.

  10. GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence

    Directory of Open Access Journals (Sweden)

    Roberta eAgabio


    Full Text Available The present paper summarizes the preclinical and clinical studies conducted to define the anti-alcohol pharmacological profile of the prototypic GABAB receptor agonist, baclofen, and its therapeutic potential for treatment of alcohol use disorder (AUD. Numerous studies have reported baclofen-induced suppression of alcohol drinking (including relapse- and binge-like drinking and alcohol reinforcing, motivational, stimulating, and rewarding properties in rodents and monkeys. The majority of clinical surveys conducted to date – including case reports, retrospective chart reviews, and randomized placebo-controlled studies – suggest the ability of baclofen to suppress alcohol consumption, craving for alcohol, and alcohol withdrawal symptomatology in alcohol-dependent patients. The recent identification of a positive allosteric modulatory binding site, together with the synthesis of in vivo effective ligands, represents a novel, and likely more favorable, option for pharmacological manipulations of the GABAB receptor. Accordingly, data collected to date suggest that positive allosteric modulators of the GABAB receptor reproduce several anti-alcohol effects of baclofen and display a higher therapeutic index (with larger separation – in terms of doses – between anti-alcohol effects and sedation.

  11. The Risks Associated With Alcohol Use and Alcoholism


    Rehm, Jürgen


    Alcohol consumption, particularly heavier drinking, is an important risk factor for many health problems and, thus, is a major contributor to the global burden of disease. In fact, alcohol is a necessary underlying cause for more than 30 conditions and a contributing factor to many more. The most common disease categories that are entirely or partly caused by alcohol consumption include infectious diseases, cancer, diabetes, neuropsychiatric diseases (including alcohol use disorders), cardiov...

  12. Neuropathology of alcoholism. (United States)

    Harper, C G; Kril, J J


    There are wide ranging effects of alcohol on the nervous system. Some interfere with physiological and neurochemical functions but ultimately structural damage occurs. During life one of the most impressive changes is brain shrinkage which can be visualized using neuroradiological imaging techniques. This article reviews the pathological explanations for brain shrinkage and addresses the question of the pathogenesis of the reversible component of this damage in relation to prolonged abstinence from alcohol. This shrinkage seems to relate to a loss of white matter. However, the cortex is also abnormal in that there is a loss of neurones from the frontal region. In this and other regions of the cortex examined there is shrinkage of the neuronal soma. This is reflected in a retraction of the neuronal dendritic arbor which plays a crucial role in cell-to-cell communication. In addition, the cerebellum appears to be vulnerable in alcoholic patients although it may well be that associated nutritional deficiencies play an important role. The Wernicke-Korsakoff syndrome is another important deficiency disorder which is seen most frequently in alcoholic patients. Two important population groups which are considered in this review are females and moderate ('social') drinkers. Females are thought to be more susceptible to the damaging effects of alcohol than males and this is examined in the light of the scant data available. Similarly, there are few neuropathological data on people who drink 30-80 grams of alcohol per day. In order to assess so-called 'safe levels of drinking' this is an important group to study.

  13. Síntese de esteres terpenóides por via enzimática: influência do tamanho da cadeia alifática do ácido graxo e da estrutura do álcool de terpeno Synthesis of terpen esters by enzymatic route: influence of the fatty acid size chain and alcohol structure

    Directory of Open Access Journals (Sweden)

    Heizir F. CASTRO


    Full Text Available A especificidade de uma preparação comercial de lipase imobilizada, com relação a molécula ácida e alcoólica do substrato, foi estudada através da síntese de diversos ésteres de terpenóides. Na série de reações do citronelol e ácidos graxos com diferentes tamanho de cadeia alifática (C2 a C18, altas taxas de esterificação (95 a 98% foram alcançadas para ácidos contendo 4 ou mais carbonos. Numa segunda série de experimentos, diferentes álcoois terpenos foram esterificados com ácido butírico, sendo constatado uma influência marcante da estrutura do álcool de terpeno no desempenho desta preparação enzimática. Graus de esterificação maiores que 95% somente foram obtidos para os álcoois primários como citronelol, geraniol e nerol. Álcoois secundários (mentol e terciários (linalol não foram esterificados, sob as condições testadas.The selectivity of a commercial immobilized lipase preparation was tested in two set of esterification reactions. In the first group, synthesis were carried out with citronellol and different organic acids (C2 to C18. For this case, with the exception of acetic acid, the size of the carbon chain showed no significant alteration in the esterification rates. Acids containing four or more carbons, were considered to be excellent acyl donors, resulting in the esterification rates in the range of 95% to 98%. Alternatively, the esterification reactions were carried out with different terpen alcohols and butyric acid. The alcohol structure showed to have great influence on the performance of this enzyme preparation. Esterification degree over 95% were attained for primary alcohols such as citronellol, geraniol and nerol. Secondary (menthol and tertiary (linallol were not esterified under the tested conditions.

  14. Alcohol y campaniforme


    Vázquez-Cuesta, A. (Antonio)


    Los recientes hallazgos de cerveza en recipientes neolíticos y campaniformes ofrecen una nueva base empírica sobre la que replantear ciertas hipótesis. El panorama que dibuja la documentación actual impide que aceptemos sin crítica planteamientos que, como los de Andrew Sherratt, suponen el marco de referencia para la interpretación del alcohol en la Prehistoria Reciente europea. Se plantea una vía indígena occidental para la elaboración de alcoholes y se pone en duda el gran valo...

