WorldWideScience

Sample records for alcohol oxidation level

  1. Elevated nitric oxide and 3',5' cyclic guanosine monophosphate levels in patients with alcoholic cirrhosis

    Institute of Scientific and Technical Information of China (English)

    C(i)ntia Siqueira; Miguel Carneiro de Moura; Ana J(u)lia Pedro; Paula Rocha

    2008-01-01

    AIM: To evaluate whether serum levels of nitric oxide (NO') and plasma levels of cyclic guanosine monophosphate (Cgmp) and total glutathione (GSH) are altered in patients with alcoholic cirrhosis and to examine their correlation with the severity of liver disease.METHODS: Twenty-six patients with alcoholic liver cirrhosis were studied. Serum levels of NO· and plasma levels of cGMP and GSH were measured in 7 patients with compensated alcoholic cirrhosis (Child-Pugh A) and 19 patients with advanced cirrhosis (Child-Pugh B and C).The model for end-stage liver disease (MELD) score was evaluated. Sixteen healthy volunteers served as controls.Liver enzymes and creatinine levels were also tested.RESULTS: NO· and cGMP levels were higher in patients with Child-Pugh B and C cirrhosis than in Child-Pugh A cirrhosis or controls (NO·: 21.70 ± 8.07 vs 11.70 ± 2.74; 21.70 ± 8.07 vs 7.26 ± 2.47 μmol/L, respectively;P < 0.001) and (cGMP: 20.12 ± 6.62 vs 10.14 ± 2.78;20.12 ± 6.62 vs 4.95 ± 1.21 pmol/L, respectively; P <0.001). Total glutathione levels were lower in patients with Child-Pugh B and C cirrhosis than in patients with Child-Pugh A cirrhosis or controls (16.04 ± 6.06 vs 23.01 ± 4.38 or 16.04 ± 6.06 vs 66.57 ± 26.23 μmol/L,respectively; P < 0.001). There was a significant correlation between NO· and cGMP levels in all patients with alcoholic cirrhosis. A significant negative correlation between reduced glutathione/glutathione disulfide and the MELD score was found in all cirrhotic patients. CONCLUSION: Our results suggest a role for oxidative stress in alcoholic liver cirrhosis, which is more significant in decompensated patients with higher levels of NO· and cGMP and lower GSH levels than in compensated and control patients. Altered mediator levels in decompensated patients may influence the hemodynamic changes in and progression of liver disease.

  2. Trace Level Determination of Mesityl Oxide and Diacetone Alcohol in Atazanavir Sulfate Drug Substance by a Gas Chromatography Method.

    Science.gov (United States)

    Raju, K V S N; Pavan Kumar, K S R; Siva Krishna, N; Madhava Reddy, P; Sreenivas, N; Kumar Sharma, Hemant; Himabindu, G; Annapurna, N

    2016-01-01

    A capillary gas chromatography method with a short run time, using a flame ionization detector, has been developed for the quantitative determination of trace level analysis of mesityl oxide and diacetone alcohol in the atazanavir sulfate drug substance. The chromatographic method was achieved on a fused silica capillary column coated with 5% diphenyl and 95% dimethyl polysiloxane stationary phase (Rtx-5, 30 m x 0.53 mm x 5.0 µm). The run time was 20 min employing programmed temperature with a split mode (1:5) and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for mesityl oxide and diacetone alcohol were 5 µg/g and 10 µg/g, respectively, for both of the analytes. The method was found to be linear in the range between 10 µg/g and 150 µg/g with a correlation coefficient greater than 0.999, and the average recoveries obtained in atazanavir sulfate were between 102.0% and 103.7%, respectively, for mesityl oxide and diacetone alcohol. The developed method was found to be robust and rugged. The detailed experimental results are discussed in this research paper. PMID:27222607

  3. Modulatory effect of pineapple peel extract on lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats

    Institute of Scientific and Technical Information of China (English)

    Okafor OY; Erukainure OL; Ajiboye JA; Adejobi RO; Owolabi FO; Kosoko SB

    2011-01-01

    Objective: To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation, changes in catalase activities and hepatic biochemical marker levels in blood plasma. Methods: Oxidative stress was induced by oral administration of ethanol (20% w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min. The plasma was analyzed to evaluate malondialdehyde (MDA), catalase activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) concentrations. Results: Administration of alcohol caused a drastic increase (87.74%) in MDA level compared with the control. Pineapple peel extract significantly reduced the MDA level by 60.16% at 2.5 mL/kg bw. Rats fed alcohol only had the highest catalase activity, treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity. Increased AST, ALP and ALT activities were observed in rats fed alcohol only respectively, treatment with pineapple peel extract drastically reduced their activities. Conclusions: The positive modulation of lipid peroxidation, catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcohol-induced oxidative stress is an indication of its protective ability in the management of alcohol-induced toxicity.

  4. The role of oxidative stress in alcoholic liver injury

    Directory of Open Access Journals (Sweden)

    Radosavljević Tatjana

    2009-01-01

    Full Text Available Introduction. Oxidative stress plays an important role in pathogenesis of alcoholic liver injury. The main source of free oxygen species is cytochrome P450-dependent monooxygenase, which can be induced by ethanol. Role of cytochrome P4502E1 in ethanol-induced oxidative stress. Reactive oxygen species produced by this enzyme are more important in intracellular oxidative damage compared to species derived from activated phagocytes. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in alcohol-induced oxidative stress. Production of mitochondrial reactive oxygen species is increased, and glutathione content is decreased in chronically ethanolfed animals. Oxidative stress in mitochondria leads to mitochondrial DNA damage and has a dual effect on apoptosis. Role of Kupffer cells in alcohol-induced liver injury. Chronic ethanol consumption is associated with increased release of endotoxin from gut lumen into portal circulation. Endotoxin activates Kupffer cells, which then release proinflammatory cytokines and oxidants. Role of neutrophils in alcohol-induced liver injury. Alcoholic liver injury leads to the accumulation of neutrophils, which release reactive oxygen species and lysosomal enzymes and contribute to hepatocyte damage and necrosis. Role of nitric oxide in alcohol-induced oxidative stress. High amounts of nitric oxide contribute to the oxidative damage, mainly by generating peroxynitrites. Role of antioxidants in ethanol-induced oxidative stress. Chronic ethanol consumption is associated with reduced liver glutathione and α-tocopherol level and with reduced superoxide dismutase, catalase and glutathione peroxidase activity. Conclusion. Oxidative stress in alcoholic liver disease is a consequence of increased production of oxidants and decreased antioxidant defense in the liver.

  5. Oxidation of the Primary Alcoholic Moiety Selectively in the Presence of the Secondary Alcoholic Moieties

    International Nuclear Information System (INIS)

    Both primary and secondary alcoholic moieties are very sensitive to oxidation reactions. But sometimes it is necessary to oxidized only the primary alcoholic moiety. Such cases are usually found in Food Industries. In this situation, TEMPO (1, 1, 6, 6-Tetramethyl-1-Piperidine Oxoammonium) was used as an oxidizing agent. In this paper, Alpha starch was successfully oxidized using TEMPO as the oxidizing agent in combination with sodium hypochlorite with and without sodium bromide. The oxidation of primary alcoholic moiety only and the remaining untouched secondary alcoholic moiety were proved by infrared spectroscopy method.

  6. Aqueous Media Oxidation of Alcohols with Ammonium Persulfate

    Institute of Scientific and Technical Information of China (English)

    IMANZADEH, Gholam Hassan; ZAMANLOO, Mohammad R.; MANSOORI, Yaghoob; KHODAYARI, Ali

    2007-01-01

    Oxidation of series of various primary and secondary alcohols to corresponding carbonyl compounds with ammonium persulfate in aqueous media was described. No over oxidation of primary alcohols to carboxylic acids and secondary alcohols to esters was observed. Under such conditions benzoin was converted to benzoic acid.

  7. DETERMINATION OF PROTEIN CARBONYL LEVELS IN PATIENTS WITH CHRONIC ALCOHOLICS AND EVALUATION TOGETHER WITH OTHER PARAMETERS

    OpenAIRE

    YALCIN, Serap

    2011-01-01

    Investigation of the impact of oxidative stress, of which chronic alcohol consumption is an important indicator, on proteins and lipids. In this study, in order to evaluate oxidative damage, blood samples of 40 alcoholic patients, lying in the psychiatry clinic of Ankara University with the diagnosis of alcoholism, and 20 healthy people have been worked with spectrophotometric method. Malondialdehyde (MDA), lipid peroxidation product, and protein carbonyl (PCO) levels observed as statisticall...

  8. Atmospheric oxidation of selected alcohols and esters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Cavalli, F.

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  9. Biocatalytic oxidation of benzyl alcohol to benzaldehyde via hydrogen transfer

    NARCIS (Netherlands)

    Orbegozo, Thomas; Lavandera, Iván; Fabian, Walter M.F.; Mautner, Barbara; Vries, Johannes G. de; Kroutil, Wolfgang

    2009-01-01

    Various types of biocatalysts like oxidases, alcohol dehydrogenases, and microbial cells were tested for the oxidation of benzyl alcohol. Oxidases in combination with molecular oxygen led to low conversion. Alcohol dehydrogenases and microbial cells were tested in a hydrogen transfer reaction employ

  10. Does Moderate Level of Alcohol Consumption Produce a Relaxation Effect?

    Science.gov (United States)

    Chen, William; Lockhart, Judy O.

    Although many individuals use alcohol to cope with stress (their behavior being based on the belief that alcohol can produce a relaxation effect), research has reported conflicting results on the effects of alcohol on tension reduction. A study was conducted to examine the psychophysiological effects of moderate levels of alcohol consumption under…

  11. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  12. Studies on the Oxidative Stress in Alcohol Abusers in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective In order to study the relationship between alcohol abuse and oxidative stress, and to identify oxidative damage of alcohol abuse in human bodies. Methods 80 cases of male alcoholics (AL) aged 40 years old and 80 cases of male healthy volunteers (HV) of the same age without drinking history were investigated by measuring concentrations of vitamin C (VC), vitamin E (VE) and β-carotene (β-CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in RBC with spectrophotometric assays. Results Compared with the average values (AV) of the above biochemical parameters in the HV group, the average values of VC, VE and β-CAR in plasma and the activities of SOD, CAT and GSH-Px in RBC in the AL group were significantly decreased (P = 0.0000). The findings in linear regression and correlation analysis for 80 alcoholics showed that with the prolonged drinking duration and increased daily drinking quantity, the values of VC, VE and β-CAR in plasma as well as SOD, CAT and GSH-Px in RBC in the alcoholics were gradually decreased (P = 0.000), representing a respectively significant linear negative correlation. The analysis of stepwise regression and correlation revealed that the drinking duration had the closest correlation with the values of VE in plasma as well as CAT and GSH-Px in RBC, while the daily drinking quantity had the closest correlation with the values of VC, VE and β-CAR in plasma as well as SOD and GSH-Px in RBC. Conclusion The findings of the present study suggested that the oxidative stress in the alcoholics became pathologically intensified, leading to potential oxidative damages in their bodies. Therefore, alcoholics should abstain from alcohol drinking, and should take as supplements suitable dosage of antioxidants per day such as VC, VE, β-CAR and others to moderate potential oxidative damages in their bodies.

  13. Oxidation of Alcohols by N-bromosuccinimide in Water

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    XIE Min, MIAO Cheng-xia, WANG Shou-feng, SUN Wei J. Mol. Catal. (China) 2012, 26(2), 099-104 A series of alcohols were oxidatized to the correspondinl ketones or aldehydes in high yields by N-bromosuccinimide un-der catalyst-free conditions in water, except for some alcohols bearing donating substituents. However, the oxidation of less ef- fective alcohols could be carried out smoothly with Salen-Co (III) complex as a catalyst in a medium of water and CH2 C12 mixture.

  14. Adolescent alcohol use reflects community-level alcohol consumption irrespective of parental drinking

    DEFF Research Database (Denmark)

    Bendtsen, Pernille; Damsgaard, Mogens Trab; Tolstrup, Janne Schurmann;

    2013-01-01

    Risk factors for adolescent alcohol use are typically conceptualized at the individual level, and school- and community-level risk factors have received little attention. Based on the theoretical understanding of youth alcohol consumption as a reflection of community social practice, we analyzed...... whether adolescent drunkenness was related to community-level adult alcohol use (AAC), when taking individual and school-level risk factors for drunkenness into account. Furthermore, we investigated whether the association between community-level AAC and adolescent drunkenness was attenuated after...

  15. Different techniques for reducing alcohol levels in wine: A review⋆

    OpenAIRE

    Ozturk Burcu; Anli Ertan

    2014-01-01

    Both the increasing interest on healthy life and the legal limitations of each country for a specific wine style make essential the adjustment of the wine alcohol content. Especially the increase of the average weather temperature around the world gives rise to the grapes grown into high sugar content and low acidity. The wines produced from these grapes have consequently high alcohol content. High alcohol levels can negatively influence wine aroma balance in conjunction with the consumer acc...

  16. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    OpenAIRE

    Tetsuo Umegaki; Yusuke Yamada; Atsushi Ueda; Nobuhiro Kuriyama; Qiang Xu

    2009-01-01

    We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-prod...

  17. Impact of Dyrk1A level on alcohol metabolism.

    Science.gov (United States)

    Renon, Marjorie; Legrand, Béatrice; Blanc, Etienne; Daubigney, Fabrice; Bokobza, Cindy; Mortreux, Marie; Paul, Jean-Louis; Delabar, Jean-Maurice; Rouach, Hélène; Andreau, Karine; Janel, Nathalie

    2016-09-01

    Alcoholic liver diseases arise from complex phenotypes involving many genetic factors. It is quite common to find hyperhomocysteinemia in chronic alcoholic liver diseases, mainly due to deregulation of hepatic homocysteine metabolism. Dyrk1A, involved in homocysteine metabolism at different crossroads, is decreased in liver of hyperhomocysteinemic mice. Here, we hypothesized that Dyrk1A contributes to alcohol-induced hepatic impairment in mice. Control, hyperhomocysteinemic and mice overexpressing Dyrk1A were fed using a Lieber-DeCarli liquid diet with or without ethanol (5% v/v ethanol) for one month, and liver histological examination and liver biochemical function tests were performed. Plasma alanine aminotransferase and homocysteine levels were significantly decreased in mice overexpressing Dyrk1A compared to control mice with or without alcohol administration. On the contrary, the mean plasma alanine aminotransferase and homocysteine levels were significantly higher in hyperhomocysteinemic mice than that of control mice after alcohol administration. Paraoxonase 1 and CYP2E1, two phase I xenobiotic metabolizing enzymes, were found increased in the three groups of mice after alcohol administration. However, NQO1, a phase II enzyme, was only found increased in hyperhomocysteinemic mice after alcohol exposure, suggesting a greater effect of alcohol in liver of hyperhomocysteinemic mice. We observed positive correlations between hepatic alcohol dehydrogenase activity, Dyrk1A and ADH4 protein levels. Importantly, a deleterious effect of alcohol consumption on hepatic Dyrk1A protein level was found. Our study reveals on the one hand a role of Dyrk1A in ethanol metabolism and on the other hand a deleterious effect of alcohol administration on hepatic Dyrk1A level. PMID:27216978

  18. Selective oxidation of benzylic alcohols using copper-manganese mixed oxide nanoparticles as catalyst

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2015-07-01

    Full Text Available The catalytic activity of copper-manganese (CuMn2 mixed oxide nanoparticles (Cu/Mn = 1:2 has been studied for the selective oxidation of benzylic alcohols to the corresponding aldehydes using molecular oxygen as an oxidizing agent. The CuMn2 mixed oxide showed excellent catalytic activity for the oxidation of benzylic alcohols to the corresponding aldehydes with high selectivity (>99%. The complete conversion (100% of all the benzylic alcohols to the corresponding aldehydes is achieved within a short reaction period at 102 °C. The catalytic performance is obtained to be dependent on the electronic and steric effects of the substituents present on the phenyl ring. Electron withdrawing and bulky groups attached to the phenyl ring required longer reaction time for a complete conversion of the benzylic alcohols.

  19. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    Directory of Open Access Journals (Sweden)

    Ye Han

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer and analyzed by high performance liquid chromatography (HPLC and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days drastically prevented the elevated activities of aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP and triglyceride (TG in serum and the levels of malondialdehyde (MDA, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β in liver tissue (p < 0.05. Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05. Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  20. Levels and types of alcohol biomarkers in DUI and clinic samples for estimating workplace alcohol problems.

    Science.gov (United States)

    Marques, Paul R

    2012-02-01

    Widespread concern about illicit drugs as an aspect of workplace performance potentially diminishes attention on employee alcohol use. Alcohol is the dominant drug contributing to poor job performance; it also accounts for a third of the worldwide public health burden. Evidence from public roadways--a workplace for many--provides an example of work-related risk exposure and performance lapses. In most developed countries, alcohol is involved in 20-35% of fatal crashes; drugs other than alcohol are less prominently involved in fatalities. Alcohol biomarkers can improve detection by extending the timeframe for estimating problematic exposure levels and thereby provide better information for managers. But what levels and which markers are right for the workplace? In this paper, an established high-sensitivity proxy for alcohol-driving risk proclivity is used: an average eight months of failed blood alcohol concentration (BAC) breath tests from alcohol ignition interlock devices. Higher BAC test fail rates are known to presage higher rates of future impaired-driving convictions (driving under the influence; DUI). Drivers in alcohol interlock programmes log 5-7 daily BAC tests; in 12 months, this yields thousands of samples. Also, higher programme entry levels of alcohol biomarkers predict a higher likelihood of failed interlock BAC tests during subsequent months. This paper summarizes the potential of selected biomarkers for workplace screening. Markers include phosphatidylethanol (PEth), percent carbohydrate deficient transferrin (%CDT), gammaglutamyltransferase (GGT), gamma %CDT (γ%CDT), and ethylglucuronide (EtG) in hair. Clinical cut-off levels and median/mean levels of these markers in abstinent people, the general population, DUI drivers, and rehabilitation clinics are summarized for context. PMID:22311827

  1. Levels and Types of Alcohol Biomarkers in DUI and Clinic Samples for Estimating Workplace Alcohol Problemsa

    Science.gov (United States)

    Marques, Paul R

    2013-01-01

    Widespread concern about illicit drugs as an aspect of workplace performance potentially diminishes attention on employee alcohol use. Alcohol is the dominant drug contributing to poor job performance; it also accounts for a third of the worldwide public health burden. Evidence from public roadways – a workplace for many – provides an example for work-related risk exposure and performance lapses. In most developed countries, alcohol is involved in 20-35% of fatal crashes; drugs other than alcohol are less prominently involved in fatalities. Alcohol biomarkers can improve detection by extending the timeframe for estimating problematic exposure levels and thereby provide better information for managers. But what levels and which markers are right for the workplace? In this report, an established high-sensitivity proxy for alcohol-driving risk proclivity is used: an average 8 months of failed blood alcohol concentration (BAC) breath tests from alcohol ignition interlock devices. Higher BAC test fail rates are known to presage higher rates of future impaired-driving convictions (DUI). Drivers in alcohol interlock programs log 5-7 daily BAC tests; in 12 months, this yields thousands of samples. Also, higher program entry levels of alcohol biomarkers predict a higher likelihood of failed interlock BAC tests during subsequent months. This report summarizes selected biomarkers’ potential for workplace screening. Markers include phosphatidylethanol (PEth), percent carbohydrate deficient transferrin (%CDT), gammaglutamyltransferase (GGT), gamma %CDT (γ%CDT), and ethylglucuronide (EtG) in hair. Clinical cutoff levels and median/mean levels of these markers in abstinent people, the general population, DUI drivers, and rehabilitation clinics are summarized for context. PMID:22311827

  2. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    Science.gov (United States)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  3. Exacerbation of alcohol-induced oxidative stress in rats by polyunsaturated fatty acids and iron load

    Directory of Open Access Journals (Sweden)

    S N Patere

    2011-01-01

    Full Text Available The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography, polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron.

  4. Selective oxidation of alcohols over nickel zirconium phosphate

    Institute of Scientific and Technical Information of China (English)

    Abdol R. Hajipour; Hirbod Karimi; Afshin Koohi

    2015-01-01

    Nickel zirconium phosphate nanoparticles were found to function as efficient catalysts for the selec-tive oxidation of a wide range of alcohols to their corresponding ketones and aldehydes using H2O2 as an oxidizing agent and without any organic solvents, phase transfer catalysts, or additives. The steric and electronic properties of various substrates had significant influence on the reaction con-ditions required to achieve acetylation. The results showed that this method can be applied for the chemoselective oxidation of benzyl alcohols in the presence of aliphatic alcohols. The catalyst used in the current study was characterized by ICP-OES, XRD, NH3-TPD, Py-FTIR, N2 adsorp-tion-desorption, SEM and TEM. These analyses revealed that the interlayer distance in the catalyst increased from 0.75 to 0.98 nm when Ni2+ was intercalated between the layers, whereas the crystal-linity of the material was reduced. The nanocatalyst could also be recovered and reused at least seven times without any discernible decrease in its catalytic activity. This new method for the oxi-dation of alcohols has several key advantages, including mild and environmentally friendly reaction conditions, short reaction time, excellent yields and a facile work-up.

  5. ULTRASOUND-ASSISTED ORGANIC SYNTHESIS: ALCOHOL OXIDATION AND OLEFIN EPOXIDATION

    Science.gov (United States)

    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin EpoxidationUnnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis EnriquezU.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268 Phone: 513-569-773...

  6. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators.

    Science.gov (United States)

    Badalyan, Artavazd; Stahl, Shannon S

    2016-07-21

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1–2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2′-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2′-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  7. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators.

    Science.gov (United States)

    Badalyan, Artavazd; Stahl, Shannon S

    2016-07-21

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1–2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2′-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2′-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  8. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    Science.gov (United States)

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1–2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  9. Process requirements of galactose oxidase catalyzed oxidation of alcohols

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; R. Birmingham, William; Rehn, Gustav;

    2015-01-01

    biocatalyst for the oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones, respectively. However, GOase requires a number of additives to sustain its catalytic function, such as the enzyme catalase for degradation of the byproduct hydrogen peroxide as well as single......-electron oxidants to reactivate the enzyme upon loss of the amino acid radical in its active site. In this work, the addition of catalase, single-electron oxidants, and copper ions was investigated systematically in order to find the minimum concentrations required to obtain a fully active GOase. Furthermore...

  10. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1.

    Science.gov (United States)

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Chatterjee, Suvro; Clemens, Dahn L; Dey, Aparajita

    2011-06-01

    Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis. PMID:21414402

  11. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air

    DEFF Research Database (Denmark)

    Poreddy, Raju; Engelbrekt, Christian; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of alcohols to carbonyl compounds was studied using CuO nanoparticle catalysts prepared by solution synthesis in buffered media. CuO nanoparticles synthesized in N-cyclohexyl- 3-aminopropanesulfonic acid buffer showed high catalytic activity for the oxidation...

  12. Oxidation of Alcohols Catalyzed by Ruthenium Complexes with Iodosylbenzene as Oxidant

    Institute of Scientific and Technical Information of China (English)

    Zi Qiang LEI; Qiao Xiang KANG; Xiang Zhen BAI; Zhi Wang YANG; Qing Hua ZHANG

    2005-01-01

    Five ruthenium complexes such as Phen-Ru-Phen, Phen-Ru-Bipy, Phen-Ru-Quin,Quin-Ru-Quin and Bipy-Ru-Quin (where Phen=1, 10-phenanthroline, Quin=8-hydroxyquinoline,Bipy=2, 2′-bipyridine) were synthesized and used as catalysts for the oxidation of benzylic and primary aliphatic alcohols with iodosylbenzene as oxidant. The oxidations were carried out at room temperature, affording the corresponding aldehydes and ketones with high selectivity.

  13. Studies on the Oxidative Stress in Alcohol Abusers in China

    Institute of Scientific and Technical Information of China (English)

    ZHOUJUN-FU; CHENPENG

    2001-01-01

    Objective:In order to study the relationship between alcoho abuse and oxidative stress,and to identify oxidative damage of alcoho abuse in human bodies.Methods:80 Cases of male alcoholics(AL) aged 40 years old and 80 cases of male healthy volunteers(HV)of the same age without drinking histroy were investigated by measuring concentrations of vitaminC(VC),vitamin E (VE) and β-carotene(β-CAR)in plasma as well as activities of superoxide dismutase(SOD),catalse(CAT) and glutathione peroxidase(GSH-Px)in RBC with spectrophotometri assays.Results:Compared with the average values(AV) of the above biochemical parameters in the HV group ,the average values of VC,VE and β-CAR in plasma and the activities of SOD,CAT and GSH-Px in RBC in the AL group were significantly decreased (P=0.0000),The findings in linear regression and correlation analysis for 80 alcoholics showed that with the prolonged drinking duration and increased daily drinking quantity,the values of VC,VE and β-CAR in plasma as well as SOD,CAT and GSH-Px in RBC in the alcoholics were gradually decreased(P=0.000),representing a respectively significant linear negative correlation.The analysis of stepwise regression and correlation rewvealed that the drinking duration had the closest correlation with the values of VE in plasma as well as CAT and GSH-Px in RBC,while the daily drinking quantity had the closest correlation with the values of VC,VE and β-CAR in plasma as well as SOD and GSH-Px in RBC,Conclusion :The findings of the present study suggested that the oxidative stress in the alcoholics became pathologically intensified,leading to potential oxidative damages in their bodies.Therefore,alcoholica should abstain from alcohol drinking,and should take as supplements suitable dosage of antioxidants per day such as VC,VE,β-CAR and others to moderate potential oxidative damages in their bodies.

  14. Effects of triterpenoid from Schisandra chinensis on oxidative stress in alcohol-induced liver injury in rats.

    Science.gov (United States)

    Li, Bin; Zhu, Lijie; Wu, Ting; Zhang, Jiachen; Jiao, Xinyao; Liu, Xiuying; Wang, Yanqun; Meng, Xianjun

    2015-03-01

    Alcohol-induced oxidative stress plays a crucial role in the pathological development of alcoholic liver disease. The aim of this study was to investigate the effects of triterpenoid from Schisandra chinensis on oxidative stress in alcohol-induced liver injury in rats. We found that the administration of triterpenoid attenuated alcohol-induced oxidative stress in multiple organs including liver. Moreover, the impaired liver function and histological changes resulted from alcohol consumption was improved by triterpenoid treatment. Finally, we found that pretreatment with triterpenoid from Schisandra chinensis to alcohol-fed rats increased the expression level of haem oxygenase-1 (HO-1) while inhibited the induction of cytochrome P-450 2E1 (CYP2E1) in liver microsomes. Further assays revealed that the microsomal activity of HO-1 was accordingly induced whereas CYP2E1 was suppressed in rats received triterpenoid intervention. Our findings suggest that triterpenoid from Schisandra chinensis may protect against alcohol-induced liver injury through ameliorating oxidative stress in rats.

  15. An Analysis of Prospective Teachers’ Understanding Levels and Misconceptions in The Subjects of Organic Chemistry: The Case of Alcohols

    Directory of Open Access Journals (Sweden)

    Gulten Sendur

    2013-06-01

    Full Text Available Organic chemistry which is called as chemistry of carbon compounds has an important place in chemistry and other fields of science. The fact that the subject of alcohols in organic chemistry is related to organic compounds such as aldehyde, ketone and carboxylic acid made this subject one of the basic subjects of organic chemistry. For this reason, it was aimed to describe prospective science teachers’ understanding levels and misconceptions about alcohols with this study. In this study, alcohol concept test which includes 16 multiple choice items was applied to 77 prospective science teachers to collect data. In addition, semi-structured interview was conducted with 12 prospective science teachers. At the end of study, it was determined that prospective science teachers had difficulties in understanding some topics such as physical properties of alcohols, structural isomerism, oxidation of alcohols and synthesis of alcohols and they had some misconceptions about these topics.

  16. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    Science.gov (United States)

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  17. The effect of different alcoholic beverages on blood alcohol levels, plasma insulin and plasma glucose in humans.

    Science.gov (United States)

    Nogueira, L C; Couri, S; Trugo, N F; Lollo, P C B

    2014-09-01

    In the present work we studied the effects of four alcoholic beverages on blood alcohol levels, plasma insulin concentrations and plasma glucose concentrations in men and women. The volunteers were healthy non-smokers and they were divided according to sex into two groups of ten individuals. The alcoholic beverages used in the study were beer, red wine, whisky and "cachaça". In men, ingestion of the distilled drinks promoted a spike in blood alcohol levels more quickly than ingestion of the fermented drinks. In women, beer promoted the lowest blood alcohol levels over the 6h of the experiment. Whisky promoted highest blood alcohol levels in both sexes. The ingestion of wine promoted a significant difference in relation to the blood alcohol concentration (BAC) as a function of gender. The ingestion of cachaça by women produced BAC levels significantly smaller than those obtained for wine.

  18. Phytophenols in whisky lower blood acetaldehyde level by depressing alcohol metabolism through inhibition of alcohol dehydrogenase 1 (class I) in mice.

    Science.gov (United States)

    Haseba, Takeshi; Sugimoto, Junichi; Sato, Shigeo; Abe, Yuko; Ohno, Youkichi

    2008-12-01

    We recently reported that the maturation of whisky prolongs the exposure of the body to a given dose of alcohol by reducing the rate of alcohol metabolism and thus lowers the blood acetaldehyde level (Alcohol Clin Exp Res. 2007;31:77s-82s). In this study, administration of the nonvolatile fraction of whisky was found to lower the concentration of acetaldehyde in the blood of mice by depressing alcohol metabolism through the inhibition of liver alcohol dehydrogenase (ADH). Four of the 12 phenolic compounds detected in the nonvolatile fraction (caffeic acid, vanillin, syringaldehyde, ellagic acid), the amounts of which increase during the maturation of whisky, were found to strongly inhibit mouse ADH 1 (class I). Their inhibition constant values for ADH 1 were 0.08, 7.9, 15.6, and 22.0 mumol/L, respectively, whereas that for pyrazole, a well-known ADH inhibitor, was 5.1 mumol/L. The 2 phenolic aldehydes and ellagic acid exhibited a mixed type of inhibition, whereas caffeic acid showed the competitive type. When individually administered to mice together with ethanol, each of these phytophenols depressed the elimination of ethanol, thereby lowering the acetaldehyde concentration of blood. Thus, it was demonstrated that the enhanced inhibition of liver ADH 1 due to the increased amounts of these phytophenols in mature whisky caused the depression of alcohol metabolism and a consequent lowering of blood acetaldehyde level. These substances are commonly found in various food plants and act as antioxidants and/or anticarcinogens. Therefore, the intake of foods rich in them together with alcohol may not only diminish the metabolic toxicity of alcohol by reducing both the blood acetaldehyde level and oxidative stress, but also help limit the amount of alcohol a person drinks by depressing alcohol metabolism.

  19. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol

    OpenAIRE

    Nowicka, E.; HOFMANN, J.P.; Parker, S. F.; Sankar, M.; Lari, G.M.; Kondrat, S.A.; Knight, D. W.; Bethell, D; Weckhuysen, B.M.; G. J. Hutchings

    2013-01-01

    In the solvent free oxidation of benzyl alcohol, using supported gold–palladium nanoalloys, toluene is often one of major by-products and it is formed by the disproportionation of benzyl alcohol. Gold–palladium catalysts on acidic supports promote both the disproportionation of benzyl alcohol and oxidative dehydrogenation to form benzaldehyde. Basic supports completely switch off disproportionation and the gold–palladium nanoparticles catalyse the oxidative dehydrogenation reaction exclusivel...

  20. Selective oxidation of benzyl alcohol in dense CO2

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Grunwaldt, Jan-Dierk; Tsivintzelis, Ioannis;

    2012-01-01

    Catalytic reactions in pressurized CO2 are often strongly affected by the phase behavior. Knowledge on phase behavior is therefore desirable for optimizing the reaction conditions but often requires considerable experimental effort. Here, a previously established thermodynamic model for complex...... systems, based on the Cubic Plus Association (CPA) equation of state, is utilized in order to gain insight into the phase behavior during the palladium-catalyzed selective oxidation of benzyl alcohol to benzaldehyde. The catalytic reaction was studied in a tubular continuous reactor both under biphasic...

  1. The aerobic oxidation of alcohols with a ruthenium porphyrin catalyst in organic and fluorinated solvents.

    Science.gov (United States)

    Korotchenko, Vasily N; Severin, Kay; Gagné, Michel R

    2008-06-01

    Carbonylruthenium tetrakis(pentafluorophenyl)porphyrin Ru(TPFPP)(CO) was utilized for the aerobic oxidation of alcohols. The in situ activation of the catalyst with mCPBA provided a species capable of catalyzing the oxidation of alcohols with molecular oxygen. The choice of solvent and additive was crucial to obtaining high activity and selectivity. Secondary aromatic alcohols were oxidized in the presence of the ruthenium porphyrin and tetrabutyl ammonium hydroxide in the solvent bromotrichloromethane, enabling high yields to be achieved (up to 99%). Alternatively, alcohols could be oxidized in perfluoro(methyldecalin) with the ruthenium porphyrin at higher temperatures (140 degrees C) and elevated oxygen pressures (50 psi).

  2. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Nida Ambreen

    2013-07-01

    Full Text Available Hypervalent iodine(III/TEMPO-mediated oxidation of various aliphatic, aromatic and allylic alcohols to their corresponding carbonyl compounds was successfully achieved by using microreactor technology. This method can be used as an alternative for the oxidation of various alcohols achieving excellent yields and selectivities in significantly shortened reaction times.

  3. Gold Nanoparticles Supported on Magnesium Oxide Nanorods for Oxidation of Alcohols.

    Science.gov (United States)

    Emayavaramban, P; Babu, S Ganesh; Karvembu, R; Kadirvelu, K; Dharmaraj, N

    2016-03-01

    Gold nanoparticles supported on magnesium oxide nanorods (Au-MgO) have been synthesised by a solution based chemical reduction method. Au-MgO nanorods were found to be an efficient heterogeneous catalyst for oxidation of alcohols with hydrogen peroxide in aqueous medium at room temperature. To find out the best reaction conditions for oxidation, optimization of catalyst quantity, solvent, mole equivalence of hydrogen peroxide were carried out. The scope of the reaction was extended to several aromatic and aliphatic alcohols, product yields were quantified by gas chromatography (GC) and GC/mass spectroscopy. Heterogeneity and reusability tests were performed. The use of water as a solvent and hydrogen peroxide as co-catalyst at room temperature makes the reaction interesting from sustainable development point of view.

  4. Sorption of poly(vinyl alcohol) and its cationic derivative on silica oxide: effect of charge

    NARCIS (Netherlands)

    Liesiene, J.; Matulioniene, J.; Aniulyte, J.; Keizer, de A.

    2005-01-01

    Adsorption of poly(vinyl alcohol)-based cationic polyelectrolyte (DEAE-PVA) as well as unmodified poly(vinyl alcohol) (PVA) onto silica oxide surface was studied by means of reflectometry. The study was focused on the effect of charge of polymer segments on their adsorption on silica oxide. The resu

  5. Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress.

    Science.gov (United States)

    Zhang, Jianjun; Xue, Jie; Wang, Hengbin; Zhang, Yan; Xie, Meilin

    2011-05-01

    The aim of our study was to examine the therapeutic effect of osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, on alcohol-induced fatty liver in mice and investigate its potential mechanisms of treatment. A mouse alcoholic fatty liver model was established by feeding 52% alcohol for 4 weeks. These experimental mice were then treated with osthole 10, 20 and 40 mg/kg for 6 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C) and hepatic tissue contents of TC, TG and malondialdehyde (MDA) in osthole-treated groups were significantly decreased, while the level of superoxide dismutase (SOD) was significantly increased compared with the model group. Moreover, the cytochrome P450 (CYP) 2E1 and diacylglycerol acyltransferase (DGAT) mRNA expressions in mouse liver were significantly decreased, and the carnitine palmitoyltransferase (CPT) 1A mRNA expression was increased by osthole treatment. Importantly, the histological evaluation of liver demonstrated that osthole dramatically decreased lipid accumulation. It was concluded that osthole was effective in treating mouse alcoholic fatty liver, and its main mechanisms might be related to reduction of hepatic oxidative stress, including the inhibition of reactive oxygen species (ROS) production, enhancement of antioxidative enzyme activity, and reduction of lipid accumulation and peroxidation. PMID:20981870

  6. [Beta-endorphin and endogenous alcohol level of the blood in alcoholic patients].

    Science.gov (United States)

    Burov, Iu V; Treskov, V G; Iukhananov, R Iu; Kovalenko, A K

    1984-11-01

    Radioimmunoassay was used to measure the blood content of beta-endorphines in patients with chronic alcoholism. The concentration of endogenous ethanol in these patients was determined by gas chromatography. The blood concentration of beta-endorphines was found to be high in patients who showed atypical affective disorders off the period of abstinence. It is assumed that peripheral beta-endorphine is not linked with the development of the narcomanic syndrome proper but mirrors the pathogenetic mechanisms of psychopathological disorders. The levels of endogenous ethanol vary in alcoholics and healthy subjects within the same ranges. However, the percentage distribution indicates that in patients, they are shifted toward lower concentrations, which is likely to be conditioned by the induction of enzymatic systems that metabolize ethanol.

  7. Aqueous oxidation of alcohols catalyzed by artificial metalloenzymes based on the biotin–avidin technology

    OpenAIRE

    Thomas, Christophe M; Letondor, Christophe; Humbert, Nicolas; Ward, Thomas R.

    2006-01-01

    Based on the incorporation of biotinylated organometallic catalyst precursors within (strept)avidin, we have developed artificial metalloenzymes for the oxidation of secondary alcohols using tert-butylhydroperoxide as oxidizing agent. In the presence of avidin as host protein, the biotinylated aminosulfonamide ruthenium piano stool complex 1 (0.4 mol%) catalyzes the oxidation of sec-phenethyl alcohol at room temperature within 90 h in over 90% yield. Gel electrophoretic analysis of the reacti...

  8. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    OpenAIRE

    Andrew Bogdan; D. Tyler McQuade

    2009-01-01

    We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leavi...

  9. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  10. A novel and selective oxidation of benzylic alcohols with polymer-supported periodic acid under mild aprotic conditions

    Institute of Scientific and Technical Information of China (English)

    Ali Reza Pourali; Mehrosadat Tabaean; S. Mohamad Reza Nazifi

    2012-01-01

    A new polymeric oxidizing reagent was prepared by supporting periodic acid on poly(1,4-phenylene-2,5-pyridine dicarboxyamide).This polymeric reagent was used for the selective oxidation of primary benzylic alcohols to the corresponding benzaldehydes in CH3CN at reflux conditions.Excellent selectivity was observed between primary benzyl alcohols and secondary ones as well as non-benzylic alcohols in the oxidation reactions.Allylic alcohols were also converted to the corresponding aldehydes with good yields.

  11. Alcohol

    Science.gov (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  12. Perturbation in kidney lipid metabolic profiles in diabetic rats with reference to alcoholic oxidative stress

    OpenAIRE

    K. R. Shanmugam; Ramakrishna, C. H.; K Mallikarjuna; Reddy, K. Sathyavelu

    2009-01-01

    Diabetes is a major threat to global public health, and the number of diabetic patients is rapidly increasing worldwide. Evidence suggests that oxidative stress is involved in the pathophysiology of diabetic complications and alcoholic diseases. The aim of this study is to find out the impact of alcohol on lipid metabolic profiles in kidney tissue under streptozotocin induced diabetic condition. No study has been reported so far on the effect of alcohol on diabetic condition and also with ref...

  13. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  14. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The mechanism for the gold-catalyzed aerobic oxidation of alcohols was studied using a series of para-substituted benzyl alcohols (Hammett methodology). The competition experiments clearly show that the rate-determining step of the reaction involves the generation of a partial positive charge in ...

  15. Fragrances by selective oxidation of long-chain alcohols

    Institute of Scientific and Technical Information of China (English)

    Alberto Villa; Carine E-Chan-Thaw; Marco Schiavoni; Sebastiano Campisi; Di Wang; Laura Prati

    2014-01-01

    The activity and the selectivity of Ru and Pt based carbon catalysts in the selective oxidation of long-chain aliphatic alcohols (C8, C10, C12) have been investigated. Ru/AC and Pt/AC always showed good initial activity, however deactivation phenomena rapidly depressed the catalytic per-formance of the catalysts. These phenomena can be limited by modification of Ru/AC and Pt/AC with Au improving the durability of the catalyst. Ru/AC and AuRu/AC showed good selectivity to the corresponding aldehyde (>95%) making these catalysts promising for fragrances manufactur-ing. The advantage in using Au modified catalyst lies on the easier regeneration procedure com-pared to the one necessary for Ru/AC. Pt/AC and AuPt/AC showed a lower selectivity to aldehyde promoting the formation of the acid and the ester formation respectively. The addition of water in the solvent system speeds up the reaction rate but drastically decreased the selectivity to aldehyde especially in the case of Pt based catalysts.

  16. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  17. Selective Oxidation of Alcohols Using Photoactive VO@g‑C3N4

    Data.gov (United States)

    U.S. Environmental Protection Agency — A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated...

  18. Assessment of the breath alcohol concentration in emergency care patients with different level of consciousness

    OpenAIRE

    Kaisdotter Andersson, Annika; Kron, Josefin; Castren, Maaret; Muntlin Athlin, Åsa; Hök, Bertil; Wiklund, Lars

    2015-01-01

    Background Many patients seeking emergency care are under the influence of alcohol, which in many cases implies a differential diagnostic problem. For this reason early objective alcohol screening is of importance not to falsely assign the medical condition to intake of alcohol and thus secure a correct medical assessment. Objective At two emergency departments, demonstrate the feasibility of accurate breath alcohol testing in emergency patients with different levels of cooperation. Method As...

  19. Oxidative stress and nitric oxide in rats with alcohol-induced acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Gülnur Andican; Remisa Gelisgen; Gülden Burcak; Ethem Unal; Osman Baran Tortum; Tayfun Karahasanoglu

    2005-01-01

    AIM: Oxygen free radical mediated tissue damage is well established in pathogenesis of acute pancreatitis (AP).Whether nitric oxide (NO) plays a deleterious or a protective role is unknown. In alcohol-induced AP, we studied NO, lipooxidative damage and glutathione in pancreas, lung and circulation.METHODS: AP was induced in rats (n = 25) by injection of ethyl alcohol into the common biliary duct. A sham laparatomy was performed in controls (n = 15). After 24 h the animals were killed, blood and tissue sampling were done.RESULTS: Histopathologic evidence confirmed the development of AP. Marked changes were observed in the pulmonary tissue. Compared with controls, the AP group displayed higher values for NO metabolites in pancreas and lungs, and thiobarbituric acid reactive substances in circulation. Glutathione was lower in pancreas and in circulation. Glutathione and NO were positively correlated in pancreas and lungs of controls but negatively correlated in circulation of experimental group. In the experimental group, plasma thiobarbituric acid reactive substances were negatively correlated with pancreas thiobarbituric acid reactive substances but positively correlated with pancreas NO.CONCLUSION: NO increases in both pancreas and lungs in AP and NO contributes to the pathogenesis of AP under oxidative stress.

  20. Levels and Types of Alcohol Biomarkers in DUI and Clinic Samples for Estimating Workplace Alcohol Problemsa

    OpenAIRE

    Marques, Paul R

    2012-01-01

    Widespread concern about illicit drugs as an aspect of workplace performance potentially diminishes attention on employee alcohol use. Alcohol is the dominant drug contributing to poor job performance; it also accounts for a third of the worldwide public health burden. Evidence from public roadways – a workplace for many – provides an example for work-related risk exposure and performance lapses. In most developed countries, alcohol is involved in 20-35% of fatal crashes; drugs other than alc...

  1. Alcohol levels in cerebrospinal fluid and blood samples from patients under pathological conditions.

    Science.gov (United States)

    Agapejev, S; Vassilieff, I; Curi, P R

    1992-11-01

    We measured alcohol levels by the Cordebard method in 148 CSF samples from individuals who had abstained from alcohol for at least 7 days prior to the beginning of the study. Each blood sample was accompanied by a CSF sample from the same patient. CSF samples found to be normal after analysis were used as controls. Mean alcohol concentration in blood did not differ significantly between the control group and the groups with altered CSF. The group with altered CSF had statistically higher alcohol levels in CSF than in blood. CSF lactate, glucose and protein levels were not correlated with alcohol level. The results suggest the presence of endogenous alcohol in the CSF, with levels increasing in the presence of pathological processes involving the nervous system.

  2. 33 CFR 95.025 - Adoption of State blood alcohol concentration levels.

    Science.gov (United States)

    2010-07-01

    ... concentration levels. 95.025 Section 95.025 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... DANGEROUS DRUG § 95.025 Adoption of State blood alcohol concentration levels. (a) This section applies to... established by statute a blood alcohol concentration level for purposes of determining whether a person...

  3. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  4. Inhibition of a Gold-Based Catalyst in Benzyl Alcohol Oxidation: Understanding and Remediation

    NARCIS (Netherlands)

    Skupien, E.; Berger, R.J.; Santos, V.P.; Gascon, J.; Makkee, M.; Kreutzer, M.T.; Kooyman, P.J.; Moulijn, J.A.; Kapteijn, F.

    2014-01-01

    Benzyl alcohol oxidation was carried out in toluene as solvent, in the presence of the potentially inhibiting oxidation products benzaldehyde and benzoic acid. Benzoic acid, or a product of benzoic acid, is identified to be the inhibiting species. The presence of a basic potassium salt (K2CO3 or KF)

  5. Leptin levels are reduced by intravenous ghrelin administration and correlated with cue-induced alcohol craving.

    Science.gov (United States)

    Haass-Koffler, C L; Aoun, E G; Swift, R M; de la Monte, S M; Kenna, G A; Leggio, L

    2015-01-01

    Increasing evidence supports the role of appetite-regulating pathways, including ghrelin and leptin, in alcoholism. This study tested the hypothesis that intravenous exogenous ghrelin administration acutely decreases endogenous serum leptin levels, and that changes in leptin levels negatively correlate with alcohol craving. This was a double-blind, placebo-controlled human laboratory study. Non-treatment-seeking, alcohol-dependent, heavy drinkers (n=45) were randomized to receive intravenous ghrelin or placebo, followed by a cue-reactivity procedure, during which participants were exposed to neutral (juice) and alcohol trial cues. There was a main effect for intravenous ghrelin administration, compared with placebo, in reducing serum leptin levels (Pcraving.

  6. Ameliorative Effects of 5-Hydroxymethyl-2-furfural (5-HMF from Schisandra chinensis on Alcoholic Liver Oxidative Injury in Mice

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-01-01

    Full Text Available The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase, AST (aspartate transaminase, TC (total cholesterol, TG (triglyceride, L-DLC (low density lipoprotein in serum and the levels of MDA (malondialdehyde in liver tissue, decreased significantly (p < 0.05 in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase, GSH-Px (glutathione peroxidase, and GSH SOD (superoxide dismutase were markedly elevated in liver tissue treated with 5-HMF (p < 0.05. Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α and interleukin-1β (IL-1β were significantly suppressed (p < 0.05. Histopathological examination revealed that 5-HMF (30 mg/kg pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  7. Ameliorative effects of 5-hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on alcoholic liver oxidative injury in mice.

    Science.gov (United States)

    Li, Wei; Qu, Xin-Nan; Han, Ye; Zheng, Si-Wen; Wang, Jia; Wang, Ying-Ping

    2015-01-01

    The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF) on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg) for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase), AST (aspartate transaminase), TC (total cholesterol), TG (triglyceride), L-DLC (low density lipoprotein) in serum and the levels of MDA (malondialdehyde) in liver tissue, decreased significantly (p < 0.05) in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase), GSH-Px (glutathione peroxidase), and GSH SOD (superoxide dismutase) were markedly elevated in liver tissue treated with 5-HMF (p < 0.05). Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were significantly suppressed (p < 0.05). Histopathological examination revealed that 5-HMF (30 mg/kg) pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  8. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    Science.gov (United States)

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  9. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    Directory of Open Access Journals (Sweden)

    Andrew Bogdan

    2009-04-01

    Full Text Available We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity.

  10. Preparing oxidized fractions of polyvinyl alcohol of a given molecular mass

    Science.gov (United States)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2016-10-01

    The effect of two oxidizers (an oxygen-ozone mixture and hydrogen peroxide) on the kinetics of the oxidative degradation of polyvinyl alcohol in aqueous solutions is studied. Degradation of the polymer is proved not only by a reduction in the weight of oxidized fractions, but in the intrinsic viscosity of their aqueous solutions as well (and thus the average molecular weight of the resulting fractions). It is shown that the degree of the destructive reactions of polyvinyl alcohol grows along with the duration of the process, increasing the initial concentrations of H2O2 and raising the temperature. These results can be used in obtaining oxidized fractions of polyvinyl alcohol that have predetermined molecular weights.

  11. Elevated endotoxin levels in non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Kumar Sudhesh

    2010-03-01

    Full Text Available Abstract Background Emerging data indicate that gut-derived endotoxin may contribute to low-grade systemic inflammation in insulin resistant states. This study aimed to examine the importance of serum endotoxin and inflammatory markers in non-alcoholic fatty liver disease (NAFLD patients, with and without type 2 diabetes mellitus (T2DM, and to explore the effect of treatment with a lipase inhibitor, Orlistat, on their inflammatory status. Methods Fasted serum from 155 patients with biopsy proven NAFLD and 23 control subjects were analysed for endotoxin, soluble CD14 (sCD14, soluble tumour necrosis factor receptor II (sTNFRII and various metabolic parameters. A subgroup of NAFLD patients were re-assessed 6 and 12 months after treatment with diet alone (n = 6 or diet plus Orlistat (n = 8. Results Endotoxin levels were significantly higher in patients with NAFLD compared with controls (NAFLD: 10.6(7.8, 14.8 EU/mL; controls: 3.9(3.2, 5.2 EU/mL, p Sub-cohort treatment with Orlistat in patients with NAFLD showed significant decreases in ALT (p = 0.006, weight (p = 0.005 and endotoxin (p = 0.004 compared with the NAFLD, non-Orlistat treated control cohort at 6 and 12 months post therapy, respectively. Conclusions Endotoxin levels were considerably increased in NAFLD patients, with marked increases noted in early stage fibrosis compared with controls. These results suggest elevated endotoxin may serve as an early indicator of potential liver damage, perhaps negating the need for invasive liver biopsy. As endotoxin may promote insulin resistance and inflammation, interventions aimed at reducing endotoxin levels in NAFLD patients may prove beneficial in reducing inflammatory burden.

  12. Photo Catalytic Oxidation of Alcohols in Water under Natural Weathering Conditions in the Presence of Bromo Source

    Institute of Scientific and Technical Information of China (English)

    P.H.Yan; R.R.Wang; J.Q.Wang; Y.X.Yang; S.Wu; H.Zhao; Z.Q.Lei

    2007-01-01

    1 Results The oxidation of alcohols into the corresponding carbonyl compound is one of the most important functional group transformation in organic synthesis[1]. Traditionally,such transformations have been performed with stoichiometric inorganic oxidant or other high valent metal oxidant[2]. Despite a variety of systems for the catalytic oxidation of alcohols have been developed,there is ongoing interest in the search for new efficient and environmental friendly oxidation system.To the best of our kno...

  13. Association of testosterone and BDNF serum levels with craving during alcohol withdrawal.

    Science.gov (United States)

    Heberlein, Annemarie; Lenz, Bernd; Opfermann, Birgitt; Gröschl, Michael; Janke, Eva; Stange, Katrin; Groh, Adrian; Kornhuber, Johannes; Frieling, Helge; Bleich, Stefan; Hillemacher, Thomas

    2016-08-01

    Preclinical and clinical studies show associations between testosterone and brain-derived neurotrophic growth factor (BDNF) serum levels. BDNF and testosterone have been independently reported to influence alcohol consumption. Therefore, we aimed to investigate a possible interplay of testosterone and BDNF contributing to alcohol dependence. Regarding possible interplay of testosterone and BDNF and the activity of the hypothalamic pituitary axis (HPA), we included cortisol serum levels in our research. We investigated testosterone and BDNF serum levels in a sample of 99 male alcohol-dependent patients during alcohol withdrawal (day 1, 7, and 14) and compared them to a healthy male control group (n = 17). The testosterone serum levels were significantly (p < 0.001) higher in the patients' group than in the control group and decreased significantly during alcohol withdrawal (p < 0.001). The decrease of testosterone serum levels during alcohol withdrawal (days 1-7) was significantly associated with the BDNF serum levels (day 1: p = 0.008). In a subgroup of patients showing high cortisol serum levels (putatively mirroring high HPA activity), we found a significant association of BDNF and testosterone as well as with alcohol craving measured by the Obsessive and Compulsive Drinking Scale (OCDS). Our data suggest a possible association of BDNF and testosterone serum levels, which may be relevant for the symptomatology of alcohol dependence. Further studies are needed to clarify our results. PMID:27514572

  14. Platinum Deactivation: In Situ EXAFS Study During Aqueous Alcohol Oxidation Reaction

    OpenAIRE

    Koningsberger, D.C.; Ruitenbeek, M.; B.F.M. Kuster; Marin, G. B.

    1998-01-01

    With a new setup for in situ EXAFS spectroscopy the state of a carbonsupported platinum catalyst during aqueous alcohol oxidation has been observed. The catalyst deactivation during platinumcatalysed cyclohexanol oxidation is caused by platinum surface oxide formation. The detected Pt–O coordination at 2.10 Å during exposure to nitrogensaturated cyclohexanol solution is different from what is observed for the pure oxidised platinum surface (2.06 Å). platinum - EXAFS - catalysis - catalyst dea...

  15. Alcohol availability and violence among inner-city adolescents: A multi-level analysis of the role of alcohol outlet density

    OpenAIRE

    Resko, Stella M.; Walton, Maureen A.; Bingham, C. Raymond; Shope, Jean T.; Zimmerman, Marc; Chermack, Stephen T.; Blow, Frederic C.; Cunningham, Rebecca M.

    2010-01-01

    Researchers recognize that the connection between alcohol and peer violence may relate to community level ecological factors, such as the location of businesses that sell alcohol. Building on previous research among adults, this study examines the relationship between alcohol outlet density and violent behaviors among adolescents, taking into account demographic characteristics, individual alcohol use, and neighborhood level socioeconomic indicators. Data drawn from a diverse Emergency Depart...

  16. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Science.gov (United States)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  17. An Event-Level Examination of Sex Differences and Subjective Intoxication in Alcohol-Related Aggression

    OpenAIRE

    Quinn, Patrick D.; Stappenbeck, Cynthia A.; Fromme, Kim

    2013-01-01

    Laboratory-based experimental research has demonstrated that the pharmacological effects of alcohol can increase aggressive responding. Given mixed findings and concerns regarding task validity, however, it remains uncertain whether this effect holds constant across men and women and whether variability in subjective alcohol intoxication contributes to alcohol-related aggression. In the present investigation, we used four years of event-level data in a sample of 1,775 college students (140,61...

