WorldWideScience

Sample records for alcohol exposure alters

  1. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model

    OpenAIRE

    Tyler, Christina R; Allan, Andrea M.

    2014-01-01

    Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute h...

  2. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  3. Chronic alcohol exposure alters behavioral and synaptic plasticity of the rodent prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sven Kroener

    Full Text Available In the present study, we used a mouse model of chronic intermittent ethanol (CIE exposure to examine how CIE alters the plasticity of the medial prefrontal cortex (mPFC. In acute slices obtained either immediately or 1-week after the last episode of alcohol exposure, voltage-clamp recording of excitatory post-synaptic currents (EPSCs in mPFC layer V pyramidal neurons revealed that CIE exposure resulted in an increase in the NMDA/AMPA current ratio. This increase appeared to result from a selective increase in the NMDA component of the EPSC. Consistent with this, Western blot analysis of the postsynaptic density fraction showed that while there was no change in expression of the AMPA GluR1 subunit, NMDA NR1 and NRB subunits were significantly increased in CIE exposed mice when examined immediately after the last episode of alcohol exposure. Unexpectedly, this increase in NR1 and NR2B was no longer observed after 1-week of withdrawal in spite of a persistent increase in synaptic NMDA currents. Analysis of spines on the basal dendrites of layer V neurons revealed that while the total density of spines was not altered, there was a selective increase in the density of mushroom-type spines following CIE exposure. Examination of NMDA-receptor mediated spike-timing-dependent plasticity (STDP showed that CIE exposure was associated with altered expression of long-term potentiation (LTP. Lastly, behavioral studies using an attentional set-shifting task that depends upon the mPFC for optimal performance revealed deficits in cognitive flexibility in CIE exposed mice when tested up to 1-week after the last episode of alcohol exposure. Taken together, these observations are consistent with those in human alcoholics showing protracted deficits in executive function, and suggest these deficits may be associated with alterations in synaptic plasticity in the mPFC.

  4. Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Stephen Mason

    2012-01-01

    Full Text Available Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P<0.01, and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function.

  5. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain

    Science.gov (United States)

    Ngai, Ying Fai; Sulistyoningrum, Dian C.; O'Neill, Ryan; Innis, Sheila M.; Weinberg, Joanne

    2015-01-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  6. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model.

    Science.gov (United States)

    Tyler, Christina R; Allan, Andrea M

    2014-08-01

    Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15-17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis

  7. Alcohol exposure in utero leads to enhanced prepubertal mammary development and alterations in mammary IGF and estradiol systems.

    Science.gov (United States)

    Polanco, Tiffany A; Crismale-Gann, Catina; Cohick, Wendie S

    2011-08-01

    Exposure to alcohol during fetal development increases susceptibility to mammary cancer in adult rats. This study determined if early changes in mammary morphology and the insulin-like growth factor (IGF)/estradiol axis are involved in the mechanisms that underlie this increased susceptibility. Pregnant Sprague-Dawley rats were fed a liquid diet containing 6.7% ethanol (alcohol), an isocaloric liquid diet (pair-fed), or rat chow ad libitum from days 11 to 21 of gestation. At birth, female pups were cross-fostered to ad libitum-fed control dams. Offspring were euthanized at postnatal days (PND) 20, 40, or 80. Animals were injected with BrdU before euthanasia, then mammary glands, serum, and livers were collected. Mammary glands from animals exposed to alcohol in utero displayed increased epithelial cell proliferation and aromatase expression at PND 20 and 40. Mammary IGF-I mRNA was higher in alcohol-exposed animals relative to controls at PND 20, while mammary IGFBP-5 mRNA was lower in this group at PND 40. Hepatic IGF-I mRNA expression was increased at all time points in alcohol-exposed animals, however, circulating IGF-I levels were not altered. These data indicate that alcohol exposure in utero may advance mammary development via the IGF and estradiol systems, which could contribute to increased susceptibility to mammary cancer later in life.

  8. Fetal Alcohol Exposure

    Science.gov (United States)

    ... her child’s genetic make-up, and changes in gene activity caused by prenatal alcohol exposure. NIH . . . Turning Discovery Into Health ® National Institute on Alcohol Abuse and Alcoholism www. niaaa. nih. gov • 301.443.3860 Interventions ...

  9. Long-term alterations of striatal parvalbumin interneurons in a rat model of early exposure to alcohol

    OpenAIRE

    De Giorgio Andrea; Comparini Sara E; Intra Francesca; Granato Alberto

    2012-01-01

    Abstract Background Exposure to alcohol in utero is a known cause of mental retardation. Although a certain degree of motor impairment is always associated with fetal alcohol spectrum disorder, little is known about the neurobiological basis of the defective motor control. We have studied the striatal interneurons containing parvalbumin in a rat model of fetal alcohol spectrum disorder. Methods Newborn rats received ethanol by inhalation from postnatal day two through six and parvalbumin stri...

  10. Long-term alterations of striatal parvalbumin interneurons in a rat model of early exposure to alcohol

    OpenAIRE

    De Giorgio, Andrea; Comparini, Sara E; Intra, Francesca Sangiuliano; Granato, Alberto

    2012-01-01

    Background Exposure to alcohol in utero is a known cause of mental retardation. Although a certain degree of motor impairment is always associated with fetal alcohol spectrum disorder, little is known about the neurobiological basis of the defective motor control. We have studied the striatal interneurons containing parvalbumin in a rat model of fetal alcohol spectrum disorder. Methods Newborn rats received ethanol by inhalation from postnatal day two through six and parvalbumin striatal neur...

  11. Altered performance in a rat gambling task after acute and repeated alcohol exposure

    NARCIS (Netherlands)

    Spoelder, Marcia; Lesscher, Heidi M B; Hesseling, Peter; Baars, Annemarie M; Lozeman-van T Klooster, José G; Mijnsbergen, Rob; Vanderschuren, Louk J M J

    2015-01-01

    RATIONALE: A bidirectional relationship between alcohol use disorder (AUD) and deficits in impulse control and decision making has been suggested. However, the mechanisms by which neurocognitive impairments predispose to, or result from AUD remain incompletely understood. OBJECTIVES: The aim of this

  12. Prenatal exposure to alcohol and 3,4-methylenedioxymethamphetamine (ecstasy) alters adult hippocampal neurogenesis and causes enduring memory deficits.

    Science.gov (United States)

    Canales, Juan J; Ferrer-Donato, Agueda

    2014-01-01

    Recreational drug use among pregnant women is a source of concern due to potential harmful effects of drug exposure on prenatal and infant development. The simultaneous abuse of ecstasy [3,4-methylenedioxymethamphetamine (MDMA)] and alcohol is prevalent among young adults, including young expectant mothers. Here, we used a rat model to study the potential risks associated with exposure to alcohol and MDMA during pregnancy. Pregnant rats received alcohol, MDMA, or both alcohol and MDMA by gavage at E13 through E15 twice daily. Female offspring treated prenatally with the combination of alcohol and MDMA, but not those exposed to either drug separately, showed at 3 months of age decreased exploratory activity and impaired working memory function. Prenatal treatment with the combination of alcohol and MDMA decreased proliferation of neuronal precursors in the adult dentate gyrus of the hippocampus, as measured by 5-bromo-2-deoxyuridine labelling, and adult neurogenesis, assessed by quantifying doublecortin expression. These results provide the first evidence that the simultaneous abuse of alcohol and ecstasy during pregnancy, even for short periods of time, may cause significant abnormalities in neurocognitive development.

  13. Long-term alterations of striatal parvalbumin interneurons in a rat model of early exposure to alcohol

    Directory of Open Access Journals (Sweden)

    De Giorgio Andrea

    2012-07-01

    Full Text Available Abstract Background Exposure to alcohol in utero is a known cause of mental retardation. Although a certain degree of motor impairment is always associated with fetal alcohol spectrum disorder, little is known about the neurobiological basis of the defective motor control. We have studied the striatal interneurons containing parvalbumin in a rat model of fetal alcohol spectrum disorder. Methods Newborn rats received ethanol by inhalation from postnatal day two through six and parvalbumin striatal neurons were labeled by immunohistochemistry on postnatal day 60. The spatial distribution of parvalbumin interneurons was studied using Voronoi spatial tessellation and their dendritic trees were completely reconstructed. Results Parvalbumin interneurons of ethanol-treated animals showed a clustered spatial distribution similar to that observed in control animals. The dendritic tree of parvalbumin interneurons was significantly reduced in ethanol-treated animals, as compared with controls. Conclusions Striatal parvalbumin interneurons are crucial components of the brain network serving motor control. Therefore, the shrinkage of their dendrites could contribute to the motor and cognitive symptoms observed in fetal alcohol spectrum disorder.

  14. Moderate alcohol exposure during the rat equivalent to the third trimester of human pregnancy alters dopamine regulation of GABAA receptor-mediated transmission in the basolateral amygdala

    Directory of Open Access Journals (Sweden)

    Marvin Rafael Diaz

    2014-05-01

    Full Text Available Fetal ethanol (EtOH exposure leads to a range of neurobehavioral alterations, including deficits in emotional processing. The basolateral amygdala (BLA plays a critical role in modulating emotional processing, in part, via dopamine (DA regulation of GABA transmission. This BLA modulatory system is acquired during the first two weeks of postnatal life in rodents (equivalent to the 3rd trimester of human pregnancy and we hypothesized that it could be altered by EtOH exposure during this period. We found that exposure of rats to moderate levels of EtOH vapor during the 3rd trimester-equivalent (postnatal days (P 2-12 alters DA modulation of GABAergic transmission in BLA pyramidal neurons during periadolescence. Specifically, D1R-mediated potentiation of spontaneous inhibitory postsynaptic currents (IPSCs was significantly attenuated in EtOH-exposed animals. However, this was associated with a compensatory decrease in D3R-mediated suppression of miniature IPSCs. Western blot analysis revealed that these effects were not a result of altered D1R or D3R levels. BLA samples from EtOH-exposed animals also had significantly lower levels of the DA precursor (L-3,4-dihydroxyphenylalanine but DA levels were not affected. This is likely a consequence of reduced catabolism of DA, as indicated by reduced levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid in the BLA samples. Anxiety-like behavior was not altered in EtOH-exposed animals. This is the first study to demonstrate that the modulatory actions of DA in the BLA are altered by developmental EtOH exposure. Although compensatory adaptations were engaged in our moderate EtOH exposure paradigm, it is possible that these are not able to restore homeostasis and correct anxiety-like behaviors under conditions of heavier EtOH exposure. Therefore, future studies should investigate the potential role of alterations in the modulatory actions of DA in the pathophysiology of fetal alcohol spectrum

  15. Prenatal alcohol exposure alters p35, CDK5 and GSK3β in the medial frontal cortex and hippocampus of adolescent mice

    Directory of Open Access Journals (Sweden)

    Samantha L. Goggin

    2014-01-01

    Full Text Available Fetal alcohol spectrum disorders (FASDs are the number one cause of preventable mental retardation. An estimated 2–5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE, specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.

  16. Developmental Trajectories for Visuo-Spatial Attention are Altered by Prenatal Alcohol Exposure: A Longitudinal FMRI Study.

    Science.gov (United States)

    Gautam, P; Nuñez, S C; Narr, K L; Mattson, S N; May, P A; Adnams, C M; Riley, E P; Jones, K L; Kan, E C; Sowell, E R

    2015-12-01

    Functional magnetic resonance imaging (fMRI) reveals brain activation abnormalities during visuo-spatial attention and working memory among those with fetal alcohol spectrum disorders (FASD) in cross-sectional reports, but little is known about how activation changes over time during development within FASD or typically developing children. We studied 30 controls and 31 individuals with FASD over 2 years (7-14 years at first participation) with a total of 122 scans, as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders. Despite comparable performance, there were significant group differences in visuo-spatial activation over time bilaterally in frontal, parietal, and temporal regions. Controls showed an increase in signal intensity in these multiple regions whereas FASD participants showed a decrease in brain activation. Effects were also found in 2 small independent samples from the USA, corroborating the findings from the larger group. Results suggest that the long-lasting effect of prenatal alcohol may impact the maturation of visuo-spatial attention and differentiate those with FASD from controls. Based on this first longitudinal fMRI study in FASD children, our novel findings suggest a possible neural mechanism for attention deficits common among individuals with FASD.

  17. Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress.

    Science.gov (United States)

    Uban, Kristina A; Comeau, Wendy L; Ellis, Linda A; Galea, Liisa A M; Weinberg, Joanne

    2013-10-01

    Effects of prenatal alcohol exposure (PAE) on central nervous system function include an increased prevalence of mental health problems, including substance use disorders (SUD). The hypothalamic-pituitary-adrenal (HPA) and dopamine (DA) systems have overlapping neurocircuitries and are both implicated in SUD. PAE alters both HPA and dopaminergic activity and regulation, resulting in increased HPA tone and an overall reduction in tonic DA activity. However, effects of PAE on the interaction between HPA and DA systems have not been investigated. The present study examined PAE effects on basal regulation of central stress and DA systems in key brain regions where these systems intersect. Adult Sprague-Dawley male and female offspring from prenatal alcohol-exposed (PAE), pairfed (PF), and ad libitum-fed control (C) groups were subjected to chronic variable stress (CVS) or remained as a no stress (non-CVS) control group. Corticotropin releasing hormone (CRH) mRNA, as well as glucocorticoid and DA receptor (DA-R) expression were measured under basal conditions 24h following the end of CVS. We show, for the first time, that regulation of basal HPA and DA systems, and likely, HPA-DA interactions, are altered differentially in males and females by PAE and CVS. PAE augmented the typical attenuation in weight gain during CVS in males and caused increased weight loss in females. Increased basal corticosterone levels in control, but not PAE, females suggest that PAE alters the profile of basal hormone secretion throughout CVS. CVS downregulated basal CRH mRNA in the prefrontal cortex and throughout the bed nucleus of the stria terminalis (BNST) in PAE females but only in the posterior BNST of control females. PAE males and females exposed to CVS exhibited more widespread upregulation of basal mineralocorticoid receptor mRNA throughout the hippocampus, and an attenuated decrease in DA-R expression throughout the nucleus accumbens and striatum compared to CVS-exposed control

  18. Altered States of Consciousness and Alcohol.

    Science.gov (United States)

    Jones, Ben Morgan; And Others

    This document contains the reports of research at a symposium on "Altered States of Consciousness and Alcohol." The participants primarily agreed that alcohol induces an altered state of consciousness similar to other drugs, but that this phenomenon has not been explicitly stated due to the current interest in newer and more novel drugs. The…

  19. Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle.

    Science.gov (United States)

    Khayrullin, Andrew; Smith, Lauren; Mistry, Dhwani; Dukes, Amy; Pan, Y Albert; Hamrick, Mark W

    2016-10-21

    Muscle wasting is estimated to affect 40-60% of alcoholics, and is more common than cirrhosis among chronic alcohol abusers. The molecular and cellular mechanisms underlying alcohol-related musculoskeletal dysfunction are, however, poorly understood. Muscle-specific microRNAs (miRNAs) referred to as myoMirs are now known to play a key role in both myogenesis and muscle atrophy. Yet, no studies have investigated a role for myoMirs in alcohol-related skeletal muscle damage. We developed a zebrafish model of chronic ethanol exposure to better define the mechanisms mediating alcohol-induced muscle atrophy. Adult fish maintained at 0.5% ethanol for eight weeks demonstrated significantly reduced muscle fiber cross-sectional area (∼12%, P < 0.05) compared to fish housed in normal water. Zebrafish miRNA microarray revealed marked changes in several miRNAs with ethanol treatment. Importantly, miR-140, a miRNA that shows 100% sequence homology with miR-140 from both mouse and human, is decreased 10-fold in ethanol treated fish. miR-140 targets several members of the Notch signaling pathway such as DNER, JAG1, and Hey1, and PCR data show that both Hey1 and Notch 1 are significantly up-related (3-fold) in muscle of ethanol treated fish. In addition, miR-146a, which targets the Notch antagonist Numb, is elevated in muscle from ethanol-treated fish. Upregulation of Notch signaling suppresses myogenesis and maintains muscle satellite cell quiescence. These data suggest that miRNAs targeting Notch are likely to play important roles in alcohol-related myopathy. Furthermore, zebrafish may serve as a useful model for better understanding the role of microRNAs in alcohol-related tissue damage.

  20. Prenatal Alcohol Exposure Selectively Enhances Young Adult Perceived Pleasantness of Alcohol Odors

    Science.gov (United States)

    Hannigan, John H.; Chiodo, Lisa M.; Sokol, Robert J.; Janisse, James; Delaney-Black, Virginia

    2015-01-01

    Prenatal Alcohol Exposure (PAE) can lead to life-long neurobehavioral and social problems that can include a greater likelihood of early use and/or abuse of alcohol compared to older teens and young adults without PAE. Basic research in animals demonstrates that PAE influences later postnatal responses to chemosensory cues (i.e., odor & taste) associated with alcohol. We hypothesized that PAE would be related to poorer abilities to identify odors of alcohol-containing beverages, and would alter perceived alcohol odor intensity and pleasantness. To address this hypothesis we examined responses to alcohol and other odors in a small sample of young adults with detailed prenatal histories of exposure to alcohol and other drugs. The key finding from our controlled analyses is that higher levels of PAE were related to higher relative ratings of pleasantness for alcohol odors. As far as we are aware, this is the first published study to report the influence of PAE on responses to alcohol beverage odors in young adults. These findings are consistent with the hypothesis that positive associations (i.e., “pleasantness”) to the chemosensory properties of alcohol (i.e., odor) are acquired prenatally and are retained for many years despite myriad interceding postnatal experiences. Alternate hypotheses may also be supported by the results. There are potential implications of altered alcohol odor responses for understanding individual differences in initiation of drinking, and alcohol seeking and high-risk alcohol-related behaviors in young adults. PMID:25600468

  1. Fetal alcohol exposure alters proopiomelanocortin gene expression and hypothalamic-pituitary-adrenal axis function via increasing MeCP2 expression in the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Omkaram Gangisetty

    Full Text Available Proopiomelanocortin (POMC is a precursor gene of the neuropeptide β-endorphin in the hypothalamus and is known to regulate various physiological functions including stress response. Several recent reports showed that fetal alcohol exposure programs the hypothalamus to produce lower levels of POMC gene transcripts and to elevate the hypothalamic-pituitary-adrenal (HPA axis response to stressful stimuli. We investigated the role of methyl CpG binding protein (MeCP2 in the effects of prenatal ethanol on POMC gene expression and hypothalamic-pituitary-adrenal (HPA axis function. Pregnant Sprague Dawley rats were fed between GD 7 and 21 with a liquid diet containing 6.7% alcohol, pair-fed with isocaloric liquid diet, or fed ad libitum with rat chow, and their male offsprings were used at 60 days after birth in this study. Fetal alcohol exposure reduced the level of POMC mRNA, but increased the level of DNA methylation of this gene in the arcuate nucleus (ARC of the hypothalamus where the POMC neuronal cell bodies are located. Fetal alcohol exposed rats showed a significant increase in MeCP2 protein levels in POMC cells, MeCP2 gene transcript levels as well as increased MeCP2 protein binding on the POMC promoter in the arcuate nucleus. Lentiviral delivery of MeCP2 shRNA into the third ventricle efficiently reduced MeCP2 expression and prevented the effect of prenatal ethanol on POMC gene expression in the arcuate nucleus. MeCP2-shRNA treatment also normalized the prenatal ethanol-induced increase in corticotropin releasing hormone (CRH gene expression in the hypothalamus and elevated plasma adrenocorticotrophic hormone (ACTH and corticosterone hormone responses to lipopolysaccharide (LPS challenge. These results suggest that fetal alcohol programming of POMC gene may involve recruitment of MeCP2 on to the methylated promoter of the POMC gene to suppress POMC transcript levels and contribute to HPA axis dysregulation.

  2. Pesticide Exposures May Alter Mouth Bacteria

    Science.gov (United States)

    ... fullstory_162249.html Pesticide Exposures May Alter Mouth Bacteria Study of Washington farm workers finds alterations persist ... News) -- Pesticide exposure may change the makeup of bacteria in the mouths of farm workers, a new ...

  3. Neurobiological alterations in alcohol addiction: a review.

    Science.gov (United States)

    Erdozain, Amaia M; Callado, Luis F

    2014-01-01

    The exact mechanism by which ethanol exerts its effects on the brain is still unknown. However, nowadays it is well known that ethanol interacts with specific neuronal membrane proteins involved in signal transmission, resulting in changes in neural activity. In this review different neurochemical alterations produced by ethanol are described. Primarily, ethanol interacts with two membrane receptors: GABAA and NMDA ion channel receptors. Ethanol enhances the GABA action and antagonizes glutamate action, therefore acting as a CNS depressant. In addition, ethanol affects most other neurochemical and endocrine systems. In regard to the brain reward system, both dopaminergic and opioid system are affected by this drug. Furthermore, the serotonergic, noradrenergic, corticotropin-releasing factor and cannabinoid systems seem to play an important role in the neurobiology of alcoholism. At last but not least, ethanol can also modulate cytoplasmic components, including the second messengers. We also review briefly the different actual and putative pharmacological treatments for alcoholism, based on the alterations produced by this drug.

  4. Prenatal Alcohol Exposure and Cortical Angiogenesis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-02-01

    Full Text Available Researchers at Normandy University, and Rouen and Brest Universities, France studied the effects of prenatal alcohol exposure on the cortical microvascular and the action of alcohol, glutamate, and vascular endothelial growth factor A (VEGF on activity, plasticity, and survival of microvessels in mice.

  5. Fetal alcohol exposure and development of the integument

    Directory of Open Access Journals (Sweden)

    Longhurst WD

    2016-05-01

    Full Text Available William D Longhurst,1 Jordan Ernst,2 Larry Burd3 1Center for Emergency Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA; 2University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA; 3Department of Pediatrics, North Dakota Fetal Alcohol Syndrome Center, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA Background: The physiology of fetal alcohol exposure changes across gestation. Early in pregnancy placental, fetal, and amniotic fluid concentrations of alcohol exposure are equivalent. Beginning in mid-pregnancy, the maturing fetal epidermis adds keratins which decrease permeability resulting in development of a barrier between fetal circulation and the amniotic fluid. Barrier function development is essential for viability in late pregnancy and in the extra-uterine environment. In this paper we provide a selected review of the effects of barrier function on fetal alcohol exposure. Methods: We utilized a search of PubMed and Google for all years in all languages for MeSH on Demand terms: alcohol drinking, amnion, amniotic fluid, epidermis, ethanol, female, fetal development, fetus, humans, keratins, permeability, and pregnancy. We also reviewed the reference lists of relevant papers and hand-searched reference lists of textbooks for additional references. Results: By 30 gestational weeks, development of barrier function alters the pathophysiology of ethanol dispersion between the fetus and amniotic fluid. Firstly, increases in the effectiveness of barrier function decreases the rate of diffusion of alcohol from fetal circulation across fetal skin into the amniotic fluid. This reduces the volume of alcohol entering the amniotic fluid. Secondly, barrier function increases the duration of fetal exposure by decreasing the rate of alcohol diffusion from amniotic fluid back into fetal circulation. Ethanol is then transported into

  6. Embryonic alcohol exposure impairs associative learning performance in adult zebrafish.

    Science.gov (United States)

    Fernandes, Yohaan; Tran, Steven; Abraham, Emil; Gerlai, Robert

    2014-05-15

    The zebrafish has been proposed for modeling fetal alcohol spectrum disorders (FASD). Previous FASD research with zebrafish employed high concentrations of alcohol and/or long exposure periods. Here, we exposed zebrafish eggs to low doses of alcohol (0, 0.25, 0.50, 0.75 and 1.0% (vol/vol); external bath application of which 1/20th may reach the inside of the egg) at 16-h post-fertilization (hpf) and only for a short duration (2h) in the hope to avoid gross morphological aberrations and to mimic the more frequent FASD exposure levels. Upon reaching adulthood the exposed and control zebrafish were tested for their associative learning performance in a plus-maze. Embryonic alcohol exposure led to no gross anatomical abnormalities and did not increase mortality. Unexposed (control) zebrafish showed excellent acquisition of association between a conditioned visual stimulus (CS) and food reward, demonstrated by their preference for the target zone of the maze that contained the CS during a probe trial in the absence of reward. However, alcohol-exposed fish showed no such preference and performed indistinguishable from random chance. Locomotor activity during training and the probe trial or the amount of food consumed during training did not differ between the embryonic alcohol exposed and unexposed (control) fish, suggesting that the impaired learning performance found was unlikely to be caused by altered motivation or motor function. Our results suggest that even very small amounts of alcohol reaching the embryo for only a short duration of time may have long lasting deleterious effects on cognitive function in vertebrates.

  7. Alcohol induced alterations to the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Robin D Couch

    Full Text Available Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis. However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1 an elevation in the oxidative stress biomarker tetradecane; (2 a decrease in five fatty alcohols with anti-oxidant property; (3 a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4 a decrease in alcohol consumption natural suppressant caryophyllene; (5 a decrease in natural product and hepatic steatosis attenuator camphene; and (6 decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.

  8. Adolescent alcohol exposure: Burden of epigenetic reprogramming, synaptic remodeling, and adult psychopathology

    Directory of Open Access Journals (Sweden)

    Evan J Kyzar

    2016-05-01

    Full Text Available Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can delay these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood.

  9. Impairment of social behaviour persists two years after embryonic alcohol exposure in zebrafish: A model of fetal alcohol spectrum disorders.

    Science.gov (United States)

    Fernandes, Yohaan; Rampersad, Mindy; Gerlai, Robert

    2015-10-01

    Zebrafish naturally form social groups called shoals. Previously, we have shown that submerging zebrafish eggs into low concentrations of alcohol (0.00, 0.25, 0.50, 0.75 and 1.00 vol/vol% external bath concentration) during development (24h post-fertilization) for two hours resulted in impaired shoaling response in seven month old young adult zebrafish. Here we investigate whether this embryonic alcohol exposure induced behavioural deficit persists to older age. Zebrafish embryos were exposed either to fresh system water (control) or to 1% alcohol for two hours, 24h after fertilization, and were raised in a high-density tank system. Social behaviour was tested by presenting the experimental fish with a computer animated group of zebrafish images, while automated tracking software measured their behaviour. Control fish were found to respond strongly to animated conspecific images by reducing their distanceand remaining close to the images during image presentation, embryonic alcohol treated fish did not. Our results suggest that the impaired shoaling response of the alcohol exposed fish was not due to altered motor function or visual perception, but likely to a central nervous system alteration affecting social behaviour itself. We found the effects of embryonic alcohol exposure on social behaviour not to diminish with age, a result that demonstrates the deleterious and potentially life-long consequences of exposure to even small amount of alcohol during embryonic development in vertebrates.

  10. Alcohol exposure during development: Impact on the epigenome

    OpenAIRE

    Perkins, Amy; Lehmann, Claudia; Lawrence, R. Charles; Kelly, Sandra J.

    2013-01-01

    Fetal Alcohol Spectrum Disorders represent a wide range of symptoms associated with in utero alcohol exposure. Animal models of FASD have been useful in determining the specific neurological consequences of developmental alcohol exposure, but the mechanisms of those consequences are unclear. Long-lasting changes to the epigenome are proposed as a mechanism of alcohol-induced teratogenesis in the hippocampus. The current study utilized a three-trimester rodent model of FASD to examine changes ...

  11. Alterations of BDNF and GDNF serum levels in alcohol-addicted patients during alcohol withdrawal

    Directory of Open Access Journals (Sweden)

    Mehmet Bülent Sönmez

    Full Text Available Background and Objectives: Brain-derived neurotrophic factor (BDNF and glial cell line-derived neurotrophic factor (GDNF are neurotrophic neuropeptides that play important roles in the synaptic plasticity, neuronal growth, survival and function. A possible neuroprotective role of neurotrophic factors against alcohol-induced cell damage has been suggested, and dysregulations in neurotrophic factors may be involved in the vulnerability to addiction. The aim of this study was to investigate the alterations of BDNF and GDNF serum levels in alcohol-addicted patients during alcohol withdrawal compared to healthy controls. Methods: BDNF and GDNF serum levels of 34 male inpatients diagnosed with alcohol addiction according to DSM-IV-TR were investigated during alcohol withdrawal (day 1, 7 and 14 in comparison to 32 healthy controls using an enzyme-linked immunosorbent assay (ELISA. Severity of alcohol withdrawal was measured by Clinical Institute Withdrawal Assessment for Alcohol (CIWA-Ar, and intensity of alcohol craving was measured by Penn Alcohol Craving Scale (PACS during alcohol withdrawal (day 1, 7 and 14. Results: BDNF serum levels increased significantly during alcohol withdrawal (p = 0.020. They were negatively correlated to the severity of alcohol withdrawal, and the correlation was close to being statistically significant (p = 0.058. BDNF and GDNF serum levels did not differ significantly between the patient and control groups. GDNF serum levels did not change significantly during alcohol withdrawal. Conclusions: Our results may provide support for the previously hypothesized role of BDNF in the neuroadaptation during alcohol withdrawal.

  12. Adolescent alcohol exposure: Are there separable vulnerable periods within adolescence?

    Science.gov (United States)

    Spear, Linda Patia

    2015-09-01

    There are two key alcohol use patterns among human adolescents that confer increased vulnerability for later alcohol abuse/dependence, along with neurocognitive alterations: (a) early initiation of use during adolescence, and (b) high rates of binge drinking that are particularly prevalent late in adolescence. The central thesis of this review is that lasting neurobehavioral outcomes of these two adolescent exposure patterns may differ. Although it is difficult to disentangle consequences of early use from later binge drinking in human studies given the substantial overlap between groups, these two types of problematic adolescent use are differentially heritable and hence separable to some extent. Although few studies using animal models have manipulated alcohol exposure age, those studies that have have typically observed timing-specific exposure effects, with more marked (or at least different patterns of) lasting consequences evident after exposures during early-mid adolescence than late-adolescence/emerging adulthood, and effects often restricted to male rats in those few instances where sex differences have been explored. As one example, adult male rats exposed to ethanol during early-mid adolescence (postnatal days [P] 25-45) were found to be socially anxious and to retain adolescent-typical ethanol-induced social facilitation into adulthood, effects that were not evident after exposure during late-adolescence/emerging adulthood (P45-65); exposure at the later interval, however, induced lasting tolerance to ethanol's social inhibitory effects that was not evident after exposure early in adolescence. Females, in contrast, were little influenced by ethanol exposure at either interval. Exposure timing effects have likewise been reported following social isolation as well as after repeated exposure to other drugs such as nicotine (and cannabinoids), with effects often, although not always, more pronounced in males where studied. Consistent with these timing

  13. Early Maternal Deprivation Enhances Voluntary Alcohol Intake Induced by Exposure to Stressful Events Later in Life

    Directory of Open Access Journals (Sweden)

    Sara Peñasco

    2015-01-01

    Full Text Available In the present study, we aimed to assess the impact of early life stress, in the form of early maternal deprivation (MD, 24 h on postnatal day, pnd, 9, on voluntary alcohol intake in adolescent male and female Wistar rats. During adolescence, from pnd 28 to pnd 50, voluntary ethanol intake (20%, v/v was investigated using the two-bottle free choice paradigm. To better understand the relationship between stress and alcohol consumption, voluntary alcohol intake was also evaluated following additional stressful events later in life, that is, a week of alcohol cessation and a week of alcohol cessation combined with exposure to restraint stress. Female animals consumed more alcohol than males only after a second episode of alcohol cessation combined with restraint stress. MD did not affect baseline voluntary alcohol intake but increased voluntary alcohol intake after stress exposure, indicating that MD may render animals more vulnerable to the effects of stress on alcohol intake. During adolescence, when animals had free access to alcohol, MD animals showed lower body weight gain but a higher growth rate than control animals. Moreover, the higher growth rate was accompanied by a decrease in food intake, suggesting an altered metabolic regulation in MD animals that may interact with alcohol intake.

  14. Early maternal deprivation enhances voluntary alcohol intake induced by exposure to stressful events later in life.

    Science.gov (United States)

    Peñasco, Sara; Mela, Virginia; López-Moreno, Jose Antonio; Viveros, María-Paz; Marco, Eva M

    2015-01-01

    In the present study, we aimed to assess the impact of early life stress, in the form of early maternal deprivation (MD, 24 h on postnatal day, pnd, 9), on voluntary alcohol intake in adolescent male and female Wistar rats. During adolescence, from pnd 28 to pnd 50, voluntary ethanol intake (20%, v/v) was investigated using the two-bottle free choice paradigm. To better understand the relationship between stress and alcohol consumption, voluntary alcohol intake was also evaluated following additional stressful events later in life, that is, a week of alcohol cessation and a week of alcohol cessation combined with exposure to restraint stress. Female animals consumed more alcohol than males only after a second episode of alcohol cessation combined with restraint stress. MD did not affect baseline voluntary alcohol intake but increased voluntary alcohol intake after stress exposure, indicating that MD may render animals more vulnerable to the effects of stress on alcohol intake. During adolescence, when animals had free access to alcohol, MD animals showed lower body weight gain but a higher growth rate than control animals. Moreover, the higher growth rate was accompanied by a decrease in food intake, suggesting an altered metabolic regulation in MD animals that may interact with alcohol intake.

  15. Cigarette smoke exposure-associated alterations to noncoding RNA

    Directory of Open Access Journals (Sweden)

    Matthew Alan Maccani

    2012-04-01

    Full Text Available Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of noncoding RNA (ncRNA, important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA, Piwi-interacting RNA (piRNA, and long noncoding RNA (long ncRNA. The best-characterized species of ncRNA are miRNA, the mature forms of which are ~22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of noncoding RNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of

  16. Alcohol exposure in utero is associated with decreased gray matter volume in neonates.

    Science.gov (United States)

    Donald, Kirsten A; Fouche, J P; Roos, Annerine; Koen, Nastassja; Howells, Fleur M; Riley, Edward P; Woods, Roger P; Zar, Heather J; Narr, Katherine L; Stein, Dan J

    2016-02-01

    Neuroimaging studies have indicated that prenatal alcohol exposure is associated with alterations in the structure of specific brain regions. However, the temporal specificity of such changes and their behavioral consequences are less known. Here we explore the brain structure of infants with in utero exposure to alcohol shortly after birth. T2 structural MRI images were acquired from 28 alcohol-exposed infants and 45 demographically matched healthy controls at 2-4 weeks of age on a 3T Siemens Allegra system as part of large birth cohort study, the Drakenstein Child Health Study (DCHS). Neonatal neurobehavior was assessed at this visit; early developmental outcome assessed on the Bayley Scales of Infant Development III at 6 months of age. Volumes of gray matter regions were estimated based on the segmentations of the University of North Carolina neonatal atlas. Significantly decreased total gray matter volume was demonstrated for the alcohol-exposed cohort compared to healthy control infants (p smoking status. Both early neurobehavioral and developmental adverse outcomes at 6 months across multiple domains were significantly associated with regional volumes primarily in the temporal and frontal lobes in infants with prenatal alcohol exposure. Alcohol exposure during the prenatal period has potentially enduring neurobiological consequences for exposed children. These findings suggest the effects of prenatal alcohol exposure on brain growth is present very early in the first year of life, a period during which the most rapid growth and maturation occurs.

  17. Factors associated with younger adolescents' exposure to online alcohol advertising.

    Science.gov (United States)

    D'Amico, Elizabeth J; Martino, Steven C; Collins, Rebecca L; Shadel, William G; Tolpadi, Anagha; Kovalchik, Stephanie; Becker, Kirsten M

    2017-03-01

    Little is known about the extent and nature of youth exposure to online alcohol advertising, or factors that may be associated with exposure. The current study recruited middle school students who completed a paper survey and then logged each alcohol advertisement that they encountered over a 2-week period using cell phones as part of an ecological momentary assessment design. We examined the percentage of youth who reported exposure to online alcohol advertising in the past 2 weeks, average weekly rate of exposure, types of online alcohol advertisements youth reported seeing, and factors that increased youths' risk of exposure to online alcohol advertising. Analyses are based on 485 participants (47% female; 25% Hispanic, 25% White, 27% Black; 6% Asian, 16% other). Youth logged exposures to a total of 3,966 (16,018 weighted for underreporting) alcohol advertisements across the monitoring period; 154 (568 weighted) or 3.6% were online ads. Seventeen percent of youth reported seeing any online alcohol ad; the majority of online ads seen were video commercials (44.8%) and banner/side ads (26.6%). Factors associated with greater ad exposure were being older, rebellious, and Black race; greater parental monitoring and more hours spent on social media were associated with less exposure. Findings provide important information about adolescents' exposure to online alcohol advertising and what might contribute to a greater likelihood of exposure. Given that online ad exposure is linked to drinking behavior, prevention programming for younger adolescents should continue to address this issue to help youth make healthy choices regarding alcohol use. (PsycINFO Database Record

  18. European longitudinal study on the relationship between adolescents' alcohol marketing exposure and alcohol use

    NARCIS (Netherlands)

    Bruijn, A. de; Tanghe, J.; Leeuw, R.N.H. de; Engels, R.C.M.E.; Anderson, P.D.; Beccaria, F.; Bujalski, M.; Celata, C.; Gosselt, J.; Schreckenberg, D.; Slodownik, L.; Wothge, J.; Dalen, W. van

    2016-01-01

    Background and aims: This is the first study to examine the effect of alcohol marketing exposure on adolescents' drinking in a cross-national context. The aim was to examine reciprocal processes between exposure to a wide range of alcohol marketing types and adolescent drinking, controlled for non-a

  19. Valproate, thalidomide and ethyl alcohol alter the migration of HTR-8/SVneo cells

    Directory of Open Access Journals (Sweden)

    Rout Ujjwal K

    2006-08-01

    Full Text Available Abstract Background Valproate, thalidomide and alcohol (ethanol exposure during the first trimester of pregnancy is known to cause several developmental disorders. All these teratogens are known to pass the placental barrier and interfere directly with the normal development of the fetus. However, these teratogens also alter the formation and function of the placenta itself which may in turn affect the proper nourishment and development of the fetus. Optimum development of the placenta requires adequate invasion of trophoblast into the maternal uterine tissues. Changes in the migratory behavior of trophoblast by maternal exposure to these teratogens during placentogenesis may therefore alter the structure and function of the placenta. Methods In the present study, the effects of sodium valproate, thalidomide and alcohol on the migration of human first trimester trophoblast cell line (HTR-8/SVneo were examined in vitro. Cells were cultured in the wells of 48-well culture plates as mono or multilayers. Circular patches of cells were removed from the center of the wells by suction, and the migration of cells into the wound was studied using microscopy. Effects of low and high concentrations of valproate, thalidomide and alcohol were examined on the healing of wounds and on the migration rate of cells by determining the wound areas at 0, 3, 6, 12, 24 and 48 h. Effects of drugs and alcohol on the proliferation and the expression levels of integrin subunits beta1 and alpha5 in cells were examined. Results The migration rates of trophoblast differed between wounds created in mono and multilayers of cells. Exposure to teratogens altered the migration of trophoblast into mono and multilayer wounds. The effects of valproate, thalidomide and alcohol on the proliferation of cells during the rapid migratory phase were mild. Drug exposure caused significant changes in the expression levels of beta1 and alpha5 integrin subunits. Conclusion Results suggest that

  20. Valproate, thalidomide and ethyl alcohol alter the migration of HTR-8/SVneo cells

    OpenAIRE

    Rout Ujjwal K

    2006-01-01

    Abstract Background Valproate, thalidomide and alcohol (ethanol) exposure during the first trimester of pregnancy is known to cause several developmental disorders. All these teratogens are known to pass the placental barrier and interfere directly with the normal development of the fetus. However, these teratogens also alter the formation and function of the placenta itself which may in turn affect the proper nourishment and development of the fetus. Optimum development of the placenta requi...