  15. Chicano Alcohol Abuse and Alcoholism in the Barrio. (United States)

    Jasso, Ricardo

    Conducted in January 1977, the community survey examined alcohol abuse and alcoholism among Chicanos in the barrios. Data were obtained from 160 respondents (119 females and 41 males) from 3 geographic areas in San Antonio: the Special Impact Area of Casa Del Sol (an alcoholism program) and the cities of San Antonio and Alamo Heights. Information…

  16. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.


    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  17. 聚乙烯醇-g-异氰酸酯-脂肪醇梳状接枝共聚物的合成、结构及热性能%Synthesis, Structure and Thermal Properties of Poly ( vinyl alcohol)-g-isocyanate-fatty Alcohol Comb Copolymers

    Institute of Scientific and Technical Information of China (English)

    石海峰; 李剑华; 尹亿平; 张兴祥; 王笃金


    通过甲苯-2,4-二异氰酸酯(TDI)的连接作用,利用接枝共聚法将具有储热功能的长链脂肪醇[如十八醇(C18OH)、十六醇(C16OH)和十四醇(C14OH)]接枝到聚乙烯醇(PVA)主链上,制备出储热能力不同的聚乙烯醇-g-TDI -脂肪醇[PVA-g-TDI-C (n)]梳状接枝共聚物.通过傅里叶变换红外光谱(FTIR)、差示扫描量热分析(DSC)、热重分析(TGA)和X射线衍射(XRD)等方法研究了PVA-g-TDI-C (n)共聚物的热行为和结晶结构.结果表明,PVA-g-TDI-C(n)共聚物具有良好的储热能力,储热能力随侧链碳原子数目和侧链接枝度的增加而增大,但明显低于长链脂肪醇的储热能力.PVA-g-TDI-C(n)共聚物具有良好的热稳定性,失重温度在324~330℃之间.从侧链受限运动角度探讨了影响PVA-g-TDI-C(n)共聚物热性能和有序堆砌结构的原因.%Using the bridging role of tolylene diisocyanate ( TDI) , poly ( vinyl alcohol) -g-tolylene diisocya-nate-fatty alcohol[ PVA-g-TDI-C( n) , re = 14,16,18] copolymers were synthesized with the fatty alcohols as the thermal storage units along the PVA backbone via the "grafting to" method. The thermal storage behavior, thermal stability and crystalline structure of PVA-g-TDI-C(n) copolymers were detailed investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry ( DSC ) , thermogravimetric analysis (TGA) , X-ray diffraction(XRD). The results show that PVA-g-TDI-C(re) eopolymers exhibit the better thermal storage ability, and the value of enthalpy increases with the side-chain length and the grafting ratio. Compared with the pure fatty alcohols, the grafted ones show the decreased thermal storage efficiency due to the confined mobility of longer methylene groups. Besides the confined mobility of methylene groups, the effect of PVA backbones and the bridging units of TDI also contribute to the decrement of thermal storage ability of PVA-g-TDI-C(re) copolymers. Additionally, PVA

  18. Preparation and Properties of Zn and Cu Co-doped TiO2∶SnO2 Film%Zn,Cu共掺杂的TiO2∶SnO2薄膜的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    伞靖; 魏长平; 何瑞英; 彭春佳


    用溶胶-凝胶法制得Zn,Cu共掺杂的TiO2∶SnO2凝胶,旋转法于玻璃基底镀膜,制备出Zn,Cu共掺杂的TiO2∶SnO2薄膜,探讨了掺杂比例、煅烧温度对其结构、形貌和性能的影响。采用XRD、FTIR、FESEM、PL等测试技术对薄膜进行表征,并考察了其对甲基橙的光催化降解性能。结果表明:600℃时,薄膜粒子的结晶度较高,粒径小,分布均匀,表面平整且无明显裂痕;紫外-可见光谱( UV-Vis)表明:该薄膜在可见光区和紫外区都有很强的吸收;光催化性能测试表明:与纯相TiO2对比,该样品对甲基橙的光催化降解率有较大提高,在最佳掺杂量比为n( Ti)∶n( Sn)∶n( Zn)∶n( Cu)=10∶3∶1∶1时,光催化降解率最高。%By using sol-gel method, Zn and Cu co-doped TiO2∶SnO2 gel was prepared and coated on glass substrates by spin coating method. Under the same experimental conditions, the effects of the different doped proportion of Zn and Cu and calcined temperature on the structure, morphology and property of Zn and Cu co-doped TiO2∶SnO2 film were discussed. By using XRD, FTIR, FESEM, PL etc. , Zn and Cu co-doped TiO2∶SnO2 film was characterized and its photocatalytic degradation performance on methyl orange was researched. The results demonstrate that the particles of Zn and Cu co-doped TiO2∶SnO2 film calcined at 600 ℃ have high crystallization and small size, and the surface is smooth and no obvious cracks. The absorbance of the film is very high in the visible and ultraviolet region. The degradation experiments under UV light illustrate that the photocatalysis deg-radation efficiency of the film on methyl orange increases greatly compare with pure TiO2 film, and the degradation rate reaches the highest with the molar ratio of n ( Ti )∶n ( Sn )∶n ( Zn )∶n ( Cu ) =10∶3∶1∶1 .