  18. Low level alcohol intake, cigarette smoking and risk of breast cancer in Asian-American women

    OpenAIRE

    Brown, Linda Morris; Gridley, Gloria; Wu, Anna H.; Falk, Roni T; Hauptmann, Michael; Kolonel, Laurence N; West, Dee W.; Nomura, Abraham M. Y.; Pike, Malcolm C.; Hoover, Robert N.; Ziegler, Regina G

    2009-01-01

    Studies have shown that breast cancer incidence rates among Asian migrants to the United States approach U.S. incidence rates over several generations, implicating potentially modifiable exposures such as moderate alcohol use that has been linked to excess breast cancer risk in other populations. The goal of this study was to investigate the effect of alcohol intake, primarily low levels, on breast cancer risk in Asian-American women and explore whether smoking and alcohol contributed to the ...

  19. Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites

    Science.gov (United States)

    Wang, Yuan-Yuan; Song, Hua; Song, Hua-Lin; Jin, Zai-Shun

    2016-10-01

    A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.

  20. Gold nanoparticle catalyzed oxidation of alcohols - From biomass to commodity chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Christensen, Claus H.

    2007-01-01

    One of the greatest challenges that the chemical industry faces today is to become less dependent on fossil resources, and oil in particular. One way of addressing this challenge is to find ways to transform renewable resources into commodity chemicals. Renewable resources such as carbohydrates...... and glycerol are rich in alcohol functionalities. Thus, a key step in utilizing these resources lies in the conversion of this functional group. Benign oxidations involving oxygen as the stoichiometric oxidant are important from both an environmental and economical perspective. Recently, it has become clear...... that supported gold nanoparticles are highly active catalysts for oxidizing alcohols and aldehydes using oxygen as the oxidant. This perspective will focus on the use of gold nanoparticles in the oxidation of renewables....

  1. Highly efficient oxidation of alcohols using Oxone(R) as oxidant catalyzed by ruthenium complex under mild reaction conditions

    Institute of Scientific and Technical Information of China (English)

    Zi Qiang Lei; Jian Qiang Wang; Peng Hua Yan

    2008-01-01

    Aromatic and alkyl alcohols were oxidized to the corresponding aldehydes or ketones at room temperature with high conversion and selectivity using Oxone (2KHSO5·KHSO4·K2SO4) as oxidant catalyzed by ruthenium complex Quin-Ru-Quin (where Quin = 8-hydroxyquinoline). The reaction time is very short and the preparation of complex is simple. 2008 Zi Qiang Lei. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  2. Identification of Active Phase for Selective Oxidation of Benzyl Alcohol with Molecular Oxygen Catalyzed by Copper-Manganese Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2013-01-01

    Full Text Available Catalytic activity of copper-manganese mixed oxide nanoparticles (Cu/Mn = 1 : 2 prepared by coprecipitation method has been studied for selective oxidation of benzyl alcohol using molecular oxygen as an oxidizing agent. The copper-manganese (CuMn2 oxide catalyst exhibited high specific activity of 15.04 mmolg−1 h−1 in oxidation of benzyl alcohol in toluene as solvent. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a short reaction period at 102°C. It was found that the catalytic performance is dependent on calcination temperature, and best activity was obtained for the catalyst calcined at 300°C. The high catalytic performance of the catalyst can be attributed to the formation of active MnO2 phase or absence of less active Mn2O3 phase in the mixed CuMn2 oxide. The catalyst has been characterized by powder X-ray diffraction (XRD, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Brunauer Emmett-Teller (BET surface area measurement, and Fourier transform infrared (FT-IR spectroscopies.

  3. Efficient oxidation of benzyl alcohol with heteropolytungstate as reaction-controlled phase-transfer catalyst

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the properties of reaction-controlled phasetransfer catalysis, and they had excellent catalytic ability to the oxidation of benzyl alcohol. No other by-products were detected by gas chromatography. Once the hydrogen peroxide was consumed completely, the catalyst precipitated from solvent, and the results of the catalyst recycle showed that the catalyst had high stability.

  4. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease

    Science.gov (United States)

    Tsedensodnom, Orkhontuya; Vacaru, Ana M.; Howarth, Deanna L.; Yin, Chunyue; Sadler, Kirsten C.

    2013-01-01

    SUMMARY Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes. PMID

  5. Alcohol on College Campuses in North Dakota: Levels of Consumption, Gender, and Negative Consequences

    Science.gov (United States)

    Keller, Lory M.

    2009-01-01

    It is common knowledge that many college students consume alcohol and/or binge drink. North Dakota colleges and universities are not immune to high levels of alcohol consumption, as they are among the leaders for binge drinking for people aged 18 to 25. Any number of reasons could explain this behavior, including new freedoms enjoyed by many 18 to…

  6. Even Low Levels of Alcohol during Pregnancy Can Affect Fetal Brain Development. Science Briefs

    Science.gov (United States)

    National Scientific Council on the Developing Child, 2008

    2008-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This brief reports on the study "Effects of Prenatal Alcohol Exposure on GABAergic Neurons" (V. C. Cuzone; P. W. L. Yeh; Y. Yanagawa; K. Obata; and H. H. Yeh). Study results indicate that even exposure to low levels of alcohol during…

  7. Alcohol

    NARCIS (Netherlands)

    Hendriks, H.F.; Tol, A. van

    2005-01-01

    Alcohol consumption affects overall mortality. Light to moderate alcohol consumption reduces the risk of coronary heart disease; epidemiological, physiological and genetic data show a causal relationship. Light to moderate drinking is also associated with a reduced risk of other vascular diseases an

  8. Alcohol

    Science.gov (United States)

    ... Date reviewed: January 2014 previous 1 • 2 For Teens For Kids For Parents MORE ON THIS TOPIC Word! Alcoholism What You Need to Know About Drugs What You Need to Know About Drugs: Depressants What Kids Say About: Drinking Alcohol Dealing With Peer Pressure Contact Us Print Resources Send to a friend ...

  9. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  10. A novel application of horseradish peroxidase: Oxidation of alcohol ethoxylate to alkylether carboxylic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel application of horseradish peroxidase (HRP) in the oxidation of alcohol ethoxylate to alkylether carboxylie acid in the present of H2O2 was reported in this paper. We propose the mechanism for the catalytic oxidation reaction is that the hydrogen transfers from the substrate to the ferryl oxygen to form the a-hydroxy carbon radical intermediate. The reaction offers a new approach for further research structure and catalytic mechanism of HRP and production of alkylether carboxylic acid.

  11. Influence of periodic nitrogen functionality on the selective oxidation of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Chan-Thaw, Carine E. [Universita di Milano, Italy; Villa, Alberto [Universita di Milano, Italy; Veith, Gabriel M [ORNL; Kaiasam, Kamalakannan [Berlin Institute of Technology (Technische Universitat Berlin); Adamczyk, Leslie A [ORNL; Unocic, Raymond R [ORNL; Prati, Laura [Universita di Milano, Italy; Thomas, Arne [Berlin Institute of Technology (Technische Universitat Berlin)

    2012-01-01

    For the first time, we attribute the enhancement in catalytic alcohol oxidation activity to the presence of nitrogen heteroatoms on the external surface of a support material surface. The same Pd particles (3.1 3.2 nm) were supported on polymeric carbon-nitrogen supports and used as catalysts to selectively oxidize benzyl alcohol. The polymeric carbon-nitrogen materials include covalent triazine frameworks (CTF) and carbon nitride (CN) materials with nitrogen content varying from 9 to 58 atomic percent N. Withcomparable metal exposure, via XPS, the activity of these catalysts correlates with the concentration of nitrogen species on the surface which enhanced the Lewis basicity of these moieties thus promoting alcoholate formation and subsequent hydride abstraction.

  12. Highly Efficient, Green Oxidation of Alcohols Using Novel Heterogeneous Ruthenium Catalyst

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    MnFe1.4Ruo.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation ofvarious types of alcohols to the corresponding carbonyl compounds using atmospheric pressure ofoxygen under mild conditions. Furthermore, this catalyst was also effective towards alcoholoxidation using water as solvent instead of toluene.

  13. Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes

    Indian Academy of Sciences (India)

    Panadda Katikawong; Tanakorn Ratana; Waret Veerasai

    2009-05-01

    Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in 0.5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated from the cyclic voltammetric data in the low potential region (0.3-0.5 V vs SHE). The CV results provided Tafel slopes for alcohols in the range of 200-400 mV dec-1 which indicated a difference in the rate determining step. The decrease in Tafel slope was only observed in the case of methanol for the Ru-modified Pt electrode. This indicates that Ru improves the rate of determining step for methanol while hindering it for the other alcohols. The electrochemical impedance spectroscopy was also used to evaluate the electro-oxidation mechanism of alcohols on these electrodes. The simulated EIS results provided two important parameters: charge transfer resistance () and inductance (). The $R^{-1}_{ct}$ and -1 represent the rate of alcohol electro-oxidation and rate of desorption of intermediate species, respectively. These values increased with the increasing of temperature. The results from two techniques were well agreed that the electro-oxidation of methanol was improved by raising the temperature and ruthenium modification.

  14. URB597 inhibits oxidative stress induced by alcohol binging in the prefrontal cortex of adolescent rats.

    Science.gov (United States)

    Pelição, Renan; Santos, Matheus C; Freitas-Lima, Leandro C; Meyrelles, Silvana S; Vasquez, Elisardo C; Nakamura-Palacios, Ester M; Rodrigues, Lívia C M

    2016-06-15

    Heavy episodic drinking (binging), which is highly prevalent among teenagers, results in oxidative damage. Because the prefrontal cortex (PFC) is not completely mature in adolescents, this brain region may be more vulnerable to the effects of alcohol during adolescence. As endocannabinoids may protect the immature PFC from the harmful effects of high doses of alcohol, this study investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on oxidative stress induced by acute or chronic binge alcohol intake in adolescent rats. At 40min after intraperitoneal pre-treatment with URB597 (0.3mg/kg) or vehicle (Veh), ethanol (EtOH; 3 or 6g/kg, intragastrically) or distilled water (DW) was administered in 3 consecutive sessions (acute binging) or 3 consecutive sessions over 4 weeks (chronic binging). Oxidative stress in PFC slices in situ was measured by dihydroethidium fluorescence staining. At the higher EtOH dose (6g/kg), pre-treatment with URB597 significantly reduced (peffect of endocannabinoids to suppress acute and chronic binge alcohol intake-induced oxidative stress in the PFC of adolescent rats. PMID:27150075

  15. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.N.

    1999-08-31

    The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

  16. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  17. Regulation of heme oxygenase expression by alcohol,hypoxia and oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Lisa; Nicole; Gerjevic; Jonathan; Pascal; Chaky; Duygu; Dee; Harrison-Findik

    2011-01-01

    AIM:To study the effect of both acute and chronic alcohol exposure on heme oxygenases(HOs) in the brain,liver and duodenum.METHODS:Wild-type C57BL/6 mice,heterozygous Sod2 knockout mice,which exhibit attenuated manganese superoxide dismutase activity,and liver-specific ARNT knockout mice were used to investigate the role of alcohol-induced oxidative stress and hypoxia.For acute alcohol exposure,ethanol was administered in the drinking water for 1 wk.Mice were pair-fed with regular or ethanol-containing Lieber De Carli liquid diets for 4 wk for chronic alcohol studies.HO expression was analyzed by real-time quantitative polymerase chain reaction and Western blotting.RESULTS:Chronic alcohol exposure downregulated HO-1 expression in the brain but upregulated it in the duodenum of wild-type mice.It did not alter liver HO-1 expression,nor HO-2 expression in the brain,liver or duodenum.In contrast,acute alcohol exposure decreased both liver HO-1 and HO-2 expression,and HO-2 expression in the duodenum of wild-type mice.The decrease in liver HO-1 expression was abolished in ARNT+/-mice.Sod2+/-mice with acute alcohol exposure did not exhibit any changes in liver HO-1 and HO-2 expression or in brain HO-2 expression.However,alcohol inhibited brain HO-1 and duodenal HO-2 but increased duodenal HO-1 expression in Sod2+/-mice.Collectively,these findings indicate that acute and chronic alcohol exposure regulates HO expression in a tissue-specific manner.Chronic alcohol exposure alters brain and duodenal,but not liver HO expression.However,acute alcohol exposure inhibits liver HO-1 and HO-2,and also duodenal HO-2 expression.CONCLUSION:The inhibition of liver HO expression by acute alcohol-induced hypoxia may play a role in the early phases of alcoholic liver disease progression.

  18. Sex Difference in the Association between Serum Homocysteine Level and Non-Alcoholic Fatty Liver Disease

    Science.gov (United States)

    Won, Bo-Youn; Lee, Soo-Hyun; Yun, Sung-Hwan; Kim, Moon-Jong; Park, Kye-Seon; Kim, Young-Sang; Haam, Ji-Hee; Kim, Hyung-Yuk; Kim, Hye-Jung; Park, Ki-Hyun

    2016-01-01

    Background The relationship between serum homocysteine levels and non-alcoholic fatty liver disease is poorly understood. This study aims to investigate the sex-specific relationship between serum homocysteine level and non-alcoholic fatty liver disease in the Korean population. Methods This cross-sectional study included 150 men and 132 women who participated in medical examination programs in Korea from January 2014 to December 2014. Patients were screened for fatty liver by abdominal ultrasound and patient blood samples were collected to measure homocysteine levels. Patients that consumed more than 20 grams of alcohol per day were excluded from this study. Results The homocysteine level (11.56 vs. 8.05 nmol/L) and the proportion of non-alcoholic fatty liver disease (60.7% vs. 19.7%) were significantly higher in men than in women. In men, elevated serum homocysteine levels were associated with a greater prevalence of non-alcoholic fatty liver disease (quartile 1, 43.6%; quartile 4, 80.6%; P=0.01); however, in females, there was no significant association between serum homocysteine levels and the prevalence of non-alcoholic fatty liver disease. In the logistic regression model adjusted for age and potential confounding parameters, the odds ratio for men was significantly higher in the uppermost quartile (model 3, quartile 4: odds ratio, 6.78; 95% confidential interval, 1.67 to 27.56); however, serum homocysteine levels in women were not associated with non-alcoholic fatty liver disease in the crude model or in models adjusted for confounders. Conclusion Serum homocysteine levels were associated with the prevalence of non-alcoholic fatty liver disease in men. PMID:27468343

  19. Lymphocyte Oxidative Stress/Genotoxic Effects Are Related to Serum IgG and IgA Levels in Coke Oven Workers

    OpenAIRE

    Meili Gao; Yongfei Li; Aqun Zheng; Xiaochang Xue; Lan Chen; Yu Kong

    2014-01-01

    We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and I...

  20. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol.

    Science.gov (United States)

    Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang

    2014-05-01

    A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen.

  1. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces. PMID:27396288

  2. Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate

    Indian Academy of Sciences (India)

    Sonu Saraswat; Vinita Sharma; K K Banerji

    2003-02-01

    Oxidation of nine aliphatic primary alcohols by quinolinium bromochromate (QBC) in dimethylsulphoxide leads to the formation of the corresponding aldehydes. The reaction is first order with respect to both QBC and the alcohol. The reaction is catalysed by hydrogen ions. The hydrogen-ion dependence has the form: obs = + [H+]. The oxidation of [1,1-2H2]ethanol (MeCD2OH) exhibits a substantial primary kinetic isotope effect. The reaction has been studied in nineteen different organic solvents. The solvent effect was analysed using Taft’s and Swain's multiparametric equations. The rate of oxidation is susceptible to both polar and steric effects of the substituents. A suitable mechanism has been proposed.

  3. Kinetics and mechanism of oxidation of aliphatic alcohols by tetrabutylammonium tribromide

    Indian Academy of Sciences (India)

    Manju Baghmar; Pradeep K Sharma

    2001-04-01

    Oxidation of nine primary aliphatic alcohols by tetrabutylammonium tribromide (TBATB) in aqueous acetic acid leads to the formation of the corresponding aldehydes. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with respect to alcohols. The reaction failed to induce the polymerization of acrylonitrile. Tetrabutylammonium chloride has no effect on the reaction rate. The proposed reactive oxidizing species is the tribromide ion. The oxidation of [1,1-2H2]ethanol exhibits a substantial kinetic isotope effect. The effect of solvent composition indicates that the rate increases with increase in the polarity of the solvent. The reaction is susceptible to both polar and steric effects of substituents. A mechanism involving transfer of a hydride ion in the ratedetermining step has been proposed.

  4. Synthesis and characterization of neodymium oxide modified nafion membrane for direct alcohol fuel cells

    International Nuclear Information System (INIS)

    Nafion composite membranes were prepared by incorporating neodymium oxide (Nd2O3), a hygroscopic rare earth oxide and a dopant for H+ ion conduction, into the nafion structure. Five different loadings of Nd2O3 were used to fabricate Nd2O3/nafion composite membranes and characterized extensively for possible use in direct alcohol fuel cells. The proton conductivity, ion exchange capacity, water uptake, tensile strength, and oxidation stability of the composite membrane were higher than pure cast nafion membrane. Nd2O3/nafion composite membrane exhibited reduced methanol and ethanol crossover as compared to pure cast nafion membrane and thus has potential to use in direct alcohol fuel cells.

  5. An international study of the relationship between alcohol consumption and postmenopausal estradiol levels

    DEFF Research Database (Denmark)

    Gavaler, J S; Love, K; Van Thiel, D;

    1991-01-01

    Because of the beneficial effect of estrogens on the risk of cardiovascular disease and osteoporosis in postmenopausal women, the factors which influence endogenous postmenopausal estrogen levels are of substantial importance. The major source of postmenopausal estrogen is the aromatization of an...... in estradiol levels seen with moderate alcoholic beverage consumption is not an isolated finding and speculate that moderate alcohol consumption by healthy postmenopausal women may have beneficial effects.......Because of the beneficial effect of estrogens on the risk of cardiovascular disease and osteoporosis in postmenopausal women, the factors which influence endogenous postmenopausal estrogen levels are of substantial importance. The major source of postmenopausal estrogen is the aromatization...... of androgens to estrogens. Because alcohol is reported to increase aromatization rates, the relationship between serum estradiol and moderate alcohol consumption was examined in a group of 128 healthy Pittsburgh postmenopausal women, and a significant direct association was found. In order to address...

  6. Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study

    Science.gov (United States)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2016-02-01

    Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.

  7. Oxidation of ethoxylated fatty alcohols to alkylpolyglycol carboxylic acids using noble metals as catalysts

    Directory of Open Access Journals (Sweden)

    Sagredos, Angelos

    2009-09-01

    Full Text Available The conversion of ethoxylated fatty alcohols to the corresponding carboxylic acids through dehydrogenation/ oxidation using noble-metal catalysts has been studied. Ethoxylated primary aliphatic alcohols, ethoxylated random secondary aliphatic alcohols and ethoxylated alkylphenols have been converted to the corresponding acids in the presence of a base. The noble metal catalysts Palladium and Platinum were used without significant degradation of the ethoxyl chain in yields that exceeded 90%. On the other hand, the catalysts Rhodium and Ruthenium gave yields of about 80% and 60% respectively.La conversión de alcoholes grasos etoxilados a los correspondientes ácidos carboxílicos por deshidrogenación/ oxidación con metales nobles como catalizador ha sido estudiada. Alcoholes primarios alifáticos etoxilados, alcoholes alifáticos secundarios etoxilados al azar y alquilfenoles etoxilados han sido convertidos a los correspondientes ácidos en presencia de base. Los catalizadores paladio y platino fueron usados sin degradación significativa de las cadenas etoxiladas con un rendimiento que excedió del 90%. Por otra parte catalizadores de rodio y rutenio produjeron rendimientos del 80 y 60%, respectivamente.

  8. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications

    Science.gov (United States)

    Nadeem, Muhammad; Ahmad, Munir; Akhtar, Muhammad Saeed; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Masood, Misbah; Saeed, M. A.

    2016-01-01

    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. PMID:27348436

  9. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications.

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    Full Text Available The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs and impact of hydrophilic polymer polyvinyl alcohol (PVA coating concentration as well as anticancer drug doxorubicin (DOX loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4 structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery.

  10. Religiousness and Levels of Hazardous Alcohol Use: A Latent Profile Analysis.

    Science.gov (United States)

    Jankowski, Peter J; Hardy, Sam A; Zamboanga, Byron L; Ham, Lindsay S; Schwartz, Seth J; Kim, Su Yeong; Forthun, Larry F; Bersamin, Melina M; Donovan, Roxanne A; Whitbourne, Susan Krauss; Hurley, Eric A; Cano, Miguel Ángel

    2015-10-01

    Prior person-centered research has consistently identified a subgroup of highly religious participants that uses significantly less alcohol when compared to the other subgroups. The construct of religious motivation is absent from existing examinations of the nuanced combinations of religiousness dimensions within persons, and alcohol expectancy valuations have yet to be included as outcome variables. Variable-centered approaches have found religious motivation and alcohol expectancy valuations to play a protective role against individuals' hazardous alcohol use. The current study examined latent religiousness profiles and hazardous alcohol use in a large, multisite sample of ethnically diverse college students. The sample consisted of 7412 college students aged 18-25 (M age = 19.77, SD age = 1.61; 75% female; 61% European American). Three latent profiles were derived from measures of religious involvement, salience, and religious motivations: Quest-Intrinsic Religiousness (highest levels of salience, involvement, and quest and intrinsic motivations; lowest level of extrinsic motivation), Moderate Religiousness (intermediate levels of salience, involvement, and motivations) and Extrinsic Religiousness (lowest levels of salience, involvement, and quest and intrinsic motivations; highest level of extrinsic motivation). The Quest-Intrinsic Religiousness profile scored significantly lower on hazardous alcohol use, positive expectancy outcomes, positive expectancy valuations, and negative expectancy valuations, and significantly higher on negative expectancy outcomes, compared to the other two profiles. The Extrinsic and Moderate Religiousness profiles did not differ significantly on positive expectancy outcomes, negative expectancy outcomes, negative expectancy valuations, or hazardous alcohol use. The results advance existing research by demonstrating that the protective influence of religiousness on college students' hazardous alcohol use may involve high levels on

  11. Electrochemical oxidation of some basic alcohols on multiwalled carbon nanotube–platinum composites

    Indian Academy of Sciences (India)

    Minsoo Koo; Jong-Seong Bae; Hyun-Chul Kim; Dae-Geun Nam; Chang Hyun Ko; Jeong Hyun Yeum; Weontae Oh

    2012-08-01

    Some composites of multiwalled carbon nanotubes, which were chemically treated in acidic and/or hydrogen peroxide solution, and platinum nanoparticles were prepared by the simple reduction in glycerol solution. Carboxylated and/or hydroxyl MWNTs were structurally analysed using X-ray photoelectron spectroscopy. In addition, the MWNT–Pt composites were characterized by XRD and TEM in detail. The electrochemical oxidation of some basic alcohols, which was catalyzed by the MWNT–Pt composites, was analysed by cyclic voltammetry. Their catalytic activities were studied with cyclic voltammograms of alcohols.

  12. Blood thiamine, zinc, selenium, lead and oxidative stress in a population of male and female alcoholics: clinical evidence and gender differences

    Directory of Open Access Journals (Sweden)

    Rosanna Mancinelli

    2013-03-01

    Full Text Available INTRODUCTION. Long term alcohol abuse is associated with deficiencies in essential nutrients and minerals that can cause a variety of medical consequences including accumulation of toxic metals. Aim. The aim of this research is to get evidence-based data to evaluate alcohol damage and to optimize treatment. Thiamine and thiamine diphosphate (T/TDP, zinc (Zn, selenium (Se, lead (Pb and oxidative stress in terms of reactive oxygen metabolites (ROMs were examined in blood samples from 58 alcohol dependent patients (17 females and 41 males. RESULTS. T/TDP concentration in alcoholics resulted significantly lower than controls (p < 0.005 for both sexes. Serum Zn and Se did not significantly differ from reference values. Levels of blood Pb in alcoholics resulted significantly higher (p < 0.0001 than Italian reference values and were higher in females than in males. ROMs concentration was significantly higher than healthy population only in female abusers (p = 0.005. CONCLUSION. Alcoholics show a significant increase in blood oxidative stress and Pb and decrease in thiamine. Impairment occurs mainly in female abusers confirming a gender specific vulnerability.

  13. Heteropolymolybdate as a New Reaction-controlled Phase-transfer Catalyst for Efficient Alcohol Oxidation with Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    Zhi Huan WENG; Jin Yan WANG; Xi Gao JIAN

    2006-01-01

    A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H2O2 with high selectivity was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3{PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.

  14. The Wacker oxidation of allyl alcohol along cyclic-intermediate routes: An ab initio molecular dynamics investigation

    Science.gov (United States)

    Imandi, Venkataramana; Nair, Nisanth N.

    2016-09-01

    The absence of isotope scrambling observed by Henry and coworkers in the Wacker oxidation of deuterated allylic alcohol was used by them as support for the inner-sphere mechanism hydroxypalladation mechanism. One of the assumptions used to interpret their experimental data was that allyl alcohol oxidation takes place through non-cyclic intermediate routes as in the case of ethene. Here we verify this assumption through ab initio metadynamics simulations of the Wacker oxidation of allyl alcohol in explicit solvent. Importance of our results in interpreting the isotope scrambling experiments is discussed.

  15. Role of vanadium and pyridine in heteropolycompounds for selective oxidation of alcohols with hydrogen peroxide

    Indian Academy of Sciences (India)

    Valeria Palermo; Paula I Villabrille; Patricia G Vázquez; Carmen V Cáceres; Pietro Tundo; Gustavo P Romanelli

    2013-11-01

    This study describes the application of heteropolyacids H3PMo12O40,H4SiMo12O40, H4PMo11VO40, H5PMo10V2O40, H9PMo6V6O40, and a hybrid pyridine-modified heteropolyacid with Keggin structure for selective oxidation of alcohols to ketones or aldehydes using aqueous hydrogen peroxide and acetonitrile as solvent. Performance of these different catalysts in 1-phenylethanol oxidation was studied. Influence of reaction temperature, amount of catalyst and hydrogen peroxide and reaction time on the yield of acetophenone was investigated to obtain optimal reaction conditions. Oxidation ability of the catalyst depended on the number of vanadium atoms present in the Keggin ion and to a lesser extent on pyridine substitution in the Keggin secondary structure. In order to explore the applicability of the method for selective oxidation of alcohols to ketones or aldehydes, various alcohols were investigated according to the general procedure using hybrid pyridine-modified heteropolyacid.

  16. Self-assembled dicopper(II) diethanolaminate cores for mild aerobic and peroxidative oxidation of alcohols.

    Science.gov (United States)

    Figiel, Paweł J; Kirillov, Alexander M; Guedes da Silva, M Fátima C; Lasri, Jamal; Pombeiro, Armando J L

    2010-11-01

    The new dicopper(ii) complexes [Cu(2)(μ-Hmdea)(2)(NCS)(2)] (1) and [Cu(2)(μ-Hedea)(2)(N(3))(2)]·(H(2)O)(0.25) (2) with the {Cu(2)(μ-O)(2)} diethanolaminate cores have been easily generated by aqueous medium self-assembly reactions of copper(ii) nitrate with N-methyl- or N-ethyldiethanolamine (H(2)mdea or H(2)edea, respectively), in the presence of sodium thiocyanate (for 1) or sodium azide (for 2) as ancillary ligands sources. They have been isolated as air-stable crystalline solids and fully characterized by IR and UV-vis spectroscopies, ESI-MS(+), elemental and single-crystal X-ray diffraction analyses. The latter complex also features a fourfold linkage of neighbouring dimeric units via strong intermolecular O-HO hydrogen bonds, giving rise to the formation of tetracopper aggregates. The catalytic activity of compounds 1 and 2 has been studied for the mild (50-80 °C) and selective oxidations of alcohols, namely for (i) the aerobic aqueous medium oxidation of benzyl alcohols to benzaldehydes, mediated by TEMPO radical, and for (ii) the solvent-free oxidation of secondary alcohols to ketones by t-BuOOH under microwave (MW) irradiation. Complex 2 shows the highest efficiency in both oxidation systems, resulting in up to 99% molar yields (based on the alcohol substrate) of products. In addition, remarkably high values of TON (1020) and TOF (4080 h(-1)) have been achieved in the MW-assisted peroxidative oxidation of 1-phenylethanol to acetophenone (model reaction). Attractive green features of these catalytic systems include the operation in aqueous or solvent-free reaction medium, under mild conditions and with high yields and selectivities, using Cu catalyst precursors that are readily available by self-assembly in water of simple chemicals. PMID:20844801

  17. OPTIMIZATION OF DEHYDRATION CONDITIONS FOR ISOPROPYL ALCOHOL – WATER MIXTURE USING OXIDIZED POTATO STARCH

    Directory of Open Access Journals (Sweden)

    P.C.N EJIKEME

    2012-12-01

    Full Text Available This study investigated the possibility of dehydrating Isopropyl Alcohol – water mixture using oxidized starch from potato. The starch was modified using calcium hypochlorite. Central composite design was used to determine the effects of the four dehydrating variables; temperature, contact time, initial concentration of the isopropyl alcohol water solution and the adsorbent/solution ratio on the final concentration of the isopropyl alcohol water mixture. Based on the central composite design, a quadratic verses 2 factor interaction model was developed. The significant factors on the experimental design response were identified from the analysis of variance. The optimum conditions for the dehydration reaction were obtained by using temperature of 35oC, time of 40 minutes, adsorbent/solution ratio of 1:4 and initial concentration of 40% which resulted in finalconcentration of 43.968%.

  18. Initiation of esophageal squamous cell carcinoma (ESCC) in a murine 4-nitroquinoline-1-oxide and alcohol carcinogenesis model

    Science.gov (United States)

    Osei-Sarfo, Kwame; Scognamiglio, Theresa; Gudas, Lorraine J.

    2015-01-01

    Esophageal squamous cell carcinomas (ESCCs) are very common, aggressive tumors, and are often associated with alcohol and tobacco abuse. Because ESCCs exhibit high recurrence rates and are diagnosed at late stages, identification of prognostic and drug targets for prevention and treatment is critical. We used the 4-nitroquinoline-1-oxide (4-NQO) murine model of oral carcinogenesis and the Meadows-Cook model of alcohol abuse to assess changes in the expression of molecular markers during the initial stages of ESCC. Combining these two models, which mimic chronic alcohol and tobacco abuse in humans, we detected increased cellular proliferation (EGFR and Ki67 expression), increased canonical Wnt signaling and downstream elements (β-catenin, FoxM1, and S100a4 protein levels), changes in cellular adhesive properties (reduced E-cadherin in the basal layer of the esophageal epithelium), and increased levels of phosphorylated ERK1/2 and p38. Additionally, we found that treatment with ethanol alone increased the numbers of epithelial cells expressing solute carrier family 2 (facilitated glucose transporter, member 1) (SLC2A1) and carbonic anhydrase IX (CAIX), and increased the phosphorylation of p38. Thus, we identified both 4-NQO- and ethanol-specific targets in the initial stages of esophageal carcinogenesis, which should lead to the development of potential markers and therapeutic targets for human ESCC. PMID:25714027

  19. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.

    Science.gov (United States)

    McCann, Scott D; Stahl, Shannon S

    2016-01-13

    Cooperative catalysis between Cu(II) and redox-active organic cocatalysts is a key feature of important chemical and enzymatic aerobic oxidation reactions, such as alcohol oxidation mediated by Cu/TEMPO and galactose oxidase. Nearly 20 years ago, Markó and co-workers reported that azodicarboxylates, such as di-tert-butyl azodicarboxylate (DBAD), are effective redox-active cocatalysts in Cu-catalyzed aerobic alcohol oxidation reactions [Markó, I. E., et al. Science 1996, 274, 2044], but the nature of the cooperativity between Cu and azodicarboxylates is not well understood. Here, we report a mechanistic study of Cu/DBAD-catalyzed aerobic alcohol oxidation. In situ infrared spectroscopic studies reveal a burst of product formation prior to steady-state catalysis, and gas-uptake measurements show that no O2 is consumed during the burst. Kinetic studies reveal that the anaerobic burst and steady-state turnover have different rate laws. The steady-state rate does not depend on [O2] or [DBAD]. These results, together with other EPR and in situ IR spectroscopic and kinetic isotope effect studies, reveal that the steady-state mechanism consists of two interdependent catalytic cycles that operate in sequence: a fast Cu(II)/DBAD pathway, in which DBAD serves as the oxidant, and a slow Cu(II)-only pathway, in which Cu(II) is the oxidant. This study provides significant insight into the redox cooperativity, or lack thereof, between Cu and redox-active organic cocatalysts in aerobic oxidation reactions. PMID:26694091

  20. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.

    Science.gov (United States)

    McCann, Scott D; Stahl, Shannon S

    2016-01-13

    Cooperative catalysis between Cu(II) and redox-active organic cocatalysts is a key feature of important chemical and enzymatic aerobic oxidation reactions, such as alcohol oxidation mediated by Cu/TEMPO and galactose oxidase. Nearly 20 years ago, Markó and co-workers reported that azodicarboxylates, such as di-tert-butyl azodicarboxylate (DBAD), are effective redox-active cocatalysts in Cu-catalyzed aerobic alcohol oxidation reactions [Markó, I. E., et al. Science 1996, 274, 2044], but the nature of the cooperativity between Cu and azodicarboxylates is not well understood. Here, we report a mechanistic study of Cu/DBAD-catalyzed aerobic alcohol oxidation. In situ infrared spectroscopic studies reveal a burst of product formation prior to steady-state catalysis, and gas-uptake measurements show that no O2 is consumed during the burst. Kinetic studies reveal that the anaerobic burst and steady-state turnover have different rate laws. The steady-state rate does not depend on [O2] or [DBAD]. These results, together with other EPR and in situ IR spectroscopic and kinetic isotope effect studies, reveal that the steady-state mechanism consists of two interdependent catalytic cycles that operate in sequence: a fast Cu(II)/DBAD pathway, in which DBAD serves as the oxidant, and a slow Cu(II)-only pathway, in which Cu(II) is the oxidant. This study provides significant insight into the redox cooperativity, or lack thereof, between Cu and redox-active organic cocatalysts in aerobic oxidation reactions.

  1. High Performance of Alkaline Anion-Exchange Membranes Based on Chitosan/Poly (vinyl) Alcohol Doped with Graphene Oxide for the Electrooxidation of Primary Alcohols

    OpenAIRE

    García Cruz, Leticia; Casado-Coterillo, Clara; Irabien, Ángel; Montiel Leguey, Vicente; Iniesta Valcárcel, Jesús

    2016-01-01

    Mixed matrix membranes (MMM) based on chitosan (CS) and poly (vinyl) alcohol (PVA) with a 50:50 w/w ratio doped with graphene oxide (GO) are prepared by solution casting and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water uptake, alcohol permeability, ion exchange capacity (IEC) and OH− conductivity measurements. The SEM analysis revealed a dense MMM where the GO nanosheets were well dispersed over the entire polymer matrix...

  2. Electrocatalytic activity of surface adsorbed ruthenium-alizarin complexone toward the oxidation of benzyl alcohol

    International Nuclear Information System (INIS)

    The surface electrochemical behavior of an adsorbed alizarin complexone (abbreviated as AC) and its surface coordination with Ru(II) were studied in aqueous solution at a pH range of 0-6. The surface complex of ruthenium with AC displays strong electrocatalytic activities toward benzyl alcohol. Based on the rotating disk electrode measurement, it is believed that the electrocatalytic oxidation of benzyl alcohol is a two-electron and two-proton process with benzaldehyde as a major product. On the other hand, ruthenium-AC surface complex has also shown catalytic activities toward electro-oxidation of several small organic molecules such as methanol, formic acid, formaldehyde, ethanol, and acetaldehyde

  3. Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; DeLa Riva, Andrew T.; Helveg, Stig;

    2008-01-01

    Gold nanoparticles are deposited on potassium titanate nanowires and used as heterogeneous catalysts in the aerobic oxidation of benzyl alcohol in methanol to methyl benzoate at ambient conditions. The presence of a catalytic amount of base promotes the reaction and the formation of free benzoic ...... acid during the reaction poisons the catalyst. The activity however, of the catalyst can be restored again by addition of base....

  4. Enzyme-inspired functional surfactant for aerobic oxidation of activated alcohols to aldehydes in water

    KAUST Repository

    Chen, Batian

    2015-02-06

    We describe an enzyme-inspired catalytic system based on a rationally designed multifunctional amphiphile. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically.

  5. Aerobic Oxidation of Veratryl Alcohol to Veratraldehyde with Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Melián Rodriguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren;

    2015-01-01

    Lignin is a complex polymeric molecule constituting various linkages between aromatic moieties. Typically, the β-O-4 linkage accounts for more than half of the linkage structures present in lignin. The current study focuses on the oxidative transformation of veratryl alcohol (VA)—a compound......-(methoxymethyl)benzene) prevailed, indicating that methanol protected the hydroxyl group in VA from being oxidized to VAld. Catalysts containing alternative transition metals (Mn, Co, Cu and Ag) supported on Al2O3 gave significantly lower activities compared to Ru/Al2O3 under identical reaction conditions...

  6. Serum levels of YKL-40 and PIIINP as prognostic markers in patients with alcoholic liver disease

    DEFF Research Database (Denmark)

    Nøjgaard, Camilla; Johansen, Julia S; Christensen, Erik;

    2003-01-01

    the patients compared to controls. Patients with steatosis or no fibrosis had the lowest serum levels of YKL-40 and PIIINP, whereas patients with alcoholic hepatitis and/or cirrhosis had the highest levels. Serum YKL-40 was associated with the presence of fibrosis, and serum PIIINP was also associated...

  7. Science of Alcohol Curriculum for American Indians (SACAI): An Interdisciplinary Approach to the Study of the Science of Alcohol for Upper Elementary and Middle Level Students.

    Science.gov (United States)

    American Indian Science and Engineering Society, Boulder, CO.

    This curriculum provides American Indian youth with a framework for learning about the effects of alcohol on the body and the community. The curriculum stresses the development of scientific thinking skills and was designed for upper elementary and middle level students. The guide consists of four units: How Does Alcohol Circulate through the Body…

  8. Nucleus accumbens response to rewards and testosterone levels are related to alcohol use in adolescents and young adults

    OpenAIRE

    Barbara R. Braams; Peper, Jiska S.; Dianne van der Heide; Sabine Peters; Crone, Eveline A.

    2016-01-01

    During adolescence there is a normative increase in risk-taking behavior, which is reflected in, for example, increases in alcohol consumption. Prior research has demonstrated a link between testosterone and alcohol consumption, and between testosterone and neural responses to rewards. Yet, no study to date tested how testosterone levels and neural responses to rewards relate to and predict individual differences in alcohol use. The current study aimed to investigate this by assessing alcohol...

  9. Alcohol Use, Partner Type, and Risky Sexual Behavior Among College Students: Findings from an Event-Level Study

    OpenAIRE

    Brown, Jennifer L; Vanable, Peter A.

    2007-01-01

    Alcohol use is prevalent among college students and may contribute to elevated rates of sexual risk taking. Using event-level data, the hypothesis that partner type would moderate the effect of alcohol consumption on condom use was tested. Sexually active college students (N = 330; 67% female) reported on characteristics of their most recent sexual encounter, including partner type, alcohol use, and condom use, along with measures of sex-related alcohol expectancies, sensation seeking, and ty...

  10. Features Of Daily Dynamics Of Catecholamine Level In Myocardium Under The Influence Of Low Alcohol Drinks

    Directory of Open Access Journals (Sweden)

    O.I. Kostin

    2009-09-01

    Full Text Available The research goal was to study the features of daily dynamics of adrenaline and noradrenaline content in various parts of myocardium at the rats receiving nonalcoholic and alcohol-containing beer at ordinary light regimen. Substantial increase of level of adrenaline and noradrenaline in all parts of myocardium at the rats received nonalcoholic and spirit-based beer in comparison with the control. At the rats received nonalcoholic beer, authentically higher content of adrenaline and low noradrenaline in myocardium in comparison with animals received alcohol-containing beer was observed. The circadian dynamics of catecholamine level in all parts of heart myocardium was disturbed at animals of both experimental groups in comparison with the control. The revealed disturbances of level of daily catecholamine dynamics in myocardium under the influence of beer, undoubtedly, are bound with negative action of nonalcoholic nature ingredients present in beer. Key words: adrenaline, noradrenaline, myocardium, low alcohol drinks.

  11. A novel dinuclear schiff base copper complex as an efficient and cost effective catalyst for oxidation of alcohol: Synthesis, crystal structure and theoretical studies

    Indian Academy of Sciences (India)

    Atena Naeimi; Samira Saeednia; Mehdi Yoosefian; Hadi Amiri Rudbari; Viviana Mollica Nardo

    2015-07-01

    An environmentally friendly protocol is described for an economic, practical laboratory-scale oxidation of primary and secondary alcohols to aldehydes and ketones, using a bis-chloro-bridged binuclear Cu(II) complex [(HL)Cu(2-Cl)2Cu(HL)]*1.5 CH3OH as catalyst. The catalyst was prepared in situ from commercially available reagents and is characterized by single crystal X-ray analysis, FT-IR, UV-visible spectra, mass spectrometry, and powder x-ray diffraction (PXRD). The geometry of the complex has been optimized using the B3LYP level of theory confirming the experimental data. Our results demonstrated well the efficiency, selectivity and stability of this new catalyst in the oxidation of alcohols in ethanol and tert-butyl hydroperoxide (tBuOOH) as a green solvent and oxidant, respectively. Turnover number and reusability have proven the high efficiency and relative stability of the catalyst.

  12. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.

    Science.gov (United States)

    Men, Lijie; Wang, Yinsheng

    2007-01-01

    Yeast alcohol dehydrogenase (YADH) plays an important role in the conversion of alcohols to aldehydes or ketones. YADH-1 is a zinc-containing protein, and it accounts for the major part of ADH activity in growing baker's yeast. To gain insight into how oxidative modification of the enzyme affects its function, we exposed YADH-1 to hydrogen peroxide in vitro and assessed the oxidized protein by LC-MS/MS analysis of proteolytic cleavage products of the protein and by measurements of enzymatic activity, zinc release, and thiol/thiolate loss. The results illustrated that Cys43 and Cys153, which reside at the active site of the protein, could be selectively oxidized to cysteine sulfinic acid (Cys-SO2H) and cysteine sulfonic acid (Cys-SO3H). In addition, H2O2 induced the formation of three disulfide bonds: Cys43-Cys153 in the catalytic domain, Cys103-Cys111 in the noncatalytic zinc center, and Cys276-Cys277. Therefore, our results support the notion that the oxidation of cysteine residues in the zinc-binding domain of proteins can go beyond the formation of disulfide bond(s); the formation of Cys-SO2H and Cys-SO3H is also possible. Furthermore, most methionines could be oxidized to methionine sulfoxides. Quantitative measurement results revealed that, among all the cysteine residues, Cys43 was the most susceptible to H2O2 oxidation, and the major oxidation products of this cysteine were Cys-SO2H and Cys-SO3H. The oxidation of Cys43 might be responsible for the inactivation of the enzyme upon H2O2 treatment.

  13. Effects of Oxidative Alcohol Metabolism on the Mitochondrial Permeability Transition Pore and Necrosis in a Mouse Model of Alcoholic Pancreatitis

    Science.gov (United States)

    SHALBUEVA, NATALIA; MARENINOVA, OLGA A.; GERLOFF, ANDREAS; YUAN, JINGZHEN; WALDRON, RICHARD T.; PANDOL, STEPHEN J.; GUKOVSKAYA, ANNA S.

    2013-01-01

    BACKGROUND & AIMS Opening of the mitochondrial permeability transition pore (MPTP) causes loss of the mitochondrial membrane potential (ΔΨm) and, ultimately, adenosine triphosphate depletion and necrosis. Cells deficient in cyclophilin D (CypD), a component of the MPTP, are resistant to MPTP opening, loss of ΔΨm, and necrosis. Alcohol abuse is a major risk factor for pancreatitis and is believed to sensitize the pancreas to stressors, by poorly understood mechanisms. We investigated the effects of ethanol on the pancreatic MPTP, the mechanisms of these effects, and their role in pancreatitis. METHODS We measured ΔΨm in mouse pancreatic acinar cells incubated with ethanol alone and in combination with physiologic and pathologic concentrations of cholecystokinin-8 (CCK). To examine the role of MPTP, we used ex vivo and in vivo models of pancreatitis, induced in wild-type and CypD−/− mice by a combination of ethanol and CCK. RESULTS Ethanol reduced basal ΔΨm and converted a transient depolarization, induced by physiologic concentrations of CCK, into a sustained decrease in ΔΨm, resulting in reduced cellular adenosine triphosphate and increased necrosis. The effects of ethanol and CCK were mediated by MPTP because they were not observed in CypD−/− acinar cells. Ethanol and CCK activated MPTP through different mechanisms— ethanol by reducing the ratio of oxidized nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide, as a result of oxidative metabolism, and CCK by increasing cytosolic Ca2+. CypD−/− mice developed a less-severe form of pancreatitis after administration of ethanol and CCK. CONCLUSIONS Oxidative metabolism of ethanol sensitizes pancreatic mitochondria to activate MPTP, leading to mitochondrial failure; this makes the pancreas susceptible to necrotizing pancreatitis. PMID:23103769

  14. Chronic Ethanol Exposure Effects on Vitamin D Levels Among Subjects with Alcohol Use Disorder

    Science.gov (United States)

    Ogunsakin, Olalekan; Hottor, Tete; Mehta, Ashish; Lichtveld, Maureen; McCaskill, Michael

    2016-01-01

    Vitamin D has been previously recognized to play important roles in human immune system and function. In the pulmonary system, vitamin D regulates the function of antimicrobial peptides, especially cathelicidin/LL-37. Human cathelicidin/LL-37 is a bactericidal, bacteriostatic, and antiviral endogenous peptide with protective immune functions. Chronic exposure to excessive alcohol has the potential to reduce levels of vitamin D (inactive vitamin D [25(OH)D3] and active vitamin D [1, 25(OH)2D3]) and leads to downregulation of cathelicidin/LL-37. Alcohol-mediated reduction of LL-37 may be partly responsible for increased incidence of more frequent and severe respiratory infections among subjects with alcohol use disorder (AUD). The objective of this study was to investigate the mechanisms by which alcohol exerts its influence on vitamin D metabolism. In addition, the aim was to establish associations between chronic alcohol exposures, levels of pulmonary vitamin D, and cathelicidin/LL-37 using broncho-alveolar lavage fluid samples of subjects with AUD and healthy controls. Findings from the experiment showed that levels of inactive vitamin D (25(OH)D3), active vitamin D (1, 25(OH)2D3), cathelicidin/LL-37, and CYP27B1 proteins were significantly reduced (P vitamin D and results in subsequent downregulation of the antimicrobial peptide, LL-37, in the human pulmonary system.

  15. Serum Levels of Selected Vitamins and Trace Elements in Nigerian Consumers of Alcoholic Beverage: A Suggestion for DNA Hypomethylation.

    Science.gov (United States)

    Ude, A N; Edem, V F; Onifade, A A; Arinola, O G

    2016-01-01

    Folic acid, vitamins and Zinc play essential role in DNA methylation but alcohol consumption is known to affectthe levels of these micronutrients leading to risk of developing various illnesses and certain cancers. This study determinedthe levels of DNA methylation dependent-micronutrients (folate, vitamin B12, vitamin B6, zinc and selenium) andhomocysteine as a suggestion for DNA methylation status in Nigerian alcohol consumers compared with non-consumers ofalcohol. Venous blood (5ml) was obtained from thirty-four males that consume alcoholic beverages for at least 10 years andthirty-two male controls that did not consume alcoholic beverages at least 10 years. Serum concentrations of folate, vitaminB12, vitamin B6, homocysteine (Hcy), selenium (Se) and zinc (Zn) were determined using High Performance LiquidChromatography (HPLC) and Atomic Absorption Spectrophotometry (AAS) as appropriate. Independent Student t-test wasused to compare the mean values between alcohol consumers and control. Mean differences were considered significant atpVitamin B6 and Hcy were significantly reduced in alcohol consumers whencompared with non-alcohol consumers. There were no statistically significant differences in the mean serum levels ofVitamin B12 and folate in alcohol consumers when compared with non-alcohol consumers. Since vitamin B6 and Hcy arerequired for DNA methylation, reduced vitamin B6 and Hcy levels in consumers of alcoholic beverages might suggest DNAhypomethylation in alcohol consumers. PMID:27574771

  16. Inhibition of a Gold-Based Catalyst in Benzyl Alcohol Oxidation: Understanding and Remediation

    Directory of Open Access Journals (Sweden)

    Emmanuel Skupien

    2014-04-01

    Full Text Available Benzyl alcohol oxidation was carried out in toluene as solvent, in the presence of the potentially inhibiting oxidation products benzaldehyde and benzoic acid. Benzoic acid, or a product of benzoic acid, is identified to be the inhibiting species. The presence of a basic potassium salt (K2CO3 or KF suppresses this inhibition, but promotes the formation of benzyl benzoate from the alcohol and aldehyde. When a small amount of water is added together with the potassium salt, an even greater beneficial effect is observed, due to a synergistic effect with the base. A kinetic model, based on the three main reactions and four major reaction components, is presented to describe the concentration-time profiles and inhibition. The inhibition, as well as the effect of the base, was captured in the kinetic model, by combining strong benzoic acid adsorption and competitive adsorption with benzyl alcohol. The effect of the potassium salt is accounted for in terms of neutralization of benzoic acid.

  17. Dysregulation of hepatic cAMP levels via altered Pde4b expression plays a critical role in alcohol-induced steatosis.

    Science.gov (United States)

    Avila, Diana V; Barker, David F; Zhang, JingWen; McClain, Craig J; Barve, Shirish; Gobejishvili, Leila

    2016-09-01

    Alcohol-induced hepatic steatosis is a significant risk factor for progressive liver disease. Cyclic adenosine monophosphate (cAMP) signalling has been shown to significantly regulate lipid metabolism; however, the role of altered cAMP homeostasis in alcohol-mediated hepatic steatosis has never been studied. Our previous work demonstrated that increased expression of hepatic phosphodiesterase 4 (Pde4), which specifically hydrolyses and decreases cAMP levels, plays a pathogenic role in the development of liver inflammation/injury. The aim of this study was to examine the role of PDE4 in alcohol-induced hepatic steatosis. C57BL/6 wild-type and Pde4b knockout (Pde4b(-/-) ) mice were pair-fed control or ethanol liquid diets. One group of wild-type mice received rolipram, a PDE4-specific inhibitor, during alcohol feeding. We demonstrate for the first time that an early increase in PDE4 enzyme expression and a resultant decrease in hepatic cAMP levels are associated with the significant reduction in carnitine palmitoyltransferase 1A (Cpt1a) expression. Notably, alcohol-fed (AF) Pde4b(-/-) mice and AF wild-type mice treated with rolipram had significantly lower hepatic free fatty acid content compared with AF wild-type mice. Importantly, PDE4 inhibition in alcohol-fed mice prevented the decrease in hepatic Cpt1a expression via the Pparα/Sirt1/Pgc1α pathway. These results demonstrate that the alcohol- induced increase in hepatic Pde4, specifically Pde4b expression, and compromised cAMP signalling predispose the liver to impaired fatty acid oxidation and the development of steatosis. Moreover, these data also suggest that hepatic PDE4 may be a clinically relevant therapeutic target for the treatment of alcohol-induced hepatic steatosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27287961

  18. Alcohol sensing of tin oxide thin film prepared by sol–gel process

    Indian Academy of Sciences (India)

    Sunita Mishra; C Ghanshyam; Nathai Ram; Satinder Singh; R P Bajpai; R K Bedi

    2002-06-01

    The present paper describes the alcohol sensing characteristics of spin coated SnO2 thin film deposited by using sol–gel process. The sensitivity of the film was measured at different temperatures and different concentrations of alcohol at ppm level. Alcohol detection result shows peak sensitivity at 623 K. The variation of sensitivity and ethanol concentration has shown a linear relationship up to 1150 ppm and after that it saturates. The response time measurement of the sensor was also observed and it was found that the response time is 30 sec. The results obtained favour the sol–gel process as a low cost method for the preparation of thin films with a high sensing characteristic.

  19. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium-doped zinc oxide nanorods

    Indian Academy of Sciences (India)

    Kanchan Saxena; Amit Kumar; Nishant Malik; Pramod Kumar; V K Jain

    2014-04-01

    Undoped and aluminium (Al)-doped zinc oxide (ZnO) nanorods have been synthesized by electrochemical route. The synthesized materials have been characterized by X-ray diffraction, UV–visible spectrometer and scanning electron microscope. The Al-doped ZnO nanorods have been coated with polyvinyl alcohol. Current–voltage characteristics have been investigated in dark and under UV-light illumination. Aluminium doping in ZnO increase its electrical conductivity and further polyvinyl alcohol coating on Al-doped ZnO increase UV sensitivity of the material. Response and recovery time of Al-doped ZnO and PVA-coated Al-doped ZnO nanorods have been recorded. PVA-coated Al-doped ZnO nanorods shows very fast response and recovery time of 10 s in comparison to uncoated ZnO (20 min) nanorods.

  20. Two Generations of Maternal Alcohol Abuse: Impact on Cognitive Levels in Mothers and Their Children

    Science.gov (United States)

    Dumaret, Annick-Camille; Cousin, Melanie; Titran, Maurice

    2010-01-01

    Transgenerational effects of alcohol on mothers' and children's intellectual functioning has been examined in 22 families from very deprived environments. Their psychosocial outcomes and IQ level were evaluated in a follow-up study on average seven years after they left the support group of a day-care centre for young children; school data were…

  1. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    Saad Alabbad

    2014-12-01

    Full Text Available Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.

  2. [Studies on the mechanism of elevation of serum PIVKA-II levels in alcoholic liver cirrhosis].

    Science.gov (United States)

    Sakizono, Kenji; Oita, Tatsuo; Eto, Masaaki; Bito, Sanae; Takegawa, Hiroshi; Kasakura, Shinpei

    2002-03-01

    We measured serum PIVKA-II concentrations in 18 patients with alcoholic liver cirrhosis. Alcoholic liver disease was diagnosed by the history of ethanol intake of more than 900 ml/day for over 10 years. Liver cirrhosis was diagnosed histologically. Infections with hepatitis B and C viruses were ruled out by assaying serum virus markers. No tumor was detected in liver by ultrasonography and computed tomography during observation period. None of the patients studied were positive for alpafetoprotein (AFP). Eight out of 18 (44.4%) patients with alcoholic liver cirrhosis showed elevated serum PIVKA-II levels. In contrast, only eight out of 93 (8.6%) patients with nonalcholic liver cirrhosis had elevated serum PIVKA-II levels. PIVKA-II is well known as a tumor marker of hepatocellular carcinoma (HCC). The rates of positive PIVKA-II found in alcoholic liver cirrhosis approached its rates in HCC. However, the time course for the elevation of serum PIVKA-II levels was different each other in alcoholic liver cirrhosis and HCC. In HCC, serum PIVKA-II "levels" continued to elevate until therapy. In contrast, its elevation was transient and its levels returned to baseline in alcoholic liver cirrhosis. The values of ALT (GPT), gamma-GTP, and ALP correlated poorly with serum PIVKA-II levels in patients with alcoholic liver cirrhosis. To investigate the mechanism by which elevation of serum PIVKA-II levels in patients with alcoholic liver cirrhosis occurred, we studied the effect of vitamin K on production of PIVKA-II and AFP by hepatocytes. Hepatocytes(Alexander PLC/PRF/F cell line) were cultured in the presence of various concentrations of vitamin K (Kaytwo, Eisai, Tokyo). Vitamin K had no effect on AFP production. In contrast, PIVKA-II production was inhibited by addition of vitamin K in a dose dependent manner. Moreover, elevation of serum PIVKA-II levels in patients with alcoholic liver cirrhosis was suppressed by administration of vitamin K (Kaytwo) to these patients. Taken

  3. Amphiphilic hollow porous shell encapsulated Au@Pd bimetal nanoparticles for aerobic oxidation of alcohols in water

    KAUST Repository

    Zou, Houbing

    2015-01-01

    © The Royal Society of Chemistry 2015. This work describes the design, synthesis and analysis of an amphiphilic hollow mesoporous shell encapsulating catalytically active Au@Pd bimetal nanoparticles. The particles exhibited excellent catalytic activity and stability in the aerobic oxidation of primary and secondary alcohols to their corresponding aldehydes or ketones in water when using air as an oxidizing agent under atmospheric pressure.