  1. Prenatal Alcohol Exposure and the Developing Immune System.

    Science.gov (United States)

    Gauthier, Theresa W

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensive knowledge of the mechanisms underlying alcohol's effects on the developing immune system only will become clear once researchers establish improved methods for identifying newborns exposed to alcohol in utero.

  2. Response of Differentiated Human Airway Epithelia to Alcohol Exposure and Klebsiella pneumoniae Challenge

    Directory of Open Access Journals (Sweden)

    Sammeta V. Raju

    2013-07-01

    Full Text Available Alcohol abuse has been associated with increased susceptibility to pulmonary infection. It is not fully defined how alcohol contributes to the host defense compromise. Here primary human airway epithelial cells were cultured at an air-liquid interface to form a differentiated and polarized epithelium. This unique culture model allowed us to closely mimic lung infection in the context of alcohol abuse by basolateral alcohol exposure and apical live bacterial challenge. Application of clinically relevant concentrations of alcohol for 24 h did not significantly alter epithelial integrity or barrier function. When apically challenged with viable Klebsiella pneumoniae, the cultured epithelia had an enhanced tightness which was unaffected by alcohol. Further, alcohol enhanced apical bacterial growth, but not bacterial binding to the cells. The cultured epithelium in the absence of any treatment or stimulation had a base-level IL-6 and IL-8 secretion. Apical bacterial challenge significantly elevated the basolateral secretion of inflammatory cytokines including IL-2, IL-4, IL-6, IL-8, IFN-γ, GM-CSF, and TNF-α. However, alcohol suppressed the observed cytokine burst in response to infection. Addition of adenosine receptor agonists negated the suppression of IL-6 and TNF-α. Thus, acute alcohol alters the epithelial cytokine response to infection, which can be partially mitigated by adenosine receptor agonists.

  3. A new treatment for cognitive disorders related to in utero exposure to alcohol

    Institute of Scientific and Technical Information of China (English)

    Shuang Li; Yan Zhang; Feng Zhu; Bin Zhang; Jianying Lin; Chunyang Xu; Wancai Yang; Wei Hao; Ruiling Zhang

    2013-01-01

    Maternal alcohol consumption during pregnancy has detrimental effects on fetal central nervous system development. Maternal alcohol consumption prior to and during pregnancy significantly affects cognitive functions in offspring, which may be related to changes in cyclin-dependent kinase 5 because it is associated with modulation of synaptic plasticity and impaired learning and memory. In this study, we examined adult offspring in a maternal alcohol consumption model in rats. Y-maze test results showed that in utero exposure to alcohol impairs learning and memory capacities. Cyclin-dependent kinase 5 mRNA and protein expressions in the hippocampus of the offspring were significantly elevated, as assayed by quantitative real-time PCR and reverse transcription-PCR, immunofluorescence, and immuno-precipitation. Our experimental findings strongly suggest that altered cyclin-dependent kinase 5 may mediate impaired learning and memory in adult rats that were exposed to alcohol by maternal consumption while in utero.

  4. Effects of prenatal alcohol exposure on the developmental pattern of temperature preference in a thermocline.

    Science.gov (United States)

    Zimmerberg, B; Tomlinson, T M; Glaser, J; Beckstead, J W

    1993-01-01

    Prenatal alcohol exposure is associated with a variety of impairments in neonatal state regulatory systems. Since prenatal alcohol exposure causes thermoregulatory deficits in response to both heat and cold stress in rats, body temperature set-point might be altered in alcohol-exposed offspring. The effect of prenatal alcohol exposure on behavior in a thermocline was investigated in 10-, 15-, and 125-day-old male and female rats from three prenatal treatment conditions: alcohol liquid diet, pair-fed liquid diet control, or standard control. Subjects were placed in the thermocline in the cold, hot, or middle start positions and observed for 60 min. Subjects exposed to alcohol prenatally had a wider "preference zone" than control subjects at 10 and 15 days of age, but did not as adults. This widening of the temperature set-point in young subjects prenatally exposed to alcohol may represent a developmental lag in the development of body temperature set-point or a central compensatory process allowing the animal to adapt to alternating experiences of heat and cold stress.

  5. Alcohol exposure leads to unrecoverable cardiovascular defects along with edema and motor function changes in developing zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Xu Li

    2016-08-01

    Full Text Available Maternal alcohol consumption during pregnancy can cause a series of developmental disorders in the fetus called FAS (fetal alcohol syndrome. In the present study we exposed zebrafish embryos to 1% and 2% alcohol and observed the morphology of heart and blood vessels during and after exposure to investigate motor function alterations, and damage and recovery to the cardiovascular system. The results showed that alcohol exposure could induce heart deformation, slower heart rate, and incomplete blood vessels and pericardium. After stopping exposure, larvae exposed to 1% alcohol could recover only in heart morphology, but larvae in 2% alcohol could not recover either morphology or function of cardiovascular system. The edema-like characteristics in the 2% alcohol group became more conspicuous afterwards, with destruction in the dorsal aorta, coarctation in segmental arteries and a decrease in motor function, implying more serious unrecoverable cardiovascular defects in the 2% group. The damaged blood vessels in the 2% alcohol group resulted in an alteration in permeability and a decrease of blood volume, which were the causes of edema in pathology. These findings contribute towards a better understanding of ethanol-induced cardiovascular abnormalities and co-syndrome in patients with FAS, and warns against excessive maternal alcohol consumption during pregnancy.

  6. Biomarkers for the detection of prenatal alcohol exposure (PAE)

    DEFF Research Database (Denmark)

    Bjerregaard, Lene Berit Skov; Bager, Heidi; Husby, Steffen

    2017-01-01

    Alcohol exposure during pregnancy can cause adverse effects to the fetus, because it interferes with fetal development, leading to later physical and mental impairment. The most common clinical tool to determine fetal alcohol exposure is maternal self-reporting. However, a more objective and useful...... method is based on the use of biomarkers in biological specimens alone or in combination with maternal self-reporting. This review reports on clinically relevant biomarkers for detection of prenatal alcohol exposure (PAE). A systematic search was performed to ensure a proper overview in existing...... literature. Studies were selected to give an overview on clinically relevant neonatal and maternal biomarkers. The direct biomarkers fatty acid ethyl esters (FAEEs), ethyl glucuronide (EtG), ethyl sulfate, and phosphatidylethanol (PEth) were found to be the most appropriate biomarkers in relation...

  7. Plasma proteomic alterations in non-human primates and humans after chronic alcohol self-administration.

    Science.gov (United States)

    Freeman, Willard M; Vanguilder, Heather D; Guidone, Elizabeth; Krystal, John H; Grant, Kathleen A; Vrana, Kent E

    2011-08-01

    Objective diagnostics of excessive alcohol use are valuable tools in the identification and monitoring of subjects with alcohol use disorders. A number of potential biomarkers of alcohol intake have been proposed, but none have reached widespread clinical usage, often due to limited diagnostic sensitivity and specificity. In order to identify novel potential biomarkers, we performed proteomic biomarker target discovery in plasma samples from non-human primates that chronically self-administer high levels of ethanol. Two-dimensional difference in-gel electrophoresis (2D-DIGE) was used to quantify plasma proteins from within-subject samples collected before exposure to ethanol and after 3 months of excessive ethanol self-administration. Highly abundant plasma proteins were depleted from plasma samples to increase proteomic coverage. Altered plasma levels of serum amyloid A4 (SAA4), retinol-binding protein, inter-alpha inhibitor H4, clusterin, and fibronectin, identified by 2D-DIGE analysis, were confirmed in unmanipulated, whole plasma from these animals by immunoblotting. Examination of these target plasma proteins in human subjects with excessive alcohol consumption (and control subjects) revealed increased levels of SAA4 and clusterin and decreased levels of fibronectin compared to controls. These proteins not only serve as targets for further development as biomarker candidates or components of biomarker panels, but also add to the growing understanding of dysregulated immune function and lipoprotein metabolism with chronic, excessive alcohol consumption.

  8. Conditioned learning in alcohol dependence: implications for cue exposure treatment.

    Science.gov (United States)

    Drummond, D C; Cooper, T; Glautier, S P

    1990-06-01

    A review of the literature pertinent to cue exposure treatment in alcohol dependence is presented. Psychological models of relapse, based on conditioning and social learning theories, are critically evaluated. In particular, attention is drawn to the potential implications for cue exposure research and treatment of an interaction between Pavlovian and operant conditioning, problems with the application of the concepts of arousal and craving and the importance of a systems model to understand physiological responses. It is concluded that no study has so far demonstrated a link between conditioned responses to alcohol-related cues and relapse, an assumption on which cue exposure treatment is based. Further, the evidence for the effectiveness of cue exposure as a treatment is lacking. Promising research directions are identified.

  9. Embryonic alcohol exposure: Towards the development of a zebrafish model of fetal alcohol spectrum disorders.

    Science.gov (United States)

    Gerlai, Robert

    2015-11-01

    Fetal alcohol spectrum disorder (FASD) is a devastating disease of the brain caused by exposure to alcohol during prenatal development. Its prevalence exceeds 1%. The majority of FASD cases represent the milder forms of the disease which often remain undiagnosed, and even when diagnosed treatment options for the patient are limited due to lack of information about the mechanisms that underlie the disease. The zebrafish has been proposed as a model organism for exploring the mechanisms of FASD. Our laboratory has been studying the effects of low doses of alcohol during embryonic development in the zebrafish. This review discusses the methods of alcohol exposure, its effects on behavioral performance including social behavior and learning, and the potential underlying biological mechanisms in zebrafish. It is based upon a recent keynote address delivered by the author, and it focuses on findings obtained mainly in his own laboratory. It paints a promising future of this small vertebrate in FASD research.

  10. Exposure to alcohol commercials in movie theaters affects actual alcohol consumption in young adult high weekly drinkers: an experimental study.

    Science.gov (United States)

    Koordeman, Renske; Anschutz, Doeschka J; Engels, Rutger C M E

    2011-01-01

    The present pilot study examined the effects of alcohol commercials shown in movie theaters on the alcohol consumption of young adults who see these commercials. A two (alcohol commercials vs. nonalcohol commercials) by two (high weekly alcohol consumption vs. low weekly alcohol consumption) between-participant design was used, in which 184 young adults (age: 16-28 years) were exposed to a movie that was preceded by either alcohol commercials or nonalcohol commercials. Participants' actual alcohol consumption while watching the movie ("Watchmen") was examined. An analysis of variance (ANOVA) was conducted to examine the effects of the commercial condition on alcohol consumption. An interaction effect was found between commercial condition and weekly alcohol consumption (p < .001). Alcohol consumption among high weekly alcohol drinkers was higher in the alcohol commercial condition than in the nonalcohol commercial condition, whereas no differences were found in alcohol consumption between commercial conditions among low weekly alcohol drinkers. No gender differences were found in the association between exposure to alcohol commercials, weekly drinking, and alcohol use. Thus, exposure to alcohol commercials prior to a movie in a movie theater can directly influence alcohol consumption among high weekly alcohol consumers.

  11. Effects of Prenatal Alcohol Exposure on the Developing Kidneys

    Directory of Open Access Journals (Sweden)

    Farahnak Assadi

    2008-04-01

    Full Text Available Objective: Clinical and experimental studies strongly suggest that prenatal alcohol exposure is associated with zinc deficiency and impaired renal tubular function. Whether maternal alcohol consumption during pregnancy causes renal tubular cell injury is unknown.Material & Methods: Renal function was studied in 8 infants with fetal alcohol syndrome (FAS and 8 healthy age-matched infants. Renal function and structure were also examined in 11 offspring of rats exposed to alcohol during gestation.Findings: Infants with FAS had limited ability to concentrate urine after water restriction (P<0.001 and impaired acidification after acute acid loading (P<0.001 compared to control group. Plasma zinc levels were lower (P<0.001 and urinary zinc excretion was higher (P<0.001 in infants with FAS compared to control infants. Scanning electron microscopic studies revealed cytoplasmic mitochondrial hypertrophy and vacuolar structures of the epithelial cells of the cortical collecting ducts in the rat kidney following fetal exposure to alcohol.Conclusion: These findings suggest that offspring of rats exposed to alcohol during fetal life have renal functional and structural abnormalities that may be responsible in the genesis of renal functional abnormalities as described in infants with FAS.

  12. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heidi Marjonen

    Full Text Available The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v ethanol for the first 8 days of gestation (GD 0.5-8.5. Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60: we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in

  13. Functional significance of subjective response to alcohol across levels of alcohol exposure.

    Science.gov (United States)

    Bujarski, Spencer; Hutchison, Kent E; Prause, Nicole; Ray, Lara A

    2017-01-01

    Pre-clinical neurobiological models of addiction etiology including both the allostatic model and incentive sensitization theory suggest that alcohol consumption among alcohol-dependent (AD) individuals will be dissociated from hedonic reward as positive reinforcement mechanisms wane in later stage dependence. The aims of this study are to test this claim in humans by examining the relationship between dimensions of subjective responses to alcohol (SR) and alcohol craving across levels of alcohol exposure. Non-treatment-seeking drinkers (n = 205) completed an i.v. alcohol challenge (final target breath alcohol concentration = 0.06 g/dl) and reported on SR and craving. Participants were classified as light-to-moderate drinkers (LMD), heavy drinkers (HD) or AD. Analyses examined group differences in SR and craving response magnitude, as well as concurrent and predictive associations between SR domains and craving. At baseline, LMD and AD reported greater stimulation than HD, which carried over post-alcohol administration. However, stimulation was dose-dependently associated with alcohol craving in HD only. Furthermore, lagged models found that stimulation preceded craving among HD only, whereas this hypothesized pattern of results was not observed for craving preceding stimulation. Sedation was also positively associated with craving, yet no group differences were observed. In agreement with the prediction of diminished positive reinforcement in alcohol dependence, this study showed that stimulation/hedonic reward from alcohol did not precede craving in AD, whereas stimulation was dose-dependently associated with and preceded craving among non-dependent HD.

  14. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior

    Science.gov (United States)

    Vetreno, Ryan P.; Broadwater, Margaret A.; Robinson, Donita L.

    2016-01-01

    Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative–motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity

  15. Maternal L-glutamine supplementation prevents prenatal alcohol exposure-induced fetal growth restriction in an ovine model.

    Science.gov (United States)

    Sawant, Onkar B; Wu, Guoyao; Washburn, Shannon E

    2015-06-01

    Prenatal alcohol exposure is known to cause fetal growth restriction and disturbances in amino acid bioavailability. Alterations in these parameters can persist into adulthood and low birth weight can lead to altered fetal programming. Glutamine has been associated with the synthesis of other amino acids, an increase in protein synthesis and it is used clinically as a nutrient supplement for low birth weight infants. The aim of this study was to explore the effect of repeated maternal alcohol exposure and L-glutamine supplementation on fetal growth and amino acid bioavailability during the third trimester-equivalent period in an ovine model. Pregnant sheep were randomly assigned to four groups, saline control, alcohol (1.75-2.5 g/kg), glutamine (100 mg/kg, three times daily) or alcohol + glutamine. In this study, a weekend binge drinking model was followed where treatment was done 3 days per week in succession from gestational day (GD) 109-132 (normal term ~147). Maternal alcohol exposure significantly reduced fetal body weight, height, length, thoracic girth and brain weight, and resulted in decreased amino acid bioavailability in fetal plasma and placental fluids. Maternal glutamine supplementation successfully mitigated alcohol-induced fetal growth restriction and improved the bioavailability of glutamine and glutamine-related amino acids such as glycine, arginine, and asparagine in the fetal compartment. All together, these findings show that L-glutamine supplementation enhances amino acid availability in the fetus and prevents alcohol-induced fetal growth restriction.

  16. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood.

    Science.gov (United States)

    Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H

    2016-01-01

    Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning.

  17. Cholecalciferol attenuates perseverative behavior associated with developmental alcohol exposure in rats in a dose-dependent manner.

    Science.gov (United States)

    Idrus, N M; Happer, J P; Thomas, J D

    2013-07-01

    Alcohol is a known teratogen that is estimated to affect 2-5% of the births in the U.S. Prenatal alcohol exposure can produce physical features such as facial dysmorphology, physiological alterations such as cell loss in the central nervous system (CNS), and behavioral changes that include hyperactivity, cognitive deficits, and motor dysfunction. The range of effects associated with prenatal alcohol exposure is referred to as fetal alcohol spectrum disorders (FASD). Despite preventative measures, some women continue to drink while pregnant. Therefore, identifying interventions that reduce the severity of FASD is critical. This study investigated one such potential intervention, vitamin D3, a nutrient that exerts neuroprotective properties. The present study determined whether cholecalciferol, a common vitamin D3 nutritional supplement, could serve as a means of mitigating alcohol-related learning deficits. Using a rat model of FASD, cholecalciferol was given before, during, and after 3rd trimester equivalent alcohol exposure. Three weeks after cholecalciferol treatment, subjects were tested on a serial spatial discrimination reversal learning task. Animals exposed to ethanol committed significantly more errors compared to controls. Cholecalciferol treatment reduced perseverative behavior that is associated with developmental alcohol exposure in a dose-dependent manner. These data have important implications for the treatment of FASD and suggest that cholecalciferol may reduce some aspects of FASD. This article is part of a Special Issue entitled 'Vitamin D Workshop'.

  18. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    E.M. Meintjes

    2014-01-01

    Full Text Available Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD. Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6–11.0 years and controls (n = 16, 9.5–11.0 years. Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1 the thalamus, midbrain, and ventromedial frontal lobe, (2 the superior cerebellum and inferior occipital lobe, (3 the dorsolateral frontal cortex, and (4 the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  19. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease.

    Science.gov (United States)

    Ditzel, Eric J; Li, Hui; Foy, Caroline E; Perrera, Alec B; Parker, Patricia; Renquist, Benjamin J; Cherrington, Nathan J; Camenisch, Todd D

    2016-07-01

    Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.

  20. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    Science.gov (United States)

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  1. Maternal And Neonatal Plasma MicroRNA Biomarkers For Fetal Alcohol Exposure In An Ovine Model

    Science.gov (United States)

    Balaraman, Sridevi; Lunde, E. Raine; Sawant, Onkar; Cudd, Timothy A.; Washburn, Shannon E.; Miranda, Rajesh C.

    2014-01-01

    Background Plasma or circulating miRNAs (cirmiRNAs) have potential diagnostic value as biomarkers for a range of diseases. Based on observations that ethanol altered intracellular miRNAs during development, we tested the hypothesis that plasma miRNAs were biomarkers for maternal alcohol exposure, and for past in utero exposure, in the neonate. Methods Pregnant sheep were exposed to a binge model of ethanol consumption resulting in an average peak blood alcohol content of 243 mg/dl, for a three-trimester equivalent period from gestational day (GD) 4 to GD 132. MiRNA profiles were assessed by quantitative PCR analysis in plasma, erythrocyte and leukocytes obtained from non-pregnant ewes, and plasma from pregnant ewes 24 hours following the last binge ethanol episode, and from newborn lambs, at birth on ~GD 147. Results Pregnant ewe and newborn lamb cirmiRNA profiles were similar to each other and different from non-pregnant female plasma, erythrocyte or leukocyte miRNAs. Significant changes in cirmiRNA profiles were observed in the ethanol-exposed ewe, and at birth, in the in utero, ethanol-exposed lamb. CirmiRNAs including miR-9, -15b, -19b and -20a were sensitive and specific measures of ethanol exposure in both pregnant ewe and newborn lamb. Additionally, ethanol exposure altered guide to passenger strand cirmiRNA ratios in the pregnant ewe, but not in the lamb. Conclusion Shared profiles between pregnant dam and neonate suggest possible maternal-fetal miRNA transfer. CirmiRNAs are biomarkers for alcohol exposure during pregnancy, in both mother and neonate, and may constitute an important shared endocrine biomarker that is vulnerable to the maternal environment. PMID:24588274

  2. Implication of altered proteasome function in alcoholic liver injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The proteasome is a major protein-degrading enzyme,which catalyzes degradation of oxidized and aged proteins, signal transduction factors and cleaves peptides for antigen presentation. Proteasome exists in the equilibrium of 26S and 20S particles. Proteasome function is altered by ethanol metabolism, depending on oxidative stress levels: low oxidative stress induces proteasome activity, while high oxidative stress reduces it. The proposed mechanisms for modulation of proteasome activity are related to oxidative modification of proteasomal proteins with primary and secondary products derived from ethanol oxidation.Decreased proteolysis by the proteasome results in the accumulation of insoluble protein aggregates, which cannot be degraded by proteasome and which further inhibit proteasome function. Mallory bodies, a common signature of alcoholic liver diseases, are formed by liver cells, when proteasome is unable to remove cytokeratins.Proteasome inhibition by ethanol also promotes the accumulation of pro-apoptotic factors in mitochondria of ethanol-metabolizing liver cells that are normally degraded by proteasome. In addition, decreased proteasome function also induces accumulation of the negative regulators of cytokine signaling (Ⅰ-κB and SOCS), thereby blocking cytokine signal transduction.Finally, ethanol-elicited blockade of interferon type 1 and 2 signaling and decreased proteasome function impairs generation of peptides for MHC class Ⅰ-restricted antigen presentation.

  3. Stable acetaldehyde--protein adducts as biomarkers of alcohol exposure.

    Science.gov (United States)

    Conduah Birt, J E; Shuker, D E; Farmer, P B

    1998-02-01

    The consumption of alcoholic beverages has been associated with increased risks of a number of chronic disorders including cancers. It is still not clear whether ethyl alcohol or other components such as metabolites are directly involved in the carcinogenic process or whether the effects are due to the modulation of metabolism of other carcinogens. At present, there is no good biomarker of alcohol intake, particularly at low or moderate levels of consumption. A number of studies have shown the ability of the major metabolite acetaldehyde to react with proteins in vitro to give stable and unstable adducts. The interaction of acetaldehyde with model peptides, which correspond to N-terminal globin sequences, was studied. The major stable adduct was identified by mass spectrometry and NMR as a diastereoisomeric mixture of imidazolidinones. This is believed to be formed by reaction and cyclization of the initial Schiff base adduct with the N-terminal valine. Incubation of human globin with acetaldehyde (0-2 mM) yielded products which were identified as the N-terminal adducts by electrospray ionization mass spectrometry (ESI-MS) of proteolytic digests. The specificity and sensitivity of the analysis was improved by the use of on-line HPLC-ESI-MS. Tryptic digests of the modified globin which contained both the N-terminal acetaldehyde adducts of alpha-globin (heptapeptide) and beta-globin (octapeptide) were resolved. These results suggest that analysis of stable imidazolidinone adducts is a promising approach to estimation of alcohol exposure.

  4. Long-term daily access to alcohol alters dopamine-related synthesis and signaling proteins in the rat striatum.

    Science.gov (United States)

    Kashem, Mohammed Abul; Ahmed, Selina; Sarker, Ranjana; Ahmed, Eakhlas U; Hargreaves, Garth A; McGregor, Iain S

    2012-12-01

    Chronic alcohol exposure can adversely affect neuronal morphology, synaptic architecture and associated neuroplasticity. However, the effects of moderate levels of long-term alcohol intake on the brain are a matter of debate. The current study used 2-DE (two-dimensional gel electrophoresis) proteomics to examine proteomic changes in the striatum of male Wistar rats after 8 months of continuous access to a standard off-the-shelf beer in their home cages. Alcohol intake under group-housed conditions during this time was around 3-4 g/kg/day, a level below that known to induce physical dependence in rats. After 8 months of access rats were euthanased and 2-DE proteomic analysis of the striatum was conducted. A total of 28 striatal proteins were significantly altered in the beer drinking rats relative to controls. Strikingly, many of these were dopamine (DA)-related proteins, including tyrosine hydroxylase (an enzyme of DA biosynthesis), pyridoxal phosphate phosphatase (a co-enzyme in DA biosynthesis), DA and cAMP regulating phosphoprotein (a regulator of DA receptors and transporters), protein phosphatase 1 (a signaling protein) and nitric oxide synthase (which modulates DA uptake). Selected protein expression changes were verified using Western blotting. We conclude that long-term moderate alcohol consumption is associated with substantial alterations in the rat striatal proteome, particularly with regard to dopaminergic signaling pathways. This provides potentially important evidence of major neuroadaptations in dopamine systems with daily alcohol consumption at relatively modest levels.

  5. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    NARCIS (Netherlands)

    K.G. Akers (Katherine); S.A. Kushner (Steven); A.T. Leslie (Ana); L. Clarke (Laura); D. van der Kooy (Derek); J.P. Lerch (Jason); P.W. Frankland (Paul)

    2011-01-01

    textabstractBackground: Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavior

  6. Alterations in cognitive and psychological functioning after organic solvent exposure

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  7. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  8. Oxidative stress and an altered methionine metabolism in alcoholism.

    Science.gov (United States)

    Bleich, S; Spilker, K; Kurth, C; Degner, D; Quintela-Schneider, M; Javaheripour, K; Rüther, E; Kornhuber, J; Wiltfang, J

    2000-11-03

    The exact mechanism of brain atrophy in patients with chronic alcoholism remains unknown. There is growing evidence that chronic alcoholism is associated with oxidative stress and with a derangement in sulphur amino acid metabolism (e.g. ethanol-induced hyperhomocysteinemia). Furthermore, it has been reported that homocysteine induces neuronal cell death by stimulating N-methyl-D-aspartate receptors as well as by producing free radicals. To further evaluate this latter hypothesis we analysed serum levels of both homocysteine and markers of oxidative stress (malondialdehyde) in alcoholic patients who underwent withdrawal from alcohol. Homocysteine and malondialdehyde were quantified by high performance liquid chromatography (HPLC) in serum samples of 35 patients (active drinkers). There was a significant correlation (Pbrain shrinkage.

  9. Changes in health professionals' knowledge, attitudes and practice following provision of educational resources about prevention of prenatal alcohol exposure and fetal alcohol spectrum disorder.

    Science.gov (United States)

    Payne, Janet; France, Kathryn; Henley, Nadine; D'Antoine, Heather; Bartu, Anne; O'Leary, Colleen; Elliott, Elizabeth; Bower, Carol

    2011-07-01

    We provided health professionals in Western Australia (WA) with educational resources about prevention of prenatal alcohol exposure and fetal alcohol spectrum disorder and assessed changes in their knowledge, attitudes and practice concerning fetal alcohol syndrome (FAS) and alcohol consumption in pregnancy. Following our 2002 survey of health professionals in WA, we developed and distributed educational resources to 3348 health professionals in WA in 2007. Six months later we surveyed 1483 of these health professionals. Prevalence rate ratios [PRR] and 95% confidence intervals [CI] were calculated to compare 2007 results with results from the 2002 survey. Of the 1001 responding health professionals, 69.8% had seen the educational resources; of these 77.1% have used them and 48.5% said the resources had assisted them to change their practice or their intention to change their practice. Compared with 2002, there was an increase in the proportion who knew all the essential features of FAS from 11.7% to 15.8% [PRR 1.35; 95% CI 1.09, 1.67] and had diagnosed FAS, from 4.8% to 7.3% [PRR 1.52; 95% CI 1.08, 2.13]. In 2007, 98.1% of health professionals stated they would advise pregnant women to consider not drinking at all or advise them that no alcohol in pregnancy is the safest choice. Health professionals surveyed in 2007 have increased their knowledge, changed their attitudes and practice about FAS, and altered the advice they give to pregnant women about alcohol consumption since our survey in 2002. It is essential that we build on this change and continue to support health professionals' knowledge, attitudes and practice about the prevention of prenatal alcohol exposure and fetal alcohol spectrum disorder. The educational resources for health professionals may be ordered as hard copies and downloaded from the internet http://www.ichr.uwa.edu.au/alcoholandpregnancy.

  10. Effect of alcohol exposure on hepatic superoxide generation and hepcidin expression

    Institute of Scientific and Technical Information of China (English)

    Duygu; Dee; Harrison-Findik; Sizhao; Lu; Emily; M; Zmijewski; Jocelyn; Jones; Matthew; C; Zimmerman

    2013-01-01

    AIM: To understand the role of mitochondrial-produced superoxide(O 2 ?) in the regulation of iron-regulatory hormone, hepcidin by alcohol in the liver. METHODS: For alcohol experiments, manganese superoxide dismutase knockout mice heterozygous for Sod2 gene expression(Sod2 +/) and age-matched littermate control mice(LMC), expressing Sod2 gene on both alleles, were exposed to either 10%(w/v) ethanol in the drinking water or plain water(control) for 7 d. Total cellular O 2 ? levels in hepatocytes isolated from the livers of mice were measured by electron paramagnetic resonance spectroscopy. The mitochondrial-targeted, O 2 ?-sensitive fluorogenic probe, MitoSOX Red and flow cytometry were utilized to measure O 2 ? in mitochondria. Gene and protein expression were determined by Taqman Real-time quantitative PCR and Western blotting, respectively. RESULTS: Sod2 +/- mice expressed 40% less MnSOD protein(SOD2) in hepatocytes compared to LMC mice. The deletion of Sod2 allele did not alter the basal expression level of hepcidin in the liver. 10% ethanol exposure for 1 wk inhibited hepatic hepcidin mRNA expression three-fold both in Sod2 +/ and LMC mice. O 2 ? levels in hepatocytes of untreated Sod2 +/ mice were three-fold higher than in untreated LMC mice, as observed by electron paramagnetic resonance spectroscopy. O 2 ? levels in mitochondria of Sod2 +/ mice were four-fold higher than in mitochondria of untreated LMC mice, as measured by MitoSOX Red fluorescence and flow cytometry. Alcohol induced a two-fold higher increase in O 2 ? levels in hepatocytes of LMC mice than in Sod2 +/ mice compared to respective untreated counterparts. In contrast, 1 wk alcohol exposure did not alter mitochondrial O 2 ? levels in both Sod2 +/- and control mice. CONCLUSION: Mitochondrial O2 ? is not involved in the inhibition of liver hepcidin transcription and thereby regulation of iron metabolism by alcohol. These findings also suggest that short-term alcohol consumption significantly

  11. Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration.

    Science.gov (United States)

    Zhang, Chong; Xu, Dan; Luo, Hanwen; Lu, Juan; Liu, Lian; Ping, Jie; Wang, Hui

    2014-11-05

    The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important neuroendocrine axes and plays an important role in stress defense responses before and after birth. Prenatal exposure to xenobiotics, including environmental toxins (such as smoke, sulfur dioxide and carbon monoxide), drugs (such as synthetic glucocorticoids), and foods and beverage categories (such as ethanol and caffeine), affects fetal development indirectly by changing the maternal status or damaging the placenta. Certain xenobiotics (such as caffeine, ethanol and dexamethasone) may also affect the fetus directly by crossing the placenta into the fetus due to their lipophilic properties and lower molecular weights. All of these factors probably result in intrauterine programming alteration of the HPA axis, which showed a low basal activity but hypersensitivity to chronic stress. These alterations will, therefore, increase the susceptibility to adult neuropsychiatric (such as depression and schizophrenia) and metabolic diseases (such as hypertension, diabetes and non-alcoholic fatty liver disease). The "over-exposure of fetuses to maternal glucocorticoids" may be the main initiation factor by which the fetal HPA axis programming is altered. Meantime, xenobiotics can directly induce abnormal epigenetic modifications and expression on the important fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute regulatory protein, et al) or damage by in situ oxidative metabolism of fetal adrenals, which may also be contributed to the programming alteration of fetal HPA axis.

  12. Timing of moderate level prenatal alcohol exposure influences gene expression of sensory processing behavior in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Mary L Schneider

    2009-11-01

    Full Text Available Sensory processing disorder (SPD, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR, and striatal dopamine (DA function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections.

  13. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    Prenatal exposure to beverage alcohol is a major cause of mild mental retardation and developmental delay. In nonendangered alcohol-preferring vervet monkeys, we modeled the most common nondysmorphic form of fetal alcohol syndrome disorder with voluntary drinking during the third trimester...

  14. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.

    Directory of Open Access Journals (Sweden)

    Lara Bull-Otterson

    Full Text Available Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD. Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.

  15. Alterations of the gut microbiome and metabolome in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Wei; Zhong; Zhanxiang; Zhou

    2014-01-01

    Alcohol consumption is one of the leading causes of liver diseases and liver-related death worldwide. The gut is a habitat for billions of microorganisms which promotes metabolism and digestion in their symbiotic relationship with the host. Alterations of gut microbiome by alcohol consumption are referred to bacterial overgrowth, release of bacteria-derived products, and/or changed microbiota equilibrium. Alcohol consumption also perturbs the function of gastrointestinal mucosa and elicits a pathophysiological condition. These adverse effects caused by alcohol may ultimately result in a broad change of gastrointestinal luminal metabolites such as bile acids, short chain fatty acids, and branched chain amino acids. Gut microbiota alterations, metabolic changes produced in a dysbiotic intestinal environment, and the host factors are all critical contributors to the development and progression of alcoholic liver disease. This review summarizes recent findings of how alcohol-induced alterations of gut microbiota and metabolome, and discusses the mecha-nistic link between gastrointestinal dyshomeostasis and alcoholic liver injury.

  16. Social Information Processing Skills in Children with Histories of Heavy Prenatal Alcohol Exposure

    Science.gov (United States)

    McGee, Christie L.; Bjorkquist, Olivia A.; Price, Joseph M.; Mattson, Sarah N.; Riley, Edward P.

    2009-01-01

    Based on caregiver report, children with prenatal alcohol exposure have difficulty with social functioning, but little is known about their social cognition. The current study assessed the social information processing patterns of school-age children with heavy prenatal alcohol exposure using a paradigm based on Crick and Dodge's reformulated…

  17. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    Directory of Open Access Journals (Sweden)

    Nicole M Mantella

    Full Text Available Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1 or orosensory-mediated responses to nicotine solutions (Experiment 2 were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are

  18. Progressive alcohol-induced sperm alterations leading to spermatogenic arrest, which was reversed after alcohol withdrawal.

    Science.gov (United States)

    Sermondade, Nathalie; Elloumi, Hanène; Berthaut, Isabelle; Mathieu, Emmanuelle; Delarouzière, Vanina; Ravel, Célia; Mandelbaum, Jacqueline

    2010-03-01

    This is a report of a 6-year follow-up of a male patient's semen parameters during heavy chronic alcohol intoxication and after withdrawal. A slowly progressive negative impact of alcohol could be observed: isolated moderate teratozoospermia was firstly noted followed by oligoasthenoteratospermia. Then a severe worsening resulted in cryptozoospermia and ultimately in azoospermia. At this moment, the histological analysis of a testicular biopsy revealed a maturation arrest of the germinal cells at the pachytene stage with no mature sperm cells. Alcohol withdrawal was then obtained, allowing a very fast and drastic improvement of semen characteristics; strictly normal semen parameters were observed after no more than 3 months. Taking into consideration these data, patients should be questioned about their alcohol intake before assisted reproductive technology and should be informed about this adverse effect. Moreover, this case report emphasizes how quickly benefits can be obtained after withdrawal, even in the case of heavy chronic alcohol intake.

  19. The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using in vivo microdialysis.

    Science.gov (United States)

    Perkins, Amy E; Fadel, Jim R; Kelly, Sandra J

    2015-05-01

    Fetal alcohol spectrum disorders (FASD) are characterized by damage to multiple brain regions, including the hippocampus, which is involved in learning and memory. The acetylcholine neurotransmitter system provides major input to the hippocampus and is a possible target of developmental alcohol exposure. Alcohol (3.0 g/kg/day) was administered via intubation to male rat pups (postnatal day [PD] 2-10; ethanol-treated [ET]). Controls received a sham intubation (IC) or no treatment (NC). Acetylcholine efflux was measured using in vivo microdialysis (PD 32-35). ET animals were not different at baseline, but had decreased K(+)/Ca(2+)-induced acetylcholine efflux compared to NC animals and an enhanced acetylcholine response to galantamine (acetylcholinesterase inhibitor; 2.0 mg/kg) compared to both control groups. A separate cohort of animals was tested in the context pre-exposure facilitation effect task (CPFE; PD 30-32) following postnatal alcohol exposure and administration of galantamine (2.0 mg/kg; PD 11-30). Neither chronic galantamine nor postnatal alcohol exposure influenced performance in the CPFE task. Using immunohistochemistry, we found that neither alcohol exposure nor behavioral testing significantly altered the density of vesicular acetylcholine transporter or alpha7 nicotinic acetylcholine receptor in the ventral hippocampus (CA1). In the medial septum, the average number of choline acetyltransferase (ChAT+) cells was increased in ET animals that displayed the context-shock association; there were no changes in IC and NC animals that learned the context-shock association or in any animals that were in the control task that entailed no learning. Taken together, these results indicate that the hippocampal acetylcholine system is significantly disrupted under conditions of pharmacological manipulations (e.g., galantamine) in alcohol-exposed animals. Furthermore, ChAT was up‑regulated in ET animals that learned the CPFE, which may account for their ability

  20. Prenatal alcohol exposure inducing the apoptosis of mossy cells in hippocampus of SMS2-/- mice.

    Science.gov (United States)

    Wang, Lai; Wu, Lin; Wang, Xiaoqing; Deng, Jiexin; Ma, Zhanyou; Fan, Wenjuan; He, Weiya; Deng, Jinbo

    2015-11-01

    In order to understand the mechanisms of alcohol-induced neuroapoptosis through the ceramide pathway, sphingomyelin synthase 2 knockout (SMS2-/-) mice were used to make the prenatal alcohol exposure model, and the role of ceramide regulation on alcohol-induced neuroapoptosis was studied in the offspring. Initially the levels of serum sphingomyelin (SM) were detected with enzymatic method in P0 pups after alcohol exposure in parents. Then the apoptosis of mossy cells in the offspring hippocampus was investigated after prenatal alcohol exposure with immunohistochemistry and TUNEL assay. Finally the expression of activated Caspase 8 and activated Caspase 3 in the offspring hippocampus was detected with Western blot analysis. Our results showed that SM levels were down-regulated in a dose-dependent manner (palcohol exposure in wild-type (WT) and SMS2-/- pups. However, SM levels of serum in SMS2-/- pups were significantly lower than that in WT pups (palcohol-induced neuroapoptosis. In both WT pups and SMS2-/- pups, the number of apoptotic mossy cells in the hippocampus increased after prenatal alcohol exposure in a dose dependent manner (palcohol exposure, consistent with results from TUNEL assay and immunocytochemistry. Our study suggests that mossy cells may be the easily attacked cells for fetal alcohol spectrum disorder (FASD), and ceramide is involved in the alcohol-induced neural apoptosis. The mechanism probably lies in the accumulated ceramide in SMS2 mice, and the increase of activated Caspase 8 and Caspase 3 promotes alcohol-induced neuroapoptosis.

  1. Alcohol-cue exposure effects on craving and attentional bias in underage college-student drinkers.

    Science.gov (United States)

    Ramirez, Jason J; Monti, Peter M; Colwill, Ruth M

    2015-06-01

    The effect of alcohol-cue exposure on eliciting craving has been well documented, and numerous theoretical models assert that craving is a clinically significant construct central to the motivation and maintenance of alcohol-seeking behavior. Furthermore, some theories propose a relationship between craving and attention, such that cue-induced increases in craving bias attention toward alcohol cues, which, in turn, perpetuates craving. This study examined the extent to which alcohol cues induce craving and bias attention toward alcohol cues among underage college-student drinkers. We designed within-subject cue-reactivity and visual-probe tasks to assess in vivo alcohol-cue exposure effects on craving and attentional bias on 39 undergraduate college drinkers (ages 18-20). Participants expressed greater subjective craving to drink alcohol following in vivo cue exposure to a commonly consumed beer compared with water exposure. Furthermore, following alcohol-cue exposure, participants exhibited greater attentional biases toward alcohol cues as measured by a visual-probe task. In addition to the cue-exposure effects on craving and attentional bias, within-subject differences in craving across sessions marginally predicted within-subject differences in attentional bias. Implications for both theory and practice are discussed. (PsycINFO Database Record

  2. Tributyltin exposure alters cytokine levels in mouse serum.

    Science.gov (United States)

    Lawrence, Shanieek; Pellom, Samuel T; Shanker, Anil; Whalen, Margaret M

    2016-11-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, keratinocyte chemoattractant (KC), macrophage inflammatory protein 1β (MIP), MIP2 and regulated on activation normal T-cell-expressed and secreted (RANTES) was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40 and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in the serum of mice exposed to TBT for less than 24 h. Levels of IL1β, IL-12 βp40, IL-5 and IL-15 were also modulated in mouse serum, depending on the specific experiment and exposure level. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines.