  19. Propylthiouracil for alcoholic liver disease

    DEFF Research Database (Denmark)

    Rambaldi, A; Gluud, C


    Randomised clinical trials have addressed the question whether propylthiouracil has any beneficial effects in patients with alcoholic liver disease.......Randomised clinical trials have addressed the question whether propylthiouracil has any beneficial effects in patients with alcoholic liver disease....

  20. Alcohol use and safe drinking (United States)

    ... this page: // Alcohol use and safe drinking To use the sharing features on this page, please enable JavaScript. Alcohol use involves drinking beer, wine, or hard liquor. ...

  1. Alcohol dependence--classificatory considerations. (United States)

    Lesch, O M; Ades, J; Badawy, A; Pelc, I; Sasz, H


    The term alcoholism or alcohol dependence has acquired a broad range of meanings. The Plinius Maior Society herewith presents new classificatory considerations and suggests additional recording of special dimensions according to the individual hypothesis and design of a study.

  2. Propylthiouracil for alcoholic liver disease

    DEFF Research Database (Denmark)

    Fede, Giuseppe; Germani, Giacomo; Gluud, Christian;


    Randomised clinical trials have addressed the question whether propylthiouracil has any beneficial effects in patients with alcoholic liver disease.......Randomised clinical trials have addressed the question whether propylthiouracil has any beneficial effects in patients with alcoholic liver disease....

  3. Propylthiouracil for alcoholic liver disease

    DEFF Research Database (Denmark)

    Rambaldi, A; Gluud, C


    Alcohol is the most common cause of liver disease in the Western world today. Randomised clinical trials have addressed the question whether propylthiouracil has any efficacy in patients with alcoholic liver disease.......Alcohol is the most common cause of liver disease in the Western world today. Randomised clinical trials have addressed the question whether propylthiouracil has any efficacy in patients with alcoholic liver disease....

  4. Fe(Ⅲ)催化的烯丙醇的Friedel-Crafts环化反应合成多取代茚%Synthesis of Multisubstituted Indenes by Fe(Ⅲ)-Catalyzed Friedel-Crafts Cyclization of Allylic Alcohols

    Institute of Scientific and Technical Information of China (English)

    张继坦; 张金花; 方旷; 束官莹; 谢美华


    在FeCl3·6H2O催化下,多取代的烯丙醇可以顺利进行分子内Friedel-Crafts环化反应,以中等到优良的产率得到一系列多取代茚化合物,该反应操作简单、反应条件温和.产物结构经IR,1H NMR,13C NMR,HR MS及X射线单晶衍射分析确证.%FeCl3·6H2O-catalyzed intramolecular Friedel-Crafts cyclization of multisubstituted allylic alcohols proceeded smoothly and a series of multisubstituted indenes were synthesized in moderate to high yields. The reaction has the advantages of simple manipulation and mild reaction conditions. The products were characterized by IR, 'H NMR, 13C NMR, HR MS and X-ray diffraction analysis.

  5. Geriatric Alcoholism and Drug Abuse (United States)

    Schuckit, Marc A.


    This paper reviews the literature and presents new data on alcohol and drug problems in older individuals. Drug abusers include users of opiates, inadvertent misusers, and deliberate abusers of nonopiates. Two to 10 percent of the elderly are alcoholic, and these are usually individuals beginning alcohol abuse after age 40. (Author)

  6. Photobiomodulation on alcohol induced dysfunction (United States)

    Yang, Zheng-Ping; Liu, Timon C.; Zhang, Yan; Wang, Yan-Fang


    Alcohol, which is ubiquitous today, is a major health concern. Its use was already relatively high among the youngest respondents, peaked among young adults, and declined in older age groups. Alcohol is causally related to more than 60 different medical conditions. Overall, 4% of the global burden of disease is attributable to alcohol, which accounts for about as much death and disability globally as tobacco and hypertension. Alcohol also promotes the generation of reactive oxygen species (ROS) and/or interferes with the body's normal defense mechanisms against these compounds through numerous processes, particularly in the liver. Photobiomodulation (PBM) is a cell-specific effect of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems. The cellular effects of both alcohol and LIL are ligand-independent so that PBM might rehabilitate alcohol induced dysfunction. The PBM on alcohol induced human neutrophil dysfunction and rat chronic atrophic gastritis, the laser acupuncture on alcohol addiction, and intravascular PBM on alcoholic coma of patients and rats have been observed. The endonasal PBM (EPBM) mediated by Yangming channel, autonomic nervous systems and blood cells is suggested to treat alcohol induced dysfunction in terms of EPBM phenomena, the mechanism of alcohol induced dysfunction and our biological information model of PBM. In our opinion, the therapeutic effects of PBM might also be achieved on alcoholic myopathy.

  7. Alcohol and American Indian Students. (United States)

    Boyce, George A.

    The growing problem of teenage drinking and alcoholism in the United States, especially among Indian segments of society, increases the necessity for adequate education concerning alcoholism. This document is prepared for the Bureau of Indian Affairs (BIA) schools to acquaint Indian students with social concepts of alcohol outside their cultural…

  8. Counseling Young Children of Alcoholics. (United States)

    Brake, Kathryn J.