  4. A Facile and Efficient Oxidation of (,(-Unsaturated Alcohols with Manganese Dioxide in Ionic Liquids under Mild Conditions

    Institute of Scientific and Technical Information of China (English)

    Wei Liang BAO; Qiang WANG; Yun Fa ZHENG

    2004-01-01

    The oxidation of α,β-unsaturated primary and secondary alcohols to corresponding aldehydes and ketones by manganese dioxide in ionic liquids as a safe recyclable and accelerative reaction medium under mild conditions are described. The rate of the oxidation reaction is faster and the yield is higher than that with conventional procedures.

  5. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  6. CuCl-Catalyzed Aerobic Oxidation of Allylic and Propargylic Alcohols to Aldehydes or Ketones with 1 : 1 Combination of Phenanthroline and Bipyridine as the Ligandst%CuCl-Catalyzed Aerobic Oxidation of Allylic and Propargylic Alcohols to Aldehydes or Ketones with 1 : 1 Combination of Phenanthroline and Bipyridine as the Ligandst

    Institute of Scientific and Technical Information of China (English)

    刘宇; 麻生明

    2012-01-01

    We developed a modified protocol for the oxidation of 2,3-allenyl alcohols using CuCI with l : 1 combination of phenanthroline and bipyridine as the catalyst. To further investigate the applicability of this system, other types of alcohols such as allylic and propargylic alcohols have been tested: we found that both allylic and propargylic alcohols may be oxidized to the corresponding aldehydes or ketones using molecular oxygen in air as the oxidant with moderate to excellent yields.

  7. Cobalt-chitosan: Magnetic and biodegradable heterogeneous catalyst for selective aerobic oxidation of alkyl arenes and alcohols

    Indian Academy of Sciences (India)

    Ahmad Shaabani; Mahmoud Borjian Boroujeni; Mona Hamidzad Sangachin

    2015-11-01

    A novel and biodegradable cobalt-chitosan as a magnetic heterogeneous catalyst was synthesized and characterized by XPS, FT-IR, EDX and TEM. Catalytic performance of cobalt- chitosan was tested by aerobic oxidation of alkyl arenes and alcohols. The results show that the catalyst exhibits excellent conversion for selective aerobic oxidation of various alkyl arenes, primary and secondary alcohols with air as the only oxidant. The catalyst can be easily separated by magnetic devices and reused for 5 runs without appreciable loss of activity.

  8. An investigation into the electro-oxidation of ethanol and 2-propanol for application in direct alcohol fuel cells (DAFCs)

    Indian Academy of Sciences (India)

    Sagar Sen Gupta; Jayati Datta

    2005-07-01

    A comparative study of the electro-oxidation of ethanol and 2-propanol was carried out on carbon-supported platinum particles. Cyclic voltammetry, steady state polarisation, and electrochemical impedance spectroscopy were used to investigate the oxidation reactions. A difference in the mechanistic behaviour of the oxidation of ethanol and 2-propanol on Pt was observed, thereby highlighting the fact that the molecular structure of the alcohol has great influence on its electroreactivity. The study emphasizes the fact that 2-propanol is a promising fuel candidate for a direct alcohol fuel cell.

  9. Influence of alcohol consumption on alveolar bone level associated with ligature-induced periodontitis in rats

    Directory of Open Access Journals (Sweden)

    Daniela Martins de Souza

    2009-09-01

    Full Text Available Alcohol consumption is a risk indicator for periodontal disease. The purpose of this study was to morphometrically evaluate the influence of alcohol consumption on alveolar bone level associated with ligature-induced periodontitis in rats. Thirty-six female rats (Wistar, 120 days-old were randomly divided into three groups that received a daily administration of a water diet (control, n = 12, a 10% alcohol diet (10% ethanol, n = 12 or a 20% alcohol diet (20% ethanol, n = 12. Four weeks after the onset of the experiment, cotton ligatures were placed around the cervix of the upper right second molar in six rats. The other 6 rats in each group remained unligated. The rats were sacrificed four weeks after ligature placement. The maxillary bones were removed and alveolar bone loss was analyzed by measuring the distance between the cementoenamel junction and the alveolar bone crest at 2 buccal and 2 palatal sites on the upper right second molar. Analyses between the ligated and unligated groups showed that the presence of ligature induced alveolar bone loss (p 0.05. In the ligated groups, rats receiving 20% ethanol showed significantly greater bone loss compared to control rats or rats receiving 10% ethanol. These results demonstrate that alcohol consumption may increase alveolar bone loss in female rats in a dose-dependent manner.

  10. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    Energy Technology Data Exchange (ETDEWEB)

    Achyuthan, Komandoor; Adams, Paul; Simmons, Blake; Singh, Anup

    2011-07-13

    Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.

  11. Development of Highly Effective Nanoparticle Spinel Catalysts for Aerobic Oxidation of Benzylic Alcohols

    Institute of Scientific and Technical Information of China (English)

    JI,Hong-Bing(纪红兵); WANG,Le-Fu(王乐夫)

    2002-01-01

    Spinel catalyst MnFe1.8Cu0.15Ru0.05O4 with particle size of about 42 nm is an effective heterogeneous catalyst for the oxidation of benzylic alcohols. The substitution of Fe for Cu improves its catalytic activity. Based on the characterization of BET, XPS and EXAFS, two factors influencing the structure and texture of the catalyst caused by the substitution of Cu for Fe may be assumed: physical factor responsible for the increasing of surface area; chemical factor responsible for the transformation of Ru-O bonds to Ru = O bonds. β-Elimination is considered to be an important step in the reaction.

  12. Decreased serum level of NGF in alcohol-dependent patients with declined executive function

    Directory of Open Access Journals (Sweden)

    Bae H

    2014-11-01

    Full Text Available Hwallip Bae,1 Youngsun Ra,1 Changwoo Han,2 Dai-Jin Kim3 1Department of Psychiatry, Myongji Hospital, Goyang, 2Department of Psychiatry, Keyo Hospital, Uiwang, 3Department of Psychiatry, Seoul St Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea Abstract: The role of neurotrophic factors has been highlighted as a cause of decline in the cognitive function of alcohol-dependent patients. It is known that nerve-growth factor (NGF, one of the neurotrophins, is related to the growth and differentiation of nerve cells, as well as to a decline in cognitive function. The purpose of this study was to investigate the relationship between decreased NGF levels and cognitive decline in alcohol-dependent patients. The serum concentration of NGF was measured in 38 patients with chronic alcohol dependence, and several neuropsychological tests were also performed for cognitive function assessment. The results indicated a significant correlation between serum NGF level and the trail-making test part B, which evaluates executive function, but did not show a significant correlation with other cognitive function tests. An increased serum level of NGF was associated with a decreased completion time in the trail-making test B, and this finding indicates that a high serum level of NGF is related to greater executive function. This finding may imply a protective role of NGF in preventing neuron damage among patients with alcohol dependence. Larger controlled studies will be necessary in the future to investigate this issue further. Keywords: nerve-growth factor, alcohol dependence, executive function, trail-making test

  13. The Manipulation of Hydrophobicity in Catalyst Design for Applications of Aerobic Alcohols Oxidation and Electrocatalytic Water Oxidation

    KAUST Repository

    Chen, Batian

    2016-05-17

    Hydrophobicity is the generalized characteristic of non-polar substances that brings about their exclusion from aqueous phases. This property, entropic in its nature, drives key self-assembly and phase separation processes in water. Protein folding, the formation of DNA double helix, the existence of lipid bilayers and the wetting properties of leaf surfaces are all due to hydrophobic interactions. Inspired by Nature, we aimed to use hydrophobicity for creating novel and improved catalytic systems. (I) A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. (II) An enzyme-inspired catalytic system based on a rationally designed multifunctional surfactant was developed. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically. (III) Development of a facile means of photo/electrocatalytic water splitting is one of the main barriers to establishing of a solar hydrogen economy. Of the two half-reactions involved in splitting water into O2 and H2, water oxidation presents the most challenge due to its mechanistic complexity. A practical water oxidation catalyst must be highly active, yet inexpensive and indefinitely stable under harsh oxidative conditions. Here, I shall describe the synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine, (BimH)3. A wide range of catalysts differing in their electronic properties

  14. Optimal oxidative folding of the novel antimicrobial cyclotide from Hedyotis biflora requires high alcohol concentrations.

    Science.gov (United States)

    Wong, Clarence T T; Taichi, Misako; Nishio, Hideki; Nishiuchi, Yuji; Tam, James P

    2011-08-23

    Hedyotide B1, a novel cyclotide isolated from the medicinal plant Hedyotis biflora, contains a cystine knot commonly found in toxins and plant defense peptides. The optimal oxidative folding of a cystine knot encased in the circular peptide backbone of a cyclotide poses a challenge. Here we report a systematic study of optimization of the oxidative folding of hedyotide B1, a 30-amino acid cyclic peptide with a net charge of +3. The linear precursor of hedyotide B1, synthesized as a thioester by solid phase synthesis, was cyclized quantitatively by a thia-zip cyclization to form the circular backbone and then subjected to oxidative folding in a thiol-disulfide redox system under 38 different conditions. Of the oxidative conditions examined, the nature of the organic cosolvent appeared to be critical, with the use of 70% 2-propanol affording the highest yield (48%). The disulfide connectivity of the folded hedyotide was identical to that of the native form as determined by partial acid hydrolysis. The use of such a high alcohol concentration suggests that a partial denaturation may be necessary for the oxidative folding of a cyclotide with the inverse orientation of hydrophobic side chains that are externalized to the solvent face to permit the formation of the interior cystine core in the circularized backbone. We also show that synthetic hedyotide B1 is an antimicrobial, exhibiting minimal inhibitory concentrations in the micromolar range against both Gram-positive and -negative bacteria. PMID:21776968

  15. Effect of Nitric Oxide on Alcoholic Fermentation and Qualities of Chinese Winter Jujube During Storage

    Institute of Scientific and Technical Information of China (English)

    SUN Li-na; LIU Meng-chen; ZHU Shu-hua; ZHOU Jie; WANG Ming-lin

    2007-01-01

    This article investigates the effects of nitric oxide (NO) on alcoholic fermentation and the qualities of Chinese Winter Jujube during storage, and explores the action mechanisms of browning and softening of fruits to provide theoretical proofs for using NO in the storage of Chinese Winter Jujube. Chinese Winter Jujube fruits were fumigated with different concentrations of NO gas (0, 10, 20, 30 μL L-1) under anaerobic conditions and stored at 22 ± 1 ℃ and 4 ± 1 ℃. The changes in appearance qualities, the contents of pyruvate, ethanol, acetaldehyde, and the activities of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) were investigated. The contents of pyruvate, ethanol, and acetaldehyde were significantly reduced, and the peak of pyruvate content was delayed by 20 μL L-1 NO. The activities of ADH and LDH in 20 μL L-1 NO treated fruits were also significantly inhibited. However, the alcoholic fermentation and softening of Chinese Winter Jujube fruits were promoted by 30 μL L-1 NO during storage. The results indicated that 20 μL L-1 NO could mitigate the injury of ethanol on Chinese Winter Jujube and effectively delay the browning and softening of fruits during storage.

  16. The Role of Vanadia for the Selective Oxidation of Benzyl Alcohol over Heteropolymolybdate Supported on Alumina

    Institute of Scientific and Technical Information of China (English)

    Pasupulet Siva Nageswara RAO; Kasanneni Tirumala Venkateswara RAO; Potharaju S. SAI PRASAD; Nakka LINGAIAH

    2011-01-01

    A series of 12-molybdophosphoric acid (MPA) supported on V2O5 dispersed γ-Al2O3 catalysts with different vanadia loadings were prepared by impregnation and characterized by N2 adsorption-desorption,X-ray diffraction,temperature-programmed reduction,in situ laser Raman spectroscopy,UV-Vis diffused reflectance spectroscopy,scanning electron microscopy,and temperature-programmed desorption of NH3 techniques.Their catalytic activities were evaluated for the vapor phase aerobic oxidation of benzyl alcohol.The catalysts exhibited high catalytic activity and the conversion of benzyl alcohol depended on the vanadia content while the catalyst with 15 wt% V2O5 content showed optimum activity.The characterization results suggest the presence of well-dispersed V2O5 and partially disintegrated Keggin ions of MPA on the support.In situ Raman studies showed a reduced Mo(IV) species when the catalysts were calcined at high temperatures.The high oxidation activity of the catalysts is related to the synergistic effect between MPA and V2O5.

  17. Susceptibility of L-FABP-/- mice to oxidative stress in early-stage alcoholic liver.

    Science.gov (United States)

    Smathers, Rebecca L; Galligan, James J; Shearn, Colin T; Fritz, Kristofer S; Mercer, Kelly; Ronis, Martin; Orlicky, David J; Davidson, Nicholas O; Petersen, Dennis R

    2013-05-01

    Chronic ethanol consumption is a prominent cause of liver disease worldwide. Dysregulation of an important lipid uptake and trafficking gene, liver-fatty acid binding protein (L-FABP), may contribute to alterations in lipid homeostasis during early-stage alcoholic liver. We have reported the detrimental effects of ethanol on the expression of L-FABP and hypothesize this may deleteriously impact metabolic networks regulating fatty acids. Male wild-type (WT) and L-FABP(-/-) mice were fed a modified Lieber-DeCarli liquid diet for six weeks. To assess the response to chronic ethanol ingestion, standard biochemical indicators for alcoholic liver disease (ALD) and oxidative stress were measured. Ethanol ingestion resulted in attenuation of hepatic triglyceride accumulation and elevation of cholesterol in L-FABP(-/-) mice. Lipidomics analysis validated multiple alterations in hepatic lipids resulting from ethanol treatment. Increased immunohistochemical staining for the reactive aldehydes 4-hydroxynonenal and malondialdehyde were observed in WT mice ingesting ethanol; however, L-FABP(-/-) mice displayed prominent protein adducts in liver sections evaluated from pair-fed and ethanol-fed mice. Likewise, alterations in glutathione, thiobarbituric acid reactive substances (TBARS), 8-isoprostanes, and protein carbonyl content all indicated L-FABP(-/-) mice exhibit high sustained oxidative stress in the liver. These data establish that L-FABP is an indirect antioxidant protein essential for sequestering FFA and that its impairment could contribute to in the pathogenesis of ALD.

  18. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    Science.gov (United States)

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  19. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    Science.gov (United States)

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  20. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease

    Science.gov (United States)

    Morales Arraez, Dalia; Marcelino Reyes, Raquel; Abrante, Beatriz; Diaz-Flores, Felicitas; Salido, Eduardo; Quintero, Enrique; Hernández-Guerra, Manuel

    2016-01-01

    Introduction Metabolic syndrome induces endothelial dysfunction, a surrogate marker of cardiovascular disease. In parallel, metabolic syndrome is frequently associated with non-alcoholic fatty liver disease (NAFLD), which may progress to cirrhosis. The aim of the present study was to evaluate intrahepatic endothelial dysfunction related to cyclooxygenase end products and oxidative stress as possible mechanisms involved in the pathophysiology of NAFLD. Materials and Methods Sprague-Dawley rats were fed standard diet (control-diet, CD) or high-fat-diet (HFD) for 6 weeks. Metabolic syndrome was assessed by recording arterial pressure, lipids, glycemia and rat body weight. Splanchnic hemodynamics were measured, and endothelial dysfunction was evaluated using concentration-effect curves to acetylcholine. Response was assessed with either vehicle, L-NG-Nitroarginine (L-NNA), indomethacin, tempol, or a thromboxane receptor antagonist, SQ 29548. We quantified inflammation, fibrosis, oxidative stress, nitric oxide (NO) bioavailability and thromboxane B2 levels. Results HFD rats exhibited metabolic syndrome together with the presence of NAFLD. Compared to control-diet livers, HFD livers showed increased hepatic vascular resistance unrelated to inflammation or fibrosis, but with decreased NO activity and increased oxidative stress. Endothelial dysfunction was observed in HFD livers compared with CD rats and improved after cyclooxygenase inhibition or tempol pre-incubation. However, pre-incubation with SQ 29548 did not modify acetylcholine response. Conclusions Our study provides evidence that endothelial dysfunction at an early stage of NAFLD is associated with reduced NO bioavailability together with increased cyclooxygenase end products and oxidative stress, which suggests that both pathways are involved in the pathophysiology and may be worth exploring as therapeutic targets to prevent progression of the disease. PMID:27227672

  1. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gonzalez-Paredes

    Full Text Available Metabolic syndrome induces endothelial dysfunction, a surrogate marker of cardiovascular disease. In parallel, metabolic syndrome is frequently associated with non-alcoholic fatty liver disease (NAFLD, which may progress to cirrhosis. The aim of the present study was to evaluate intrahepatic endothelial dysfunction related to cyclooxygenase end products and oxidative stress as possible mechanisms involved in the pathophysiology of NAFLD.Sprague-Dawley rats were fed standard diet (control-diet, CD or high-fat-diet (HFD for 6 weeks. Metabolic syndrome was assessed by recording arterial pressure, lipids, glycemia and rat body weight. Splanchnic hemodynamics were measured, and endothelial dysfunction was evaluated using concentration-effect curves to acetylcholine. Response was assessed with either vehicle, L-NG-Nitroarginine (L-NNA, indomethacin, tempol, or a thromboxane receptor antagonist, SQ 29548. We quantified inflammation, fibrosis, oxidative stress, nitric oxide (NO bioavailability and thromboxane B2 levels.HFD rats exhibited metabolic syndrome together with the presence of NAFLD. Compared to control-diet livers, HFD livers showed increased hepatic vascular resistance unrelated to inflammation or fibrosis, but with decreased NO activity and increased oxidative stress. Endothelial dysfunction was observed in HFD livers compared with CD rats and improved after cyclooxygenase inhibition or tempol pre-incubation. However, pre-incubation with SQ 29548 did not modify acetylcholine response.Our study provides evidence that endothelial dysfunction at an early stage of NAFLD is associated with reduced NO bioavailability together with increased cyclooxygenase end products and oxidative stress, which suggests that both pathways are involved in the pathophysiology and may be worth exploring as therapeutic targets to prevent progression of the disease.

  2. Alcohol consumption, blood alcohol concentration level and guideline compliance in hospital referred patients with minimal, mild and moderate head injuries

    DEFF Research Database (Denmark)

    Harr, Marianne Efskind; Heskestad, Ben; Ingebrigtsen, Tor;

    2011-01-01

    In 2000 the Scandinavian Neurotrauma Committee published guidelines for safe and cost-effective management of minimal, mild and moderate head injured patients.The aims of this study were to investigate to what extent the head injury population is under the influence of alcohol, and to evaluate...... whether the physicians' compliance to the guidelines is affected when patients are influenced by alcohol....

  3. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater:Influence of NaOH on the organic decomposition

    Institute of Scientific and Technical Information of China (English)

    Jie Zhang; Shuzhong Wang; Yang Guo; Donghai Xu; Yanmeng Gong; Xingying Tang

    2013-01-01

    Polyvinyl alcohol is a refractory compound widely used in industry.Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition.However,it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment.Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol.It appears that the OH-ion participated in the C-C bond cleavage of polyvinyl alcohol molecules,the CO2-capture reaction and the neutralization of intermediate organic acids,promoting the overall reactions moving in the forward direction.Acetaldehyde was a typical intermediate product during reaction.For supercritical water oxidation of desizing wastewater,a high destruction rate (98.25%) based on total organic carbon was achieved.In addition,cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment,but salt precipitation and blockage issues arising during the process need to be taken into account seriously.

  4. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Guo, Yang; Xu, Donghai; Gong, Yanmeng; Tang, Xingying

    2013-08-01

    Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH- ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously. PMID:24520696

  5. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds.

    Science.gov (United States)

    Rajangam, Alex S; Gidda, Satinder K; Craddock, Christian; Mullen, Robert T; Dyer, John M; Eastmond, Peter J

    2013-01-01

    Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination.

  6. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Characteristics of three different graphene oxide (GO) are studied as a support for Ag nanoparticles. • The required conditions for a best support are determined. • For the first time the silver nanoparticles decorated GO as catalyst for aerobic oxidation of benzyl alcohol and the effects of the degree of reduction of GO on AgNPs on GO are reported. - Abstract: Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV–Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH

  7. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Bahareh; Hosseini-Monfared, Hassan, E-mail: monfared@znu.ac.ir

    2015-02-15

    Graphical abstract: - Highlights: • Characteristics of three different graphene oxide (GO) are studied as a support for Ag nanoparticles. • The required conditions for a best support are determined. • For the first time the silver nanoparticles decorated GO as catalyst for aerobic oxidation of benzyl alcohol and the effects of the degree of reduction of GO on AgNPs on GO are reported. - Abstract: Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV–Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH.

  8. Nucleus accumbens response to rewards and testosterone levels are related to alcohol use in adolescents and young adults

    Directory of Open Access Journals (Sweden)

    Barbara R. Braams

    2016-02-01

    Full Text Available During adolescence there is a normative increase in risk-taking behavior, which is reflected in, for example, increases in alcohol consumption. Prior research has demonstrated a link between testosterone and alcohol consumption, and between testosterone and neural responses to rewards. Yet, no study to date tested how testosterone levels and neural responses to rewards relate to and predict individual differences in alcohol use. The current study aimed to investigate this by assessing alcohol use, testosterone levels and neural responses to rewards in adolescents (12–17 years old and young adults (18–26 years old. Participants were measured twice with a two-year interval between testing sessions. Cross-sectional analysis showed that at the second time point higher neural activity to rewards, but not testosterone levels, explained significant variance above age in reported alcohol use. Predictive analyses showed that, higher testosterone level at the first time point, but not neural activity to rewards at the first time point, was predictive of more alcohol use at the second time point. These results suggest that neural responses to rewards are correlated with current alcohol consumption, and that testosterone level is predictive of future alcohol consumption. These results are interpreted in the context of trajectory models of adolescent development.

  9. Nucleus accumbens response to rewards and testosterone levels are related to alcohol use in adolescents and young adults.

    Science.gov (United States)

    Braams, Barbara R; Peper, Jiska S; van der Heide, Dianne; Peters, Sabine; Crone, Eveline A

    2016-02-01

    During adolescence there is a normative increase in risk-taking behavior, which is reflected in, for example, increases in alcohol consumption. Prior research has demonstrated a link between testosterone and alcohol consumption, and between testosterone and neural responses to rewards. Yet, no study to date tested how testosterone levels and neural responses to rewards relate to and predict individual differences in alcohol use. The current study aimed to investigate this by assessing alcohol use, testosterone levels and neural responses to rewards in adolescents (12-17 years old) and young adults (18-26 years old). Participants were measured twice with a two-year interval between testing sessions. Cross-sectional analysis showed that at the second time point higher neural activity to rewards, but not testosterone levels, explained significant variance above age in reported alcohol use. Predictive analyses showed that, higher testosterone level at the first time point, but not neural activity to rewards at the first time point, was predictive of more alcohol use at the second time point. These results suggest that neural responses to rewards are correlated with current alcohol consumption, and that testosterone level is predictive of future alcohol consumption. These results are interpreted in the context of trajectory models of adolescent development.

  10. A green and efficient oxidation of benzylic alcohols using H2O2 catalyzed by montmorillonite K-10 supported CoCl2

    Institute of Scientific and Technical Information of China (English)

    Ali Ezabadi; Ghloam Reza Najafi; Mohammad M.Hashemi

    2008-01-01

    Primary and secondary benzylic alcohols were oxidized to the corresponding carbonyl compounds in good to high yields by environmentally friendly and green oxidant,H2O2 catalyzed by montmorillonite K-10 supported cobalt(II) chloride.

  11. A green and efficient oxidation of benzylic alcohols using H2O2 catalyzed by Montmorillonite-K10 supported MnCl2

    Institute of Scientific and Technical Information of China (English)

    Cholam Reza Najafi

    2010-01-01

    Primary and secondary benzylic alcohols were oxidized to the corresponding carbonyl compounds in good to high yields by environmentally friendly and green oxidant, H2O2 catalyzed by Montmorillonite-K10 supported manganese(Ⅱ) chloride.

  12. Alcohol modulates circulating levels of interleukin-6 and monocyte chemoattractant protein-1 in chronic pancreatitis

    DEFF Research Database (Denmark)

    Pedersen, N; Larsen, S; Seidelin, J B;

    2004-01-01

    Cytokines are markers of acute pancreatic inflammation and essential for distant organ injury, but they also stimulate pancreatic fibrogenesis and are thus involved in the progression from acute pancreatitis to chronic pancreatic injury and fibrosis. The aim of this study was to evaluate the...... circulating levels of IL-6, MCP-1, TGF-beta1, IGF-1 and IGFBP-3 in patients with alcoholic chronic pancreatitis (CP)....

  13. Alcohol modulates circulating levels of interleukin-6 and monocyte chemoattractant protein-1 in chronic pancreatitis

    DEFF Research Database (Denmark)

    Pedersen, N; Larsen, S; Seidelin, J B;

    2004-01-01

    Cytokines are markers of acute pancreatic inflammation and essential for distant organ injury, but they also stimulate pancreatic fibrogenesis and are thus involved in the progression from acute pancreatitis to chronic pancreatic injury and fibrosis. The aim of this study was to evaluate...... the circulating levels of IL-6, MCP-1, TGF-beta1, IGF-1 and IGFBP-3 in patients with alcoholic chronic pancreatitis (CP)....

  14. Features Of Daily Dynamics Of Catecholamine Level In Myocardium Under The Influence Of Low Alcohol Drinks

    OpenAIRE

    O.I. Kostin; T.I. Dzhandarova; Т.В. Kostina

    2009-01-01

    The research goal was to study the features of daily dynamics of adrenaline and noradrenaline content in various parts of myocardium at the rats receiving nonalcoholic and alcohol-containing beer at ordinary light regimen. Substantial increase of level of adrenaline and noradrenaline in all parts of myocardium at the rats received nonalcoholic and spirit-based beer in comparison with the control. At the rats received nonalcoholic beer, authentically higher content of adrenaline and low noradr...

  15. Preparation of manganese oxide immobilized on SBA-15 by atomic layer deposition as an efficient and reusable catalyst for selective oxidation of benzyl alcohol in the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Mardani, Mahdieh

    2015-04-01

    Manganese oxide supported on mesoporous silica SBA-15 catalyst (Mn-SBA-15) was tested with Mn contents in the range of 0.8–23 wt%. Samples were prepared by the controlled grafting process of atomic layer deposition (ALD). Other sample was prepared for comparisons by the wet impregnation method. These samples were characterized by the techniques of ICP, XRD, SEM, Raman, FT-IR spectroscopy, diffuse reflectance UV–Vis, TGA-DSC, and N{sub 2} absorption–desorption surface area measurement. Results indicated that anchored manganese oxide particles have been successfully synthesized over the surface of SBA-15. These samples contained Red-Ox ion pairs of Mn{sup 2+} and Mn{sup 3+} highly dispersed on the mesoporous silica surface. The impregnated sample exhibited lower surface area and contained Red-Ox ion pairs of Mn{sup 3+} and Mn{sup 4+} more aggregated particles on the SBA-15 surface. Results determined Mn-SBA-15 as an efficient and selective catalyst for oxidation of benzyl alcohol with tert-butylhydroperoxide in liquid phase. In accordance with expectations, there was a negligible amount of leaching of immobilized manganese oxide from the support during the reaction, because of strong surface interaction between manganese oxide and hydroxyls groups. The influences of reaction temperature, reaction time, solvent, TBHP/benzyl alcohol molar ratio, amount of catalyst and reusability were investigated. Under optimized conditions (0.2 g catalyst, TBHP/benzyl alcohol molar ratio 1, solvent acetonitrile; T = 90 °C; reaction time 8 h), results achieved 70% conversion of benzyl alcohol and 100% selectivity to benzaldehyde. - Highlights: • Manganese oxide immobilized on SBA-15 were prepared by atomic layer deposition (ALD). • Oxidation of benzyl alcohol to benzaldehyde over this catalyst were investigated. • Effects of loading of manganese oxide, T, oxidant/alcohol ratio were investigated. • The leaching of manganese oxide from support during the reaction was

  16. Evaluation of Self Body Physical Perception Level of Elite University Footballers due to Cigarette and Alcohol

    Directory of Open Access Journals (Sweden)

    Atilla PULUR

    Full Text Available Our study was aimed to research the level of multi-dimensional physical self-perception by elite footballers, who engage ininter-universities sports activities, due to cigarette and alcohol consumption. The sample of the study included a total of 81volunteers’ male athletes; from 7 universities. The Multidimensional Body-Self Relations Questionnaire (MBSRQ; has beenemployed. Then the data obtained from questionnaire has been analyzed by a statistical perspective way of percentage frequencyand the t-test. The findings were tabulated, and found significant differences between the self-image assessment (t=-2.473:p<0,05 and health assessment (t=-2.880: p<0,05 identified in reference to the cigarette consumption by footballers. It hasbeen concluded that the number of footballers, who did not consume cigarettes and alcohol, was higher than the consumers.No meaningful difference was observed among the subjects that consume alcohol in terms of physical perceptions. However, ithas been noted that the smokers had a higher level of physical self-perception when compared with the nonsmokers.Generally, it has been determined that the footballers have a positive level of physical self-perception.

  17. Joint Effects of Alcohol Consumption and Polymorphisms in Alcohol and Oxidative Stress Metabolism Genes on Risk of Head and Neck Cancer

    Science.gov (United States)

    Hakenewerth, Anne M.; Millikan, Robert C.; Rusyn, Ivan; Herring, Amy H.; North, Kari E.; Barnholtz-Sloan, Jill S.; Funkhouser, William F.; Weissler, Mark C.; Olshan, Andrew F.

    2011-01-01

    Background Single nucleotide polymorphisms (SNPs) in alcohol metabolism genes are associated with squamous cell carcinoma of the head and neck (SCCHN), and may influence cancer risk in conjunction with alcohol. Genetic variation in the oxidative stress pathway may impact the carcinogenic effect of reactive oxygen species produced by ethanol metabolism. We hypothesized that alcohol interacts with these pathways to affect SCCHN incidence. Methods Interview and genotyping data for 64 SNPs were obtained from 2552 European- and African-American subjects (1227 cases, 1325 controls) from the Carolina Head and Neck Cancer Epidemiology study, a population-based case-control study of SCCHN conducted in North Carolina from 2002–2006. We estimated odds ratios and 95% confidence intervals for SNPs and haplotypes, adjusting for age, sex, race, and duration of cigarette smoking. P-values were adjusted for multiple testing using Bonferroni correction. Results Two SNPs were associated with SCCHN risk: ADH1B rs1229984 A allele (OR=0.7, 95%CI=0.6–0.9) and ALDH2 rs2238151 C allele (OR=1.2, 95%CI=1.1–1.4). Three were associated with sub-site tumors: ADH1B rs17028834 C allele (larynx, OR=1.5, 95%CI=1.1–2.0), SOD2 rs4342445 A allele (oral cavity, OR=1.3, 95%CI=1.1–1.6), and SOD2 rs5746134 T allele (hypopharynx, OR=2.1, 95%CI=1.2–3.7). Four SNPs in alcohol metabolism genes interacted additively with alcohol consumption: ALDH2 rs2238151, ADH1B rs1159918, ADH7 rs1154460, and CYP2E1 rs2249695. No alcohol interactions were found for oxidative stress SNPs. Conclusions and Impact Previously unreported associations of SNPs in ALDH2, CYP2E1, GPX2, SOD1, and SOD2 with SCCHN and sub-site tumors provide evidence that alterations in alcohol and oxidative stress pathways influence SCCHN carcinogenesis, and warrant further investigation. PMID:21940907

  18. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    Science.gov (United States)

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts.

  19. Individual and district-level predictors of alcohol use: cross sectional findings from a rural mental health survey in Australia

    Directory of Open Access Journals (Sweden)

    Inder Kerry J

    2012-08-01

    Full Text Available Abstract Background Excessive alcohol use is a significant problem in rural and remote Australia. The factors contributing to patterns of alcohol use have not been adequately explained, yet the geographic variation in rates suggests a potential contribution of district-level factors, such as socio-economic disadvantage, rates of population change, environmental adversity, and remoteness from services/population centres. This paper aims to investigate individual-level and district-level predictors of alcohol use in a sample of rural adults. Methods Using baseline survey data (N = 1,981 from the population-based Australian Rural Mental Health Study of community dwelling residents randomly selected from the Australia electoral roll, hierarchal logistic regression models were fitted for three outcomes: 1 at-risk alcohol use, indicated by Alcohol Use Disorders Identification Test scores ≥8; 2 high alcohol consumption (> 40 drinks per month; and 3 lifetime consequences of alcohol use. Predictor variables included demographic factors, pre-dispositional factors, recent difficulties and support, mental health, rural exposure and district-level contextual factors. Results Gender, age, marital status, and personality made the largest contribution to at-risk alcohol use. Five or more adverse life events in the past 12 months were also independently associated with at-risk alcohol use (Adjusted Odds Ratio [AOR] 3.3, 99%CI 1.2, 8.9. When these individual-level factors were controlled for, at-risk alcohol use was associated with having spent a lower proportion of time living in a rural district (AOR 1.7, 99%CI 1.3, 2.9. Higher alcohol consumption per month was associated with higher district-level socio-economic ranking, indicating less disadvantage (AOR 1.2, 99%CI 1.02, 1.4. Rural exposure and district-level contextual factors were not significantly associated with lifetime consequences of alcohol use. Conclusions Although recent attention has been

  20. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    OpenAIRE

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal c...

  1. Carvedilol Improves Inflammatory Response, Oxidative Stress and Fibrosis in the Alcohol-Induced Liver Injury in Rats by Regulating Kuppfer Cells and Hepatic Stellate Cells.

    Directory of Open Access Journals (Sweden)

    Raimundo Fernandes de Araújo Júnior

    Full Text Available To evaluate the anti-inflammatory, anti-oxidant and antifibrotic effects of carvedilol (CARV in rats with ethanol-induced liver injury.Liver injury was induced by gavage administration of alcohol (7 g/kg for 28 consecutive days. Eighty Wistar rats were pretreated with oral CARV at 1, 3, or 5 mg/kg or with saline 1 h before exposure to alcohol. Liver homogenates were assayed for interleukin (IL-1β, IL-10, and tumor necrosis factor (TNF-α level as well as for myeloperoxidase (MPO activity and malonyldialdehyde (MDA and glutathione (GSH levels. Serum aspartate aminotransferase (AST activity and liver triglyceride (TG levels were also assayed. Immunohistochemical analyses of cyclooxygenase 2 (COX-2, receptor activator of nuclear factor kappa-B/ligand (RANK/RANKL, suppressor of cytokine signalling (SOCS1, the Kupffer cell marker IBA-1 (ionized calcium-binding adaptor molecule 1, intercellular adhesion molecule 1 (ICAM-1, superoxide dismutase (SOD-1, and glutathione peroxidase (GPx-1 expression were performed. Confocal microscopy analysis of IL-1β and NF-κB expression and real-time quantitative PCR analysis for TNFα, PCI, PCIII, and NF-κB were performed.CARV treatment (5 mg/kg during the alcohol exposure protocol was associated with reduced steatosis, hepatic cord degeneration, fibrosis and necrosis, as well as reduced levels of AST (p < 0.01, ALT (p < 0.01, TG (p < 0.001, MPO (p < 0.001, MDA (p < 0.05, and proinflammatory cytokines (IL-1β and TNF-α, both p < 0.05, and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001 and GSH (p < 0.05, compared to the alcohol-only group. Treatment with CARV 5 mg/kg also reduced expression levels of COX-2, RANK, RANKL, IBA-1, and ICAM-1 (all p < 0.05, while increasing expression of SOCS1, SOD-1, and GPx-1 (all p < 0.05 and decreasing expression of IL-1β and NF-κB (both, p < 0.05. Real-time quantitative PCR analysis showed that mRNA production of TNF-α, procollagen type I (PCI, procollagen

  2. Using Ecological Momentary Assessment (EMA) to Assess Situation-Level Predictors of Alcohol Use and Alcohol-Related Consequences

    OpenAIRE

    Wray, Tyler B.; Merrill, Jennifer E.; Monti, Peter M.

    2014-01-01

    Ecological momentary assessment (EMA) has afforded several important advances in the field of alcohol research, including testing prominent models of alcohol abuse etiology in “high resolution.” Using high-tech methods for signaling and/or assessment, such as mobile electronic diaries, personal data assistants, and smartphones, EMA approaches potentially can improve understanding of precipitants of drinking, drinking patterns, and consequences. For example, EMA has been used to study complex ...

  3. Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly(ethylene glycol)/CO2 system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bimetallic Au/Pd nanoparticles were prepared and used to catalyze oxidation of alcohols in the poly(ethylene glycol) (PEG)/CO2 biphasic system using O2 as the oxidant without adding any base.The catalytic activity of Au/Pd bimetal with different mole ratios was studied using benzyl alcohol as the substrate.It was found that bimetallic Au/Pd nanoparticles with Au:Pd=1:3.5 had higher catalytic activity than monometallic Au,Pd and the bimetallic Au/Pd nanoparticles with other molar ratios.The effect of CO2 pressure on the oxidation of benzyl alcohol and 1-phenylethanol in PEG/CO2 was investigated.It was demonstrated that CO2 pressure could be used to tune the conversion and selectivity of the reactions effectively.α,β-Unsaturated alcohols were also studied and found to be more reactive than benzyl alcohol and 1-phenylethanol.Recycling experiments showed that the Au/Pd/PEG/CO2 catalytic system could be recycled at least four times without reducing the activity.In addition,the catalytic system is clean and the products can be separated easily.

  4. [Effect of tranquilizing agents on the blood level of endogenous ethanol in alcoholics].

    Science.gov (United States)

    Burov, Iu V; Treskov, V G; Drozdov, E S; Kovalenko, A E

    1983-01-01

    Experiments on alcohol addicts blood were made to study the time course of the endogenous ethanol level after a single administration of mebicar (1.5 g), a derivative of bicyclic bisuria, 50 ml of 5% sodium hydroxybutyric syrup, a derivative of gamma-hydroxybutyric acid, and 20 mg diazepam, a derivative of 1,4-benzodiazepines. The clinical effect was recorded simultaneously. It was established that different tranquilizers stimulate the increase in the endogenous ethanol level as regards the spectrum of psychotropic activity. This effect was the most pronounced with mebicar and to a less measure with diazepam.

  5. Biomimetic Catalysts for Oxidation of Veratryl Alcohol, a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Marcelino Maneiro

    2013-03-01

    Full Text Available Kraft pulp has to be bleached to eliminate the chromophoric structures, which cause a darkening of the pulp. In Nature, an equivalent role is assumed by ligninolytic enzymes such as lignin peroxidases, manganese peroxidases and laccases. The development of low molecular weight manganese peroxidase mimics may achieve environmentally-safe bleaching catalysts for the industry. Herein we report the synthesis and characterization of six manganese(III complexes 1–6, incorporating dianionic hexadentate Schiff base ligands (H2L1-H2L4 and different anions. Complex 4, Mn2L22(H2O2(DCA2 was crystallographically characterized. Complexes 1–4 behave as more efficient mimics of peroxidase in contrast to 5–6. We have studied the use of these complexes as catalysts for the degradation of the lignin model compound veratryl alcohol. The biomimetic catalysts were used in conjunction with chlorine-free inexpensive co-oxidants as dioxygen or hydrogen peroxide. Yields up to 30% of veratryl alcohol conversion to veratraldehyde have been achieved at room temperature in presence of air flow using 0.5% of catalyst.

  6. Synthesis of Nickel Hexacyanoferrate Nanoparticles and Their Potential as Heterogeneous Catalysts for the Solvent-Free Oxidation of Benzyl Alcohol

    Institute of Scientific and Technical Information of China (English)

    Shah R. ALI; Prakash CHANDRA; Mamta LATWAL; Shalabh K. JAIN; Vipin K. BANSAL; Sudhanshu P. SINGH

    2011-01-01

    Nickel hexacyanoferrate nanoparticles were synthesized and characterized using elemental analysis,thermal analysis,infrared spectroscopy,and X-ray diffraction.A FE-SEM image of the nickel hexacyanoferrate showed that it consists of nearly spherical particles with sizes ranging from 30 to 70 nm.The synthesized material was found to be a heterogeneous catalyst useful for the solvent-free oxidation of benzyl alcohol with H2O2 as an oxidant.A 36% conversion of benzyl alcohol to benzaldehyde was achieved under optimized reaction conditions using specific parameters such as the amount of catalyst,the temperature,the benzyl alcohol to H2O2 molar ratio,and the reaction time.

  7. Kinetics of Heterogeneous Solvent-free Liquid Phase Oxidation of Alcohol Using ZrO2 Catalyst with Molecular Oxygen

    Institute of Scientific and Technical Information of China (English)

    ILYAS Mohammad; SADIQ Mohammad

    2008-01-01

    Clean liquid phase solvent-free oxidation of alcohol to aldehyde/ketone using ZrO2 catalyst with molecular oxygen has been studied.Monoclinic phase ZrO2 has been synthesized and characterized by XRD,SEM,EDX and surface and pore size analyses.Oxidation of alcohol was carded out in a typical batch reactor at different sDeed of agitation(150-1200 r/min),temperature(373-413 K),catalyst loading(50-300 mg)and partial pressure of oxygen(12-101 kPa).These parameters influence alcohol conversion as well as selectivity.A handy touch of kinetics was given to the experimental data and apparent activation energy was calculated.

  8. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    Science.gov (United States)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  9. The effect of moderate alcohol consumption on adiponectin oligomers and muscle oxidative capacity: a human intervention study

    NARCIS (Netherlands)

    Beulens, J.W.J.; Loon, van L.J.C.; Kok, F.J.; Pelsers, M.; Bobbert, T.; Spranger, J.; Helander, A.; Hendriks, H.F.J.

    2007-01-01

    Aims/hypothesis The aim of this study was to investigate whether moderate alcohol consumption increases plasma high molecular weight (HMW) adiponectin and/or muscle oxidative capacity. Materials and methods Eleven lean (BMI 18 - 25 kg/m(2)) and eight overweight ( BMI >= 27 kg/m(2)) men consumed 1

  10. The effect of moderate alcohol consumption on adiponectin oligomers and muscle oxidative capacity: A human intervention study

    NARCIS (Netherlands)

    Beulens, J.W.J.; Loon, L.J.C. van; Kok, F.J.; Pelsers, M.; Bobbert, T.; Spranger, J.; Helander, A.; Hendriks, H.F.J.

    2007-01-01

    Aims/hypothesis: The aim of this study was to investigate whether moderate alcohol consumption increases plasma high molecular weight (HMW) adiponectin and/or muscle oxidative capacity. Materials and methods: Eleven lean (BMI 18-25 kg/m2) and eight overweight (BMI ≥27 kg/m2) men consumed 100 ml whis

  11. Formation of imines by selective gold-catalysed aerobic oxidative coupling of alcohols and amines under ambient conditions

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie;

    2010-01-01

    The formation of imines by aerobic oxidative coupling of mixtures of alcohols and amines was studied using gold nanoparticles supported on titanium dioxide, TiO2, as a heterogeneous catalyst. The reactions were performed at ambient conditions (room temperature and atmospheric pressure) and occurred...

  12. Electrocatalytic oxidation of alcohols and diols in a biphasic medium using CeIV methanesulfonate as mediator

    International Nuclear Information System (INIS)

    Some alcohols and diols were oxidized electro-catalytically in a biphasic system using cerium methanesulphonate as mediator. A mixture of methanesulphonic acid solution and benzene was used and aldehydes, ketones and diacids were some of the principal products obtained with yield varying from 27 to 98%. In several cases selectivity was obtained. (author)

  13. Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols

    Indian Academy of Sciences (India)

    Ahmad Shaabani; Sajjad Keshipour; Mona Hamidzad; Mozhdeh Seyyedhamzeh

    2014-01-01

    Ethylenediamine-functionalized nanocellulose complexed with cobalt(II) was found to be a highly efficient heterogeneous catalyst for the room temperature aerobic oxidation of various types of primary and secondary benzylic alcohols into their corresponding aldehydes and ketones, respectively. The catalyst showed no significant loss of efficiency after five reaction cycles.

  14. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice

    Science.gov (United States)

    Park, Han-Sol; Jang, Jung Eun; Ko, Myoung Seok; Woo, Sung Hoon; Kim, Bum Joong; Kim, Hyun Sik; Park, Hye Sun; Park, In-Sun; Koh, Eun Hee

    2016-01-01

    Background Non-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO) and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH), but underlying mechanisms of this prevention are largely unknown. Methods Seven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD) with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day), for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver. Results Statin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα) were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels. Conclusion Statins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH.

  15. Optimization of Oxidator Level to Produce Binderless Bamboo Particleboard

    OpenAIRE

    Suhasman; Massijaya, M.Y.; Hadi, Y.S.; Santoso, A

    2010-01-01

    Oxidation treatment of bamboo particle would be considered as one of the alternative methods to produce binderless particleboard. Since most of composite panels including particleboard is manufactured using formaldehyde base adhesive emission from the product is a main concern in contrast to binderless panels which don???t cause such problem. The main objective of this research was to determine the optimal level of hydrogen peroxide and ferrous sulphate as oxidator in particleboard manufa...

  16. Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions.

    Science.gov (United States)

    Sung, Chang-Keun; Kim, Seung-Mi; Oh, Chang-Jin; Yang, Sun-A; Han, Byung-Hee; Mo, Eun-Kyoung

    2012-07-01

    The present study, taraxerone (d-friedoolean-14-en-3-one) was isolated from Sedum sarmentosum with purity 96.383%, and its enhancing effects on alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were determined: EC(50) values were 512.42 ± 3.12 and 500.16 ± 3.23 μM for ADH and ALDH, respectively. In order to obtain more information on taraxerone related with the alcohol metabolism, 40% ethanol (5 mL/kg body weight) with 0.5-1mM of taraxerone were administered to mice. The plasma alcohol and acetaldehyde concentrations of taraxerone-treated groups were significantly lowered than those of the control group (p<0.01): approximately 20-67% and 7-57% lowered for plasma alcohol and acetaldehyde, respectively. Compare to the control group, the ADH and ALDH expressions in the liver tissues were abruptly increased in the taraxerone-treated groups after ethanol exposure. In addition, taraxerone prevented catalase, superoxide dismutase, and reduced glutathione concentrations from the decrease induced by ethanol administration with the concentration dependent manner.

  17. Association of homocysteine level with biopsy-proven non-alcoholic fatty liver disease: a meta-analysis

    Science.gov (United States)

    Dai, Yining; Zhu, Jinzhou; Meng, Di; Yu, Chaohui; Li, Youming

    2016-01-01

    Previous studies have reported inconsistent findings regarding the association between plasmatic higher of homocysteine level and non-alcoholic fatty liver disease. We aimed to investigate this association by conducting a meta-analysis. Literature was searched on PubMed from inception to January 2015. Eight studies evaluating plasma level of homocysteine in biopsy-proven non-alcoholic fatty liver disease subjects compared to healthy controls were included. Compared with the controls, non-alcoholic fatty liver disease patients witnessed a higher level of homocysteine [standard mean difference (SMD): 0.66 µmol/L, 95% CI: 0.41, 0.92 µmol/L], and were associated with a significant increased risk for hyperhomocysteinemia [odds ratio (OR) 5.09, 95% CI: 1.69, 15.32]. In addition, patients with non-alcoholic fatty liver presented 0.45 µmol/L higher levels of homocysteine compared to healthy controls (95% CI: 0.09, 0.82 µmol/L), whereas non-alcoholic steatohepatitis patients had 1.02 µmol/L higher levels of homocysteine (95% CI: 0.28, 1.76 µmol/L). There was neither difference of folate level nor vitamin B12 level between non-alcoholic fatty liver disease subjects and healthy controls. This study revealed that non-alcoholic fatty liver disease patients presented an increased serum concentration of homocysteine, and were associated with an increased risk of hyperhomocysteinemia. Further studies are needed to demonstrate a causal role of hyperhomocysteinemia in non-alcoholic fatty liver disease. PMID:26798201

  18. A social marketing approach to involving Afghans in community-level alcohol problem prevention.

    Science.gov (United States)

    Cherry, L; Redmond, S P

    1994-06-01

    A program for preventing alcohol-related problems at the community level using environmentally-focused, public health approaches sought to involve a new segment of the community. That segment consisted of recently-immigrated Afghans from a traditionally abstinent culture. Social marketing research was employed to elicit value-based benefits to be used in promoting the product (involvement with environmental change efforts) to the target audience. While the channels of distribution for promotional messages were easily identified, special attention was required relative to effective spokespersons. Much was also learned about the immigration experience of Afghans in a San Francisco Bay Area community that has significance for other fields. PMID:24258928

  19. Cobalt hydroxide film on Pt as co-catalyst for oxidation of polyhydric alcohols in alkaline medium

    International Nuclear Information System (INIS)

    Electrochemical behavior of chemically prepared Co(OH)2 film on Pt has been studied in alkaline medium using cyclic voltammetry and chronoamperometry. Amount of Co(OH)2 deposited increases linearly with the number of times of deposition. The deposit is of fibrous structure, as shown by scanning electron microphotograph. There is evidence of CoII/CoIII and CoIII/CoIV redox transitions during the cyclic potential scan. The former oxidation proceeds under diffusion control. The Co(OH)2 deposit acts as an efficient co-catalyst for anodic oxidation of ethanediol, propanediol and glycerol on Pt in alkaline medium. This is demonstrated by appreciable enhancement of the alcohol oxidation currents upon deposition of Co(OH)2 on Pt. Among the alcohols studied, the highest oxidation currents are obtained for ethanediol, both on Co(OH)2/Pt and bare Pt. Co(OH)2 alone also acts as a redox mediator for alcohol oxidation at more positive potentials.

  20. The levels of nitric oxide in megaloblastic anemia

    Directory of Open Access Journals (Sweden)

    Emin Kaya

    2009-12-01

    Full Text Available Objective: The purpose of this study was to investigate the relationship between nitric oxide degradation products (nitrate and nitrite levels and megaloblastic anemia which is treated with cyalocobalamin. Materials and Methods: A total of 30 patients with megaloblastic anemia (16 Male, 14 Female were included in the study. Cyanocobalamin was administered (1.000 µg/day intramuscularly until the reticulocyte crisis occurred to the normal range. The control group consisted of 30 healthy subjects (15 Male, 15 Female. Nitric oxide levels were measured before treatment and compared with the values obtained during peak reticulocyte count. Results: Plasma direct nitrite, total nitrite and nitrate levels were 24,86±3,87, 60.56±7,01 and 36,02±5,24 in before treatment versus 15,48±3,05, 38,92±6,44 and 22,77±6,04 μmol/dl in after treatment, respectively. Plasma direct nitrite, total nitrite and nitrate levels were significantly lower in after treatment compared with the before treatment (p<0.001. Conclusion: Nitric oxide levels are seen to increase in megaloblastic anemia. This study suggested that abnormalities in the nitric oxide levels in megaloblastic anemia are restored by vitamin B12 replacement therapy.

  1. Visible-light-driven selective oxidation of benzyl alcohol and thioanisole by molecular ruthenium catalyst modified hematite.

    Science.gov (United States)

    Bai, Lichen; Li, Fei; Wang, Yong; Li, Hua; Jiang, Xiaojuan; Sun, Licheng

    2016-08-11

    Molecular ruthenium catalysts were found to selectively catalyze the oxidation of thioanisole to sulfoxide with a yield up to 100% in the presence of visible light and sacrificial reagents when they were anchored onto hematite powder. The composite photocatalysts also showed about 5 times higher efficiencies in benzyl alcohol oxidation than the system composed of dispersed molecular catalysts and hematite particles in aqueous solution. A photoelectrochemical cell based on a molecular catalyst modified hematite photoanode was further fabricated, which exhibited high activity towards the oxidation of organic substrates. PMID:27411498

  2. Near- and supercritical alcohols as solvents and surface modifiers for the continuous synthesis of cerium oxide nanoparticles.

    Science.gov (United States)

    Slostowski, Cédric; Marre, Samuel; Babot, Odile; Toupance, Thierry; Aymonier, Cyril

    2012-12-01

    Supercritical fluids offer fast and facile routes toward well-crystallized tailor-made cerium oxide nanoparticles. However, the use of surfactants to control morphology and surface properties remains essential. Therefore, although water, near-critical (nc) or supercritical (sc), is a solvent of choice, the poor water solubility of some surfactants could require other solvent systems such as alcohols, which could themselves behave as surface modifiers. In here, the influence of seven different alcohols, MeOH, EtOH, PrOH, iPrOH, ButOH, PentOH, and HexOH, in alcothermal conditions (300 °C, 24.5 MPa) over CeO(2) nanocrystals (NCs) size, morphology, and surface properties was investigated. The crystallite size of the CeO(2) nanocrystals can be tuned in the range 3-7 nm depending on the considered alcohol, and their surface has been modified by these solvents without the use of surfactants. Mechanisms are proposed for the interaction of primary and secondary alcohols with CeO(2) surface and its functionalization during the synthesis based on FTIR and TGA-MS studies. This study allows apprehending the role of alcohols during the synthesis and may lead to an informed choice of solvent as a function of the required size and surface properties of CeO(2) NCs. It also opens new route to CeO(2) functionalization using supercritical alcohol derivatives. PMID:23126630

  3. Alcohol consumption, blood alcohol concentration level and guideline compliance in hospital referred patients with minimal, mild and moderate head injuries

    DEFF Research Database (Denmark)

    Harr, Marianne Efskind; Heskestad, Ben; Ingebrigtsen, Tor;

    2011-01-01

    In 2000 the Scandinavian Neurotrauma Committee published guidelines for safe and cost-effective management of minimal, mild and moderate head injured patients.The aims of this study were to investigate to what extent the head injury population is under the influence of alcohol, and to evaluate...