  3. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes.

    Science.gov (United States)

    Barr, Tasha; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Grant, Kathleen; Messaoudi, Ilhem

    2016-01-01

    Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set.

  4. Altering user' acceptance of automation through prior automation exposure.

    Science.gov (United States)

    Bekier, Marek; Molesworth, Brett R C

    2016-08-22

    Air navigation service providers worldwide see increased use of automation as one solution to overcome the capacity constraints imbedded in the present air traffic management (ATM) system. However, increased use of automation within any system is dependent on user acceptance. The present research sought to determine if the point at which an individual is no longer willing to accept or cooperate with automation can be manipulated. Forty participants underwent training on a computer-based air traffic control programme, followed by two ATM exercises (order counterbalanced), one with and one without the aid of automation. Results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation ('tipping point') decreased; suggesting it is indeed possible to alter automation acceptance. Practitioner Summary: This paper investigates whether the point at which a user of automation rejects automation (i.e. 'tipping point') is constant or can be manipulated. The results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation decreased; suggesting it is possible to alter automation acceptance.

  5. Liquid-Diet with Alcohol Alters Maternal, Fetal and Placental Weights and the Expression of Molecules Involved in Integrin Signaling in the Fetal Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Ujjwal K. Rout

    2010-11-01

    Full Text Available Maternal alcohol consumption during pregnancy causes wide range of behavioral and structural deficits in children, commonly known as Fetal Alcohol Syndrome (FAS. Children with FAS may suffer behavioral deficits in the absence of obvious malformations. In rodents, the exposure to alcohol during gestation changes brain structures and weights of offspring. The mechanism of FAS is not completely understood. In the present study, an established rat (Long-Evans model of FAS was used. The litter size and the weights of mothers, fetuses and placentas were examined on gestation days 18 or 20. On gestation day 18, the effects of chronic alcohol on the expression levels of integrin receptor subunits, phospholipase-Cγ and N-cadherin were examined in the fetal cerebral cortices. Presence of alcohol in the liquid-diet reduced the consumption and decreased weights of mothers and fetuses but increased the placental weights. Expression levels of β1 and α3 integrin subunits and phospholipase-Cγ2 were significantly altered in the fetal cerebral cortices of mothers on alcohol containing diet. Results show that alcohol consumption during pregnancy even with protein, mineral and vitamin enriched diet may affect maternal and fetal health, and alter integrin receptor signaling pathways in the fetal cerebral cortex disturbing the development of fetal brains.

  6. The association of media exposure and media literacy with adolescent alcohol and tobacco use.

    Science.gov (United States)

    Chang, Fong-ching; Miao, Nae-fang; Lee, Ching-mei; Chen, Ping-hung; Chiu, Chiung-hui; Lee, Shu-ching

    2016-04-01

    This study examined the relationship of media exposure and media literacy to alcohol and tobacco use among adolescents in Taiwan. A total of 2992 10th-grade students recruited from 26 high schools in Taipei, Taiwan, completed a questionnaire in 2010. The multivariable analysis results indicated that the students with higher alcohol and tobacco media exposure were more likely to use alcohol and tobacco and have intentions to drink and smoke, while students with higher media literacy were less likely to use alcohol and have intentions to drink and smoke.

  7. The secondary alcohol and aglycone metabolites of doxorubicin alter metabolism of human erythrocytes

    Directory of Open Access Journals (Sweden)

    F. Misiti

    2003-12-01

    Full Text Available Anthracyclines, a class of antitumor drugs widely used for the treatment of solid and hematological malignancies, cause a cumulative dose-dependent cardiac toxicity whose biochemical basis is unclear. Recent studies of the role of the metabolites of anthracyclines, i.e., the alcohol metabolite doxorubicinol and aglycone metabolites, have suggested new hypotheses about the mechanisms of anthracycline cardiotoxicity. In the present study, human red blood cells were used as a cell model. Exposure (1 h at 37ºC of intact human red blood cells to doxorubicinol (40 µM and to aglycone derivatives of doxorubicin (40 µM induced, compared with untreated red cells: i a ~2-fold stimulation of the pentose phosphate pathway (PPP and ii a marked inhibition of the red cell antioxidant enzymes, glutathione peroxidase (~20% and superoxide dismutase (~60%. In contrast to doxorubicin-derived metabolites, doxorubicin itself induced a slighter PPP stimulation (~35% and this metabolic event was not associated with any alteration in glutathione reductase, glutathione peroxidase, catalase or superoxide dismutase activity. Furthermore, the interaction of hemoglobin with doxorubicin and its metabolites induced a significant increase (~22% in oxygen affinity compared with hemoglobin incubated without drugs. On the basis of the results obtained in the present study, a new hypothesis, involving doxorubicinol and aglycone metabolites, has been proposed to clarify the mechanisms responsible for the doxorubicin-induced red blood cell toxicity.

  8. Effects of Intermittent Alcohol Exposure on Emotion and Cognition: A Potential Role for the Endogenous Cannabinoid System and Neuroinflammation.

    Science.gov (United States)

    Sanchez-Marin, Laura; Pavon, Francisco J; Decara, Juan; Suarez, Juan; Gavito, Ana; Castilla-Ortega, Estela; Rodriguez de Fonseca, Fernando; Serrano, Antonia

    2017-01-01

    Intermittent alcohol exposure is a common pattern of adolescent alcohol use that can lead to binge drinking episodes. Alcohol use is known to modulate the endocannabinoid system (ECS), which is involved in neuronal communication, neuroplasticity, neuroinflammation and behavior. Adolescent male Wistar rats were exposed to 4-week intermittent alcohol intoxication (3 g/kg injections for 4 days/week) or saline (N = 12 per group). After alcohol deprivation, adult rats were assessed for emotionality and cognition and the gene expression of the ECS and other factors related to behavior and neuroinflammation was examined in the brain. Alcohol-exposed rats exhibited anxiogenic-like responses and impaired recognition memory but no motor alterations. There were brain region-dependent changes in the mRNA levels of the ECS and molecular signals compared with control rats. Thus, overall, alcohol-exposed rats expressed higher mRNA levels of endocannabinoid synthetic enzymes (N-acyl-phosphatidylethanolamine phospholipase D and diacylglycerol lipases) in the medial-prefrontal cortex (mPFC) but lower mRNA levels in the amygdala. Furthermore, we observed lower mRNA levels of receptors CB1 CB2 and peroxisome proliferator-activated receptor-α in the striatum. Regarding neuropeptide signaling, alcohol-exposed rats displayed lower mRNA levels of the neuropeptide Y signaling, particularly NPY receptor-2, in the amygdala and hippocampus and higher mRNA levels of corticotropin-releasing factor in the hippocampus. Additionally, we observed changes of several neuroinflammation-related factors. Whereas, the mRNA levels of toll-like receptor-4, tumor necrosis factor-α, cyclooxygenase-2 and glial fibrillary acidic protein were significantly increased in the mPFC, the mRNA levels of cyclooxygenase-2 and glial fibrillary acidic protein were decreased in the striatum and hippocampus. However, nuclear factor-κβ mRNA levels were lower in the mPFC and striatum and allograft inflammatory factor-1

  9. Effects of Intermittent Alcohol Exposure on Emotion and Cognition: A Potential Role for the Endogenous Cannabinoid System and Neuroinflammation

    Science.gov (United States)

    Sanchez-Marin, Laura; Pavon, Francisco J.; Decara, Juan; Suarez, Juan; Gavito, Ana; Castilla-Ortega, Estela; Rodriguez de Fonseca, Fernando; Serrano, Antonia

    2017-01-01

    Intermittent alcohol exposure is a common pattern of adolescent alcohol use that can lead to binge drinking episodes. Alcohol use is known to modulate the endocannabinoid system (ECS), which is involved in neuronal communication, neuroplasticity, neuroinflammation and behavior. Adolescent male Wistar rats were exposed to 4-week intermittent alcohol intoxication (3 g/kg injections for 4 days/week) or saline (N = 12 per group). After alcohol deprivation, adult rats were assessed for emotionality and cognition and the gene expression of the ECS and other factors related to behavior and neuroinflammation was examined in the brain. Alcohol-exposed rats exhibited anxiogenic-like responses and impaired recognition memory but no motor alterations. There were brain region-dependent changes in the mRNA levels of the ECS and molecular signals compared with control rats. Thus, overall, alcohol-exposed rats expressed higher mRNA levels of endocannabinoid synthetic enzymes (N-acyl-phosphatidylethanolamine phospholipase D and diacylglycerol lipases) in the medial-prefrontal cortex (mPFC) but lower mRNA levels in the amygdala. Furthermore, we observed lower mRNA levels of receptors CB1 CB2 and peroxisome proliferator-activated receptor-α in the striatum. Regarding neuropeptide signaling, alcohol-exposed rats displayed lower mRNA levels of the neuropeptide Y signaling, particularly NPY receptor-2, in the amygdala and hippocampus and higher mRNA levels of corticotropin-releasing factor in the hippocampus. Additionally, we observed changes of several neuroinflammation-related factors. Whereas, the mRNA levels of toll-like receptor-4, tumor necrosis factor-α, cyclooxygenase-2 and glial fibrillary acidic protein were significantly increased in the mPFC, the mRNA levels of cyclooxygenase-2 and glial fibrillary acidic protein were decreased in the striatum and hippocampus. However, nuclear factor-κβ mRNA levels were lower in the mPFC and striatum and allograft inflammatory factor-1

  10. Chronic alcohol alters rewarded behaviors and striatal plasticity

    OpenAIRE

    DePoy, Lauren; Daut, Rachel; Wright, Tara; Camp, Marguerite; Crowley, Nicole; Noronha, Bianca; Lovinger, David; Holmes, Andrew

    2014-01-01

    Chronic intermittent ethanol (CIE) alters neural functions and behaviors mediated by the dorsolateral striatum (DLS) and prefrontal cortex. Here, we examined the effects of prolonged (16-bout) CIE on DLS plasticity and DLS-mediated behaviors. Ex vivo electrophysiological recordings revealed loss in efficacy of DLS synaptically induced activation and absent long-term depression after CIE. CIE increased two-bottle choice drinking and impaired Pavlovian-to-instrumental transfer but not discrimin...

  11. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    Science.gov (United States)

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.

  12. In vitro and in vivo models of acute alcohol exposure

    Institute of Scientific and Technical Information of China (English)

    Angela Dolganiuc; Gyongyi Szabo

    2009-01-01

    Alcohol abuse is a global problem due to the financial burden on society and the healthcare system. While the harmful health effects of chronic alcohol abuse are well established, more recent data suggest that acute alcohol consumption also affects human wellbeing. Thus, there is a need for research models in order to fully understand the effect of acute alcohol abuse on different body systems and organs. The present manuscript summarizes the interdisciplinary advantages and disadvantages of currently available human and non-human models of acute alcohol abuse,and identifies their suitability for biomedical research.

  13. Long-term genomic and epigenomic dysregulation as a consequence of prenatal alcohol exposure: a model for fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    Morgan L Kleiber

    2014-06-01

    Full Text Available There is abundant evidence that prenatal alcohol exposure leads to a range of behavioural and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs. These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term ‘footprint’ of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder.

  14. Youth exposure to alcohol advertising on radio--United States, June-August 2004.

    Science.gov (United States)

    2006-09-01

    In the United States, more underage youth drink alcohol than smoke tobacco or use illicit drugs. Excessive alcohol consumption leads to many adverse health and social consequences and results in approximately 4,500 deaths among underage youth each year. Recent studies have emphasized the contribution of alcohol marketing to underage drinking and have demonstrated that a substantial proportion of alcohol advertising appears in media for which the audience composition is youth-oriented (i.e., composed disproportionately of persons aged 12-20 years). To determine the proportion of radio advertisements that occurred on radio programs with audiences composed disproportionately of underage youth and the proportion of total youth exposure to alcohol advertising that occurs as a result of such advertising, researchers at the Center on Alcohol Marketing and Youth (Health Policy Institute, Georgetown University, District of Columbia) evaluated the placement of individual radio advertisements for the most advertised U.S. alcohol brands and the composition of audiences in the largest 104 markets in the United States. This report summarizes the results of that study, which indicate that alcohol advertising is common on radio programs which have disproportionately large youth audiences and that this advertising accounts for a substantial proportion of all alcohol radio advertising heard by underage youth. These results further indicate that 1) the current voluntary standards limiting alcohol marketing to youth should be enforced and ultimately strengthened, and 2) ongoing monitoring of youth exposure to alcohol advertising should continue.

  15. Measuring youth exposure to alcohol marketing on social networking sites: challenges and prospects.

    Science.gov (United States)

    Jernigan, David H; Rushman, Anne E

    2014-02-01

    Youth exposure to alcohol marketing has been linked to increased alcohol consumption and problems. On relatively new and highly interactive social networking sites (SNS) that are popular with youth, tools for measuring youth exposure to alcohol marketing in traditional media are inadequate. We critically review the existing policies of Facebook, Twitter, and YouTube designed to keep branded alcohol content away from underage youth. Looking at brand and user activity on Facebook for the 15 alcohol brands most popular among US youth, we found activity has grown dramatically in the past 3 years, and underage users may be accounting for some of this activity. Surveys of youth and adult participation in alcohol marketing on SNS will be needed to inform debate over these marketing practices.

  16. Episodic memory in detoxified alcoholics: contribution of grey matter microstructure alteration.

    Directory of Open Access Journals (Sweden)

    Sandra Chanraud

    Full Text Available Even though uncomplicated alcoholics may likely have episodic memory deficits, discrepancies exist regarding to the integrity of brain regions that underlie this function in healthy subjects. Possible relationships between episodic memory and 1 brain microstructure assessed by magnetic resonance diffusion tensor imaging (DTI, 2 brain volumes assessed by voxel-based morphometry (VBM were investigated in uncomplicated, detoxified alcoholics.Diffusion and morphometric analyses were performed in 24 alcohol dependent men without neurological or somatic complications and in 24 healthy men. The mean apparent coefficient of diffusion (ADC and grey matter volumes were measured in the whole brain. Episodic memory performance was assessed using a French version of the Free and Cued Selective Reminding Test (FCSRT. Correlation analyses between verbal episodic memory, brain microstructure, and brain volumes were carried out using SPM2 software.In those with alcohol dependence, higher ADC was detected mainly in frontal, temporal and parahippocampal regions, and in the cerebellum. In alcoholics, regions with higher ADC typically also had lower grey matter volume. Low verbal episodic memory performance in alcoholism was associated with higher mean ADC in parahippocampal areas, in frontal cortex and in the left temporal cortex; no correlation was found between regional volumes and episodic memory scores. Regression analyses for the control group were not significant.These findings support the hypothesis that regional microstructural but no macrostructural alteration of the brain might be responsible, at least in part, for episodic memory deficits in alcohol dependence.

  17. Alcohol exposure after mild focal traumatic brain injury impairs neurological recovery and exacerbates localized neuroinflammation.

    Science.gov (United States)

    Teng, Sophie X; Katz, Paige S; Maxi, John K; Mayeux, Jacques P; Gilpin, Nicholas W; Molina, Patricia E

    2015-03-01

    Traumatic brain injury (TBI) represents a leading cause of morbidity and mortality among young individuals. Alcohol abuse is a risk factor associated with increased TBI incidence. In addition, up to 26% of TBI patients engage in alcohol consumption after TBI. Limited preclinical studies have examined the impact of post-injury alcohol exposure on TBI recovery. The aim of this study was to determine the isolated and combined effects of TBI and alcohol on cognitive, behavioral, and physical recovery, as well as on associated neuroinflammatory changes. Male Sprague-Dawley rats (∼300g) were subjected to a mild focal TBI by lateral fluid percussion (∼30PSI, ∼25ms) under isoflurane anesthesia. On day 4 after TBI, animals were exposed to either sub-chronic intermittent alcohol vapor (95% ethanol 14h on/10h off; BAL∼200mg/dL) or room air for 10days. TBI induced neurological dysfunction reflected by an increased neurological severity score (NSS) showed progressive improvement in injured animals exposed to room air (TBI/air). In contrast, TBI animals exposed to alcohol vapor (TBI/alcohol) showed impaired NSS recovery throughout the 10-day period of alcohol exposure. Open-field exploration test revealed an increased anxiety-like behavior in TBI/alcohol group compared to TBI/air group. Additionally, alcohol-exposed animals showed decreased locomotion and impaired novel object recognition. Immunofluorescence showed enhanced reactive astrocytes, microglial activation, and HMGB1 expression localized to the injured cortex of TBI/alcohol as compared to TBI/air animals. The expression of neuroinflammatory markers showed significant positive correlation with NSS. These findings indicated a close relationship between accentuated neuroinflammation and impaired neurological recovery from post-TBI alcohol exposure. The clinical implications of long-term consequences in TBI patients exposed to alcohol during recovery warrant further investigation.

  18. Epilogue: Understanding Children Who Have Been Affected by Maltreatment and Prenatal Alcohol Exposure--Future Directions

    Science.gov (United States)

    Hyter, Yvette D.; Way, Ineke

    2007-01-01

    This epilogue summarizes the six articles presented in the clinical forum focused on understanding children who have been affected by maltreatment and prenatal alcohol exposure. It presents common themes that emerged among the articles and future research directions.

  19. Neurotoxicity of prenatal alcohol exposure on medullary pre-Bötzinger complex neurons in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Ming-li Ji; Yun-hong Wu; Zhi-bin Qian

    2015-01-01

    Prenatal alcohol exposure disrupts the development of normal fetal respiratory function, but whether it perturbs respiratory rhythmical discharge activity is unclear. Furthermore, it is un-known whether the 5-hydroxytryptamine 2A receptor (5-HT2AR) is involved in the effects of prenatal alcohol exposure. In the present study, pregnant female rats received drinking water containing alcohol at concentrations of 0%, 1%, 2%, 4%, 8% or 10% (v/v) throughout the gestation period. Slices of the medulla from 2-day-old neonatal rats were obtained to record respiratory rhythmical discharge activity. 5-HT2AR protein and mRNA levels in the pre-Bötzing-er complex of the respiratory center were measured by western blot analysis and quantitative RT-PCR, respectively. Compared with the 0% alcohol group, respiratory rhythmical discharge activity in medullary slices in the 4%, 8% and 10% alcohol groups was decreased, and the reduc-tion was greatest in the 8% alcohol group. Respiratory rhythmical discharge activity in the 10%alcohol group was irregular. Thus, 8% was the most effective alcohol concentration at attenuating respiratory rhythmical discharge activity. These ifndings suggest that prenatal alcohol exposure attenuates respiratory rhythmical discharge activity in neonatal rats by downregulating 5-HT2AR protein and mRNA levels.

  20. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure.

    Directory of Open Access Journals (Sweden)

    Sarah Treit

    Full Text Available Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144 and healthy controls (n = 145, aged 5-19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with

  1. Associations of alcohol use with mental health and alcohol exposure among school-going students in Cambodia

    Science.gov (United States)

    Peltzer, Karl; Pengpid, Supa; Tepirou, Chher

    2016-01-01

    ABSTRACT The aim of this study was to examine the associations of alcohol use with sociodemographic factors, mental health and alcohol exposure among school-going adolescents in Cambodia. The analysis included 3,806 school children, mean age 15.7 years (SD=1.8), from Cambodia who participated in the “Global School-based Student Health Survey” (GSHS) in 2013. The results indicate that overall, 10.0% of the students reported current alcohol use, 10.8% lifetime drunkenness, and 2.8% problem drinking. In multivariate logistic regression analysis, sociodemographic factors (older age and being male), mental health and other variables (bullying victimization, OR (odds ratio) = 1.99; 95% Confidence Interval (CI) [1.50, 2.65] and OR = 2.15; 95% CI [1.58, 3.21], respectively; having attempted suicide, OR = 2.04; 95% CI [1.35, 3.08] and OR = 2.06; 95% CI [1.29, 3.28], respectively and illicit drug use, OR = 4.97; 95% CI [2.41, 10.24] OR = 5.05; 95% CI [2.14, 11.98], respectively) and alcohol exposure variables (peer influence on drinking alcohol, OR = 6.68; 95% CI [4.75, 9.39] and OR = 7.83; 95% CI [5.73, 10.66], respectively and daily or almost daily to alcohol advertising in the past 30 days OR = 1.61; 95% CI [1.03, 2.51] and OR = 2.30; 95% CI [1.40, 3.77], respectively) were significantly positively associated with current alcohol use and drunkenness. Moreover, older age, being male, bullying victimization, having close friends, suicide attempt, drug use, father or male guardian drinks alcohol and peer influence were associated with problem drinking. There is a need to implement public health interventions with a special focus on the determinants of alcohol consumption, including exposure to alcohol advertising, in this age group. PMID:28008197

  2. Solitary Versus Social Drinking: An Experimental Study on Effects of Social Exposures on In Situ Alcohol Consumption

    NARCIS (Netherlands)

    Kündig, H.; Kuntsche, E.N.

    2012-01-01

    BACKGROUND: Whereas the effects of modeling and of drinking contexts on alcohol use are documented, studies are lacking regarding the effect of given social exposures on actual alcohol consumption during drinking episodes (i.e., in situ alcohol consumption, the quantity of alcohol actually ingested

  3. A decrease in the size of the basal ganglia following prenatal alcohol exposure: a preliminary report.

    Science.gov (United States)

    Mattson, S N; Riley, E P; Jernigan, T L; Garcia, A; Kaneko, W M; Ehlers, C L; Jones, K L

    1994-01-01

    Prenatal alcohol exposure is known to cause damage to the central nervous system. This study sought to further elucidate the structural brain damage that occurs following prenatal alcohol exposure in both children and rats. Two children with histories of maternal alcohol abuse but who did not qualify for a diagnosis of Fetal Alcohol Syndrome (FAS), based on established criteria, underwent magnetic resonance imaging. Reduced volumes were found for the cerebrum and cerebellum. In addition, the proportional volume of the basal ganglia was reduced, although the proportional volumes of cortical and subcortical fluid, cortical gray matter, limbic and nonlimbic cortex, and diencephalic structures were unaffected. These findings are compared with our recent MRI findings in two cases of FAS. In addition, the caudate-putamen and ventricular areas were assessed in rats exposed to alcohol prenatally. Whereas the overall brain section area was not reduced in size, the area of the caudate-putamen was reduced and that of the ventricles was enlarged.

  4. Hyperoxia Exposure Alters Hepatic Eicosanoid Metabolism in Newborn Mice

    Science.gov (United States)

    ROGERS, LYNETTE K.; TIPPLE, TRENT E.; BRITT, RODNEY D.; WELTY, STEPHEN E.

    2013-01-01

    Prematurely born infants are often treated with supraphysiologic amounts of oxygen, which is associated with lung injury and the development of diseases such as bronchopulmonary dysplasia. Complimentary responses between the lung and liver during the course of hyperoxic lung injury have been studied in adult animals, but little is known about this relationship in neonates. These studies tested the hypothesis that oxidant stress occurs in the livers of newborn mice in response to continuous hyperoxia exposure. Greater levels of glutathione disulfide and nitrotyrosine were detected in lung tissues but not liver tissues from newborn mice exposed to hyperoxia than in room air-exposed controls. However, early increases in 5-lipoxygenase and cyclooxygenases-2 protein levels and increases in total hydroxyeicosatetraenoic acid and prostaglandin levels were observed in the liver tissues of hyperoxia-exposed pups. These studies indicate that free radical oxidation occurs in the lungs of newborn pups exposed to hyperoxia, and alterations in lipid metabolism could be a primary response in the liver tissues. The findings of this study identify possible new mechanisms associated with hyperoxic lung injury in a newborn model of bronchopulmonary dysplasia and thus open opportunities for research. PMID:19809377

  5. Early adolescent, multi-ethnic, urban youth's exposure to patterns of alcohol-related neighborhood characteristics.

    Science.gov (United States)

    Tobler, Amy L; Komro, Kelli A; Maldonado-Molina, Mildred M

    2009-10-01

    This study identified heterogeneous classes of alcohol-related neighborhood characteristics to which multi-ethnic, early adolescents in urban communities are exposed. The sample comprised 4,215 youth from 42 community areas in Chicago, Illinois who completed surveys at the beginning of 6th grade (2002). Neighborhood measures included: (1) mean number of alcohol outlets per 1,000 population per community area; (2) alcohol purchase attempt rate by pseudo-underage youth; (3) average number of alcohol advertisements within 1,500 feet of each school per community; and (4) a Census 2000-based deprivation index. Parents and community leaders provided data on perceived neighborhood problems and parental prevention actions, and neighborhood strength and preventive action by communities, law enforcement, and community organizations, respectively. Multilevel latent class analysis identified the number and characteristics of heterogeneous latent neighborhood classes in which these youth are exposed. Five classes best described the heterogeneity among the sample: (1) Low social capital/low exposure/high access to alcohol (19.8%), (2) Low social capital/low exposure/low access to alcohol (24.5%), (3) Moderate social capital/low exposure/high access to alcohol (30.0%), (4) Moderate social capital/moderate exposure/low access to alcohol (20.1%), and (5) High social capital/moderate exposure/high access to alcohol (5.6%). The racial/ethnic distribution among the classes varied considerably. Results suggest there is substantive heterogeneity among this seemingly homogeneous urban population. Further, they highlight the socioeconomic disadvantage of these inner-city communities and the resource disparity across the racial/ethnic groups. Understanding the nuances among communities may lend to development of more efficacious preventive interventions and policy initiatives, inform theory, and help prioritize limited resources.

  6. A randomized controlled study of exposure therapy as aftercare for alcohol use disorder

    DEFF Research Database (Denmark)

    Mellentin, Angelina Isabella; Nielsen, Bent; Nielsen, Anette Søgaard;

    2016-01-01

    Background It is well documented that individuals with Alcohol Use Disorder (AUD) respond well during evidence-based psychological treatment, but also that a large proportion relapses when discharged from treatment and confronted with alcohol in real life. Cue Exposure Treatment (CET) focuses...... on exposing individuals to alcohol cues in order to reduce cravings as well as the likelihood of relapse. The aims of the study are: 1) to investigate whether CET aftercare delivered via a smartphone or in group sessions increases the effect of Cognitive Behavioural Treatment in groups of alcohol dependent...... as an investigator-blinded randomized controlled trial. A total of 300 consecutively enrolled alcohol use disorder individuals recruited from an alcohol outpatient clinic will be randomized into one of the three following aftercare groups after concluding primary treatment: (1) CET as a smartphone application; (2...

  7. Prenatal Alcohol Exposure Is Associated with Conduct Disorder in Adolescence: Findings from a Birth Cohort

    Science.gov (United States)

    Larkby, Cynthia A.; Goldschmidt, Lidush; Hanusa, Barbara H.; Day, Nancy L.

    2011-01-01

    Objective: To evaluate the association between prenatal alcohol exposure and the rate of conduct disorder in exposed compared with unexposed adolescents. Method: Data for these analyses are from a longitudinal study of prenatal substance exposures. Women were interviewed at their fourth and seventh prenatal months, and with their children, at…

  8. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain.

    Science.gov (United States)

    Miksys, Sharon; Lerman, Caryn; Shields, Peter G; Mash, Deborah C; Tyndale, Rachel F

    2003-07-01

    CYP2B6 metabolizes drugs such as nicotine and bupropion, and many toxins and carcinogens. Nicotine induces CYP2B1 in rat brain and in humans polymorphic variation in CYP2B6 affects smoking cessation rates. The aim of this study was to compare CYP2B6 expression in brains of human smokers and non-smokers and alcoholics and non-alcoholics (n=26). CYP2B6 expression was brain region-specific, and was observed in both neurons and astrocytes. CYP2B6 levels were higher in brains of smokers and alcoholics, particularly in cerebellar Purkinje cells and hippocampal pyramidal neurons, cells known to be damaged in alcoholics. Significantly more (penzyme levels, stability and activity. Preliminary genotyping of this small sample (n=24) suggested that individuals with the CC genotype had higher brain CYP2B6 than those with the CT or TT genotype. Higher brain CYP2B6 activity in smokers and alcoholics may cause altered sensitivity to centrally acting drugs, increased susceptibility to neurotoxins and carcinogenic xenobiotics and contribute to central tolerance to nicotine.

  9. RE-AIM evaluation of the Alcohol and Pregnancy Project: educational resources to inform health professionals about prenatal alcohol exposure and fetal alcohol spectrum disorder.

    Science.gov (United States)

    Payne, Janet M; France, Kathryn E; Henley, Nadine; D'Antoine, Heather A; Bartu, Anne E; O'Leary, Colleen M; Elliott, Elizabeth J; Bower, Carol; Geelhoed, Elizabeth

    2011-03-01

    The objective was to evaluate the Alcohol and Pregnancy Project that provided health professionals in Western Australia (WA) with educational resources to inform them about prevention of prenatal alcohol exposure and fetal alcohol spectrum disorder (FASD). The authors developed, produced, and distributed educational resources to 3,348 health professionals in WA. Six months later, they surveyed 1,483 of these health professionals. The authors used the RE-AIM framework (reach, effectiveness, adoption, implementation, and maintenance) to evaluate the project. The educational resources were effective in producing a 31% increase in the proportion of health professionals who routinely provided pregnant women with information about the consequences of drinking alcohol during pregnancy. One hundred percent of the settings adopted the project, it reached 96.3% of the target population, it was implemented as intended, and the resources were maintained (http://www.ichr.uwa.edu.au/alcoholandpregnancy). The educational resources for health professionals have potential to contribute to reducing prenatal alcohol exposure and FASD.

  10. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats

    Science.gov (United States)

    Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    2016-01-01

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats

  11. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats.

    Science.gov (United States)

    Pavón, Francisco Javier; Marco, Eva María; Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats

  12. Attentional bias for food and alcohol cues after exposure to commercial advertising : a consumer neuroscience approach

    OpenAIRE

    Keitiline Ramos Viacava

    2015-01-01

    Understanding how commercial stimuli may affect individuals’ behavior and health is one of the main questions in Consumer Neuroscience. Thus, the main aim of this thesis was to investigate the role of exposure to commercial advertising on attentional bias for food and alcohol cues in a set of studies. There were similarities in the use of visuoperceptual content in advertisements for tobacco, alcohol and food in Brazil (study 1); and high proportion (75%) of unhealthy food commercials in the ...

  13. Youth exposure to alcohol advertising in magazines--United States, 2001-2005.

    Science.gov (United States)

    2007-08-03

    Alcohol consumption among persons aged 12-20 years contributes to the three leading causes of death (unintentional injury, homicide, and suicide) in this age group in the United States and is associated with other health-risk behaviors, including high-risk sexual activity, smoking, and physical fighting. Recent studies have documented the contribution of alcohol marketing to underage drinking. In 2000, the trade association for the wine industry changed its voluntary marketing code to stop advertising in magazines in which youths aged 12-20 years were >30% of the audience. In 2003, this threshold was adopted by the trade associations for beer and liquor producers. To determine the proportion of alcohol advertisements placed in magazines with disproportionately large youth readerships (i.e., >15% of readers aged 12-20 years) and to assess the proportion of youths exposed to these advertisements, the Center on Alcohol Marketing and Youth (Health Policy Institute, Georgetown University, District of Columbia) evaluated the placement of alcohol advertisements in 143 national magazines for which readership composition data were available for 2001-2005; these 143 publications accounted for approximately 90% of expenditures for all alcohol advertising in national print magazines. This report summarizes the results of that study, which indicated that alcohol advertising remained common in magazines with >15% youth readership but decreased substantially in magazines with >30% youth readership. These results suggest that although voluntary industry standards have reduced youth exposure to alcohol advertising in magazines, strengthening these standards by establishing a >15% youth readership threshold would further reduce exposure. In addition, independent monitoring of youth exposure to alcohol advertising should continue, as recommended by the U.S. Congress and Surgeon General.

  14. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    Science.gov (United States)

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  15. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K.; Ghimire, Hemendra M.; Almabadi, Huda M.; Tripathi, Vibha; Mohanty, Samarendra K.; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-04-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10–12 week-old mice fed a Lieber–DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  16. Gut region-dependent alterations of nitrergic myenteric neurons after chronic alcohol consumption

    Institute of Scientific and Technical Information of China (English)

    Mária; Bagyánszki; Nikolett; Bódi

    2015-01-01

    Chronic alcohol abuse damages nearly every organ in the body. The harmful effects of ethanol on thebrain, the liver and the pancreas are well documented. Although chronic alcohol consumption causes serious impairments also in the gastrointestinal tract like altered motility, mucosal damage, impaired absorption of nu-trients and inflammation, the effects of chronically consumed ethanol on the enteric nervous system are less detailed. While the nitrergic myenteric neurons play an essential role in the regulation of gastrointestinal peristalsis, it was hypothesised, that these neurons are the first targets of consumed ethanol or its metabolites generated in the different gastrointestinal segments. To reinforce this hypothesis the effects of ethanol on the gastrointestinal tract was investigated in different rodent models with quantitative immunohistochemistry, in vivo and in vitro motility measurements, western blot analysis, evaluation of nitric oxide synthase enzyme activity and bio-imaging of nitric oxide synthesis. These results suggest that chronic alcohol consumption did not result significant neural loss, but primarily impaired the nitrergic pathways in gut region-dependent way leading to disturbed gastrointestinal motility. The gut segment-specific differences in the effects of chronic alcohol consumption highlight the significance the ethanol-induced neuronal microenvironment involving oxidative stress and intestinal microbiota.

  17. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior

    OpenAIRE

    Crews, Fulton T.; Vetreno, Ryan P.; Broadwater, Margaret A.; Robinson, Donita L.

    2016-01-01

    Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative–motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increa...

  18. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control or 6% (vol/vol ethanol (EtOH throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult or 15 months (Aged of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety - like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour.

  19. FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...

  20. Youth exposure to alcohol advertising on television--25 markets, United States, 2010.

    Science.gov (United States)

    2013-11-08

    Excessive alcohol consumption accounted for an estimated 4,700 deaths and 280,000 years of potential life lost among youths aged marketing increases the likelihood to varying degrees that youths will initiate drinking and drink at higher levels. By 2003, the alcohol industry voluntarily agreed not to advertise on television programs where >30% of the audience is reasonably expected to be aged advertising". Because local media markets might have different age distributions, the Center on Alcohol Marketing and Youth, Johns Hopkins Bloomberg School of Public Health, evaluated the proportion of advertisements that appeared on television programs in 25 local television markets* and resulting youth exposure that exceeded the industry standard (i.e., >30% aged 2-20 years) or the proposed NRC/IOM standard (i.e., >15% aged 12-20 years). Among national television programs with alcohol advertising, placements were assessed for the 10 programs with the largest number of youth viewers within each of four program categories: network sports, network nonsports, cable sports, and cable nonsports (40 total). Of the 196,494 alcohol advertisements that aired on television programs with the largest number of youth viewers in these local markets, placement of 23.7% exceeded the industry threshold and 35.4% exceeded the NRC/IOM threshold. These results indicate that the alcohol industry's self-regulation of its advertising could be improved, and youth exposure to alcohol advertising could be further reduced by adopting and complying with the NRC/IOM standard. In addition, continued public health surveillance would allow for sustained assessment of youth exposure to alcohol advertising and inform future interventions.

  1. Assessment of Exposure to Alcohol Vapor from Alcohol-Based Hand Rubs

    OpenAIRE

    Olivier Thomas; Vincent Bessonneau

    2012-01-01

    International audience; This study assessed the inhaled dose of alcohol during hand disinfection. Experiments were conducted with two types of hand rub using two hand disinfection procedures. Air samples were collected every 10 s from the breathing zone, by bubbling through a mixture of K2Cr2O7 and H2SO4. The reduction of dichromate ions in the presence of alcohols was followed by UV-vis spectrophotometry. The difference in intensity of the dichromate absorption peak was used to quantify the ...

  2. The effects of taurine, hypotaurine, and taurine homologs on erythrocyte morphology, membrane fluidity and cytoskeletal spectrin alterations due to diabetes, alcoholism and diabetes-alcoholism in the rat.

    Science.gov (United States)

    Gossai, Davekanand; Lau-Cam, Cesar A

    2009-01-01

    Taurine (TAU) and compounds representing a TAU analog (hypotaurine = HYTAU) or homolog (aminomethanesulfonic acid = AMSA, homotaurine = HMTAU) were tested for their counteracting effects against alterations in erythrocyte (RBC) morphology, membrane fluidity and cytoskeletal spectrin distribution due to diabetes, alcoholism and diabetes-alcoholism in male Goto-Kakizaki rats (made diabetic with a high fat diet and alcoholic upon feeding on a flavored alcohol solution) and Wistar-Kyoto rats (serving as controls). Both diabetes and alcoholism changed the RBC discoidal biconcave shape to a spiculated one, lowered membrane fluidity, and caused spectrin to become marginalized. While AMSA and HYTAU returned the RBC shape to normal, HMTAU made it only discoidal, and TAU was without effect. All test compounds, but TAU, maintained the membrane fluidity normal; and HYTAU and AMSA, but not TAU or HMTAU, kept spectrin uniformly distributed. The noted effects were correlated with compound structure and RBC values for malondialdehyde and cholesterol/phospholipid ratio.

  3. Alcohol intake alters immune responses and promotes CNS viral persistence in mice.

    Science.gov (United States)

    Loftis, Jennifer M; Taylor, Jonathan; Raué, Hans-Peter; Slifka, Mark K; Huang, Elaine

    2016-10-01

    Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection.

  4. Altered risk-based decision making following adolescent alcohol use results from an imbalance in reinforcement learning in rats.

    Directory of Open Access Journals (Sweden)

    Jeremy J Clark

    Full Text Available Alcohol use during adolescence has profound and enduring consequences on decision-making under risk. However, the fundamental psychological processes underlying these changes are unknown. Here, we show that alcohol use produces over-fast learning for better-than-expected, but not worse-than-expected, outcomes without altering subjective reward valuation. We constructed a simple reinforcement learning model to simulate altered decision making using behavioral parameters extracted from rats with a history of adolescent alcohol use. Remarkably, the learning imbalance alone was sufficient to simulate the divergence in choice behavior observed between these groups of animals. These findings identify a selective alteration in reinforcement learning following adolescent alcohol use that can account for a robust change in risk-based decision making persisting into later life.

  5. Prenatal exposure to cigarettes, alcohol, and coffee and the risk for febrile seizures

    DEFF Research Database (Denmark)

    Vestergaard, M; Wisborg, K; Henriksen, TB

    2005-01-01

    of extensive brain growth and differentiation in this period. We evaluated the association between prenatal exposure to cigarettes, alcohol, and coffee and the risk for febrile seizures in 2 population-based birth cohorts. METHODS: The Aarhus Birth Cohort consisted of 25,196 children of mothers who were...... Birth Cohort, but the corresponding association was weak in the Aalborg-Odense cohort. We found no association between maternal alcohol and coffee consumption and the risk for febrile seizures. The results were similar for simple and complex febrile seizures. CONCLUSIONS: Our data suggest that prenatal...... exposure to low to moderate levels of alcohol and coffee has no impact on the risk for febrile seizures, whereas a modest smoking effect cannot be ruled out....