    Provides a rationale for services to children of alcoholics and describes school-based interventions to help these children. Asserts that schools are the logical setting for providing knowledge, skills, and support to help children of alcoholics understand the dysfunctional effects of familial alcoholism. Offers suggestions for school counselors…

  9. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation


    Kazutaka Sawada; Hiroshi Kitagaki


    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked ...

  10. Mechanism of histopathological changes of nerve cells experimentally induced by chronic alcohol poisoning. (United States)

    Miyakawa, T; Sumiyoshi, S; Deshimaru, M; Hattori, E; Shikai, I


    Experimental alcoholism was produced in rats by supplying them with 15% ethanol as the only source of liquid for a whole year. Histopathological examination revealed that Purkinje cells and granule cells in the cerebellum mainly showed such changes as decrease of ER, ribosomes and severe atrophy of the nerve cells. It might be speculated that these changes were caused by the disturbance of protein synthesis in the nerve cells induced by chronic alcohol effect.

  11. Alcohol Use Disorder (United States)

    ... to approach that person. Genetic, psychological, social and environmental factors can impact how drinking alcohol affects your body and behavior. ... that may be crowding your mind and causing stress. Acupuncture. With ... under the skin. Acupuncture may help reduce anxiety and depression. Many ...

  12. Consumption of Noncommercial Alcohol among Alcohol-Dependent Patients

    Directory of Open Access Journals (Sweden)

    Y. E. Razvodovsky


    Full Text Available This study explores types of alcohol and surrogates consumed, patterns of consumption, and reasons behind noncommercial alcohol consumption among alcohol-dependent patients in Belarus. The study was conducted in the Belarusian city Grodno in 2012 with 223 alcoholics admitted to narcological clinic using structured interviews. The results suggest that at least 20.2% of alcohol dependent patients regularly consume samogon and 11.8% of patients use surrogates, the most popular among which are medications with a high percentage of ethanol and industrial spirits. The belief that, according to quality criteria, samogon exceeds licensed vodka is the main motive for its consumption. The results of this study suggest the existence of the problem of consumption of noncommercial alcohol among alcohol dependent patients in Belarus.

  13. The risks associated with alcohol use and alcoholism. (United States)

    Rehm, Jürgen


    Alcohol consumption, particularly heavier drinking, is an important risk factor for many health problems and, thus, is a major contributor to the global burden of disease. In fact, alcohol is a necessary underlying cause for more than 30 conditions and a contributing factor to many more. The most common disease categories that are entirely or partly caused by alcohol consumption include infectious diseases, cancer, diabetes, neuropsychiatric diseases (including alcohol use disorders), cardiovascular disease, liver and pancreas disease, and unintentional and intentional injury. Knowledge of these disease risks has helped in the development of low-risk drinking guidelines. In addition to these disease risks that affect the drinker, alcohol consumption also can affect the health of others and cause social harm both to the drinker and to others, adding to the overall cost associated with alcohol consumption. These findings underscore the need to develop effective prevention efforts to reduce the pain and suffering, and the associated costs, resulting from excessive alcohol use.

  14. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. (United States)

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Vicente, António A


    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.

  15. Preoperative alcoholism and postoperative morbidity

    DEFF Research Database (Denmark)

    Tonnesen, H; Kehlet, H


    BACKGROUND: Preoperative risk assessment has become part of daily clinical practice, but preoperative alcohol abuse has not received much attention. METHODS: A Medline search was carried out to identify original papers published from 1967 to 1998. Relevant articles on postoperative morbidity...... in alcohol abusers were used to evaluate the evidence. RESULTS: Prospective and retrospective studies demonstrate a twofold to threefold increase in postoperative morbidity in alcohol abusers, the most frequent complications being infections, bleeding and cardiopulmonary insufficiency. Wound complications...... to postoperative morbidity. CONCLUSION: Alcohol consumption should be included in the preoperative assessment of likely postoperative outcome. Reduction of postoperative morbidity in alcohol abusers may include preoperative alcohol abstinence to improve organ function, or perioperative alcohol administration...

  16. Genetic studies in alcohol research

    Energy Technology Data Exchange (ETDEWEB)

    Karp, R.W. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)


    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) supports research to elucidate the specific genetic factors, now largely unknown, which underlie susceptibility to alcoholism and its medical complications (including fetal alcohol syndrome). Because of the genetic complexity and heterogeneity of alcoholism, identification of the multiple underlying factors will require the development of new study designs and methods of analysis of data from human families. While techniques of genetic analysis of animal behavioral traits (e.g., targeted gene disruption, quantitative trait locus (QTL) mapping) are more powerful that those applicable to humans (e.g., linkage and allelic association studies), the validation of animal behaviors as models of aspects of human alcoholism has been problematic. Newly developed methods for mapping QTL influencing animal behavioral traits can not only permit analyses of human family data to be directly informed by the results of animal studies, but can also serve as a novel means of validating animal models of aspects of alcoholism. 55 refs.

  17. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

    KAUST Repository

    Dong, G.