  4. Prevalence and consequences of positive blood alcohol levels among patients injured at work

    Directory of Open Access Journals (Sweden)

    Caitlin A Foster

    2014-01-01

    Full Text Available Aims: The aim of this study was to characterize positive blood alcohol among patients injured at work, and to compare the severity of injury and outcome of blood alcohol concentration (BAC positive and negative patients. Settings and Design: A retrospective cohort study was performed at a Level 1 academic trauma center. Patients injured at work between 01/01/07 and 01/01/12 and admitted with positive (BAC+ vs negative (BAC- blood alcohol were compared using bivariate analysis. Results: Out of 823, 319 subjects were tested for BAC (38.8%, of whom 37 were BAC+ (mean 0.151 g/dL, range 0.015-0.371 g/dL. Age (41 years, sex (97.2% men, race, intensive care unit (ICU and hospital length of stay (LOS, and mortality were similar between groups. Nearly half of BAC+ cases were farming injuries (18, 48.6%: Eight involved livestock, five involved all-terrain vehicles (ATVs, three involved heavy equipment, one fell, and one had a firearm injury. Eight (21.6% were construction site injuries involving falls from a roof or scaffolding, five (13.5% were semi-truck collisions, four (10.8% involved falls from a vehicle in various settings, and two (5.4% were crush injuries at an oilfield. BAC+ subjects were less likely to be injured in construction sites and oilfields, including vehicle-related falls (2.3 vs 33.9%, P < 0.0001. Over half of BAC+ (n = 20, 54% subjects were alcohol dependent; three (8.1% also tested positive for cocaine on admission. No BAC+ subjects were admitted to rehabilitation compared to 33 (11.7% of BAC- subjects. Workers′ compensation covered a significantly smaller proportion of BAC+ patients (16.2 vs 61.0%, P < 0.0001. Conclusions: Alcohol use in the workplace is more prevalent than commonly suspected, especially in farming and other less regulated industries. BAC+ is associated with less insurance coverage, which probably affects resources available for post-discharge rehabilitation and hospital reimbursement.

  5. Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly (vinyl alcohol) core-shell nanocomposite

    OpenAIRE

    Shukla, S K; Deshpande, Swapneel R.; Shukla, Sudheesh K.; Tiwari, Ashutosh

    2012-01-01

    A potentiometrically tuned-glucose biosensor was fabricated using core-shell nanocomposite based on zinc oxide encapsulated chitosan-graft-poly(vinyl alcohol) (ZnO/CHIT-g-PVAL). In a typical experiment, ZnO/CHIT-g-PVAL core-shell nanocomposite containing <20 nm ZnO nanoparticles was synthesized using wet-chemical method. The glucose responsive bio-electrode, i.e., glucose oxidase/ZnO/chitosan-graft-poly(vinyl alcohol) (GOD/ZnO/CHIT-g-PVAL/ITO) was obtained by immobilization of glucose ...

  6. Benzyl alcohol oxidation in supercritical carbon dioxide: spectroscopic insight into phase behaviour and reaction mechanism.

    Science.gov (United States)

    Caravati, Matteo; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2005-01-21

    Selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over an alumina-supported palladium catalyst was performed with high rate at about 95% selectivity in supercritical carbon dioxide. The experiments in a continuous flow fixed-bed reactor showed that the pressure has a strong influence on the reaction rate. A marked increase of the rate (turnover frequency) from 900 h(-1) to 1800 h(-1) was observed when increasing the pressure from 140 to 150 bar. Video monitoring of the bulk fluid phase behavior and the simultaneous investigation by transmission and attenuated total reflection (ATR) infrared spectroscopy at two positions of the view cell showed that the sharp increase in activity is correlated to a transition from a biphasic to a monophasic reaction mixture. In the single phase region, both oxygen and benzyl alcohol are dissolved in the supercritical CO2 phase, which leads to a reduction of the mass transport resistances (both in the external fluid film and in the catalyst pores) and thus to the high reaction rate measured in the catalytic experiments. The phase transition could be effectively and easily monitored by transmission and ATR-IR spectroscopy despite the small concentration of the dense liquid like phase. Deposition of the Pd/Al2O3 catalyst on the ATR-crystal at the bottom of the view cell allowed to gain insight into the chemical changes and mass transfer processes occurring in the solid/liquid interface region during reaction. Analyzing the shift of the upsilon2 bending mode of CO2 gave information on the fluid composition in and outside the catalyst pores. Moreover, the catalytic reaction could be investigated in situ in this spectroscopic batch reactor cell by monitoring simultaneously the reaction progress, the phase behaviour and the catalytic interface. PMID:19785149

  7. Polyvinyl alcohol/carbon coated zinc oxide nanocomposites: Electrical, optical, structural and morphological characteristics

    International Nuclear Information System (INIS)

    Highlights: •A polyvinyl alcohol film doped with C-ZnO nanoparticles was prepared by solution casting technique. •Dielectric constant, dielectric loss, and electrical conductivity gradually decrease with filler concentration. •XRD scans demonstrated the semi crystalline nature of the composites. •SEM images reveal the uniform distribution of nanoparticles within the polymer matrix. -- Abstract: Polyvinyl alcohol (PVA) films doped with different concentrations viz., 0.5, 1.0, and 2.0 wt.% of the carbon coated zinc oxide (C-ZnO) nanoparticles were prepared by solution casting method in order to investigate the effect of C-ZnO addition on the electrical, optical, structural and morphological properties of PVA matrix. The electrical properties such as dielectric constant (ε′), dielectric loss (ε″), dissipation factor (Tan δ), electrical modulus (M′, M″) and AC conductivity (σac) of the PVA/C-ZnO nanocomposites have been performed with reference to weight percentage of nanofiller (i.e., 0.5, 1.0, and 2.0 wt%) and frequency (20 Hz to 1 MHz). It is observed that the dielectric constant, dielectric loss, and electrical conductivity gradually decrease with filler concentration. Microstructural property of the nanocomposites is studied by using X-ray diffraction. XRD profiles demonstrated the semi crystalline nature of the composites. SEM photomicrographs of the PVA/C-ZnO nanocomposites reveal the uniform distribution of nanoparticles within the polymer matrix. Differential scanning calorimetry (DSC) thermograms of nanocomposites clearly indicates that the influence of nanofillers on their melting temperature (Tm) is insignificant

  8. Serum type IV collagen level is predictive for esophageal varices in patients with severe alcoholic disease

    Institute of Scientific and Technical Information of China (English)

    Satoshi Mamori; Yasuyuki Searashi; Masato Matsushima; Kenichi Hashimoto; Shinichiro Uetake; Hiroshi Matsudaira; Shuji Ito; Hisato Nakajima; Hisao Tajiri

    2008-01-01

    AIM: To determine factors predictive for esophageal varices in severe alcoholic disease (SAD).METHODS: Abdominal ultrasonography (US) was performed on 444 patients suffering from alcoholism. Forty-four patients found to have splenomegaly and/ or withering of the right liver lobe were defined as those with SAD. SAD patients were examined by upper gastrointestinal (UGI) endoscopy for the presence of esophageal varices. The existence of esophageal varices was then related to clinical variables.RESULTS: Twenty-five patients (56.8%) had esophageal varices. A univariate analysis revealed a significant difference in age and type IV collagen levels between patients with and without esophageal varices. A logistic regression analysis identified type IV collagen as the only independent variable predictive for esophageal varices (P = 0.017). The area under the curve (AUC) for type IV collagen as determined by the receiver operating characteristic (ROC) for predicting esophageal varices was 0.78.CONCLUSION: This study suggests that the level of type IV collagen has a high diagnostic accuracy for the detection of esophageal varices in SAD.

  9. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten;

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  10. IQ and Level of Alcohol Consumption—Findings from a National Survey of Swedish Conscripts

    OpenAIRE

    Sjölund, Sara; Hemmingsson, Tomas; Allebeck, Peter

    2015-01-01

    Background Studies of the association between IQ and alcohol consumption have shown conflicting results. The aim of this study was to investigate the association between IQ test results and alcohol consumption, measured as both total alcohol intake and pattern of alcohol use. Methods The study population consists of 49,321 Swedish males born 1949 to 1951 who were conscripted for Swedish military service 1969 to 1970. IQ test results were available from tests performed at conscription. Questio...

  11. Estimating levels and trends in alcohol use – investigating the validity of estimates based on Norwegian population surveys

    Directory of Open Access Journals (Sweden)

    Ståle Østhus

    2011-12-01

    Full Text Available Estimates of alcohol use from a series of cross-sectional face-to-face surveys, conducted by Synovate Norway on behalf of the Norwegian institute for alcohol and drug research during the 1990s and 2000s (the Substance Use Surveys, SUS, are compared with registered sales statistics of alcohol and estimates of alcohol use from Statistics Norway’s Health Surveys (HS. The results show that SUS estimates of levels and trends in alcohol use are in conflict with these alternative data sources, also when standard adjustment strategies (using poststratification weights, controlling for background characteristics in regressions are used. We conclude that there is likely selection on alcohol use and other factors into the SUS samples, to a higher degree than in the HS samples, which renders standard estimates of alcohol use from SUS data unreliable. In fields such as substance use research, it is notoriously difficult to measure the phenomena we are interested in, and it is especially important to assess the validity of the survey estimates with data from alternative sources

  12. CORONA-INDUCED PHOTOXIDATION OF ALCOHOLS AND HYDROCARBONS OVER TIO2 IN THE ABSENCE OF A UV LIGHT SOURCE - A NOVEL AND ENVIRONMENTALLY FRIENDLY METHOD FOR OXIDATION

    Science.gov (United States)

    Corona-induced photooxidation is a novel oxidation methodology for the efficient oxidation of alcohols and hydrocarbons utilizing the advantage of both the high oxidizing power of ozone formed in the reactor as well as the photooxidation capability of the UV light generated durin...

  13. Alcohol Dehydrogenase-1B (rs1229984 and Aldehyde Dehydrogenase-2 (rs671 Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Directory of Open Access Journals (Sweden)

    Akira Yokoyama

    Full Text Available Elevated serum triglyceride (TG and high-density-lipoprotein cholesterol (HDL-C levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics.The population consisted of 1806 Japanese alcoholic men (≥40 years who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission.High serum levels of TG (≥150 mg/dl, HDL-C (>80 mg/dl, and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively, and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively. The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]. The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl and HDL-C (≥100 mg/dl.The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  14. Synthesis of Energetic Nitrocarbamates from Polynitro Alcohols and Their Potential as High Energetic Oxidizers.

    Science.gov (United States)

    Axthammer, Quirin J; Krumm, Burkhard; Klapötke, Thomas M

    2015-06-19

    A new synthesis strategy for the preparation of energetic carbamates and nitrocarbamates starting from readily available polynitro alcohols is introduced. The efficient synthesis of mainly new carbamates was performed with the reactive chlorosulfonyl isocyanate (CSI) reagent. The carbamates were nitrated using mixed acid to form the corresponding primary nitrocarbamates. The thermal stability of all synthesized compounds was studied using differential scanning calorimetry, and the energies of formation were calculated on the CBS-4 M level of theory. Detonation parameters and propulsion properties were determined with the software package EXPLO5 V6.02. Furthermore, for all new substances single-crystal X-ray diffraction studies were performed and are presented and discussed as Supporting Information.

  15. Synthesis of Energetic Nitrocarbamates from Polynitro Alcohols and Their Potential as High Energetic Oxidizers.

    Science.gov (United States)

    Axthammer, Quirin J; Krumm, Burkhard; Klapötke, Thomas M

    2015-06-19

    A new synthesis strategy for the preparation of energetic carbamates and nitrocarbamates starting from readily available polynitro alcohols is introduced. The efficient synthesis of mainly new carbamates was performed with the reactive chlorosulfonyl isocyanate (CSI) reagent. The carbamates were nitrated using mixed acid to form the corresponding primary nitrocarbamates. The thermal stability of all synthesized compounds was studied using differential scanning calorimetry, and the energies of formation were calculated on the CBS-4 M level of theory. Detonation parameters and propulsion properties were determined with the software package EXPLO5 V6.02. Furthermore, for all new substances single-crystal X-ray diffraction studies were performed and are presented and discussed as Supporting Information. PMID:25996052

  16. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    Science.gov (United States)

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  17. Preparation and Characterization of Promoted Fe-V/SiO2 Nanocatalysts for Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Hamid Reza Rafiee

    2013-01-01

    Full Text Available A series of SiO2 supported iron-vanadium catalysts were prepared using sol-gel and wetness impregnation methods. This research investigates the effects of V and Cu on the structure and morphology of Fe/SiO2 catalysts. The SiO2 supported catalyst with the highest specific surface area and pore volume was obtained when it is containing 40 wt.% Fe, 15 wt.% V, and 2 wt.% Cu. Characterization of prepared catalysts was carried out by powder X-ray diffraction (XRD, scanning electron microcopy (SEM, vibrating sample magnetometry (VSM, Fourier transform infrared (FT-IR spectrometry, temperature program reduction (TPR, N2 physisorption, and thermal analysis methods such as thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC. The Fe-V/SiO2 catalyst promoted with 2 wt.% of Cu exhibited typical ferromagnetic behavior at room temperature with a saturation magnetization value of 11.44 emu/g. This character of catalyst indicated great potential for application in magnetic separation technologies. The prepared catalyst was found to act as an efficient recoverable nanocatalyst for oxidation reaction of alcohols to aldehydes and ketones in aqueous media under mild condition. Moreover, the catalyst was reused five times without significant degradation in catalytic activity and performance.

  18. Sensitivity and Response of Polyvinyl Alcohol/Tin Oxide Nanocomposite Multilayer Thin Film Sensors.

    Science.gov (United States)

    Sriram, G; Dhineshbabu, N R; Nithyavathy, N; Saminathan, K; Kaler, K V I S; Rajendran, V

    2016-01-01

    Nanocrystalline Tin Oxide (SnO₂) is Non-Stoichiometric in Nature with Functional Properties Suitable for gas sensing. In this study, SnO₂nanoparticles were prepared by the sol-gel technique, which were then characterised using X-ray diffraction. The nanoparticles showed tetragonal structure with an average crystallite size of 18 nm. The stretching and vibration modes of SnO₂were confirmed using Fourier transform infrared spectroscopy. The size of SnO₂ nanoparticles was determined using particle size analyser, which was found be 60 ± 10 nm on average. The surface morphology of the nanoparticles was investigated using scanning electron microscope, which showed irregular-sized agglomerated SnO₂nanostructures. In addition, primary particle size was evaluated using high-resolution transmission electron microscopy, which was found to be 50 nm on average. The polyvinyl alcohol/SnO₂ composite thin film was prepared on a glass substrate using spin-coating method. The values of band gap energy and electrical conductance of 13-layer thin film were found to be 2.96 eV and 0.0505 mho, respectively. Sulfur dioxide (SO₂) was suitably tailored to verify the sensor response over a concentration range of 10-70 ppm at room temperature. The performance, response, and recovery time of sensors were increased by increasing the layers of the thin film. PMID:27398561

  19. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    Science.gov (United States)

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR. PMID:24757078

  20. Adsorption of Methylene Blue from Aqueous Solutions by Polyvinyl Alcohol/Graphene Oxide Composites.

    Science.gov (United States)

    Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Wang, Xiaohui; Hu, Song; Chen, Long; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2016-02-01

    As a new member of the carbon family, graphene oxide (GO) has shown excellent adsorption ability to micro-pollutants in aqueous solutions. However, its tiny size makes it difficult to be removed from aqueous solutions using the conventional separation methods, which limits its practical application in the environmental protection. In this study, polyvinyl alcohol (PVA) was used as carrier immobilizing GO, and novel PVA/GO composites were prepared. The morphology and physicochemical properties of the composites were characterized by SEM, FTIR and TGA analysis. The adsorption properties of methylene blue (MB) onto the composites were studied through investigating the experimental parameters such as solution pH, adsorbent dosage, contact time and temperature. The isotherm data were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevich models. The calculated maximum adsorption capacity reached 476.2 mg/g at 50% GO content. The pseudo-first-order kinetic, pseudo-second-order kinetic and intra-particle diffusion models were used to explore the adsorption kinetics. The results showed that the dynamic data were fitted to the pseudo-second-order kinetic model. PMID:27433669

  1. Estrés oxidativo hepatocitario y hepatopatía alcohólica Hepatocyte oxidant stress and alcoholic liver disease

    Directory of Open Access Journals (Sweden)

    L. Conde de la Rosa

    2008-03-01

    Full Text Available El consumo agudo y crónico de alcohol aumenta la producción de las especies reactivas de oxígeno (ERO y de la peroxidación de lípidos, proteínas y ADN. El mecanismo por el que el alcohol causa daño celular no está claro todavía, pero se considera que las ERO y los productos finales de la peroxidación lipídica juegan un papel importante. Se cree que existen muchos mecanismos por los que el alcohol induce un estado de "estrés oxidativo", incluyendo cambios en el estado redox, producción de acetaldehído, daño mitocondrial, lesión de la membrana, apoptosis, hipoxia inducida por el etanol, efectos sobre el sistema inmune y cambios en la producción de citoquinas, incremento en los niveles de endotoxina y activación de las células de Kupffer, movilización de hierro, cambios en la defensa antioxidante, particularmente del glutatión mitocondrial (GSH, la oxidación del etanol y la formación del radical 1-hidroxi-etilo, y la inducción de CYP2E1. Estos mecanismos no son exclusivos y es probable que varios de ellos contribuyan a la capacidad del etanol de inducir un estado de estrés oxidativo.Acute and chronic alcohol consumption increases the production of reactive oxygen species (ROS, and enhances lipid peroxidation of lipids, proteins, and DNA. The mechanism by which alcohol causes cell injury is still not clear but a major role for ROS and lipid peroxidation-end products is considered. Many pathways have been suggested to play a role on how ethanol induces a state of "oxidative stress", including redox-state changes, acetaldehyde production, damage to mitochondria, membrane injury, apoptosis, ethanol-induced hypoxia, effects on the immune system and altered cytokine production, increased endotoxin levels and activation of Kupffer cells, mobilization of iron, modulation of the antioxidant defense, particularly mitochondrial glutathione (GSH, one electron oxidation of ethanol to 1-hydroxy-ethyl radical, and induction of CYP2E1

  2. Oxidative Stress and Oval Cell Accumulation in Mice and Humans with Alcoholic and Nonalcoholic Fatty Liver Disease

    OpenAIRE

    Roskams, Tania; Yang, Shi Qi; Koteish, Aymen; Durnez, Anne; DeVos, Rita; Huang, Xiawen; Achten, Ruth; Verslype, Chris; Diehl, Anna Mae

    2003-01-01

    In animals, the combination of oxidative liver damage and inhibited hepatocyte proliferation increases the numbers of hepatic progenitors (oval cells). We studied different murine models of fatty liver disease and patients with nonalcoholic fatty liver disease or alcoholic liver disease to determine whether oval cells increase in fatty livers and to clarify the mechanisms for this response. To varying degrees, all mouse models exhibit excessive hepatic mitochondrial production of H2O2, a know...

  3. Catalytic application of an organosuperbasedenderon grafted on mesoporous SBA-15 and related palladium complex in the aerobic oxidation of alcohols

    Directory of Open Access Journals (Sweden)

    Hojat Veisi

    2014-02-01

    Full Text Available An efficient synthetic method for successful application of amine denderon on SBA-15 and related Pd (II complex has been developed by employing aerobic oxidation of alcohols as model reactions. The yields of the products were in the range from 75% to 92%. The catalyst can be readily recovered and reused at least 5 consecutive cycles without significant leaching and loss its catalytic activity.

  4. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  5. Versatility of One-pot, Single-step Synthetic Approach for Spherical Porous (Metal) Oxide Nanoparticles Using Supercritical Alcohols

    OpenAIRE

    Wang, Pengyu; Ueno, Kimiyoshi; Takigawa, Hikaru; Kobiro, Kazuya

    2013-01-01

    We developed a rapid, one-pot, single-step synthetic method for preparing spherical porous (metal) oxides, titanium dioxide, silica, zirconium dioxide, cerium dioxide, and zinc oxide with large surface areas in a supercritical alcohol containing formic acid or phthalic acid as organic additive in a very short reaction time (10 min). A new type of hollow TiO_2 nanoparticle was obtained by slowly heating the reaction mixtures. The shell thickness of hollow TiO_2 nanoparticles was controlled by ...

  6. Isoquinolinium bromochromate: An efficient and stable reagent for bromination of hydroxylated aromatic compounds and oxidation of alcohols

    Institute of Scientific and Technical Information of China (English)

    Sandeep V. Khansole; Shivaji B. Patwari; Archana Y. Vibhute; Yeshwant B. Vibhute

    2009-01-01

    The new chromium (VI) oxidizing reagent isoquinolinium bromochromate (IQBC) was prepared and characterized. The IQBC has been found to be stable and an efficient solid reagent which can be easily prepared in good yield. It act as an efficient brominating reagent for hydroxylated aromatic compounds as well as good oxidizing reagent for the conversion of alcohols to carbonyl compounds in good to excellent yield. The synthesized isoquinolinium bromochromate is more ideal reagent, with number of specification including: higher yield, mild conditions and easy preparation. The results obtained with isoquinolinium bromochromate are satisfactory and suggest that the reagent has few advantages over the existing chromium (VI) reagents.

  7. Plasmonic Au/CdMoO4 photocatalyst: Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Au/CdMoO4 composites were constructed for the first time. • Au/CdMoO4 showed superior activity for selective oxidation of benzylic alcohol. • The visible light photocatalytic activity is ascribed to the SPR effect of Au. - Abstract: Novel visible-light-driven plasmonic Au/CdMoO4 photocatalysts were synthesized by hydrothermal process following chemical reduction process. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results show the catalysts exhibited strong visible light absorption due to the surface plasmon resonance effect of Au nanoparticles. Compared to CdMoO4, Au/CdMoO4 composites displayed superior photocatalytic activities for the selective oxidation of benzylic alcohol to benzaldehyde under visible light. The highest conversion was obtain by the 1.6% Au loaded CdMoO4. The mechanism for the selective oxidation of benzylic alcohol in the Au/CdMoO4 system is proposed

  8. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    International Nuclear Information System (INIS)

    Highlights: • Flexible and porous paper-structured Ru(OH)x catalysts were prepared successfully. • Ru(OH)x catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O2-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors

  9. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Taichi [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Processing Development Research Laboratory, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497 (Japan); Kitaoka, Takuya, E-mail: tkitaoka@agr.kyushu-u.ac.jp [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-05-01

    Highlights: • Flexible and porous paper-structured Ru(OH){sub x} catalysts were prepared successfully. • Ru(OH){sub x} catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O{sub 2}-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors.

  10. Ultrafine MnO2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol.

    Science.gov (United States)

    Hu, Zonggao; Zhao, Yafei; Liu, Jindun; Wang, Jingtao; Zhang, Bing; Xiang, Xu

    2016-12-01

    The highly active and selective aerobic oxidation of aromatic alcohols over earth-abundant, inexpensive and recyclable catalysts is highly desirable. We fabricated herein MnO2/graphene oxide (GO) composites by a facile in-situ growth approach at room temperature and used them in selective aerobic oxidation of benzyl alcohol to benzaldehyde. TEM, XRD, FTIR, XPS and N2 adsorption/desorption analysis were employed to systematically investigate the morphology, particle size, structure and surface properties of the catalysts. The 96.8% benzyl alcohol conversion and 100% benzaldehyde selectivity over the MnO2/GO (10/100) catalyst with well dispersive ultrafine MnO2 nanoparticles (ca. 3nm) can be obtained within 3h under 383K. Simultaneously, no appreciable loss of activity and selectivity occurred after recycling use up to six times. Due to their significant low cost, excellent catalytic performance, the MnO2/GO composites have huge application prospect in organic synthesis. PMID:27544446

  11. Mg-AI Mixed Oxides Supported Bimetallic Au-Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol

    Institute of Scientific and Technical Information of China (English)

    王亮; 张伟; 曾尚景; 苏党生; 孟祥举; 肖丰收

    2012-01-01

    Nano-sized Au and Pd catalysts are favorable for oxidations with molecular oxygen, and the preparation of this kind of nanoparticles with high catalytic activities is strongly desirable. We report a successful synthesis of bimetal- lic Au-Pd nanoparticles with rich edge and comer sites on unique support of Mg-AI mixed oxides (Au-Pd/MAO), which are favorable for producing metal nanoparticles with high degree of coordinative unsaturation of metal atoms The systematic microscopic characterizations confirm the bimetallic Au-Pd nanoparticles are present as Au-Pd alloy The irregular shape of the bimetallic nanoparticles are directly observed in HRTEM images. As we expected, Au-Pd/MAO gives very excellent catalytic performances in the aerobic oxidation of benzyl alcohol and glycerol. For example, Au-Pd/MAO shows very high TOF of 91000 h i at 433 K with molecular oxygen at air pressure in solvent-free oxidation of benzyl alcohol; this catalyst also shows relatively high selectivity for tartronic acid (TA- RAC, 36.6%) at high conversion (98.5%) in aerobic oxidation of glycerol. The superior catalytic properties of Au-Pd/MAO would be potentially important tbr production of fine chemicals.

  12. Catalytic Mechanism of the Oxidative Demethylation of 4-(Methoxymethyl)phenol by Vanillyl-Alcohol Oxidase. Evidence for Formation of a p-Quinone Methide Intermediate

    OpenAIRE

    Fraaije, Marco W.; van Berkel, Willem J H

    1997-01-01

    The catalytic mechanism for the oxidative demethylation of 4-(methoxymethyl)phenol by the covalent flavoprotein vanillyl-alcohol oxidase was studied. Using H218O, it was found that the carbonylic oxygen atom from the product 4-hydroxybenzaldehyde originates from a water molecule. Oxidation of vanillyl alcohol did not result in any incorporation of 18O. Enzyme-monitored turnover experiments revealed that for both substrates a process involving flavin reduction is rate determining. During anaer...

  13. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie;

    2012-01-01

    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  14. Water-soluble metal nanoparticles stabilized by plant polyphenols for improving the catalytic properties in oxidation of alcohols

    Science.gov (United States)

    Mao, H.; Liao, Y.; Ma, J.; Zhao, S. L.; Huo, F. W.

    2015-12-01

    Plant polyphenols extracted from plants are one of the most abundant biomasses in nature, which are typical water soluble natural polymers. Herein, we reported a facile approach for the synthesis of platinum nanoparticle (PtNP) aqueous colloid by utilizing black wattle tannin (BWT, a typical plant polyphenol) as amphiphilic stabilizer. The phenolic hydroxyls of BWT provide the PtNPs with enough hydrophilicity, and their reduction ability could protect the PtNPs from deactivation caused by oxygen atmosphere. Additionally, the hydrophilic nature of BWT could efficiently promote the oxidation of alcohols in water, meanwhile, the hydrophobic and rigid backbones of plant polyphenols are able to suppress the PtNPs from aggregating, thus ensuring the high dispersion of the PtNPs during reactions. Under mild aerobic conditions, the as-prepared BWT-Pt colloid catalyst exhibited high activity in a series of biphasic oxidation of aromatic alcohols and aliphatic alcohols. As for the cycling stability, the BWT-Pt catalyst showed no obvious decrease during the 7 cycles, revealing superior cycling stability as compared with the counterparts using PVP or PEG as the stabilizer.Plant polyphenols extracted from plants are one of the most abundant biomasses in nature, which are typical water soluble natural polymers. Herein, we reported a facile approach for the synthesis of platinum nanoparticle (PtNP) aqueous colloid by utilizing black wattle tannin (BWT, a typical plant polyphenol) as amphiphilic stabilizer. The phenolic hydroxyls of BWT provide the PtNPs with enough hydrophilicity, and their reduction ability could protect the PtNPs from deactivation caused by oxygen atmosphere. Additionally, the hydrophilic nature of BWT could efficiently promote the oxidation of alcohols in water, meanwhile, the hydrophobic and rigid backbones of plant polyphenols are able to suppress the PtNPs from aggregating, thus ensuring the high dispersion of the PtNPs during reactions. Under mild aerobic

  15. Electrochemical behaviour of metal hexacyanoferrate converted to metal hydroxide films immobilized on indium tin oxide electrodes-Catalytic ability towards alcohol oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: In this work, we demonstrate a simple method to modify indium tin oxide (ITO) electrodes in order to perform electro-catalytic oxidation of alcohols in alkaline medium. Metal hexacyanoferrate (MHCF) films such as nickel hexacyanoferrate (NiHCF) and copper hexacyanoferrate (CuHCF) were successfully immobilized on ITO electrodes using an electrochemical method. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the structural and morphological aspects of MHCF films. Cyclic voltammetry (CV) was used to study the redox properties and to determine the surface coverage of these films on ITO electrodes. Electrochemical potential cycling was carried out in alkaline medium in order to alter the chemical structure of these films and convert to their corresponding metal hydroxide films. SEM and XPS were performed to analyze the structure and morphology of metal hydroxide modified electrodes. Electro-catalytic oxidation ability of these films towards methanol and ethanol in alkaline medium was investigated using CV. From these studies we found that metal hydroxide modified electrodes show a better catalytic performance and good stability for methanol oxidation along with the alleviation of CO poisoning effect. We have obtained an anodic oxidation current density of ∼82 mA cm-2 for methanol oxidation, which is at least 10 fold higher than that of any metal hydroxide modified electrodes reported till date. The onset potential for methanol oxidation is lowered by ∼200 mV compared to other chemically modified electrodes reported. A plausible mechanism was proposed for the alcohol oxidation based on the redox properties of these modified electrodes. The methodology adapted in this work does not contain costlier noble metals like platinum and ruthenium and is economically viable.

  16. Oxidative Stress in Autism: Elevated Cerebellar 3-nitrotyrosine Levels

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Sajdel-Sulkowska

    2008-01-01

    Full Text Available It has been suggested that oxidative stress and/or mercury compounds play an important role in the pathophysiology of autism. This study compared for the first time the cerebellar levels of the oxidative stress marker 3-nitrotyrosine (3-NT, mercury (Hg and the antioxidant selenium (Se levels between control and autistic subjects. Tissue homogenates were prepared in the presence of protease inhibitors from the frozen cerebellar tissue of control (n=10; mean age, 15.5 years; mean PMI, 15.5 hours and autistic (n=9; mean age 12.1 years; mean PMI, 19.3 hours subjects. The concentration of cerebellar 3-NT, determined by ELISA, in controls ranged from 13.69 to 49.04 pmol g-1 of tissue; the concentration of 3-NT in autistic cases ranged from 3.91 to 333.03 pmol g-1 of tissue. Mean cerebellar 3-NT was elevated in autism by 68.9% and the increase was statistically significant (p=0.045. Cerebellar Hg, measured by atomic absorption spectrometry ranged from 0.9 to 35 pmol g-1 tissue in controls (n=10 and from 3.2 to 80.7 pmol g-1 tissue in autistic cases (n=9; the 68.2% increase in cerebellar Hg was not statistically significant. However, there was a positive correlation between cerebellar 3-NT and Hg levels (r=0.7961, p=0.0001. A small decrease in cerebellar Se levels in autism, measured by atomic absorption spectroscopy, was not statistically significant but was accompanied by a 42.9% reduction in the molar ratio of Se to Hg in the autistic cerebellum. While preliminary, the results of the present study add elevated oxidative stress markers in brain to the growing body of data reflecting greater oxidative stress in autism.

  17. Effects of school district factors on alcohol consumption: results of a multi-level analysis among Danish adolescents

    DEFF Research Database (Denmark)

    Stock, Christiane; Ejstrud, Bo; Vinther-Larsen, Mathilde;

    2011-01-01

    of housing and land use characteristics. RESULTS: About 40% of all respondents (45.8% males and 35.2% females) had ever drunk more than one glass of alcoholic beverage. Mixed-effects logistic regression showed that significant individual level predictors for drinking initiation were male gender, a lower...... performance at school, perceived peer group drinking and the perceived daily drinking of the father. On school district level, adolescents were more likely to initiate alcohol consumption in school districts with higher farming land use and less likely in those with higher proportion of private apartment...

  18. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise.

    Science.gov (United States)

    de Lucas, Ricardo Dantas; Caputo, Fabrizio; Mendes de Souza, Kristopher; Sigwalt, André Roberto; Ghisoni, Karina; Lock Silveira, Paulo Cesar; Remor, Aline Pertile; da Luz Scheffer, Débora; Guglielmo, Luiz Guilherme Antonacci; Latini, Alexandra

    2014-01-01

    The purpose of the present investigation was to identify muscle damage, inflammatory response and oxidative stress blood markers in athletes undertaking the ultra-endurance MultiSport Brazil race. Eleven well-trained male athletes (34.3 ± 3.1 years, 74.0 ± 7.6 kg; 172.2 ± 5.1 cm) participated in the study and performed the race, which consisted of about 90 km of alternating off-road running, mountain biking and kayaking. Twelve hours before and up to 15 minutes after the race a 10 mL blood sample was drawn in order to measure the following parameters: lactate dehydrogenase and creatine kinase activities, lipid peroxidation, catalase activity, protein carbonylation, respiratory chain complexes I, II and IV activities, oxygen consumption and neopterin concentrations. After the race, plasma lactate dehydrogenase and creatine kinase activities were significantly increased. Erythrocyte TBA-RS levels and plasma protein carbonylation were markedly augmented in post-race samples. Additionally, mitochondrial complex II activity and oxygen consumption in post-race platelet-rich plasma were also increased. These altered biochemical parameters were accompanied by increased plasma neopterin levels. The ultra-endurance event provoked systemic inflammation (increased neopterin) accompanied by marked oxidative stress, likely by increasing oxidative metabolism (increased oxidative mitochondrial function). This might be advantageous during prolonged exercise, mainly for efficient substrate oxidation at the mitochondrial level, even when tissue damage is induced.

  19. Level of impaired control predicts outcome of moderation-oriented treatment for alcohol problems

    OpenAIRE

    Heather, Nick; Dawe, Sharon

    2005-01-01

    Aims To examine the ability of the Impaired Control Scale (ICS) to predict outcome of moderation-oriented treatment for alcohol problems and to compare this predictive ability directly with that of a widely used measure of alcohol dependence, the Severity of Alcohol Dependence Questionnaire (SADQ). Design Prospective follow-up study. Setting Out-patient treatment centres. Participants A combined sample 154 problem drinkers taking part in two clinical trials of Moderation-oriented Cue Exposure...

  20. Interactions of the apolipoprotein C-III 3238C>G polymorphism and alcohol consumption on serum triglyceride levels

    Directory of Open Access Journals (Sweden)

    Ruixing Yin

    2010-08-01

    Full Text Available Abstract Background Both apolipoprotein (Apo C-III gene polymorphism and alcohol consumption have been associated with increased serum triglyceride (TG levels, but their interactions on serum TG levels are not well known. The present study was undertaken to detect the interactions of the ApoC-III 3238C>G (rs5128 polymorphism and alcohol consumption on serum TG levels. Methods A total of 516 unrelated nondrinkers and 514 drinkers aged 15-89 were randomly selected from our previous stratified randomized cluster samples. Genotyping of the ApoC-III 3238C>G was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Interactions of the ApoC-III 3238C>G genotype and alcohol consumption was assessed by using a cross-product term between genotypes and the aforementioned factor. Results Serum total cholesterol (TC, TG, high-density lipoprotein cholesterol (HDL-C, ApoA-I and ApoB levels were higher in drinkers than in nondrinkers (P P P P P P P P Conclusions This study suggests that the ApoC-III 3238CG heterozygotes benefited more from alcohol consumption than CC and GG homozygotes in increasing serum levels of HDL-C, ApoA-I, and the ratio of ApoA-I to ApoB, and lowering serum levels of TC and TG.

  1. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Alfonso Díaz

    2016-01-01

    Full Text Available Energy drinks (EDs are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx and hippocampus (Hp of adult rats (90 days old. Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  2. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Science.gov (United States)

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  3. Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation

    Science.gov (United States)

    Su, Li; Ye, Xiangju; Meng, Sugang; Fu, Xianliang; Chen, Shifu

    2016-10-01

    A series of ternary chalcogenides, zinc indium sulphide (ZnIn2S4), were synthesized by a simple solvothermal method with different solvents. The structure, textural, and optical properties of the resulting materials were thoroughly characterized by several techniques. The as-prepared ZnIn2S4 samples could all be employed as excellent photocatalysts to activate O2 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light illumination. The results showed that ZnIn2S4 prepared in ethanol solvent (ZIS-EtOH) exhibited the highest photocatalytic activity among the screened samples. The differences of photocatalytic performance for ZnIn2S4 samples prepared in different media were mainly attributed to the different levels of exposed {0001} special facets caused by the exposure extent of the basic crystal plane. In addition, rad O2- and positive holes were proved to be the main active species during the photocatalytic process. Combined with the previous reports, a possible photocatalytic mechanism for the selective oxidation of benzyl alcohol to benzaldehyde over ZnIn2S4 sample was proposed.

  4. Graphene decorated with Pd nanoparticles via electrostatic self-assembly: A highly active alcohol oxidation electrocatalyst

    International Nuclear Information System (INIS)

    Graphical abstract: Novel perylene-connected ionic liquids (PTCDI-ILs) have been successfully synthesized in a convenient approach and used as linkers for three-component Pd/PTCDI-ILs/GS heterostructure when non-covalently attached on graphene. The obtained nano-hybrids represented high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Highlights: • A novel preparation of three-component Pd/ionic liquids/graphene heterostructure has been constructed. • The Pd-based nano-catalysts have relatively low price and higher resistance to CO poisoning when compared with Pt-based catalysts. • The nano-catalysts represent high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Abstract: Graphene nanosheets (GS) are non-covalently functionalized with novel N,N-bis-(n-butylimidazolium bromide salt)-3,4,9,10-perylene tetracarboxylic acid diimide (PTCDI-ILs) via the π–π stacking, and then employed as the support of Pd nanoparticles. The negatively charged Pd precursors are adsorbed on positively charged imidazolium ring moiety of PTCDI-ILs wrapping GS surface via electrostatic self-assembly and then in situ reduced by NaBH4. X-ray diffraction and transmission electron microscope images reveal that Pd nanoparticles with an average size of 2.7 nm are uniformly dispersed on GS surface. The Pd/PTCDI-ILs/GS exhibits unexpectedly high activity toward alcohol oxidation reaction, which can be attributed to the large electrochemical surface area of Pd nanoparticles. It also shows enhanced electrochemical stability due to the structural integrity of PTCDI-ILs/GS. This provides a facile approach to synthesize GS-based nanoelectrocatalysts

  5. Oxidation and β-Alkylation of Alcohols Catalysed by Iridium(I) Complexes with Functionalised N-Heterocyclic Carbene Ligands.

    Science.gov (United States)

    Jiménez, M Victoria; Fernández-Tornos, Javier; Modrego, F Javier; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-12-01

    The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for CC bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)-cyclooctadiene complexes having a NHC ligand with a O- or N-functionalised wingtip efficiently catalysed the oxidation and β-alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3 )(cod)(MeIm(2- methoxybenzyl))][BF4 ] (cod=1,5-cyclooctadiene, MeIm=1-methylimidazolyl) having a rigid O-functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0 ) of 1283 h(-1) , and also in the β-alkylation of 2-propanol with butan-1-ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan-2-ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross-aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new CC bond that involves the reaction of an O-bound enolate generated in the basic medium with the electrophilic aldehyde. PMID:26493780

  6. Serum procalcitonin and CRP levels in non-alcoholic fatty liver disease: a case control study

    Directory of Open Access Journals (Sweden)

    Ersoz Galip

    2009-02-01

    Full Text Available Abstract Background Both C reactive protein (CRP and procalcitonin (PCT are well known acute phase reactant proteins. CRP was reported to increase in metabolic syndrome and type-2 diabetes. Similarly altered level of serum PCT was found in chronic liver diseases and cirrhosis. The liver is considered the main source of CRP and a source of PCT, however, the serum PCT and CRP levels in non-alcoholic fatty liver disease (NAFLD were not compared previously. Therefore we aimed to study the diagnostic and discriminative role of serum PCT and CRP in NAFLD. Methods Fifty NAFLD cases and 50 healthy controls were included to the study. Liver function tests were measured, body mass index was calculated, and insulin resistance was determined by using a homeostasis model assessment (HOMA-IR. Ultrasound evaluation was performed for each subject. Serum CRP was measured with nephalometric method. Serum PCT was measured with Kryptor based system. Results Serum PCT levels were similar in steatohepatitis (n 20 and simple steatosis (n 27 patients, and were not different than the control group (0.06 ± 0.01, 0.04 ± 0.01 versus 0.06 ± 0.01 ng/ml respectively. Serum CRP levels were significantly higher in simple steatosis, and steatohepatitis groups compared to healthy controls (7.5 ± 1.6 and 5.2 ± 2.5 versus 2.9 ± 0.5 mg/dl respectively p Conclusion Serum PCT was within normal ranges in patients with simple steatosis or steatohepatitis and has no diagnostic value. Serum CRP level was increased in NAFLD compared to controls. CRP can be used as an additional marker for diagnosis of NAFLD but it has no value in discrimination of steatohepatitis from simple steatosis.

  7. Thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels.

    Science.gov (United States)

    Wei, Benxi; Li, Hongyan; Tian, Yaoqi; Xu, Xueming; Jin, Zhengyu

    2015-06-25

    The thermal degradation behavior of hypochlorite-oxidized starch nanocrystals (OSNCs) was evaluated in this study. Carbonyl and carboxyl groups in OSNCs increased from 0.006 and 0.091mmol/g to 0.033 and 0.129mmol/g, respectively, as the active chlorine concentration increased from 1% to 4% (w/w). Compared with starch nanocrystals (SNCs), the initial degradation temperature of OSNCs with 4% oxidization decreased from 273°C to 253°C. Two degradation processes were detected using differential thermal analysis. The activation energy of the low-temperature process increased with increasing oxidization level because of removal of sulfate esters and reduction of the decomposition products of H2O during oxidation. With increasing temperature, the H2O generating from decarboxylation and decomposition of the carboxyl groups may catalyze SNCs depolymerization, leading to decrease in the activation energy of the high-temperature process. OSNCs (4% oxidized level) can be used in dry process below 253°C to avoid degradation.

  8. Water-soluble metal nanoparticles stabilized by plant polyphenols for improving the catalytic properties in oxidation of alcohols.

    Science.gov (United States)

    Mao, H; Liao, Y; Ma, J; Zhao, S L; Huo, F W

    2016-01-14

    Plant polyphenols extracted from plants are one of the most abundant biomasses in nature, which are typical water soluble natural polymers. Herein, we reported a facile approach for the synthesis of platinum nanoparticle (PtNP) aqueous colloid by utilizing black wattle tannin (BWT, a typical plant polyphenol) as amphiphilic stabilizer. The phenolic hydroxyls of BWT provide the PtNPs with enough hydrophilicity, and their reduction ability could protect the PtNPs from deactivation caused by oxygen atmosphere. Additionally, the hydrophilic nature of BWT could efficiently promote the oxidation of alcohols in water, meanwhile, the hydrophobic and rigid backbones of plant polyphenols are able to suppress the PtNPs from aggregating, thus ensuring the high dispersion of the PtNPs during reactions. Under mild aerobic conditions, the as-prepared BWT-Pt colloid catalyst exhibited high activity in a series of biphasic oxidation of aromatic alcohols and aliphatic alcohols. As for the cycling stability, the BWT-Pt catalyst showed no obvious decrease during the 7 cycles, revealing superior cycling stability as compared with the counterparts using PVP or PEG as the stabilizer. PMID:26662453

  9. Oxidation of Aliphatic Alcohols by Using Precious Metals Supported on Hydrotalcite under Solvent- and Base-Free Conditions.

    Science.gov (United States)

    He, Yufei; Feng, Junting; Brett, Gemma L; Liu, Yanan; Miedziak, Peter J; Edwards, Jennifer K; Knight, David W; Li, Dianqing; Hutchings, Graham J

    2015-10-12

    Precious metal nanoparticles supported on magnesium-aluminum hydrotalcite (HT), TiO2 , and MgO were prepared by sol immobilization and assessed for the catalytic oxidation of octanol, which is a relatively unreactive aliphatic alcohol, with molecular oxygen as the oxidant under solvent- and base-free conditions. Compared with the TiO2 - and MgO-supported catalysts, platinum HT gave the highest activity and selectivity towards the aldehyde. The turnover number achieved for the platinum HT catalyst was >3700 after 180 min under mild reaction conditions. Moreover, the results for the oxidation of different substrates indicate that a specific interaction of octanal with the platinum HT catalyst could lead to deactivation of the catalyst. PMID:26337897

  10. The association of serum uric acid level with prevalence of non-alcoholic fatty liver in Uyghur and Han ethnicities

    Institute of Scientific and Technical Information of China (English)

    蔡雯

    2013-01-01

    Objective To explore the association of serum uric acid level with non-alcoholic fatty liver disease(NAFLD) in Han and Uyghur ethnic groups. Methods A cross-sectional study was performed in the population in 2011 in the First Affiliated Hospital of Xinjiang Medical University.

  11. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium

    International Nuclear Information System (INIS)

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  12. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  13. Effects of polymorphisms in alcohol metabolism and oxidative stress genes on survival from head and neck cancer

    Science.gov (United States)

    Hakenewerth, Anne M.; Millikan, Robert C.; Rusyn, Ivan; Herring, Amy H.; Weissler, Mark C.; Funkhouser, William K.; North, Kari E.; Barnholtz-Sloan, Jill S.; Olshan, Andrew F.

    2013-01-01

    Background Heavy alcohol consumption increases risk of developing squamous cell carcinoma of the head and neck (SCCHN). Alcohol metabolism to cytotoxic and mutagenic intermediates acetaldehyde and reactive oxygen species is critical for alcohol-drinking-associated carcinogenesis. We hypothesized that polymorphisms in alcohol metabolism-related and antioxidant genes influence SCCHN survival. Methods Interview and genotyping data (64 polymorphisms in 12 genes) were obtained from 1227 white and African-American cases from the Carolina Head and Neck Cancer Epidemiology study, a population-based case–control study of SCCHN conducted in North Carolina from 2002 to 2006. Vital status, date and cause of death through 2009 were obtained from the National Death Index. Kaplan–Meier log-rank tests and adjusted hazard ratios were calculated to identify alleles associated with survival. Results Most tested SNPs were not associated with survival, with the exception of the minor alleles of rs3813865 and rs8192772 in CYP2E1. These were associated with poorer cancer-specific survival (HRrs3813865, 95%CI = 2.00, 1.33–3.01; HRrs8192772, 95%CI = 1.62, 1.17–2.23). Hazard ratios for 8 additional SNPs in CYP2E1, GPx2, SOD1, and SOD2, though not statistically significant, were suggestive of differences in allele hazards for all-cause and/or cancer death. No consistent associations with survival were found for SNPs in ADH1B, ADH1C, ADH4, ADH7, ALDH2, GPx2, GPx4, and CAT. Conclusions We identified some polymorphisms in alcohol and oxidative stress metabolism genes that influence survival in subjects with SCCHN. Previously unreported associations of SNPs in CYP2E1 warrant further investigation. PMID:23632049

  14. MAMMALIAN METABOLISM AND DISTRIBUTION OF PERFLUOROOCTYL ETHANOL (8-2 TELOMER ALCOHOL) AND ITS OXIDATION METABOLITES

    Science.gov (United States)

    Perfluorinated compounds have been shown to be globally distributed, bioaccumulative, persistent and potentially toxic. It has been hypothesized that many precursor fluorinated compounds, including the telomer alcohols, degrade or metabolize to the common metabolite PFOA.

  15. Solvent-free oxidation of secondary alcohols to carbonyl compounds by 1, 3-Dibromo-5, 5-Dimethylhydantoin (DBDMH) and 1, 3-Dichloro-5, 5-Dimethylhydantoin (DCDMH)

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: fatemehabbasi807@gmail.com [Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kianiborazjani, Maryam [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of); Saednia, Shahnaz [Young Researchers Club, Toyserkan Branch, Islamic Azad University, Toyserkan (Iran, Islamic Republic of)

    2014-02-15

    Aldehydes and ketones are important intermediates, especially for the construction of carbon-skeletons. The oxidation of alcohols is so important that a large number of methods and reagents have been reported for this purpose. N-halo reagents are widely used in organic synthesis and as a continuation of our interest in the application of N-halo compounds in organic synthesis, dibromo dimethylhydantoin (DBDMH) and dichloro dimethylhydantoin (DCDMH) were used for the oxidation of alcohols and our ongoing work on development of highly efficient oxidation protocols. We observed the oxidation of secondary alcohols with stoichiometric amounts of DBDMH and DCDMH under solvent-free conditions in the range of temperature 70-80 deg C. (author)

  16. Alcoholic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Gonzalo; Guzzo-Merello; Marta; Cobo-Marcos; Maria; Gallego-Delgado; Pablo; Garcia-Pavia

    2014-01-01

    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy(ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM.

  17. Biomimetic oxidation studies. 9. Mechanistic aspects of the oxidation of alcohols with functional,active site methane monooxygenase enzyme models in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Rabion, A. [Lawrence Berkeley National Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)]|[Groupement de Recherche de Lacq, Artix (France); Chen, S.; Wang, J.; Buchanan, R.M. [Univ. of Louisville, KY (United States); Seris, J.L. [Groupement de recherche de Lacq, Artix (France); Fish, R.H. [Lawrence Berkeley National Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)

    1995-12-13

    The syntheses of biomimetic complexes that mimic the major structural features of the hydroxylase component of methane monooxygenase enzyme (MMO) and, more importantly, that provide similar alkane functionalization activity, in the presence of an oxidant, have been of great interest to the discipline of bioinorganic chemistry. In this communication, we will demonstrate the feasibility of conducting biomimetic oxidation studies in H{sub 2}O with soluble substrates, i.e., alcohols (cyclohexanol, benzyl alcohol), using H{sub 2}O-stable MMO mimics at pH 4.2, and the oxidant, tert-butyl hydroperoxide (TBHP). Both the Mitusunobu procedure and the mesylate displacement reaction proceeded with complete inversion of the stereo-center and provided optically pure penultimate intermediate (>99.9% ee). The synthesis was completed by reduction of the nitro group under standard conditions to deliver LY300164 in 87%. In summary, we have developed an efficient and environmentally benign synthesis of the 5H-2,3-benzodiazepine LY300164 that provides the optically pure compound in 51% overall yield. Intramolecular hydrazone alkylation led to a remarkably facile and selective formation of the benzodiazepine. Furthermore, the application of resins to whole-cell-based biotransformations should find general utility for similar reactions that are complicated by component inhibition and product isolation. 11 refs., 1 fig.

  18. Spontaneous evolution in bilirubin levels predicts liver-related mortality in patients with alcoholic hepatitis.

    Directory of Open Access Journals (Sweden)

    Minjong Lee

    Full Text Available The accurate prognostic stratification of alcoholic hepatitis (AH is essential for individualized therapeutic decisions. The aim of this study was to develop a new prognostic model to predict liver-related mortality in Asian AH patients. We conducted a hospital-based, retrospective cohort study using 308 patients with AH between 1999 and 2011 (a derivation cohort and 106 patients with AH between 2005 and 2012 (a validation cohort. The Cox proportional hazards model was constructed to select significant predictors of liver-related death from the derivation cohort. A new prognostic model was internally validated using a bootstrap sampling method. The discriminative performance of this new model was compared with those of other prognostic models using a concordance index in the validation cohort. Bilirubin, prothrombin time, creatinine, potassium at admission, and a spontaneous change in bilirubin levels from day 0 to day 7 (SCBL were incorporated into a model for AH to grade the severity in an Asian patient cohort (MAGIC. For risk stratification, four risk groups were identified with cutoff scores of 29, 37, and 46 based on the different survival probabilities (P<0.001. In addition, MAGIC showed better discriminative performance for liver-related mortality than any other scoring system in the validation cohort. MAGIC can accurately predict liver-related mortality in Asian patients hospitalized for AH. Therefore, SCBL may help us decide whether patients with AH urgently require corticosteroid treatment.

  19. The atomic level journey from aqueous polyoxometalate to metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yu; Fast, Dylan B.; Ruther, Rose E.; Amador, Jenn M.; Fullmer, Lauren B.; Decker, Shawn R.; Zakharov, Lev N.; Dolgos, Michelle R., E-mail: Michelle.Dolgos@oregonstate.edu; Nyman, May, E-mail: May.Nyman@oregonstate.edu

    2015-01-15

    Aqueous precursors tailored for the deposition of thin film materials are desirable for sustainable, simple, low energy production of advanced materials. Yet the simple practice of using aqueous precursors is complicated by the multitude of interactions that occur between ions and water during dehydration. Here we use lithium polyoxoniobate salts to investigate the fundamental interactions in the transition from precursor cluster to oxide film. Small-angle X-ray scattering of solutions, total X-ray scattering of intermediate gels, and morphological and structural characterization of the lithium niobate thin films reveal the atomic level transitions between these states. The studies show that (1) lithium–[H{sub 2}Nb{sub 6}O{sub 19}]{sup 6−} has drastically different solution behaviour than lithium–[Nb{sub 6}O{sub 19}]{sup 8−}, linked to the precursor salt structure (2) in both compositions, the intermediate gel preserves the polyoxoniobate clusters and show similar local order and (3) the morphology and phases of deposited films reflect the ions behaviour throughout the journey from cluster solution to metal oxide. - Graphical abstract: Aqueous lithium polyoxoniobate salts were used to prepare lithium niobate (LiNbO{sub 3}) thin films. Fundamental studies were performed to investigate the interactions in the transition from precursor cluster to the oxide film. It was found that acid–base and ion-association chemistries of the aqueous and gel systems significantly affect the key processes in this atom-level journey. - Highlights: • Lithium polyoxoniobate clusters were synthesized with control over Li:Nb ratio as precursors for LiNbO{sub 3} films. • X-ray scattering studies in solution and the solid-state revealed differences controlled by Li:Nb ratio. • Film deposition studies revealed phase, composition and morphology is controlled by Li:Nb ratio. • Cluster to film transformation was revealed using total X-ray scattering and TGA.

  20. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  1. Anchoring Tri(8-QuinolinolatoIron Onto Sba-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent

    Directory of Open Access Journals (Sweden)

    Yang Xiaoyuan

    2014-09-01

    Full Text Available Tri(8-quinolinolatoiron complex immobilized onto SBA-15 catalyst has been synthesized through a stepwise procedure. The characterization results indicated that the BET surface area, total pore volume and average pore width decrease after stepwise modification of SBA-15, while the structure keeps intact. Catalytic tests showed that FeQ3-SBA-15 catalyzes the oxidation reaction well with 34.8% conversion of benzyl alcohol and 74.7% selectivity to benzaldehyde when water is used as the solvent after 1 h reaction. In addition, homogeneous catalyst tri(8-quinolinolatoiron exhibits very bad catalytic behavior using water as the solvent.

  2. Moderate Level Alcohol During Pregnancy, Prenatal Stress, or Both and Limbic-Hypothalamic-Pituitary-Adrenocortical Axis Response to Stress in Rhesus Monkeys

    Science.gov (United States)

    Schneider, Mary L.; Moore, Colleen F.; Kraemer, Gary W.

    2004-01-01

    This study examined the relationship between moderate-level prenatal alcohol exposure, prenatal stress, and postnatal response to a challenging event in 6-month-old rhesus monkeys. Forty-one rhesus monkey (Macaca mulatta) infants were exposed prenatally to moderate level alcohol, maternal stress, or both. Offspring plasma cortisol and…

  3. Novel synthesis of manganese and vanadium mixed oxide (V{sub 2}O{sub 5}/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Soleimani, Shima

    2014-03-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and

  4. Breath alcohol test

    Science.gov (United States)

    Alcohol test - breath ... There are various brands of breath alcohol tests. Each one uses a different method to test the level of alcohol in the breath. The machine may be electronic or manual. One ...

  5. Public acceptability of population-level interventions to reduce alcohol consumption: A discrete choice experiment

    OpenAIRE

    Pechey, Rachel; Burge, Peter; Mentzakis, Emmanouil; Suhrcke, Marc; Marteau, Theresa M

    2014-01-01

    Public acceptability influences policy action, but the most acceptable policies are not always the most effective. This discrete choice experiment provides a novel investigation of the acceptability of different interventions to reduce alcohol consumption and the effect of information on expected effectiveness, using a UK general population sample of 1202 adults. Policy options included high, medium and low intensity versions of: Minimum Unit Pricing (MUP) for alcohol; reducing numbers of alc...