  6. Prologue: Understanding Children Who Have Been Affected by Maltreatment and Prenatal Alcohol Exposure

    Science.gov (United States)

    Hyter, Yvette D.

    2007-01-01

    This prologue introduces an important topic for multiple disciplines involved with children and their families. This introduction includes a review of some of the current literature on the effects of maltreatment and prenatal alcohol exposure on child development, an explanation of why this topic is essential learning for communication…

  7. Violence Exposure and Early Adolescent Alcohol Use: An Exploratory Study of Family Risk and Protective Factors

    Science.gov (United States)

    Taylor, Kelli W.; Kliewer, Wendy

    2006-01-01

    In this short-term longitudinal exploratory interview study, the relations between exposure to community violence and subsequent alcohol use were examined, with a focus on caregiver and family variables as moderators. Maternal caregivers and their children (N = 101 families; 98% African American; M child age = 11.2 yrs) were interviewed separately…

  8. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    Science.gov (United States)

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms.

  9. The CRHR1 gene, trauma exposure, and alcoholism risk: a test of G × E effects.

    Science.gov (United States)

    Ray, L A; Sehl, M; Bujarski, S; Hutchison, K; Blaine, S; Enoch, M-A

    2013-06-01

    The corticotropin-releasing hormone type I receptor (CRHR1) gene has been implicated in the liability for neuropsychiatric disorders, particularly under conditions of stress. On the basis of the hypothesized effects of CRHR1 variation on stress reactivity, measures of adulthood traumatic stress exposure were analyzed for their interaction with CRHR1 haplotypes and single-nucleotide polymorphisms (SNPs) in predicting the risk for alcoholism. Phenotypic data on 2533 non-related Caucasian individuals (1167 alcoholics and 1366 controls) were culled from the publically available Study of Addiction: Genetics and Environment genome-wide association study. Genotypes were available for 19 tag SNPs. Logistic regression models examined the interaction between CRHR1 haplotypes/SNPs and adulthood traumatic stress exposure in predicting alcoholism risk. Two haplotype blocks spanned CRHR1. Haplotype analyses identified one haplotype in the proximal block 1 (P = 0.029) and two haplotypes in the distal block 2 (P = 0.026, 0.042) that showed nominally significant (corrected P alcoholism. The block 1 haplotype effect was driven by SNPs rs110402 (P = 0.019) and rs242924 (P = 0.019). In block 2, rs17689966 (P = 0.018) showed significant and rs173365 (P = 0.026) showed nominally significant, gene × environment (G × E) effects on alcoholism status. This study extends the literature on the interplay between CRHR1 variation and alcoholism, in the context of exposure to traumatic stress. These findings are consistent with the hypothesized role of the extra hypothalamic corticotropin-releasing factor system dysregulation in the initiation and maintenance of alcoholism. Molecular and experimental studies are needed to more fully understand the mechanisms of risk and protection conferred by genetic variation at the identified loci.

  10. Statistical modeling of volume of alcohol exposure for epidemiological studies of population health: the US example

    Directory of Open Access Journals (Sweden)

    Gmel Gerrit

    2010-03-01

    Full Text Available Abstract Background Alcohol consumption is a major risk factor in the global burden of disease, with overall volume of exposure as the principal underlying dimension. Two main sources of data on volume of alcohol exposure are available: surveys and per capita consumption derived from routine statistics such as taxation. As both sources have significant problems, this paper presents an approach that triangulates information from both sources into disaggregated estimates in line with the overall level of per capita consumption. Methods A modeling approach was applied to the US using data from a large and representative survey, the National Epidemiologic Survey on Alcohol and Related Conditions. Different distributions (log-normal, gamma, Weibull were used to model consumption among drinkers in subgroups defined by sex, age, and ethnicity. The gamma distribution was used to shift the fitted distributions in line with the overall volume as derived from per capita estimates. Implications for alcohol-attributable fractions were presented, using liver cirrhosis as an example. Results The triangulation of survey data with aggregated per capita consumption data proved feasible and allowed for modeling of alcohol exposure disaggregated by sex, age, and ethnicity. These models can be used in combination with risk relations for burden of disease calculations. Sensitivity analyses showed that the gamma distribution chosen yielded very similar results in terms of fit and alcohol-attributable mortality as the other tested distributions. Conclusions Modeling alcohol consumption via the gamma distribution was feasible. To further refine this approach, research should focus on the main assumptions underlying the approach to explore differences between volume estimates derived from surveys and per capita consumption figures.

  11. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  12. Prenatal alcohol and other early childhood adverse exposures: Direct and indirect pathways to adolescent drinking

    Science.gov (United States)

    Cornelius, Marie D.; De Genna, Natacha M.; Goldschmidt, Lidush; Larkby, Cynthia; Day, Nancy L.

    2016-01-01

    We examined direct and indirect pathways between adverse environmental exposures during gestation and childhood and drinking in mid-adolescence. Mothers and their offspring (n = 917 mother/child dyads) were followed prospectively from second trimester to a 16-year follow-up assessment. Interim assessments occurred at delivery, 6, 10, and 14 years. Adverse environmental factors included gestational exposures to alcohol, tobacco, and marijuana, exposures to childhood maltreatment and violence, maternal psychological symptoms, parenting practices, economic and home environments, and demographic characteristics of the mother and child. Indirect effects of early child behavioral characteristics including externalizing, internalizing activity, attention, and impulsivity were also examined. Polytomous logistic regression analyses were used to evaluate direct effects of adverse environmental exposures with level of adolescent drinking. Structural equation modeling (SEM) was applied to simultaneously estimate the relation between early adversity variables, childhood characteristics, and drinking level at age 16 while controlling for significant covariates. Level of drinking among the adolescent offspring was directly predicted by prenatal exposure to alcohol, less parental strictness, and exposures to maltreatment and violence during childhood. Whites and offspring with older mothers were more likely to drink at higher levels. There was a significant indirect effect between childhood exposure to violence and adolescent drinking via childhood externalizing behavior problems. All other hypothesized indirect pathways were not significant. Thus most of the early adversity measures directly predicted adolescent drinking and did not operate via childhood behavioral dysregulation characteristics. These results highlight the importance of adverse environmental exposures on pathways to adolescent drinking. PMID:26994529

  13. Exposure to a northern contaminant mixture (NCM alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with

  14. Exposure to a northern contaminant mixture (NCM) alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Science.gov (United States)

    Mailloux, Ryan J; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G; Jin, Xiaolei

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure

  15. Assessment of exposure to alcohol vapor from alcohol-based hand rubs.

    Science.gov (United States)

    Bessonneau, Vincent; Thomas, Olivier

    2012-03-01

    This study assessed the inhaled dose of alcohol during hand disinfection. Experiments were conducted with two types of hand rub using two hand disinfection procedures. Air samples were collected every 10 s from the breathing zone, by bubbling through a mixture of K(2)Cr(2)O(7) and H(2)SO(4). The reduction of dichromate ions in the presence of alcohols was followed by UV-vis spectrophotometry. The difference in intensity of the dichromate absorption peak was used to quantify the alcohol concentration expressed in ethanol equivalent. During hygienic hand disinfection, the mean ethanol equivalent concentrations peaked at around 20-30 s for both hand rubs (14.3 ± 1.4 mg/L for hand rub 1 and 13.2 ± 0.7 mg/L for hand rub 2). During surgical hand disinfection, two peaks were found at the same time (40 and 80 s) for both hand rubs. The highest mean concentrations were 20.2 ± 0.9 mg/L for hand rub 1 and 18.1 ± 0.9 mg/L for hand rub 2. For hand rub 1, the total absorbed doses, calculated from ethanol with an inhalation flow of 24 L/min and an absorption rate of 62%, were 46.5 mg after one hygienic hand disinfection and 203.9 mg after one surgical hand disinfection. Although the use of ABHRs leads to the absorption of very low doses, sudden, repeated inhalation of high alcohol concentrations raises the question of possible adverse health effects.

  16. Assessment of Exposure to Alcohol Vapor from Alcohol-Based Hand Rubs

    Directory of Open Access Journals (Sweden)

    Olivier Thomas

    2012-03-01

    Full Text Available This study assessed the inhaled dose of alcohol during hand disinfection. Experiments were conducted with two types of hand rub using two hand disinfection procedures. Air samples were collected every 10 s from the breathing zone, by bubbling through a mixture of K2Cr2O7 and H2SO4. The reduction of dichromate ions in the presence of alcohols was followed by UV-vis spectrophotometry. The difference in intensity of the dichromate absorption peak was used to quantify the alcohol concentration expressed in ethanol equivalent. During hygienic hand disinfection, the mean ethanol equivalent concentrations peaked at around 20–30 s for both hand rubs (14.3 ± 1.4 mg/L for hand rub 1 and 13.2 ± 0.7 mg/L for hand rub 2. During surgical hand disinfection, two peaks were found at the same time (40 and 80 s for both hand rubs. The highest mean concentrations were 20.2 ± 0.9 mg/L for hand rub 1 and 18.1 ± 0.9 mg/L for hand rub 2. For hand rub 1, the total absorbed doses, calculated from ethanol with an inhalation flow of 24 L/min and an absorption rate of 62%, were 46.5 mg after one hygienic hand disinfection and 203.9 mg after one surgical hand disinfection. Although the use of ABHRs leads to the absorption of very low doses, sudden, repeated inhalation of high alcohol concentrations raises the question of possible adverse health effects.

  17. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    Science.gov (United States)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  18. Effect of variations in treatment regimen and liver cirrhosis on exposure to benzodiazepines during treatment of alcohol withdrawal syndrome

    Science.gov (United States)

    Gershkovich, Pavel; Wasan, Kishor M; Ribeyre, Charles; Ibrahim, Fady; McNeill, John H

    2015-01-01

    Purpose: Benzodiazepines (BDZs) are the drugs of choice to prevent the symptoms of alcohol withdrawal syndrome (AWS). Various treatment protocols are published and have been shown to be effective in both office-managed and facility-managed treatment of AWS. The aim of this scientific commentary is to demonstrate the differences in the expected exposure to BDZs during AWS treatment using different treatment regimens available in the literature, in patients with or without alcoholic liver cirrhosis. Methods: Diazepam and lorazepam AWS protocols were examined and reviewed in the literature, and blood plasma levels were examined and compared, respectively. Results: Considerable variation in the blood levels with the different dosing schedules was found. Because the drugs are metabolized differently, we have also shown that liver disease affects the blood levels of diazepam, but not of lorazepam. Conclusions: Differences in treatment regimens, the choice of BDZ, as well as the presence of liver cirrhosis can substantially alter the exposure of patients to drugs used for AWS treatment. Outpatient treatment of AWS has been shown to be relatively safe and effective for the treatment of AWS but patients should be carefully monitored. PMID:26322116

  19. R(+-baclofen, but not S(--baclofen, alters alcohol self-administration in alcohol-preferring rats

    Directory of Open Access Journals (Sweden)

    Irene eLorrai

    2016-04-01

    Full Text Available Racemic baclofen [(±-baclofen] has repeatedly been reported to suppress several alcohol-motivated behaviors, including alcohol drinking and alcohol self-administration, in rats and mice. Recent data suggested that baclofen may have bidirectional, stereospecific effects, with the more active enantiomer, R(+-baclofen, suppressing alcohol intake and the less active enantiomer, S(--baclofen, stimulating alcohol intake in mice. The present study was designed to investigate whether this enantioselectivity of baclofen effects may extend also to the reinforcing properties of alcohol in rats. To this end, selectively bred Sardinian alcohol-preferring (sP rats were initially trained to lever-respond on a Fixed Ratio (FR 4 (FR4 schedule of reinforcement for alcohol (15%, v/v in daily 30-min sessions. Once responding had stabilized, rats were tested with vehicle, (±-baclofen (3 mg/kg, R(+-baclofen (0.75, 1.5, and 3 mg/kg, and S(--baclofen (6, 12, and 24 mg/kg under the FR4 schedule of reinforcement. Treatment with 3 mg/kg (±-baclofen reduced the number of lever-responses for alcohol and estimated amount of self-administered alcohol by approximately 60% in comparison to vehicle treatment. R(+-baclofen was approximately twice as active as (±-baclofen: treatment with 1.5 mg/kg R(+-baclofen decreased both variables to an extent similar to that of the decreasing effect of 3 mg/kg (±-baclofen. Conversely, treatment with all doses of S(--baclofen failed to affect alcohol self-administration. These results (a confirm that non-sedative doses of (±-baclofen effectively suppressed the reinforcing properties of alcohol in sP rats and (b apparently do not extend to operant alcohol self-administration in sP rats the capability of S(--baclofen to stimulate alcohol drinking in mice.

  20. Chronic Ethanol Exposure Effects on Vitamin D Levels Among Subjects with Alcohol Use Disorder

    Science.gov (United States)

    Ogunsakin, Olalekan; Hottor, Tete; Mehta, Ashish; Lichtveld, Maureen; McCaskill, Michael

    2016-01-01

    Vitamin D has been previously recognized to play important roles in human immune system and function. In the pulmonary system, vitamin D regulates the function of antimicrobial peptides, especially cathelicidin/LL-37. Human cathelicidin/LL-37 is a bactericidal, bacteriostatic, and antiviral endogenous peptide with protective immune functions. Chronic exposure to excessive alcohol has the potential to reduce levels of vitamin D (inactive vitamin D [25(OH)D3] and active vitamin D [1, 25(OH)2D3]) and leads to downregulation of cathelicidin/LL-37. Alcohol-mediated reduction of LL-37 may be partly responsible for increased incidence of more frequent and severe respiratory infections among subjects with alcohol use disorder (AUD). The objective of this study was to investigate the mechanisms by which alcohol exerts its influence on vitamin D metabolism. In addition, the aim was to establish associations between chronic alcohol exposures, levels of pulmonary vitamin D, and cathelicidin/LL-37 using broncho-alveolar lavage fluid samples of subjects with AUD and healthy controls. Findings from the experiment showed that levels of inactive vitamin D (25(OH)D3), active vitamin D (1, 25(OH)2D3), cathelicidin/LL-37, and CYP27B1 proteins were significantly reduced (P < 0.05) when compared with the matched healthy control group. However, CYP2E1 was elevated in all the samples examined. Chronic exposure to alcohol has the potential to reduce the levels of pulmonary vitamin D and results in subsequent downregulation of the antimicrobial peptide, LL-37, in the human pulmonary system. PMID:27795667

  1. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  2. Moderate alcohol exposure compromises neural tube midline development in prenatal brain.

    Science.gov (United States)

    Zhou, Feng C; Sari, Youssef; Powrozek, Teresa; Goodlett, Charles R; Li, Ting-Kai

    2003-08-12

    We previously reported that fetal alcohol treatment compromised the development of the midline raphe and the serotonin neurons contained in it. In this study, we report that the timely development of midline neural tissue during neural tube formation is sensitive to alcohol exposure. Pregnant dams were treated from embryonic day 7 (E7, prior to neurulation) or E8.5 (at neurulation) with the following diets: (a) alcohol (ALC), given as either a 20% or 25% ethanol-derived calorie (EDC) liquid diet, or (b) isocaloric liquid diet pair-fed (PF), or (c) standard rat chow (Chow). Fetal brains from each group were examined on E13, E15, or E18. Neural tube development was compromised as a result of alcohol exposure in the following ways: (1) approximately 60% of embryos at E13 and 20% at E15 showed perforation of the floor plate in the diencephalic vesicle, (2) although completely closed at E13, 70-80% of embryos failed to complete the formation of neural tissue at the roof as the alcohol exposure continued to E15, and (3) 60-80% of embryos show delayed 'occlusion' of the ventral canal by newly formed nestin-positive neuroepithelial cells and S100beta-positive glia in the brainstem of E15. The compromised (incomplete) neural tube midline (cNTM) occurred near the ventricles at E13 and E15, but was later completed at E18. In all cases, the cNTM was accompanied by an enlarged ventricle, and dose-dependent brain weight reduction. The midline of the neural tube at the roof and floor plates is known to mediate timely trophic induction for neural differentiation. Prenatal midline deficits also have the potential to affect the development of midline neurons such as raphe, septal nuclei, and the timely crossing of commissural fibers. The results of the liquid diet alcohol exposure paradigm suggest it is more a model for Alcohol-Related Neurodevelopmental Disorder (ARND) featuring neuropsychiatric disorders than for full-blown fetal alcohol syndrome (FAS) with noticeable facial

  3. Alcohol

    Science.gov (United States)

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  4. Alcohol

    Science.gov (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  5. Dysregulation of the cortisol diurnal rhythm following prenatal alcohol exposure and early life adversity.

    Science.gov (United States)

    McLachlan, Kaitlyn; Rasmussen, Carmen; Oberlander, Tim F; Loock, Christine; Pei, Jacqueline; Andrew, Gail; Reynolds, James; Weinberg, Joanne

    2016-06-01

    The hypothalamic-pituitary-adrenal (HPA) axis is impacted by a multitude of pre- and postnatal factors. Developmental programming of HPA axis function by prenatal alcohol exposure (PAE) has been demonstrated in animal models and in human infants, but remains understudied in older children and adolescents. Moreover, early life adversity (ELA), which occurs at higher rates in children with PAE than in non-exposed children, may also play a role in programming the stress response system. In a cohort of children and adolescents with PAE and ELA (PAE + ELA), we evaluated HPA function through assessment of diurnal cortisol activity compared to that in typically developing controls, as well as the associations among specific ELAs, adverse outcomes, protective factors, and diurnal cortisol. Morning and evening saliva samples were taken under basal conditions from 42 children and adolescents (5-18 years) with PAE + ELA and 43 typically developing controls. High rates of ELA were shown among children with PAE, and significantly higher evening cortisol levels and a flatter diurnal slope were observed in children with PAE + ELA, compared to controls. Medication use in the PAE + ELA group was associated with lower morning cortisol levels, which were comparable to controls. Complex associations were found among diurnal cortisol patterns in the PAE + ELA group and a number of ELAs and later adverse outcomes, whereas protective factors were associated with more typical diurnal rhythms. These results complement findings from research on human infants and animal models showing dysregulated HPA function following PAE, lending weight to the suggestion that PAE and ELA may interact to sensitize the developing HPA axis. The presence of protective factors may buffer altered cortisol regulation, underscoring the importance of early assessment and interventions for children with FASD, and in particular, for the many children with FASD who also have ELA.

  6. Adolescent alcohol exposure and persistence of adolescent-typical phenotypes into adulthood: a mini-review

    Science.gov (United States)

    Spear, Linda Patia; Swartzwelder, H. Scott

    2014-01-01

    Alcohol use is typically initiated during adolescence, which, along with young adulthood, is a vulnerable period for the onset of high-risk drinking and alcohol abuse. Given across-species commonalities in certain fundamental neurobehavioral characteristics of adolescence, studies in laboratory animals such as the rat have proved useful to assess persisting consequences of repeated alcohol exposure. Despite limited research to date, reports of long-lasting effects of adolescent ethanol exposure are emerging, along with certain common themes. One repeated finding is that adolescent exposure to ethanol sometimes results in the persistence of adolescent-typical phenotypes into adulthood. Instances of adolescent -like persistence have been seen in terms of baseline behavioral, cognitive, electrophysiological and neuroanatomical characteristics, along with the retention of adolescent-typical sensitivities to acute ethanol challenge. These effects are generally not observed after comparable ethanol exposure in adulthood. Persistence of adolescent-typical phenotypes is not always evident, and may be related to regionally-specific ethanol influences on the interplay between CNS excitation and inhibition critical for the timing of neuroplasticity. PMID:24813805

  7. Exposure to alcohol commercials in movie theatres affects actual alcohol consumption in young adult high weekly drinkers: an experimental study

    NARCIS (Netherlands)

    Koordeman, R.; Anschutz, D.J.; Engels, R.C.M.E.

    2011-01-01

    The present pilot study examined the effects of alcohol commercials shown in movie theaters on the alcohol consumption of young adults who see these commercials. A two (alcohol commercials vs. nonalcohol commercials) by two (high weekly alcohol consumption vs. low weekly alcohol consumption) between

  8. Exposure to alcohol commercials in movie theaters affects actual alcohol consumption in young adult high weekly drinkers: An experimental study

    NARCIS (Netherlands)

    Koordeman, R.; Anschutz, D.J.; Engels, R.C.M.E.

    2011-01-01

    The present pilot study examined the effects of alcohol commercials shown in movie theaters on the alcohol consumption of young adults who see these commercials. A two (alcohol commercials vs. nonalcohol commercials) by two (high weekly alcohol consumption vs. low weekly alcohol consumption) between

  9. Effect of prenatal haloperidol exposure on behavioral alterations in rats.

    Science.gov (United States)

    Singh, K P; Singh, Mandavi

    2002-01-01

    Pregnant Charles-Foster rats were exposed to haloperidol (HAL), a neuroleptic drug that binds to and blocks dopamine (DA) receptor subtypes at a dose of 2.5 mg/kg body weight (intraperitoneally) from Gestation Day (GD) 12 to 20. The animals from both treated as well as vehicle control groups were allowed to deliver on GD 21. The offspring culled at birth on the basis of sex and weight were subjected to behavioral tests at the age of 8 weeks. The HAL-treated rat offspring showed a significant increase in anxiogenic behavior on the open field, elevated plus-maze and elevated zero-maze tests when compared with the vehicle-treated (control) rat offspring of the same age group. These findings suggest that prenatal exposure to HAL during a critical period of brain development leaves a lasting imprint on the brain, resulting in abnormal anxiety states, possibly through dopaminergic neurotransmission mechanisms.

  10. Long-Term Consequences of Developmental Alcohol Exposure on Brain Structure and Function: Therapeutic Benefits of Physical Activity

    Directory of Open Access Journals (Sweden)

    Gillian F. Hamilton

    2012-12-01

    Full Text Available Developmental alcohol exposure both early in life and during adolescence can have a devastating impact on normal brain structure and functioning, leading to behavioral and cognitive impairments that persist throughout the lifespan. This review discusses human work as well as animal models used to investigate the effect of alcohol exposure at various time points during development, as well as specific behavioral and neuroanatomical deficits caused by alcohol exposure. Further, cellular and molecular mediators contributing to these alcohol-induced changes are examined, such as neurotrophic factors and apoptotic markers. Next, this review seeks to support the use of aerobic exercise as a potential therapeutic intervention for alcohol-related impairments. To date, few interventions, behavioral or pharmacological, have been proven effective in mitigating some alcohol-related deficits. Exercise is a simple therapy that can be used across species and also across socioeconomic status. It has a profoundly positive influence on many measures of learning and neuroplasticity; in particular, those measures damaged by alcohol exposure. This review discusses current evidence that exercise may mitigate damage caused by developmental alcohol exposure and is a promising therapeutic target for future research and intervention strategies.

  11. Developmental alcohol exposure leads to a persistent change on astrocyte secretome.

    Science.gov (United States)

    Trindade, Pablo; Hampton, Brian; Manhães, Alex C; Medina, Alexandre E

    2016-06-01

    Fetal alcohol spectrum disorder is the most common cause of mental disabilities in the western world. It has been quite established that acute alcohol exposure can dramatically affect astrocyte function. Because the effects of early alcohol exposure on cell physiology can persist into adulthood, we tested the hypothesis that ethanol exposure in ferrets during a period equivalent to the last months of human gestation leads to persistent changes in astrocyte secretome in vitro. Animals were treated with ethanol (3.5 g/kg) or saline between postnatal day (P)10-30. At P31, astrocyte cultures were made and cells were submitted to stable isotope labeling by amino acids. Twenty-four hour conditioned media of cells obtained from ethanol- or saline-treated animals (ET-CM or SAL-CM) were collected and analyzed by quantitative mass spectrometry in tandem with liquid chromatography. Here, we show that 65 out of 280 quantifiable proteins displayed significant differences comparing ET-CM to SAL-CM. Among the 59 proteins that were found to be reduced in ET-CM we observed components of the extracellular matrix such as laminin subunits α2, α4, β1, β2, and γ1 and the proteoglycans biglycan, heparan sulfate proteoglycan 2, and lumican. Proteins with trophic function such as insulin-like growth factor binding protein 4, pigment epithelium-derived factor, and clusterin as well as proteins involved on modulation of proteolysis such as metalloproteinase inhibitor 1 and plasminogen activator inhibitor-1 were also reduced. In contrast, pro-synaptogeneic proteins like thrombospondin-1, hevin as well as the modulator of extracelular matrix expression, angiotensinogen, were found increased in ET-CM. The analysis of interactome maps through ingenuity pathway analysis demonstrated that the amyloid beta A4 protein precursor, which was found reduced in ET-CM, was previously shown to interact with ten other proteins that exhibited significant changes in the ET-CM. Taken together our results

  12. Understanding Specific Effects of Prenatal Alcohol Exposure on Brain Structure in Young Adults

    OpenAIRE

    Chen, Xiangchuan; Coles, Claire D.; Lynch, Mary E; Hu, Xiaoping

    2011-01-01

    Prenatal alcohol exposure (PAE) is associated with various adverse effects on human brain and behavior. Recently, neuroimaging studies have begun to identify PAE effects on specific brain structures. Investigation of such specific PAE effects is important for understanding the teratogenic mechanism of PAE on human brain, which is critical for differentiating PAE from other disorders. In this structural MRI study with young adults, PAE effects on the volumes of automatically segmented cortical...

  13. Estimates of Ethanol Exposure in Children from Food not Labeled as Alcohol-Containing.

    Science.gov (United States)

    Gorgus, Eva; Hittinger, Maike; Schrenk, Dieter

    2016-09-01

    Ethanol is widely used in herbal medicines, e.g., for children. Furthermore, alcohol is a constituent of fermented food such as bread or yogurt and "non-fermented" food such as fruit juices. At the same time, exposure to very low levels of ethanol in children is discussed as possibly having adverse effects on psychomotoric functions. Here, we have analyzed alcohol levels in different food products from the German market. It was found that orange, apple and grape juice contain substantial amounts of ethanol (up to 0.77 g/L). Furthermore, certain packed bakery products such as burger rolls or sweet milk rolls contained more than 1.2 g ethanol/100 g. We designed a scenario for average ethanol exposure by a 6-year-old child. Consumption data for the "categories" bananas, bread and bakery products and apple juice were derived from US and German surveys. An average daily exposure of 10.3 mg ethanol/kg body weight (b.w.) was estimated. If a high (acute) consumption level was assumed for one of the "categories," exposure rose to 12.5-23.3 mg/kg b.w. This amount is almost 2-fold (average) or up to 4-fold (high) higher than the lowest exposure from herbal medicines (6 mg/kg b.w.) suggested to require warning hints for the use in children.

  14. Tracking Adolescents with GPS-enabled Cell Phones to Study Contextual Exposures and Alcohol and Marijuana Use: A Pilot Study

    Science.gov (United States)

    Byrnes, Hilary F.; Miller, Brenda A.; Wiebe, Douglas J.; Morrison, Christopher N.; Remer, Lillian G.; Wiehe, Sarah E.

    2015-01-01

    Purpose Measuring activity spaces, places adolescents spend time, provides information about relations between contextual exposures and risk behaviors. We studied whether contextual exposures in adolescents’ activity spaces differ from contextual risks present in residential contexts and examined relationships between contextual exposures in activity spaces and alcohol/marijuana use. Methods Adolescents (N=18) aged 16–17 carried GPS-enabled smartphones for one week, with locations tracked. Activity spaces were created by connecting GPS points sequentially and adding buffers. Contextual exposure data (e.g., alcohol outlets) were connected to routes. Adolescents completed texts regarding behaviors. Results Adolescent activity spaces intersected 24.3 census tracts and contained 9 times more alcohol outlets than residential census tracts. Outlet exposure in activity spaces was related to drinking. Low SES exposure was related to marijuana use. Conclusions Findings suggest substantial differences between activity spaces and residential contexts, and suggest that activity spaces are relevant for adolescent risk behaviors. PMID:26206448

  15. Rape-Myth Congruent Beliefs in Women Resulting from Exposure to Violent Pornography: Effects of Alcohol and Sexual Arousal

    Science.gov (United States)

    Davis, Kelly Cue; Norris, Jeanette; George, William H.; Martell, Joel; Heiman, Julia R.

    2006-01-01

    Previous research findings indicate that women suffer a variety of detrimental effects from exposure to violent pornography. This study used an experimental paradigm to examine the effects of a moderate alcohol dose and alcohol expectancies on women's acute reactions to a violent pornographic stimulus. A community sample of female social drinkers…

  16. The Effect of Preconception Paternal Alcohol Exposure on Epigenetic Remodelling of the H19 and Rasgrf1 Imprinting Control Regions in Mouse Offspring

    Directory of Open Access Journals (Sweden)

    Jaysen Gregory Knezovich

    2012-02-01

    Full Text Available Imprinted loci play a critical role in fetal development. Their expression is often regulated by CTCF protein binding at imprinting control regions (ICRs. Parental alcohol exposure has been shown to reduce global DNA methylation in the developing mouse fetus. This study explored the effect of preconception paternal alcohol exposure on DNA methylation at two paternally methylated ICRs (H19 and Rasgrf1 in the sperm of exposed males and somatic DNA of sired offspring. Significant reductions at the H19 CTCF 1 (p=0.0027 and CTCF 2 (p=0.0009 binding sites were observed in the offspring of ethanol-treated sires, which was significantly correlated with reduced weight at postnatal days 35 to 42 (p<0.05. As birth weight was unaffected and growth was only delayed during the postnatal weaning period, with subsequent re-convergence, we hypothesise that this may be the result of a mental deficit causing delayed establishment of independent feeding following weaning and would explain why this effect is transient. No difference in DNA methylation was observed in the sperm of alcohol-exposed males, indicating that the transmission of the epigenetic signal at conception is not due to altered methylation, but may be the result of an RNA-mediated mechanism or altered chromatin remodelling.

  17. Alcohol Dependence and Altered Engagement of Neural Networks in Risky Decisions

    Directory of Open Access Journals (Sweden)

    Xi eZhu

    2016-03-01

    Full Text Available Alcohol dependence is associated with heightened risk tolerance and altered decision- making. This raises the question as to whether alcohol dependent patients (ADP are incapable of proper risk assessment. We investigated how healthy controls (HC and ADP engage neural networks to cope with the increased cognitive demands of risky decisions. We collected fMRI data while 34 HC and 16 ADP played a game that included safe and risky trials. In safe trials, participants accrued money at no risk of a penalty. In risky trials, reward and risk simultaneously increased as participants were instructed to decide when to stop a reward accrual period. If the participant failed to stop before an undisclosed time, the trial would bust and participants would not earn the money from that trial. Independent Component Analysis was used to identify networks engaged during the anticipation and the decision execution of risky compared with safe trials. Like HC, ADP demonstrated distinct network engagement for safe and risky trials at anticipation. However, at decision execution, ADP exhibited severely reduced discrimination in network engagement between safe and risky trials. Although ADP behaviorally responded to risk they failed to appropriately modify network engagement as the decision continued, leading ADP to assume similar network engagement regardless of risk prospects. This may reflect disorganized network switching and a facile response strategy uniformly adopted by ADP across risk conditions. We propose that aberrant salience network (SN engagement in ADP might contribute to ineffective network switching and that the role of the SN in risky decisions warrants further investigation.

  18. Molecular changes during neurodevelopment following second-trimester binge ethanol exposure in a mouse model of fetal alcohol spectrum disorder: from immediate effects to long-term adaptation.

    Science.gov (United States)

    Mantha, Katarzyna; Laufer, Benjamin I; Singh, Shiva M

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is an umbrella term that refers to a wide range of behavioral and cognitive deficits resulting from prenatal alcohol exposure. It involves changes in brain gene expression that underlie lifelong FASD symptoms. How these changes are achieved from immediate to long-term effects, and how they are maintained, is unknown. We have used the C57BL/6J mouse to assess the dynamics of genomic alterations following binge alcohol exposure. Ethanol-exposed fetal (short-term effect) and adult (long-term effect) brains were assessed for gene expression and microRNA (miRNA) changes using Affymetrix mouse arrays. We identified 48 and 68 differentially expressed genes in short- and long-term groups, respectively. No gene was common between the 2 groups. Short-term (immediate) genes were involved in cellular compromise and apoptosis, which represent ethanol's toxic effects. Long-term genes were involved in various cellular functions, including epigenetics. Using quantitative RT-PCR, we confirmed the downregulation of long-term genes: Camk1g, Ccdc6, Egr3, Hspa5, and Xbp1. miRNA arrays identified 20 differentially expressed miRNAs, one of which (miR-302c) was confirmed. miR-302c was involved in an inverse relationship with Ccdc6. A network-based model involving altered genes illustrates the importance of cellular redox, stress and inflammation in FASD. Our results also support a critical role of apoptosis in FASD, and the potential involvement of miRNAs in the adaptation of gene expression following prenatal ethanol exposure. The ultimate molecular footprint involves inflammatory disease, neurological disease and skeletal and muscular disorders as major alterations in FASD. At the cellular level, these processes represent abnormalities in redox, stress and inflammation, with potential underpinnings to anxiety.

  19. Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: transgenic zebrafish enable visualization of sensitive neurons.

    Directory of Open Access Journals (Sweden)

    Caitrín M Coffey

    Full Text Available BACKGROUND: Fetal Alcohol Spectrum Disorders (FASD are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported. PRINCIPAL FINDINGS: The effects of embryonic and larval ethanol exposure on brain development were visually monitored using transgenic zebrafish expressing cell-specific green fluorescent protein (GFP marker genes. Specific subsets of GFP-expressing neurons were highly sensitive to ethanol exposure, but only during defined developmental windows. In the med12 mutant, which affects the Mediator co-activator complex component Med12, exposure to lower concentrations of ethanol was sufficient to reduce GFP expression in transgenic embryos. In transgenic embryos and larva containing GFP driven by an oxytocin-like (oxtl promoter, ethanol exposure dramatically up-regulated GFP expression in a small group of hindbrain neurons, while having no effect on expression in the neuroendocrine preoptic area. CONCLUSIONS: Alcohol exposure during limited embryonic periods impedes the development of specific, identifiable groups of neurons, and the med12 mutation sensitizes these neurons to the deleterious effects of ethanol. In contrast, ethanol exposure induces oxtl expression in the hindbrain, a finding with profound implications for understanding alcoholism and other addictive disorders.

  20. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    Science.gov (United States)

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  1. Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells.

    Science.gov (United States)

    Gaydos, Jeanette; McNally, Alicia; Guo, Ruixin; Vandivier, R William; Simonian, Philip L; Burnham, Ellen L

    2016-03-15

    Alcohol use disorders (AUDs) and tobacco smoking are associated with an increased predisposition for community-acquired pneumonia and the acute respiratory distress syndrome. Mechanisms are incompletely established but may include alterations in response to pathogens by immune cells, including alveolar macrophages (AMs) and peripheral blood mononuclear cells (PBMCs). We sought to determine the relationship of AUDs and smoking to expression of IFNγ, IL-1β, IL-6, and TNFα by AMs and PBMCs from human subjects after stimulation with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). AMs and PBMCs from healthy subjects with AUDs and controls, matched on smoking, were cultured with LPS (1 μg/ml) or LTA (5 μg/ml) in the presence and absence of the antioxidant precursor N-acetylcysteine (10 mM). Cytokines were measured in cell culture supernatants. Expression of IFNγ, IL-1β, IL-6, and TNFα in AMs and PBMCs was significantly increased in response to stimulation with LPS and LTA. AUDs were associated with augmented production of proinflammatory cytokines, particularly IFNγ and IL-1β, by AMs and PBMCs in response to LPS. Smoking diminished the impact of AUDs on AM cytokine expression. Expression of basal AM and PBMC Toll-like receptors-2 and -4 was not clearly related to differences in cytokine expression; however, addition of N-acetylcysteine with LPS or LTA led to diminished AM and PBMC cytokine secretion, especially among current smokers. Our findings suggest that AM and PBMC immune cell responses to LPS and LTA are influenced by AUDs and smoking through mechanisms that may include alterations in cellular oxidative stress.

  2. In-utero exposure to smoking, alcohol, coffee, and tea and risk of strabismus

    DEFF Research Database (Denmark)

    Torp-Pedersen, Tobias; Boyd, Heather A; Poulsen, Gry;

    2010-01-01

    In a prospective, population-based cohort study, the authors investigated the effect of in-utero exposure to maternal smoking and consumption of alcohol, coffee, and tea on the risk of strabismus. They reviewed medical records for children in the Danish National Birth Cohort identified through.......92, 1.61). Light maternal alcohol consumption was inversely associated with strabismus risk, whereas maternal coffee and tea drinking were not associated with strabismus risk. In conclusion, smoking during pregnancy is associated with an increased risk of strabismus in the offspring. Conversely, light...... national registers as possibly having strabismus. Relative risk estimates were adjusted for year of birth, social class, maternal smoking, maternal age at birth, and maternal coffee and tea consumption. The authors identified 1,321 cases of strabismus in a cohort of 96,842 Danish children born between 1996...

  3. Intervention strategies for children vulnerable for school failure due to exposure to drugs and alcohol.

    Science.gov (United States)

    Smith, G H

    1993-11-01

    Children and youth exposed in utero to drugs and alcohol and/or who are growing up in a family in which these substances are misused are vulnerable for failure at all age levels, prenatally through adulthood. This article reviews developmental issues presented by children and youth vulnerable for school failure either due to the biological effects of prenatal exposure to drugs and/or environmental issues resulting from growing up in a family in which misuse of drugs and alcohol occurs. Characteristics and needs of these students with recommendations for educational and community-based system of services to them and their families are discussed. Model programs serving children and youth prenatally through school age are identified.

  4. Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis

    Science.gov (United States)

    Rojas-Mayorquín, Argelia E.; Padilla-Velarde, Edgar; Ortuño-Sahagún, Daniel

    2016-01-01

    A physiological parallelism, or even a causal effect relationship, can be deducted from the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically distinct disease entities, exhibits many common features. They affect neurological shared pathways, and also related neurotransmitter systems. We briefly review here these parallelisms, with their common and uncommon characteristics, and with an emphasis in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to propose that PAE in rats can be considered as a suitable model for the study of ADHD. PMID:28018163

  5. In-utero exposure to smoking, alcohol, coffee, and tea and risk of strabismus

    DEFF Research Database (Denmark)

    Torp-Pedersen, Tobias; Boyd, Heather A; Poulsen, Gry;

    2010-01-01

    In a prospective, population-based cohort study, the authors investigated the effect of in-utero exposure to maternal smoking and consumption of alcohol, coffee, and tea on the risk of strabismus. They reviewed medical records for children in the Danish National Birth Cohort identified through...... national registers as possibly having strabismus. Relative risk estimates were adjusted for year of birth, social class, maternal smoking, maternal age at birth, and maternal coffee and tea consumption. The authors identified 1,321 cases of strabismus in a cohort of 96,842 Danish children born between 1996.......92, 1.61). Light maternal alcohol consumption was inversely associated with strabismus risk, whereas maternal coffee and tea drinking were not associated with strabismus risk. In conclusion, smoking during pregnancy is associated with an increased risk of strabismus in the offspring. Conversely, light...

  6. The effects of prenatal and postnatal (via nursing) exposure to alcohol in rats

    Energy Technology Data Exchange (ETDEWEB)

    Nekvasil, N.; Baggio, C. (St. Mary' s Coll., Notre Dame, IN (United States))

    1992-02-26

    Pregnant and post-partum rats were given daily doses of 20% alcohol during days 13-21 gestation and postnatal days 3-12, respectively. Following exposure, all rat pups, were tested for balance, blood pressure, right and left cerebral hemisphere weights, and cerebellar weight. Results were grouped according to exposure and gender. The postnatal group was the only one to demonstrate difficulties with balance. The mean arterial pressure in males exposed postnatally was significantly lower than the control and prenatal males. Females exposed postnatally had a significantly higher blood pressure than control females. Within the postnatal group, males had a significantly lower blood pressure than the females. Prenatal and control females differed significantly for left cerebral hemisphere (LCH) weight with the prenatal weighing less. Male pups exposed prenatally had significantly heavier LCH than the postnatal and control males. For both males and females, postnatal LCH weights did not differ from those of the control pups. Within the prenatal group, the LCH weight in females was significantly lower than in males. Mean cerebellar weights were significantly lower in postnatal animals compared to control animals. A major finding of this study is that the effect of alcohol exposure on rat pups depends on gender and developmental age.