    Alcohol synthesis is critical to the chemical and pharmaceutical industries. The addition of water across olefins to form primary alcohols (anti-Markovnikov olefin hydration) would be a broadly useful reaction but has largely proven elusive; an indirect hydroboration/oxidation sequence requiring stoichiometric borane and oxidant is currently the most practical methodology. Here, we report a more direct approach with the use of a triple relay catalysis system that couples palladium-catalyzed oxidation, acid-catalyzed hydrolysis, and ruthenium-catalyzed reduction cycles. Aryl-substituted terminal olefins are converted to primary alcohols by net reaction with water in good yield and excellent regioselectivity.

  18. Interventions for alcohol-related offending by women: a systematic review. (United States)

    McMurran, Mary; Riemsma, Rob; Manning, Nathan; Misso, Kate; Kleijnen, Jos


    Treatment programmes specifically for women offenders are under-developed. A systematic review of studies that could inform interventions for alcohol-related offending by women is reported. Three questions were addressed: 1) What is the most up to date knowledge of 'what works' with females who commit alcohol-related offences? 2) What are the identifiable risk-needs factors for non-alcohol dependent women who commit offences involving alcohol misuse? 3) Are there differences between male and female alcohol-related offending? Four studies addressed the effectiveness of psychosocial interventions; three addressed identifiable risk-needs; and 19 addressed differences between male and female offenders' alcohol-related offending. Heterogeneity of these studies precluded meta-analyses, and so a narrative synthesis method was used. There is insufficient evidence to answer the question of what treatment works with women who commit alcohol-related offences. Drunk-driving is most widely studied, and women offenders appear to have more psychosocial problems than men. Alcohol increases the likelihood of violence for both men and women, and, while the mechanisms whereby alcohol increases the likelihood of violence are likely the same in men and women, the effect may be moderated by gender-associated issues. Again, women offenders appear to have more psychosocial problems than men. Implications for developing interventions are discussed.

  19. Ruthenium-Catalyzed Transformations of Alcohols: Mechanistic Investigations and Methodology Development

    DEFF Research Database (Denmark)

    Makarov, Ilya; Madsen, Robert; Fristrup, Peter

    in the transition state of the turnover-determining step. The value of the kinetic isotope effect of 2.290.15 indicated that the C–H bond breakage is not the rate-determining step, but that it is one of several slow steps in the catalytic cycle. Experiments with deuterium-labeled alcohols and amines revealed......The mechanism of the ruthenium-catalyzed dehydrogenative synthesis of amides from alcohols and amines was studied in detail by employing the combination of experimental and theoretical techniques. The Hammett study revealed that a small positive charge is formed at the benzylic position...... alcohols to give esters. Addition of 16.7 mol% of Mg3N2 to the reaction mixture gave esters from aliphatic alcohols in similar yields but at lower temperature as compared with previously a reported catalytic system. This additive also suppressed the decarbonylation of aromatic alcohols. A previously...

  20. Alcohol and nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Jinsong Tang


    Full Text Available Background The frequent co-abuse of alcohol and tobacco may suggest that they share some common neurological mechanisms. For example, nicotine acts on Nicotinic acetylcholine receptors (nAChRs in the brain to release dopamine to sustain addiction. Might nAChRs be entwined with alcohol? Objectives This review summarizes recent studies on the relationship between alcohol and nAChRs, including the role of nAChRs in molecular biological studies, genetic studies and pharmacological studies on alcohol, which indicate that nAChRs have been potently modulated by alcohol. Methods We performed a cross-referenced literature search on biological, genetic and pharmacological studies of alcohol and nAChRs. Results Molecular biological and genetic studies indicated that nAChR (genes may be important in mediating alcohol intake, but we still lack substantial evidence about how it works. Pharmacological studies proved the correlation between nAChRs and alcohol intake, and the association between nicotine and alcohol at the nAChRs. The positive findings of varenicline (a partial agonist at the _4_2 nAChR, smoking-cessation pharmaceutical treatment for alcoholism, provides a new insight for treating co-abuse of these two substances. >Conclusions Molecular biological, genetic and pharmacological studies of alcohol at the nAChR level, provide a new sight for preventing and treating the co-abuse of alcohol and nicotine. Given the important role of nAChRs in nicotine dependence, the interaction between alcohol and nAChRs would provide a new insight in finding effective pharmacological treatments, in decreasing or stopping alcohol consumption and cigarette smoking concurrently.

  1. Convenient synthesis of volatile streptomyces lactones

    Digital Repository Service at National Institute of Oceanography (India)

    Amonkar, C.P.; Tilve, S.G.; Parameswaran, P.S.

    A convenient three-step synthetic approach towards 3-alkyl-5-methyl-2[5 H]furanones is described. The steps involved in the synthesis are domino primary alcohol oxidation-Wittig reaction, acid-catalysed lactonisation and isomerisation. This synthetic...

  2. Green Synthesis of a Fluorescent Natural Product (United States)

    Young, Douglas M.; Welker, Jacob J. C.; Doxsee, Kenneth M.


    Synthesis of 4-methylumbelliferone via the acid-catalyzed Pechmann condensation introduces students to several types of organic reactions: transesterification, electrophilic aromatic substitution, and alcohol dehydration. Performed with a recyclable, solid catalyst and under solvent-free conditions, the experiment illustrates many of the…

  3. Synthesis of pterostilbene by Julie Olefination (United States)

    A simple, stereoselective route for the synthesis of the biologically active compounds trans-pterostilbene and tetramethoxy stilbene from the readily available starting materials 3,5-dimethoxy benzyl alcohol and 4-hydroxy benzaldehyde was developed using Julia olefination as a key reaction....