  6. Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide

    Science.gov (United States)

    Yang, Changyuan; Li, Huichu; Chen, Renjie; Xu, Wenxi; Wang, Cuicui; Tse, Lap Ah; Zhao, Zhuohui; Kan, Haidong

    2016-07-01

    Nitrogen dioxide and ozone are two interrelated oxidative pollutants in the atmosphere. Few studies have evaluated the health effects of combined oxidant capacity (O x ). We investigated the short-term effects of O x on fractional exhaled nitric oxide (FeNO), a well-established biomarker for airway inflammation, in a group of chronic obstructive pulmonary disease patients. Real-time concentrations of O x were obtained by calculating directly the sum of nitrogen dioxide and ozone. Linear mixed-effect models were applied to explore the acute effects of O x on FeNO levels. Short-term exposure to Ox was significantly associated with elevated FeNO. This effect was strongest in the first 24 h after exposure, and was robust to the adjustment of PM2.5. A 10 μg m‑3 increase in 24 h average concentrations of O x was associated with 4.28% (95% confidence interval: 1.19%, 7.37%) increase in FeNO. The effect estimates were statistically significant only among males, elders, and those with body mass index ≥24 kg m‑2, a comorbidity, higher educational attainment, or moderate airflow limitation. This analysis demonstrated an independent effect of O x on respiratory inflammation, and suggested that a single metric O x might serve as a preferable indicator of atmospheric oxidative capacity in further air pollution epidemiological studies.

  7. Serum gamma-GTP levels by type and quantity of alcohol consumed--the 'whisky hypothesis' refuted.

    Science.gov (United States)

    Robinson, D; Takiwaki, S; Allaway, S; Sekihara, K

    1987-12-01

    Serum gamma-GTP measurements in 11,755 Japanese men were used to test the hypothesis that drinking whisky had little or no effect on the serum level of this enzyme. We found that regular drinking was associated with significantly increased mean levels and raised percentages of high values of gamma-GTP, irrespective of the type of alcohol consumed. Moreover, heavier and more frequent drinking were associated with proportionately greater increases in gamma-GTP levels. Our data therefore refute the hypothesis that whisky drinking is not accompanied by adverse changes in the level of serum gamma-GTP.

  8. Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte

    Indian Academy of Sciences (India)

    Navin Chand; Neelesh Rai; S L Agrawal; S K Patel

    2011-12-01

    In the present work, an attempt has been made to develop nano aluminium oxide (Al2O3)-filled polyvinyl alcohol (PVA) composite gel electrolytes. Surface morphological studies, thermal behaviour, electrochemical stability and electrical characterization of these composite gel electrolytes have been performed. An increase in the concentration of Al2O3 in composite gel electrolytes increases the amorphous characteristics of pure PVA. Bulk conductivity of composite gel electrolytes increases by an order of magnitude on addition of a nano filler. Maximum conductivity of 5.81 × 10-2 S/cm is observed for 6 wt% Al2O3-filled polymer gel composite electrolytes. Temperature dependence of electrical conductivity shows a combination of Arrhenius and Vogel–Tamman–Fulcher (VTF) nature. Maximum current stability during oxidation and reduction cycle is noticed for 6 wt% Al2O3-filled PVA composite electrolyte, viz. ±1.65 V.

  9. Two cinnamoyloctopamine antioxidants from garlic skin attenuates oxidative stress and liver pathology in rats with non-alcoholic steatohepatitis.

    Science.gov (United States)

    Wu, Zheng-Rong; Peng-Chen; Yang-Li; Li, Jian-Ying; Xin-Wang; Yong-Wang; Guo, Ding-Ding; Lei-Cui; Guan, Qian-Guo; Li, Hong-Yu

    2015-01-15

    Hepatic oxidative stress plays a key role in the development of non-alcoholic steatohepatitis (NASH), therefore, treatment approaches that address the antioxidant is helpful in the therapy of patients with NASH. N-trans-coumaroyloctopamine (1) and N-trans-feruloyloctopamine (2) were identified as the primary antioxidant constituents of garlic skin with high antioxidant activities. The aim of this study was to elucidate the protective effect and mechanism of the antioxidants on NASH in rats. The results provide morphological and molecular biological evidences for the protective role of the antioxidant 2 in ameliorating oxidative stress and hepatic apoptosis in experimental NASH for the first time. Mechanism study indicated that the antioxidant 2 significantly reduced the expression of COX-2 mRNA and protein by western blot, RT-PCR and immunohistochemical techniques.

  10. Formation of gold clusters on La-Ni mixed oxides and its catalytic performance for isomerization of allylic alcohols to saturated aldehydes

    International Nuclear Information System (INIS)

    Au/NiO catalyzed the isomerization of allylic alcohols to afford saturated aldehydes. La-Ni mixed oxide could stabilize Au(III) and afford gold clusters smaller than 1 nm by H2 reduction. The resulting Au clusters on La-Ni-O exhibited superior catalytic performance to Au/NiO for the isomerization of internal allylic alcohol, 2-octen-1-ol to octanal. (author)

  11. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  12. The role of nitric oxide in low level light therapy

    Science.gov (United States)

    Hamblin, Michael R.

    2008-02-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. Firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of choosing amongst a large number of illumination parameters has led to the publication of a number of negative studies as well as many positive ones. This review will focus on the role of nitric oxide in the cellular and tissue effects of LLLT. Red and near-IR light is primarily absorbed by cytochrome c oxidase (unit four in the mitochondrial respiratory chain). Nitric oxide produced in the mitochondria can inhibit respiration by binding to cytochrome c oxidase and competitively displacing oxygen, especially in stressed or hypoxic cells. If light absorption displaced the nitric oxide and thus allowed the cytochrome c oxidase to recover and cellular respiration to resume, this would explain many of the observations made in LLLT. Why the effect is only seen in hypoxic, stressed or damaged cells or tissues? How the effects can keep working for some time (hours or days) postillumination? Why increased NO concentrations are sometimes measured in cell culture or in animals? How blood flow can be increased? Why angiogenesis is sometimes increased after LLLT in vivo?

  13. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    Science.gov (United States)

    Wang, Chongyang

    With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the

  14. Physicochemical properties of manganese dioxide synthesized using C2–C5 alcohols as reducing agents and their catalytic activities for CO oxidation

    KAUST Repository

    Lee, Young-Ho

    2015-09-26

    MnO2 catalysts were synthesized in an aqueous solution of KMnO4 and C2–C5 alcohols using a simple redox method at room temperature. The crystalline structure of all samples was δ-MnO2 after being calcined at 300 °C. However, other physicochemical properties of the samples varied depending on the symmetry of the alcohols used. For the catalytic oxidation of CO, MnO2 catalysts prepared with 1° alcohols performed better than the samples prepared in 2° alcohols. Catalytic activities were correlated to the quantity of labile oxygen species of the catalysts. In CO-TPD analysis, the relative area of desorbed radical dotCO2, which is the product of the reaction between adsorbed CO and lattice oxygen species, becomes larger for MnO2 prepared with 1° alcohols than with 2° alcohols. These results were primarily resulted from the innate hydrogen dissociation behavior of alcohol in solution. The pKa was found to be an important factor in determining the physicochemical properties and catalytic activity toward CO oxidation of MnO2.

  15. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Kalambur, Venkat S; Longmire, Ellen K; Bischof, John C

    2007-11-20

    Superparamagnetic iron oxide nanoparticles (NPs) hold promise for a variety of biomedical applications due to their properties of visualization using magnetic resonance imaging (MRI), heating with radio frequency (rf), and movement in an external magnetic field. In this study, the cellular loading (uptake) mechanism of dextran- and surfactant-coated iron oxide NPs by malignant prostate tumor cells (LNCaP-Pro5) has been studied, and the feasibility of traditional rf treatment and a new laser heating method was evaluated. The kinetics of cell loading was quantified using magnetophoresis and a colorimetric assay. The results showed that loading of surfactant-coated iron oxide NPs with LNCaP-Pro5 was saturable with time (at 24 h) and extracellular concentration (11 pg Fe/cell at 0.5 mg Fe/mL), indicating that the particles are taken up by an "adsorptive endocytosis" pathway. Dextran-coated NPs, however, were taken up less efficiently (1 pg Fe/cell at 0.5 mg Fe/mL). Loading did not saturate with concentration suggesting uptake by fluid-phase endocytosis. Magnetophoresis suggests that NP-loaded cells can be held using external magnetic fields in microcirculatory flow velocities in vivo or in an appropriately designed extracorporeal circuit. Loaded cells were heated using traditional rf (260A, 357 kHz) and a new laser method (532 nm, 7 ns pulse duration, 0.03 J/pulse, 20 pulse/s). Iron oxide in water was found to absorb sufficiently strongly at 532 nm such that heating of individual NPs and thus loaded cells (1 pg Fe/cell) was effective (10 pg Fe/cell) and longer duration (30 min) when compared to laser to accomplish cell destruction (50% viability at 10 pg Fe/cell). Scaling calculations show that the pulsed laser method can lead to single-cell (loaded with NPs) treatments (200 degrees C temperature change at the surface of an individual NP) unlike traditional rf heating methods which can be used only for bulk tissue level treatments. In a mixture of normal and NP

  16. Selective Aerobic Oxidation of Benzyl Alcohol Driven by Visible Light on Gold Nanoparticles Supported on Hydrotalcite Modified by Nickel Ion

    Directory of Open Access Journals (Sweden)

    Dapeng Guo

    2016-04-01

    Full Text Available A series of hydrotalcite (HT and hydrotalcite modified by the transition metal ion Ni(II was prepared with a modified coprecipitation method before being loaded with gold nanoparticles. The gold supported on Ni3Al hydrotalcite with a Ni2+/Al3+ molar ratio of 3:1 was investigated. Different techniques such as X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and UV-vis diffuse reflection spectrum (UV-vis DRS were applied to characterize the catalysts. A single-phase catalyst with high crystallinity, a layered structure and good composition was successfully fabricated. Good conversions and superior selectivities in the oxidation of benzyl alcohol and its derivatives were obtained with visible light due to the effect of localized surface plasmon resonance (LSPR of gold nanoparticles and the synergy of the transition metal ion Ni(II. This reaction was proven to be photocatalytic by varying the intensity and wavelength of the visible light. The catalyst can be recycled three times. A corresponding photocatalytic mechanism of the oxidation reaction of benzyl alcohol was proposed.

  17. Preparation of nanometer oxides La1-xSrxMnO3 by absolute alcohol as solvent

    Institute of Scientific and Technical Information of China (English)

    HU Jie; SHAO Guang-jie; GUO Peng; QIN Xiu-juan; XING Guang-zhong

    2008-01-01

    Nanometer oxides La1-xSrxMnO3 were synthesized by absolute alcohol as solvent. The desired metal cations were chelated in a solution using citric acid as the chelating agents. In order to get the optimum preparation condition for La1-xSrxMnO3, the pH of primal commix solution, the molar fraction of citric acid and baking temperature of predecessor block were researched by orthogonal test design method with different x. The thermal decomposition of the metal carboxylate precursor gels was studied by TG/DTA and the products derived from calcinations of the gels were characterized by XRD and TEM. The polarization curves were acquired on an electrochemical work station (LK98) and the discharge curves were acquired on a testing instrument of batteries (DC-5) with a constant current discharge under 120 mA/cm2. The results reveal that the nanometer oxides can be achieved by absolute alcohol as solvent and it has better catalytic activity.

  18. Facile fabrication of graphene/nickel oxide composite with superior supercapacitance performance by using alcohols-reduced graphene as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, Haiyan, E-mail: hyzhang@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Chen, Yiming [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Li, Zhenghui; Huang, Zhikun; Xu, Xingfa [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Li, Yunyong; Shi, Zhicong [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China)

    2015-09-25

    Highlights: • G/NiO was synthesized by using alcohols-reduced graphene as substrate. • G/NiO presents a globule-on-sheet structure and reveals a synergistic effect. • G/NiO displays high specific capacitance and superior cycling stability. - Abstract: Graphene/nickel oxide composite (G/NiO) was synthesized through a facile hydrothermal method and subsequently microwave thermal treatment by using alcohols-reduced graphene as substrate. The as-prepared G/NiO was characterized by X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The results indicate that the graphene oxide has been successfully reduced to graphene, and NiO nanoparticles are homogeneous anchored on the surface of graphene, forming a globule-on-sheet structure. The loading content of NiO nanoparticles anchoring on the surface of graphene nanosheets can be controlled by adjusting the hydrothermal temperature. The G/NiO displays superior electrochemical performance with a specific capacitance of 530 F g{sup −1} at 1 A g{sup −1} in 2 M of NaOH. After 5000 cycles, the supercapacitor still maintains a specific capacitance of 490 F g{sup −1} (92% retention of the initial capacity), exhibiting excellent cycling stability.

  19. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  20. Serum levels of brain-derived neurotrophic factor in alcohol-dependent patients receiving high-dose baclofen.

    Science.gov (United States)

    Geisel, Olga; Hellweg, Rainer; Müller, Christian A

    2016-06-30

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the development and maintenance of addictive and other psychiatric disorders. Also, interactions of γ-aminobutyric acid (GABA)-ergic compounds and BDNF have been reported. The objective of this study was to investigate serum levels of BDNF over time in alcohol-dependent patients receiving individually titrated high-dose treatment (30-270mg/d) with the GABA-B receptor agonist baclofen or placebo for up to 20 weeks. Serum levels of BDNF were measured in patients of the baclofen/placebo group at baseline (t0), 2 weeks after reaching individual high-dose of baclofen/placebo treatment (t1) and after termination of study medication (t2) in comparison to carefully matched healthy controls. No significant differences in serum levels of BDNF between the baclofen and the placebo group or healthy controls were found at t0, t1, or at t2. Based on these findings, it seems unlikely that baclofen exerts a direct effect on serum levels of BDNF in alcohol-dependent patients. Future studies are needed to further explore the mechanism of action of baclofen and its possible relationship to BDNF in alcohol use disorders. PMID:27107672

  1. Functionalized poly(ethylene glycol)-stabilized water-soluble palladium nanoparticles: property/activity relationship for the aerobic alcohol oxidation in water.

    Science.gov (United States)

    Feng, Bo; Hou, Zhenshan; Yang, Hanmin; Wang, Xiangrui; Hu, Yu; Li, Huan; Qiao, Yunxiang; Zhao, Xiuge; Huang, Qingfa

    2010-02-16

    The preparation, characterization, and catalytic properties of water-soluble palladium nanoparticles stabilized by the functionalized-poly(ethylene glycol) as a protective ligand were demonstrated for aerobic oxidation of alcohols in aqueous phase. UV/vis spectra and X-ray photoelectron spectroscopy (XPS) proved that there was an electronic interaction between the bidentate nitrogen ligand and palladium atoms. Transmission electron microscopy and XPS analysis showed that the particle size and surface properties of the generated palladium nanoparticles can be controlled by varying the amount of protective ligand and the kinds of reducing agents. It was found that both the size and surface properties of palladium nanoparticles played very important roles in affecting catalytic performance. The stabilized metallic palladium nanoparticles were proven to be the active centers for benzyl alcohol oxidation in the present system, and the water-soluble Pd nanocatalysts can also be extended to the selective oxidation of various alcohols. PMID:20039597

  2. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.N.

    2000-01-04

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system.

  3. Does the Presence of a Measurable Blood Alcohol Level in a Potential Organ Donor Affect the Outcome of Liver Transplantation?

    OpenAIRE

    Hassanein, Tarek I.; GAVALER, JUDITH S.; Fishkin, David; Gordon, Robert; Starzl, Thomas E.; Van Thiel, David H.

    1991-01-01

    The widespread application of hepatic transplantation has created a tremendous demand for donor organs. An assessment of donor parameters is thought to be important in selecting good donors; however, the criteria utilized have not been standardized. This study was performed to determine the effect of a measurable donor blood alcohol level on graft survival. Fifty-two patients who underwent orthotopic liver transplantation at the University of Pittsburgh were included in the study. Twenty-five...

  4. Synthesis, Characterization of Mesoporous Al-Mg Composite Oxide and Catalytic Performance for Oxyethylation of Fatty Alcohol

    Institute of Scientific and Technical Information of China (English)

    SONG Wei-ming; DENG Qi-gang; ZHOU De-rui; ZHAO De-feng

    2005-01-01

    A mesoporous Al-Mg composite oxide with a hexagonal structure was synthesized with aluminium nitrate and magnesium nitrate as the reagents and sodium dodecyl sulfate(SDS) as the template in the presence of ethylenediamine. The XRD, nitrogen adsorption-desorption and TEM studies indicate that the composite has a hexagonal framework structure and an average pore diameter of 2.6 nm. The TG/DTA spectra indicate that the decomposition and the removal of the occluded surfactant of the sample take place in a range of 230-550 ℃. The mesoporous Al-Mg composite oxide exhibites a highly catalytic activity for the oxyethylation of fatty alcohols. Narrow-range distributed ethoxylates are formed in the presence of the mesoporous Al-Mg composite oxide catalyst. The distribution selectivity coefficient(Cs) is 24 when the mesoporous Al-Mg composite oxide was used as a catalyst for the oxyethylation of octanol and the average adduct degree of ethoxylates is 6.4.

  5. Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population.

    Science.gov (United States)

    Park, Sunmin; Lee, Byung-Kook

    2013-01-01

    Blood mercury and urinary arsenic levels are more than fivefold greater in the Korean population compared with those of the United States. This may be related to the foods people consumed. Therefore, we examined the associations between food categories and mercury and arsenic exposure in the Korean adult population. Data regarding nutritional, biochemical, and health-related parameters were obtained from a cross-sectional study, the 2008-2009 Korean National Health and Nutrition Examination Survey (3,404 men and women age ≥ 20 years). The log-transformed blood mercury and urinary arsenic levels were regressed against the frequency tertiles of each food group after covariate adjustment for sex, age, residence area, education level, smoking status, and drinking status using food-frequency data. Blood mercury levels in the high consumption groups compared to the low consumption groups were elevated by about 20 percents with salted fish, shellfish, whitefish, bluefish, and alcohol, and by about 9-14 percents with seaweeds, green vegetables, fruits and tea, whereas rice did not affect blood mercury levels. Urinary arsenic levels were markedly increased with consumption of rice, bluefish, salted fish, shellfish, whitefish, and seaweed, whereas they were moderately increased with consumption of grains, green and white vegetables, fruits, coffee, and alcohol. The remaining food categories tended to lower these levels only minimally. In conclusion, the typical Asian diet, which is high in rice, salted fish, shellfish, vegetables, alcoholic beverages, and tea, may be associated with greater blood mercury and urinary arsenic levels. This study suggests that mercury and arsenic contents should be monitored and controlled in soil and water used for agriculture to decrease health risks from heavy-metal contamination. PMID:23011092

  6. Chronic alcohol binging injures the liver and other organs by reducing NAD⁺ levels required for sirtuin's deacetylase activity.

    Science.gov (United States)

    French, Samuel W

    2016-04-01

    NAD(+) levels are markedly reduced when blood alcohol levels are high during binge drinking. This causes liver injury to occur because the enzymes that require NAD(+) as a cofactor such as the sirtuin de-acetylases cannot de-acetylate acetylated proteins such as acetylated histones. This prevents the epigenetic changes that regulate metabolic processes and which prevent organ injury such as fatty liver in response to alcohol abuse. Hyper acetylation of numerous regulatory proteins develops. Systemic multi-organ injury occurs when NAD(+) is reduced. For instance the Circadian clock is altered if NAD(+) is not available. Cell cycle arrest occurs due to up regulation of cell cycle inhibitors leading to DNA damage, mutations, apoptosis and tumorigenesis. NAD(+) is linked to aging in the regulation of telomere stability. NAD(+) is required for mitochondrial renewal. Alcohol dehydrogenase is present in every visceral organ in the body so that there is a systemic reduction of NAD(+) levels in all of these organs during binge drinking. PMID:26896648

  7. Decreased hepatic iron in response to alcohol may contribute to alcohol-induced suppression of hepcidin.

    Science.gov (United States)

    Varghese, Joe; James, Jithu Varghese; Sagi, Sreerohini; Chakraborty, Subhosmito; Sukumaran, Abitha; Ramakrishna, Banumathi; Jacob, Molly

    2016-06-01

    Hepatic Fe overload has often been reported in patients with advanced alcoholic liver disease. However, it is not known clearly whether it is the effect of alcohol that is responsible for such overload. To address this lacuna, a time-course study was carried out in mice in order to determine the effect of alcohol on Fe homoeostasis. Male Swiss albino mice were pair-fed Lieber-DeCarli alcohol diet (20 % of total energy provided as alcohol) for 2, 4, 8 or 12 weeks. Expression levels of duodenal and hepatic Fe-related proteins were determined by quantitative PCR and Western blotting, as were Fe levels and parameters of oxidative stress in the liver. Alcohol induced cytochrome P4502E1 and oxidative stress in the liver. Hepatic Fe levels and ferritin protein expression dropped to significantly lower levels after 12 weeks of alcohol feeding, with no significant effects at earlier time points. This was associated, at 12 weeks, with significantly decreased liver hepcidin expression and serum hepcidin levels. Protein expressions of duodenal ferroportin (at 8 and 12 weeks) and divalent metal transporter 1 (at 8 weeks) were increased. Serum Fe levels rose progressively to significantly higher levels at 12 weeks. Histopathological examination of the liver showed mild steatosis, but no stainable Fe in mice fed alcohol for up to 12 weeks. In summary, alcohol ingestion by mice in this study affected several Fe-related parameters, but produced no hepatic Fe accumulation. On the contrary, alcohol-induced decreases in hepatic Fe levels were seen and may contribute to alcohol-induced suppression of hepcidin. PMID:27080262

  8. Electronic Structure of a Cu(II)-Alkoxide Complex Modeling Intermediates in Copper-Catalyzed Alcohol Oxidations.

    Science.gov (United States)

    Hayes, Ellen C; Porter, Thomas R; Barrows, Charles J; Kaminsky, Werner; Mayer, James M; Stoll, Stefan

    2016-03-30

    In the copper-catalyzed oxidation of alcohols to aldehydes, a Cu(II)-alkoxide (Cu(II)-OR) intermediate is believed to modulate the αC-H bond strength of the deprotonated substrate to facilitate the oxidation. As a structural model for these intermediates, we characterized the electronic structure of the stable compound Tp(tBu)Cu(II)(OCH2CF3) (Tp(tBu) = hydro-tris(3-tert-butyl-pyrazolyl)borate) and investigated the influence of the trifluoroethoxide ligand on the electronic structure of the complex. The compound exhibits an electron paramagnetic resonance (EPR) spectrum with an unusually large gzz value of 2.44 and a small copper hyperfine coupling Azz of 40 × 10(-4) cm(-1) (120 MHz). Single-crystal electron nuclear double resonance (ENDOR) spectra show that the unpaired spin population is highly localized on the copper ion (≈68%), with no more than 15% on the ethoxide oxygen. Electronic absorption and magnetic circular dichroism (MCD) spectra show weak ligand-field transitions between 5000 and 12,000 cm(-1) and an intense ethoxide-to-copper charge transfer (LMCT) transition at 24,000 cm(-1), resulting in the red color of this complex. Resonance Raman (rR) spectroscopy reveals a Cu-O stretch mode at 592 cm(-1). Quantum chemical calculations support the interpretation and assignment of the experimental data. Compared to known Cu(II)-thiolate and Cu(II)-alkylperoxo complexes from the literature, we found an increased σ interaction in the Cu(II)-OR bond that results in the spectroscopic features. These insights lay the basis for further elucidating the mechanism of copper-catalyzed alcohol oxidations. PMID:26907976

  9. Impact of School Violence on Youth Alcohol Abuse: Differences Based on Gender and Grade Level

    Science.gov (United States)

    Vidourek, Rebecca A.; King, Keith A.; Merianos, Ashley L.

    2016-01-01

    The purpose of this study was to examine the impact of school violence on recent alcohol use and episodic heavy drinking among seventh- through 12th-grade students. A total of 54,631 students completed a survey assessing substance use and other risky behaviors. Logistic regression analyses were conducted to examine the research questions. Results…

  10. Implicit alcohol-relaxation associations in frequently drinking adolescents with high levels of neuroticism

    NARCIS (Netherlands)

    E. Salemink; P.A.C. Van Lier; W. Meeus; S.F. Raaijmakers; R.W. Wiers

    2015-01-01

    Introduction: Most individuals start drinking during adolescence, a period in which automatically activated or implicit cognitive processes play an important role in drinking behavior. The aim of this study was to examine personality-related antecedents of implicit associations between alcohol and p

  11. Increased hepatic fatty acids uptake and oxidation by LRPPRC-driven oxidative phosphorylation reduces blood lipid levels

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2016-07-01

    Full Text Available Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc. Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, oxidative phosphorylation, and lipid metabolism. Increased oxidative phosphorylation in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic oxidative phosphorylation could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels.

  12. Alcohol homograph priming in alcohol-dependent inpatients

    NARCIS (Netherlands)

    Woud, M.L.; Salemink, E.; Gladwin, T.E.; Wiers, R.W.H.J.; Becker, E.S.; Lindenmeyer, J.; Rinck, M.

    2016-01-01

    Aim: Alcohol dependency is characterized by alcohol-related interpretation biases (IBs): Individuals with high levels of alcohol consumption generate more alcohol-related than alcohol-unrelated interpretations in response to ambiguous alcohol-related cues. However, a response bias could be an altern

  13. ALCOHOL AND ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2014-01-01

    Full Text Available The article considers the questions of the relationship between the amount of the consumed alcohol, the type of alcoholic beverage, pattern of alcohol consumption and the blood pressure level. The article presents data on the positive effect of alcohol intake restrictions and recommendations for permissible limits of alcohol consumption. New possibilities of drug therapy aimed at limiting alcohol consumption are being reported.

  14. Cough and exhaled nitric oxide levels: what happens with exercise?

    Science.gov (United States)

    Petsky, Helen L; Kynaston, Jennifer Anne; McElrea, Margaret; Turner, Catherine; Isles, Alan; Chang, Anne B

    2013-01-01

    Cough associated with exertion is often used as a surrogate marker of asthma. However, to date there are no studies that have objectively measured cough in association with exercise in children. Our primary aim was to examine whether children with a pre-existing cough have an increase in cough frequency during and post-exercise. We hypothesized that children with any coughing illness will have an increase in cough frequency post-exercise regardless of the presence of exercise-induced broncho-constriction (EIB) or atopy. In addition, we hypothesized that Fractional exhaled nitric oxide (FeNO) levels decreases post-exercise regardless of the presence of EIB or atopy. Children with chronic cough and a control group without cough undertook an exercise challenge, FeNO measurements and a skin prick test, and wore a 24-h voice recorder to objectively measure cough frequency. The association between recorded cough frequency, exercise, atopy, and presence of EIB was tested. We also determined if the change in FeNO post exercise related to atopy or EIB. Of the 50 children recruited (35 with cough, 15 control), 7 had EIB. Children with cough had a significant increase in cough counts (median 7.0, inter-quartile ranges, 0.5, 24.5) compared to controls (2.0, IQR 0, 5.0, p = 0.028) post-exercise. Presence of atopy or EIB did not influence cough frequency. FeNO level was significantly lower post-exercise in both groups but the change was not influenced by atopy or EIB. Cough post-exertion is likely a generic response in children with a current cough. FeNO level decreases post-exercise irrespective of the presence of atopy or EIB. A larger study is necessary confirm or refute our findings.

  15. Individual susceptibility to alcoholic pancreatitis.

    Science.gov (United States)

    Apte, Minoti V; Pirola, Romano C; Wilson, Jeremy S

    2008-03-01

    The observation that only a minority of heavy drinkers develop pancreatitis has prompted an intensive search for a trigger factor/cofactor/susceptibility factor that may precipitate a clinical attack. Putative susceptibility factors examined so far include diet, smoking, amount and type of alcohol consumed, the pattern of drinking and lipid intolerance. In addition, a range of inherited factors have been assessed including blood group antigens, human leukocyte antigen serotypes, alpha-1-antitrypsin phenotypes and several genotypes. The latter group comprises mutations/polymorphisms in genes related to alcohol-metabolizing enzymes, detoxifying enzymes, pancreatic digestive enzymes, pancreatic enzyme inhibitors, cystic fibrosis and cytokines. Disappointingly, despite this concerted research effort, no clear association has been established between the above factors and alcoholic pancreatitis. Experimentally, the secretagogue cholecystokinin (CCK) has been investigated as a candidate 'trigger' for alcoholic pancreatitis. However, the clinical relevance of CCK as a trigger factor has to be questioned, as it is difficult to envisage a situation in humans where abnormally high levels of CCK would be released into the circulation to trigger pancreatitis in alcoholics. In contrast, bacterial endotoxemia is a candidate cofactor that does have relevance to the clinical situation. Plasma lipopolysaccharide (LPS, an endotoxin) levels are significantly higher in drinkers (either after chronic alcohol intake or a single binge) compared to non-drinkers. We have recently shown that alcohol-fed animals challenged with otherwise innocuous doses of LPS exhibit significant pancreatic injury. Moreover, repeated LPS exposure in alcohol-fed rats leads to progressive injury to the gland characterized by significant pancreatic fibrosis. These studies support the concept that endotoxin may be an important factor in the initiation and progression of alcoholic pancreatitis. Scope remains for

  16. Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M=Mo, W) Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zongtang; Li, Zhenjun; Kelley, Matthew S.; Kay, Bruce D.; Li, Shenggang; Hennigan, Jamie M.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-10-02

    The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic (MO3)3 (M = Mo, W) clusters were studied experimentally with temperature programmed desorption (TPD) and theoretically with coupled cluster CCSD(T) theory and density functional theory. The reactions of two alcohols per M3O9 cluster are required to provide agreement with experiment for D2O release, dehydrogenation and dehydration. The reaction begins with the elimination of water by proton transfers and forms an intermediate dialkoxy species which can undergo further reaction. Dehydration proceeds by a β hydrogen transfer to a terminal M=O. Dehydrogenation takes place via an α hydrogen transfer to an adjacent MoVI = O atom or a WVI metal center with redox involved for M = Mo and no redox for M = W. The two channels have comparable activation energies. H/D exchange to produce alcohols can take place after olefin is released or via the dialkoxy species depending on the alcohol and the cluster. The Lewis acidity of the metal center with WVI being larger than MoVI results in the increased reactivity of W3O9 over Mo3O9 for dehydrogenation and dehydration.

  17. Synthesis, Radical Reactivity, and Thermochemistry of Monomeric Cu(II) Alkoxide Complexes Relevant to Cu/Radical Alcohol Oxidation Catalysis.

    Science.gov (United States)

    Porter, Thomas R; Capitao, Dany; Kaminsky, Werner; Qian, Zhaoshen; Mayer, James M

    2016-06-01

    Two new monomeric Cu(II) alkoxide complexes were prepared and fully characterized as models for intermediates in copper/radical mediated alcohol oxidation catalysis: Tp(tBuR)Cu(II)OCH2CF3 with Tp(tBu) = hydro-tris(3-tert-butyl-pyrazol-1-yl)borate 1 or Tp(tBuMe) = hydro-tris(3-tert-butyl-5-methyl-pyrazol-1-yl)borate 2. These complexes were made as models for potential intermediates in enzymatic and synthetic catalytic cycles for alcohol oxidation. However, the alkoxide ligands are not readily oxidized by loss of H; instead, these complexes were found to be hydrogen atom acceptors. They oxidize the hydroxylamine TEMPOH, 2,4,6-tri-t-butylphenol, and 1,4-cyclohexadiene to the nitroxyl radical, phenoxyl radical, and benzene, with formation of HOCH2CF3 (TFE) and the Cu(I) complexes Tp(tBuR)Cu(I)-MeCN in dichloromethane/1% MeCN or 1/2 [Tp(tBuR)Cu(I)]2 in toluene. On the basis of thermodynamics and kinetics arguments, these reactions likely proceed through concerted proton-electron transfer mechanisms. Thermochemical analyses give lower limits for the "effective bond dissociation free energies (BDFE)" of the O-H bonds in 1/2[Tp(tBuR)Cu(I)]2 + TFE and upper limits for the free energies associated with alkoxide oxidations via hydrogen atom transfer (effective alkoxide α-C-H BDFEs). These values are summations of the free energies of multiple chemical steps, which include the energetically favorable formation of 1/2[Tp(tBuR)Cu(I)]2. The effective alkoxide α-C-H bonds are very weak, BDFE ≤ 38 ± 4 kcal mol(-1) for 1 and ≤44 ± 5 kcal mol(-1) for 2 (gas-phase estimates), because C-H homolysis is thermodynamically coupled to one electron transfer to Cu(II) as well as the favorable formation of the 1/2[Tp(tBuR)Cu(I)]2 dimer. Treating 1 with the H atom acceptor (t)Bu3ArO(•) did not result in the expected alkoxide oxidation to an aldehyde, but rather net 2,2,2-trifluoroethoxyl radical transfer occurred to generate an unusual 2-substituted dienone-ether product. Treating 2

  18. The Key Proteins of Dopaminergic Neurotransmission of Human Peripheral Blood Lymphocytes: Changed mRNA Level in Alcohol Dependence Syndrome.

    Science.gov (United States)

    Taraskina, A E; Grunina, M N; Zabotina, A M; Nasyrova, R F; Ivanov, M V; Krupitsky, E M; Schwartzman, A L

    2015-12-01

    The expression of dopamine receptor (DRD), Nurr1 transcription factor (NR4A2), and α-sinucleine (SNCA) genes in peripheral blood lymphocytes is evaluated. The results indicate that alcohol dependence is associated with high expression of SNCA and DRD4 (signifi cantly higher than in the control group) and is not associated with changes in the work of NR4A2 and DRD3 genes. The levels of DRD3 and DRD4 mRNA form a positive linear correlation (p≤0.05). The expression of SNCA and DRD4 genes can serve as an important peripheral marker of alcohol dependence development, which is essential for antipsychotic therapy. PMID:26621272

  19. The Influence of Alcoholic Liver Disease on Serum PIVKA-II Levels in Patients without Hepatocellular Carcinoma

    OpenAIRE

    Kang, Keunhee; Kim, Ji Hoon; KANG, SEONG HEE; Lee, Beom Jae; Seo, Yeon Seok; Yim, Hyung Joon; Yeon, Jong Eun; Park, Jong-Jae; Kim, Jae Seon; Bak, Young-Tae; Byun, Kwan Soo

    2014-01-01

    Background/Aims Prothrombin induced by vitamin K deficiency or antagonist II (PIVKA-II) is a widely used diagnostic marker for hepatocellular carcinoma (HCC). We evaluated the correlation between alcoholic liver disease (ALD) and serum PIVKA-II levels in chronic liver disease (CLD) patients. Methods We retrospectively reviewed the medical records of 2,528 CLD patients without HCC. Among these patients, 76 exhibited serum high PIVKA-II levels of >125 mAU/mL (group 1). We categorized 76 control...

  20. Lymphocyte oxidative stress/genotoxic effects are related to serum IgG and IgA levels in coke oven workers.

    Science.gov (United States)

    Gao, Meili; Li, Yongfei; Zheng, Aqun; Xue, Xiaochang; Chen, Lan; Kong, Yu

    2014-01-01

    We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions. PMID:25136686

  1. Lymphocyte Oxidative Stress/Genotoxic Effects Are Related to Serum IgG and IgA Levels in Coke Oven Workers

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2014-01-01

    Full Text Available We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions.

  2. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Directory of Open Access Journals (Sweden)

    Milanovic Vesna

    2012-02-01

    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  3. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Science.gov (United States)

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  4. Macro Level Modeling of a Tubular Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Farshid Zabihian

    2010-11-01

    Full Text Available This paper presents a macro-level model of a solid oxide fuel cell (SOFC stack implemented in Aspen Plus® for the simulation of SOFC system. The model is 0-dimensional and accepts hydrocarbon fuels such as reformed natural gas, with user inputs of current density, fuel and air composition, flow rates, temperature, pressure, and fuel utilization factor. The model outputs the composition of the exhaust, work produced, heat available for the fuel reformer, and electrochemical properties of SOFC for model validation. It was developed considering the activation, concentration, and ohmic losses to be the main over-potentials within the SOFC, and mathematical expressions for these were chosen based on available studies in the literature. The model also considered the water shift reaction of CO and the methane reforming reaction. The model results were validated using experimental data from Siemens Westinghouse. The results showed that the model could capture the operating pressure and temperature dependency of the SOFC performance successfully in an operating range of 1–15 atm for pressure and 900 °C–1,000 °C for temperature. Furthermore, a sensitivity analysis was performed to identify the model constants and input parameters that impacted the over-potentials.

  5. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    International Nuclear Information System (INIS)

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed. - Graphical abstract: Marigold-like ZnIn2S4 microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn2S4 were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn2S4 microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn2S4 for selective oxidation of benzyl alcohol. • ZnIn2S4 shows high photocatalytic activity for selective oxidation of benzyl alcohol

  6. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H2O2

    International Nuclear Information System (INIS)

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H2O2, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH2) are prepared and characterized by FT-IR, XRD, N2 adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H2O2 as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H5[PV2W10O40] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H2O2

  7. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Science.gov (United States)

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <0.2% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 were observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. PMID:24625836

  8. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xinbo [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Wang, Danjun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Li, Kebin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Zhen, Yanzhong [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Hu, Huaiming [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Xue, Ganglin, E-mail: xglin707@163.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China)

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.

  9. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhixin, E-mail: czx@fzu.edu.cn [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002 (China); Xu, Jingjing; Ren, Zhuyun [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); He, Yunhui; Xiao, Guangcan [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002 (China)

    2013-09-15

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4} prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.

  10. Atmospheric chemistry of 4 : 2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH): Products and mechanism of Cl atom initiated oxidation

    DEFF Research Database (Denmark)

    Hurley, MD; Ball, JC; Wallington, TJ;

    2004-01-01

    Smog chamber/FTIR techniques were used to study the products and mechanism of the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH) in 700 Torr of N-2/O-2 diluent at 296 K. CF3(CF2)(3)CH2CHO is the sole primary oxidation product. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH, an...

  11. Systemic Inflammatory Response and Serum Lipopolysaccharide Levels Predict Multiple Organ Failure and Death in Alcoholic Hepatitis

    OpenAIRE

    Michelena, Javier; Altamirano, José; Abraldes, Juan G.; Affò, Silvia; Morales-Ibanez, Oriol; Sancho-Bru, Pau; Dominguez, Marlene; García-Pagán, Juan Carlos; Fernández, Javier; Arroyo, Vicente; Ginès, Pere; Louvet, Alexandre; Mathurin, Philippe; Mehal, Wajahat Z.; Caballería, Juan

    2015-01-01

    Alcoholic hepatitis (AH) frequently progresses to multiple organ failure (MOF) and death. However, the driving factors are largely unknown. At admission, patients with AH often show criteria of systemic inflammatory response syndrome (SIRS) even in the absence of an infection. We hypothesize that the presence of SIRS may predispose to MOF and death. To test this hypothesis, we studied a cohort including 162 patients with biopsy-proven AH. The presence of SIRS and infections was assessed in al...

  12. Therapeutic effect of aqueous extracts of three dietary spices and their mixture on lipid metabolism and oxidative stress in a rat model of chronic alcohol consumption.

    Science.gov (United States)

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide

    2016-07-01

    The protective effect of aqueous extracts of three dietary spices, garlic, (Allium sativum), ginger (Zingiber officinale) and pepper (Capsicum frutescens) singly and combined was investigated using a rat model of chronic alcohol intake. Rats were given 30% ethanol, with or without aqueous extracts of garlic, ginger, pepper or mixture of the three administered at 200mg/kg body weight by oral gavage for 28 days. Lipid profile, lipid peroxidation, oxidative and antioxidative profiles of serum, faecal, liver, kidney, heart and brain tissues of the rats were analyzed. Alcohol treatment significantly elevated liver enzymes, lipid peroxidation, depleted antioxidant system and induced histopathological changes in the liver. These alterations were markedly ameliorated by treatment with aqueous extracts of the three spices singly or mixed at 200mg/kg body weight. These results suggest that aqueous extracts of garlic, ginger, pepper or a blend of the three protects against alcohol- induced hypercholesterolemia, lipid peroxidation, oxidative stress and liver damage. PMID:27393449

  13. Therapeutic effect of aqueous extracts of three dietary spices and their mixture on lipid metabolism and oxidative stress in a rat model of chronic alcohol consumption.

    Science.gov (United States)

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide

    2016-07-01

    The protective effect of aqueous extracts of three dietary spices, garlic, (Allium sativum), ginger (Zingiber officinale) and pepper (Capsicum frutescens) singly and combined was investigated using a rat model of chronic alcohol intake. Rats were given 30% ethanol, with or without aqueous extracts of garlic, ginger, pepper or mixture of the three administered at 200mg/kg body weight by oral gavage for 28 days. Lipid profile, lipid peroxidation, oxidative and antioxidative profiles of serum, faecal, liver, kidney, heart and brain tissues of the rats were analyzed. Alcohol treatment significantly elevated liver enzymes, lipid peroxidation, depleted antioxidant system and induced histopathological changes in the liver. These alterations were markedly ameliorated by treatment with aqueous extracts of the three spices singly or mixed at 200mg/kg body weight. These results suggest that aqueous extracts of garlic, ginger, pepper or a blend of the three protects against alcohol- induced hypercholesterolemia, lipid peroxidation, oxidative stress and liver damage.

  14. Does educational level influence the effects of smoking, alcohol, physical activity, and obesity on mortality? A prospective population study

    DEFF Research Database (Denmark)

    Schnohr, Christina; Højbjerre, Lise; Riegels, Mette;

    2004-01-01

    OBJECTIVES: This study aims at examining whether the relation between established risk factors and mortality differs with socioeconomic status as measured by level of education. METHODS: A population-based sample of 14,399 women and 16,236 men aged 20-93 years from Copenhagen was stratified...... into three educational levels measured as basic schooling, and the effect of smoking habits, alcohol consumption, physical activity, and body mass index, respectively, on mortality was assessed. RESULTS: Those with the lowest level of education were most frequently heavy smokers, heavy drinkers, physically...... inactive, and obese. During a mean follow up of 16 years 10,952 subjects died. Compared with subjects with the lowest educational level, women with the highest educational level had a relative risk of 0.80 (95% CI; 0.70-0.91), and men of 0.71 (0.65-0.78). Heavy smoking compared with never smoking implied...

  15. Chemical composition, antioxidant properties and hepatoprotective effects of chamomile (Matricaria recutita L.) decoction extract against alcohol-induced oxidative stress in rat.

    Science.gov (United States)

    Sebai, Hichem; Jabri, Mohamed-Amine; Souli, Abdelaziz; Hosni, Karim; Rtibi, Kais; Tebourbi, Olfa; El-Benna, Jamel; Sakly, Mohsen

    2015-07-01

    The present study assessed the chemical composition, antioxidant properties, and hepatoprotective effects of subacute pre-treatment with chamomile (Matricaria recutita L.) decoction extract (CDE) against ethanol (EtOH)-induced oxidative stress in rats. The colorimetric analysis demonstrated that the CDE is rich in total polyphenols, total flavonoids and condensed tannins, and exhibited an important in vitro antioxidant activity. The use of LC/MS technique allowed us to identify 10 phenolic compounds in CDE. We found that CDE pretreatment, in vivo, protected against EtOH-induced liver injury evident by plasma transaminases activity and preservation of the hepatic tissue structure. The CDE counteracted EtOH-induced liver lipoperoxidation, preserved thiol -SH groups and prevented the depletion of antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). We also showed that acute alcohol administration increased tissue and plasma hydrogen peroxide (H(2)O(2)), calcium and free iron levels. More importantly, CDE pre-treatment reversed all EtOH-induced disturbances in intracellular mediators. In conclusion, our data suggest that CDE exerted a potential hepatoprotective effect against EtOH-induced oxidative stress in rat, at least in part, by negatively regulating Fenton reaction components such as H(2)O(2) and free iron, which are known to lead to cytotoxicity mediated by intracellular calcium deregulation. PMID:25816359

  16. Influence of Preparation Methods of Nano Au/MCM-41 Catalysts for Vapor Phase Oxidation of Benzyl Alcohol.

    Science.gov (United States)

    Kumar, Ashish; Kumar, Vanama Pavan; Vishwanathan, Venkataraman; Chary, V R

    2015-12-01

    The Au/MCM-41 nano catalysts were synthesized from four different methods, viz., homogeneous deposition-precipitation, micro-emulsion, impregnation and polyol and their catalytic activities were tested for the vapor phase oxidation of benzyl alcohol to benzaldehyde. The physico-chemical properties of the catalysts were investigated by XRD, TEM, BET surface area, PSD, CO-chemisorption and XPS techniques. The effect of preparation methods, nature of the metal, support and the metal-support interaction in Au/MCM-41 catalysts were studied for the title reaction. The Au/MCM-41 catalysts synthesized from HDP method has shown higher and better catalytic activity as compared to the catalysts prepared by other methods. PMID:26682438

  17. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk;

    2011-01-01

    In this study the phase behavior of mixtures relevant to the selective catalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen in supercritical CO2 is investigated. Initially, the solubility of N2 in benzaldehyde as well as the dew points of CO2–benzyl alcohol–O2 and CO2....... In this direction, the CPA binary interaction parameters were estimated from the corresponding binary systems and the phase behavior of two ternary systems, i.e. CO2–benzyl alcohol–O2 (reacting mixture) and CO2–benzaldehyde–water (mixture of products) as well as the phase behavior of multicomponent mixtures...... containing both reactants and products were predicted. CPA was proved to be a versatile model that can predict the complex phase behavior of the aforementioned systems. The results reveal that the ternary mixture of products (CO2–benzaldehyde–water) and the intermediate multicomponent mixtures containing...

  18. Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol)

    Science.gov (United States)

    Gong, Shanshan; Wu, Mengxi; Jiang, Lei; Cheng, Qunfeng

    2016-07-01

    The synergistic toughening effect of building blocks and interface interaction exists in natural materials, such as nacre. Herein, inspired by one-dimensional (1D) nanofibrillar chitin and two-dimensional (2D) calcium carbonate platelets of natural nacre, we have fabricated integrated strong and tough ternary bio-inspired nanocomposites (artificial nacre) successfully via the synergistic effect of 2D reduced graphene oxide (rGO) nanosheets and 1D double-walled carbon nanotubes (DWNTs) and hydrogen bonding cross-linking with polyvinyl alcohol (PVA) matrix. Moreover, the crack mechanics model with crack deflection by 2D rGO nanosheets and crack bridging by 1D DWNTs and PVA chains induces resultant artificial nacre exhibiting excellent fatigue-resistance performance. These outstanding characteristics enable the ternary bioinspired nanocomposites have many promising potential applications, for instance, aerospace, flexible electronics devices and so forth. This synergistic toughening strategy also provides an effective way to assemble robust graphene-based nanocomposites.

  19. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels

    Science.gov (United States)

    Rosamond, Madeline S.; Thuss, Simon J.; Schiff, Sherry L.

    2012-10-01

    Nitrous oxide is a potent greenhouse gas, and it destroys stratospheric ozone. Seventeen per cent of agricultural nitrous oxide emissions come from the production of nitrous oxide in streams, rivers and estuaries, in turn a result of inorganic nitrogen input through leaching, runoff and sewage. The Intergovernmental Panel on Climate Change and global nitrous oxide budgets assume that riverine nitrous oxide emissions increase linearly with dissolved inorganic nitrogen loads, but data are sparse and conflicting. Here we report measurements over two years of nitrous oxide emissions in the Grand River, Canada, a seventh-order temperate river that is affected by agricultural runoff and outflow from a waste-water treatment plant. Emissions were disproportionately high in urban areas and during nocturnal summer periods. Moreover, annual emission estimates that are based on dissolved inorganic nitrogen loads overestimated the measured emissions in a wet year and underestimated them in a dry year. We found no correlations of nitrous oxide emissions with nitrate or dissolved inorganic nitrogen, but detected negative correlations with dissolved oxygen, suggesting that nitrate concentrations did not limit emissions. We conclude that future increases in nitrate export to rivers will not necessarily lead to higher nitrous oxide emissions, but more widespread hypoxia most likely will.

  20. Wet carbon-based solid acid/potassium permanganate as an efficient heterogeneous reagents for oxidation of alcohols under mild conditions

    Institute of Scientific and Technical Information of China (English)

    Arash Shokrolahi; Abbas Zali; Mohammad Hossein Kes

    2008-01-01

    Wet carbon-based solid acid and potassium permanganate were used as new reagents for oxidation of alcohols to their corresponding aldehydes and ketones in heterogeneous mixtures.The experiments were done moderately at mild condition and high yields in suitable times were obtained.

  1. Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite.

    Science.gov (United States)

    Shukla, S K; Deshpande, Swapneel R; Shukla, Sudheesh K; Tiwari, Ashutosh

    2012-09-15

    A potentiometrically tuned-glucose biosensor was fabricated using core-shell nanocomposite based on zinc oxide encapsulated chitosan-graft-poly(vinyl alcohol) (ZnO/CHIT-g-PVAL). In a typical experiment, ZnO/CHIT-g-PVAL core-shell nanocomposite containing glucose responsive bio-electrode, i.e., glucose oxidase/ZnO/chitosan-graft-poly(vinyl alcohol) (GOD/ZnO/CHIT-g-PVAL/ITO) was obtained by immobilization of glucose oxidase (GOD) onto the electrode made of resulting ZnO core-shell nanocomposite coated on the indium-tin oxide (ITO) glass substrate. The ZnO/CHIT-g-PVAL/ITO and GOD/ZnO/CHIT-g-PVAL electrodes were characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), whereas ZnO/CHIT-g-PVAL size of core-shell nanoparticles were measured using transmission electron microscopy (TEM). The electrostatic interaction between GOD and ZnO/CHIT-g-PVAL provided the resulting tuned enzyme electrode with a high degree of enzyme immobilization and excellent lifetime stability. The response studies were carried out as a function of glucose concentration with potentiometric measurement. The GOD/ZnO/CHIT-g-PVAL/ITO bioelectrode has showed a linear potential response to the glucose concentration ranging from 2 μM to 1.2mM. The glucose biosensor exhibited a fast surface-controlled redox biochemistry with a detection limit of 0.2 μM, a sensitivity of >0.04 V/μM and a response time of three sec. ZnO/CHIT-g-PVAL core-shell nanocomposite could be a promising nanomaterials for a range of enzymic biosensors. PMID:22967553

  2. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Science.gov (United States)

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  3. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Science.gov (United States)

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  4. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection

    International Nuclear Information System (INIS)

    Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide – carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size ∼7 nm and ∼95 m2/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors

  5. PHYSICAL AND MECHANICAL PROPERTIES OF BINDERLESS PARTICLEBOARD MADE FROM CANDLENUT WOOD IN VARIOUS OXIDATOR LEVELS

    OpenAIRE

    Suhasman; Saad, Sahriyanti

    2011-01-01

    The purpose of this study was to determine optimal oxidator level in manufacture of binderless particleboard (BP) using oxidation treatment. The raw material used was candlenut wood particles (Aleurites moluccana) which pass 10 mesh in size. The air dried particles were oxidized with four levels of hydrogen peroxide, namely 5%, 10%, 15%, and 20% (based on particle dry-weight), and two levels of ferrous sulphate namely 5% and 7.5% (based on ferrous sulphate weight). The board which manufactur...

  6. Breath and Urine Alcohol Level Analysis to Increase Student Awareness of Road Safety.

    OpenAIRE

    Daly, Kim

    2013-01-01

    The aim of this project was to increase student’s awareness of road safety and the relationship between alcohol and driving. This was carried out in conjunction with the Garda Road Safety Unit and the DIT interdisciplinary project known as CARS, College Awareness of Road Safety. This project was carried out last year by another student therefore the aim this year was to build and expand on the work that had been done so far. Increasing the student’s awareness was achieved by speaking to class...

  7. Alcohol and Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Gao Yinglan; Song Jingyu; Jin Junshuo; Zhong Xiuhong; Ren Xiangshan; Liu Shuangping

    2005-01-01

    Objectives To study the relationship between alcohol and atherosclerosis (AS).Methods The paper reviewed the mechanism of the alcohol leading to AS from four aspects such as the introduction of alcohol and AS, imbalance of oxidationantioxidation system, oxygen free radical (OFR) and endothelium cell (EC) apoptosis, apoptosis and AS.Results Excessive alcohol could lead to imbalance of oxidation-antioxidation system, and increase OFR, in the meanwhile, OFR could lead to EC apoptosis,which could lead to AS.

  8. Level of risk for alcohol consumption among the drivers of an urban public transportation company in Medellín

    Directory of Open Access Journals (Sweden)

    Carlos F. Molina C

    2011-11-01

    Full Text Available Objective: to study the level of risk for alcohol consumption among drivers from a public transportation company. Methodology: a cross-sectional observational study with a sample of 145 drivers from a transportation company in Medellin, Colombia. A self-survey was used that included socio-demographic data, work organization data, and the audittest to measure the level of risk for alcohol consumption. Results: the socio-demographic and work organization profiles, together with the risk level values are consistent with the findings of previous national and international studies. The audit test results showed that 12.5% of the subjects had a score greater than or equal to 8. This is a global indicator of risky and harmful consumption. Furthermore, the score of 17% of the subjects suggested probable dependence. Conclusions: this study’s findings suggest that further research is required in order to establish the grounds for designing a coordinated proposal integrating the actions of each of the Social Security System’s actors. Such proposal should be based on the policy for decreasing consumption of psychoactive substances in the working population

  9. Oxidation of o-chloro and o-hydroxy benzyl alcohols catalyzed by copper (II tetraphenylporphyrin nanoparticles synthesized by mixed solvent method

    Directory of Open Access Journals (Sweden)

    Rahmatollah Rahimi

    2012-07-01

    Full Text Available Tetraphenylporphyrin (TPP and copper tetraphenylporphyrin (CuTPP were synthesized and characterized by IR, UV-Vis, 1HNMR and 13CNMR. The CuTPP nanoparticles were synthesized by sonication and mixed solvent methods. These nanoparticles were characterized by AFM and SEM images and UV-Vis spectra. The catalytic activity of nanoparticles was investigated by oxidation of o-choloro and o-hydroxy benzyl alcohols in presence of molecular oxygen and isobutyraldehyde. The yields of oxidation of o-hydroxy benzyl alcohol by the two catalysts, CuTPP NPs and CuTPP, are 96.5% and ~ 2%, respectively. It is very obvious that the oxidation at the presence of CuTPP NPs catalyst is very high but selectivity for both reactants is 100%.‎

  10. Optical Properties of Neodymium Oxide Nanoparticle-Doped Polyvinyl Alcohol Film

    Science.gov (United States)

    Keikhaei, Mansoureh; Motevalizadeh, Leili; Attaran-Kakhki, Ebrahim

    2016-04-01

    The structural and optical characteristics of polyvinyl alcohol (PVA) doped with different concentration of Nd2O3 nanoparticles to use an active media for polymer laser were studied. The PVA polymer was considered as the host and Nd2O3 nanoparticles as the active element. The media as a thin film was prepared using spin coating technique. Structural properties of layers were investigated by X-ray diffraction (XRD) pattern and atomic force microscope (AFM) technique. The effect of the concentrations of the neodymium source on the optical properties of Nd2O3/PVA thin films was investigated through UV-Vis absorption spectroscopy and their optical band gap was evaluated. Also, the FTIR and fluorescence spectra of the samples were detected. The fluorescence spectra of films showed that the maximum wavelength occurred at 568nm with no significant shift.