  7. Adolescent Alcohol Exposure Amplifies the Incentive Value of Reward-Predictive Cues Through Potentiation of Phasic Dopamine Signaling.

    Science.gov (United States)

    Spoelder, Marcia; Tsutsui, Kimberly T; Lesscher, Heidi M B; Vanderschuren, Louk J M J; Clark, Jeremy J

    2015-12-01

    Adolescent alcohol use remains a major public health concern due in part to well-established findings implicating the age of onset in alcohol use in the development of alcohol use disorders and persistent decision-making deficits in adults. We have previously demonstrated that moderate adolescent alcohol consumption in rats promotes suboptimal decision making and an associated perturbation in mesolimbic dopamine transmission in adulthood. Dopamine-dependent incentive learning processes are an integral component of value-based decision making and a fundamental element to many theoretical accounts of addiction. Thus we tested the hypothesis that adolescent alcohol use selectively alters incentive learning processes through perturbation of mesolimbic dopamine systems. To assess incentive learning, behavioral and neurochemical measurements were made during the acquisition, maintenance, extinction, and reacquisition of a Pavlovian conditioned approach procedure in adult rats with a history of adolescent alcohol consumption. We show that moderate adolescent alcohol consumption potentiates stimulus-evoked phasic dopamine transmission, measured in vivo by fast-scan cyclic voltammetry, in adulthood and biases individuals toward a dopamine-dependent incentive learning strategy. Moreover, we demonstrate that animals exposed to alcohol in adolescence are more sensitive to an unexpected variation in reward outcomes. This pattern of phasic dopamine signaling and the associated bias in learning may provide a mechanism for the well-documented vulnerability of individuals with early-life alcohol use for alcohol use disorders in adulthood.

  8. Caspofungin exposure alters the core septin AspB interactome of Aspergillus fumigatus.

    Science.gov (United States)

    Vargas-Muñiz, José M; Renshaw, Hilary; Waitt, Greg; Soderblom, Erik J; Moseley, M Arthur; Palmer, Jonathan M; Juvvadi, Praveen R; Keller, Nancy P; Steinbach, William J

    2017-04-01

    Aspergillus fumigatus, the main etiological agent of invasive aspergillosis, is a leading cause of death in immunocompromised patients. Septins, a conserved family of GTP-binding proteins, serve as scaffolding proteins to recruit enzymes and key regulators to different cellular compartments. Deletion of the A. fumigatus septin aspB increases susceptibility to the echinocandin antifungal caspofungin. However, how AspB mediates this response to caspofungin is unknown. Here, we characterized the AspB interactome under basal conditions and after exposure to a clinically relevant concentration of caspofungin. While A. fumigatus AspB interacted with 334 proteins, including kinases, cell cycle regulators, and cell wall synthesis-related proteins under basal growth conditions, caspofungin exposure altered AspB interactions. A total of 69 of the basal interactants did not interact with AspB after exposure to caspofungin, and 54 new interactants were identified following caspofungin exposure. We generated A. fumigatus deletion strains for 3 proteins (ArpB, Cyp4, and PpoA) that only interacted with AspB following exposure to caspofungin that were previously annotated as induced after exposure to antifungal agents, yet only PpoA was implicated in the response to caspofungin. Taken together, we defined how the septin AspB interactome is altered in the presence of a clinically relevant antifungal.

  9. The relationship between exposure to alcohol-related content on Facebook and predictors of alcohol consumption among female emerging adults.

    Science.gov (United States)

    Miller, Joseph; Prichard, Ivanka; Hutchinson, Amanda; Wilson, Carlene

    2014-12-01

    Consuming an unhealthy level of alcohol is a significant problem for some young women. Potential determinants of excess consumption include perceptions of usual consumption among peers-perceptions of what is "normal." The present study examined whether perceptions of social normative endorsement of drinking, operationalized by measures of perceived alcohol consumption of close friends (proximal norms), the consumption of the "average student" (distal norms), and the extent of alcohol-related content posted by peers on Facebook were related to alcohol-related attitudes and self-reported consumption. Female university students (n=129; Mage=21.48 years, SD=3.00) completed an online questionnaire assessing Facebook use, perceived alcohol-related norms, and self-reported alcohol attitudes and consumption. Perceptions of the consumption of the average female student were a negative predictor of attitudes. Positive alcohol attitudes, extent of own alcohol-related photographic posts on Facebook, average female student alcohol consumption, and report of male close friend consumption predicted self-report of own alcohol consumption. Interestingly, female close friend norms failed to predict consumption, whereas male close friend norms predicted consumption but not attitudes, suggesting the possibility of separate cognitive pathways for alcohol-related attitudes and behavior. This study builds on existing research by casting new light on predictors of alcohol-related attitudes, as well as describing the potential role of social networking sites such as Facebook in the formation of social norms and the modulation of drinking behavior.

  10. Ethylglucuronide in Maternal Hair as a Biomarker of Prenatal Alcohol Exposure

    OpenAIRE

    Gutierrez, Hilda L.; Hund, Lauren; Shrestha, Shikhar; Rayburn, William F.; Leeman, Lawrence; Savage, Daniel D.; Bakhireva, Ludmila N.

    2015-01-01

    While direct ethanol metabolites, including ethylglucuronide (EtG), play an important role for the confirmation of prenatal alcohol exposure (PAE), their utility is often limited by their short half-lives in blood and urine. Maternal hair might allow for a retrospective measure of PAE for up to several months. This study examined the validity of hair EtG (hEtG) relative to self-reporting and five other biomarkers (gamma glutamyltranspeptidase [GGT], carbohydrate-deficient transferrin [%dCDT],...

  11. Fetal Alcohol Exposure Reduces Dopamine Receptor D2 and Increases Pituitary Weight and Prolactin Production via Epigenetic Mechanisms.

    Directory of Open Access Journals (Sweden)

    Omkaram Gangisetty

    Full Text Available Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2 and histone modifying genes (HDAC2, HDAC4, G9a. When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells.

  12. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  13. Alcohol

    NARCIS (Netherlands)

    Hendriks, H.F.; Tol, A. van

    2005-01-01

    Alcohol consumption affects overall mortality. Light to moderate alcohol consumption reduces the risk of coronary heart disease; epidemiological, physiological and genetic data show a causal relationship. Light to moderate drinking is also associated with a reduced risk of other vascular diseases an

  14. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans.

    Science.gov (United States)

    Burgess, Helen J; Rizvydeen, Muneer; Fogg, Louis F; Keshavarzian, Ali

    2016-04-15

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n= 10 light drinkers, 24-45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n= 14 light drinkers, 22-44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed.

  15. Developmental Neurotoxicity of Alcohol and Anesthetic Drugs Is Augmented by Co-Exposure to Caffeine

    Directory of Open Access Journals (Sweden)

    Catherine E. Creeley

    2013-07-01

    Full Text Available Anesthetic and anti-epileptic drugs used in pediatric and obstetric medicine and several drugs, including alcohol, that are abused by pregnant women, trigger widespread neuroapoptosis in the developing brain of several animal species, including non-human primates. Caffeine (CAF is often administered to premature infants to stimulate respiration, and these infants are also exposed simultaneously to anesthetic drugs for procedural sedation and/or surgical procedures. Pregnant women who abuse alcohol or other apoptogenic drugs also may heavily consume CAF. We administered CAF to infant mice alone or in combination with alcohol, phencyclidine, diazepam, midazolam, ketamine, or isoflurane, which are drugs of abuse and/or drugs frequently used in pediatric medicine, and found that CAF weakly triggers neuroapoptosis by itself and markedly potentiates the neuroapoptogenic action of each of these other drugs. Exposure of infant mice to CAF + phencyclidine resulted in long-term impairment in behavioral domains relevant to attention deficit/hyperactivity disorder, whereas exposure to CAF + diazepam resulted in long-term learning/memory impairment. At doses used in these experiments, these behavioral impairments either did not occur or were substantially less pronounced in mice exposed to CAF alone or to phencyclidine or diazepam alone. CAF currently enjoys the reputation of being highly beneficial and safe for use in neonatal medicine. Our data suggest the need to consider whether CAF may have harmful as well as beneficial effects on the developing brain, and the need for research aimed at understanding the full advantage of its beneficial effects while avoiding its potentially harmful effects.

  16. Exposure of Children and Adolescents to Alcohol Marketing on Social Media Websites

    Science.gov (United States)

    Winpenny, Eleanor M.; Marteau, Theresa M.; Nolte, Ellen

    2014-01-01

    Aims: In 2011, online marketing became the largest marketing channel in the UK, overtaking television for the first time. This study aimed to describe the exposure of children and young adults to alcohol marketing on social media websites in the UK. Methods: We used commercially available data on the three most used social media websites among young people in the UK, from December 2010 to May 2011. We analysed by age (6–14 years; 15–24 years) and gender the reach (proportion of internet users who used the site in each month) and impressions (number of individual pages viewed on the site in each month) for Facebook, YouTube and Twitter. We further analysed case studies of five alcohol brands to assess the marketer-generated brand content available on Facebook, YouTube and Twitter in February and March 2012. Results: Facebook was the social media site with the highest reach, with an average monthly reach of 89% of males and 91% of females aged 15–24. YouTube had a similar average monthly reach while Twitter had a considerably lower usage in the age groups studied. All five of the alcohol brands studied maintained a Facebook page, Twitter page and YouTube channel, with varying levels of user engagement. Facebook pages could not be accessed by an under-18 user, but in most cases YouTube content and Twitter content could be accessed by those of all ages. Conclusion: The rise in online marketing of alcohol and the high use of social media websites by young people suggests that this is an area requiring further monitoring and regulation. PMID:24293506

  17. Adolescent alcohol exposure reduces behavioral flexibility, promotes disinhibition, and increases resistance to extinction of ethanol self-administration in adulthood.

    Science.gov (United States)

    Gass, Justin T; Glen, William Bailey; McGonigal, Justin T; Trantham-Davidson, Heather; Lopez, Marcelo F; Randall, Patrick K; Yaxley, Richard; Floresco, Stan B; Chandler, L Judson

    2014-10-01

    The prefrontal cortex (PFC) is a brain region that is critically involved in cognitive function and inhibitory control of behavior, and adolescence represents an important period of continued PFC development that parallels the maturation of these functions. Evidence suggests that this period of continued development of the PFC may render it especially vulnerable to environmental insults that impact PFC function in adulthood. Experimentation with alcohol typically begins during adolescence when binge-like consumption of large quantities is common. In the present study, we investigated the effects of repeated cycles of adolescent intermittent ethanol (AIE) exposure (postnatal days 28-42) by vapor inhalation on different aspects of executive functioning in the adult rat. In an operant set-shifting task, AIE-exposed rats exhibited deficits in their ability to shift their response strategy when the rules of the task changed, indicating reduced behavioral flexibility. There were no differences in progressive ratio response for the reinforcer suggesting that AIE did not alter reinforcer motivation. Examination of performance on the elevated plus maze under conditions designed to minimize stress revealed that AIE exposure enhanced the number of entries into the open arms, which may reflect either reduced anxiety and/or disinhibition of exploratory-like behavior. In rats that trained to self-administer ethanol in an operant paradigm, AIE increased resistance to extinction of ethanol-seeking behavior. This resistance to extinction was reversed by positive allosteric modulation of mGluR5 during extinction training, an effect that is thought to reflect promotion of extinction learning mechanisms within the medial PFC. Consistent with this, CDPPB was also observed to reverse the deficits in behavioral flexibility. Finally, diffusion tensor imaging with multivariate analysis of 32 brain areas revealed that while there were no differences in the total brain volume, the volume of

  18. Prenatal exposure to methylmercury alters development of adrenergic receptor binding sites in peripheral sympathetic target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Slotkin, T.A.; Orband, L.; Cowdery, T.; Kavlock, R.J.; Bartolome, J.

    1987-01-01

    In order to assess the impact of prenatal exposure to methylmercury on sympathetic neurotransmission, effects on development of adrenergic receptor binding sites in peripheral tissues was evaluated. In the liver, methylmercury produced a dose-dependent increase in alpha/sub 1/, alpha/sub 2/, and beta-receptor binding of radioliganda throughout the first 5 weeks of postnatal life. Similarly, renal alpha-receptor subtypes showed increased binding capabilities, but binding to alpha-receptor sites was reduced. At least some of the changes in receptors appear to be of functional significance, as physiological reactivity to adrenergic stimulation is altered in the same directions in these two tissues. The actions of methylmercury displayed tissue specificity in that the same receptor populations were largely unaffected in other tissues (lung, heart). These results suggest that methylmercury exposure in utero alters adrenergic responses through targeted effects on postsynaptic receptor populations in specific tissues.

  19. Effect of variations in treatment regimen and liver cirrhosis on exposure to benzodiazepines during treatment of alcohol withdrawal syndrome

    OpenAIRE

    Gershkovich, Pavel; Wasan, Kishor M.; Ribeyre, Charles; Ibrahim, Fady; McNeill, John H

    2015-01-01

    Purpose: Benzodiazepines (BDZs) are the drugs of choice to prevent the symptoms of alcohol withdrawal syndrome (AWS). Various treatment protocols are published and have been shown to be effective in both office-managed and facility-managed treatment of AWS. The aim of this scientific commentary is to demonstrate the differences in the expected exposure to BDZs during AWS treatment using different treatment regimens available in the literature, in patients with or without alcoholic liver cirrh...

  20. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FALLS TO ALTER SOMATOSENSORY EVOKED POTENTIALS, COMPOUND NERVE ACTION POTENTIALS, OR NERVE CONDUCTION VELOCITY IN RATS.

    Science.gov (United States)

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in sensory modulation in the cortex and cerebellum, and therefore may be altered following chlorpyrifos (CPF) exposure...

  1. Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?

    Science.gov (United States)

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Peterson, Lindsy M; Mai, Katherine; McHale, Quinn; Jenkins, Michael W; Linask, Kersti K; Rollins, Andrew M; Watanabe, Michiko

    2014-02-01

    Alcohol-induced congenital heart defects are frequently among the most life threatening and require surgical correction in newborns. The etiology of these defects, collectively known as fetal alcohol syndrome, has been the focus of much study, particularly involving cellular and molecular mechanisms. Few studies have addressed the influential role of altered cardiac function in early embryogenesis because of a lack of tools with the capability to assay tiny beating hearts. To overcome this gap in our understanding, we used optical coherence tomography (OCT), a nondestructive imaging modality capable of micrometer-scale resolution imaging, to rapidly and accurately map cardiovascular structure and hemodynamics in real time under physiological conditions. In this study, we exposed avian embryos to a single dose of alcohol/ethanol at gastrulation when the embryo is sensitive to the induction of birth defects. Late-stage hearts were analyzed using standard histological analysis with a focus on the atrio-ventricular valves. Early cardiac function was assayed using Doppler OCT, and structural analysis of the cardiac cushions was performed using OCT imaging. Our results indicated that ethanol-exposed embryos developed late-stage valvuloseptal defects. At early stages, they exhibited increased regurgitant flow and developed smaller atrio-ventricular cardiac cushions, compared with controls (uninjected and saline-injected embryos). The embryos also exhibited abnormal flexion/torsion of the body. Our evidence suggests that ethanol-induced alterations in early cardiac function have the potential to contribute to late-stage valve and septal defects, thus demonstrating that functional parameters may serve as early and sensitive gauges of cardiac normalcy and abnormalities.

  2. Pesticide Exposure Alters Follicle-Stimulating Hormone Levels in Mexican Agricultural Workers

    OpenAIRE

    Recio, Rogelio; Ocampo-Gómez, Guadalupe; Morán-Martínez, Javier; Borja-Aburto, Victor; López-Cervantes,Malaquías; Uribe, Marisela; Torres-Sánchez, Luisa; Cebrián, Mariano E.

    2005-01-01

    Organophosphorous pesticides (OPs) are suspected of altering reproductive function by reducing brain acetylcholinesterase activity and monoamine levels, thus impairing hypothalamic and/or pituitary endocrine functions and gonadal processes. Our objective was to evaluate in a longitudinal study the association between OP exposure and serum levels of pituitary and sex hormones. Urinary OP metabolite levels were measured by gas–liquid chromatography, and serum pituitary and sex hormone levels by...

  3. Neonatal Hyperoxic Exposure Persistently Alters Lung Secretoglobins and Annexin A1

    Directory of Open Access Journals (Sweden)

    Thomas M. Raffay

    2013-01-01

    Full Text Available Altered functions of the lung epithelial surface likely contribute to the respiratory morbidities in infants with bronchopulmonary dysplasia (BPD. Infants with BPD exhibit decreased expressions of secretoglobins (SCGBs, including Clara cell secretory protein (CCSP. Expression of lung SCGB and annexin A1 (ANXA1 is persistently altered in CCSP knockout mice suggesting that CCSP indirectly influences innate immune responses. The present studies tested the hypothesis that neonatal hyperoxic exposure induces deficits in CCSP expression that are associated with persistent alterations in lung SCGB and ANXA1 expression. Newborn C3H/HeN mice were exposed to room air (RA or 85% O2 from birth and were sacrificed at 14 d or returned to RA for 14 d. Neonatal hyperoxia followed by RA recovery was associated with decreased lung CCSP and SCGB3A1 protein but not mRNA expression. Hyperoxia-induced alterations in the charge characteristics of ANXA1 were unchanged by RA recovery and were associated with elevated lung macrophage numbers. These findings support a model in which hyperoxia-induced alterations in Clara cell function influence lung innate immune function through effects on immunomodulatory proteins. Studies to determine the mechanism(s by which CCSP alterations affect SCGBs, ANXA1, and innate immune responses in BPD are warranted.

  4. Different digital paths to the keg? How exposure to peers' alcohol-related social media content influences drinking among male and female first-year college students.

    Science.gov (United States)

    Boyle, Sarah C; LaBrie, Joseph W; Froidevaux, Nicole M; Witkovic, Yong D

    2016-06-01

    Despite speculation that peers' alcohol-related content on social media sites (SMS) may influence the alcohol use behaviors of SMS frequenting college students, this relationship has not been investigated longitudinally. The current prospective study assesses the relationship between exposure to peers' alcohol-related SMS content and later-drinking among first-year college students. Among 408 first-year students, total exposure to peers' alcohol-related content on Facebook, Instagram, and Snapchat during the initial 6 weeks of college predicted alcohol consumption 6 months later. The rather robust relationship persisted even after students' and close friends drinking were accounted for, indicating that alcohol references on SMS do not simply reflect alcohol use behaviors that would otherwise be observed in the absence of SMS and be predictive of later alcohol use. Findings also illuminate important gender differences in the degree to which peers' alcohol-related SMS content influenced later drinking behavior as well as psychological mediators of this relationship. Among females, enhancement drinking motives and beliefs about the role of alcohol in the college experience fully mediated the relationship between SMS alcohol exposure and later drinking. Males, however, evidenced a much stronger predictive relationship between SMS alcohol exposure and second semester drinking, with this relationship only partially explained by perceptions of drinking norms, enhancement drinking motives, and beliefs about the role of alcohol in the college experience. Implications of these findings for college drinking prevention efforts and directions for future research are discussed.

  5. Quantitative analysis of the nanoscale intra-nuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy study

    CERN Document Server

    Sahay, Peeyush; Ghimire, Hemendra M; Almabadi, Huda; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar

    2015-01-01

    Chronic alcoholism is known to alter morphology of hippocampal, an important region of cognitive function in the brain. We performed quantification of nanoscale structural alterations in nuclei of hippocampal neuron cells due to chronic alcoholism, in mice model. Transmission electron microscopy images of the neuron cells were obtained and the degrees of structural alteration, in terms of mass density fluctuations, were determined using the recently developed light localization analysis technique. The results, obtained at the length scales ranging from 33 to 195 nm, show that the 4-week alcohol fed mice have higher degree of structural alteration in comparison to the control mice. The degree of structural alterations starts becoming significantly distinguishable around 100 nm sample length, which is the typical length scale of the building blocks of cells, such as DNA, RNA, etc. Different degrees of structural alterations at such length scales suggest possible structural rearrangement of chromatin inside the ...

  6. Social behavior of offspring following prenatal cocaine exposure in rodents: a comparison with prenatal alcohol

    Directory of Open Access Journals (Sweden)

    Sonya Krishna Sobrian

    2011-11-01

    Full Text Available Clinical and experimental reports suggest that prenatal cocaine exposure(PCEalters the offsprings’ social interactions with caregivers and conspecifics. Children exposed to prenatal cocaine show deficits in caregiver attachment and play behavior. In animal models,a developmental pattern of effects that range from deficits in play and social interaction during adolescence, to aggressive reactions during competition in adulthood is seen. This review will focus primarily on the effects of PCE on social behaviors involving conspecifics in animal models. Social relationships are critical to the developing organism; maternally-directed interactions are necessary for initial survival. Juvenile rats deprived of play behavior, one of the earliest forms of non-mother directed social behaviors in rodents, show deficits in learning tasks and sexual competence. Social behavior is inherently conmplex. Because the emergence of appropriate social skills involves the interplay between various conceptual and biological facets of behavior and social information, it may be a particularly sensitive measure of prenatal insult. The social behavior surveyed include social interactions, play behavior/fighting, scent marking and aggressive behavior in the offspring, as well as aspects of maternal behavior. The goal is to determine if there is a consensus of results in the literature with respect to PCE and social behaviors, and to discuss discrepant findings in terms of exposure models, the paradigms and dependent variables, as well as housing conditions, and the sex and age of the offspring at testing. As there is increasing evidence that deficits in social behavior may be sequelae of developmental exposure alcohol, we compare changes in social behaviors reported for prenatal alcohol with those reported for prenatal cocaine. Shortcomings in the both literatures are identified and addressed in an effort to improve the translational value of future experimentation.

  7. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    Science.gov (United States)

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques.

  8. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    Science.gov (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure.

  9. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Rats.

    Science.gov (United States)

    Smith, Catherine A; Farmer, Kyle; Lee, Hyunmin; Holahan, Matthew R; Smith, Jeffrey C

    2015-10-27

    Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl) phthalate (DEHP) disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females.

  10. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl Phthalate in Rats

    Directory of Open Access Journals (Sweden)

    Catherine A. Smith

    2015-10-01

    Full Text Available Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl phthalate (DEHP disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females.

  11. Environmentally realistic exposure to the herbicide atrazine alters some sexually selected traits in male guppies.

    Directory of Open Access Journals (Sweden)

    Kausalya Shenoy

    Full Text Available Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species.

  12. Alteration in buccal mucosal cells due to the effect of tobacco and alcohol by assessing the silver-stained nucleolar organiser regions and micronuclei

    Directory of Open Access Journals (Sweden)

    Sachin Jindal

    2013-01-01

    Conclusions: Tobacco and alcohol consumption produce alteration in apparently normal buccal mucosal cells, which may cumulatively lead to carcinomatous changes. Result of these changes may be used as educational tool in cessation of habits.

  13. Histone modifications and alcohol-induced liver disease: Are altered nutrients the missing link?

    Institute of Scientific and Technical Information of China (English)

    Akshata Moghe; Swati Joshi-Barve; Smita Ghare; Leila Gobejishvili; Irina Kirpich; Craig J McClain; Shirish Barve

    2011-01-01

    Alcoholism is a major health problem in the United States and worldwide, and alcohol remains the single most significant cause of liver-related diseases and deaths. Alcohol is known to influence nutritional status at many levels including nutrient intake, absorption, utilization, and excretion, and can lead to many nutritional disturbances and deficiencies. Nutrients can dramatically affect gene expression and alcohol-induced nutrient imbalance may be a major contributor to pathogenic gene expression in alcohol-induced liver disease (ALD). There is growing interest regarding epigenetic changes, including histone modifications that regulate gene expression during disease pathogenesis. Notably, modifications of core histones in the nucleosome regulate chromatin structure and DNA methylation, and control gene transcription. This review highlights the role of nutrient disturbances brought about during alcohol metabolism and their impact on epigenetic histone modifications that may contribute to ALD. The review is focused on four critical metabolites, namely, acetate, S-adenosylmethionine, nicotinamide adenine dinucleotide and zinc that are particularly relevant to alcohol metabolism and ALD.

  14. Alcohol

    Science.gov (United States)

    ... changes that come from drinking alcohol can make people do stupid or embarrassing things, like throwing up or peeing on themselves. Drinking also gives people bad breath, and no one enjoys a hangover. ...

  15. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Anis Rageh Al-Maleki

    Full Text Available Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV] to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk, ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.

  16. Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration.

    Science.gov (United States)

    Ahlers, Katelin E; Karaçay, Bahri; Fuller, Leah; Bonthius, Daniel J; Dailey, Michael E

    2015-10-01

    Fetal alcohol exposure is the most common known cause of preventable mental retardation, yet we know little about how microglia respond to, or are affected by, alcohol in the developing brain in vivo. Using an acute (single day) model of moderate (3 g/kg) to severe (5 g/kg) alcohol exposure in postnatal day (P) 7 or P8 mice, we found that alcohol-induced neuroapoptosis in the neocortex is closely correlated in space and time with the appearance of activated microglia near dead cells. The timing and molecular pattern of microglial activation varied with the level of cell death. Although microglia rapidly mobilized to contact and engulf late-stage apoptotic neurons, apoptotic bodies temporarily accumulated in neocortex, suggesting that in severe cases of alcohol toxicity the neurodegeneration rate exceeds the clearance capacity of endogenous microglia. Nevertheless, most dead cells were cleared and microglia began to deactivate within 1-2 days of the initial insult. Coincident with microglial activation and deactivation, there was a transient increase in expression of pro-inflammatory factors, TNFα and IL-1β, after severe (5 g/kg) but not moderate (3 g/kg) EtOH levels. Alcohol-induced microglial activation and pro-inflammatory factor expression were largely abolished in BAX null mice lacking neuroapoptosis, indicating that microglial activation is primarily triggered by apoptosis rather than the alcohol. Therefore, acute alcohol exposure in the developing neocortex causes transient microglial activation and mobilization, promoting clearance of dead cells and tissue recovery. Moreover, cortical microglia show a remarkable capacity to rapidly deactivate following even severe neurodegenerative insults in the developing brain.

  17. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  18. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    Science.gov (United States)

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  19. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    Energy Technology Data Exchange (ETDEWEB)

    Herring, M.J.; Putney, L.F.; St George, J.A. [California National Primate Research Center, Davis, CA (United States); Avdalovic, M.V. [Department of Internal Medicine, Division of Pulmonary and Critical Care, University of California, Davis, CA (United States); Schelegle, E.S.; Miller, L.A. [California National Primate Research Center, Davis, CA (United States); Hyde, D.M., E-mail: dmhyde@ucdavis.edu [California National Primate Research Center, Davis, CA (United States)

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  20. Non-Alcoholic Fatty Pancreas Disease Pathogenesis: A Role for Developmental Programming and Altered Circadian Rhythms

    Science.gov (United States)

    Carter, Rebeca; Mouralidarane, Angelina; Soeda, Junpei; Ray, Shuvra; Pombo, Joaquim; Saraswati, Ruma; Novelli, Marco; Fusai, Giuseppe; Rappa, Francesca; Saracino, Chiara; Pazienza, Valerio; Poston, Lucilla; Taylor, Paul D.; Vinciguerra, Manlio; Oben, Jude A.

    2014-01-01

    Objectives Emerging evidence suggests that maternal obesity (MO) predisposes offspring to obesity and the recently described non-alcoholic fatty pancreas disease (NAFPD) but involved mechanisms remain unclear. Using a pathophysiologically relevant murine model, we here investigated a role for the biological clock - molecular core circadian genes (CCG) in the generation of NAFPD. Design Female C57BL6 mice were fed an obesogenic diet (OD) or standard chow (SC) for 6 weeks, prior to pregnancy and throughout gestation and lactation: resulting offspring were subsequently weaned onto either OD (Ob_Ob and Con_Ob) or standard chow (Ob_Con and Con_Con) for 6 months. Biochemical, pro-inflammatory and pro-fibrogenic markers associated with NAFPD were then evaluated and CCG mRNA expression in the pancreas determined. Results Offspring of obese dams weaned on to OD (Ob_Ob) had significantly increased (p≤0.05): bodyweight, pancreatic triglycerides, macrovesicular pancreatic fatty-infiltration, and pancreatic mRNA expression of TNF-α, IL-6, α-SMA, TGF-β and increased collagen compared to offspring of control dams weaned on to control chow (Con_Con). Analyses of CCG expression demonstrated a phase shift in CLOCK (−4.818, p<0.01), REV-ERB-α (−1.4,p<0.05) and Per2 (3.27,p<0.05) in association with decreased amplitude in BMAL-1 (−0.914,p<0.05) and PER2 (1.18,p<0.005) in Ob_Ob compared to Con_Con. 2-way ANOVA revealed significant interaction between MO and post-weaning OD in expression of CLOCK (p<0.005), PER1 (p<0.005) and PER2 (p<0.05) whilst MO alone influenced the observed rhythmic variance in expression of all 5 measured CCG. Conclusions Fetal and neonatal exposure to a maternal obesogenic environment interacts with a post-natal hyper-calorific environment to induce offspring NAFPD through mechanisms involving perturbations in CCG expression. PMID:24657938

  1. Non-alcoholic fatty pancreas disease pathogenesis: a role for developmental programming and altered circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Rebeca Carter

    Full Text Available OBJECTIVES: Emerging evidence suggests that maternal obesity (MO predisposes offspring to obesity and the recently described non-alcoholic fatty pancreas disease (NAFPD but involved mechanisms remain unclear. Using a pathophysiologically relevant murine model, we here investigated a role for the biological clock--molecular core circadian genes (CCG in the generation of NAFPD. DESIGN: Female C57BL6 mice were fed an obesogenic diet (OD or standard chow (SC for 6 weeks, prior to pregnancy and throughout gestation and lactation: resulting offspring were subsequently weaned onto either OD (Ob_Ob and Con_Ob or standard chow (Ob_Con and Con_Con for 6 months. Biochemical, pro-inflammatory and pro-fibrogenic markers associated with NAFPD were then evaluated and CCG mRNA expression in the pancreas determined. RESULTS: Offspring of obese dams weaned on to OD (Ob_Ob had significantly increased (p≤0.05: bodyweight, pancreatic triglycerides, macrovesicular pancreatic fatty-infiltration, and pancreatic mRNA expression of TNF-α, IL-6, α-SMA, TGF-β and increased collagen compared to offspring of control dams weaned on to control chow (Con_Con. Analyses of CCG expression demonstrated a phase shift in CLOCK (-4.818, p<0.01, REV-ERB-α (-1.4,p<0.05 and Per2 (3.27,p<0.05 in association with decreased amplitude in BMAL-1 (-0.914,p<0.05 and PER2 (1.18,p<0.005 in Ob_Ob compared to Con_Con. 2-way ANOVA revealed significant interaction between MO and post-weaning OD in expression of CLOCK (p<0.005, PER1 (p<0.005 and PER2 (p<0.05 whilst MO alone influenced the observed rhythmic variance in expression of all 5 measured CCG. CONCLUSIONS: Fetal and neonatal exposure to a maternal obesogenic environment interacts with a post-natal hyper-calorific environment to induce offspring NAFPD through mechanisms involving perturbations in CCG expression.

  2. Cultured lymphocytes from alcoholic subjects have altered cAMP signal transduction.

    OpenAIRE

    Nagy, L E; Diamond, I; Gordon, A.

    1988-01-01

    Previous work has shown that freshly isolated lymphocytes from alcoholic subjects show significantly reduced basal and adenosine receptor-stimulated cAMP levels. This decrease could be due to ethanol-induced cellular adaptation or to a genetic difference in the regulation of cAMP signal transduction. Therefore, we cultured human lymphocytes in defined medium without ethanol for 7-8 days and then examined differences in receptor-dependent cAMP accumulation between lymphocytes from alcoholic an...

  3. Altering small and medium alcohol selectivity in the wax ester synthase.

    Science.gov (United States)

    Barney, Brett M; Ohlert, Janet M; Timler, Jacobe G; Lijewski, Amelia M

    2015-11-01

    The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase) catalyzes the terminal reaction in the bacterial wax ester biosynthetic pathway, utilizing a range of alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. The wild-type wax ester synthase Maqu_0168 from Marinobacter aquaeolei VT8 exhibits a preference for longer fatty alcohols, while applications with smaller alcohols would yield products with desired biotechnological properties. Small and medium chain length alcohol substrates are much poorer substrates for the native enzyme, which may hinder broad application of the wax ester synthase in many proposed biosynthetic schemes. Developing approaches to improve enzyme activity toward specific smaller alcohol substrates first requires a clear understanding of which amino acids of the primary sequences of these enzymes contribute to substrate specificity in the native enzyme. In this report, we surveyed a range of potential residues and identified the leucine at position 356 and methionine at position 405 in Maqu_0168 as residues that affected selectivity toward small, branched, and aromatic alcohols when substituted with different amino acids. This analysis provides evidence of residues that line the binding site for wax ester synthase, which will aid rational approaches to improve this enzyme with specific substrates.

  4. Prenatal Exposure to Lipopolysaccharide Alters Renal DNA Methyltransferase Expression in Rat Offspring

    Science.gov (United States)

    Chen, Rui; Deng, Youcai; Liao, Xi; Wei, Yanling; Li, Xiaohui; Su, Min; Yu, Jianhua; Yi, Ping

    2017-01-01

    Prenatal exposure to inflammation results in hypertension during adulthood but the mechanisms are not well understood. Maternal exposure to lipopolysaccharide (LPS) alters interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in the fetal environment. As reported in many recent studies, IL-6 regulates DNA methyltransferases (DNMTs) through the transcription factor friend leukemia virus integration 1 (Fli-1). The present study explores the role of intrarenal DNMTs during development of hypertension induced by prenatal exposure to LPS. Pregnant rats were randomly divided into four treatment groups: control, LPS, pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor), and the combination of LPS and PDTC. Expression of IL-6, Fli-1, TNF-α, DNMT1 and DNMT3B was significantly increased in the offspring of LPS-treated rats. Global DNA methylation level of renal cortex also increased dramatically in rat offspring of the LPS group. Prenatal PDTC administration reversed the increases in gene expression and global DNA methylation level. These findings suggest that prenatal exposure to LPS may result in changes of intrarenal DNMTs through the IL-6/Fli-1 pathway and TNF-α, which probably involves hypertension in offspring due to maternal exposure to inflammation. PMID:28103274

  5. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    Science.gov (United States)

    Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901

  6. Neurobehavioral Disorder Associated with Prenatal Alcohol Exposure (ND-PAE): Proposed DSM-5 Diagnosis.

    Science.gov (United States)

    Kable, Julie A; O'Connor, Mary J; Olson, Heather Carmichael; Paley, Blair; Mattson, Sarah N; Anderson, Sally M; Riley, Edward P

    2016-04-01

    Over the past 40 years, a significant body of animal and human research has documented the teratogenic effects of prenatal alcohol exposure (PAE). Neurobehavioral Disorder associated with PAE is proposed as a new clarifying term, intended to encompass the neurodevelopmental and mental health symptoms associated with PAE. Defining this disorder is a necessary step to adequately characterize these symptoms and allow clinical assessment not possible using existing physically-based diagnostic schemes. Without appropriate diagnostic guidelines, affected individuals are frequently misdiagnosed and treated inappropriately (often to their considerable detriment) by mental health, educational, and criminal justice systems. Three core areas of deficits identified from the available research, including neurocognitive, self-regulation, and adaptive functioning impairments, are discussed and information regarding associated features and disorders, prevalence, course, familial patterns, differential diagnosis, and treatment of the proposed disorder are also provided.

  7. Association of arsenic exposure with smoking, alcohol, and caffeine consumption: data from NHANES 2005-2010.

    Science.gov (United States)

    Jain, Ram B

    2015-03-01

    Association of arsenic exposure with smoking, alcohol, and caffeine consumption was investigated. Data from National Health and Nutrition Examination Survey for the years 2005-2010 were used for this investigation. Urinary levels of total arsenic (UAS) and dimethylarsonic acid (UDMA) were evaluated for children aged 6-12 years and adolescents and adults aged ≥ 12 years. Urinary levels of arsenobetaine (UAB) were evaluated for adolescents and adults only. Regression models were fitted for log transformed values of UAB, UAS, and UDMA. For the models for children, however, gender, race/ethnicity, SES, and fish/shell fish consumption during the last 30 days were the only independent variables that were included in the models. Nonsmokers were found to have higher levels of UAS and UDMA than smokers. Elevated levels of UAB, UAS, and UDMA were associated with higher amounts of daily alcohol consumption. The associations were in the opposite direction for daily caffeine consumption. Females were found to have statistically significantly lower adjusted levels of UDMA than males for those aged ≥ 12 years. Irrespective of age, those with unclassified race/ethnicity had the highest levels of UAB, UAS, and UDMA and non-Hispanic whites had the lowest levels. Adolescents had the higher levels of UAB, UAS, and UDMA than adults. Higher SES was associated with higher levels of UAB, UAS, and UDMA among adolescents and adults. Irrespective of age, fish consumption was associated with higher levels of UAB, UAS, and UDMA.

  8. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    Science.gov (United States)

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings.

  9. Initial subjective reward: Single-exposure conditioned place preference to alcohol in mice

    Directory of Open Access Journals (Sweden)

    Judith E. Grisel

    2014-11-01

    Full Text Available Most adults consume alcohol with relative impunity, but about 10-20% of users persist (or progress in their consumption, despite mounting and serious repercussions. Identifying at-risk individuals before neuroadaptative changes associated with chronic use become well ingrained is thus a key step in mitigating and preventing the end stage disease and its devastating impacts. Explaining liability has been impeded, in part, by the absence of animal models for assessing initial sensitivity to the drug’s reinforcing properties, an important endophenotype in the trajectory toward excessive drinking. Here we assess the initial rewarding effects of the drug in a novel application of the conditioned place preference paradigm. In contrast to previous studies that have all employed repeated drug administration, we demonstrated a robust preference for a context paired with a single exposure to 1.5g/kg EtOH in male and female subjects of three strains. This model validates an assay of initial sensitivity to the subjective rewarding effects of alcohol, a widely used drug with multifarious impacts on both brain and society, and provides a new tool for theory-driven endophenotypic pharmacogenetic approaches to understanding and treating addiction.

  10. [Prenatal alcohol exposure as an etiological factor in neuropsychiatric diseases of childhood, adolescence and adulthood].

    Science.gov (United States)

    Evrard, Sergio Gustavo

    2010-01-01

    In Argentina, prenatal alcohol exposure (PAE) is an almost neglected condition as an important etiological factor for the induction of a wide spectrum of neuropsychiatric diseases that may appear during childhood, adolescence or adulthood. Children born to alcoholic mothers may show a spectrum of diseases ranging from an apparent normality to a profound mental retardation, passing through epilepsy, attention deficit disorders with or without hyperactivity, autism and pervasive developmental disorders, and different types of learning disorders. When adolescents, they may develop different kinds of personality disorders and substance abuse disorders. Finally, in adulthood, they may suffer from different types of affective and psychotic disorders, among others. A great number of those children may not develop their full mental and social potentiality as free individuals. They usually have diverse types of cognitive, attentional, mnemonic and affective impairments. Not infrequently, they engage in antisocial behaviors, have school or work troubles. In this work, I review the present clinical classifications of the disorders emerging from a PAE and the several neuropsychiatric diseases that can be induced by them, in order to call attention to the Argentinian neuropsychiatric community about the increasingly, although underdiagnosed, frequency of these disorders in our country.