  4. Role of Alcohol Metabolism in Non-Alcoholic Steatohepatitis (United States)

    Baker, Susan S.; Baker, Robert D.; Liu, Wensheng; Nowak, Norma J.; Zhu, Lixin


    Background Non-alcoholic steatohepatitis (NASH) is a serious form of non-alcoholic fatty liver disease (NAFLD), associated with obesity and insulin resistance. Previous studies suggested that intestinal bacteria produced more alcohol in obese mice than lean animals. Methodology/Principal Findings To investigate whether alcohol is involved in the pathogenesis of NASH, the expression of inflammation, fibrosis and alcohol metabolism related genes in the liver tissues of NASH patients and normal controls (NCs) were examined by microarray (NASH, n = 7; NC, n = 4) and quantitative real-time PCR (NASH, n = 6; NC, n = 6). Genes related to liver inflammation and fibrosis were found to be elevated in NASH livers compared to normal livers. The most striking finding is the increased gene transcription of alcohol dehydrogenase (ADH) genes, genes for catalase and cytochrome P450 2E1, and aldehyde dehydrogenase genes. Immunoblot analysis confirmed the increased expression of ADH1 and ADH4 in NASH livers (NASH, n = 9; NC, n = 4). Conclusions/Significance The augmented activity of all the available genes of the pathways for alcohol catabolism suggest that 1) alcohol concentration was elevated in the circulation of NASH patients; 2) there was a high priority for the NASH livers to scavenge alcohol from the circulation. Our data is the first human evidence that suggests alcohol may contribute to the development of NAFLD. PMID:20221393

  5. Role of alcohol metabolism in non-alcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Susan S Baker

    Full Text Available BACKGROUND: Non-alcoholic steatohepatitis (NASH is a serious form of non-alcoholic fatty liver disease (NAFLD, associated with obesity and insulin resistance. Previous studies suggested that intestinal bacteria produced more alcohol in obese mice than lean animals. METHODOLOGY/PRINCIPAL FINDINGS: To investigate whether alcohol is involved in the pathogenesis of NASH, the expression of inflammation, fibrosis and alcohol metabolism related genes in the liver tissues of NASH patients and normal controls (NCs were examined by microarray (NASH, n = 7; NC, n = 4 and quantitative real-time PCR (NASH, n = 6; NC, n = 6. Genes related to liver inflammation and fibrosis were found to be elevated in NASH livers compared to normal livers. The most striking finding is the increased gene transcription of alcohol dehydrogenase (ADH genes, genes for catalase and cytochrome P450 2E1, and aldehyde dehydrogenase genes. Immunoblot analysis confirmed the increased expression of ADH1 and ADH4 in NASH livers (NASH, n = 9; NC, n = 4. CONCLUSIONS/SIGNIFICANCE: The augmented activity of all the available genes of the pathways for alcohol catabolism suggest that 1 alcohol concentration was elevated in the circulation of NASH patients; 2 there was a high priority for the NASH livers to scavenge alcohol from the circulation. Our data is the first human evidence that suggests alcohol may contribute to the development of NAFLD.

  6. 用清洁生产理念优化苯甲醇和苯甲酸的合成实验%Experiment of Synthesis Optimization for Benzyl Alcohol and Benzoic Acid by Stratagem of Clean Production

    Institute of Scientific and Technical Information of China (English)

    鹿桂芳; 赵喜芝; 王珩


    Preparing benzyl alcohol and benzoic acid by benzyalde is an important experiment in organic chemistry experiment teaching in colleges. But in conventional experiment some problem appears including great consumption of alkali and acid as well as pollution of benzene and hydrogen chloride on the laboratory. In the highlight of clean production such as source controlling, pollution reduction and efficiency enhancement, the parameters of traditional experiment were optimized for the purpose of reducing the pollution of laboratory. The stratagem of clean production may direct a new way for students' life.%以苯甲醛为原料制备苯甲醇与苯甲酸是高校有机化学实验教学中的一个重要实验,但在传统实验中,存在原料用量大,苯、氯化氢污染实验室环境等问题.文章利用清洁生产从源头控制、减污增效的思想,对本实验的传统参数进行了优化,从而减轻对实验室的污染.并在该思想的引领下,使学生了解清洁生产可从身边的事做起.

  7. Synthesis and characterization of water-dispersed CdSe/CdS core-shell quantum dots prepared via Layer-by-layer Method capped with carboxylic-functionalized poly(vinyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Ramanery, Fabio Pereira; Mansur, Alexandra Ancelmo Piscitelli; Mansur, Herman Sander, E-mail: [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Metalurgia e Engenharia dos Materiais. Centro de Nanociencia, Nanotecnologia e Inovacao


    The main goal of this work was to synthesize CdSe/CdS (core-shell) nanoparticles stabilized by polymer ligand using entirely aqueous colloidal chemistry at room temperature. First, the CdSe core was prepared using precursors and acid-functionalized poly(vinyl alcohol) as the capping ligand. Next, a CdS shell was grown onto the CdSe core via the layer-by-layer technique. The CdS shell was formed by two consecutive monolayers, as estimated by empirical mathematical functions. The nucleation and growth of CdSe quantum dots followed by CdS shell deposition were characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy and transmission electron microscopy (TEM). The results indicated a systematic red-shift of the absorption and emission spectra after the deposition of CdS, indicating the shell growth onto the CdSe core. TEM coupled with electron diffraction analysis revealed the presence of CdSe/CdS with an epitaxial shell growth. Therefore, it may be concluded that CdSe/CdS quantum dots with core-shell nanostructure were effectively synthesized.(author)