  11. Porous Silicates Modified with Zirconium Oxide and Sulfate Ions for Alcohol Dehydration Reactions

    Directory of Open Access Journals (Sweden)

    Heriberto Esteban Benito

    2015-01-01

    Full Text Available Porous silicates were synthesized by a nonhydrothermal method, using sodium silicate as a source of silica and cetyltrimethylammonium bromide as a template agent. Catalysts were characterized using thermogravimetric analysis, N2 physisorption, X-ray diffraction, FTIR spectroscopy, pyridine adsorption, potentiometric titration with n-butylamine, scanning electronic microscopy, and transmission electronic microscopy. The surface area of the materials synthesized was greater than 800 m2/g. The introduction of zirconium atoms within the porous silicates increased their acid strength from −42 to 115 mV, while the addition of sulfate ions raised this value to 470 mV. The catalytic activity for the dehydration of alcohols yields conversions of up to 70% for ethanol and 30% for methanol.

  12. Hydrogen Peroxide in Fluorinated Alcohols: A Potent and Selective Oxidative System

    Institute of Scientific and Technical Information of China (English)

    Jernej Iskra

    2005-01-01

    @@ 1Introduction Fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol and 2,2,2-trifluoroetanol have particular properties compared to non-fluorinated ones and could provoke changes in the course of reactions in these solvents. Their specific properties are connected mainly to the strong hydrogen bond donor ability and solvation of nuclephiles on one side, and weak hydrogen bond acceptor strength and weak solvation of electrophiles on the other. This dichotomy makes them very attractive solvents for various chemical reactions including cleavage of O - O and C - O bonds and cycloadditions[1]. At first they were used for solvolysis studies and stabilization of kationic intermediates and kation radicals, then their use was extended to various chemical synthesis and to biochemistry, where their effect on the formation of hydrogen bonds was used to alter the conformations of peptides and proteins[2].

  13. Ruthenium(VI)-Catalyzed Oxidation of Alcohols by Hexacyanoferrate(III): An Example of Mixed Order

    Science.gov (United States)

    Mucientes, Antonio E.; de la Pena, Maria A.

    2006-01-01

    The absorbance decay of hexacyanoferrate(III) as a function of time shows a progressive deviation from zero to first order. This variation follows an experimental rate law that has been analyzed. The change in reaction order is due to a change in the relative rate of substrate oxidation with respect to that of catalyst regeneration. (Contains 2…

  14. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  15. Modulatory effect of pineapple peel extract on lipid peroxidation,catalase activity and hepatic biomarker levels in blood plasma of alcoholinduced oxidative stressed rats

    Institute of Scientific and Technical Information of China (English)

    Okafor; OY; Erukainure; OL; Ajiboye; JA; Adejobi; RO; Owolabi; FO; Kosoko; SB

    2011-01-01

    Objective:To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation,changes in catalase activities and hepatic biochemical marker levels in blood plasma.Methods:Oxidative stress was induced by oral administration of ethanol(20%w/v) at a dosage of 5 niL/kg bw in rats.After 28 days of treatment,the rats were fasted overnight and sacrificed by cervical dislocation.Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min.The plasma was analyzed to evaluate malondialdehyde(MDA),catalase activity,aspartate aminotransferase(AST),alkaline phosphatase(ALP) and alanine aminotransferase(ALT) concentrations.Results:Administration of alcohol caused a drastic increase(87.74%) in MDA level compared with the control.Pineapple peel extract significantly reduced the MDA level by 60.16%at 2.S mL/kg bw.Rats fed alcohol only had the highest catalase activity,treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity.Increased AST,ALP and ALT activities were observed in rats fed alcohol only respectively,treatment with pineapple peel extract drastically reduced their activities. Conclusions:The positive modulation of lipid peroxidation,catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcoholinduced oxidative stress is an indication of its protective ability in the management of alcoholinduced toxicity.

  16. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease

    OpenAIRE

    Higuchi, Nobito; Kato, Masaki; TANAKA, MASATAKE; Miyazaki, Masayuki; Takao, Shinichiro; KOHJIMA, MOTOYUKI; Kotoh, Kazuhiro; Enjoji, Munechika; Nakamuta, Makoto; Takayanagi, Ryoichi

    2011-01-01

    Non-alcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, which is known to be associated with insulin resistance (IR). NAFLD occurs when the rate of hepatic fatty acid uptake from plasma and de novo fatty acid synthesis is greater than the rate of fatty acid oxidation and excretion as very low-density lipoprotein (VLDL). To estimate the effects of IR on hepatic lipid excretion, mRNA expression levels of genes involved in VLDL assembly were analyze...

  17. [Level of nitric oxide in the kidneys during apoptosis activation].

    Science.gov (United States)

    Komarievtseva, I O; Orlova, O A; Blahodarenko, Ie A

    2002-01-01

    The content of nitric oxide stable metabolites in a tissue of kidneys of rats in conditions of activation of apoptosis was investigated. Research was carried out in two models: acute renal failure and a hypertrophy of a unique kidney after a unilateral nephrectomy. Detection of apoptosis was carried out by definition of DNA fragmentation. Substantial increase of the nitric oxide stable metabolites contents is revealed at activation of apoptosis in both models. Change of a ratio of the contents of nitrite--anions in relation to the general contents of NO2- + NO3- is revealed, indicating the role of peroxide processes in effect of nitric oxide and its metabolites on the cell. PMID:14964872

  18. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: Synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol

    Science.gov (United States)

    Mohamed Subarkhan, M.; Ramesh, R.

    2015-03-01

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.

  19. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels.

    Science.gov (United States)

    Lei, Shi; Sun, Run-Zhu; Wang, Di; Gong, Mei-Zhen; Su, Xiang-Ping; Yi, Fei; Peng, Zheng-Wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using (14)C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  20. Control of lipid oxidation at the mitochondrial level

    DEFF Research Database (Denmark)

    Sahlin, Kent

    2009-01-01

    matrix, beta-oxidation, the tricarboxylic acid cycle, and the electron transport chain (ETC). CHO catabolism may impair lipid oxidation by interfering with the transfer of LCFAs into mitochondria and by competing for mutual cofactors (i.e., nicotinamide adenine dinucleotide and (or) coenzyme A (Co......A)). The different effect of energy state on the catabolism of CHO and lipids is likely to be of major importance in explaining the shift in fuel utilization during intensive exercise. Formation of acetyl-CoA from CHO is activated by a low energy state, and will lead to accumulation of products that are inhibitory...

  1. Lipid Peroxidation, Antioxidant Enzymes and Levels of Nitric Oxide in Sheep Infected with Fasciola hepatica

    OpenAIRE

    BENZER, Fulya; OZAN, Sema TEMİZER

    2003-01-01

    In this study, the levels of malondialdehyde and activities of catalase and glutathione peroxidase, two antioxidant enzymes, and the levels of nitric oxide in sheep infected with Fasciola hepatica were measured. The level of malondialdehyde in plasma and tissue was measured according to the Yagi and Ohkawa methods, respectively. The activities of catalase and glutathione peroxidase were measured according to the methods of Aebi and Beutler, respectively. The level of nitric oxide was deter...

  2. Increasing leptin level in abstaining alcohol-dependent women Niveles elevados de leptina en las mujeres alcohólicas abstinentes

    OpenAIRE

    M. Cardoso Fernandes Toffolo; C. Aparecida Marliére; S. Nascimento de Freitas; A. Silva de Aguiar Nemer

    2012-01-01

    Introduction: Leptin, hormone secreted by the fat tissue, changes the signaling of dopamine in the nucleus accumbens, which directly affects the sensitivity of reward and modulation of abstinence. Aims: To evaluate the level of serum leptin and its relation to nutritional status among alcoholic abstainers and non-abstinent. Methods: Patients of both sexes, over 18 years old and who used alcohol as their primary drug were included in the study. Abstaining patients were separated according to t...

  3. Increased Circulating Levels of Alpha-Ketoglutarate in Morbidly Obese Women with Non-Alcoholic Fatty Liver Disease

    Science.gov (United States)

    Berlanga, Alba; Guiu-Jurado, Esther; Martinez, Salomé; Armengol, Sandra; Sabench, Fàtima; Ras, Rosa; Hernandez, Mercè; Aguilar, Carmen; Colom, Josep; Sirvent, Joan Josep; Del Castillo, Daniel; Richart, Cristóbal

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) causes a wide spectrum of liver damage, ranging from simple steatosis to cirrhosis. However, simple steatosis (SS) and steatohepatitis (NASH) cannot yet be distinguished by clinical or laboratory features. The aim of this study was to assess the relationship between alpha-ketoglutarate and the degrees of NAFLD in morbidly obese patients. Materials and Methods We used a gas chromatography-quadruple time-of-flight-mass spectrometry analysis to quantify alpha-ketoglutarate in serum from normal-weight subjects (n = 30) and morbidly obese women (n = 97) with or without NAFLD. Results We found that serum levels of alpha-ketoglutarate were significantly higher in morbidly obese women than in normal-weight women. We showed that circulating levels of alpha-ketoglutarate were lower in lean controls and morbidly obese patients without NAFLD. We also found that alpha-ketoglutarate serum levels were higher in both SS and NASH than in normal liver of morbidly obese patients. However, there was no difference between SS and NASH. Moreover, we observed that circulating levels of alpha-ketoglutarate were associated with glucose metabolism parameters, lipid profile, hepatic enzymes and steatosis degree. In addition, diagnostic performance of alpha-ketoglutarate has been analyzed in NAFLD patients. The AUROC curves from patients with liver steatosis exhibited an acceptable clinical utility. Finally, we showed that the combination of biomarkers (AST, ALT and alpha-ketoglutarate) had the highest accuracy in diagnosing liver steatosis. Conclusion These findings suggest that alpha-ketoglutarate can determine the presence of non-alcoholic fatty liver in morbidly obese patients but it is not valid a biomarker for NASH. PMID:27123846

  4. [Alcohol and nutrition].

    Science.gov (United States)

    Maillot, F; Farad, S; Lamisse, F

    2001-11-01

    Alcoholism and alcohol-associated organ injury is one of the major health problems worldwide. Alcohol may lead to an alteration in intermediary metabolism and the relation between alcohol intake and body weight is a paradox. The effect of alcohol intake on resting metabolic rate, assessed by indirect calorimetry, and lipid oxidation, is still controversial. Small quantities of ethanol seem to have no effect on body weight. Ingestion of moderate amounts may lead to an increase in body weight, via a lipid-oxidizing suppressive effect. Chronic intake of excessive amounts in alcoholics leads to a decrease in body weight, probably via increased lipid oxidation and energy expenditure. Chronic ethanol abuse alters lipid-soluble (vitamins A, D and E) and water-soluble (B-complex vitamins, vitamin C) vitamins status, and some trace elements status such as magnesium, selenium or zinc.

  5. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  6. Independent effects of diet and exercise training on fat oxidation in non-alcoholic fatty liver disease

    Science.gov (United States)

    Croci, Ilaria; Byrne, Nuala M; Chachay, Veronique S; Hills, Andrew P; Clouston, Andrew D; O’Moore-Sullivan, Trisha M; Prins, Johannes B; Macdonald, Graeme A; Hickman, Ingrid J

    2016-01-01

    AIM To investigate the independent effects of 6-mo of dietary energy restriction or exercise training on whole-body and hepatic fat oxidation of patients with non-alcoholic fatty liver disease (NAFLD). METHODS Participants were randomised into either circuit exercise training (EX; n = 13; 3 h/wk without changes in dietary habits), or dietary energy restriction (ER) without changes in structured physical activity (ER; n = 8). Respiratory quotient (RQ) and whole-body fat oxidation rates (Fatox) were determined by indirect calorimetry under basal, insulin-stimulated and exercise conditions. Severity of disease and steatosis was determined by liver histology; hepatic Fatox was estimated from plasma β-hydroxybutyrate concentrations; cardiorespiratory fitness was expressed as VO2peak. Complete-case analysis was performed (EX: n = 10; ER: n = 6). RESULTS Hepatic steatosis and NAFLD activity score decreased with ER but not with EX. β-hydroxybutyrate concentrations increased significantly in response to ER (0.08 ± 0.02 mmol/L vs 0.12 ± 0.04 mmol/L, P = 0.03) but remained unchanged in response to EX (0.10 ± 0.03 mmol/L vs 0.11 ± 0.07 mmol/L, P = 0.39). Basal RQ decreased (P = 0.05) in response to EX, while this change was not significant after ER (P = 0.38). VO2peak (P 0.05). The increase in β-hydroxybutyrate concentrations was correlated with the reduction in hepatic steatosis (r = -0.56, P = 0.04). CONCLUSION ER and EX lead to specific benefits on fat metabolism of patients with NAFLD. Increased hepatic Fatox in response to ER could be one mechanism through which the ER group achieved reduction in steatosis.

  7. Effect ofEmilia sonchifolia (Linn.)DC on alcohol- induced oxidative stress in pancreas of male albino rats

    Institute of Scientific and Technical Information of China (English)

    Dominic Sophia; Murugesan Gomathy; Thomas Shebin; Paramasivam Ragavendran; Chinthamony Arulraj

    2011-01-01

    Objective:To explore the efficacy ofn-hexane extract ofEmilia sonchifolia (E. sonchifobia) against ethanol induced pancreatic dysfunction in the young Wistar albino rats.Methods:The rats were divided into four groups. Control rats in groupⅠreceived distilled water orally, groupⅡreceived oral administration of20% (w/v) ethanol dissolved in drinking water, groupⅢreceived oral administration of20% (w/v) ethanol in distilled water+n-hexane extract ofE. sonchifolia (250mg/kg body weight), and groupⅣ received oral administration ofn-hexane extract of E. sonchifolia (250 mg/kg body weight) alone. Liver marker enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), pancreatic enzymatic antioxidants superoxide dismutase, lipid peroxidation, catalase, glutathione peroxidase, non-enzymatic antioxidants glutathione and vitaminC were measured and compared.Results: Administration of20% ethanol for 16 weeks significantly increased the liver marker enzymesAST,ALT(P<0.05), reduced the pancreatic enzymatic antioxidants superoxide dismutase, lipid peroxidation, catalase, glutathione peroxidase, glutathione and vitaminC(P<0.05). Histopathological examination showed that the ethanol provoked the oxidative stress which was demonstrated as pancreatic necrosis and oedema. Simultaneous administration ofn-hexane extract ofE. sonchifolia (250 mg/kg body weight) protected the pancreas against the damage induced by ethanol which was confirmed by the histopathological studies and the normalization of biochemical parameters.Conclusions:Thusn-hexane extract ofE. sonchifolia shows a promise in therapeutic use in alcohol induced oxidative stress.

  8. Synthesis of his-quaternary ammonium peroxotungstates (peroxomolybdates)and their catalytic activity in oxidation of alcohols by aqueous H2O2

    Institute of Scientific and Technical Information of China (English)

    SHI Xianying; WEI Junfa

    2007-01-01

    Three kinds of bis-quaternary ammonium salts of peroxotungstate and peroxomolybdate,such as PhCH2NO(O2)2(C2O4)] and PhCH2N(CH2)6NCH2Ph [MoO(O2)2(C2Oa)],have been synthesized and characterized.Their catalytic activity in the oxidation of cyclohexanol and benzyl alcohol was investigated with only aqueous 30% hydrogen peroxide.The results show that the bis-quaternary ammonium peroxotungstates are excellent catalysts in the oxidation of benzyl alcohol and cyclohexanol under moderate conditions.However,the catalytic ability of bis-quaternary ammonium peroxomolybadates is relatively poor.The yields of benzyl acid,benzaldehyde,and cyclohexanone reached up to 93.0%,93.6%,and 91.7%,respectively.

  9. Volcano-like behavior of Au-Pd core-shell nanoparticles in the selective oxidation of alcohols.

    Science.gov (United States)

    Silva, Tiago A G; Teixeira-Neto, Erico; López, Núria; Rossi, Liane M

    2014-01-01

    Gold-palladium (AuPd) nanoparticles have shown significantly enhanced activity relative to monometallic Au and Pd catalysts. Knowledge of composition and metal domain distributions is crucial to understanding activity and selectivity, but these parameters are difficult to ascertain in catalytic experiments that have primarily been devoted to equimolar nanoparticles. Here, we report AuPd nanoparticles of varying Au:Pd molar ratios that were prepared by a seed growth method. The selective oxidation of benzyl alcohol was used as a model reaction to study catalytic activity and selectivity changes that occurred after varying the composition of Pd in bimetallic catalysts. We observed a remarkable increase in catalytic conversion when using a 10:1 Au:Pd molar ratio. This composition corresponds to the amount of Pd necessary to cover the existing Au cores with a monolayer of Pd as a full-shell cluster. The key to increased catalytic activity derives from the balance between the number of active sites and the ease of product desorption. According to density functional theory calculations, both parameters are extremely sensitive to the Pd content resulting in the volcano-like activity observed. PMID:25042537

  10. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation.

    Science.gov (United States)

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX.

  11. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation

    Science.gov (United States)

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  12. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Science.gov (United States)

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. PMID:27561532

  13. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation.

    Science.gov (United States)

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  14. A phthalate family oxygenase reductase supports terpene alcohol oxidation by CYP238A1 from Pseudomonas putida KT2440.

    Science.gov (United States)

    Bell, Stephen Graham; French, Laura; Rees, Nicholas Huw; Cheng, Sophia Shuyi; Preston, Gail; Wong, Luet-Lok

    2013-01-01

    CYP238A1, one of the two P450 enzymes in the genome of Pseudomonas putida KT2440, has been produced heterologously in Escherichia coli, purified, and found to bind acyclic and cyclic terpene alcohols such as farnesol, nerolidol, linalool, and terpineol. The other P450 enzyme in this organism (gene locus: PP1950) was also produced in E. coli but no substrate has been identified from a limited screen. A phthalate family oxygenase reductase (PFOR) encoded by the PP1957 gene, just downstream of the PP1955 gene for CYP238A1, accepts electrons from the reduced form of both nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate and is able to support monooxygenase activity of CYP238A1, both in vitro and in E. coli, in which both enzymes are produced. CYP238A1 oxidizes cis- and trans-nerolidol to the 9-hydroxy product, with no evidence of attack at the olefinic double bonds. The NADH turnover rate of 170 nmol(nmol-P450)⁻¹ Min⁻¹ for CYP238A1 with cis-nerolidol as substrate at a PP1957:CYP238A1 concentration ratio of 8:1 suggests that this PFOR could function as the physiological redox partner for CYP238A1. The physiological role of CYP238A1 may be related to the PP1955 gene being part of an island/cluster of inducible genes associated with energy metabolism and response to xenobiotics. PMID:23586988

  15. Synthesis of 1,2-allenic ketones through oxidation of homopropargyl alcohols with CrO3(cat.)/TBHP under MWI

    Institute of Scientific and Technical Information of China (English)

    Xin Ying Zhang; Ying Ying Qu; Yang Yang Wang; Xue Sen Fan

    2011-01-01

    A Cr3 catalyzed oxidation of homopropargyl alcohols with tert-butyl hydroperoxide under microwave irradiation was found to be an efficient and rapid alternative for the preparation of 1,2-allenic ketones. The advantages of this procedure include short reaction time, less adverse impact on the environment and reasonably high efficiency. (c) 2010 Published by Elsevier B.V. on behalf of Chinese Chemical Society.

  16. The Protective Effects of Buzui on Acute Alcoholism in Mice

    Science.gov (United States)

    Wen, Da-Chao; Gao, Shu-di; Hu, Xiao-yu; Yi, Cheng

    2016-01-01

    This study was designed to investigate the role of a traditional buzui recipe in anti-inebriation treatment. Buzui consists of Fructus Schisandrae Chinensis, Fructus Chebulae, Fructus Mume, Fructus Crataegi, Endothelium Corneum Gigeriae Galli, and Excrementum Bombycis. The buzui mixture was delivered by gavage, and ethanol was delivered subsequent to the final treatment. The effects of buzui on the righting reflex, inebriation rates, and the survival curve are depicted. Blood alcohol concentrations, alanine aminotransferase (ALT) levels, aspartate aminotransferase (AST) levels, and alkaline phosphatase (ALP) levels were recorded. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and superoxide dismutase (SOD), as well as malonaldehyde (MDA) levels, were also measured. Our results demonstrated that a traditional buzui recipe showed significant effects on promoting wakefulness and the prevention of acute alcohol intoxication, accelerating the metabolism of alcohol in the liver and reducing the oxidative damage caused by acute alcoholism. PMID:26884793

  17. Ionic liquid-H2O Resulting in a Highly Chemoselective Oxidation of Benzylic Alcohols in the Presence of Aliphatic Analogues Catalyzed by Immobilized TEMPO

    Institute of Scientific and Technical Information of China (English)

    HU,Ruijun; LEI,Ming; WEI,Hegeng; WANG,Yanguang

    2009-01-01

    In ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate([bmim][PF6])-H2O,a highly chemoselective oxidation of benzylic alcohols in the presence of aliphatic ones to the corresponding hydroxyl benzyl aldehydes and ketones was allowed in high yields using N-chlorosuccinimide(NCS)/NaBr/IL-TEMPO(ionic liquid immobilized 2,2,6,6-tetramethylpiperidine-1-oxyl)as a facile and effective catalytic oxidation system.The medium,[bmiml[PF6],together with the catalyst IL-TEMPO could be easily recycled for ten runs without any influence on the efficacy of the reaction in terms of yield and selectivity of the product.

  18. Selective oxidation of benzyl alcohol with tert-butylhydroperoxide catalysed via Mn (II) 2, 2-bipyridine complexes immobilized over the mesoporous hexagonal molecular sieves (HMS)

    Indian Academy of Sciences (India)

    Vahid Mahdavi; Mahdieh Mardani

    2012-09-01

    A series ofMn(II)bipy complexes with different loading of Mn2+ supported on HMS was prepared. These samples were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Thermogravimetric and Differential Scanning Calorimetry (TG-DSC), Ultraviolet and Visible spectra (UV-Vis) and Fourier transforms Infrared (FT-IR). The catalytic activity of the supportedMn(II)bipy complexes, [Mn(bipy)2]2+/HMS was evaluated in the oxidation of benzyl alcohol in the liquid phase using tert-butylhydroperoxide (TBHP) as an oxidant. The effects of Mn2+ loading and various solvents on the conversion and selectivity were studied. A second order function for the variation in catalytic activity with respect to the loading of Mn2+ ions in different catalyst samples was observed. The activity of the [Mn(bipy)2]2+/HMS catalyst differs with the type of the solvent and in this case, acetonitrile gives the best conversion results. The kinetic of benzyl alcohol oxidation was investigated at temperatures of 27, 46, 60, 75 and 90°C using [Mn(bipy)2]2+/HMS and excess TBHP. The order of reaction with respect to benzyl alcohol was determined to be pseudo-first order. The value of the apparent activation energy was also determined.

  19. Plasmonic Au/CdMoO{sub 4} photocatalyst: Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Jinhong, E-mail: bijinhong@fzu.edu.cn [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); Zhou, Zhiyong; Chen, Mengying [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Liang, Shijing [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); He, Yunhui; Zhang, Zizhong [Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); Wu, Ling, E-mail: wuling@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2015-09-15

    Graphical abstract: - Highlights: • Au/CdMoO{sub 4} composites were constructed for the first time. • Au/CdMoO{sub 4} showed superior activity for selective oxidation of benzylic alcohol. • The visible light photocatalytic activity is ascribed to the SPR effect of Au. - Abstract: Novel visible-light-driven plasmonic Au/CdMoO{sub 4} photocatalysts were synthesized by hydrothermal process following chemical reduction process. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results show the catalysts exhibited strong visible light absorption due to the surface plasmon resonance effect of Au nanoparticles. Compared to CdMoO{sub 4}, Au/CdMoO{sub 4} composites displayed superior photocatalytic activities for the selective oxidation of benzylic alcohol to benzaldehyde under visible light. The highest conversion was obtain by the 1.6% Au loaded CdMoO{sub 4}. The mechanism for the selective oxidation of benzylic alcohol in the Au/CdMoO{sub 4} system is proposed.

  20. Epigenetic regulation in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Pranoti Mandrekar

    2011-01-01

    Alcoholic liver disease (ALD) is characterized by steatosis or fat deposition in the liver and inflammation, which leads to cirrhosis and hepatocellular carcinoma. Induction of target genes without involving changes in DNA sequence seems to contribute greatly to liver injury. Chromatin modifications including alterations in histones and DNA, as well as post-transcriptional changes collectively referred to as epigenetic effects are altered by alcohol. Recent studies have pointed to a significant role for epigenetic mechanisms at the nucleosomal level influencing gene expression and disease outcome in ALD. Specifically, epigenetic alterations by alcohol include histone modifications such as changes in acetylation and phosphorylation, hypomethylation of DNA, and alterations in miRNAs. These modifications can be induced by alcohol-induced oxidative stress that results in altered recruitment of transcriptional machinery and abnormal gene expression. Delineating these mechanisms in initiation and progression of ALD is becoming a major area of interest. This review summarizes key epigenetic mechanisms that are dysregulated by alcohol in the liver. Alterations by alcohol in histone and DNA modifications, enzymes related to histone acetylation such as histone acetyltransferases, histone deacetylases and sirtuins, and methylation enzymes such as DNA methyltransferases are discussed. Chromatin modifications and miRNA alterations that result in immune cell dysfunction contributing to inflammatory cytokine production in ALD is reviewed. Finally, the role of alcohol-mediated oxidative stress in epigenetic regulation in ALD is described. A better understanding of these mechanisms is crucial for designing novel epigenetic based therapies to ameliorate ALD.

  1. Cross-sectional measures and modelled estimates of blood alcohol levels in UK nightlife and their relationships with drinking behaviours and observed signs of inebriation

    Directory of Open Access Journals (Sweden)

    Jarman Ian

    2010-04-01

    Full Text Available Abstract Background Management of nightlife in UK cities focuses on creating safe places for individuals to drink. Little is known about intoxication levels as measuring total alcohol consumption on nights out is complicated by early evening interviews missing subsequent consumption and later interviews risking individuals being too drunk to recall consumption or participate at all. Here we assess mixed survey and modelling techniques as a methodological approach to examining these issues. Methods Interviews with a cross sectional sample of nightlife patrons (n = 214 recruited at different locations in three cities established alcohol consumption patterns up to the point of interview, self-assessed drunkenness and intended drinking patterns throughout the remaining night out. Researchers observed individuals' behaviours to independently assess drunkenness. Breath alcohol tests and general linear modelling were used to model blood alcohol levels at participants' expected time of leaving nightlife settings. Results At interview 49.53% of individuals regarded themselves as drunk and 79.43% intended to consume more alcohol before returning home, with around one in ten individuals (15.38% males; 4.35% females intending to consume >40 units (equal to 400 mls of pure alcohol. Self-assessed drunkenness, researcher observed measures of sobriety and blood alcohol levels all correlated well. Modelled estimates for blood alcohol at time of going home suggested that 71.68% of males would be over 0.15%BAC (gms alcohol/100 mls blood. Higher blood alcohol levels were related to drinking later into the night. Conclusions UK nightlife has used substantive health and judicial resources with the aim of creating safer and later drinking environments. Survey and modelling techniques together can help characterise the condition of drinkers when using and leaving these settings. Here such methods identified patrons as routinely getting drunk, with risks of drunkenness

  2. Changes of learning and memory ability associated with neuronal nitric oxide synthase in brain tissues of rats with acute alcoholism

    Institute of Scientific and Technical Information of China (English)

    Shuang Li; Chunyang Xu; Dongliang Li; Xinjuan Li; Linyu Wei; Yuan Cheng

    2006-01-01

    BACKGROUD: Ethanol can influence neural development and the ability of learning and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity.OBJECTIVE: To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats.DESIGN: A randomized controlled animal experiment.SETTING: Department of Physiology, Xinxiang Medical College.MATERIALS; Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant.METHODS: The experiment was carried out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds

  3. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum.Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols

    NARCIS (Netherlands)

    Fraaije, Marco W.; Veeger, Cees; Berkel, Willem J.H. van

    1995-01-01

    The substrate specificity of the flavoprotein vanillyl-alcohol oxidase from Penicillium simplicissimum was investigated. Vanillyl-alcohol oxidase catalyzes besides the oxidation of 4-hydroxybenzyl alcohols, the oxidative deamination of 4-hydroxybenzylamines and the oxidative demethylation of 4-(meth

  4. Effects of sugarcane wax alcohols in subjects with normal or borderline serum cholesterol levels

    Directory of Open Access Journals (Sweden)

    Ernesto López

    2010-01-01

    Full Text Available La reducción de las concentraciones séricas del colesterol transportado por las lipoproteínas de baja densidad (LDL-C y del colesterol total (CT ha demostrado reducir la morbilidad y mortalidad coronaria, incluso en sujetos con concentraciones normales o limítrofes de colesterol. Los alcoholes de alto peso molecular de la cera de caña de azúcar (ACCA han demostrado reducir las concentraciones séricas de LDL-C y CT y aumentar las del colesterol transportado por las lipoproteínas de alta densidad (HDL-C, sin cambios importantes de los triglicéridos (TG, en sujetos normocolesterolémicos e hipercolesterolémicos. Sin embargo, los datos que sustentan los efectos de la dosis de 10 mg/d en individuos con concentraciones séricas de CT limítrofes o normales son relativamente escasos. El objetivo de este estudio aleatorizado, a doble ciegas y controlado con placebo consistió en confirmar la eficacia y seguridad de los ACCA (10 mg/d en sujetos con concentraciones séricas de CT ¿ 5,9 mmol/L. Cincuenta y cinco hombres y mujeres (edad promedio: 63 años fueron aleatorizados para recibir tabletas de placebo ó ACCA durante 12 semanas. El tratamiento redujo significativamente las concentraciones de LDL-C (22,1 %, p < 0 000 01, CT (11,7 %, p < 0,000 01 y aumentó las de HDL-C (9,6 %, p < 0,05 con respecto a las iniciales y al grupo placebo. Los indicadores de seguridad no se afectaron. Sólo un sujeto (placebo abandonó prematuramente el ensayo, pero no a causa de EA, y dos sujetos (un tratado, un placebo refirieron alguna EA (artralgia durante el estudio. Este estudio confirma que los ACCA (10 mg/d administrados durante 12 semanas fueron efectivos en reducir las LDL-C, el CT, el cociente LDL-C /HDL-C y en aumentar las HDL-C, siendo seguros y bien tolerados en sujetos con concentraciones séricas de CT normales o limítrofes.

  5. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  6. Patients with systemic vasculitis have increased levels of autoantibodies against oxidized LDL

    NARCIS (Netherlands)

    Swets, BP; Brouwer, DAJ; Tervaert, JWC

    2001-01-01

    Oxidation of low density lipoprotein (LDL) is considered to play an important role in the development of atherosclerosis and increased levels of autoantibodies against oxidized LDL have been found in patients with various manifestations of atherosclerosis. Patients with vasculitis are prone to the d

  7. Sjögren-Larsson syndrome. Impaired fatty alcohol oxidation in cultured fibroblasts due to deficient fatty alcohol:nicotinamide adenine dinucleotide oxidoreductase activity.

    OpenAIRE

    Rizzo, W B; Dammann, A L; Craft, D A

    1988-01-01

    Lipid metabolism was studied in cultured skin fibroblasts from patients with the inherited disorder, Sjögren-Larsson syndrome (SLS). Intact SLS fibroblasts incubated in the presence of [1-14C]palmitate accumulated more radioactive hexadecanol than did normal cells, whereas incorporation of radioactivity into other cellular lipids was unaltered. The hexadecanol content of SLS fibroblasts was abnormally elevated. Hexadecanol accumulation was not due to increased fatty alcohol synthesis nor its ...

  8. Exhaust emissions of low level blend alcohol fuels from two-stroke and four-stroke marine engines

    Science.gov (United States)

    Sevik, James M., Jr.

    The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each

  9. Levels of Cigarette and Alcohol Use Related to Eating-Disorder.

    Science.gov (United States)

    Granner, Michelle L.; Black, David R.; Abood, Doris A.

    2002-01-01

    Examined smoking and drinking levels relative to body dissatisfaction and drive for thinness among female college students. Student surveys indicated that frequency of smoking and drinking significantly and linearly related to body dissatisfaction and drive for thinness. Negative-affect reduction motivations for use of these substances more…

  10. Determination of plutonium oxidation states at trace levels pertinent to nuclear waste disposal

    International Nuclear Information System (INIS)

    A scheme was developed for the determination of oxidation states of plutonium in environmental samples. The method involves a combination of solvent extractions and coprecipitation. It was tested on solutions with both high-level and trace-level concentrations. The scheme was used to determine Pu oxidation states in solutions from solubility experiments in groundwater from a potential nuclear waste disposal site. At steady-state conditions, Pu was found to be soluble predominantly as Pu(V) and Pu(VI)

  11. H2O2为氧源的醇类选择性氧化%Selective Oxidation of Alcohols with Aqueous Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    赵公大; 吕迎; 奚祖威; 高爽

    2004-01-01

      综述了以H2O2作为氧化剂的醇类催化氧化的研究进展。归纳了H2O2-金属催化剂体系的氧化机制,从多相催化与匀相催化两方面讨论了在精细有机合成中有广泛应用的绿色氧化方法。指出了醇类的H2O2催化氧化体系的工业发展方向。%  The recent advances in selective oxidation of alcohols with aqueous hydrogen peroxide were reviewed. The oxidation mechanism for H2O2-metal-catalyst was induced. The green oxidation methods in fine chemistry were discussed in both heterogeneous catalysis and homogeneous catalysis. The direction in industry development of oxidation of alcohols with aqueous hydrogen peroxide was described.

  12. Fe 3 O 4 Nanoparticles Anchored on Carbon Serve the Dual Role of Catalyst and Magnetically Recoverable Entity in the Aerobic Oxidation of Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Longlong [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Zheng, Bin [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Wang, Xiang [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99352 USA; Zhang, Wenxiang [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Wu, Shujie [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Jia, Mingjun [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Yan, Wenfu [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2519 Changchun 130012 P.R. China; Liu, Gang [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China

    2016-01-13

    Carbon supported γ-Fe2O3 nanoparticle (γ-Fe2O3/C) possessing both superparamagnetism and activating molecular oxygen properties were prepared by an ammonia-assisted precipitation method. It could catalyze the selective oxidation of various benzyl alcohols with air as oxidant source, and could be easily recycled with an external magnet separation. The correlation between the intrinsic properties of γ-Fe2O3 nanoparticles and the catalytic performance was investigated with a series of characterizations. It shows that the oxidation state of γ-Fe2O3 nanoparticles were facile to be changed, which should be related to its inverse spinel type crystal structure with vacant cation sites. These γ-Fe2O3 nanoparticles should be the active sites and responsible for the high activity of γ-Fe2O3/C in the air oxidation of alcohols. The formation of γ-Fe2O3 nanoparticle was controlled by precipitation agent and carbon support. Using ammonia ethanol solution as precipitation agent, the hydrolysis rate of iron species could be decreased. The surface functional groups of carbon support could act as chelating sites for iron species, controlling the nucleation and growth of the γ-Fe2O3 nanoparticles in the preparation process. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.

  13. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models

    DEFF Research Database (Denmark)

    Møller, Peter; Risom, Lotte; Lundby, Carsten;

    2008-01-01

    The objective of this review was to evaluate the association between hypoxia and oxidative damage to DNA and lipids. Evaluation criteria encompassed specificity and validation status of the biomarkers, study design, strength of the association, dose-response relationship, biological plausibility......, analogous exposures, and effect modification by intervention. The collective interpretation indicates persuasive evidence from the studies in humans for an association between hypoxia and elevated levels of oxidative damage to DNA and lipids. The levels of oxidatively generated DNA lesions and lipid...... in subjects at high altitude. Most of the animal experimental models should be interpreted with caution because the assays for assessment of lipid peroxidation products have suboptimal validity....

  14. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging.

    Science.gov (United States)

    Mahmoudi, Morteza; Simchi, Abdolreza; Imani, Mohammad; Milani, Abbas S; Stroeve, Pieter

    2008-11-20

    Superparamagnetic iron oxide nanoparticles (SPION) with narrow size distribution and stabilized by polyvinyl alcohol (PVA) were synthesized. The particles were prepared by a coprecipitation technique using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Using a design of experiments (DOE) approach, the effect of different synthesis parameters (stirring rate and base molarity) on the structure, morphology, saturation magnetization, purity, size, and size distribution of the synthesized magnetite nanoparticles was studied by various analysis techniques including X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) with differential scanning calorimetry (DSC) measurements, vibrating-sample magnetometer (VSM), transmission electron microscopy (TEM), UV-visible, and Fourier transform infrared (FT-IR) spectrometer. PVA not only stabilized the colloid but also played a role in preventing further growth of SPION followed by the formation of large agglomerates by chemisorption on the surface of particles. A rich behavior in particle size, particle formation, and super paramagnetic properties is observed as a function of molarity and stirring conditions. The particle size and the magnetic properties as well as particle shape and aggregation (individual nanoparticles, magnetic beads, and magnetite colloidal nanocrystal clusters (CNCs) are found to be influenced by changes in the stirring rate and the base molarity. The formation of magnetic beads results in a decrease in the saturation magnetization, while CNCs lead to an increase in saturation magnetization. On the basis of the DOE methodology and the resulting 3-D response surfaces for particle size and magnetic properties, it is shown that optimum regions for stirring rate and molarity can be obtained to achieve coated SPION with desirable size, purity, magnetization, and shape.

  15. Effect of glutathione on brain nitric oxide levels in an experimental epilepsy mouse model

    Institute of Scientific and Technical Information of China (English)

    Aylin Akcali; Sadrettin Pence; Naciye Kurtul; Mehmet Bosnak; Munife Neyal

    2009-01-01

    BACKGROUND: Oxidative stress plays an important role in the pathophysiology of epilepsy. Glutathione, known as one of the compounds of antioxidant defense, has been shown to inhibit convulsions. Nitric oxide has a proconvulsant effect on a pentylenetetrazole-induced animal model. OBJECTIVE: To evaluate the effects of glutathione administration on nitric oxide levels in brain regions of convulsive and kindling pentylenetetrazole-induced seizure models. DESIGN, TIME, AND SETTING: A randomized, controlled, animal experiment. The study was performed at the Department of Physiology, Gaziantep University and Department of Chemistry-Biochemistry, Kahramamaras Sutcu Imam University in 2006.MATERIALS: Pentylenetetrazole and glutathione were purchased from Sigma, USA. METHODS: A total of 80 mice were assigned to 8 groups (n=10): normal control, saline control (1 mL normal saline), convulsive pentylenetetrazole (single intraperitoneal administration of pentylenetetrazole, 60 mg/kg), convulsive pentylenetrazole plus glutathione (single administration of 60 mg/kg pentylenetetrazole and 200 mg/kg glutathione), five-dose glutathione (intraperitoneal injection of 200 mg/kg glutathione respectively at 1, 3, 5, 7, and 10 days), single-dose glutathione (single administration of 200 mg/kg glutathione), pentylenetetrazole kindling (intraperitoneal administration of pentylenetetrazole of 40 mg/kg at 1, 3, 5, 7, and 10 days), and pentylenetetrazole kindling plus glutathione group (intraperitoneal injection of 40 mg/kg pentylenetetrazole and 200 mg/kg glutathione respectively at 1, 3, 5, 7, and 10 days). MAIN OUTCOME MEASURES: All mice were sacrificed 1 hour after the last administration. Brain nitric oxide levels were determined by spectrophotometry. RESULTS: There were no significant differences in nitric oxide levels between the normal control, saline control, five-dose glutathione, and single-dose glutathione groups (P>0.05). Nitric oxide levels in the cerebral hemisphere and

  16. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Science.gov (United States)

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  17. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  18. Cough and exhaled nitric oxide levels: What happens with exercise?

    Directory of Open Access Journals (Sweden)

    Helen ePetsky

    2013-10-01

    Full Text Available Cough associated with exertion is often used as a surrogate marker of asthma. However, to date there are no studies that have objectively measured cough in association with exercise in children. Our primary aim was to examine whether children with a pre-existing cough have an increase in cough frequency during and post-exercise. We hypothesised that children with any coughing illness will have an increase in cough frequency post-exercise regardless of the presence of exercise induced broncho-constriction (EIB or atopy. In addition, we hypotheised that FeNO levels decreases post-exercise regardless of the presence of EIB or atopy.Children with chronic cough and a control group without cough undertook an exercise challenge, FeNO measurements and a skin prick test and wore a 24-hour voice recorder to objectively measure cough frequency. The association between recorded cough frequency, exercise, atopy and presence of EIB was tested. We also determined if the change in FeNO post exercise related to atopy or EIB.Of the 50 children recruited (35 with cough, 15 control, 7 had EIB. Children with cough had a significant increase in cough counts (median 7.0, IQR 0.5, 24.5 compared to controls (2.0, IQR 0, 5.0, p=0.028 post-exercise. Presence of atopy or EIB did not influence cough frequency. FeNO level was significantly lower post-exercise in both groups but the change was not influenced by atopy or EIB. Cough post-exertion is likely a generic response in children with a current cough. FeNO level decreases post-exercise irrespective of the presence of atopy or EIB. A larger study is necessary confirm or refute our findings.

  19. Design of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    M. G. Hosseini

    2012-10-01

    Full Text Available We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG fluoride-containing electrolyte. The morphology and surface characteristics of Pd-TiO2/Ti and Pt-TiO2/Ti electrodes were investigated using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX, respectively. The results indicated that platinum and palladium nanoparticles were homogeneously deposited on the surface of TiO2 nanotubes. The nanotubular TiO2 layers consist of individual tubes of 70-90 nm diameters. This nanotubular TiO2 support provides a high surface area and it significantly enhances the electro-catalytic activity of Pd-TiO2/Ti and Pt-TiO2/Ti electrodes for alcohols oxidation. The electro-catalytic activity of Pd- TiO2/Ti and Pt-TiO2/Ti electrodes in the alcohols electro-oxidation was studied by electrochemical methods. The results indicate that Pd-TiO2/Ti and Pt-TiO2/Ti electrodes improve the electro-catalytic activity for alcohols oxidation greatly and confirmed the better electro-catalytic activity and stability of these new electrodes. So, the Pd-TiO2/Ti and Pt-TiO2/Ti electrodes have a good application potential to fuel cells.

  20. C-reactive protein levels in relation to various features of non-alcoholic fatty liver disease among obese patients

    DEFF Research Database (Denmark)

    Zimmermann, Esther; Anty, Rodolphe; Tordjman, Joan;

    2011-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major hepatic consequence of obesity. It has been suggested that the high sensitivity C-reactive protein (hs-CRP) is an obesity-independent surrogate marker of severity of NAFLD, especially development of non-alcoholic steato-hepatitis (NASH...

  1. Decreased melatonin levels and increased levels of advanced oxidation protein products in the seminal plasma are related to male infertility.

    Science.gov (United States)

    Kratz, Ewa Maria; Piwowar, Agnieszka; Zeman, Michal; Stebelová, Katarína; Thalhammer, Theresia

    2016-03-01

    Melatonin, an indolamine secreted by the pineal gland, is known as a powerful free-radical scavenger and wide-spectrum antioxidant. Therefore, the aim of this study was to correlate markers of oxidative protein damage (advanced oxidation protein products, AOPPs) and the total antioxidant capacity (TAC) with melatonin levels in the seminal plasma of men with azoospermia (n=37), theratozoospermia (n=29) and fertile controls (normozoospermia, n=37). Melatonin concentration was measured by radioimmunoassay. The levels of AOPP as well as TAC efficiency (determined by the ferric reducing antioxidant power, FRAP) were estimated by spectrophotometric methods. The concentration of melatonin and AOPP significantly differed in azoospermic (P<0.0001) and theratozoospermic (P<0.0001) patients versus fertile men, and correlated negatively (r=-0.33, P=0.0016). The TAC levels were significantly higher in azoospermia than in theratozoospermia (P=0.0022) and the control group (P=0.00016). In azoospermia, the AOPP concentration was also significantly higher than that observed in theratozoospermia (P=0.00029). Decreased levels of melatonin together with elevated AOPP altered the oxidative-antioxidative balance in the ejaculate, thereby reducing fertility. Therefore, melatonin and AOPP levels may serve as additional diagnostic markers of semen quality and male reproductive potential. PMID:25218686

  2. Anti-Inflammatory and Anti-Oxidative Protection Effect of Tea Polyphenols on Alcoholic Liver Injury Rats%茶多酚对酒精性肝损伤大鼠的抗炎抗氧化保护作用

    Institute of Scientific and Technical Information of China (English)

    冯亮; 汪燕; 潘小玲

    2015-01-01

    目的:观察茶多酚对酒精性肝损伤大鼠肝脏的抗炎与抗氧化作用。方法将36只SD大鼠适应性喂养1周后,随机分为对照组、模型组及治疗组,各12只。对照组大鼠每日用生理盐水按8 g/kg灌胃,模型组大鼠给予同剂量酒精灌胃,治疗组大鼠在灌胃同时按0.25 g/kg剂量灌胃给予茶多酚。经过8周后,检测大鼠血清丙氨酸氨基转移酶(ALT)、天冬门氨酸氨基转移酶(AST)、谷胱甘肽巯基转移酶(GST)活性及肝脏中超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)含量,以及肝脏中炎症相关因子白细胞介素(IL)-6、IL-1β、单核细胞趋化蛋白-1( MCP-1)、肿瘤坏死因子-α( TNF-α)表达。结果长期酒精灌胃喂养可明显使大鼠诱发酒精性肝损伤,服用茶多酚后可明显降低酒精性肝损伤大鼠增高的血清中ALT等活性,并能减少肝组织中MDA含量,升高SOD与GSH-Px的活性,并降低IL-6和IL-1β等的表达。结论茶多酚对大鼠酒精性肝损伤具有抗炎和抗氧化的保护作用。%Objective To observe the anti-inflammatory and anti-oxidative protection effect of tea polyphenols on the alcoholic liver injury rats. Methods 36 SD rats feed adaptive after 1 week,then randomly divided into the normal control group,model group and treatment group,12 cases in each group. Rats in normal group infused with normal saline once a day with a dose of 8 g/kg body weight,the model group infused with the same dose of alcohol,the treatment infused with the alcohol and tea polyphenols with a dose of 0. 25 g/kg body weight. After 8 weeks,the ALT,AST and GST levels in serum and SOD,MDA and GSH-Px levels in liver tissue and the expression of IL-6,IL-1β,MCP-1 and TNF-α of rats were detected. Results Long-term gastric feeding method by alco-hol can obviously make alcohol induced liver injury in rats. After treating with tea

  3. HIGH LEVELS OF MONOAROMATIC COMPOUNDS LIMIT THE USE OF SOLID-PHASE MICROEXTRACTION OF METHYL TERTIARY BUTYL ETHER AND TERTIARY BUTYL ALCOHOL

    Science.gov (United States)

    Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...

  4. The preparation of the poly(vinyl alcohol/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2013-09-01

    Full Text Available We report a method to prepare the poly(vinyl alcohol/reduced graphene oxide (PVA/rGO nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide (LrGO sheets. The large-area graphene oxide (LGO sheets are expected to overlap better with each other and form the continuous GO network in PVA matrix than small-area graphene oxide (SGO. During the thermal reduction process, the LGO sheets are easily restored and improve the electrical conductivity of nanocomposites due to their low damage level of conjugate-structure. As a result, the percolation threshold of PVA/LrGO nanocomposites is ~0.189 wt% lower than present reports (0.5~0.7 wt%. At the LrGO content of 0.7 wt%, the electrical conductivity of PVA/LrGO nanocomposites reaches 6.3•10–3 S/m. Besides that, this method only takes 15~30 min to reduce the PVA/GO nanocomposites effectively.

  5. Poly(furfuryl alcohol) nanospheres: a facile synthesis approach based on confinement effect of polymer and a template for synthesis of metal oxide hollow nanospheres

    Indian Academy of Sciences (India)

    Wei-Zhi Wang; Zhi-Qiang Li; Kong-Lin Wu; Ya-Jing Lu; Ya-Fei Xu; Xin-Jie Song

    2015-12-01

    This paper describes a facile hydrothermal approach to the large-scale synthesis of well-dispersed poly(furfuryl alcohol) (PFA) nanospheres with an average diameter of 350 nm in the presence of poly(vinyl pyrrolidone) (PVP). Scanning electron microscopy and transmission electron microscopy studies showed that different morphologies of PFA could be obtained by adjusting the ratio of PVP and furfuryl alcohol (FA). As a whole, the results demonstrate that PVP plays a key role in controlling the polymerization process of FA. The confinement effect of PVP is proposed to explain the formation process of PFA nanospheres. Furthermore, the as-prepared PFA nanospheres have a functional surface that allow them to act as an ideal template for fabricating metal oxide hollow nanospheres.

  6. LEVELS OF BRAIN-SPECIFIC S-100B PROTEIN, SPECIFIC ANTIBODIES AND CYTOKINE PROFILE IN THE PATIENTS WITH ALCOHOL-INDUCED DELIRIUM STATES

    Directory of Open Access Journals (Sweden)

    N. N. Tsybikov

    2008-01-01

    Full Text Available Abstract. Present article deals with our results concerning brain-specific S-100B protein levels, anti-S-100B autoantibodies of IgM and IgG classes, like as cytokine profiles of blood serum and cerebrospinal fluid in the patients with alcohol-induced delirium state. The results obtained provide an evidence of association between alcoholic psychosis and destruction of brain tissue, development of autoimmune reactions and altered cytokine status, thus, probably, resulting into disintegration of immune and neuroendocrine systems.

  7. T-786c Polymorphism in nitric oxide synthase 3 gene and Nitrit Oxide Level of Diabetic Retinopathy in Javanese Population

    Directory of Open Access Journals (Sweden)

    Putri Widelia Welkriana

    2015-11-01

    Full Text Available AbstractComplication of retinopathy in type 2 DM is caused of lower level of NO. Nitric oxide level is synthesizedfrom L-arginin in reaction that catalyze Nitric oxide synthase (NOS 3. The T-786C mutation in NOS 3 genedecreases the expression of nitric oxide synthase (NOS 3 so decreases NO synthesis. To investigate theassociation between T-786C polymorphism in NOS 3 gene with NO level of diabetic retinopathy patients. Thisstudy was a case control study, consist of 40 patient of type 2 diabetic with DR (case group and 40 patient oftype 2 diabetic without DR (control group of Javanese ethnic. The genotyping of T-786C polymorphism wasperformed by PCR-RLFP. Level of NO was measured by spectrophotometry. Chi square test and odd ratiowere used to analyze the association of the T-786C polymorphism in NOS 3 gene with DR. Differences ofNO level between TT and TC genotypes were analyzed using independent t test. The distribution of T-786Cpolymorphism in NOS 3 gene of DR subjects showed that frequency of TT genotype was 22.5% and TC genotypewas 77.5%. Non DR subjects showed the frequency of TT genotype was 50% and TC genotype was 50%, (p=0.011. Frequency of T allele in DR group was 61.25% and C allele was 38.75%, and frequency of T allele in nonDR group was 75% and C allele was 25%, (p= 0.62. Odd ratio of TC genotype was 3.444(CI; 95% : 0.964-3.735and C allele was 1.898 (CI; 95% : 1.310-9.058. The NO level of TC genotype was 1.43+0.126 and TT genotypewas 11.27+5.87 (p=0.000. Level of NO between RD and non RD showed not different significantly (p=0.160for retinopathy. The T-786C polymorphism of NOS 3 gene is risk factor for retinopathy in type 2 DiabetesMellitus. Individual with TC genotype of NOS 3 gene has lower level of NO than TT genotype.Keywords : Diabetic Retinopathy, Polymorphism, Nitric Oxide, Nitric Oxide Synthase.

  8. Alcoholism - resources

    Science.gov (United States)

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  9. Alcohol Alert

    Science.gov (United States)

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  10. Proprotein Convertase Subtilisin/Kexin Type 9 Gene E670G Polymorphism Interacts with Alcohol Consumption to Modulate Serum Lipid Levels

    Directory of Open Access Journals (Sweden)

    Lynn Htet Htet Aung, Rui-Xing Yin, Dong-Feng Wu, Xiao-Li Cao, Xi-Jiang Hu, Lin Miao

    2013-01-01

    Full Text Available Backgroud: Both alcohol consumption and the proprotein convertase subtilisin/kexin type 9 (PCSK9 gene polymorphism modulate serum lipid levels, but their interactions on serum lipid profiles are still unknown. The present study was undertaken to detect the interactions of PCSK9 E670G polymorphism and alcohol consumption on serum lipid levels.Methods: Genotypes of the PCSK9 E670G in 1352 unrelated subjects (785 non-drinkers and 567 drinkers were determined by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. The interactions between PCSK9 E670G genotypes and alcohol consumption on serum lipid parameters were detected by using a factorial design covariance analysis after controlling for potential confounders.Results: The levels of serum triglyceride, high-density lipoprotein cholesterol, apolipoprotein (Apo A1, and the ratio of ApoA1 to ApoB were higher in drinkers than in non-drinkers (P < 0.01 for all, whereas the levels of total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C and ApoB were lower in drinkers than in non-drinkers (P < 0.001 for all. The genotypic and allelic frequencies of PCSK9 E670G were not different between non-drinkers and drinkers (P > 0.05 for each. The subjects with AA genotype in non-drinkers had higher serum LDL-C levels than the subjects with AG genotype, whereas the subjects with AG genotype in drinkers had higher serum TC levels than the subjects with AA genotypes (P < 0.05 for each. The effects of alcohol consumption on TC and LDL-C levels depended upon genotypes, the subjects with AA genotype had lower serum TC and LDL-C levels in drinkers than in non-drinkers.Conclusions: Alcohol consumption can modify the effects of the PCSK9 E670G polymorphism on serum TC and LDL-C levels. The subjects with AA genotype of the PCSK9 E670G benefit more from alcohol consumption than the subjects with AG genotype in

  11. What can the brain teach us about winemaking? An fMRI study of alcohol level preferences.

    Directory of Open Access Journals (Sweden)

    Ram Frost

    Full Text Available Over the last few decades, wine makers have been producing wines with a higher alcohol content, assuming that they are more appreciated by consumers. To test this hypothesis, we used functional magnetic imaging to compare reactions of human subjects to different types of wine, focusing on brain regions critical for flavor processing and food reward. Participants were presented with carefully matched pairs of high- and low-alcohol content red wines, without informing them of any of the wine attributes. Contrary to expectation, significantly greater activation was found for low-alcohol than for high-alcohol content wines in brain regions that are sensitive to taste intensity, including the insula as well as the cerebellum. Wines were closely matched for all physical attributes except for alcohol content, thus we interpret the preferential response to the low-alcohol content wines as arising from top-down modulation due to the low alcohol content wines inducing greater attentional exploration of aromas and flavours. The findings raise intriguing possibilities for objectively testing hypotheses regarding methods of producing a highly complex product such as wine.