  11. Prenatal Cocaine Exposure Alters Cortisol Stress Reactivity in 11 Year Old Children

    Science.gov (United States)

    Lester, Barry M.; LaGasse, Linda L.; Shankaran, Seetha; Bada, Henrietta S.; Bauer, Charles R.; Lin, Richard; Das, Abhik; Higgins, Rosemary

    2011-01-01

    Objective Determine the association between prenatal cocaine exposure and postnatal environmental adversity on salivary cortisol stress reactivity in school aged children. Study design Subjects included 743 11 year old children (n=320 cocaine exposed; 423 comparison) followed since birth in a longitudinal prospective multisite study. Saliva samples were collected to measure cortisol at baseline and after a standardized procedure to induce psychological stress. Children were divided into those who showed an increase in cortisol from baseline to post stress and those who showed a decrease or blunted cortisol response. Covariates measured included site, birthweight, maternal pre and postnatal use of alcohol, tobacco or marijuana, social class, changes in caretakers, maternal depression and psychological symptoms, domestic and community violence, child abuse and quality of the home. Results With adjustment for confounding variables, cortisol reactivity to stress was more likely to be blunted in children with prenatal cocaine exposure. Cocaine exposed children exposed to domestic violence showed the strongest effects. Conclusion The combination of prenatal cocaine exposure and an adverse postnatal environment could down regulate the hypothalamic-pituitary-adrenal axis (HPA) resulting in the blunted cortisol response to stress possibly increasing risk for later psychopathology and adult disease. PMID:20400094

  12. Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre.

    Science.gov (United States)

    Harper, Clive; Dixon, Gavin; Sheedy, Donna; Garrick, Therese

    2003-09-01

    Alcohol dependence and abuse are among the most costly health problems in the world from both social and economic points of view. Patterns of drinking appear to be changing throughout the world with more women and young people drinking heavily. Excessive drinking can lead to impairment of cognitive function and structural brain changes--some permanent, some reversible. Patterns of damage appear to relate to lifetime alcohol consumption but, more importantly, to associated medical complications. The most significant of these is the alcohol-related vitamin deficient state, the Wernicke-Korsakoff syndrome (WKS), which is caused by thiamin deficiency but is seen most commonly in alcoholics. Careful selection and classification of alcoholic cases into those with and without these complications, together with detailed quantitative neuropathological analyses has provided data that gives clues to the most vulnerable regions and cells in the brain. Brain shrinkage is largely accounted for by loss of white matter. Some of this damage appears to be reversible. Alcohol-related neuronal loss has been documented in specific regions of the cerebral cortex (superior frontal association cortex), hypothalamus and cerebellum. No change is found in basal ganglia, nucleus basalis, or serotonergic raphe nuclei. Many of these regions which are normal in uncomplicated alcoholics are damaged in those with the WKS. Dendritic and synaptic changes have been documented in alcoholics and these, together with receptor and transmitter changes, may explain functional changes and cognitive deficits, which precede more severe structural neuronal changes. A resource to provide human brain tissues for these types of studies has been developed at the University of Sydney--the New South Wales Tissue Resource Centre. The aim of this facility is to provide research groups throughout the world with fresh and/or frozen tissues from well-characterized cases of alcohol-related brain damage and matched

  13. Association between lead exposure from electronic waste recycling and child temperament alterations.

    Science.gov (United States)

    Liu, Junxiao; Xu, Xijin; Wu, Kusheng; Piao, Zhongxian; Huang, Jinrong; Guo, Yongyong; Li, Weiqiu; Zhang, Yuling; Chen, Aimin; Huo, Xia

    2011-08-01

    We aimed to evaluate the dose-dependent effects of lead exposure on temperament alterations in children from a primitive e-waste (obsolete electrical and electronic devices) recycling area in Guiyu of China and a control area (Chendian, China). Blood lead levels (BLL) might be correlated with temperament, health, and relevant factors that were evaluated through Parent Temperament Questionnaire (PTQ), physical examination, and residential questionnaires. We collected venipuncture blood samples from 303 children (aged 3-7 years old) between January and February 2008. Child BLL were higher in Guiyu than in Chendian (median 13.2 μg/dL, range 4.0-48.5 μg/dL vs. 8.2 μg/dL, 0-21.3 μg/dL) (Pwaste were the risk factors related to child BLL, activity level, approach-withdrawal, adaptability, and mood. Child hand washing prior to food consumption was a protected factor for BLL and several dimensions. There are close relationships between BLL elevation, temperament alteration and the e-waste recycling activities in Guiyu. Primitive e-waste recycling may threaten the health of children by increasing BLL and altering children temperament, although the exposure to other toxicants needs to be examined in future studies.

  14. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thophon, S.; Kruatrachue, M.; Upatham, E.S.; Pokethitiyook, P.; Sahaphong, S.; Jaritkhuan, S

    2003-03-01

    White seabass responded differently to cadmium at chronic and subchronic levels. - Histopathological alterations to white seabass, Lates calcarifer aged 3 months in acute and subchronic cadmium exposure were studied by light and scanning electron microscopy. The 96-h LC{sub 50} values of cadmium to L. calcarifer was found to be 20.12{+-}0.61 mg/l and the maximum acceptable toxicant concentration (MATC) was 7.79 mg/l. Fish were exposed to 10 and 0.8 mg/l of Cd (as CdCl{sub 2}H{sub 2}O) for 96 h and 90 days, respectively. The study showed that gill lamellae and kidney tubules were the primary target organs for the acute toxic effect of cadmium while in the subchronic exposure, the toxic effect to gills was less than that of kidney and liver. Gill alterations included edema of the epithelial cells with the breakdown of pillar cell system, aneurisms with some ruptures, hypertrophy and hyperplasia of epithelial and chloride cells. The liver showed blood congestion in sinusoids and hydropic swelling of hepatocytes, vacuolation and dark granule accumulation. Lipid droplets and glycogen content were observed in hepatocytes at the second and third month of subchronic exposure. The kidney showed hydropic swelling of tubular cell vacuolation and numerous dark granule accumulation in many tubules. Tubular degeneration and necrosis were seen in some areas.

  15. Nuclear and Mitochondrial DNA Alterations in Newborns with Prenatal Exposure to Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Francesca Pirini

    2015-01-01

    Full Text Available Newborns exposed to maternal cigarette smoke (CS in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal and assesses how such changes may have consequences for both fetal growth and development.

  16. Decreased Reelin Expression and Organophosphate Pesticide Exposure Alters Mouse Behaviour and Brain Morphology

    Directory of Open Access Journals (Sweden)

    Brian R. Mullen

    2013-01-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders. In this study, we examined the combinatorial effect of two factors thought to be involved in autism – reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon. Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.

  17. Elevated bulk-silica exposures and evidence for multiple aqueous alteration episodes in Nili Fossae, Mars

    Science.gov (United States)

    Amador, Elena S.; Bandfield, Joshua L.

    2016-09-01

    The Nili Fossae region of Mars contains some of the most mineralogically diverse bedrock on the planet. Previous studies have established three main stratigraphic units in the region: a phyllosilicate-bearing basement rock, a variably altered olivine-rich basalt, and a capping rock. Here, we present evidence for the localized alteration of the northeast Nili Fossae capping unit, previously considered to be unaltered. Both near-infrared and thermal-infrared spectral datasets were analyzed, including the application of a method for determining the relative abundance of bulk-silica (SiO2) over surfaces using thermal emission imaging system (THEMIS) images. Elevated bulk-silica exposures are present on surfaces previously defined as unaltered capping rock. Given the lack of spectral evidence for phyllosilicate, hydrated silica, or quartz phases coincident with the newly detected exposures-the elevated bulk-silica may have formed under a number of aqueous scenarios, including as a product of the carbonation of the underlying olivine-rich basalt under moderate water: rock scenarios and temperatures. Regardless of formation mechanism, the detection of elevated bulk-silica exposures in the Nili Fossae capping unit extends the history of aqueous activity in the region to include all three of the main stratigraphic units.

  18. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  19. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    Science.gov (United States)

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus.

  20. Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study.

    Directory of Open Access Journals (Sweden)

    Rosa Alati

    Full Text Available The impact of low-to-moderate levels of alcohol consumption during pregnancy on child cognitive outcomes has been of recent concern. This study has tested the hypothesis that low-to-moderate maternal alcohol use in pregnancy is associated with lower school test scores at age 11 in the offspring via intrauterine mechanisms.We used data from the Avon Longitudinal Study of Parents and Children (ALSPAC, a birth cohort study based in the South West of England. Analyses were conducted on 7062 participants who had complete data on: maternal and paternal patterns of alcohol use in the first trimester and at 18 weeks' gestation, child's academic outcomes measured at age 11, gender, maternal age, parity, marital status, ethnicity, household crowding, home ownership status and parental education. We contrasted the association of mother's alcohol consumption during pregnancy with child's National Curriculum Key Stage 2 (KS2 test scores with the association for father's alcohol consumption (during the time the mother was pregnant with child's National Curriculum Key Stage 2 (KS2 test scores. We used multivariate linear regression to estimate mean differences and 95% confidence intervals [CI] in KS2 scores across the exposure categories and computed f statistics to compare maternal and paternal associations.Drinking up to 1 unit of alcohol a day during pregnancy was not associated with lower test scores. However, frequent prenatal consumption of 4 units (equivalent to 32 grams of alcohol on each single drinking occasion was associated with reduced educational attainment [Mean change in offspring KS2 score was -0.68 (-1.03, -0.33 for maternal alcohol categories compared to 0.27 (0.07, 0.46 for paternal alcohol categories]. Frequent consumption of 4 units of alcohol during pregnancy may adversely affect childhood academic outcomes via intrauterine mechanisms.

  1. Using eyeblink classical conditioning as a test of the functional consequences of exposure of the developing cerebellum to alcohol.

    Science.gov (United States)

    Green, John T

    2003-01-01

    Exposure of the developing brain to alcohol produces profound Purkinje cell loss in the cerebellum, and deficits in tests of motor coordination. However, the precise relationship between these two sets of findings has been difficult to determine. Eyeblink classical conditioning is known to engage a discrete brainstem-cerebellar circuit, making it an ideal test of cerebellar functional integrity after developmental alcohol exposure. In eyeblink conditioning, one of the deep cerebellar nuclei, the interpositus nucleus, as well as specific Purkinje cell populations, are sites of convergence for CS and US information. A series of studies have shown that eyeblink conditioning is impaired in both weanling and adult rats given binge-like exposure to alcohol as neonates, and that these deficits can be traced, at least in part, to impaired activation of cerebellar interpositus nucleus neurons and to an overall reduction in the deep cerebellar nuclear cell population. Because particular cerebellar cell populations are utilized in well-defined ways during eyeblink conditioning, conclusions regarding specific changes in the mediation of behavior by these cell populations are greatly strengthened. Further studies will be directed towards the impact of early exposure to alcohol on the functionality of specific Purkinje cell populations, as well as towards brainstem areas that process the tone CS and the somatosensory US.

  2. Behavioral Effects of Pre- and Postnatal Exposure to Smoking, Alcohol, and Caffeine in 5-Month-Old Infants.

    Science.gov (United States)

    Dowler, Jeffrey K.; Jacobson, Sandra W.

    This study examined the behavioral effects of prenatal and postnatal exposure to smoking, alcohol, and caffeinated beverages on 5-month-old infants. The sample consisted of 179 Caucasian infants and their mothers. All mothers were 19 years of age or older and had at least a tenth-grade education. Mental and motor portions of the Bayley Scales of…

  3. Secretion of interferon gamma from human immune cells is altered by exposure to tributyltin and dibutyltin.

    Science.gov (United States)

    Lawrence, Shanieek; Reid, Jacqueline; Whalen, Margaret

    2015-05-01

    Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Interferon gamma (IFNγ) is a modulator of adaptive and innate immune responses, playing an important role in overall immune competence. This study shows that both TBT and DBT alter secretion of IFNγ from human immune cells. Peripheral blood cell preparations that were increasingly reconstituted were used to determine if exposures to either TBT or DBT affected IFNγ secretion and how the makeup of the cell preparation influenced that effect. IFNγ secretion was examined after 24 h, 48 h, and 6 day exposures to TBT (200 - 2.5 nM) and DBT (5 - 0.05 µM) in highly enriched human NK cells, a monocyte-depleted preparation of PBMCs, and monocyte-containing PBMCs. Both BTs altered IFNγ secretion from immune cells at most of the conditions tested (either increasing or decreasing secretion). However, there was significant variability among donors as to the concentrations and time points that showed changes as well as the baseline secretion of IFNγ. The majority of donors showed an increase in IFNγ secretion in response to at least one concentration of TBT or DBT at a minimum of one length of exposure.

  4. Alterations in male rats following in utero exposure to betamethasone suggests changes in reproductive programming.

    Science.gov (United States)

    Borges, Cibele S; Dias, Ana Flávia M G; Rosa, Josiane Lima; Silva, Patricia V; Silva, Raquel F; Barros, Aline L; Sanabria, Marciana; Guerra, Marina T; Gregory, Mary; Cyr, Daniel G; De G Kempinas, Wilma

    2016-08-01

    Antenatal betamethasone is used for accelerating fetal lung maturation for women at risk of preterm birth. Altered sperm parameters were reported in adult rats after intrauterine exposure to betamethasone. In this study, male rat offspring were assessed for reproductive development after dam exposure to betamethasone (0.1mg/kg) or vehicle on Days 12, 13, 18 and 19 of pregnancy. The treatment resulted in reduction in the offspring body weight, delay in preputial separation, decreased seminal vesicle weight, testosterone levels and fertility, and increased testicular weight. In the testis, morphologically abnormal seminiferous tubules were observed, characterized by an irregular cell distribution with Sertoli cell that were displaced towards the tubular lumen. These cells expressed both Connexin 43 (Cx43) and Proliferative Nuclear Cell Antigen (PCNA). In conclusion, intrauterine betamethasone treatment appears to promote reproductive programming and impairment of rat sexual development and fertility due to, at least in part, unusual testicular disorders.

  5. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    Energy Technology Data Exchange (ETDEWEB)

    Zangar, R.C. (Oregon State Univ., Corvallis (United States) Pacific Northwest Laboratories, Richland, WA (United States)); Springer, D.L. (Pacific Northwest Laboratories, Richland, WA (United States)); Buhler, D.R. (Oregon State Univ., Corvallis (United States))

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  6. Is gene transcription in mussel gills altered after exposure to Ag nanoparticles?

    Science.gov (United States)

    Bebianno, M J; Gonzalez-Rey, M; Gomes, T; Mattos, J J; Flores-Nunes, F; Bainy, A C D

    2015-11-01

    Nanotechnology is a rapid field of development with the enhancement of the production of different types of nanoparticles (NPs) applied in several industrial and commercial applications which increase the risk of their presence in the aquatic environment. Ag NPs have a wide application in everyday life products. However, there is concern about the exposure effects on aquatic organisms to these NPs. Therefore, this study aims to assess gene transcription alterations in mussels Mytilus galloprovincialis gills exposed for 2 weeks to Ag NPs (42 ± 10 nm, 10 μg.L(-1)). The genes were selected based on previous biomarkers and proteomic results and included superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), caspase 3/7-1 (CAS), cathepsin L (CATH), heat-shock protein 70 (HSP 70), cytochrome P450 4YA (CYP 4YA), the elongation factor (EF1), actin and α- tubulin. No significant changes in gene transcription profiles were observed after exposure of M. galloprovincialis to Ag NPs for 15 days. The lack of significant gene transcription responses is in light with previous results obtained for mussels exposed to these NPs and may be related to the fact that enzyme kinetics and relative abundance of proteins (increase of antioxidant enzymes and metalllothioneins (MTs) with the time of exposure) do not always directly reflect their relative mRNA levels. Nevertheless, their overall expression maintenance may signify that, at end of the exposure period (15 days), the transcription of the respective genes is no longer required, pointing out to a possible adaptation effect to nanoparticles or due to the levels of Ag NPs accumulated in this tissue at this exposure time. This study highlights that gene transcription application and role as an additional and/or alternative end point approach is important to understand the mode of action of these emergent contaminants in aquatic organisms. However, in future studies, the time window needs to be adjusted, as

  7. Common behaviors alterations after extremely low-frequency electromagnetic field exposure in rat animal model.

    Science.gov (United States)

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Rezaei-Tavirani, Mostafa; Najafi Abedi, Akram

    2016-01-01

    Naturally, the presence of electromagnetic waves in our living environment affects all components of organisms, particularly humans and animals, as the large part of their body consists of water. In the present study, we tried to investigate the relation between exposure to the extremely low-frequency electromagnetic field (ELF-EMF) and common behaviors such as body weight, food and water intake, anorexia (poor appetite), plasma glucose concentration, movement, rearing and sniffing in rats. For this purpose, rats were exposed to 40  Hz ELF-EMF once a day for 21 days, then at days 1, 3, 7, 14 and 21 after exposure, any changes in the above-mentioned items were assessed in the exposed rats and compared to the non-exposed group as control. Body weight of irradiated rats significantly increased only a week after exposure and decreased after that. No significant change was observed in food and water intake of irradiated rats compared to the control, and the anorexia parameter in the group exposed to ELF-EMF was significantly decreased at one and two weeks after irradiation. A week after exposure, the level of glucose was significantly increased but at other days these changes were not significant. Movements, rearing and sniffing of rats at day 1 after exposure were significantly decreased and other days these changes did not follow any particular pattern. However, the result of this study demonstrated that exposure to ELF-EMF can alter the normal condition of animals and may represent a harmful impact on behavior.

  8. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Grzegorz J., E-mail: dietrich@pan.olsztyn.pl [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Dietrich, Mariola; Kowalski, R.K. [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Dobosz, Stefan [Department of Salmonid Research, Inland Fisheries Institute, Rutki 83-330 Zukowo (Poland); Karol, Halina; Demianowicz, Wieslaw; Glogowski, Jan [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland)

    2010-05-10

    In the current work, seminal plasma was used for the first time as an incubation medium for monitoring short-time exposure effects of sublethal concentrations of mercury and cadmium ions on rainbow trout sperm. Sperm motility parameters (CASA) and hatching rates were used as gamete quality markers. Additionally live/dead sperm viability test and comet assay of DNA fragmentation were performed. We demonstrated that computer-assisted sperm motility analysis (CASA) may serve as a predictor of reproductive success, when milt contaminated with heavy metals is used. Results presented in this study demonstrate that mercury ions altered sperm motility characteristics at 1-10 mg Hg{sup 2+}/l and 10 mg Cd{sup 2+}/l and hatching rates at 10 mg Hg{sup 2+}/l and 10 mg Cd{sup 2+}/l after 4 h of exposure. Although mercury ions affected sperm motility parameters immediately after dilution with milt as well as at 4 h of exposure, no differences in sperm motility parameters were found between intact and mercury-treated milt after 24 h of exposure. Our results suggest that rainbow trout seminal plasma has a protective role against the toxic effects of mercury ions of rainbow trout sperm motility.

  9. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells.

    Science.gov (United States)

    Agarwal, Amit R; Yin, Fei; Cadenas, Enrique

    2014-08-01

    Cigarette smoke (CS)-induced alveolar destruction and energy metabolism changes are known contributors to the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examines the effect of CS exposure on metabolism in alveolar type II cells. Male A/J mice (8 wk old) were exposed to CS generated from a smoking machine for 4 or 8 weeks, and a recovery group was exposed to CS for 8 weeks and allowed to recover for 2 weeks. Alveolar type II cells were isolated from air- or CS- exposed mice. Acute CS exposure led to a reversible airspace enlargement in A/J mice as measured by the increase in mean linear intercept, indicative of alveolar destruction. The effect of CS exposure on cellular respiration was studied using the XF Extracellular Flux Analyzer. A decrease in respiration while metabolizing glucose was observed in the CS-exposed group, indicating altered glycolysis that was compensated by an increase in palmitate utilization; palmitate utilization was accompanied by an increase in the expression of CD36 and carnitine-palmitoyl transferase 1 in type II alveolar cells for the transport of palmitate into the cells and into mitochondria, respectively. The increase in palmitate use for energy production likely affects the surfactant biosynthesis pathway, as evidenced by the decrease in phosphatidylcholine levels and the increase in phospholipase A2 activity after CS exposure. These findings help our understanding of the mechanism underlying the surfactant deficiency observed in smokers and provide a target to delay the onset of COPD.

  10. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  11. Developmental and lactational exposure to dieldrin alters mammary tumorigenesis in Her2/neu transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heather L Cameron

    Full Text Available Breast cancer is the most common cancer in Western women and while its precise etiology is unknown, environmental factors are thought to play a role. The organochlorine pesticide dieldrin is a persistent environmental toxicant thought to increase the risk of breast cancer and reduce survival in the human population. The objective of this study was to define the effect of developmental exposure to environmentally relevant concentrations of dieldrin, on mammary tumor development in the offspring. Sexually mature FVB-MMTV/neu female mice were treated with vehicle (corn oil, or dieldrin (0.45, 2.25, and 4.5 microg/g body weight daily by gavage for 5 days prior to mating and then once weekly throughout gestation and lactation until weaning. Dieldrin concentrations were selected to produce serum levels representative of human background body burdens, occupational exposure, and overt toxicity. Treatment had no effect on litter size, birth weight or the number of pups surviving to weaning. The highest dose of dieldrin significantly increased the total tumor burden and the volume and number of tumors found in the thoracic mammary glands. Increased mRNA and protein expression of the neurotrophin BDNF and its receptor TrkB was increased in tumors from the offspring of dieldrin treated dams. This study indicates that developmental exposure to the environmental contaminant dieldrin causes increased tumor burden in genetically predisposed mice. Dieldrin exposure also altered the expression of BNDF and TrkB, novel modulators of cancer pathogenesis.

  12. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain.

    Science.gov (United States)

    Urakubo, A; Jarskog, L F; Lieberman, J A; Gilmore, J H

    2001-01-15

    Prenatal exposure to infection appears to increase the risk of schizophrenia and other neurodevelopmental disorders. We have hypothesized that cytokines, generated in response to maternal infection, play a key mechanistic role in this association. E16 timed pregnancy rats were injected i.p. with Escherichia coli lipopolysaccharide (LPS) to model prenatal exposure to infection. Placenta, amniotic fluid and fetal brains were collected 2 and 8h after LPS exposure. There was a significant treatment effect of low-dose (0.5mg/kg) LPS on placenta cytokine levels, with significant increases of interleukin (IL)-1beta (P<0.0001), IL-6 (P<0.0001), and tumor necrosis factor-alpha (TNF-alpha) (P=0.0001) over the 2 and 8h time course. In amniotic fluid, there was a significant effect of treatment on IL-6 levels (P=0.0006). Two hours after maternal administration of high-dose (2.5mg/kg) LPS, there were significant elevations of placenta IL-6 (P<0.0001), TNF-alpha (P<0.0001), a significant increase of TNF-alpha in amniotic fluid (P=0.008), and a small but significant decrease in TNF-alpha (P=0.035) in fetal brain. Maternal exposure to infection alters pro-inflammatory cytokine levels in the fetal environment, which may have a significant impact on the developing brain.

  13. Bisphenol A exposure alters developmental gene expression in the fetal rhesus macaque uterus.

    Directory of Open Access Journals (Sweden)

    Kathryn C Calhoun

    Full Text Available Bisphenol A (BPA exposure results in numerous developmental and functional abnormalities in reproductive organs in rodent models, but limited data are available regarding BPA effects in the primate uterus. To determine if maternal oral BPA exposure affects fetal uterine development in a non-human primate model, pregnant rhesus macaques carrying female fetuses were exposed orally to 400 µg/kg BPA or vehicle control daily from gestation day (GD 50-100 or GD100-165. Fetal uteri were collected at the completion of treatment (GD100 or GD165; tissue histology, cell proliferation, and expression of estrogen receptor alpha (ERα and progesterone receptor (PR were compared to that of controls. Gene expression analysis was conducted using rhesus macaque microarrays. There were no significant differences in histology or in the percentage of cells expressing the proliferation marker Ki-67, ERα, or PR in BPA-exposed uteri compared to controls at GD100 or GD165. Minimal differences in gene expression were observed between BPA-exposed and control GD100 uteri. However, at GD165, BPA-exposed uteri had significant differences in gene expression compared to controls. Several of the altered genes, including HOXA13, WNT4, and WNT5A, are critical for reproductive organ development and/or adult function. We conclude that second or third trimester BPA exposure does not significantly affect fetal uterus development based on morphological, proliferation, and steroid hormone receptor assessments. However, differences in expression of key developmental genes after third trimester exposure suggest that BPA could alter transcriptional signals influencing uterine function later in life.

  14. Prenatal alcohol exposure (PAE) reduces the size of the forepaw representation in forepaw barrel subfield (FBS) cortex in neonatal rats: relationship between periphery and central representation.

    Science.gov (United States)

    Margret, Cecilia P; Chappell, Tyson D; Li, Cheng X; Jan, Taha A; Matta, Shannon G; Elberger, Andrea J; Waters, Robert S

    2006-07-01

    Prenatal alcohol exposure (PAE) alters limb development that may lead to structural and functional abnormalities of the limb reported in children diagnosed with Fetal Alcohol Spectrum Disorder. To determine whether PAE alters the central representation of the forelimb we used the rodent barrel cortex as our model system where it was possible to visualize and quantitatively measure the size of the forepaw representation in the forepaw barrel subfield (FBS) in first somatosensory cortex. In the present study, we examined the effects of PAE on pattern and size of the forepaw and forepaw representation in FBS in neonatal rats at gestational day 32 that corresponds to postnatal day 9. Pregnant Sprague-Dawley rats were chronically intubated with binge doses of ethanol (6 g/kg) from gestational day 1 through gestational day 20. The offspring of the ethanol treated dams comprised the ethanol (EtOH) group. The effect of PAE on the EtOH group was compared with a nutritional-controlled pairfed (PF) group and a normal chowfed (CF) group. The ventral (glabrous) surface area of the forepaw digits, length of digit 2 through digit 5, and the corresponding glabrous forepaw digit representations in the FBS were measured and compared between treatment groups. In rats exposed to in utero alcohol, the sizes of the overall glabrous forepaw and forepaw digits were significantly reduced in EtOH pups compared to CF and PF pups; overall glabrous forepaw area was 11% smaller than CF controls. Glabrous digit lengths were also smaller in EtOH rats compared to CF controls and significantly smaller in digit 2 through digit 4. The glabrous digit representation in FBS was 18% smaller in the EtOH group when compared to the CF treatment. However, PAE did not produce malformations in the forepaw or alter the pattern of the forepaw representation in FBS; instead, PAE significantly reduced both body and brain weights compared to controls. Unexpectedly, little or no correlation was observed between the

  15. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol.

    Science.gov (United States)

    Bubier, Jason A; Wilcox, Troy D; Jay, Jeremy J; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol.

  16. Cross-species integrative functional genomics in GeneWeaver reveals a role for Pafah1b1 in altered response to alcohol

    Directory of Open Access Journals (Sweden)

    Jason A Bubier

    2016-01-01

    Full Text Available Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or ‘whole genome’ functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, GeneWeaver (http://www.geneweaver.org, couples curated results from genomic studies to graph theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver’s database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated for alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol.

  17. Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure

    Science.gov (United States)

    Abstract: We tested the hypothesis that relative to submerged cells, airway epithelial cells grown at an air-liquid interface would have an altered response to particle exposure. RNA for IL-8, IL-6, heme oxygenase 1 and cyclooxygenase 2 increased following exposure of submer...

  18. Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats.

    Science.gov (United States)

    Bowen, Michael T; Carson, Dean S; Spiro, Adena; Arnold, Jonathon C; McGregor, Iain S

    2011-01-01

    Previous studies have suggested that administration of oxytocin (OT) can have modulatory effects on social and anxiety-like behavior in mammals that may endure beyond the time of acute OT administration. The current study examined whether repeated administration of OT to male Wistar rats (n = 48) during a key developmental epoch (early adolescence) altered their physiology and behavior in later-life. Group housed rats were given intraperitoneal injections of either 1 mg/kg OT or vehicle during early adolescence (post natal-days [PND] 33-42). OT treatment caused a transient inhibition of body weight gain that recovered quickly after the cessation of treatment. At PND 50, the rats pre-treated with OT displayed less anxiety-like behavior on the emergence test, while at PND 55 they showed greater levels of social interaction. A subgroup of OT pre-treated rats examined at PND 63 showed a strong trend towards increased plasma OT levels, and also displayed significantly increased OT receptor mRNA in the hypothalamus. Rats pre-treated with OT and their controls showed similar induction of beer intake in daily 70 min test sessions (PND 63 onwards) in which the alcohol concentration of beer was gradually increased across days from 0.44% to 4.44%. However, when given ad libitum access to beer in their home cages from PND 72 onwards (early adulthood), consumption of beer but not water was significantly less in the OT pre-treated rats. A "booster" shot of OT (1 mg/kg) given after 25 days of ad libitum access to beer had a strong acute inhibitory effect on beer intake without affecting water intake. Overall these results suggest that exogenous OT administered during adolescence can have subtle yet enduring effects on anxiety, sociability and the motivation to consume alcohol. Such effects may reflect the inherent neuroplasticity of brain OT systems and a feed-forward effect whereby exogenous OT upregulates endogenous OT systems.

  19. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    Science.gov (United States)

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia.

  20. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides.

    Science.gov (United States)

    Alves, Stênio Nunes; Serrão, José Eduardo; Melo, Alan Lane

    2010-08-01

    This study describes morphological alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. To this end, both third and fourth instars of C. quinquefasciatus larvae were exposed for 30 and 60 min to organophosphate (50 ppb), pyrethroids (20 and 30 ppb), and avermectin derivates (1.5 and 54 ppb). Following incubation, pH measurements of the larvae gut were recorded. The fat body and midgut were also analyzed by light and transmission electron microscopy. These studies demonstrate a decrease in the pH of the larvae anterior midgut following exposure to all of the tested insecticides. Histochemical tests revealed a strong reaction for neutral lipids in the control group and a marked decrease in the group exposed to cypermethrin. Furthermore, a weak reaction with acidic lipids in larvae exposed to deltamethrin, temephos, ivermectin and abamectin was also observed. Insecticide-exposed larvae also exhibited cytoplasm granule differences, relative to control larvae. Finally, we noted a small reduction in microvilli size in the apex of digestive cells, although vesicles were found to be present. The destructive changes in the larvae were very similar regardless of the type of insecticide analyzed. These data suggest that alterations in the fat body and midgut are a common response to cellular intoxication.

  1. Acute high-intensity sound exposure alters responses of place cells in hippocampus.

    Science.gov (United States)

    Goble, T J; Møller, A R; Thompson, L T

    2009-07-01

    Overstimulation is known to activate neural plasticity in the auditory nervous system causing changes in function and re-organization. It has been shown earlier that overstimulation using high-intensity noise or tones can induce signs of tinnitus. Here we show in studies in rats that overstimulation causes changes in the way place cells of the hippocampus respond as rats search for rewards in a spatial maze. In familiar environments, a subset of hippocampal pyramidal neurons, known as place cells, respond when the animal moves through specific locations but are relatively silent in others. This place-field activity (i.e. location-specific firing) is stable in a fixed environment. The present study shows that activation of neural plasticity through overstimulation by sound can alter the response of these place cells. Rats implanted with chronic drivable dorsal hippocampal tetrodes (four microelectrodes) were assessed for stable single-unit place-field responses that were extracted from multiunit responses using NeuroExplorer computer spike-sorting software. Rats then underwent either 30 min exposure to a 4 kHz tone at 104 dB SPL or a control period in the same sound chamber. The place-field activity was significantly altered after sound exposure showing that plastic changes induced by overstimulation are not limited to the auditory nervous system but extend to other parts of the CNS, in this case to the hippocampus, a brain region often studied in the context of plasticity.

  2. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico.

    Science.gov (United States)

    Hernández-Ochoa, Isabel; García-Vargas, Gonzalo; López-Carrillo, Lizbeth; Rubio-Andrade, Marisela; Morán-Martínez, Javier; Cebrián, Mariano E; Quintanilla-Vega, Betzabet

    2005-01-01

    We evaluated environmental-lead (Pb) effects on semen quality and sperm chromatin, considering Pb in seminal fluid (PbSF), spermatozoa (PbSpz), and blood (PbB) as exposure biomarkers in urban men (9.3 microg/dL PbB). Several individuals (44%) showed decreases in sperm quality; sperm concentration, motility, morphology and viability associated negatively with PbSpz, whereas semen volume associated negatively with PbSF. Multiple linear regression estimated PbSF and PbSpz thresholds for alterations in semen quality. Forty-eight percent of samples showed high values of nuclear chromatin condensation (NCD) positively associated with PbSF and zinc in spermatozoa (ZnSpz). ZnSpz values were higher than in fertile men. These results suggest that Pb may affect sperm chromatin by altering sperm Zn availability. PbB was not associated with semen quality or NCD, suggesting that Pb in semen compartments assesses better the amount of Pb in the reproductive tract; therefore, these are better biomarkers to evaluate toxicity at low Pb-exposure levels.

  3. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region.

    Science.gov (United States)

    Morton, Russell A; Valenzuela, C Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders.

  4. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  5. Developmental exposure to estrogen alters differentiation and epigenetic programming in a human fetal prostate xenograft model.

    Directory of Open Access Journals (Sweden)

    Camelia M Saffarini

    Full Text Available Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure.

  6. Betaine supplementation reduces congenital defects after prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Sheehan, Megan M.; Ma, Pei; Peterson, Lindsy M.; Linask, Kersti K.; Jenkins, Michael W.; Rollins, Andrew M.; Watanabe, Michiko

    2016-03-01

    Over 500,000 women per year in the United States drink during pregnancy, and 1 in 5 of this population also binge drink. As high as 20-50% of live-born children with prenatal alcohol exposure (PAE) present with congenital heart defects including outflow and valvuloseptal anomalies that can be life-threatening. Previously we established a model of PAE (modeling a single binge drinking episode) in the avian embryo and used optical coherence tomography (OCT) imaging to assay early-stage cardiac function/structure and late-stage cardiac defects. At early stages, alcohol/ethanol-exposed embryos had smaller cardiac cushions and increased retrograde flow. At late stages, they presented with gross morphological defects in the head and chest wall, and also exhibited smaller or abnormal atrio-ventricular (AV) valves, thinner interventricular septae (IVS), and smaller vessel diameters for the aortic trunk branches. In other animal models, the methyl donor betaine (found naturally in many foods such as wheat bran, quinoa, beets and spinach) ameliorates neurobehavioral deficits associated with PAE but the effects on heart structure are unknown. In our model of PAE, betaine supplementation led to a reduction in gross structural defects and appeared to protect against certain types of cardiac defects such as ventricular septal defects and abnormal AV valvular morphology. Furthermore, vessel diameters, IVS thicknesses and mural AV leaflet volumes were normalized while the septal AV leaflet volume was increased. These findings highlight the importance of betaine and potentially methylation levels in the prevention of PAE-related birth defects which could have significant implications for public health.

  7. Exposure to tobacco, alcohol and drugs of abuse during pregnancy. A study of prevalence among pregnant women in Malaga (Spain).

    Science.gov (United States)

    Blasco-Alonso, Marta; González-Mesa, Ernesto; Gálvez Montes, Milagros; Lozano Bravo, Isabel; Merino Galdón, Federico; Cuenca Campos, Francisco; Marín Schiaffino, Gema; Pérez Torres, Sergio; Herrera Peral, José; Bellido Estévez, Inmaculada

    2015-06-17

    The prevalence of substance abuse in women who become pregnant is similar to that of the general population, resulting in a high fetal exposure rate during the most vulnerable period regarding neurodevelopment and organogenesis. The present study was intended to assess the level of prenatal exposure to tobacco, alcohol or illicit drugs in the city of Málaga (Spain). It was designed as a cross-sectional study, and based on the anonymous self-reports of participants. A total of 451 pregnant women were recruited in the first, second or third trimester. The prevalence in each of the quarters respectively was 21.2%, 18.5% and 13.3% for smoking, 40.7%, 23.1% and 17.1% for alcohol and 4.8%, 1.9% and 1.2% for cannabis. We also found that a higher educational level was associated with a lower consumption of tobacco (RR 0.659 [0.537-0.810] p<0.0001) and greater exposure to alcohol (RR 1.87 [1.30-2.69] p<0.0007). These results, particularly in regard to alcohol intake, are sufficiently alarming to alert obstetric care providers about the need to implement preventive measures.

  8. Protracted abstinence from chronic ethanol exposure alters the structure of neurons and expression of oligodendrocytes and myelin in the medial prefrontal cortex.

    Science.gov (United States)

    Navarro, A I; Mandyam, C D

    2015-05-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the structure and activity of pyramidal neurons and decreases the number of oligodendroglial progenitors in the medial prefrontal cortex (mPFC). In this study, adult Wistar rats were exposed to seven weeks of CIE and were withdrawn from CIE for 21 days (protracted abstinence; PA). Tissue enriched in the mPFC was processed for Western blot analysis and Golgi-Cox staining to investigate the long-lasting effects of CIE on the structure of mPFC neurons and the levels of myelin-associated proteins. PA increased dendritic arborization within apical dendrites of pyramidal neurons. These changes occurred concurrently with hypophosphorylation of the N-methyl-d-aspartate (NMDA) receptor 2B (NR2B) at Tyr-1472. PA increased myelin basic protein (MBP) levels which occurred concurrently with hypophosphorylation of the premyelinating oligodendrocyte bHLH transcription factor Olig2 in the mPFC. Given that PA is associated with increased sensitivity to stress and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, and stress alters oligodendrocyte expression as a function of glucocorticoid receptor (GR) activation, the levels of total GR and phosphorylated GR were also evaluated. PA produced hypophosphorylation of the GR at Ser-232 without affecting expression of total protein. These findings demonstrate persistent and compensatory effects of ethanol in the mPFC long after cessation of CIE, including enhanced myelin production and impaired GR function. Collectively, these results suggest a novel relationship between oligodendrocytes and GR in the mPFC, in which stress may alter frontal cortex function in alcohol dependent subjects by promoting hypermyelination, thereby altering the cellular composition and white matter structure in the mPFC.

  9. Chronic cyclophosphamide exposure alters the profile of rat sperm nuclear matrix proteins.

    Science.gov (United States)

    Codrington, Alexis M; Hales, Barbara F; Robaire, Bernard

    2007-08-01

    Chronic exposure of male rats to the alkylating agent cyclophosphamide, a well-known male-mediated developmental toxicant, alters gene expression in male germ cells as well as in early preimplantation embryos sired by cyclophosphamide-exposed males. Sperm DNA is organized by the nuclear matrix into loop-domains in a sequence-specific manner. In somatic cells, loop-domain organization is involved in gene regulation. Various structural and functional components of the nuclear matrix are targets for chemotherapeutic agents. Consequently, we hypothesized that cyclophosphamide treatment would alter the expression of sperm nuclear matrix proteins. Adult male rats were treated for 4 wk with saline or cyclophosphamide (6.0 mg kg(-1) day(-1)), and the nuclear matrix was extracted from cauda epididymal sperm. Proteins were analyzed by two-dimensional gel electrophoresis. Identified proteins within the nuclear matrix proteome were mainly involved in cell structure, transcription, translation, DNA binding, protein processing, signal transduction, metabolism, cell defense, or detoxification. Interestingly, cyclophosphamide selectively induced numerous changes in cell defense and detoxification proteins, most notably, in all known forms of the antioxidant enzyme glutathione peroxidase 4, in addition to an uncharacterized 54-kDa form; an overall increase in glutathione peroxidase 4 immunoreactivity was observed in the nuclear matrix extracts from cyclophosphamide-exposed spermatozoa. An increase in glutathione peroxidase 4 expression suggests a role for this enzyme in maintaining nuclear matrix stability and function. These results led us to propose that a change in composition of the nuclear matrix in response to drug exposure was a factor in altered sperm function and embryo development.