  8. Dry alcohol production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.


    Full Text Available The IGPC Engineering Department designed basic projects for dry alcohol production plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects a production plant with a capacity of 40 m3/y was manufactured, at "Zorka Pharma", Šabac in 1995-1996. The product meets all quality demands, as well as environmental regulations. The dry alcohol production process is fully automatized. There is no waste in the process, neither gaseous, nor liquid. The chosen process provides safe operation according to temperature regime and resistance in the pipes, air purification columns and filters. Working at increased pressure is suitable for evaporation and condensation at increased temperatures. The production process can be controlled manually, which is necessary during start-up, and repairs.

  9. Alcoholism: Current Marker Research (United States)


    mongolism are high-risk candidates for certain types of leukemia. Similarly, hemophiliacs have a correspondingly high incidence of color blindness . (4...genetically determined characteristics such as color blindness and blood type. GENETIC MARKER STUDIES In 1966 Dr. Cruz-Coke and Dr. Varela reported that...their study had linked color blindness , cirrhosis of the liver and alcoholism. They further hypothesized the existence of a sex-linked carrier gene

  10. Adolescent alcohol use

    DEFF Research Database (Denmark)

    Bendtsen, Pernille; Damsgaard, Mogens Trab; Huckle, Taisia


    AIMS: To analyse how adolescent drunkenness and frequency of drinking were associated with adult drinking patterns and alcohol control policies. DESIGN, SETTING AND PARTICIPANTS: Cross-sectional survey data on 13- and 15-year-olds in 37 countries who participated in the Health Behaviour in School......-Aged Children (HBSC) Study in 2010 (n = 144 788) were linked to national-level indicators on alcohol control policies and adult drinking patterns. MEASUREMENTS: Outcome measures were self-reported weekly drinking and life-time drunkenness (drunk once or more). Data were analysed using multi-level logistic...... regression models. FINDINGS: In the mutually adjusted models, adolescent drunkenness was associated significantly with high adult alcohol consumption [odds ratio (OR) = 3.15 among boys, 95% confidence interval (CI) = 2.13-4.64, OR girls = 2.44, CI = 1.57-3.80] and risky drinking patterns in the adult...

  11. Physician's information about alcohol problems at hospitalisation of alcohol misusers

    DEFF Research Database (Denmark)

    Nielsen, S D; Gluud, C


    Information was gathered on recognition and treatment of alcohol problems in the primary and secondary health sectors, the latter represented by a department of hepatology. The general practitioner finds in most cases (18/26, 69%) that it is relevant to advise about a patient's alcohol misuse...... on admission forms when the patient previously has been discharged from another department with this diagnosis. However, if the patient has not previously been hospitalised due to alcohol misuse, information on the diagnosis is only rarely (30/114, 26%) available. This difference is highly significant (P = 0.......0001). The case-recording hospital physician at admission recognises 73% of alcohol misusers who are admitted with a non-alcohol-related diagnosis. When the patient had been evaluated by both the admitting physician and the case-recording hospital physician, information on the alcohol problem occurred...

  12. Alcohol and the work place

    CERN Multimedia


    The CERN Medical Service has observed an increase in the number of personnel suffering from alcohol-related problems in recent years, in spite of the implementation of stricter regulations concerning the consumption of alcohol on the site. The causes of alcohol-related problems are often complex and many-faceted. A family history of alcohol abuse can be a cofactor in excessive drinking. The effects on a person's work are not negligible and should not be ignored. "Alcohol and the work place" is the third part of a campaign designed to raise awareness of the risks of alcohol consumption, which has already dealt with "alcohol and health" and "alcohol and road safety".Many employers have taken steps to confront the problem, and CERN launched a campaign to help its employees suffering from alcohol-related problems over ten years ago. A standing SCC sub-group on the prevention of alcoholism has been set up and Operational Circular No. 8, which defines the role and responsibilities of all parties concerned in the m...

  13. Lewis Base-Catalyzed Formation of α-Trifluoromethyl Alcohol from CF3SiMe3 and Carbonyl-Containing Compounds

    Institute of Scientific and Technical Information of China (English)

    ZHU Shi-Fa; PANG Wan; XING Chun-Hui; ZHU Shi-Zheng


    Lewis base could catalyze the formation of α-trifluoromethyl alcohol from CF3SiMe3 and carbonyl-containingcompounds. It was found that the a-trilluoromethyl alcohol could also be used to promote the synthesis in basic conditions.

  14. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol-and cytochrome P450 2E1-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Arthur; I; Cederbaum


    S-adenosyl-L-methionine (SAM) acts as a methyl donor for methylation reactions and participates in the synthesis of glutathione. SAM is also a key metabolite that regulates hepatocyte growth, differentiation and death. Hepatic SAM levels are decreased in animal models of alcohol liver injury and in patients with alcohol liver disease or viral cirrhosis. This review describes the protection by SAM against alcohol and cytochrome P450 2E1-dependent cytotoxicity both in vitro and in vivo and evaluates mechanism...