  12. Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol

    Indian Academy of Sciences (India)

    A Fallah Shojaei; K Tabatabaeian; M A Zanjanchi; H Fallah Moafi; N Modirpanah

    2015-03-01

    Powder samples of Ag/ZnO nanocomposite containing different amounts of Ag were synthesized by co-precipitation method. The synthesized samples were characterized by XRD, SEM, EDX and TEM techniques. The XRD results revealed that all the samples show wurtzite hexagonal phase of ZnO. The TEM micrographs of the samples showed that size of Ag-ZnO nanoparticles was in the range of 30–50 nm. Catalytic activity was tested using liquid-phase selective oxidation of benzylic alcohols to aldehydes. The influence of some parameters such as optimum weight of Ag, catalyst dosage, oxidant and various solvents were studied. The superior catalytic performance of the Ag/ZnO nanocomposite was observed in microwave condition compared to that performed in reflux condition. The catalysts were recycled three times in the oxidation of alcohols and little change in the conversion efficiency was observed. The highly dispersed Ag metal particles on ZnO surface was considered to be responsible for the catalytic activity.

  13. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    Science.gov (United States)

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-01

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.

  14. Modulating nitric oxide levels in dorsal root ganglion neurons of rat with low-level laser therapy

    Science.gov (United States)

    Zheng, Li-qin; Wang, Yu-hua; He, Yi-peng; Zhou, Jie; Yang, Hong-qin; Zhang, Yan-ding; Xie, Shu-sen

    2015-05-01

    Nitric oxide (NO) and nitric oxide synthase (NOS) have an important role in pain signaling transmission in animal models. Low-level laser therapy (LLLT) is known to have an analgesic effect, but the mechanism is unclear. The aim of the study is to investigate the influence of LLLT on NO release and NOS synthesis in dorsal root ganglion (DRG) neurons, in order to find whether LLLI can ameliorate pain through modulating NO production at the cellular level. The results show that in stress conditions, the laser irradiation at 658 nm can modulate NO production in DRG neurons with soma diameter of about 20 μm in a short time after illumination, and affect NOS synthesis in a dose-dependent manner. It is demonstrated that LLLT might treat pain by altering NO release directly and indirectly in DRG neurons.

  15. Evaluation of Salivary Nitric Oxide Levels in Smokers, Tobacco Chewers and Patients with Oral Lichenoid Reactions

    Science.gov (United States)

    Jose, Joy Idiculla; Sivapathasundharam, B.; Sabarinath, B.

    2016-01-01

    Introduction Nitric oxide (NO), a free radical, acts as a signalling molecule affecting numerous physiological and pathological processes. Role of nitric oxide as a mediator in tobacco related habits and the resultant oral lichenoid reactions was assessed. Aim The aim of the study is to evaluate and compare the salivary nitric oxide levels in normal patients with that of smokers, tobacco chewers and patients with oral lichenoid reactions. Materials and Methods One hundred and twenty patients were enrolled in the study which included 30 healthy patients without any chronic inflammatory lesion and habit as controls (group I), 30 smokers without the habit of tobacco/betel nut chewing and any oral lesion (group II), 30 tobacco chewers without the habit of smoking and any oral lesion (group III) and 30 histologically confirmed cases of oral lichenoid reaction with the habit of tobacco usage (group IV). Saliva from these patients was collected and the nitrite concentration was assessed. Results Our results concluded that there was highly significant increase in the nitric oxide levels in smokers, tobacco chewers and patients with oral lichenoid reactions compared to that of controls. Also, there was a significant increase in nitric oxide levels in patients with smoking associated oral lichenoid reactions in comparison with smokers and in patients with lichenoid reactions associated with tobacco chewing in comparison with tobacco chewers. Conclusion Estimation of salivary nitric oxide levels is a simple, non-invasive procedure and could be analysed to suggest the role of nitric oxide in the pathogenesis of these lesions. The increased activity of the enzyme may indicate that nitric oxide has a pathophysiological role in these lesions. PMID:26894179

  16. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    OpenAIRE

    Sara Soleimani Rad; Shamsi Abbasalizadeh; Amir Ghorbani Haghjo

    2013-01-01

    Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods:For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands of patients admitted...

  17. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    OpenAIRE

    Soleimani Rad, Sara; Abbasalizadeh, Shamsi; Ghorbani Haghjo, Amir; Sadagheyani, Mehzad; Montaseri, Azadeh; Soleimani Rad, Jafar

    2013-01-01

    Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods: For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands o...

  18. The Effected Oxide Capacitor in CMOS Structure of Integrated Circuit Level 5 Micrometer Technology

    OpenAIRE

    Rodthong, S.; Burapattanasiri, B.

    2009-01-01

    This article is present the effected oxide capacitor in CMOS structure of integrated circuit level 5 micrometer technology. It has designed and basic structure of MOS diode. It establish with aluminum metallization layer by sputtering method, oxide insulator layer mode from silicon dioxide, n+ and p+ semiconductor layer, it has high capacitance concentrate. From the MOS diode structure silicon dioxide thickness 0.5 micrometer, it will get capacitance between aluminum metal layer and p+ semico...

  19. Internet Alcohol Marketing and Underage Alcohol Use

    Science.gov (United States)

    McClure, Auden C.; Tanski, Susanne E.; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D.

    2016-01-01

    BACKGROUND AND OBJECTIVE Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. METHODS A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. RESULTS At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13–2.78 and odds ratio 2.15; 95% confidence interval, 1.06–4.37 respectively) but not with initiation of ever drinking. CONCLUSIONS Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. PMID:26738886

  20. Alcohol Alert: Genetics of Alcoholism

    Science.gov (United States)

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  1. Comments on "thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels".

    Science.gov (United States)

    Trache, Djalal

    2016-10-20

    This paper intends to discuss the employment of the Coats-Redfern equation to compute the kinetic parameters of the thermal degradation of hypochlorite-oxidized starch nancrystals by Wei et al. [Carbohydrate Polymers 124 (2015) 124-130]. The original paper has shown some fundamental errors when presenting the Coats-Redfern (CR) integral kinetic model. This CR equation is commonly used to calculate the activation energy of the thermal degradation from a single non isothermal thermogravimetric curve. However, the use of a set of experiments recorded under different heating rates is often required to obtain accurate results, as recommended by the International Confederation for Thermal Analysis and Calorimetry (ICTAC) Kinetics Committee. The present comments are focused on these statements giving some arguments and elucidations concerning the Coats-Redfern equation.

  2. Comments on "thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels".

    Science.gov (United States)

    Trache, Djalal

    2016-10-20

    This paper intends to discuss the employment of the Coats-Redfern equation to compute the kinetic parameters of the thermal degradation of hypochlorite-oxidized starch nancrystals by Wei et al. [Carbohydrate Polymers 124 (2015) 124-130]. The original paper has shown some fundamental errors when presenting the Coats-Redfern (CR) integral kinetic model. This CR equation is commonly used to calculate the activation energy of the thermal degradation from a single non isothermal thermogravimetric curve. However, the use of a set of experiments recorded under different heating rates is often required to obtain accurate results, as recommended by the International Confederation for Thermal Analysis and Calorimetry (ICTAC) Kinetics Committee. The present comments are focused on these statements giving some arguments and elucidations concerning the Coats-Redfern equation. PMID:27474597

  3. EVALUATION OF ISCHEMIA MODIFIED ALBUMIN AND NITRIC OXIDE LEVELS AND THEIR INTER - RELATIONSHIP IN HYPERTHYROIDISM

    Directory of Open Access Journals (Sweden)

    Rangaswamy

    2014-02-01

    Full Text Available BACKGROUND: Ischemia Modified Albumin (IMA is an ischemia/reperfusion injury marker which has been considered to be formed under oxidative stress conditions. Endothelial L - Arginine/NO pathway dysfunction can lead to oxidative stress which has deleterious effects seen on the vascular wall causing ischemia. AIM: 1 The study was conducted to estimate the levels of IMA and NO in hyperthyroidism patients. 2 To evaluate the relationship bet ween IMA and NO levels in hyperthyroidism. MATERIALS AND METHODS: A cross sectional study was done with 30 newly diagnosed hyperthyroid patients as cases and 30 age and sex matched healthy controls. Serum levels of IMA and NO were estimated by colorimetric methods and thyroid profile was done by ELIFA methodology. STATISTICAL ANALYSIS: Data were analyzed using SPSS. Values were expressed as Mean±SD. RESULTS: Nitric Oxide levels were significantly decreased in hyperthyroid patients (7.08±1.57μmol/L as compa red to healthy controls (39.76±4.98μmol/L (p=0.001. Ischemia Modified Albumin levels were found to be significantly increased in hyperthyroid patients (0.73±0.10 ODU when compared to healthy controls (0.28±0.01 ODU (p=0.001. CONCLUSION: In our study t here was increase in IMA levels with decreased NO levels which could be due to the consequence of oxidative stress and ischemia which is present in hyperthyroidism

  4. Oxidative stress may explain how hypertension is maintained by normal levels of angiotensin II

    Directory of Open Access Journals (Sweden)

    J.C. Romero

    2000-06-01

    Full Text Available It is well known that essential hypertension evolves in most patients with "near normal" levels of plasma renin activity. However, these levels appear to be responsible for the high levels of arterial pressure because they are normalized by the administration of angiotensin II converting inhibitors or angiotensin receptor antagonist. In experimental animals, hypertension can be induced by the continuous intravenous infusion of small doses of angiotensin II that are not sufficient to evoke an immediate pressor response. However, this condition resembles the characteristics of essential hypertension because the high levels of blood pressure exist with normal plasma levels of angiotensin II. It is suggested that small amounts of angiotensin whose plasma levels are inappropriate for the existing size of extracellular volume stimulate oxidative stress which binds nitric oxide forming peroxynitrite. The latter compound oxidizes arachidonic acid producing isoprostaglandin F2a (an isoprostane which is characterized by a strong antinatriuretic vasoconstrictor renal effect. In this chain of reactions the vasoconstrictor effects derived from oxygen quenching of nitric oxide and increased isoprostane synthesis could explain how hypertension is maintained with normal plasma levels of renin.

  5. Nitrous Oxide Levels In Operating and Recovery Rooms of Iranian Hospitals

    Directory of Open Access Journals (Sweden)

    Sh Sadigh Maroufi

    2011-06-01

    Full Text Available "nBackground: Nitrous oxide (N2O is the oldest anesthetic in routine clinical use and its occupational exposure is under regulation by many countries. As studies are lacking to demonstrate the status of nitrous oxide levels in operating and recovery rooms of Iranian hospitals, we aimed to study its level in teaching hospitals of Tehran University of Medical Sciences."nMethods: During a 6-month period, we have measured the shift-long time weighted average concentration of N2O in 43 op­erating and 12 recovery rooms of teaching hospitals of Tehran University of Medical Sciences."nResults: The results show that the level of nitrous oxide in all hospitals is higher than the limits set by different countries and anesthetists are at higher risk of exposure. In addition, it was shown that installation of air ventilation could reduce not only the overall exposure level, but also the level of exposure of anesthetists in comparison with other personnel."nConclusion: The high nitrous oxide level in Iranian hospitals necessitates improvement of waste gas evacuation systems and regular monitoring to bring the concentration of this gas into the safe level.

  6. Event-Level Associations between Objective and Subjective Alcohol Intoxication and Driving after Drinking across the College Years

    OpenAIRE

    Quinn, Patrick D.; Fromme, Kim

    2011-01-01

    Heavy episodic drinking is strongly associated with driving after drinking, yet there has been mixed evidence regarding whether the disinhibiting effects of alcohol intoxication contribute to the decision to drive after drinking. This investigation tested whether greater alcohol intoxication increased the probability of driving after drinking particularly during drinking episodes in which students experienced reduced subjective feelings of intoxication. A sample of 1,350 college students comp...

  7. Cerebellar Lingula Size and Experiential Risk Factors Associated with High Levels of Alcohol and Drug Use in Young Adults

    OpenAIRE

    Anderson, Carl M.; Rabi, Keren; Lukas, Scott E.; Teicher, Martin H.

    2010-01-01

    Previous studies have reported cerebellar abnormalities or static ataxia associated with risk for chronic use of alcohol and drugs. Adverse childhood experience (ACE) is another strong risk factor for later substance abuse. We therefore, sought to ascertain the relationship between morphological phenotypes of the lingula (Lobule I) of the anterior cerebellar vermis (ACV), and exposure to emotional (EM) versus physical (PM) maltreatment,on the degree of ongoing alcohol or drug use. The study d...

  8. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity

    Science.gov (United States)

    Gatty, Hithesh K.; Stemme, Göran; Roxhed, Niclas

    2015-10-01

    A miniaturized amperometric nitric oxide (NO) gas sensor based on wafer-level fabrication of electrodes and a liquid electrolyte chamber is reported in this paper. The sensor is able to detect NO gas concentrations of the order of parts per billion (ppb) levels and has a measured sensitivity of 0.04 nA ppb-1 with a response time of approximately 12 s. A sufficiently high selectivity of the sensor to interfering gases such as carbon monoxide (CO) and to ammonia (NH3) makes it potentially relevant for monitoring of asthma. In addition, the sensor was characterized for electrolyte evaporation which indicated a sensor operation lifetime allowing approximately 200 measurements.

  9. Elevated levels of nitric oxide and low levels of haptoglobin are associated with severe malarial anaemia in African children

    DEFF Research Database (Denmark)

    Gyan, Ben; Kurtzhals, Jørgen; Akanmori, Bartholomew D;

    2002-01-01

    Severe malarial anaemia (SA) is a major complication of malaria and an important cause of child mortality and morbidity. However, the pathogenesis behind SA is poorly understood. Nitric oxide (NO) is known to play a protective role against clinical malaria but is also suggested to have a pathogenic...... was there any correlation between parasitaemias and neopterin levels. The low haptoglobin and high levels of NO in this SA group may contribute to haemolysis. Taken together our results support the hypothesis that immune-mediated erythrocyte destruction is involved in the pathogenesis of malarial anaemia....

  10. Alcohol and atherosclerosis

    DEFF Research Database (Denmark)

    Tolstrup, Janne; Grønbaek, Morten

    2007-01-01

    (CHD). The cardioprotective effect of alcohol seems to be larger among middle-aged and elderly adults than among young adults, who do not have a net beneficial effect of a light to moderate alcohol intake in terms of reduced all-cause mortality. The levels of alcohol at which the risk of CHD is lowest......Light to moderate alcohol intake is known to have cardioprotective properties; however, the magnitude of protection depends on other factors and may be confined to some subsets of the population. This review focuses on factors that modify the relationship between alcohol and coronary heart disease...... and the levels of alcohol at which the risk of CHD exceeds the risk among abstainers are lower for women than for men. The pattern of drinking seems important for the apparent cardioprotective effect of alcohol, and the risk of CHD is generally lower for steady versus binge drinking. Finally, there is some...

  11. IDRD2 TaqIA polymorphism is associated with urinary homovanillic acid levels in a sample of Spanish male alcoholic patients.

    Science.gov (United States)

    Ponce, G; Hoenicka, J; Rodríguez-Jiménez, R; Gozalo, A; Jimenéz, M; Monasor, R; Aragüés, M; Rubio, G; Jiménez-Arriero, M A; Ramos, J A; Palomo, T

    2004-01-01

    The TaqIA1 allele of the dopamine receptor gene D2 (DRD2) has been associated with alcoholism, as well as with other addictive behaviours. The exact nature of how the presence of this allele can be a vulnerability factor in the development of alcoholism remains unclear. In this study we found that the presence in the DRD2 genotype of the TaqIA1 allele in Spanish alcoholics is associated with higher levels of urine homovanillic acid (HVA) when compared to patients homozygous for the TaqIA2 allele. A sample of 142 Spanish male alcoholic patients was split into 2 groups on the basis of the presence or absence of the A1 allele in their genotype. The urine sample was analyzed by high performance liquid cromatography (HPLC), and the concentration of homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA) and vanilylmandelic acid (VMA) was determined. We found a statistical difference in the concentration of HVA between the groups, that suggests this polymorphism could be related to the variance of urine HVA levels. PMID:15545020

  12. Antioxidant enzymatic defenses and oxidative damage in Dentex dentex fed on different dietary macronutrient levels.

    Science.gov (United States)

    Pérez-Jiménez, Amalia; Hidalgo, M Carmen; Morales, Amalia E; Arizcun, Marta; Abellán, Emilia; Cardenete, Gabriel

    2009-11-01

    A wide range of antioxidant mechanisms are present in fish maintaining an adequate "oxidative balance". When this balance tilts in favor of the oxidant agents "oxidative stress" arises with detrimental effects in molecules of great biological importance. Little has been reported about the influence of different dietary energy sources on antioxidant defenses in fish. The influence of different dietary macronutrient combinations on the key antioxidant enzyme activity, the oxidative damage to lipids and proteins and the possible modifications in the SOD isoenzymatic pattern were evaluated in liver, white muscle, heart and erythrocytes of common dentex (Dentex dentex). Four experimental diets with different protein:lipid:carbohydrate ratios (43/16/28; 43/24/4; 38/19/28 and 38/24/13) were formulated. In general, neither different dietary macronutrient levels nor the interaction among them induces substantial modifications in enzymatic antioxidant defense mechanisms. Two constitutive SOD isoforms, CuZn-SOD I and Mn-SOD, were detected in the tissues analyzed in all experimental groups, independently of diet formulation, but, a third SOD isoenzyme, CuZn-SOD II seems to be induced in white muscle by higher dietary protein levels. Densitometric analyses of western blotting membranes revealed higher CuZn-SOD expression in the heart of dentex fed on lower dietary protein levels, although these differences did not correlate with the SOD activity. Finally, a direct relation exists between the lipid or protein intake level and occurrence of oxidative damage in different tissue components.

  13. Effects of neonatal allopregnanolone manipulations and early maternal separation on adult alcohol intake and monoamine levels in ventral striatum of male rats.

    Science.gov (United States)

    Llidó, Anna; Bartolomé, Iris; Darbra, Sònia; Pallarès, Marc

    2016-06-01

    Changes in endogenous neonatal levels of the neurosteroid allopregnanolone (AlloP) as well as a single 24h period of early maternal separation (EMS) on postnatal day (PND) 9 affect the development of the central nervous system (CNS), causing adolescent/adult alterations including systems and behavioural traits that could be related to vulnerability to drug abuse. In rats, some behavioural alterations caused by EMS can be neutralised by previous administration of AlloP. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP could increase adult alcohol consumption, and if EMS could change these effects. We administered AlloP or finasteride, a 5α-reductase inhibitor, from PND5 to PND9, followed by 24h of EMS at PND9. At PND70 we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 15days. Ventral striatum samples were obtained to determine monoamine levels. Results revealed that neonatal finasteride increased both ethanol and glucose consumption, and AlloP increased alcohol intake compared with neonatal vehicle-injected animals. The differences between neonatal groups in alcohol consumption were not found in EMS animals. In accordance, both finasteride and AlloP animals that did not suffer EMS showed lower levels of dopamine and serotonin in ventral striatum. Taken together, these results reveal that neonatal neurosteroids alterations affect alcohol intake; an effect which can be modified by subsequent EMS. Thus, these data corroborate the importance of the relationship between neonatal neurosteroids and neonatal stress for the correct CNS development. PMID:27090561

  14. Alcohol Consumption at Any Level Increases Risk of Injury Caused by Others: Data from the Study on Global AGEing and Adult Health

    Science.gov (United States)

    Clausen, Thomas; Martinez, Priscilla; Towers, Andy; Greenfield, Thomas; Kowal, Paul

    2015-01-01

    BACKGROUND Alcohol use is a well-known risk factor for injury. However, information is needed about alcohol drinking patterns and the risk of injury among older adults in low- and middle-income countries as this population grows. We aimed to examine the influence of drinking patterns on the burden of injury and investigate factors associated with different types of injury in older populations in six emerging economies. METHODS Data from more than 37,000 adults aged 50 years and older were included from the Study on Global AGEing and Adult Health (SAGE) Wave 1 conducted in six emerging economies, namely, China, Ghana, India, Mexico, Russia, and South Africa. We investigated past-year reported injuries from falls, traffic accidents, and being hit or stabbed. Alcohol drinking patterns were measured as lifetime abstinence, ever but not past- week use, and gender-specific past-week low-risk and high-risk use. We stratified by gender and used logistic regression models to observe the association between alcohol drinking pattern and risk of injury by controlling for other factors. RESULTS During the year prior to interview, 627 (2.2%) subjects reported bodily injury resulting from a car accident, 1,156 (4.2%) from a fall, and 339 (0.9%) from being hit or stabbed during the past year. For women, only being a high-risk drinker increased the risk of being hit or stabbed, whereas for men, all levels of drinking were associated with an increased risk of being hit or stabbed. We observed a higher risk of being hit or stabbed from past-week high-risk drinking among women (odds ratio [OR] = 6.09, P victim. The increase in alcohol use in emerging economies calls for further study into the consequences of alcohol use and for public health initiatives to reduce the risk of violence in older adult populations, with special attention to the experience of older adult women. PMID:27257385

  15. Antioxidant factors, nitric oxide levels, and cellular damage in leprosy patients

    Directory of Open Access Journals (Sweden)

    Taysa Ribeiro Schalcher

    2013-09-01

    Full Text Available Introduction The immune response caused by Mycobacterium leprae is a risk factor for the development of oxidative stress (OS in leprosy patients. This study aimed to assess OS in leprosy patients before the use of a multidrug therapy. Methods We evaluated the nitric oxide (NO concentration; antioxidant capacity; levels of malondialdehyde, methemoglobin and reduced glutathione; and the activity of catalase and superoxide dismutase (SOD in leprosy patients. Results We observed lower SOD activity in these leprosy patients; however, the NO levels and antioxidant capacity were increased. Conclusions The infectious process in response to M. leprae could primarily be responsible for the OS observed in these patients.

  16. Exhaled nitric oxide levels in exacerbations of asthma, chronic obstructive pulmonary disease and pneumonia

    International Nuclear Information System (INIS)

    Nitric oxide is known to be present in the exhaled air of normal subjects and at higher concentrations in asthmatics. The aim of this study was to measure exhaled nitric oxide levels in patients admitted to hospital with acute exacerbations of asthma, or chronic obstructive pulmonary disease, or with pneumonia. Within 24 hours of admission exhaled nitric oxide levels were measured by a chemiluminescent analyzer in 11 patients with acute sever asthma, 19 patients with acute exacerbation of chronic obstructive pulmonary disease, and in 12 patients with pneumonia. In asthmatics measurements were made on 3 occasions, at day 1, 4, and 28 and were related to changes in peak expiratory flow rate. On admission median exhaled nitric oxide levels (range) were significantly higher in asthmatics 22 (9.3-74) parts per billion in comparison to patients with chronic obstructive pulmonary disease 10.3 (2.7-34) parts per billion; p<0.01, pneumonia 7 (4-17) parts per billion; p<0.001, and normal subjects 8.7 (5-13.3) parts per billion; p<0.001. Following treatment the asthmatics had a significant reduction in their exhaled nitric oxide levels from 22 (9.3-74) parts per billion on day 1 to 9.7 (5.7-18.3) parts per billion on day 28; p=0.005. Peak expiratory flow rate measurements increased from 200 (120-280) l/min on day 1 to 280 (150-475) l/min on day 4; p<0.05 and to 390 (150-530) l/min on day 28; p<0.01. A strong negative correlation existed between peak expiratory flow rate measurements and exhaled nitric oxide levels in asthmatics on day 28 (r=-0.70; p=0.017). Acute exacerbations of asthma are associated with increased levels of exhaled nitric oxide in contrast to exacerbations of chronic obstructive pulmonary disease and acute pneumonia. Exhaled nitric oxide may be a useful indirect marker of asthmatic airway inflammation. The differing time course of response of nitric oxide to peak flow measures suggests that these two measures are reflecting differing airway events. (author)

  17. Transgenic Mouse Models for Alcohol Metabolism, Toxicity and Cancer

    Science.gov (United States)

    Heit, Claire; Dong, Hongbin; Chen, Ying; Shah, Yatrik M.; Thompson, David C.; Vasiliou, Vasilis

    2015-01-01

    Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remains to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol metabolizing enzymes and GSH synthesizing enzymes and their relevance to alcohol research. PMID:25427919

  18. Acute Alcohol Intoxication-Induced Microvascular Leakage

    Science.gov (United States)

    Doggett, Travis M.; Breslin, Jerome W.

    2014-01-01

    Background Alcohol intoxication can increase inflammation and worsen injury, yet the mechanisms involved are not clear. We investigated whether acute alcohol intoxication elevates microvascular permeability, and investigated potential signaling mechanisms in endothelial cells that may be involved. Methods Conscious rats received a 2.5 g/kg alcohol bolus via gastric catheters to produce acute intoxication. Microvascular leakage of intravenously administered FITC-albumin from the mesenteric microcirculation was assessed by intravital microscopy. Endothelial-specific mechanisms were studied using cultured endothelial cell monolayers. Transendothelial electrical resistance (TER) served as an index of barrier function, before and after treatment with alcohol or its metabolite acetaldehyde. Pharmacologic agents were used to test the roles of alcohol metabolism, oxidative stress, p38 mitogen-activated protein (MAP) kinase, myosin light chain kinase (MLCK), rho kinase (ROCK), and exchange protein activated by cAMP (Epac). VE-cadherin localization was investigated to assess junctional integrity. Rac1 and RhoA activation were assessed by ELISA assays. Results Alcohol significantly increased FITC-albumin extravasation from the mesenteric microcirculation. Alcohol also significantly decreased TER and disrupted VE-cadherin organization at junctions. Acetaldehyde significantly decreased TER, but inhibition of ADH or application of a superoxide dismutase mimetic failed to prevent alcohol-induced decreases in TER. Inhibition of p38 MAP kinase, but not MLCK or ROCK, significantly attenuated the alcohol-induced barrier dysfunction. Alcohol rapidly decreased GTP-bound Rac1 but not RhoA during the drop in TER. Activation of Epac increased TER, but did not prevent alcohol from decreasing TER. However, activation of Epac after initiation of alcohol-induced barrier dysfunction quickly resolved TER to baseline levels. Conclusions Our results suggest that alcohol intoxication increases

  19. ADOLESCENTS AND ALCOHOL

    OpenAIRE

    SPEAR, LINDA PATIA

    2013-01-01

    The high levels of alcohol consumption characteristic of adolescence may be in part biologically based, given that elevated consumption levels are also evident during this developmental transition in other mammalian species as well. Studies conducted using a simple animal model of adolescence in the rat has shown adolescents to be more sensitive than adults to social facilitatory and rewarding effects of alcohol, but less sensitive to numerous alcohol effects that may serve as cues to limit i...

  20. Low level laser therapy reduces oxidative stress in cortical neurons in vitro

    Science.gov (United States)

    Huang, Ying-Ying; Tedford, Clark E.; McCarthy, Thomas; Hamblin, Michael R.

    2012-03-01

    It is accepted that the mechanisms of low level laser therapy (LLLT) involves photons that are absorbed in the mitochondria of cells and lead to increase of mitochondrial metabolism resulting in more electron transport, increase of mitochondrial membrane potential, and more ATP production. Intracellular calcium changes are seen that correlate with mitochondrial stimulation. The situation with two other intermediates is more complex however: reactive oxygen species (ROS) and nitric oxide (NO). Evidence exists that low levels of ROS are produced by LLLT in normal cells that can be beneficial by (for instance) activating NF-kB. However high fluences of light can produce large amounts of ROS that can damage the cells. In oxidatively stressed cells the situation may be different. We exposed primary cultured cortical neurons to hydrogen peroxide (H2O2) or cobalt chloride (CoCl2) oxidative insults in the presence or absence of LLLT (810-nm laser at 0.3 or 3 J/cm2). Cell viability of cortical neurons was determined by lactate dehydrogenase assay. ROS in neurons was detected using an ROS probe, MitoRox with confocal microscopy. Results showed that LLLT dose-dependently reversed ROS production and protected cortical neurons against H2O2 or CoCl2 induced oxidative injury in cultured cortical neurons. Conclusion: LLLT can protect cortical neurons against oxidative stress by reversing the levels of ROS.

  1. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  2. Cerebellar lingula size and experiential risk factors associated with high levels of alcohol and drug use in young adults.

    Science.gov (United States)

    Anderson, Carl M; Rabi, Keren; Lukas, Scott E; Teicher, Martin H

    2010-06-01

    Previous studies have reported cerebellar abnormalities or static ataxia associated with risk for chronic use of alcohol and drugs. Adverse childhood experience is another strong risk factor for later substance abuse. We therefore sought to ascertain the relationship between morphological phenotypes of the lingula (lobule I) of the anterior cerebellar vermis, and exposure to emotional (EM) versus physical (PM) maltreatment, on the degree of ongoing alcohol or drug use. The study design consisted of a cross-sectional in vivo neuroimaging study, utilizing retrospective assessment of maltreatment history and self-reports of alcohol and substance use. Study participants were 153 subjects (54 M/99F, 21.9 +/- 2.2 years) selected for imaging from a database of 1,402 community participants 18-25 years of age, who completed a detailed online screening instrument and met rigorous inclusion/exclusion criteria. Subjects were exposed to only physical abuse or harsh corporal punishment (HCP; PM group, n = 37) and parental verbal abuse and/or witnessing domestic violence (EM group, n = 58) or had no history of maltreatment or axis I disorders (n = 58). The main outcome measures consisted of the gray matter volume of lobule I as measured by manual tracing, number and type of alcoholic beverages consumed during a drinking session, number of sessions per month, and monthly drug use, along with family history of drug and alcohol abuse. Lingula thickness was not attenuated by alcohol use or maltreatment history. However, increased lingula thickness was associated with greater consumption of drugs and hard liquor, particularly in physically maltreated subjects who consumed 2.5- and 2.7-fold more alcohol and used drugs 6.1- and 7.8-fold more frequently than controls or EM subjects, respectively. In conclusion, physical maltreatment was observed to interact with cerebellar morphology resulting in a strong association with alcohol and substance use. Lingula thickness may represent a novel

  3. A facile and general strategy for the synthesis of porous flowerlike Pt-based nanocrystals as effective electrocatalysts for alcohol oxidation

    Science.gov (United States)

    Huang, Da-Bing; Yuan, Qiang; He, Pei-Lei; Wang, Kai; Wang, Xun

    2016-08-01

    In this paper, porous flowerlike Pt-based (Pt, PdPt, RhPt and RhPdPt) nanocrystals were successfully achieved by a simple, economic, environmentally friendly route under the same synthetic conditions at 85 °C. The electrocatalytic properties of these flowerlike Pt-based nanocrystals toward alcohols (glycol, glycerol, methanol and ethanol) oxidation were investigated and they displayed enhanced catalytic performance compared with commercial Pt black. Among them, porous Pd45.5Pt54.5 nanoflowers showed the best catalytic performance with significant mass activity and long-term stability. More importantly, the current synthesis strategy can be easily amplified to gram-scale production.In this paper, porous flowerlike Pt-based (Pt, PdPt, RhPt and RhPdPt) nanocrystals were successfully achieved by a simple, economic, environmentally friendly route under the same synthetic conditions at 85 °C. The electrocatalytic properties of these flowerlike Pt-based nanocrystals toward alcohols (glycol, glycerol, methanol and ethanol) oxidation were investigated and they displayed enhanced catalytic performance compared with commercial Pt black. Among them, porous Pd45.5Pt54.5 nanoflowers showed the best catalytic performance with significant mass activity and long-term stability. More importantly, the current synthesis strategy can be easily amplified to gram-scale production. Electronic supplementary information (ESI) available: Experimental details, digital photos, TEM, XRD, CVs, EDX and tables. See DOI: 10.1039/c6nr04927c

  4. Dehydration, Dehydrogenation, and Condensation of Alcohols on Supported Oxide Catalysts Based on Cyclic (WO3)3 and (MoO3)3 Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Roger J.; Dixon, David A.; Kay, Bruce D.; Dohnalek, Zdenek

    2014-01-01

    Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article we review preparation and activity of well-defined model WO3 and MoO3 catalysts prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketons, and ethers is employed to probe the structure-activity relationships on model WO3 and MoO3 catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlying reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. For the range of interrogated (WO3)3 they further shed light into the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity.

  5. High performance Pt nanoparticles prepared by new surfactants for C{sub 1} to C{sub 3} alcohol oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Fatih, E-mail: fatihsen1980@gmail.com [Dumlupinar University, Biochemistry Department (Turkey); Goekagac, Guelsuen, E-mail: ggulsun@metu.edu.tr; Sen, Selda [Middle East Technical University, Chemistry Department (Turkey)

    2013-10-15

    In this study, platinum nanoparticles have been prepared using PtCl{sub 4} as a starting material and 1-hexylamine, N-methylhexylamine, N,N-dimethylhexylamine, 1-heptylamine, N-methylheptylamine, and N,N-dimethylheptylamine as surfactants. All these surfactants were used in this synthesis, for the first time, to explore the effect of primary, secondary, and tertiary amine and chain length on the size and catalytic activity toward C1-C3 alcohol electro-oxidation. The electrochemical performance of all catalysts was determined using cyclic voltammetry and chronoamperometry. These techniques indicate that the highest electrocatalytic performance was generally observed when electrochemical surface area (ECSA), percent platinum utility, roughness factor, and the number of CH{sub 3} groups attached to the nitrogen atom is higher and the chain length shorter (C{sub 6}H{sub 13}). In addition, other important properties such as the crystal structure of platinum, size, and distribution of the platinum nanoparticles on the carbon support, and Pt(0) to Pt(IV) ratio, were determined using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, and transmission electron microscopy. It was found that increasing ECSA, Pt(0)/Pt(IV) ratio, % Pt utility, and roughness factor improves the C1-C3 alcohol oxidation catalytic performance.

  6. Evaluation of the levels of alcohol sulfates and ethoxysulfates in marine sediments near wastewater discharge points along the coast of Tenerife Island.

    Science.gov (United States)

    Fernández-Ramos, C; Ballesteros, O; Zafra-Gómez, A; Camino-Sánchez, F J; Blanc, R; Navalón, A; Pérez-Trujillo, J P; Vílchez, J L

    2014-02-15

    Alcohol sulfates (AS) and alcohol ethoxysulfates (AES) are all High Production Volume and 'down-the-drain' chemicals used globally in detergent and personal care products, resulting in low levels ultimately released to the environment via wastewater treatment plant effluents. They have a strong affinity for sorption to sediments. Almost 50% of Tenerife Island surface area is environmentally protected. Therefore, determination of concentration levels of AS/AES in marine sediments near wastewater discharge points along the coast of the Island is of interest. These data were obtained after pressurized liquid extraction and liquid chromatography-tandem mass spectrometry analysis. Short chains of AES and especially of AS dominated the homologue distribution for AES. The Principal Components Analysis was used. The results showed that the sources of AS and AES were the same and that both compounds exhibit similar behavior. Three different patterns in the distribution for homologues and ethoxymers were found.

  7. Effect of Helicobacter pylori infection on gastric mucosal pathologic change and level of nitric oxide and nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    Yong-Fu Wang; Chun-Lin Guo; Li-Zhen Zhao; Guo-An Yang; Peng Chen; Hong-Kun Wang

    2005-01-01

    AIM: To investigate the level of nitric oxide (NO) and nitrous oxide synthase (NOS) enzyme and its effect on gastric mucosal pathologic change in patients infected with Helicobacter pylori (H pylori), and to study the pathogenic mechanism of H pylori.METHODS: The mucosal tissues of gastric antrum were taken by endoscopy, then their pathology, H pylori and anti-CagA-IgG were determined. Fifty H pyloripositive cases and 35 H pylori negative cases were randomly chosen.Serum level of NO and NOS was detected.RESULTS: One hundred and seven cases (71.33%) were anti-CagA-IgG positive in 150 H pyloripositive cases. The positive rate was higher especially in those with preneoplastic diseases, such as atrophy, intestinal metaplasia and dysplasia. The level of NO and NOS in positive group was higher than that in negative group, and apparently lower in active gastritis than in pre-neoplastic diseases such as atrophy, intestinal metaplasia and dysplasia.CONCLUSION: H pyloriis closely related with chronic gastric diseases, and type Ⅰ Hpylorimay be the real factor for Hpylori-related gastric diseases. Infection with H pylori can induce elevation of NOS, which produces NO.

  8. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats.

    Science.gov (United States)

    Aksoy, Nur; Aksoy, Mehmet; Bagci, Cahit; Gergerlioglu, H Serdar; Celik, Hakim; Herken, Emine; Yaman, Abdullah; Tarakcioglu, Mehmet; Soydinc, Serdar; Sari, Ibrahim; Davutoglu, Vedat

    2007-05-01

    There is increasing evidence that nuts have protective effects against coronary artery disease by improving lipid profile and inhibiting lipid oxidation. However, data about pistachio nuts are limited, and to our knowledge, there is no study investigating the effects of pistachio intake on lipid oxidation and serum antioxidant levels. This study, therefore, sought to determine the effects of pistachio intake on serum lipids and determine whether consumption of pistachio would alter serum antioxidant levels. Rats were randomly divided into three groups (n=12 for each): control group fed basic diet for 10 weeks and treated groups fed basic diet plus pistachio which constituted 20% and 40% of daily caloric intake, respectively. Consumption of pistachio as 20% of daily caloric intake increased high-density lipoprotein (HDL) levels and decreased total cholesterol (TC)/HDL ratio, compared with those not taking pistachio. However, TC, low-density lipoprotein (LDL) cholesterol and triglyceride levels were unaffected by pistachio consumption. Consumption of pistachio as 20% of daily caloric intake increased serum paraoxonase activity by 35% and arylesterase activity by 60%, which are known to inhibit LDL cholesterol oxidation, compared with the control group. However, increased antioxidant activity was blunted when pistachio intake was increased to 40% of daily caloric intake. In conclusion, the present results show that consumption of pistachio as 20% of daily caloric intake leads to significant improvement in HDL and TC/HDL ratio and inhibits LDL cholesterol oxidation. These results suggest that pistachio may be beneficial for both prevention and treatment of coronary artery disease.

  9. Serum uric acid levels and leukocyte nitric oxide production in multiple sclerosis patients outside relapses

    NARCIS (Netherlands)

    Mostert, JP; Ramsaransing, GSM; Heerserna, DJ; Heerings, M; Wilczak, N; De Keyser, J

    2005-01-01

    Background: A number of studies found that patients with multiple sclerosis (MS) have low serum levels of uric acid. It is unclear whether this represents a primary deficit or secondary effect. Uric acid is a scavenger of peroxynitrite, which is the product of nitric oxide (NO) and superoxide. Becau

  10. Study of Foeniculum vulgare (Fennel Seed Extract Effects on Serum Level of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sadeghpour Nahid

    2015-04-01

    Full Text Available Objective: The Foeniculum vulgare (FVE, known as fennel, has a long history of herbal uses as both food and medicine. The seed of this plant has been used to promote menstruation, alleviate the symptoms of female climacteric, and increase the number of ovarian follicles. The aim of this study was to evaluate the fennel extract effects on serum level of oxidative stress in female mice. Materials and Methods: Totally, 28 virgin female albino mice were divided into four groups (n = 7. Groups 1 and 2 (experimental groups were administered FVE at 100 and at a concentration of 100 and 200 mg/kg for 5 days, interaperitoneally. Group 3 (negative control received ethanol and Group 4 (positive control received normal saline. Animals were scarified at 6th day, sera were collected and the level of oxidative stress was determination of using total antioxidant status kit. Results: Data analysis revealed that there is a significant difference in the mean level of serum oxidative stress between four different groups. P value in experimental groups compared to the control group was (P < 0.0001. Conclusion: Fennel extract can decrease the serum level of oxidative factors in female mice; it can be introduced as a novel medicine for treatment of infertility

  11. Hooking Up in the College Context: The Event-Level Effects of Alcohol Use and Partner Familiarity on Hookup Behaviors and Contentment

    OpenAIRE

    LaBrie, Joseph W.; Hummer, Justin F.; Ghaidarov, Tehniat M.; Lac, Andrew; Kenney, Shannon R.

    2012-01-01

    The current study examined hooking up experiences through event-level analyses, including the connections involving alcohol use, the extent of physical contact, and postevaluations of the hookup event. Participants were 828 college students (67.0% female). Of students who reported hooking up sometime within the past year (54.8%), chi-square analyses revealed that they were more likely to have been drinking when they met their partners the night of the hookup. Females who were drinking beforeh...

  12. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro

    OpenAIRE

    Huang, Ying-Ying; Nagata, Kazuya; Tedford, Clark E.; McCarthy, Thomas; Hamblin, Michael R.

    2012-01-01

    Low-level laser (light) therapy (LLLT) involves absorption of photons being in the mitochondria of cells leading to improvement in electron transport, increased mitochondrial membrane potential (MMP), and greater ATP production. Low levels of reactive oxygen species (ROS) are produced by LLLT in normal cells that are beneficial. We exposed primary cultured murine cortical neurons to oxidative stressors: hydrogen peroxide, cobalt chloride and rotenone in the presence or absence of LLLT (3 J/cm...

  13. Portal pressure and blood nitric oxide levels as predictors of outcome in biliary atresia

    OpenAIRE

    Vikram Khanna; Veereshwar Bhatnagar; Sandeep Agarwala; Maddur Srinivas; Nibhriti Das; Manoj Kumar Singh

    2016-01-01

    Aim: To evaluate the incidence of portal hypertension (PHT) in biliary atresia (BA) patients and to monitor its progress after Kasai portoenterostomy (KP) by measuring nitric oxide (NO) levels in peripheral blood. Materials and Methods: A prospective cross-sectional study conducted over a period of 2 years. Intraoperative portal pressure (PP) and blood NO levels at presentation, 1-month, 3-month, and 6-month follow-up, were correlated with clinical and biochemical parameters in BA patients. T...

  14. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... cancers. It can cause damage to the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of death from car crashes, injuries, homicide, and suicide. If you want to stop ...

  15. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    Science.gov (United States)

    Chang, Dong; Zhang, Xuefei; Rong, Shengzhong; Sha, Qian; Liu, Peipei; Han, Tao; Pan, Hongzhi

    2013-01-01

    Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and oxidation degradation products of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), conjugated diene (CD), advanced oxidation protein products (AOPP), protein carbonyl (PC), and 8-hydroxydeoxyguanosine (8-OHdG). Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P < 0.05). The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P < 0.05, P < 0.01). Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P < 0.01). And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis. PMID:23781296

  16. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    Directory of Open Access Journals (Sweden)

    Dong Chang

    2013-01-01

    Full Text Available Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px, and oxidation degradation products of malondialdehyde (MDA, 4-hydroxynonenal (4-HNE, conjugated diene (CD, advanced oxidation protein products (AOPP, protein carbonyl (PC, and 8-hydroxydeoxyguanosine (8-OHdG. Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P<0.05. The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P<0.05, P<0.01. Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P<0.01. And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis.

  17. Oxidative stress, melatonin level, and sleep insufficiency among electronic equipment repairers

    Directory of Open Access Journals (Sweden)

    El-Helaly Mohamed

    2010-01-01

    Full Text Available Background: Exposure to extremely low frequency electromagnetic field (ELF-EMF, especially among electronic equipment repairers may induce oxidative stress and affect sleep quality. Aims: This study was carried out to (a investigate the effect of exposure to ELF-EMF on the malondialdehyde (MDA levels among electronic equipment repairers as an indicator of oxidative stress; and melatonin hormone levels; and (b to study the prevalence of sleep insufficiency among electronic equipment repairers exposed to ELF-EMF. Materials and Methods: A cross-sectional study was carried out on 50 electronic equipment repairers at high risk of exposure to ELF-EMF, and a matched control group at lower risk of exposure to ELF-EMF. All the participants completed a self-administered questionnaire about medical and occupational histories; and sleep sufficiency. The plasma melatonin and MDA levels of the study subjects were assessed. Results: The mean level of serum melatonin in the electronic equipment repairers was lower than that of the controls (P < 0.01. Moreover, serum MDA mean level of the electronic equipment repairers was higher than that of the controls (P < 0.01. Sleep insufficiency was more frequent among electronic equipment repairers (18.00% in comparison with the controls (8.70% (P > 0.05. Conclusion: The electronic equipment repairers, exposed to ELF-EMF, are at a risk of oxidative stress and sleep insufficiency, which could be explained by lower plasma melatonin levels and higher MDA levels. Health education about the hazards of ELF-EMF, shortening of exposure time per day, and taking antioxidant vitamins should be done to ameliorate the oxidative effect of EMF on those workers.

  18. Resisting Peer Pressure: Characteristics Associated with Other-Self Discrepancies in College Students' Levels of Alcohol Consumption

    Science.gov (United States)

    Crawford, Lizabeth A.; Novak, Katherine B.

    2007-01-01

    Since college undergraduates tend to increase their use of alcohol to match what they perceive to be normative, the assumption has been that students who believe that others on campus drink more than they do (a common misperception) are in a vulnerable position. Taking a different perspective, we consider large other-self discrepancies in levels…

  19. Effect of moderate alcohol consumption on fibrinogen levels in healthy volunteers is discordant with effects on C-reactive protein

    NARCIS (Netherlands)

    Sierksma, A.; Gaag, M.S. van der; Kluft, C.; Hendriks, H.F.J.

    2001-01-01

    In a diet-controlled, crossover trial with 10 middle-aged men and 9 postmenopausal women, baseline concentrations of fibrinogen influenced the magnitude of decrease of fibrinogen after moderate alcohol consumption. The mechanism of reduction is specific for fibrinogen and unrelated to a reduction in

  20. Drinking Before Going to Licensed Premises: An Event-Level Analysis of Predrinking, Alcohol Consumption, and Adverse Outcomes

    NARCIS (Netherlands)

    Labhart, F.; Graham, K.; Wells, S.; Kuntsche, E.N.

    2013-01-01

    Background Research in the United States and the United Kingdom indicates that drinking before going out (commonly called predrinking) is common among young people and associated with increased harm. On the basis of Swiss data, this study investigates differences in alcohol consumption and adverse o

  1. Increased levels of thioredoxin in patients with abdominal aortic aneurysms (AAAs). A potential link of oxidative stress with AAA evolution

    DEFF Research Database (Denmark)

    Martinez-Pinna, R; Lindholt, Jes S.; Blanco-Colio, L M;

    2010-01-01

    Oxidative stress is a main mechanism involved in vascular pathologies. Increased thioredoxin (TRX) levels have been observed in several oxidative stress-associated cardiovascular diseases. We aim to test the potential role of TRX as a biomarker of oxidative stress in abdominal aortic aneurysm (AAA)....

  2. Endothelial nitric oxide synthase gene haplotypes and circulating nitric oxide levels significantly associate with risk of essential hypertension.

    Science.gov (United States)

    Nejatizadeh, Azim; Kumar, Rahul; Stobdan, Tsering; Goyal, A K; Sikdar, Sunandan; Gupta, Mohit; Javed, Saleem; Pasha, M A Qadar

    2008-06-01

    Nitric oxide (NO), a potent vasodilator, plays a pivotal role in blood pressure regulation. Endothelial NO synthase gene (NOS3) polymorphisms influence NO levels. Here, we investigated the role of the -922A/G, -786T/C, 4b/4a, and 894G/T polymorphisms of the NOS3 and NO(x) levels in 800 consecutive unrelated subjects comprising 455 patients of essential hypertension and 345 controls. The polymorphisms were investigated independently and as haplotypes. Plasma NO(x) levels (nitrate and nitrite) were estimated by the Griess method. Genotype frequencies for the -786T/C, 4b/4a, and 894G/T polymorphisms differed significantly (Phypertension (OR=2.0, OR=3.8, OR=1.6, respectively). The 4-locus haplotypes ATaG (H1), ATaT (H2), and GCaG (H3) were significantly associated with essential hypertension and served as susceptible haplotypes (Phypertension and served as protective haplotypes (Ppolymorphisms showed marginal association with NO(x) level; however, the susceptible haplotype H2 associated significantly with lower NO(x) levels in patients (Ppolymorphisms were identified as the determinants modifying the risk of hypertension. This study identifies the NOS3 variants and haplotypes as genetic risk factors and as useful markers of increased susceptibility to the risk of essential hypertension. PMID:18325347

  3. Relationship Between the Levels of Oxidative Stress in Mesenteric and Peripheral Serum and Clinicopathological Variables in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Sevim Purisa

    2012-06-01

    Full Text Available Objective: To explore the differences existing between the levels of oxidative stress in peripheral and mesenteric serum in patients with colorectal cancer. Material and Methods: One hundred fifty patients with colorectal cancer who underwent surgery between May 2005 and March 2010 were prospectively analyzed. The differences between oxidative stress parameters in their peripheral and mesenteric blood were measured. The associations between peripheral and mesenteric levels and the staging and clinicopathological variables were investigated.Results: Oxidative stress parameters were higher in patients with advanced tumor staging (p<0.01, lymph node invasion (p<0.01, and venous invasion (p<0.01. Differences between oxidative stress parameters in peripheral and mesenteric blood samples were also observed.Conclusions: The mesenteric levels of the oxidative stress markers were higher than the peripheral levels in these colorectal cancer patients. Higher levels of these oxidative stress markers are associated with an advanced state of cancer.

  4. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    Science.gov (United States)

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  5. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity

    International Nuclear Information System (INIS)

    A miniaturized amperometric nitric oxide (NO) gas sensor based on wafer-level fabrication of electrodes and a liquid electrolyte chamber is reported in this paper. The sensor is able to detect NO gas concentrations of the order of parts per billion (ppb) levels and has a measured sensitivity of 0.04 nA ppb−1 with a response time of approximately 12 s. A sufficiently high selectivity of the sensor to interfering gases such as carbon monoxide (CO) and to ammonia (NH3) makes it potentially relevant for monitoring of asthma. In addition, the sensor was characterized for electrolyte evaporation which indicated a sensor operation lifetime allowing approximately 200 measurements. (paper)

  6. Serum levels of soluble Fas, nitric oxide and cytokines in acute decompensated cirrhotic patients

    Institute of Scientific and Technical Information of China (English)

    Christoph Elsing; Sabine Harenberg; Wolfgang Stremmel; Thomas Herrmann

    2007-01-01

    AIM: To evaluate plasma levels of nitrite/nitrate (NOx),soluble Fas (sFas) antigen, tumor necrosis factor alpha(TNF-α) and interleukin-6 (TL-6) in patients with compensated and acute decompensated cirrhosis and to evaluate mediators causing acute decompensation in liver cirrhosis.METHODS: This prospective study was conducted in the medical intensive care unit of an academic tertiary center. Fifty-five patients with acute decompensation (gastrointestinal hemorrhage, encephalopathy, hydropic decompensation) and twenty-five patients with compensated liver cirrhosis were included. Blood samples were taken for analyses of sfas, Nox, TL-6, TNF-α. Liver enzymes and kidney functions were also tested.RESULTS: In patients with acute decompensation, plasma sfas levels were higher than in non-decompensated patients (15305±4646 vs 12458 ± 4322 pg/mL, P <0.05). This was also true for the subgroup of patients with alcoholic liver cirrhosis (P < 0.05). The other mediators were not different and none of the parameters predicted survival, except for ALT (alanine-aminotransferase). In patients with portal-hypertension-induced acute hemorrhage, NOx levels were significantly lower than in patients with other forms of decompensation (70.8 ±48.3 vs 112.9 ± 74.9 pg/mL, P < 0.05). When NOx levels were normalized to creatinine levels, the difference disappeared. IL-6, TNF-α and sfas were not different between bleeders and non-bleeders. In decompensated patients sfas, IL-6 and NOx levels correlated positively with creatinine levels, while IL-6 levels were dependent on Child class.CONCLUSION: In acute decompensated cirrhotic patients sFas is increased, suggesting a role of apoptosis in this process and patients with acute bleeding have lower NOx levels. However, in this acute complex clinical situation, kidney function seems to have a predominant influence on mediator levels.

  7. Correction factors for 13C-labelled substrate oxidation at whole-body and muscle level

    DEFF Research Database (Denmark)

    Van Hall, Gerrit

    1999-01-01

    The oxidation of fatty acids, carbohydrates and amino acids can be measured by quantifying the rate of excretion of labelled CO2 following administration of 14C- or 13C-labelled substrates at whole-body and tissue level. However, there is a theoretical need to correct the oxidation rates...... for the proportion of labelled CO2 that is produced via oxidation but not excreted. Furthermore, depending on the substrate and position of the C label(s), there may also be a need to correct for labelled C from the metabolized substrate that does not appear as CO2, but rather becomes temporarily fixed in other...... metabolites. The bicarbonate correction factor is used to correct for the labelled CO2 not excreted. Recently, an acetate correction factor has been proposed for the simultaneous correction of CO2 not excreted and label fixed in other metabolites via isotopic exchange reactions, mainly in the tricarboxylic...

  8. Membrane of Functionalized Reduced Graphene Oxide Nanoplates with Angstrom-Level Channels

    Science.gov (United States)

    Lee, Byeongho; Li, Kunzhou; Yoon, Hong Sik; Yoon, Jeyong; Mok, Yeongbong; Lee, Yan; Lee, Hong H.; Kim, Yong Hyup

    2016-06-01

    Membranes with atomic level pores or constrictions are valuable for separation and catalysis. We report a graphene-based membrane with an interlayer spacing of 3.7 angstrom (Å). When graphene oxide nanoplates are functionalized and then reduced, the laminated reduced graphene oxide (rGO) nanoplates or functionalized rGO membrane is little affected by an intercalated fluid, and the interlayer spacing of 3.7 Å increases only to 4.4 Å in wetted state, in contrast to the graphene oxide (GO) membrane whose interlayer spacing increases from 9 Å to 13 Å in wetted state. When applied to ion separation, this membrane reduced the permeation rate of small ions such as K+ and Na+ by three orders of magnitude compared to the GO membrane.

  9. Electroacupuncture decreases excessive alcohol consumption involving reduction of FosB/ΔFosB levels in reward-related brain regions.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available New therapies are needed for alcohol abuse, a major public health problem in the U.S. and worldwide. There are only three FDA-approved drugs for treatment of alcohol abuse (naltrexone, acamprosate and disulfuram. On average these drugs yield only moderate success in reducing long-term alcohol consumption. Electroacupuncture has been shown to alleviate various drugs of abuse, including alcohol. Although previous studies have shown that electroacupuncture reduced alcohol consumption, the underlying mechanisms have not been fully elucidated. ΔFosB and FosB are members of the Fos family of transcription factors implicated in neural plasticity in drug addiction; a connection between electroacupuncture's treatment of alcohol abuse and the Fos family has not been established. In this study, we trained rats to drink large quantities of ethanol in a modified intermittent access two-bottle choice drinking procedure. When rats achieved a stable baseline of ethanol consumption, electroacupuncture (100 Hz or 2 Hz, 30 min each day was administered at Zusanli (ST36 for 6 consecutive days. The level of FosB/ΔFosB in reward-related brain regions was assessed by immunohistochemistry. We found that the intake of and preference for ethanol in rats under 100 Hz, but not 2 Hz electroacupuncture regiment were sharply reduced. The reduction was maintained for at least 72 hours after the termination of electroacupuncture treatment. Conversely, 100 Hz electroacupuncture did not alter the intake of and preference for the natural rewarding agent sucrose. Additionally, FosB/ΔFosB levels in the prefrontal cortex, striatal region and the posterior region of ventral tegmental area were increased following excessive ethanol consumption, but were reduced after six-day 100 Hz electroacupuncture. Thus, this study demonstrates that six-day 100 Hz electroacupuncture treatment effectively reduces ethanol consumption and preference in rats that chronically drink excessive amount of

  10. Comparing Effects of Medication Therapy and Exercise Training with Diet on Liver enzyme Levels and Liver Sonography in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Azadeh Nabizadeh Haghighi

    2016-03-01

    Full Text Available Background & Objectives: Non-alcoholic fatty liver disease, characterized by the deposition of fat in liver cells, can cause fibrosis, cirrhosis, and liver cell damage if not controlled. The aim of this study is to compare the effects of medication therapy and exercise training with diet on liver enzyme levels and liver sonography in patients with non-alcoholic fatty liver disease (NAFLD. Materials & Methods :In this quasi-experimental study, female patients with non-alcoholic fatty liver were randomly divided into two groups: medication therapy (n = 10 and exercise therapy (n = 10 for 8 weeks. During this period, the exercise group performed exercise training three days a week for 90 minutes per session. The drug was given to the medication group. In both groups, the diet was 500 calories less than their daily energy. Before and after intervention, blood tests and liver sonography were executed. All statistical analyses were done using SPSS for Windows version 20. Comparisons between and within groups were performed by Student's t-test and Wilcoxon test on paired and unpaired data. P < 0.05 was considered statistically significant. Results :In both groups, liver enzyme levels and disease severity in sonography reduced significantly (p<0.05. Conclusion: The findings of the present research showed that both methods of therapy have the same effect on reducing the severity of NAFLD.