  10. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.

    Science.gov (United States)

    Yamauchi, Saori; Obara, Keisuke; Uchibori, Kenya; Kamimura, Akiko; Azumi, Kaoru; Kihara, Akio

    2015-01-01

    Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry.

  11. Total Exposure and Exposure Rate Effects for Alcohol and Smoking and Risk of Head and Neck Cancer: A Pooled Analysis of Case-Control Studies

    OpenAIRE

    Lubin, Jay H.; Purdue, Mark; Kelsey, Karl; Zhang, Zuo-Feng; Winn, Debbie; Wei, Qingyi; Talamini, Renato; Szeszenia-Dabrowska, Neonilia; Sturgis, Erich M.; Smith, Elaine; Shangina, Oxana; Schwartz, Stephen M.; Rudnai, Peter; Neto, Jose Eluf; Muscat, Joshua

    2009-01-01

    Although cigarette smoking and alcohol consumption increase risk for head and neck cancers, there have been few attempts to model risks quantitatively and to formally evaluate cancer site-specific risks. The authors pooled data from 15 case-control studies and modeled the excess odds ratio (EOR) to assess risk by total exposure (pack-years and drink-years) and its modification by exposure rate (cigarettes/day and drinks/day). The smoking analysis included 1,761 laryngeal, 2,453 pharyngeal, an...

  12. Glutamatergic transmission in the central nucleus of the amygdala is selectively altered in Marchigian Sardinian alcohol-preferring rats: Alcohol and CRF effects.

    Science.gov (United States)

    Herman, Melissa A; Varodayan, Florence P; Oleata, Christopher S; Luu, George; Kirson, Dean; Heilig, Markus; Ciccocioppo, Roberto; Roberto, Marisa

    2016-03-01

    The CRF system of the central nucleus of the amygdala (CeA) is important for the processing of anxiety, stress, and effects of acute and chronic ethanol. We previously reported that ethanol decreases evoked glutamate transmission in the CeA of Sprague Dawley rats and that ethanol dependence alters glutamate release in the CeA. Here, we examined the effects of ethanol, CRF and a CRF1 receptor antagonist on spontaneous and evoked glutamatergic transmission in CeA neurons from Wistar and Marchigian Sardinian Preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and characterized by heightened activity of the CRF1 system. Basal spontaneous and evoked glutamate transmission in CeA neurons from msP rats was increased compared to Wistar rats. Ethanol had divergent effects, either increasing or decreasing spontaneous glutamate release in the CeA of Wistar rats. This bidirectional effect was retained in msP rats, but the magnitude of the ethanol-induced increase in glutamate release was significantly smaller. The inhibitory effect of ethanol on evoked glutamatergic transmission was similar in both strains. CRF also either increased or decreased spontaneous glutamate release in CeA neurons of Wistar rats, however, in msP rats CRF only increased glutamate release. The inhibitory effect of CRF on evoked glutamatergic transmission was also lost in neurons from msP rats. A CRF1 antagonist produced only minor effects on spontaneous glutamate transmission, which were consistent across strains, and no effects on evoked glutamate transmission. These results demonstrate that the genetically altered CRF system of msP rats results in alterations in spontaneous and stimulated glutamate signaling in the CeA that may contribute to both the anxiety and drinking behavioral phenotypes.

  13. 酒精暴露与中枢神经系统的损伤%Alcohol exposure and the damages in central nervous system

    Institute of Scientific and Technical Information of China (English)

    张文玲; 文亚男; 郑红; 邓锦波

    2013-01-01

    急性酒精中毒可引起中枢神经系统广泛的抑制,甚至造成休克。慢性酒精中毒可造成中枢神经系统损伤, Wernicke ,s 综合征和 Korsakoff‘s 是其常见表现。妊娠期酒精暴露可产生胎儿酒精系列紊乱。中枢损伤表现为大脑皮质和海马神经细胞丧失和神经细胞凋亡,大脑皮质和海马树突棘数量减少,树突棘变长;突触数量明显减少,突触的超微结构也发生改变,突触小泡数量减少,突触间隙变窄,甚至模糊不清。氧化应激相关蛋白表达增多,胰岛素抵抗指数增加。视网膜损害尤为突出,可致神经干细胞增殖、细胞凋亡,视网膜片层化结构紊乱等。酒精中毒机制复杂,有受体途径、离子通道途径、氧化应激途径等。最近,神经酰胺通路参与了酒精的毒理学机制引起了广泛关注,神经酰胺可能作为第二信使调节酒精诱导的细胞凋亡、增殖和氧化应激反应。%Acute alcohol intoxication can suppress the actions of central nervous system (CNS) , even causes shock . Chronic alcohol intoxication can induce the damages in CNS , and Wernicke ,s syndrome and Korsakoff 's syndrome are their common manifestation . Prenatal alcohol exposure is the main cause of feta alcohol spectrum disorder ( FASD) , and the following is the CNS damages in FASD : ① neurons'loss and neuroapoptosis in cortex and hippocampus ; ② the dendritic spines decrease and their increase in cortical and hippocampal pyramidal cells ;③ ultrastructural alterations of synapses , such as the synapses loss , narrow synaptic cleft and synaptic vesicles decrease ; ④ the expression increase of oxidative-stress protein and increase of insulin resistance ; ⑤ retina is specifically sensitive to alcohol exposure , prenatal alcohol exposure can cause neural proliferation , neuroapoptosis and lamination disorder . The mechanism of alcohol intoxication is complicate . The receptors , ion

  14. Homer2 deletion alters dendritic spine morphology but not alcohol-associated adaptations in GluN2B-containing NMDA receptors in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Natalie S McGuier

    2015-02-01

    Full Text Available Repeated exposure to ethanol followed by withdrawal leads to the alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc in both clinical and preclinical models of ethanol exposure. Homer2 is a member of a family of postsynaptic density (PSD scaffolding proteins that functions in part to cluster NMDA signaling complexes in the PSD, and has been shown to be critically important for plasticity in multiple models of drug and alcohol abuse. Here we used Homer2 KO mice and a chronic intermittent intraperitoneal (IP ethanol injection model to investigate a potential role for the protein in ethanol-induced adaptations in dendritic spine morphology and PSD protein expression. While deletion of Homer2 was associated with increased density of long spines on medium spiny neurons of the NAc core of saline treated mice, ethanol exposure had no effect on dendritic spine morphology in either wild-type (WT or Homer2 KO mice. Western blot analysis of tissue samples from the NAc enriched for PSD proteins revealed a main effect of ethanol treatment on the expression of GluN2B, but there was no effect of genotype or treatment on the expression other glutamate receptor subunits or PSD95. These data indicate that the global deletion of Homer2 leads to aberrant regulation of dendritic spine morphology in the NAc core that is associated with an increased density of long, thin spines. Unexpectedly, intermittent IP ethanol did not affect spine morphology in either WT or KO mice. Together these data implicate Homer2 in the formation of long, thin spines and further supports its role in neuronal structure.

  15. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure.

    Directory of Open Access Journals (Sweden)

    Susanna L Lundström

    Full Text Available BACKGROUND: Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. OBJECTIVES: This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. METHODS: Sixty-four oxylipins representing the cyclooxygenase (COX, lipoxygenase (LOX and cytochrome P450 (CYP metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS of bronchoalveolar lavage (BAL-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ. Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. RESULTS: Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2 (PGE(2. Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. CONCLUSIONS: Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.

  16. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    Science.gov (United States)

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  17. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones.

    Directory of Open Access Journals (Sweden)

    Po-Chin Huang

    Full Text Available Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy.We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP, mono-(2-ethyl-5-carboxypentyl phthalate (MECPP, mono-(2-ethylhexyl phthalate (MEHP, mono-butyl phthalate (MnBP, of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4, free T4, and thyroid-binding globulin (TBG.Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%, MnBP (81% and MECPP (86%. Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = -5.41; p-value = 0.012; n = 97 in pregnant women using Bonferroni correction.We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations.

  18. The effects of low to moderate alcohol exposure in early pregnancy on IQ in 5-year-old children

    DEFF Research Database (Denmark)

    Eriksen, Hanne-Lise Falgreen; Mortensen, Erik Lykke; Kilburn, Tina R.

    2012-01-01

    Please cite this paper as: Falgreen Eriksen H, Mortensen E, Kilburn T, Underbjerg M, Bertrand J, Støvring H, Wimberley T, Grove J, Kesmodel U. The effects of low to moderate prenatal alcohol exposure in early pregnancy on IQ in 5-year-old children. BJOG 2012;119:1191-1200. Objective To examine...... the effects of low to moderate maternal alcohol consumption during early pregnancy on children's intelligence (IQ) at age 5 years. Design Prospective follow-up study. Setting Neuropsychological testing in four Danish cities 2003-2008. Population A cohort of 1628 women and their children sampled from...... the Danish National Birth Cohort. Methods Participants were sampled based on maternal alcohol consumption during pregnancy. At 5 years of age, children were tested with the Wechsler Preschool and Primary Scale of Intelligence-Revised (WPPSI-R). Parental education, maternal IQ, maternal smoking in pregnancy...

  19. Acute High-Dose and Chronic Lifetime Exposure to Alcohol Consumption and Differentiated Thyroid Cancer: T-CALOS Korea.

    Directory of Open Access Journals (Sweden)

    Yunji Hwang

    Full Text Available This study evaluated the effects of acute high-dose and chronic lifetime exposure to alcohol and exposure patterns on the development of differentiated thyroid cancer (DTC.The Thyroid Cancer Longitudinal Study (T-CALOS included 2,258 DTC patients (449 men and 1,809 women and 22,580 healthy participants (4,490 men and 18,090 women who were individually matched by age, gender, and enrollment year. In-person interviews were conducted with a structured questionnaire to obtain epidemiologic data. Clinicopathologic features of the patients were obtained by chart reviews. Odds ratios (ORs and 95% confidence intervals (95%CI were estimated using conditional regression models.While light or moderate drinking behavior was related to a reduced risk of DTC, acute heavy alcohol consumption (151 g or more per event or on a single occasion was associated with increased risks in men (OR = 2.22, 95%CI = 1.27-3.87 and women (OR = 3.61, 95%CI = 1.52-8.58 compared with never-drinkers. The consumption of alcohol for 31 or more years was a significant risk factor for DTC for both men (31-40 years: OR = 1.58, 95%CI = 1.10-2.28; 41+ years: OR = 3.46, 95%CI = 2.06-5.80 and women (31-40 years: OR = 2.18, 95%CI = 1.62-2.92; 41+ years: OR = 2.71, 95%CI = 1.36-5.05 compared with never-drinkers. The consumption of a large amount of alcohol on a single occasion was also a significant risk factor, even after restricting DTC outcomes to tumor size, lymph node metastasis, extrathyroidal extension and TNM stage.The findings of this study suggest that the threshold effects of acute high-dose alcohol consumption and long-term alcohol consumption are linked to an increased risk of DTC.

  20. Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood

    Directory of Open Access Journals (Sweden)

    Huib eMansvelder

    2012-08-01

    Full Text Available The majority of adolescents report to have smoked a cigarette at least once. Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC, is still ongoing. Tobacco smoking during this age may compromise the normal course of prefrontal development and lead to cognitive impairments in later life. In addition, adolescent smokers suffer from attention deficits, which progress with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and underlie the lasting effects on cognitive function. In particular, the expression and function of metabotropic glutamate receptors (mGluRs are changed and this has an impact on short- and long-term plasticity of glutamatergic synapses in the PFC and ultimately on the attention performance. Here, we review and discuss these recent findings.

  1. Perinatal Nicotine Exposure Increases Obesity Susceptibility in Adult Male Rat Offspring by Altering Early Adipogenesis.

    Science.gov (United States)

    Fan, Jie; Zhang, Wan-Xia; Rao, Yi-Song; Xue, Jing-Ling; Wang, Fei-Fei; Zhang, Li; Yan, You-E

    2016-11-01

    The present study aims to evaluate whether perinatal nicotine (NIC) exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. NIC was sc administered (2.0 mg/kg per day) to pregnant rats from gestational day 9 to the time of weaning (postnatal day 28). At weaning, NIC-exposed male pups had an increased body weight and inguinal sc fat mass and a decreased average cell area of adipocyte, which was accompanied by an overexpression of adipogenic and lipogenic genes in the epididymal white adipose tissue. Additionally, the hepatic lipogenic gene levels from NIC-exposed male pups were also affected. At 12 and 26 weeks of age, body weight and fat mass were increased, whereas there was no change in food intake in NIC-exposed male offspring. Adipogenic and lipogenic genes, glucose transporter 4, and leptin mRNA levels were increased, whereas adiponectin mRNA levels were decreased in the epididymal white adipose tissue of NIC-exposed males. The hepatic lipogenic gene expression of NIC-exposed males was increased. NIC-exposed male offspring showed normal glycemia and a higher serum insulin level, homeostasis model assessment of insulin resistance, and homeostasis model assessment of β-cell function. Furthermore, the NIC-exposed male offspring showed higher serum lipids and Castelli index I and lower nonesterified fatty acid. At 26 weeks, in the ip glucose and insulin tolerance tests, the glucose clearance was delayed, and the area under the curve was higher in the NIC-exposed male offspring. In conclusion, perinatal NIC exposure increased obesity susceptibility in adult male rat offspring by altering early adipogenesis.

  2. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, Vicki L. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Lo, Bonnie P. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Bakker, Dannika; Rehaume, Vicki; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Emergencies Operational Analytical Laboratories and Research Support Division, Environment Canada, 2645 Dollarton Highway, North Vancouver, B.C. V7H 1B1 (Canada); Elphick, James R. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada)

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 {mu}g/L thyroxine (T{sub 4}), 0.3, 3 and 30 {mu}g/L (nominal) TCS, or combined T{sub 4}/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T{sub 4} treatment alone accelerated development concomitant with altered levels of TH receptors {alpha} and {beta}, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 {mu}g/L) was protective against tadpole mortality, this protection was lost in the presence of T{sub 4}. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  3. Steroid levels in crinoid echinoderms are altered by exposure to model endocrine disruptors.

    Science.gov (United States)

    Lavado, Ramón; Barbaglio, Alice; Carnevali, M Daniela Candia; Porte, Cinta

    2006-06-01

    Sexual steroids (testosterone and estradiol) were measured in the whole body of wild specimens of the crinoid Antedon mediterranea collected from the Tyrrhenian Sea (Italy). Testosterone levels (274-1,488 pg/g wet weight (w.w.)) were higher than those of estradiol (60-442 pg/g w.w.) and no significant differences between males and females were observed. No clear seasonal trend was either detected - individuals from February, June and October 2004 analyzed - apart from a peak of estradiol in males in autumn. Nonetheless, dramatic changes on tissue steroid levels were observed when individuals were exposed to model androgenic and anti-androgenic compounds for 2 and 4 weeks. The selected compounds were 17 alpha-methyltestosterone (17 alpha-MT), triphenyltin (TPT), fenarimol (FEN), cyproterone acetate (CPA), and p,p'-DDE. Endogenous testosterone levels were significantly increased after exposure to 17 alpha-MT, TPT and FEN, while different responses were observed for estradiol; 17 alpha-MT and FEN increased endogenous estradiol (up to seven-fold), and TPT lead to a significant decrease. Concerning the anti-androgenic compounds, CPA significantly reduced testosterone in a dose-dependent manner without altering estradiol levels, whereas specimens exposed to p,p'-DDE at a low dose (24 ng/L) for 4 weeks showed a four-fold increase in T levels. Overall, the data show the ability of the selected compounds to alter endogenous steroid concentrations in A. mediterranea, and suggest the existence in this echinoderm species of vertebrate-like mechanisms that can be affected by exposure to androgenic and anti-androgenic chemicals.

  4. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  5. Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats.

    Directory of Open Access Journals (Sweden)

    Michael T Bowen

    Full Text Available Previous studies have suggested that administration of oxytocin (OT can have modulatory effects on social and anxiety-like behavior in mammals that may endure beyond the time of acute OT administration. The current study examined whether repeated administration of OT to male Wistar rats (n = 48 during a key developmental epoch (early adolescence altered their physiology and behavior in later-life. Group housed rats were given intraperitoneal injections of either 1 mg/kg OT or vehicle during early adolescence (post natal-days [PND] 33-42. OT treatment caused a transient inhibition of body weight gain that recovered quickly after the cessation of treatment. At PND 50, the rats pre-treated with OT displayed less anxiety-like behavior on the emergence test, while at PND 55 they showed greater levels of social interaction. A subgroup of OT pre-treated rats examined at PND 63 showed a strong trend towards increased plasma OT levels, and also displayed significantly increased OT receptor mRNA in the hypothalamus. Rats pre-treated with OT and their controls showed similar induction of beer intake in daily 70 min test sessions (PND 63 onwards in which the alcohol concentration of beer was gradually increased across days from 0.44% to 4.44%. However, when given ad libitum access to beer in their home cages from PND 72 onwards (early adulthood, consumption of beer but not water was significantly less in the OT pre-treated rats. A "booster" shot of OT (1 mg/kg given after 25 days of ad libitum access to beer had a strong acute inhibitory effect on beer intake without affecting water intake. Overall these results suggest that exogenous OT administered during adolescence can have subtle yet enduring effects on anxiety, sociability and the motivation to consume alcohol. Such effects may reflect the inherent neuroplasticity of brain OT systems and a feed-forward effect whereby exogenous OT upregulates endogenous OT systems.

  6. Isopropyl alcohol intoxication in a neonate through chronic dermal exposure: a complication of a culturally-based umbilical care practice.

    Science.gov (United States)

    Vivier, P M; Lewander, W J; Martin, H F; Linakis, J G

    1994-04-01

    A 21-day-old boy presented to our emergency department hypotonic, lethargic, and intermittently unresponsive to pain. A workup for ketoacidosis, sepsis, and central nervous system hemorrhage was negative. A urine drug screen collected eight hours after hospitalization showed 39 mg/dl of isopropyl alcohol and 76 mg/dl of acetone. The first serum drug analysis was not performed until 18 hours after admission, at a time when there had been clinical improvement. The isopropyl alcohol concentration was 8 mg/dl, and the acetone concentration was 203 mg/dl. Management was supportive, and the patient stabilized. He was discharged from the hospital in good health in three days. A further review of the history showed no evidence for an oral exposure to isopropyl alcohol. However, since leaving the maternity hospital the mother had been applying gauze pads or cotton balls soaked with isopropyl alcohol to the umbilicus with every diaper change. We conclude that the child suffered from an isopropyl alcohol intoxication that occurred by absorption through the umbilical area.

  7. Low dose prenatal alcohol exposure does not impair spatial learning and memory in two tests in adult and aged rats.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol ethanol (EtOH or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult or 15 months (Aged of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance.

  8. Prenatal and perinatal lead exposures alter acoustic cry parameters of neonate.

    Science.gov (United States)

    Rothenberg, S J; Cansino, S; Sepkoski, C; Torres, L M; Medina, S; Schnaas, L; Poblano, A; Karchmer, S

    1995-01-01

    We performed acoustic analyses on cries elicited from a subset of healthy babies born to the Mexico City Prospective Lead Study at 2 days (n = 75), 15 days (n = 176), and 30 days (n = 166). Lead was measured in maternal blood every 8 weeks during pregnancy from week 12 to delivery and in umbilical cord (1-38 micrograms/dL, 0.05-1.84 mumol/L). Percent nasalization and number of cries decreased in babies born to mothers with higher lead levels in the last two trimesters while median fundamental frequency increased in babies born to mothers with higher lead at 12 weeks of pregnancy, and with higher cord lead in multiple regression analysis. Decreased percent nasalization was related to increased brainstem auditory evoked response latencies and interpeak intervals in a subset of the sample. The results suggest an effect of gestational exposure to lead on apparatus innervated by cranial nerves and/or lead effect on cry mediated by lead-altered auditory function. Altered baby cry and auditory function associated with lead might contribute to developmental delays by affecting early communication between caretaker and baby.

  9. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure.

    Science.gov (United States)

    Hollins, Sharon L; Zavitsanou, Katerina; Walker, Frederick Rohan; Cairns, Murray J

    2016-08-01

    Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders.

  10. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Science.gov (United States)

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  11. Zn(II)-curcumin protects against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism.

    Science.gov (United States)

    Yu, Chuan; Mei, Xue-Ting; Zheng, Yan-Ping; Xu, Dong-Hui

    2014-03-01

    Curcumin can chelate metal ions, forming metallocomplexes. We compared the effects of Zn(II)-curcumin with curcumin against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism. Oral administration of Zn(II)-curcumin dose-dependently prevented the ethanol-induced elevation of serum malondialdehyde (MDA) content and reductions in glutathione level and superoxide dismutase (SOD) activity. Zn(II)-curcumin also inhibited ethanol-induced liver injury. Additionally, Zn(II)-curcumin dose-dependently inhibited hemorheological abnormalities, including the ethanol-induced elevation of whole blood viscosity, plasma viscosity, blood viscosity at corrected hematocrit (45%), erythrocyte aggregation index, erythrocyte rigidity index and hematocrit. Compared to curcumin at the same dose, Zn(II)-curcumin more effectively elevated SOD activity, ameliorated liver injury and improved hemorheological variables. These results suggest that Zn(II)-curcumin protected the rats from ethanol-induced liver injury and hemorheological abnormalities via the synergistic effect of curcumin and zinc.

  12. Dietary exposure to the PCB mixture aroclor 1254 may compromise osmoregulation by altering central vasopressin release

    Energy Technology Data Exchange (ETDEWEB)

    Coburn, C.G. [Environmental Toxicology, Univ. of California at Riverside, CA (United States); Gillard, E.; Curras-Collazo, M. [Cell Biology and Neuroscience, Univ. of California at Riverside, CA (United States)

    2004-09-15

    Despite the importance of systemic osmoregulation, the potential deleterious effects of persistent organochlorines, such as polychlorinated biphenyls (PCBs), on body fluid regulation has not been thoroughly investigated. In an effort to ameliorate this deficit, the current study explores the toxic effects of PCBs on osmoregulation, and in particular, on the activity of the magnocellular neuroendocrine cell (MNC) system of the hypothalamus. MNCs of the supraoptic nucleus (SON) release oxytocin (OXY) and vasopressin (VP) from terminals in the neurohypophysis in response to dehydration. The latter is released to effect water conservation in response to dehydration via its action upon the kidney and through extra-renal actions. MNCs also secrete VP from their cell bodies and dendrites locally i.e., into the extracellular space of the SON. Although it has been shown that both intranuclear and systemic release rise in response to dehydration the physiological significance of intranuclear release has not been fully elucidated. We chose to use voluntary ingestion as the route of PCB exposure since it is more reflective of natural exposure compared to ip injection. One unexpected observation that resulted from pilot studies using ip injection of PCBs was the deleterious effects of the vehicle (corn oil) resulting in pooling of lipid within the abdominal cavity, mottling of the liver, fatty liver and general discoloration of all abdominal viscera at time of sacrifice. Therefore, all work described in this series of experiments have employed voluntary ingestion of the toxin. Work described in this paper suggests that PCBs in concentrations reflecting realistic lifetime exposure levels may negatively impact homeostatic mechanisms responsible for body water balance by altering somatodendritic (intranuclear) VP secretion in response to dehydration in vivo. The downstream consequences of such influence is currently under investigation, and preliminary evidence suggests that the

  13. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees

    Directory of Open Access Journals (Sweden)

    Sally M Williamson

    2013-02-01

    Full Text Available Cholinergic signalling is fundamental to neuro-muscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signalling can alter the behaviour of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioural sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioural effects on honeybees of exposure to a selection of pesticides that target cholinergic signalling by inhibiting acetylcholinesterase (AChE. To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behaviour continuously for 15 min. At a 10nM concentration, all the AChE inhibitors caused similar effects on behaviour, notably increased grooming activity and changes in the frequency of bouts of behaviour such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behaviour, and a 1µM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the 4 compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee acetylcholinesterase inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behaviour that could lead to reduced survival.

  14. Alteration of Pentylenetetrazol-induced kindling parameters by prenatal chronic Lead exposure in rats

    Directory of Open Access Journals (Sweden)

    Kebriyaei Zadeh A

    2001-08-01

    Full Text Available The effect of prenatal chronic lead exposure on pentylenetetrazol (PTZ-induced kindling parameters (seizure index, seizure latency and seizure stage in rats was studied. Adult female rats with a weight range of 140-180 g were selected and pretreated with lead acetate (0.05% w/v orally, 25 days prior to mating. The control group was given distilled water containing sodium acetate solution (0.05% w/v. After delivery, treatment was ceased, and after lactation, male neonates were separated from the females in both groups. After maturation of male rats, the PTZ-kindling was induced by daily interapritoneally injection of PTZ (30 mg/kg. Kindling parameters in the control and treated groups were determined. The results indicated that animals with prenatal lead exposure have full kindling state with 9-19 (16.87±1.54 injections, whereas this value for control group was 12-23 (18.62±1.48 injections. The seizure latency for the treated group was lower (P<0.05 than the control (2.29±0.44 min versus 3.65±0.45 min. The seizure severity (regarding to seizure index was statistically higher in the treated group (P<0.05. The seizure stages were also different in the treated and control groups (P<0.05. The seizure frequency of first and second stages of kindling in the control group was higher than that of treated one (P<0.05. Also the seizure frequency in the third and fourth kindling stages of case group was higher than controls (P<0.05. It is concluded that prenatal lead exposure alters seizure susceptibility in rat PTZ-Kindling model.

  15. Motor alterations associated with exposure to manganese in the environment in Mexico.

    Science.gov (United States)

    Rodríguez-Agudelo, Yaneth; Riojas-Rodríguez, Horacio; Ríos, Camilo; Rosas, Irma; Sabido Pedraza, Eva; Miranda, Javier; Siebe, Christina; Texcalac, José Luis; Santos-Burgoa, Carlos

    2006-09-15

    Overexposure to manganese (Mn) causes neurotoxicity (a Parkinson-like syndrome) or psychiatric damage ("manganese madness"). Several studies have shown alterations to motor and neural behavior associated with exposure to Mn in the workplace. However, there are few studies on the effects of environmental exposure of whole populations. We studied the risk of motor alterations in people living in a mining district in Mexico. We studied 288 individual people (168 women and 120 men) from eight communities at various distances from manganese extraction or processing facilities in the district of Molango. We measured manganese concentrations in airborne particles, water, soil and crops and evaluated the possible routes of Mn exposure. We also took samples of people's blood and determined their concentrations of Mn and lead (Pb). We used "Esquema de Diagnóstico Neuropsicológico" Ardila and Ostrosky-Solís's neuropsychological battery to evaluate motor functions. Concentrations of Mn in drinking water and maize grain were less than detection limits at most sampling sites. Manganese extractable by DTPA in soils ranged between 6 and 280 mg kg(-1) and means were largest close to Mn extraction or processing facilities. Air Mn concentration ranged between 0.003 and 5.86 microg/m(3); the mean value was 0.42 microg/m(3) and median was 0.10 microg/m(3), the average value (geometric mean) resulted to be 0.13 microg/m(3). Mean blood manganese concentration was 10.16 microg/l, and geometric mean 9.44 microg/l, ranged between 5.0 and 31.0 mcrog/l. We found no association between concentrations of Mn in blood and motor tests. There was a statistically significant association between Mn concentrations in air and motor tests that assessed the coordination of two movements (OR 3.69; 95% CI 0.9, 15.13) and position changes in hand movements (OR 3.09; CI 95% 1.07, 8.92). An association with tests evaluating conflictive reactions (task that explores verbal regulations of movements) was also

  16. Proteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure

    Directory of Open Access Journals (Sweden)

    Torrentino-Madamet M

    2011-09-01

    Full Text Available Marylin Torrentino-Madamet1, Lionel Almeras2, Christelle Travaillé1, Véronique Sinou1, Matthieu Pophillat3, Maya Belghazi4, Patrick Fourquet3, Yves Jammes5, Daniel Parzy11UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo, 2Unité de Recherche en Biologie et Epidémiologie Parasitaires, Antenne IRBA de Marseille (IMTSSA, Le Pharo, 3Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, 4Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, 5UMR-MD2, Physiologie et Physiopathologie en Conditions d'Oxygénations Extrêmes, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, Marseille, FranceObjectives: Although human respiratory metabolism is characterized by the mitochondrial electron transport chain, some organisms present a “branched respiratory chain.” This branched pathway includes both a classical and an alternative respiratory chain. The latter involves an alternative oxidase. Though the Plasmodium falciparum alternative oxidase is not yet identified, a specific inhibitor of this enzyme, salicylhydroxamic acid (SHAM, showed a drug effect on P. falciparum respiratory function using oxygen consumption measurements. The present study aimed to highlight the metabolic pathways that are affected in P. falciparum following SHAM exposure.Design: A proteomic approach was used to analyze the P. falciparum proteome and determine the metabolic pathways altered following SHAM treatment. To evaluate the SHAM effect on parasite growth, the phenotypic alterations of P. falciparum after SHAM or/and hyperoxia exposure were observed.Results: After SHAM exposure, 26 proteins were significantly deregulated using a fluorescent two dimensional-differential gel electrophoresis. Among these deregulated proteins

  17. Acanthoic Acid Can Partially Prevent Alcohol Exposure-Induced Liver Lipid Deposition and Inflammation

    Science.gov (United States)

    Yao, You-Li; Han, Xin; Li, Zhi-Man; Lian, Li-Hua; Nan, Ji-Xing; Wu, Yan-Ling

    2017-01-01

    Aims: The present study aims to detect the effect of acanthoic acid (AA) on alcohol exposure-induced liver lipid deposition and inflammation, and to explore the mechanisms. Methods: C57BL/6 mice were pretreated with single dose of AA (20 and 40 mg/kg) by oral gavage or equal volume of saline, and then exposed to three doses of ethanol (5 g/kg body weight, 25%, w/v) by gavage within 24 h. The mice were sacrificed at 6 h after the last ethanol dosing. Serum and hepatic indexes were detected by western blot, RT-PCR, and histopathological assay. AML-12 cells were pretreated with AA (5, 10, 20 μM), or AICAR (500 μM), GW3965 (1 μM), SRT1720 (6 μM), Nicotinamide (20 mM) for 2 h, respectively, and then following treated with EtOH (200 mM) and lipopolysaccharide (LPS) (10 ng/ml) for additional 48 h. Cell protein and mRNA were collected for western blot and RT-PCR. Cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release were detected by ELISA assay. Results: It was found that AA significantly decreased acute ethanol-induced increasing of the serum ALT/AST, LDH, ALP levels, and hepatic and serum triglyceride levels, and reduced fat droplets accumulation in mice liver. AA significantly suppressed the levels of sterol regulatory element binding protein 1 (SREBP-1), cytochrome P4502E1 (CYP2E1), IL-1β, and caspase-1 induced by ethanol. Furthermore, a significant decline of sirtuin 1 (Sirt1) and liver X receptors (LXRs) levels was observed in EtOH group, compared with normal group mice. And AA pretreatment increased the Sirt1 and LXRs levels, and also ameliorated phosphorylation of liver kinase B-1 (LKB-1), adenosine monophosphate-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC) proteins, compared with EtOH group. However, the levels of peroxisome proliferator activated receptor -α or -γ (PPAR-α or PPAR-γ) induced by acute ethanol were reversed by AA. In EtOH/LPS cultivated AML-12 cells, AA decreased IL-1β and TNF-α levels, lipid

  18. The impact of sensory integration therapy on gross motor function in children after prenatal exposure to alcohol

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2015-03-01

    Full Text Available Introduction : In Poland there are 900 cases of full-blown foetal alcohol syndrome (FAS in neonates per year, and in 9000 children there are some symptoms of it. Aim of the research : To analyse the impact of sensory integration (SI therapy on gross motor skills function in children after prenatal exposure to alcohol. Material and methods: The study was conducted on a group of 20 children aged 4–5 years with information from an interview about prenatal exposure to alcohol. The diagnosis of sensory integration disorder consisted of two 60-minute diagnostics meetings. Twelve trials with clinical observations were performed by Ayres: finger to nose, cocontraction, prone extension posture, flexed position supine, asymmetrical tonic neck reflex (ATOS, symmetrical tonic neck reflex (STOS, muscle tension, Schilder test, dynamic balance, static balance, gravitational insecurity, and trunk stabilisation. The therapeutic program included: normalisation of the vestibular and proprioceptive system, normalisation of the touch system, strengthening muscle tension, development of motion planning, development of oculomotor performance, development of motor coordination, hand therapy, integration of ATOS, STOS, development of locomotion and balance functions, and improving efficiency of gross and small motor skills. Results and conclusions : High efficiency of SI therapy has been shown in children after prenatal exposure to alcohol on the example of gross motor skills. Positive effects of SI therapy have been shown for tests: finger to nose, in the erect position on the stomach, the flexural position on the back, ATOS, STOS, Schilder test, dynamic balance, static balance, and the uncertainty of gravity and trunk stabilisation. Only cocontraction and muscle tension tests showed no efficacy of SI therapy. The a-Cronbach position analysis showed high reliability of the performed tests both before and after the therapy. It is advisable to continue the study on a

  19. Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants

    Energy Technology Data Exchange (ETDEWEB)

    Tian Weiming; Kyriakides, Themis R, E-mail: themis.kyriakides@yale.ed [Vascular Biology and Therapeutics Program, Departments of Pathology and Biomedical Engineering, Yale University, New Haven, CT 06519 (United States)

    2009-02-15

    Thrombospondin (TSP)-2 is a matricellular protein that participates in the processes of tissue repair and the foreign body response. In addition, TSP2 has been shown to influence synaptogenesis and recovery of the brain following stroke. In the present study we investigated the response following the implantation of polyvinyl alcohol (PVA) sponges in the brain. PVA sponges were implanted into the brain cortex of wild type and TSP2-null mice for a period of 4 and 8 weeks and the response was analyzed by histochemistry and quantitative immunohistochemistry. TSP2 expression was detected in the interstices of the sponge and co-localized with the extracellular matrix and astrocytes. PVA sponge invasion in TSP2-null mice was characterized by dense deposition of extracellular matrix and increased invasion of reactive astrocytes and macrophages/microglia. Furthermore, the angiogenic response was elevated and the detection of mouse serum albumin (MSA) in the brain cortex indicated excessive vessel leakage, suggesting that TSP2 plays a role in the repair/maintenance of the blood brain barrier. Finally, immunostaining demonstrated an increase in the levels of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, our observations support a role for TSP2 as critical determinant of the brain response to biomaterials.

  20. Indicators of inflammation and cellular damage in chronic asymptomatic or oligosymptomatic alcoholics: correlation with alteration of bilirubin and hepatic and pancreatic enzymes

    Directory of Open Access Journals (Sweden)

    Borini Paulo

    1999-01-01

    Full Text Available Biochemical and hematimetric indicators of inflammation and cell damage were correlated with bilirubin and hepatic and pancreatic enzymes in 30 chronic male alcoholics admitted into psychiatric hospital for detoxification and treatment of alcoholism. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, alkaline phosphatase, and total bilirubin were altered, respectively, in 90%, 63%, 87%, 23% and 23% of the cases. None of the indicators of inflammation (lactic dehydrogenase, altered in 16% of the cases; alpha-1 globulin, 24%; alpha-2 globulin, 88%; leucocyte counts, 28% was correlated with alterations of bilirubin or liver enzymes. Lactic dehydrogenase was poorly sensitive for detection of hepatocytic or muscular damage. Alterations of alpha-globulins seemed to have been due more to alcohol metabolism-induced increase of lipoproteins than to inflammation. Among indicators of cell damage, serum iron, increased in 40% of the cases, seemed to be related to liver damage while creatine phosphokinase, increased in 84% of the cases, related to muscle damage. Hyperamylasemia was found in 20% of the cases and significantly correlated with levels of bilirubin, alkaline phosphatase and gamma-glutamyltransferase. It was indicated that injuries of liver, pancreas, salivary glands, and muscle occurred in asymptomatic or oligosymptomatic chronic alcoholics.

  1. Drinker prototype alteration and cue reminders as strategies in a tailored Web-based intervention reducing adults' alcohol consumption: Randomized controlled trial

    NARCIS (Netherlands)

    B. van Lettow (Britt); H. de Vries (Hein); A. Burdorf (Alex); B.J.F. Boon (Brigitte); P. van Empelen (Pepijn)

    2015-01-01

    textabstractBackground: Excessive alcohol use is a prevalent and worldwide problem. Excessive drinking causes a significant burden of disease and is associated with both morbidity and excess mortality. Prototype alteration and provision of a cue reminder could be useful strategies to enhance the eff

  2. The timing of embryonic exposure to elevated temperature alters stress endocrinology in domestic chickens (Gallus domesticus).

    Science.gov (United States)

    Wilsterman, Kathryn; Mast, Andrew D; Luu, Thuyvan H; Haussmann, Mark F

    2015-02-01

    Patterns of glucocorticoid (GC) release in response to stimuli vary both among individuals and within individuals across their lifetime. While much work has focused on how the prenatal steroid environment can affect GC release, relatively little is known about how environmental parameters, such as incubation temperature affect GCs. We tested the hypothesis that variation and timing of elevated incubation temperature within the thermoneutral zone can alter the pattern of GC release. We incubated domestic chicken eggs (Gallus domesticus) at the optimal incubation temperature (37.5 °C) or at a slightly higher temperature (+1.1 °C) either early, late, or throughout incubation. At three weeks post-hatch, all birds were (i) exposed to a capture-restraint stress to measure stress-induced GC release (naïve). Three days following the naïve stressor, birds were (ii) exposed to a heat challenge, which was followed the next day by a second capture-restraint stress (post-heat challenge). Regardless of treatment, birds had similar patterns of GC release following the naïve stress series. However, during the post-heat challenge stress series, birds incubated at optimal temperatures increased their peak GC release. In contrast, birds exposed to slightly elevated temperatures for any period of development failed to increase peak GC release, and their specific response varied with timing of exposure to the elevated incubation temperature. Our results demonstrate that subtle variation in the embryonic environment, such as elevated incubation temperature within the thermoneutral zone, can impact the pattern of GC release of offspring. Further work is needed to understand the mechanisms underlying these changes and the relationship between fitness and environmentally-altered phenotypes.

  3. Sucrose exposure in early life alters adult motivation and weight gain.

    Directory of Open Access Journals (Sweden)

    Cristianne R M Frazier

    Full Text Available The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

  4. Exposure to synthetic gray water inhibits amoeba encystation and alters expression of Legionella pneumophila virulence genes.

    Science.gov (United States)

    Buse, Helen Y; Lu, Jingrang; Ashbolt, Nicholas J

    2015-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems.

  5. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants.

    Science.gov (United States)

    Stanley, Dara A; Raine, Nigel E

    2016-07-01

    Insect pollinators are essential for both the production of a large proportion of world crops and the health of natural ecosystems. As important pollinators, bumblebees must learn to forage on flowers to feed both themselves and provision their colonies.Increased use of pesticides has caused concern over sublethal effects on bees, such as impacts on reproduction or learning ability. However, little is known about how sublethal exposure to field-realistic levels of pesticide might affect the ability of bees to visit and manipulate flowers.We observed the behaviour of individual bumblebees from colonies chronically exposed to a neonicotinoid pesticide (10 ppb thiamethoxam) or control solutions foraging for the first time on an array of morphologically complex wildflowers (Lotus corniculatus and Trifolium repens) in an outdoor flight arena.We found that more bees released from pesticide-treated colonies became foragers, and that they visited more L. corniculatus flowers than controls. Interestingly, bees exposed to pesticide collected pollen more often than controls, but control bees learnt to handle flowers efficiently after fewer learning visits than bees exposed to pesticide. There were also different initial floral preferences of our treatment groups; control bees visited a higher proportion of T. repens flowers, and bees exposed to pesticide were more likely to choose L. corniculatus on their first visit.Our results suggest that the foraging behaviour of bumblebees on real flowers can be altered by sublethal exposure to field-realistic levels of pesticide. This has implications for the foraging success and persistence of bumblebee colonies, but perhaps more importantly for the interactions between wild plants and flower-visiting insects and ability of bees to deliver the crucial pollination services to plants necessary for ecosystem functioning.