  15. 乙烯-乙烯醇基大分子型强化交联剂的合成与应用%Synthesis and Application of Poly(Ethylene Vinyl Alcohol) Macro Enhanced Crosslinking Agent

    Institute of Scientific and Technical Information of China (English)

    李海红; 张万喜; 樊志鹏; 邓鹏飏


    通过酯化反应制备了乙烯-乙烯醇.丙烯酸(EVOH-AA)接枝型材料,并用红外光谱对接枝产物进行了袁征.凝胶抽提结果表明,由于乙烯基双键的引入,难于辐射交联的EVOH在较低的辐射剂量下就可以辐射交联.具备成为强化交联剂的可能.通过研究改性EVOH与聚乳酸共混物的辐射效应,发现聚乳酸进入交联网格,证明改性EV0H具有一定的强化辐射交联剂的作用.%Ethylene-vinyl alcohol-acrylic (EVOH-AA) graft material was prepared by esterification. Fourier transform infrared spectrum(FT-IR) was used to characterize the graft product. Gel extraction results show that,EVOH which is difficult to cross-link can become easier to cross-link by radiation at a low absorbed dose due to introduction of vinyl double bond, with the possibility to be used as a kind of crosslinking agent. It is found that poly (lactic acid)(PLA) can enter the crosslinking network by studying the radiation effect of functionalized EVOH/PLA blends. It is demonstrated that functionalized EVOH has certain role of enhanced radiation crosslinking agent.

  16. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim


    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  17. Alcohol abuse and related disorders treatment of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Yu. P. Sivolap


    Full Text Available Alcohol abuse and alcoholism are the leading causes of worse health and increased mortality rates. Excessive alcohol consumption is the third leading cause of the global burden of diseases and a leading factor for lower lifespan and higher mortality. Alcohol abuse decreases working capacity and efficiency and requires the increased cost of the treatment of alcohol-induced disorders, which entails serious economic losses. The unfavorable medical and social consequences of excessive alcohol use determine the importance of effective treatment for alcoholism. The goals of rational pharmacotherapy of alcohol dependence are to enhance GABA neurotransmission, to suppress glutamate neurotransmission, to act on serotonin neurotransmission, to correct water-electrolyte balance, and to compensate for thiamine deficiency. Alcoholism treatment consists of two steps: 1 the prevention and treatment of alcohol withdrawal syndrome and its complications (withdrawal convulsions and delirium alcoholicum; 2 antirecurrent (maintenance therapy. Benzodiazepines are the drugs of choice in alleviating alcohol withdrawal and preventing its convulsive attacks and delirium alcoholicum. Diazepam and chlordiazepoxide are most commonly used for this purpose; the safer drugs oxazepam and lorazepam are given to the elderly and patients with severe liver lesions. Anticonvulsants having normothymic properties, such as carbamazepine, valproic acid, topiramate, and lamotrigine, are a definite alternative to benzodiazepines. The traditional Russian clinical practice (clearance detoxification has not a scientific base or significant impact on alcohol withdrawal-related states in addicts. Relapse prevention and maintenance therapy for alcohol dependence are performed using disulfiram, acamprosate, and naltrexone; since 2013 the European Union member countries have been using, besides these agents, nalmefene that is being registered in Russia. Memantine and a number of other

  18. An Analysis of Prospective Teachers’ Understanding Levels and Misconceptions in The Subjects of Organic Chemistry: The Case of Alcohols

    Directory of Open Access Journals (Sweden)

    Gulten Sendur


    Full Text Available Organic chemistry which is called as chemistry of carbon compounds has an important place in chemistry and other fields of science. The fact that the subject of alcohols in organic chemistry is related to organic compounds such as aldehyde, ketone and carboxylic acid made this subject one of the basic subjects of organic chemistry. For this reason, it was aimed to describe prospective science teachers’ understanding levels and misconceptions about alcohols with this study. In this study, alcohol concept test which includes 16 multiple choice items was applied to 77 prospective science teachers to collect data. In addition, semi-structured interview was conducted with 12 prospective science teachers. At the end of study, it was determined that prospective science teachers had difficulties in understanding some topics such as physical properties of alcohols, structural isomerism, oxidation of alcohols and synthesis of alcohols and they had some misconceptions about these topics.

  19. The epigenetic landscape of alcoholism. (United States)

    Krishnan, Harish R; Sakharkar, Amul J; Teppen, Tara L; Berkel, Tiffani D M; Pandey, Subhash C


    Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism.

  20. Fuel alcohol opportunities for Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Greenglass, Bert


    Prepared at the request of US Senator Birch Bayh, Chairman of the National Alcohol Fuels Commission, this study may be best utilized as a guidebook and resource manual to foster the development of a statewide fuel alcohol plan. It examines sectors in Indiana which will impact or be impacted upon by the fuel alcohol industry. The study describes fuel alcohol technologies that could be pertinent to Indiana and also looks closely at how such a fuel alcohol industry may affect the economic and policy development of the State. Finally, the study presents options for Indiana, taking into account the national context of the developing fuel alcohol industry which, unlike many others, will be highly decentralized and more under the control of the lifeblood of our society - the agricultural community.