  11. Perceptions of breath alcohol concentration (BrAC) levels among a sample of bar patrons with BrAC values of 0.08% or higher.

    Science.gov (United States)

    Martin, Ryan J; Chaney, Beth H; Cremeens-Matthews, Jennifer; Vail-Smith, Karen

    2016-09-01

    Breath alcohol concentration (BrAC) is a commonly used measure of alcohol intoxication. Because of the potential negative consequences of excessive alcohol consumption, it is important to examine how accurately intoxicated individuals can estimate their BrAC values, especially individuals over the legal BrAC driving threshold (i.e., 0.08%). To better understand perceptions of BrAC values among intoxicated individuals, this field study examined actual BrAC values and BrAC range estimates (0.08% and above, 0.02-0.07%, less than 0.02%) among a sample of bar patrons (N = 454) with BrAC levels at 0.08% or higher. Bivariate and multivariate analyses were conducted to examine the relationship between actual BrAC values and perceived BrAC levels. We also examined whether the following demographic and drinking variables were associated with underestimating BrAC in this sample: gender, age, race, college student status, plans to get home, and hazardous drinking. Results indicated that the majority (60.4%) of participants underestimated their BrAC (i.e., less than 0.08%) and lower BrAC values correlated with underestimating BrAC ranges (p young (less than 21) intoxicated females are a group at high risk for sexual assault on college campuses. (PsycINFO Database Record PMID:27631614

  12. Hidróxido de níquel suportado em carbono: um catalisador de baixo custo para a eletro-oxidação de alcoóis em meio alcalino Carbon supported nickel hydroxide: a low cost catalyst for alcohol electro-oxidation in alkaline medium

    OpenAIRE

    Marcelo Rodrigues da Silva; Antonio Carlos Dias Ângelo; Luiz Henrrique Dall'Antonia

    2010-01-01

    The present manuscript shows the synthesis of nickel hydroxide supported in carbon (Ni(OH)2/C) as a alternative material for catalytic alcohol oxidation in alkaline medium. The Ni(OH)2/C was synthesized in different percentage using a sonic bath. No current densities variation during successive cyclic voltammetry experiments was observed. The Ni(OH)2/C electrodes exhibit a potent and persistent electrocatalytic activity towards the oxidation of different alcohols. In addition, alcohols electo...

  13. Susceptibility of L-FABP−/− mice to oxidative stress in early-stage alcoholic liver[S

    OpenAIRE

    Rebecca L. Smathers; Galligan, James J.; Shearn, Colin T.; Fritz, Kristofer S.; Mercer, Kelly; Ronis, Martin; Orlicky, David J.; Davidson, Nicholas O.; Petersen, Dennis R.

    2013-01-01

    Chronic ethanol consumption is a prominent cause of liver disease worldwide. Dysregulation of an important lipid uptake and trafficking gene, liver-fatty acid binding protein (L-FABP), may contribute to alterations in lipid homeostasis during early-stage alcoholic liver. We have reported the detrimental effects of ethanol on the expression of L-FABP and hypothesize this may deleteriously impact metabolic networks regulating fatty acids. Male wild-type (WT) and L-FABP−/− mice were fed a modifi...

  14. One-pot deposition of gold on hybrid TiO{sub 2} nanoparticles and catalytic application in the selective oxidation of benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Mehri, Afef [University Tunis El-Manar, Laboratoire de Chimie des Matériaux et Catalyse, Tunis (Tunisia); Kochkar, Hafedh, E-mail: h_kochkar@yahoo.fr [University Tunis El-Manar, Laboratoire de Chimie des Matériaux et Catalyse, Tunis (Tunisia); Laboratoire de Valorisation des Matériaux Utiles, Centre National de Recherches en Sciences des Matériaux, Technopôle de Borj-Cedria, 2050 Hammam-Lif (Tunisia); Berhault, Gilles [Institut de Recherches sur la Catalyse et de l' Environnement de Lyon, CNRS-Université Lyon I, 69100 Villeurbanne (France); Cómbita Merchán, Diego Fernando; Blasco, Teresa [Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos, s/n, Valencia (Spain)

    2015-01-15

    One-pot deposition of Au onto TiO{sub 2} has been achieved through directly contacting gold (III) salt with nanosized functionalized TiO{sub 2} support initially obtained by sol–gel process using titanium isopropoxide and citric acid. Citrate groups act as functional moieties able to directly reduce the Au salt avoiding any further reducing treatment. Various gold salts (NaAuCl{sub 4}·2H{sub 2}O or HAuCl{sub 4}·3H{sub 2}O) and titanium to citrate (Ti/Cit) molar ratios (20, 50 and 100) were used in order to study the effect of the nature of the precursor and of the citrate content on the final Au particle size and catalytic properties of the as-obtained Au/TiO{sub 2} materials. Au/(TiO{sub 2}){sub x}(Cit){sub 1} catalysts characterization was performed using N{sub 2} adsorption–desorption, ICP-AES, X-ray diffraction and TEM. The effect of the Ti/Cit molar ratio and of the gold precursor was evaluated. The selective oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) was studied as a model reaction. Kinetic analysis showed that the catalytic reaction rate was pseudo first-order and the values of activation energy have been reported. Results showed that the functionalization of TiO{sub 2} by citrate allows tuning the size of the Au nanoparticles deposited onto TiO{sub 2} as well as their morphology. Citrate also strongly enhances the benzyl alcohol oxidation through the control of the size and morphology of gold nanoparticles. - Highlights: • One-pot deposition of Au onto TiO{sub 2} has been achieved. • Citrates act as active sites for selective deposition and reduction of gold. • The presence of citrates influences the size and the morphology of gold NPs. • Au NPs with well-defined morphologies were obtained for Cit/Ti molar ratio of 100. • The selective oxidation of benzyl alcohol was studied as a model reaction.

  15. Myths about drinking alcohol

    Science.gov (United States)

    ... to. I spend a lot of time getting alcohol, drinking alcohol, or recovering from the effects of alcohol. ... Institute on Alcohol Abuse and Alcoholism. Overview of Alcohol Consumption. www.niaaa.nih.gov/alcohol-health/overview-alcohol- ...

  16. Nitric oxide levels in the anterior chamber of vitrectomized eyes with silicon oil

    Directory of Open Access Journals (Sweden)

    Paulo Escarião

    2013-10-01

    Full Text Available PURPOSE: To investigate the nitric oxide levels in the anterior chamber of eyes who underwent pars plana vitrectomy (PPV with silicone oil. METHODS: Patients who underwent PPV with silicon oil injection, from february 2005 to august 2007, were selected. Nine patients (nine eyes participated in the study (five women and four men. Nitric oxide concentration was quantified after the aspiration of aqueous humor samples during the procedure of silicon oil removal. Data such as: oil emulsification; presence of oil in the anterior chamber; intraocular pressure and time with silicone oil were evaluated. Values of p <0.05 were considered to be statistically significant. RESULTS: A positive correlation between nitric oxide concentration and time with silicon oil in the vitreous cavity (r=0.799 was observed. The nitric oxide concentration was significantly higher (p=0.02 in patients with silicon oil more than 24 months (0.90µmol/ml ± 0.59, n=3 in the vitreous cavity comparing to patients with less than 24 months (0.19µmol/ml ± 0.10, n=6. CONCLUSION: A positive correlation linking silicone oil time in the vitreous cavity with the nitric oxide concentration in the anterior chamber was observed.

  17. Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology.

    Science.gov (United States)

    Volinsky, Roman; Kinnunen, Paavo K J

    2013-06-01

    The oxidation of lipids has been shown to impact virtually all cellular processes. The paradigm has been that this involvement is due to interference with the functions of membrane-associated proteins. It is only recently that methodological advances in molecular-level detection and identification have begun to provide insights into oxidative lipid modification and its involvement in cell signaling as well as in major diseases and inflammation. Extensive evidence suggests a correlation between lipid peroxidation and degenerative neurological diseases such as Parkinson's and Alzheimer's, as well as type 2 diabetes and cancer. Despite the obvious relevance of understanding the molecular basis of the above ailments, the exact modes of action of oxidized lipids have remained elusive. In this minireview, we summarize recent findings on the biophysical characteristics of biomembranes following oxidative derivatization of their lipids, and how these altered properties are involved in both physiological processes and major pathological conditions. Lipid-bearing, oxidatively truncated and functionalized acyl chains are known to modify membrane bulk physical properties, such as thermal phase behavior, bilayer thickness, hydration and polarity profiles, as manifest in the altered structural dynamics of lipid bilayers, leading to augmented membrane permeability, fast lipid transbilayer diffusion (flip-flop), loss of lipid asymmetry (scrambling) and phase segregation (the formation of 'rafts'). These changes, together with the generated reactive lipid derivatives, can be further expected to interfere with lipid-protein interactions, influencing metabolic pathways, causing inflammation, the execution phase in apoptosis and initiating pathological processes. PMID:23506295

  18. Coenzyme Q10 in human blood: native levels and determinants of oxidation during processing and storage.

    Science.gov (United States)

    Franke, Adrian A; Morrison, Cynthia M; Bakke, Jesse L; Custer, Laurie J; Li, Xingnan; Cooney, Robert V

    2010-06-15

    Coenzyme Q10 (Q10) is present in the circulation mainly in its reduced form (ubiquinol-10; UL10), but oxidizes quickly ex vivo to ubiquinone-10 (UN10). Therefore, native UL10:UN10 ratios, used as markers of redox status and disease risk, are difficult to measure. We established an RP-(U)HPLC method with coulometric detection to measure natively circulating UL10 and UN10 concentrations by adding a ubiquinol/ubiquinone mixture as an internal standard immediately after plasma preparation. This allowed adjustment for unavoidable artificial UL10 oxidation as well as for total losses (or gains) of analytes during sample storage, processing, and analysis because the internal standards exactly paralleled the chemical behavior of Q10. This technique applied to blood (n = 13) revealed Q10 levels of 680-3300 nM with a mean UL10:UN10 ratio of 95:5, which was inversely associated with total Q10 (r=-0.69; p=0.004). The oxidation of UL10 to UN10 was equimolar, increased by O(2), and decreased by lower temperatures or various degassing methods. Although UL10 was stable in blood or when pure in organic solvents at 22 degrees C, its oxidation was catalyzed dose dependently by alpha-tocopherol and butylated hydroxytoluene, particularly when present in combination. Key structural features for the catalytic pro-oxidant properties of phenolic antioxidants included two substituents vicinal to the phenolic hydroxyl group. PMID:20226852

  19. Ruthenium/1,1 '-Bis(diphenylphosphino)ferrocene-Catalysed Oppenauer Oxidation of Alcohols and Lactonisation of alpha,omega-Diols using Methyl Isobutyl Ketone as Oxidant

    NARCIS (Netherlands)

    Nicklaus, Celine M.; Phua, Pim Huat; Buntara, Teddy; Noel, Sebastien; Heeres, Hero J.; de Vries, Johannes G.

    2013-01-01

    A number of ruthenium catalysts, made in situ from [Ru(p-cymene)Cl-2](2) and various monodentate and bidentate phosphorus ligands were screened in the double Oppenauer oxidation of 1,6-hexanediol to caprolactone using methyl isobutyl ketone as oxidant and potassium carbonate as base. The catalyst ba

  20. Levels of oxidative stress parameters and the protective effects of melatonin in psychosis model rat testis

    Institute of Scientific and Technical Information of China (English)

    Bekir S.Parlaktas; Birsen Ozyurt; Huseyin Ozyurt; Ayten T.Tunc; Ali Akbas

    2008-01-01

    Aim: To evaluate the effects of melatonin on antioxidant enzyme levels and histopathologic changes in dizocilpine (MK-801)-induced psychosis model rat testis. Methods: A total of 24 adult male Wistar-Albino rats were divided into three groups with 8 in each. Group Ⅰ was used as control. Rats in Group Ⅱ were injected with MK-801 (0.5 mg/kg body weight i.p. for 5 days). In addition to MK-801, melatonin (50 mg/kg body weight i.p. once a day for 5 days) was injected into the rats in Group Ⅲ. The testes were harvested bilaterally for biochemical and histopathological examinations. Antioxidant enzyme activities, malondialdehyde, protein carbonyl and nitric oxide (NO) levels in tes-ticular tissues were analyzed using spectrophotometric analysis methods. Histopathological examinations of the testes were also performed. Results: MK-801 induced testicular damage, which resulted in significant oxidative stress (OS) by increasing the levels of antioxidant enzymes. The malondialdehyde, protein carbonyl and NO levels were increased in testicular tissues of rats. Treatment with melatonin led to significant decrease in oxidative injury.Administration of melatonin also reduced the detrimental histopathologic effects caused by MK-801. Conclusion:The results of the present study showed that MK-801 cause OS in testicular tissues of rats and treatment with melatonin can reduce the harmful effects of MK-801.

  1. Relationship of Serum Trimethylamine N-Oxide (TMAO) Levels with early Atherosclerosis in Humans.

    Science.gov (United States)

    Randrianarisoa, Elko; Lehn-Stefan, Angela; Wang, Xiaolin; Hoene, Miriam; Peter, Andreas; Heinzmann, Silke S; Zhao, Xinjie; Königsrainer, Ingmar; Königsrainer, Alfred; Balletshofer, Bernd; Machann, Jürgen; Schick, Fritz; Fritsche, Andreas; Häring, Hans-Ulrich; Xu, Guowang; Lehmann, Rainer; Stefan, Norbert

    2016-01-01

    Circulating trimethylamine N-Oxide (TMAO) levels predict cardiovascular disease (CVD), possibly by impacting on cholesterol metabolism and oxidative stress. Because hepatic TMAO production is regulated by insulin signalling and it is unclear whether and to what extent circulating TMAO levels associate with CVD risk, independently of insulin resistance and its important determinants fatty liver and visceral obesity, we have now addressed this question in 220 subjects who participated in the Tübingen Lifestyle Intervention Program. Visceral fat mass (r = 0.40, p insulin sensitivity associated negatively (r = -0.18, p = 0.009) with carotid intima-media thickness (cIMT). Higher TMAO levels (std.-Beta 0.11, p = 0.03) predicted increased cIMT, independently of age, sex and visceral fat mass. While during the lifestyle intervention most cardiovascular risk parameters improved, mean TMAO levels did not change (p = 0.18). However, cIMT decreased significantly (p = 0.0056) only in subjects in the tertile with the largest decrease of TMAO levels (>20%). We provide novel information that increased serum TMAO levels associate with increased cIMT, independently of established cardiovascular risk markers, including insulin resistance, visceral obesity and fatty liver. Furthermore, the decrease of cIMT during a lifestyle intervention may be related to the decrease of TMAO levels. PMID:27228955

  2. Level of nitric oxide in hypertensive patients scheduled on general anaesthesia.

    Science.gov (United States)

    Shirgoska, B; Trajkovska, T; Soljakova, M; Simjanovska, L; Isijanovska, R; Netkovski, J; Efremov, G D

    2005-08-01

    In this prospective study we have analysed the level of nitric oxide in hypertensive patients scheduled for general anaesthesia. In the study were included thirty-four patients with chronicle inflammatory disease of the middle ear who have undergone surgical treatment at the Clinic for Ear, Nose and Throat Surgery. The aim of our study was to determine the plasma level of nitric oxide (NO) and its effects on the circulatory system in hypertensive patients during the general anaesthesia maintained with inhalation of oxygen and nitrous oxide (O2/N2O) mixture. Patients were divided in two groups. During the maintenance of general anaesthesia the patients from the first group were ventilated with O2/N2O, while patients from the second group were ventilated with oxygen and air (O2/air) mixture. The other principles during the general anaesthesia were equal for both groups. For determination of the NO plasma levels we have used the enzymatic method according to Conrad et al., 1993. Our results showed that there is a statistically significant difference of NO plasma level between the two groups. The level of NO was higher in the first group (ventilated with O2/N2O) compared to the second group (ventilated with O/air). The mean arterial pressure and systemic vascular resistance were significantly decreased in the first group, as well. Our results suggest that nitrous oxide (N2O) most probably plays the role of NO donor in hypertensive patients during the maintenance of the general anaesthesia with N2O/O2 mixture. PMID:16118611

  3. Pathophysiology of alcoholic pancreatitis: An overview

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Priya Gupta

    2006-01-01

    Use of alcohol is a worldwide habit regardless of socioeconomic background. Heavy alcohol consumption is a potential risk factor for induction of pancreatitis. The current review cites the updated literature on the alcohol metabolism, its effects on gastrointestinal and pancreatic function and in causing pancreatic injury, genetic predisposition of alcohol induced pancreatitis. Reports describing prospective mechanisms of action of alcohol activating the signal transduction pathways, induction of oxidative stress parameters through the development of animal models are being presented.

  4. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  5. The NIfETy Method for Environmental Assessment of Neighborhood-level Indicators of Violence, Alcohol, and Other Drug Exposure

    OpenAIRE

    Furr-Holden, C. D. M.; Smart, M. J.; Pokorni, J. L.; Ialongo, N. S.; Leaf, P. J.; Holder, H D; Anthony, J. C.

    2008-01-01

    There are limited validated quantitative assessment methods to measure features of the built and social environment that might form the basis for environmental preventive interventions. This study describes a model approach for epidemiologic assessment of suspected environmental determinants of violence, alcohol and other drug (VAOD) exposure and fills this gap in current research. The investigation sought to test the feasibility of a systematic and longitudinal assessment of residential bloc...

  6. Nanoplasmonic Photoluminescence Spectroscopy at Single-Particle Level: Sensing for Ethanol Oxidation.

    Science.gov (United States)

    Zheng, Zhaoke; Majima, Tetsuro

    2016-02-18

    Surface plasmon resonances of metal nanoparticles have shown significant promise for the use of solar energy to drive catalytic chemical reactions. More importantly, understanding and monitoring such catalytic reactions at single-nanoparticle level is crucial for the study of local reaction processes. Herein, using plasmonic photoluminescence (PL) spectroscopy, we describe a novel sensing method for catalytic ethanol oxidation reactions at the single-nanoparticle level. The Au nanorod monitors the interfacial interaction with ethanol during the catalytic reaction through the PL intensity changes in the single-particle PL spectra. The analysis of energy relaxation of excited electron-hole pairs indicates the relationship between the PL quenching and ethanol oxidation reaction on the single Au nanorod.

  7. A facile and general strategy for the synthesis of porous flowerlike Pt-based nanocrystals as effective electrocatalysts for alcohol oxidation.

    Science.gov (United States)

    Huang, Da-Bing; Yuan, Qiang; He, Pei-Lei; Wang, Kai; Wang, Xun

    2016-08-21

    In this paper, porous flowerlike Pt-based (Pt, PdPt, RhPt and RhPdPt) nanocrystals were successfully achieved by a simple, economic, environmentally friendly route under the same synthetic conditions at 85 °C. The electrocatalytic properties of these flowerlike Pt-based nanocrystals toward alcohols (glycol, glycerol, methanol and ethanol) oxidation were investigated and they displayed enhanced catalytic performance compared with commercial Pt black. Among them, porous Pd45.5Pt54.5 nanoflowers showed the best catalytic performance with significant mass activity and long-term stability. More importantly, the current synthesis strategy can be easily amplified to gram-scale production. PMID:27443246

  8. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters.

    Science.gov (United States)

    Kaizuka, Kosuke; Miyamura, Hiroyuki; Kobayashi, Shū

    2010-11-01

    Selective oxidation of alcohols catalyzed by novel carbon-stabilized polymer-incarcerated bimetallic nanocluster catalysts using molecular oxygen has been developed. The reactivity and the selectivity were strongly dependent on the combination of metals and solvent systems; aldehydes and ketones were obtained by the gold/platinum catalyst in benzotrifluoride, and esters were formed by the gold/palladium catalyst in methanol. To the best of our knowledge, this is the first example that the reaction pathway has been changed dramatically in gold catalysis by combining with a second metal. The differences in the activity and the selectivity are considered to be derived from the difference in the structure of the bimetallic clusters.

  9. Selective Alcohol Oxidation by a Copper TEMPO Catalyst: Mechanistic Insights by Simultaneously Coupled Operando EPR/UV-Vis/ATR-IR Spectroscopy.

    Science.gov (United States)

    Rabeah, Jabor; Bentrup, Ursula; Stößer, Reinhard; Brückner, Angelika

    2015-09-28

    The first coupled operando EPR/UV-Vis/ATR-IR spectroscopy setup for mechanistic studies of gas-liquid phase reactions is presented and exemplarily applied to the well-known copper/TEMPO-catalyzed (TEMPO=(2,2,6,6-tetramethylpiperidin-1-yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and Cu(I) /Cu(II) has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)Cu(II) -O2 (⋅-) -TEMPO (bpy=2,2'-bipyridine, NMI=N-methylimidazole) intermediate formed by electron transfer from Cu(I) to molecular O2 . PMID:26174141

  10. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation

    Science.gov (United States)

    Jiang, Tongtong; Jia, Chuancheng; Zhang, Lanchun; He, Shuren; Sang, Yuanhua; Li, Haidong; Li, Yanqing; Xu, Xiaohong; Liu, Hong

    2014-11-01

    Plasmonic photocatalysts composed of Au and bimetallic Au-Pd alloy nanoparticles (NPs) on one-dimensional TiO2 nanobelts (TiO2-NBs) were used for the aerobic oxidation of benzyl alcohol under visible light irradiation. Remarkable light-promoted activity was observed for the as-synthesized M/TiO2-NB (M = Au, Au-Pd) nanostructures based on the TiO2(B)/anatase heterostructured nanobelt. The difference in band structure and the well matched interface between the TiO2(B) and anatase phases, coupled with the one-dimensional nanostructure, enable an enhanced charge transfer within the heterostructured nanobelt. This inter-phase charge transfer greatly facilitates the flow of hot electrons from the metal NPs to TiO2 and promotes benzyl alcohol oxidation. This efficient electron transfer was identified by the much higher photocurrent response measured for the Au/TiO2-NB nanostructure with the TiO2(B)/anatase heterojunction than those with either of the single phases under visible light irradiation. Alloying Au with Pd in Au-Pd/TiO2-NB results in a significant improvement in the visible light-promoted activity compared to the monometallic Au/TiO2-NB sample. It is supposed that the plasmon-mediated charge distribution within the alloy NPs is mainly responsible for the enhanced photocatalytic activity of the bimetallic nanostructures.Plasmonic photocatalysts composed of Au and bimetallic Au-Pd alloy nanoparticles (NPs) on one-dimensional TiO2 nanobelts (TiO2-NBs) were used for the aerobic oxidation of benzyl alcohol under visible light irradiation. Remarkable light-promoted activity was observed for the as-synthesized M/TiO2-NB (M = Au, Au-Pd) nanostructures based on the TiO2(B)/anatase heterostructured nanobelt. The difference in band structure and the well matched interface between the TiO2(B) and anatase phases, coupled with the one-dimensional nanostructure, enable an enhanced charge transfer within the heterostructured nanobelt. This inter-phase charge transfer greatly

  11. Serum Levels of Stress Hormones and Oxidative Stress Biomarkers Differ according to Sasang Constitutional Type

    Directory of Open Access Journals (Sweden)

    Hyeong Geug Kim

    2015-01-01

    Full Text Available Objectives. This study investigated whether Sasang constitutional type is associated with differences in the serum levels of stress hormones and oxidative stress. Methods. A total of 236 participants (77 males and 159 females were enrolled. The serum levels of cortisol, adrenaline, reactive oxygen species (ROS, and malondialdehyde (MDA were analyzed. Results. The distribution of Sasang constitutional types was as follows: Taeumin, 35.6%; Soumin, 33.0%; and Soyangin, 31.4%. The serum cortisol levels of Taeumin were significantly lower than Soumin (p<0.1 in both sexes and Soyangin (p<0.05 in males and p<0.1 in females. The adrenaline levels were also significantly lower in Taeumin than in Soumin (p<0.05 in males and p<0.1 in females and Soyangin (p<0.1 in males. Serum ROS levels were significantly higher in Soyangin than in Taeumin and Soumin (p<0.05 in males, whereas MDA levels were significantly lower in Taeumin compared with Soumin and Soyangin (p<0.05 in males and p<0.1 in females. Conclusion. Taeumin type may tolerate psychological or oxidative stress better than other types, which suggests a biological mechanism to explain the different pathophysiological features of Sasang constitutional types.

  12. Effects of composite restorations on nitric oxide and uric acid levels in saliva

    OpenAIRE

    Nilgun Akgul; Pinar Gul; Hamit Hakan Alp; Ahmet Kiziltunc

    2015-01-01

    Background and Aims: Dental materials that are used in dentistry should be harmless to oral tissues, and should, therefore, not contain any leachable toxic and diffusible substances capable of causing side effects. This study was intended to investigate the effects on salivary nitric oxide (NO) and uric acid (UA) levels after application of dental composite filling materials to healthy volunteers. Materials and Methods: A total of 52 individuals (32 female and 20 male) participated in the stu...

  13. Mulberry Fruit Mitigates Alcohol Neurotoxicity and Memory Impairment Induced by Chronic Alcohol Intake

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2012-01-01

    Full Text Available Problem statement: To date, the therapeutic strategy efficacy against memory impairment induced by alcohol intoxication is still limited. The novel therapeutic strategy which is easy to approach, less toxic and less cost is required. Based on the role of oxidative stress in memory impairment induced by alcohol, the neuroprotective effect of substance possessing antioxidant has gained much attention. Therefore, we aimed to determine the effect of Morus alba fruits, substance possessing antioxidant, on spatial memory and brain damage in hippocampus. Approach: Male Wistar rats were induced alcoholism by increasing the alcohol concentration in drinking water gradually increased to 30% within 15-week period. Then, the alcoholic rats were orally given mulberry fruits powder at doses of 2, 10 and 50 mg kg-1 BW at a period of 14 days. The memory was assessed using Morris water maze after single administration and every 7 days until the end of the experimental period and at the end of experiment, hippocampus was isolated and determined the neuron density. In addition, the evaluation of Acetylcholinesterase (AChE activity and Malondialdehyde (MDA level were also performed. Results: Our results showed that all doses of mulberry fruits enhanced spatial memory and neurons density in hippocampus. The suppression of both AChE activity and MDA level were also observed. These results suggested that the neuroprotection of mulberry fruits might occur partly via the decreased oxidative stress damage while the cognitive enhancing effect might occur partly via the increased hippocampal neuron density and the suppression of AChE activity. Conclusion: Mulberry fruits can protect against brain damage and memory impairment induced by alcoholism. Therefore, mulberry fruits may be served as natural resource for developing food supplement against alcoholism. However, further researches about possible active ingredient and pharmacokinetic are required before moving forward

  14. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    DA LUZ PROTASIO L.

    2001-01-01

    Full Text Available Atherosclerosis is manifested as coronary artery disease (CAD, ischemic stroke and peripheral vascular disease. Moderate alcohol consumption has been associated with reduction of CAD complications. Apparently, red wine offers more benefits than any other kind of drinks, probably due to flavonoids. Alcohol alters lipoproteins and the coagulation system. The flavonoids induce vascular relaxation by mechanisms that are both dependent and independent of nitric oxide, inhibits many of the cellular reactions associated with atherosclerosis and inflammation, such as endothelial expression of vascular adhesion molecules and release of cytokines from polymorphonuclear leukocytes. Hypertension is also influenced by the alcohol intake. Thus, heavy alcohol intake is almost always associated with systemic hypertension, and hence shall be avoided. In individuals that ingest excess alcohol, there is higher risk of coronary occlusion, arrhythmias, hepatic cirrhosis, upper gastrointestinal cancers, fetal alcohol syndrome, murders, sex crimes, traffic and industrial accidents, robberies, and psychosis. Alcohol is no treatment for atherosclerosis; but it doesn't need to be prohibited for everyone. Thus moderate amounts of alcohol (1-2 drinks/day, especially red wine, may be allowed for those at risk for atherosclerosis complications.

  15. Cytokine profile and nitric oxide levels in sera from patients with brucellosis

    OpenAIRE

    Refik M.; Mehmet N.; Durmaz R.; Ersoy Y.

    2004-01-01

    The aims of this study were to investigate the serum levels of some cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin 1ß (IL-1ß), IL-2R, IL-6, and IL-8] and nitric oxide (NO) levels in patients with untreated brucellosis and to test the correlation of these parameters with each other. The study was conducted on 67 subjects, 37 patients with brucellosis and 30 healthy individuals with no history of Brucella infection. Brucellosis was identified by a positive blood culture and/or ...

  16. National Institute on Alcohol Abuse and Alcoholism

    Science.gov (United States)

    Skip to main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use ...

  17. Photochemical modelling of photo-oxidant levels over the Swiss plateau and emission reduction scenarios

    International Nuclear Information System (INIS)

    During summertime high pressure conditions, high photo-oxidant (O3, H2O2, PAN and others) levels are frequently observed in the planetary boundary layer in central Europe. It is well known that close to the earth's surface ozone is formed by complex reactions involving VOC, NOx, and sunlight. Substantial reductions of both precursors are needed to reduce photo-oxidant levels. In this context the reductions of the abundance of the precursors and the variation of their ratios is of great importance. Here we report model calculations from the Harwell Photochemical Trajectory Model of the levels of O3, H2O2 and PAN along a trajectory over the Swiss Plateau from Lake Constance to Lake Geneva. These calculations are in satisfactory agreement with measurements made during the intensive observation period of the research program POLLUMET (Pollution and Meteorology in Switzerland). Sensitivity calculations of emission reduction scenarios indicate that on the Swiss Plateau the ozone production may be mainly NOx-limited; under conditions where the CO levels are closer to the upper limit within the range (120-600 ppbv). The calculated peak ozone level reduction caused by an exclusive NOx-emission reduction is about three times larger than that caused by an exclusive VOC reduction. The combined reduction of all precursor compounds is the most efficient strategy, although it is only marginally more efficient than the NOx-reduction scenario alone. (author) figs., tabs., 75 refs

  18. Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride-Molecular Ni Catalyst System.

    Science.gov (United States)

    Kasap, Hatice; Caputo, Christine A; Martindale, Benjamin C M; Godin, Robert; Lau, Vincent Wing-Hei; Lotsch, Bettina V; Durrant, James R; Reisner, Erwin

    2016-07-27

    Solar water-splitting represents an important strategy toward production of the storable and renewable fuel hydrogen. The water oxidation half-reaction typically proceeds with poor efficiency and produces the unprofitable and often damaging product, O2. Herein, we demonstrate an alternative approach and couple solar H2 generation with value-added organic substrate oxidation. Solar irradiation of a cyanamide surface-functionalized melon-type carbon nitride ((NCN)CNx) and a molecular nickel(II) bis(diphosphine) H2-evolution catalyst (NiP) enabled the production of H2 with concomitant selective oxidation of benzylic alcohols to aldehydes in high yield under purely aqueous conditions, at room temperature and ambient pressure. This one-pot system maintained its activity over 24 h, generating products in 1:1 stoichiometry, separated in the gas and solution phases. The (NCN)CNx-NiP system showed an activity of 763 μmol (g CNx)(-1) h(-1) toward H2 and aldehyde production, a Ni-based turnover frequency of 76 h(-1), and an external quantum efficiency of 15% (λ = 360 ± 10 nm). This precious metal-free and nontoxic photocatalytic system displays better performance than an analogous system containing platinum instead of NiP. Transient absorption spectroscopy revealed that the photoactivity of (NCN)CNx is due to efficient substrate oxidation of the material, which outweighs possible charge recombination compared to the nonfunctionalized melon-type carbon nitride. Photoexcited (NCN)CNx in the presence of an organic substrate can accumulate ultralong-lived "trapped electrons", which allow for fuel generation in the dark. The artificial photosynthetic system thereby catalyzes a closed redox cycle showing 100% atom economy and generates two value-added products, a solar chemical, and solar fuel.

  19. Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride-Molecular Ni Catalyst System.

    Science.gov (United States)

    Kasap, Hatice; Caputo, Christine A; Martindale, Benjamin C M; Godin, Robert; Lau, Vincent Wing-Hei; Lotsch, Bettina V; Durrant, James R; Reisner, Erwin

    2016-07-27

    Solar water-splitting represents an important strategy toward production of the storable and renewable fuel hydrogen. The water oxidation half-reaction typically proceeds with poor efficiency and produces the unprofitable and often damaging product, O2. Herein, we demonstrate an alternative approach and couple solar H2 generation with value-added organic substrate oxidation. Solar irradiation of a cyanamide surface-functionalized melon-type carbon nitride ((NCN)CNx) and a molecular nickel(II) bis(diphosphine) H2-evolution catalyst (NiP) enabled the production of H2 with concomitant selective oxidation of benzylic alcohols to aldehydes in high yield under purely aqueous conditions, at room temperature and ambient pressure. This one-pot system maintained its activity over 24 h, generating products in 1:1 stoichiometry, separated in the gas and solution phases. The (NCN)CNx-NiP system showed an activity of 763 μmol (g CNx)(-1) h(-1) toward H2 and aldehyde production, a Ni-based turnover frequency of 76 h(-1), and an external quantum efficiency of 15% (λ = 360 ± 10 nm). This precious metal-free and nontoxic photocatalytic system displays better performance than an analogous system containing platinum instead of NiP. Transient absorption spectroscopy revealed that the photoactivity of (NCN)CNx is due to efficient substrate oxidation of the material, which outweighs possible charge recombination compared to the nonfunctionalized melon-type carbon nitride. Photoexcited (NCN)CNx in the presence of an organic substrate can accumulate ultralong-lived "trapped electrons", which allow for fuel generation in the dark. The artificial photosynthetic system thereby catalyzes a closed redox cycle showing 100% atom economy and generates two value-added products, a solar chemical, and solar fuel. PMID:27337491

  20. Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride–Molecular Ni Catalyst System

    Science.gov (United States)

    2016-01-01

    Solar water-splitting represents an important strategy toward production of the storable and renewable fuel hydrogen. The water oxidation half-reaction typically proceeds with poor efficiency and produces the unprofitable and often damaging product, O2. Herein, we demonstrate an alternative approach and couple solar H2 generation with value-added organic substrate oxidation. Solar irradiation of a cyanamide surface-functionalized melon-type carbon nitride (NCNCNx) and a molecular nickel(II) bis(diphosphine) H2-evolution catalyst (NiP) enabled the production of H2 with concomitant selective oxidation of benzylic alcohols to aldehydes in high yield under purely aqueous conditions, at room temperature and ambient pressure. This one-pot system maintained its activity over 24 h, generating products in 1:1 stoichiometry, separated in the gas and solution phases. The NCNCNx–NiP system showed an activity of 763 μmol (g CNx)−1 h–1 toward H2 and aldehyde production, a Ni-based turnover frequency of 76 h–1, and an external quantum efficiency of 15% (λ = 360 ± 10 nm). This precious metal-free and nontoxic photocatalytic system displays better performance than an analogous system containing platinum instead of NiP. Transient absorption spectroscopy revealed that the photoactivity of NCNCNx is due to efficient substrate oxidation of the material, which outweighs possible charge recombination compared to the nonfunctionalized melon-type carbon nitride. Photoexcited NCNCNx in the presence of an organic substrate can accumulate ultralong-lived “trapped electrons”, which allow for fuel generation in the dark. The artificial photosynthetic system thereby catalyzes a closed redox cycle showing 100% atom economy and generates two value-added products, a solar chemical, and solar fuel. PMID:27337491

  1. Blood Levels of Oxidant/Antioxidant Parameters in Rats Infected with Toxoplasma gondii

    Science.gov (United States)

    Shahriari, Ali; Tavalla, Mehdi; Azadmanesh, Somayeh; Hamidinejat, Hossein

    2016-01-01

    Toxoplasmosis is a common parasitic infection in the world. Since increased free radicals and oxidative stress are reported in many parasitic diseases the purpose of the present study was to evaluate the oxidative stress in acute and chronic toxoplasmosis. RH strains of Toxoplasma tachyzoites were used in the present study. Twenty-five female rats were infected with the parasite while 25 other rats were as the control group that received normal saline. Zero-, 5-, 7-, 10-, and 45-day postinfection (DPI) blood samples were taken. Some parameters related to oxidant and antioxidants such as antioxidant enzymes, malondialdehyde, and total antioxidant capacity were measured. On day 7 after infection, GPX activity and GSH level were significantly increased and in the mentioned day the amount of total antioxidant capacity was significantly reduced. In other cases, there were no significant differences between the groups in different days. Overall, based on the results it seems that, on day 7 after infection, in infected rats responses to oxidative stress were triggered and led to decrease of total antioxidant capacity. Furthermore, glutathione was increased to cope with stress. It seems that probably antioxidant defense system entered the infection to the chronic phase and changed the parasites stage. PMID:27746857

  2. Effects of glucocorticoid dexamethasone on serum nitric oxide synthase activity and nitric oxide levels in a rat model of lung disease-induced brain injury

    Institute of Scientific and Technical Information of China (English)

    Huajun Li; Ligang Jiang; Meng Xia; Haiping Li; Fanhua Meng; Wei Li; Lifeng Liu; Zhaohui Wang

    2011-01-01

    In this study, we investigated the effects of dexamethasone, pertussis toxin (a Gi protein inhibitor), and actinomycin (a transcription inhibitor) on serum nitric oxide synthase activity and nitric oxide content in a rat model of lung disease-induced brain injury. High-dose dexamethasone (13 mg/kg) and dexamethasone + actinomycin reduced lung water content, increased serum nitric oxide synthase activity and nitric oxide content, diminished inflammatory cell infiltration in pulmonary alveolar interstitium, attenuated meningeal vascular hyperemia, reduced glial cell infiltration, and decreased cerebral edema. These results demonstrate that high-dose glucocorticoid treatment can reduce the severity of lung disease-induced brain injury by increasing nitric oxide synthase activity and nitric oxide levels.

  3. Levels of lipid peroxidation, nitric oxide, and antioxidant vitamins in plasma of patients with fibromyalgia.

    Science.gov (United States)

    Akkuş, Selami; Naziroğlu, Mustafa; Eriş, Sevilay; Yalman, Kadir; Yilmaz, Nigar; Yener, Mahmut

    2009-06-01

    The etiology of fibromyalgia is not clearly understood. In recent years, a few studies have investigated the possible role of reactive oxygen species (ROS) in the etiology and pathogenesis of fibromyalgia. The aim of this study was to investigate plasma antioxidant vitamins, lipid peroxidation (LP), and nitric oxide (NO) levels in patients with fibromyalgia and controls. The study was performed on the blood plasma of 30 female patients and 30 age-matched controls. After a fast of 12 h, blood samples were taken, and plasma samples were obtained for measurement of vitamins A, C, E, and beta-carotene concentrations and levels of LP and NO. Concentrations of vitamins A (p fibromyalgia than in controls, and LP levels were significantly (p vitamin C and beta-carotene and levels of NO did not change significantly. These results provide some evidence for a potential role of LP and fat-soluble antioxidants in the patients with fibromyalgia. PMID:19319826

  4. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Rad

    2013-11-01

    Full Text Available Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods:For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands of patients admitted to Alzahra obstetric and gynecology hospital, according to WHO standards. The infertile men were selected from patients referred to infertility ward. Blood sampling from the participants carried out at a specific time, sera collected and the levels of malondialdehyde, total antioxidant capacity and Melatonin were detected in the sera. The data were analyzed using t-test and Sperman's correlation method. Results: Melatonin level in the sera from fertile men were 522 (39.32 ng/L and in infertile men were 511.78 (34.6 ng/L. MDA level in fertile and infertile men were 2.26 (0.34 vs 2.99 (0.44 nmol/ml which was significantly different. The level of TAC in the sera from fertile men were significantly higher than in infertile men. The result obtained for correlation coefficient Spearman's test revealed a significant, strong and direct correlation between Melatonin and TAC and a significant and reverse correlation between melatonin and MDA.Conclusion: It is concluded that melatonin could be involved in infertility. In other word, melatonin treatment and antioxidant-rich nutrition could help fertility by combating oxidative stress.

  5. Information on Blood Alcohol Concentration: Evaluation of Two Alcohol Nomograms.

    Science.gov (United States)

    Werch, Chudley E.

    1988-01-01

    Compared utility of two common alcohol nomograms on impacting decisions regarding drinking, driving after drinking, knowledge of relationship between personal alcohol consumption and the legal level of intoxication, and consumer evaluation measures, to utility of alcohol information warning card. Nomograms were no more effective than cards warning…

  6. THE ANALYSIS OF FIVE COMPETITIVE FORCES OF NON-ALCOHOLIC BEVERAGE INDUSTRY AND E-COMMERCE INDUSTRY CASES AT THE GLOBAL LEVEL

    OpenAIRE

    Manuel, Eduardo

    2007-01-01

    This paper has as objective to do an analysis of five competitive forces of non-alcoholic industry and e-commerce industry at the global level. The state of five competitive forces in both industries will depend always of evolution of these industries and government policies of the different countries of the world. For example if these industries are growing and if the govern permit others companies can enter into industry and can help to promote the competition in these industries, that i...

  7. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    Science.gov (United States)

    Escobar, Jorge; Varela-Nallar, Lorena; Coddou, Claudio; Nelson, Pablo; Maisey, Kevin; Valdés, Daniel; Aspee, Alexis; Espinosa, Victoria; Rozas, Carlos; Montoya, Margarita; Mandiola, Cristian; Rodríguez, Felipe E.; Acuña-Castillo, Claudio; Escobar, Alejandro; Fernández, Ricardo; Diaz, Hernán; Sandoval, Mario; Imarai, Mónica; Rios, Miguel

    2010-01-01

    Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance. PMID:21253489

  8. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    Directory of Open Access Journals (Sweden)

    Jorge Escobar

    2010-01-01

    Full Text Available Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance.

  9. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations.

    Science.gov (United States)

    Sharma, Vyom; Collins, Leonard B; Chen, Ting-Huei; Herr, Natalie; Takeda, Shunichi; Sun, Wei; Swenberg, James A; Nakamura, Jun

    2016-05-01

    DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging. PMID:27015367

  10. Evaluation of Serum Nitric Oxide level in Patients with Oral Lichen Planus

    Directory of Open Access Journals (Sweden)

    Mehdipour M.

    2014-06-01

    Full Text Available Statement of Problem: Oral lichen planus (OLP is a chronic inflammatory oral mucosal disease with indefinite etiology. In recent researches, free radicals have been deliberated as the possible etiology of inflammatory and autoimmune diseases. Purpose: This study aimed to evaluate the stress oxidative status with the nitric oxide (NO index in a sample of Iranian population. Materials and Method: In this descriptive-comparative study; serum NO level was assessed in 20 OLP patients as the case group and 20 healthy individuals as the control group. Collected data were analyzed by adopting two Sample t-test; using SPSS 16 software. Statistical significance level was set at p < 0.05. Results: The mean serum NO levels in OLP patients and healthy controls were 17.1±3.4 ng/ml and 14.5±2.7 ng/ml respectively; which revealed a significant statistic-al difference (p= 0.009. Conclusions: The results of the current study with its limitation may support the premise that higher serum levels of NO in patients with OLP might activate the process of lymphocytes and cellular immunity system; hence, possibly endorsing the effect of serum NO in pathogenesis of lichen planus.

  11. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Higuchi, Nobito; Kato, Masaki; Tanaka, Masatake; Miyazaki, Masayuki; Takao, Shinichiro; Kohjima, Motoyuki; Kotoh, Kazuhiro; Enjoji, Munechika; Nakamuta, Makoto; Takayanagi, Ryoichi

    2011-11-01

    Non-alcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, which is known to be associated with insulin resistance (IR). NAFLD occurs when the rate of hepatic fatty acid uptake from plasma and de novo fatty acid synthesis is greater than the rate of fatty acid oxidation and excretion as very low-density lipoprotein (VLDL). To estimate the effects of IR on hepatic lipid excretion, mRNA expression levels of genes involved in VLDL assembly were analyzed in NAFLD liver. Twenty-two histologically proven NAFLD patients and 10 healthy control subjects were enrolled in this study. mRNA was extracted from liver biopsy samples and real-time PCR was performed to quantify the expression levels of apolipoprotein B (apoB), microsomal triglyceride transfer protein (MTP) and liver fatty-acid binding protein (L-FABP). Hepatic expression levels of the genes were compared between NAFLD patients and control subjects. In NAFLD patients, we also examined correlations between expression levels of the genes and metabolic factors, including IR, and the extent of obesity and hepatic lipid accumulation. Hepatic expression levels of apoB, MTP and L-FABP were significantly up-regulated in NAFLD patients compared to control subjects. The expression levels of MTP were correlated with those of apoB, but not with those of L-FABP. In the NAFLD liver, the expression levels of MTP were significantly reduced in patients with HOMA-IR >2.5. In addition, a significant reduction in MTP expression was observed in livers with advanced steatosis. Enhanced expression of genes involved in VLDL assembly may be promoted to release excess lipid from NAFLD livers. However, the progression of IR and hepatic steatosis may attenuate this compensatory process.

  12. Phobic anxiety and plasma levels of global oxidative stress in women

    Directory of Open Access Journals (Sweden)

    Kaitlin A. Hagan

    2015-03-01

    Full Text Available Background and Objectives: Psychological distress has been hypothesized to be associated with adverse biologic states such as higher oxidative stress and inflammation. Yet, little is known about associations between a common form of distress -phobic anxiety- and global oxidative stress. Thus, we related phobic anxiety to plasma fluorescent oxidation products (FlOPs, a global oxidative stress marker. Methods: We conducted a cross-sectional analysis among 1,325 women (aged 43-70 years from the Nurses' Health Study. Phobic anxiety was measured using the Crown-Crisp Index (CCI. Adjusted least-squares mean log-transformed FlOPs were calculated across phobic categories. Logistic regression models were used to calculate odds ratios (OR comparing the highest CCI category (≥ 6 points vs. lower scores, across FlOPs quartiles. Results: No association was found between phobic anxiety categories and mean FlOP levels in multivariable adjusted linear models. Similarly, in multivariable logistic regression models there were no associations between FlOPs quartiles and likelihood of being in the highest phobic category. Comparing women in the highest vs. lowest FlOPs quartiles: FlOP_360: OR = 0.68 (95% CI: 0.40 - 1.15; FlOP_320: OR = 0.99 (95% CI: 0.61 - 1.61; FlOP_400: OR = 0.92 (95% CI: 0.52, 1.63. Conclusions: No cross-sectional association was found between phobic anxiety and a plasma measure of global oxidative stress in this sample of middle-aged and older women.

  13. Phobic Anxiety and Plasma Levels of Global Oxidative Stress in Women

    Science.gov (United States)

    Hagan, Kaitlin A.; Wu, Tianying; Rimm, Eric B.; Eliassen, A. Heather; Okereke, Olivia I.

    2015-01-01

    Background and Objectives Psychological distress has been hypothesized to be associated with adverse biologic states such as higher oxidative stress and inflammation. Yet, little is known about associations between a common form of distress – phobic anxiety – and global oxidative stress. Thus, we related phobic anxiety to plasma fluorescent oxidation products (FlOPs), a global oxidative stress marker. Methods We conducted a cross-sectional analysis among 1,325 women (aged 43-70 years) from the Nurses’ Health Study. Phobic anxiety was measured using the Crown-Crisp Index (CCI). Adjusted least-squares mean log-transformed FlOPs were calculated across phobic categories. Logistic regression models were used to calculate odds ratios (OR) comparing the highest CCI category (≥6 points) vs. lower scores, across FlOPs quartiles. Results No association was found between phobic anxiety categories and mean FlOP levels in multivariable adjusted linear models. Similarly, in multivariable logistic regression models there were no associations between FlOPs quartiles and likelihood of being in the highest phobic category. Comparing women in the highest vs. lowest FlOPs quartiles: FlOP_360: OR=0.68 (95% CI: 0.40-1.15); FlOP_320: OR=0.99 (95% CI: 0.61-1.61); FlOP_400: OR=0.92 (95% CI: 0.52, 1.63). Conclusions No cross-sectional association was found between phobic anxiety and a plasma measure of global oxidative stress in this sample of middle-aged and older women. PMID:26635425

  14. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  15. The Effected Oxide Capacitor in CMOS Structure of Integrated Circuit Level 5 Micrometer Technology

    CERN Document Server

    Rodthong, S

    2009-01-01

    This article is present the effected oxide capacitor in CMOS structure of integrated circuit level 5 micrometer technology. It has designed and basic structure of MOS diode. It establish with aluminum metallization layer by sputtering method, oxide insulator layer mode from silicon dioxide, n+ and p+ semiconductor layer, it has high capacitance concentrate. From the MOS diode structure silicon dioxide thickness 0.5 micrometer, it will get capacitance between aluminum metal layer and p+ semiconductor at 28.62 pF, the capacitance between aluminum metal layer and n+ semiconductor at 29.55 pF. In this article establish second metal layer for measurement density values of first aluminum metal layer with second aluminum metal layer, it has density values at 16 pF.

  16. Proteasome inhibitor treatment in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce

    2011-01-01

    Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-341 (Bortezomib, Velcade(r)). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease

  17. Factors attributable to the level of exhaled nitric oxide in asthmatic children

    Directory of Open Access Journals (Sweden)

    Banovcin P

    2009-12-01

    Full Text Available Abstract Background Asthma is a heterogeneous disease with variable symptoms especially in children. Exhaled nitric oxide (FeNO has proved to be a marker of inflammation in the airways and has become a substantial part of clinical management of asthmatic children due to its potential to predict possible exacerbation and adjust the dose of inhalant corticosteroids. Objectives We analyzed potential factors that contribute to the variability of nitric oxide in various clinical and laboratory conditions. Materials and methods Study population consisted of 222 asthmatic children and 27 healthy control subjects. All children underwent a panel of tests: fractioned exhaled nitric oxide, exhaled carbon monoxide, asthma control test scoring, blood sampling, skin prick tests, and basic spirometry. Results FeNO and other investigated parameters widely changed according to clinical or laboratory characteristics of the tested children. Asthmatics showed increased levels of FeNO, exhaled carbon monoxide, total serum IgE, and higher eosinophilia. Boys had higher FeNO levels than girls. We found a significant positive correlation between FeNO levels and the percentage of blood eosinophils, %predicted of forced vital capacity, total serum IgE levels, and increasing age. Conclusions Various phenotypes of children's asthma are characterized by specific pattern of the results of clinical and laboratory tests. FeNO correlates with total serum IgE, blood eosinophilia, age, and some spirometric parameters with different strength. Therefore, the coexistence of atopy, concomitant allergic rhinitis/rhinoconjunctivitis, and some other parameters should be considered in critical evaluation of FeNO in the management of asthmatic children.

  18. Ethanol oxidation and the inhibition by drugs in human liver, stomach and small intestine: Quantitative assessment with numerical organ modeling of alcohol dehydrogenase isozymes.

    Science.gov (United States)

    Chi, Yu-Chou; Lee, Shou-Lun; Lai, Ching-Long; Lee, Yung-Pin; Lee, Shiao-Pieng; Chiang, Chien-Ping; Yin, Shih-Jiun

    2016-10-25

    Alcohol dehydrogenase (ADH) is the principal enzyme responsible for metabolism of ethanol. Human ADH constitutes a complex isozyme family with striking variations in kinetic function and tissue distribution. Liver and gastrointestinal tract are the major sites for first-pass metabolism (FPM). Their relative contributions to alcohol FPM and degrees of the inhibitions by aspirin and its metabolite salicylate, acetaminophen and cimetidine remain controversial. To address this issue, mathematical organ modeling of ethanol-oxidizing activities in target tissues and that of the ethanol-drug interactions were constructed by linear combination of the corresponding numerical rate equations of tissue constituent ADH isozymes with the documented isozyme protein contents, kinetic parameters for ethanol oxidation and the drug inhibitions of ADH isozymes/allozymes that were determined in 0.1 M sodium phosphate at pH 7.5 and 25 °C containing 0.5 mM NAD(+). The organ simulations reveal that the ADH activities in mucosae of the stomach, duodenum and jejunum with ADH1C*1/*1 genotype are less than 1%, respectively, that of the ADH1B*1/*1-ADH1C*1/*1 liver at 1-200 mM ethanol, indicating that liver is major site of the FPM. The apparent hepatic KM and Vmax for ethanol oxidation are simulated to be 0.093 ± 0.019 mM and 4.0 ± 0.1 mmol/min, respectively. At 95% clearance in liver, the logarithmic average sinusoidal ethanol concentration is determined to be 0.80 mM in accordance with the flow-limited gradient perfusion model. The organ simulations indicate that higher therapeutic acetaminophen (0.5 mM) inhibits 16% of ADH1B*1/*1 hepatic ADH activity at 2-20 mM ethanol and that therapeutic salicylate (1.5 mM) inhibits 30-31% of the ADH1B*2/*2 activity, suggesting potential significant inhibitions of ethanol FPM in these allelotypes. The result provides systematic evaluations and predictions by computer simulation on potential ethanol FPM in target tissues and hepatic

  19. Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Dai Jin Kim

    2009-11-01

    Full Text Available For a long time, alcohol was thought to exert a general depressant effect on the central nervous system (CNS. However, currently the consensus is that specific regions of the brain are selectively vulnerable to the acute effects of alcohol. An alcohol-induced blackout is the classic example; the subject is temporarily unable to form new long-term memories while relatively maintaining other skills such as talking or even driving. A recent study showed that alcohol can cause retrograde memory impairment, that is, blackouts due to retrieval impairments as well as those due to deficits in encoding. Alcoholic blackouts may be complete (en bloc or partial (fragmentary depending on severity of memory impairment. In fragmentary blackouts, cueing often aids recall. Memory impairment during acute intoxication involves dysfunction of episodic memory, a type of memory encoded with spatial and social context. Recent studies have shown that there are multiple memory systems supported by discrete brain regions, and the acute effects of alcohol on learning and memory may result from alteration of the hippocampus and related structures on a cellular level. A rapid increase in blood alcohol concentration (BAC is most consistently associated with the likelihood of a blackout. However, not all subjects experience blackouts, implying that genetic factors play a role in determining CNS vulnerability to the effects of alcohol. This factor may predispose an individual to alcoholism, as altered memory function during intoxication may affect an individual‟s alcohol expectancy; one may perceive positive aspects of intoxication while unintentionally ignoring the negative aspects. Extensive research on memory and learning as well as findings related to the acute effects of alcohol on the brain may elucidate the mechanisms and impact associated with the alcohol- induced blackout.

  20. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    2015-01-01

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable fo