  6. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Directory of Open Access Journals (Sweden)

    Cody S Sheik

    Full Text Available Extensive use of chromium (Cr and arsenic (As based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI. Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  7. Nanoscale intracellular mass-density alteration as a signature of the effect of alcohol on early carcinogenesis: A transmission electron microscopy (TEM) study

    CERN Document Server

    Ghimire, Hemendra M; Sahay, Peeyush; Almabadi, Huda; Tripathi, Vibha; Skalli, Omar; Rao, R K; Pradhan, Prabhakar

    2015-01-01

    Alcohol consumption interferes with the functioning of multiple organ systems, causing changes in the chemistry, physiology and pathology of tissues and cellular organelles. Although epigenetic modifications underlie the development of cancer, exposure to carcinogenic chemicals, such as alcohol, can also contribute to disease development. However, the effects of chronic alcoholism on normal or pre-carcinogenic cells/tissues in different organelles are not well understood. Therefore, we herein study the effect of alcohol consumption on colonic nucleus using control and azoxymethane (AOM) and dextran sulfate sodium (DSS) treated carcinogenic mice. Previous studies showed that progression of carcinogenesis is associated with increase in the degree of intranuclear nanoscale structural disorder. In the present work, we quantify the degree of nanostructural disorder as a measure of carcinogenesis. To accomplish this, transmission electron microscopy (TEM) imaging of respective colonic epithelial cell nuclei are use...

  8. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    Science.gov (United States)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  9. TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD

    Science.gov (United States)

    TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD. V M Richardson', J T Hamm2, and L S Birnbaum1. 'USEPA, ORD/NHEERL/ETD, Research Triangle Park, NC, USA, 'Curriculum in Toxicology, University of North Carolina, ...

  10. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    Energy Technology Data Exchange (ETDEWEB)

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M. (Istituto di Psicobiologia e Psicofarmacologia del CNR, Rome (Italy))

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice.

  11. Alteration of the enterohepatic recirculation of bile acids in rats after exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scanff, P.; Souidi, M.; Grison, S.; Griffiths, N.M.; Gourmelon, P. [Inst. de Radioprotection et de Surete Nucleaire, (IRSN), Direction de la RadioProtection de l' Homme, Service de Radiobiologie et d' Epidemiologie, Fontenay-aux-Roses, CEDEX (France)]. E-mail: pascale.scanff@irsn.fr

    2004-02-01

    The aim of this work was to study acute alterations of the enterohepatic recirculation (EHR) of bile acids 3 days after an 8-Gy radiation exposure in vivo in the rat by a washout technique. Using this technique in association with HPLC analysis, the EHR of the major individual bile acids was determined in control and irradiated animals. Ex vivo ileal taurocholate absorption was also studied in Ussing chambers. Major hepatic enzyme activities involved in bile acid synthesis were also measured. Measurements of bile acid intestinal content and intestinal absorption efficiency calculation from washout showed reduced intestinal absorption with significant differences from one bile acid to another: absorption of taurocholate and tauromuricholate was decreased, whereas absorption of the more hydrophobic taurochenodeoxycholate was increased, suggesting that intestinal passive diffusion was enhanced, whereas ileal active transport might be reduced. Basal hepatic secretion was increased only for taurocholate, in accordance with the marked increase of CYP8B1 activity in the liver. The results are clearly demonstrate that concomitantly with radiation-induced intestinal bile acid malabsorption, hepatic bile acid synthesis and secretion are also changed. A current working model for pathophysiological changes in enterohepatic recycling after irradiation is thus proposed. (author)

  12. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  13. Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease.

    Science.gov (United States)

    Richardson, Jason R; Caudle, W Michael; Wang, Minzheng; Dean, E Danielle; Pennell, Kurt D; Miller, Gary W

    2006-08-01

    Exposure to pesticides has been suggested to increase the risk of Parkinson's disease (PD), but the mechanisms responsible for this association are not clear. Here, we report that perinatal exposure of mice during gestation and lactation to low levels of dieldrin (0.3, 1, or 3 mg/kg every 3 days) alters dopaminergic neurochemistry in their offspring and exacerbates MPTP toxicity. At 12 wk of age, protein and mRNA levels of the dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) were increased by perinatal dieldrin exposure in a dose-related manner. We then administered MPTP (2 x 10 mg/kg s.c) at 12 wk of age and observed a greater reduction of striatal dopamine in dieldrin-exposed offspring, which was associated with a greater DAT:VMAT2 ratio. Additionally, dieldrin exposure during development potentiated the increase in GFAP and alpha-synuclein levels induced by MPTP, indicating increased neurotoxicity. In all cases there were greater effects observed in the male offspring than the female, similar to that observed in human cases of PD. These data suggest that developmental exposure to dieldrin leads to persistent alterations of the developing dopaminergic system and that these alterations induce a "silent" state of dopamine dysfunction, thereby rendering dopamine neurons more vulnerable later in life.

  14. Prenatal exposure to alcohol does not affect radial maze learning and hippocampal mossy fiber sizes in three inbred strains of mouse

    Directory of Open Access Journals (Sweden)

    Bertholet Jean-Yves

    2005-04-01

    Full Text Available Abstract Background The aim of this study was to investigate the effects of prenatal alcohol exposure on radial-maze learning and hippocampal neuroanatomy, particularly the sizes of the intra- and infrapyramidal mossy fiber (IIPMF terminal fields, in three inbred strains of mice (C57BL/6J, BALB/cJ, and DBA/2J. Results Although we anticipated a modification of both learning and IIPMF sizes, no such effects were detected. Prenatal alcohol exposure did, however, interfere with reproduction in C57BL/6J animals and decrease body and brain weight (in interaction with the genotype at adult age. Conclusion Prenatal alcohol exposure influenced neither radial maze performance nor the sizes of the IIPMF terminal fields. We believe that future research should be pointed either at different targets when using mouse models for Fetal Alcohol Syndrome (e.g. more complicated behavioral paradigms, different hippocampal substructures, or other brain structures or involve different animal models.

  15. Ontogeny and adolescent alcohol exposure in Wistar rats: open field conflict, light/dark box and forced swim test.

    Science.gov (United States)

    Desikan, Anita; Wills, Derek N; Ehlers, Cindy L

    2014-07-01

    Epidemiological studies have demonstrated that heavy drinking and alcohol abuse and dependence peak during the transition between late adolescence and early adulthood. Studies in animal models have demonstrated that alcohol exposure during adolescence can cause a modification in some aspects of behavioral development, causing the "adolescent phenotype" to be retained into adulthood. However, the "adolescent phenotype" has not been studied for a number of behavioral tests. The objective of the present study was to investigate the ontogeny of behaviors over adolescence/young adulthood in the light/dark box, open field conflict and forced swim test in male Wistar rats. These data were compared to previously published data from rats that received intermittent alcohol vapor exposure during adolescence (AIE) to test whether they retained the "adolescent phenotype" in these behavioral tests. Three age groups of rats were tested (post-natal day (PD) 34-42; PD55-63; PD69-77). In the light/dark box test, younger rats escaped the light box faster than older adults, whereas AIE rats returned to the light box faster and exhibited more rears in the light than controls. In the open field conflict test, both younger and AIE rats had shorter times to first enter the center, spent more time in the center of the field, were closer to the food, and consumed more food than controls. In the forced swim test no clear developmental pattern emerged. The results of the light/dark box and the forced swim test do not support the hypothesis that adolescent ethanol vapor exposure can "lock-in" all adolescent phenotypes. However, data from the open field conflict test suggest that the adolescent and the AIE rats both engaged in more "disinhibited" and food motivated behaviors. These data suggest that, in some behavioral tests, AIE may result in a similar form of behavioral disinhibition to what is seen in adolescence.

  16. Effect of alcohol consumption status and alcohol concentration on oral pain induced by alcohol-containing mouthwash.

    Science.gov (United States)

    Satpathy, Anurag; Ravindra, Shivamurthy; Porwal, Amit; Das, Abhaya C; Kumar, Manoj; Mukhopadhyay, Indranil

    2013-01-01

    Alcohol exposure alters oral mucosa. Patient compliance with mouthwash use may be reduced by oral pain resulting from rinsing with alcohol-containing mouthwash. However, information regarding the effects of alcohol consumption and mouthwash alcohol concentration on oral pain is limited. In this double-blind, randomized, controlled cross-over study, we investigated the effects of alcohol consumption status and mouthwash alcohol concentration on response to and perception of oral pain induced by alcohol-containing mouthwash. Fifty healthy men aged 33 to 56 years were enrolled and classified as drinkers and nondrinkers according to self-reported alcohol consumption. All subjects rinsed with two commercially available mouthwash products (which contained high and low concentrations of alcohol) and a negative control, in randomized order. Time of onset of oral pain, time of cessation of oral pain (after mouthwash expectoration), and pain duration were recorded, and oral pain intensity was recorded on a verbal rating scale. Drinkers had later oral pain onset and lower pain intensity. High-alcohol mouthwash was associated with earlier pain onset and greater pain intensity. In addition, oral pain cessation was later and pain duration was longer in nondrinkers rinsing with high-alcohol mouthwash. In conclusion, alcohol consumption status and mouthwash alcohol concentration were associated with onset and intensity of oral pain.

  17. Alcohol and pregnancy: Effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females.

    Science.gov (United States)

    Workman, Joanna L; Raineki, Charlis; Weinberg, Joanne; Galea, Liisa A M

    2015-07-01

    Chronic alcohol consumption negatively affects health, and has additional consequences if consumption occurs during pregnancy as prenatal alcohol exposure adversely affects offspring development. While much is known on the effects of prenatal alcohol exposure in offspring less is known about effects of alcohol in dams. Here, we examine whether chronic alcohol consumption during gestation alters maternal behavior, hippocampal neurogenesis and HPA axis activity in late postpartum female rats compared with nulliparous rats. Rats were assigned to alcohol, pair-fed or ad libitum control treatment groups for 21 days (for pregnant rats, this occurred gestation days 1-21). Maternal behavior was assessed throughout the postpartum period. Twenty-one days after alcohol exposure, we assessed doublecortin (DCX) (an endogenous protein expressed in immature neurons) expression in the dorsal and ventral hippocampus and HPA axis activity. Alcohol consumption during pregnancy reduced nursing and increased self-directed and negative behaviors, but spared licking and grooming behavior. Alcohol consumption increased corticosterone and adrenal mass only in nulliparous females. Surprisingly, alcohol consumption did not alter DCX-expressing cell density. However, postpartum females had fewer DCX-expressing cells (and of these cells more immature proliferating cells but fewer postmitotic cells) than nulliparous females. Collectively, these data suggest that alcohol consumption during pregnancy disrupts maternal care without affecting HPA function or neurogenesis in dams. Conversely, alcohol altered HPA function in nulliparous females only, suggesting that reproductive experience buffers the long-term effects of alcohol on the HPA axis.

  18. Altered Lignin Biosynthesis Improves Cellulosic Bioethanol Production in Transgenic Maize Plants Down-Regulated for Cinnamyl Alcohol Dehydrogenase

    Institute of Scientific and Technical Information of China (English)

    Silvia Fornalé; Pere Puigdomènech; Joan Rigau; David Caparrós-Ruiz; Montserrat Capellades; Antonio Encina; Kan Wang; Sami Irar; Catherine Lapierre; Katia Ruel; Jean-Paul Joseleau; Jordi Berenguer

    2012-01-01

    Cinnamyl alcohol dehydrogenase(CAD)is a key enzyme involved in the last step of monolignol biosynthesis.The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize.Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition.Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content.In addition,these cell walls accumulate higher levels of cellulose and arabinoxylans.In contrast,cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides.In vitro degradability assays showed that,although to a different extent,the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants.CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass.Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type,making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.

  19. Prenatal exposure to vanilla or alcohol induces crawling after these odors in the neonate rat: The role of mu and kappa opioid receptor systems.

    Science.gov (United States)

    Gaztañaga, Mirari; Aranda-Fernández, P Ezequiel; Chotro, M Gabriela

    2015-09-01

    Rat fetuses can perceive chemosensory stimuli derived from their mother's diet, and they may learn about those stimuli. In previous studies we have observed that prenatal exposure to alcohol during the last days of gestation increases the acceptance and liking of an alcohol flavor in infant and adolescent rats. While these results were not found after prenatal exposure to vanilla, cineole or anise, suggesting that the pharmacological properties of alcohol, mediated by the opioid system, underlie the effects observed with this drug. Considering that other studies report enhanced acceptance of non-alcohol flavors experienced prenatally when subjects were tested before infancy, we explore the possibility of observing similar results if testing 1-day old rats exposed prenatally to vanilla. Using an "odor-induced crawling" testing procedure, it was observed that neonates exposed prenatally to vanilla or alcohol crawl for a longer distance towards the experienced odor than to other odors or than control pups. Blocking mu, but not kappa opioid receptors, reduced the attraction of vanilla odor to neonates exposed to vanilla in utero, while the response to alcohol in pups exposed prenatally to this drug was affected by both antagonists. Results confirm that exposure to a non-alcohol odor enhances postnatal responses to it, observable soon after birth, while also suggesting that the mu opioid receptor system plays an important role in generating this effect. The results also imply that with alcohol exposure, the prenatal opioid system is wholly involved, which could explain the longer retention of the enhanced attraction to alcohol following prenatal experience with the drug.

  20. Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus.

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  1. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Orli Yarom

    2008-01-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  2. Honey bee gut microbiome is altered by in-hive pesticide exposures

    Directory of Open Access Journals (Sweden)

    Madhavi Kakumanu

    2016-08-01

    Full Text Available Honey bees (Apis mellifera are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g. immune system. The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.

  3. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    OpenAIRE

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood bi...

  4. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    Science.gov (United States)

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-03

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  5. Moderate (2%, v/v) Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice.

    Science.gov (United States)

    Deshpande, Krutika T; Liu, Shinlan; McCracken, Jennifer M; Jiang, Lu; Gaw, Ta Ehpaw; Kaydo, Lindsey N; Richard, Zachary C; O'Neil, Maura F; Pritchard, Michele T

    2016-01-06

    Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl₄-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl₄ exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl₄ and euthanized 24-96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl₄-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl₄ exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl₄-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl₄. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure.

  6. Moderate (2%, v/v Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice

    Directory of Open Access Journals (Sweden)

    Krutika T. Deshpande

    2016-01-01

    Full Text Available Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl4-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl4 exposure. Mice were fed moderate ethanol (2% v/v for two days and then were exposed to CCl4 and euthanized 24–96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl4-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl4 exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl4-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl4. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure.

  7. Exposure to crude oil micro-droplets causes reduced food uptake in copepods associated with alteration in their metabolic profiles.

    Science.gov (United States)

    Hansen, Bjørn Henrik; Altin, Dag; Nordtug, Trond; Øverjordet, Ida Beathe; Olsen, Anders J; Krause, Dan; Størdal, Ingvild; Størseth, Trond R

    2017-03-01

    Acute oil spills and produced water discharges may cause exposure of filter-feeding pelagic organisms to micron-sized dispersed oil droplets. The dissolved oil components are expected to be the main driver for oil dispersion toxicity; however, very few studies have investigated the specific contribution of oil droplets to toxicity. In the present work, the contribution of oil micro-droplet toxicity in dispersions was isolated by comparing exposures to oil dispersions (water soluble fraction with droplets) to concurrent exposure to filtered dispersions (water-soluble fractions without droplets). Physical (coloration) and behavioral (feeding activity) as well as molecular (metabolite profiling) responses to oil exposures in the copepod Calanus finmarchicus were studied. At high dispersion concentrations (4.1-5.6mg oil/L), copepods displayed carapace discoloration and reduced swimming activity. Reduced feeding activity, measured as algae uptake, gut filling and fecal pellet production, was evident also for lower concentrations (0.08mg oil/L). Alterations in metabolic profiles were also observed following exposure to oil dispersions. The pattern of responses were similar between two comparable experiments with different oil types, suggesting responses to be non-oil type specific. Furthermore, oil micro-droplets appear to contribute to some of the observed effects triggering a starvation-type response, manifested as a reduction in metabolite (homarine, acetylcholine, creatine and lactate) concentrations in copepods. Our work clearly displays a relationship between crude oil micro-droplet exposure and reduced uptake of algae in copepods.

  8. Longitudinal MRI reveals altered trajectory of brain development during childhood and adolescence in fetal alcohol spectrum disorders.

    Science.gov (United States)

    Treit, Sarah; Lebel, Catherine; Baugh, Lauren; Rasmussen, Carmen; Andrew, Gail; Beaulieu, Christian

    2013-06-12

    Diffusion tensor imaging (DTI) of brain development in fetal alcohol spectrum disorders (FASD) has revealed structural abnormalities, but studies have been limited by the use of cross-sectional designs. Longitudinal scans can provide key insights into trajectories of neurodevelopment within individuals with this common developmental disorder. Here we evaluate serial DTI and T1-weighted volumetric MRI in a human sample of 17 participants with FASD and 27 controls aged 5-15 years who underwent 2-3 scans each, ∼2-4 years apart (92 scans total). Increases of fractional anisotropy and decreases of mean diffusivity (MD) were observed between scans for both groups, in keeping with changes expected of typical development, but mixed-models analysis revealed significant age-by-group interactions for three major white matter tracts: superior longitudinal fasciculus and superior and inferior fronto-occipital fasciculus. These findings indicate altered developmental progression in these frontal-association tracts, with the FASD group notably showing greater reduction of MD between scans. ΔMD is shown to correlate with reading and receptive vocabulary in the FASD group, with steeper decreases of MD in the superior fronto-occipital fasciculus and superior longitudinal fasciculus between scans correlating with greater improvement in language scores. Volumetric analysis revealed reduced total brain, white, cortical gray, and deep gray matter volumes and fewer significant age-related volume increases in the FASD group, although age-by-group interactions were not significant. Longitudinal DTI indicates delayed white matter development during childhood and adolescence in FASD, which may underlie persistent or worsening behavioral and cognitive deficits during this critical period.

  9. GABA-A and NMDA receptor expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics.

    Directory of Open Access Journals (Sweden)

    Amol K Bhandage

    2014-12-01

    Full Text Available Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here we have studied the changes that take place in the dorsal striatum in post-mortem brains of alcoholics and normal controls. The results show a significant change in the expression of both the excitatory ionotropic glutamate receptor and the inhibitory GABA-A receptor subunit genes in the caudate but not the putamen of the striatum. The mRNA levels in the caudate encoding the glutamate receptor subunit GluN2A and the GABA-A receptor subunits δ, ε and ρ2 were significantly decreased whereas the GluD1, GluD2 and the GABA-A γ1 mRNA levels were significantly increased in the alcoholics as compared to controls. Interestingly in controls, 11 glutamate and 5 GABA-A receptor genes were more prominently (fold-increase varied from 1.24 to 2.91 expressed in the caudate than the putamen. We have previously shown in post-mortem samples from alcoholics that the expression level of glutamate and GABA-A receptor genes in the dorsal-lateral prefrontal cortex is similar to that of normal controls (Jin et al., 2011a;Jin et al., 2014b. This is in contrast to the present study. As the caudate is vital for automatic thinking, the results indicate that the balance between voluntary and automatic control of behaviours is altered in alcoholics. Our results suggest that there may be diminished executive control on goal-directed alcohol-seeking behaviour and, rather, a shift to greater striatal control over behaviours that may be critical in the progress of becoming an alcoholic.

  10. Altered methylation and expression of ER-associated degradation factors in long-term alcohol and constitutive ER stress-induced murine hepatic tumors

    Directory of Open Access Journals (Sweden)

    Hui eHan

    2013-10-01

    Full Text Available Mortality from liver cancer in humans is increasingly attributable to heavy or long-term alcohol consumption. The mechanisms by which alcohol exerts its carcinogenic effect are not well understood. In this study, the role of alcohol-induced endoplasmic reticulum (ER stress response in liver cancer development was investigated using an animal model with a liver knockout of the chaperone BiP and under constitutive hepatic ER stress. Long-term alcohol and high fat diet (HFD feeding resulted in higher levels of serum alanine aminotransferase (ALT, impaired ER stress response, and higher incidence of liver tumor in older (aged 16 months knockout females than in either middle-aged (6 months knockouts or older (aged 16 months wild type females. In the older knockout females, stronger effects of the alcohol on methylation of CpG islands at promoter regions of genes involved in the ER associated degradation (ERAD were also detected. Altered expression of ERAD factors including derlin 3, Creld2 (cysteine-rich with EGF-like domains 2, Herpud1 (ubiquitin-like domain member, Wfs1 (wolfram syndrome gene, and Yod1 (deubiquinating enzyme 1 was co-present with decreased proteasome activities, increased estrogen receptor alpha variant (ERa36, and enhanced phosphorylations of ERK1/2 (extracellular signal-regulated protein kinases 1 and 2 and STAT3 (the signal transducers and activators of transcription in the older knockout female fed alcohol. Our results suggest that long-term alcohol consumption and ageing may promote liver tumorigenesis in females through interfering with DNA methylation and expression of genes involved in the ER associated degradation.

  11. Effects of prenatal alcohol exposure on the development of white matter volume and change in executive function

    Directory of Open Access Journals (Sweden)

    P. Gautam

    2014-01-01

    Full Text Available Prenatal alcohol exposure can cause a wide range of deficits in executive function that persist throughout life, but little is known about how changes in brain structure relate to cognition in affected individuals. In the current study, we predicted that the rate of white matter volumetric development would be atypical in children with fetal alcohol spectrum disorders (FASD when compared to typically developing children, and that the rate of change in cognitive function would relate to differential white matter development between groups. Data were available for 103 subjects [49 with FASD, 54 controls, age range 6–17, mean age = 11.83] with 153 total observations. Groups were age-matched. Participants underwent structural magnetic resonance imaging (MRI and an executive function (EF battery. Using white matter volumes measured bilaterally for frontal and parietal regions and the corpus callosum, change was predicted by modeling the effects of age, intracranial volume, sex, and interactions with exposure status and EF measures. While both groups showed regional increases in white matter volumes and improvement in cognitive performance over time, there were significant effects of exposure status on age-related relationships between white matter increases and EF measures. Specifically, individuals with FASD consistently showed a positive relationship between improved cognitive function and increased white matter volume over time, while no such relationships were seen in controls. These novel results relating improved cognitive function with increased white matter volume in FASD suggest that better cognitive outcomes could be possible for FASD subjects through interventions that enhance white matter plasticity.

  12. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J.L.; Castillo, F.J.; Heath, R.L. (Univ. of California, Riverside (USA))

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  13. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    Directory of Open Access Journals (Sweden)

    Wei Ling Lim

    2016-08-01

    Full Text Available Maternal dexamethasone (DEX; a glucocorticoid receptor agonist exposure delays pubertal onset and alters reproductive behaviour in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP under the control of GnRH promoter. Pregnant females were administered with DEX (0.1mg/kg or vehicle (VEH, water daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0 males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the post synaptic marker molecule, post-synaptic density 95 was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  14. Early Exposure to Intermediate-Frequency Magnetic Fields Alters Brain Biomarkers without Histopathological Changes in Adult Mice

    Directory of Open Access Journals (Sweden)

    Tin-Tin Win-Shwe

    2015-04-01

    Full Text Available Recently we have reported that intermediate-frequency magnetic field (IF-MF exposure transiently altered the mRNA expression levels of memory function-related genes in the hippocampi of adult male mice. However, the effects of IF-MF exposure during brain development on neurological biomarkers have not yet been clarified. In the present study, we investigated the effect of IF-MF exposure during development on neurological and immunological markers in the mouse hippocampus in 3- and 7-week-old male mice. Pregnant C57BL/6J mice were exposed to IF-MF (21 kHz, 3.8 mT for one hour per day from organogenesis period day 7 to 17. At adolescence, some IF-MF-exposed mice were further divided into exposure, recovery, and sham-exposure groups. The adolescent-exposure groups were exposed again to IF-MF from postnatal day 27 to 48. The expression of mRNA in the hippocampi was examined using a real-time RT-PCR method, and microglia activation was examined by immunohistochemical analysis. The expression levels of NR1 and NR2B as well as transcription factors (CaMKIV, CREB1, inflammatory mediators (COX2, IL-1 b,TNF-α, and the oxidative stress marker heme-oxygenase (HO-1 were significantly increased in the IF-MF-exposed mice, compared with the control group, in the 7-week-old mice, but not in the 3-week-old mice. Microglia activation was not different between the control and other groups. This study provides the first evidence that early exposure to IF-MF reversibly affects the NMDA receptor, its related signaling pathways, and inflammatory mediators in the hippocampus of young adult mice; these changes are transient and recover after termination of exposure without histopathological changes.

  15. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats

    Science.gov (United States)

    Albores-Garcia, Damaris; Hernandez, Alberto J.; Loera, Miriam J.

    2016-01-01

    Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined. PMID:26885512

  16. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats

    Directory of Open Access Journals (Sweden)

    Damaris Albores-Garcia

    2016-01-01

    Full Text Available Few studies have assessed the effects of developmental methylmercury (MeHg exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1 control (vehicle, (2 250 μg/kg/day MeHg, (3 500 μg/kg/day MeHg, and (4 vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p., an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined.

  17. Developmental Exposure to PCBs Differentially Alters Sensitivity to Audiogenic and Kindling-Induced Seizures in Rats

    Science.gov (United States)

    Previously we reported an increased incidence of audiogenic seizures in offspring of pregnant rats exposed to an environmental mixture of polychlorinated biphenyls (PCBs). This study compares the proconvulsant properties of PCB exposure in audiogenic and electrical kindling seizu...

  18. Pubertal bisphenol A exposure alters murine mammary stem cell function leading to early neoplasia in regenerated glands.

    Science.gov (United States)

    Wang, Danhan; Gao, Hui; Bandyopadhyay, Abhik; Wu, Anqi; Yeh, I-Tien; Chen, Yidong; Zou, Yi; Huang, Changjiang; Walter, Christi A; Dong, Qiaoxiang; Sun, Lu-Zhe

    2014-04-01

    Perinatal exposure to bisphenol A (BPA) has been shown to cause aberrant mammary gland morphogenesis and mammary neoplastic transformation. Yet, the underlying mechanism is poorly understood. We tested the hypothesis that mammary glands exposed to BPA during a susceptible window may lead to its susceptibility to tumorigenesis through a stem cell-mediated mechanism. We exposed 21-day-old Balb/c mice to BPA by gavage (25 μg/kg/d) during puberty for 3 weeks, and a subset of animals were further challenged with one oral dose (30 mg/kg) of 7,12-dimethylbenz(a)anthracene (DMBA) at 2 months of age. Primary mammary cells were isolated at 6 weeks, and 2 and 4 months of age for murine mammary stem cell (MaSC) quantification and function analysis. Pubertal exposure to the low-dose BPA increased lateral branches and hyperplasia in adult mammary glands and caused an acute increase of MaSC in 6-week-old glands and a delayed increase of luminal progenitors in 4-month-old adult gland. Most importantly, pubertal BPA exposure altered the function of MaSC from different age groups, causing early neoplastic lesions in their regenerated glands similar to those induced by DMBA exposure, which indicates that MaSCs are susceptible to BPA-induced transformation. Deep sequencing analysis on MaSC-enriched mammospheres identified a set of aberrantly expressed genes associated with early neoplastic lesions in patients with human breast cancer. Thus, our study for the first time shows that pubertal BPA exposure altered MaSC gene expression and function such that they induced early neoplastic transformation.

  19. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development.

    Directory of Open Access Journals (Sweden)

    Eugen Dhimolea

    Full Text Available Exposure to environmental estrogens (xenoestrogens may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments, with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50. BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene

  20. Alcoholic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Gonzalo; Guzzo-Merello; Marta; Cobo-Marcos; Maria; Gallego-Delgado; Pablo; Garcia-Pavia

    2014-01-01

    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy(ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM.

  1. Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos

    Directory of Open Access Journals (Sweden)

    Golam Mohammod Mostakim

    2015-01-01

    Full Text Available Quinalphos (QP is commonly used for pest control in the agricultural fields surrounding freshwater reservoirs. This study was conducted to evaluate the chronic toxicity of this pesticide on blood parameters and some organs of silver barb, Barbonymus gonionotus. Fish were exposed to two sublethal concentrations, 0.47 ppm and 0.94 ppm, of QP for a period of 28 days. All the blood parameters (red blood cell, hematocrit, and hemoglobin and blood glucose except for white blood cells decreased with increasing concentration of toxicant and become significantly lower (p<0.05 at higher concentration when compared with control. The derived hematological indices of mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were equally altered compared to control. Histoarchitectural changes of liver and kidney were observed after exposure to the QP. Hypertrophy of hepatocytes, mild to severe necrosis, ruptured central vein, and vacuolation were observed in the liver of treated groups. Highly degenerated kidney tubules and hematopoietic tissue, degeneration of renal corpuscle, vacuolization, and necrosis were evident in the kidney of treated groups. In conclusion, chronic exposure to QP at sublethal concentrations induced hematological and histological alterations in silver barb and offers a simple tool to evaluate toxicity derived alterations.

  2. Physical Activity- and Alcohol-dependent Association Between Air Pollution Exposure and Elevated Liver Enzyme Levels: An Elderly Panel Study

    Science.gov (United States)

    Kim, Kyoung-Nam; Lee, Hyemi; Kim, Jin Hee; Jung, Kweon; Lim, Youn-Hee; Hong, Yun-Chul

    2015-01-01

    Objectives: The deleterious effects of air pollution on various health outcomes have been demonstrated. However, few studies have examined the effects of air pollution on liver enzyme levels. Methods: Blood samples were drawn up to three times between 2008 and 2010 from 545 elderly individuals who regularly visited a community welfare center in Seoul, Korea. Data regarding ambient air pollutants (particulate matter ≤2.5 μm [PM2.5], nitrogen dioxide [NO2], ozone [O3], carbon monoxide, and sulfur dioxide) from monitoring stations were used to estimate air pollution exposure. The effects of the air pollutants on the concentrations of three liver enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT], and γ-glutamyltranspeptidase [γ-GTP)]) were evaluated using generalized additive and linear mixed models. Results: Interquartile range increases in the concentrations of the pollutants showed significant associations of PM2.5 with AST (3.0% increase, p=0.0052), ALT (3.2% increase, p=0.0313), and γ-GTP (5.0% increase, p=0.0051) levels; NO2 with AST (3.5% increase, p=0.0060) and ALT (3.8% increase, p=0.0179) levels; and O3 with γ-GTP (5.3% increase, p=0.0324) levels. Significant modification of these effects by exercise and alcohol consumption was found (p for interaction <0.05). The effects of air pollutants were greater in non-exercisers and heavy drinkers. Conclusions: Short-term exposure to air pollutants such as PM2.5, NO2, and O3 is associated with increased liver enzyme levels in the elderly. These adverse effects can be reduced by exercising regularly and abstinence from alcohol. PMID:26081652

  3. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD.

    Science.gov (United States)

    Vanderheyden, William M; George, Sophie A; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R

    2015-08-01

    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure.

  4. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Wang, Linlong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  5. Prenatal exposure to zinc oxide particles alters monoaminergic neurotransmitter levels in the brain of mouse offspring.

    Science.gov (United States)

    Okada, Yuka; Tachibana, Ken; Yanagita, Shinya; Takeda, Ken

    2013-01-01

    Zinc oxide (ZnO) nano-sized particles (NPs) are beneficial materials used for sunscreens and cosmetics. Although ZnO NPs are widely used for cosmetics, the health effects of exposure during pregnancy on offspring are largely unknown. Here we investigated the effects of prenatal exposure to ZnO NPs on the monoaminergic system of the mouse brain. Subcutaneous administration of ZnO NPs to the pregnant ICR mice (total 500 μg/mouse) were carried out and then measured the levels of dopamine (DA), serotonin (5-HT), and noradrenalin, and their metabolites in 9 regions of the brain of offspring (6-week-old) using high performance liquid chromatography (HPLC). HPLC analysis demonstrated that DA levels were increased in hippocampus in the ZnO NP exposure group. In the levels of DA metabolites, homovanillic acid was increased in the prefrontal cortex and hippocampus, and 3, 4-dihydroxyphenylacetic acid was increased in the prefrontal cortex by prenatal ZnO NP exposure. Furthermore, DA turnover levels were increased in the prefrontal cortex, neostriatum, nucleus accumbens, and amygdala in the ZnO NP exposure group. We also found changes of the levels of serotonin in the hypothalamus, and of the levels of 5-HIAA (5-HT metabolite) in the prefrontal cortex and hippocampus in the ZnO NP-exposed group. The levels of 5-HT turnover were increased in each of the regions except for the cerebellum by prenatal ZnO NP exposure. The present study indicated that prenatal exposure to ZnO NPs might disrupt the monoaminergic system, and suggested the possibility of detrimental effects on the mental health of offspring.

  6. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats.

    Science.gov (United States)

    Diaz, Marvin R; Vollmer, Cyndel C; Zamudio-Bulcock, Paula A; Vollmer, William; Blomquist, Samantha L; Morton, Russell A; Everett, Julie C; Zurek, Agnieszka A; Yu, Jieying; Orser, Beverley A; Valenzuela, C Fernando

    2014-04-01

    Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats.

  7. Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons.

    Science.gov (United States)

    Luo, Fen-Lan; Yang, Nian; He, Chao; Li, Hong-Li; Li, Chao; Chen, Fang; Xiong, Jia-Xiang; Hu, Zhi-An; Zhang, Jun

    2014-11-01

    Previous studies have revealed that extremely low frequency electromagnetic field (ELF-EMF) exposure affects neuronal dendritic spine density and NMDAR and AMPAR subunit expressions in the entorhinal cortex (EC). Although calcium signaling has a critical role in control of EC neuronal functions, however, it is still unclear whether the ELF-EMF exposure affects the EC neuronal calcium homeostasis. In the present study, using whole-cell recording and calcium imaging, we record the whole-cell inward currents that contain the voltage-gated calcium currents and show that ELF-EMF (50Hz, 1mT or 3mT, lasting 24h) exposure does not influence these currents. Next, we specifically isolate the high-voltage activated (HVA) and low-voltage activated (LVA) calcium channels-induced currents. Similarly, the activation and inactivation characteristics of these membrane calcium channels are also not influenced by ELF-EMF. Importantly, ELF-EMF exposure reduces the maximum amplitude of the high-K(+)-evoked calcium elevation in EC neurons, which is abolished by thapsigargin, a Ca(2+) ATPase inhibitor, to empty the intracellular calcium stores of EC neurons. Together, these findings indicate that ELF-EMF exposure specifically influences the intracellular calcium dynamics of cultural EC neurons via a calcium channel-independent mechanism.

  8. Long-term exposure to incense smoke alters metabolism in Wistar albino rats.

    Science.gov (United States)

    Alokail, Majed S; Al-Daghri, Nasser M; Alarifi, Saud A; Draz, Hossam M; Hussain, Tajamul; Yakout, Sobhy M

    2011-03-01

    The burning of incense is an important source of indoor air pollution in Asia. We assessed the effect of long-term exposure to incense smoke on the body weight and levels of circulating glucose, triglycerides, total cholesterol, HDL-cholesterol, insulin, adiponectin and leptin in Wistar albino rats. Two groups of rats were used. First group (n = 12) was exposed daily to incense smoke for 4 months at the rate of 4 g day(-1) in the exposure chamber. Another group of rats (n = 12), was used as non-exposed control. Blood samples were collected from all animals after 4, 8, 12 and 16 weeks of exposure. Serum glucose, triglycerides, total cholesterol and HDL-cholesterol, LDL-cholesterol insulin, adiponectin and leptin were measured. Our results showed that incense smoke exposure was associated with decreased weight gain and the adverse metabolic changes of increased triglycerides and decreased HDL-cholesterol concentrations. Exposure to incense was also associated with a transient increase of leptin levels. Taken together, these data suggest that incense smoke influences metabolism adversely in rats. The effect of incense smoke on human health and the underlying mechanisms need to be studied further.

  9. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    Directory of Open Access Journals (Sweden)

    Rafati A.

    2015-09-01

    Full Text Available Introduction: The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz. Materials and Methods: Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T, the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz as stimuli. Results: The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion: These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  10. The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro.

    Science.gov (United States)

    Czarnobaj, Joanna; Bagnall, Keith M; Bamforth, J Steven; Milos, Nadine C

    2014-05-01

    Embryonic neural crest cells give rise to large regions of the face and peripheral nervous system. Exposure of these cells to high alcohol concentrations leads to cell death in the craniofacial region resulting in facial defects. However, the effects of low concentrations of alcohol on neural crest cells are not clear. In this study, cranial neural crest cells from Xenopus laevis were cultured in an ethanol concentration approximately equivalent to one drink. Techniques were developed to study various aspects of neural crest cell behaviour and a number of cellular parameters were quantified. In the presence of alcohol, a significant number of cranial neural crest cells emigrated from the explant on fibronectin but the liberation of individual cells was delayed. The cells also remained close to the explant and their morphology changed. Cranial neural crest cells did not grow on Type 1 collagen. For the purposes of comparison, the behaviour of trunk neural crest cells was also studied. The presence of alcohol correlated with increased retention of single cells on fibronectin but left other parameters unchanged. The behaviour of trunk neural crest cells growing on Type 1 collagen in the presence of alcohol did not differ from controls. Low concentrations of alcohol therefore significantly affected both cranial and trunk neural crest cells, with a wider variety of effects on cells from the cranial as opposed to the trunk region. The results suggest that low concentrations of alcohol may be more detrimental to early events in organ formation than currently suspected.

  11. Does prenatal exposure to vitamin D-fortified margarine and milk alter birth weight?

    DEFF Research Database (Denmark)

    Jensen, Camilla B; Berentzen, Tina L; Gamborg, Michael;

    2014-01-01

    with mandatory fortification of margarine during 1961-1985 and voluntary fortification of low-fat milk between 1972 and 1976. The influence of prenatal vitamin D exposure on birth weight was investigated among 51 883 Danish children, by comparing birth weight among individuals born during 2 years before or after......The present study examined whether exposure to vitamin D from fortified margarine and milk during prenatal life influenced mean birth weight and the risk of high or low birth weight. The study was based on the Danish vitamin D fortification programme, which was a societal intervention...... than non-exposed children (margarine initiation 27·4 (95 % CI 10·8, 44·0) g). No differences in the odds of high (>4000 g) or low ( weight were observed between the children exposed and non-exposed to vitamin D fortification prenatally. Prenatal exposure to vitamin D from fortified...

  12. Histopathological Alterations of Hybrid Walking Catfish (Clarias macrocephalus x Clarias gariepinus in Acute and Subacute Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Nuntiya Pantung

    2008-01-01

    Full Text Available Histopathological alterations occur in the gills, livers and kidneys of 3-month old hybrid walking catsfich (Clarias macrocephalus x Clarias gariepinos after acute and subacute cadmium exposure in water, and after intraperitoneal injection.The 96-h LC50 for cadmium in recirculation open systems was 13.6 mg/l, and the 96-h LD50 1.6 mg/kg of fish. Light microscopic studies were carried out in gills, livers and kidneys. Gill alterations included an increased number of chloride cells, breakdown of the pillar cells and edema of the epithelial cells. In the liver there was blood conjestion in sinusoids and swelling of hepatocytes. The kidneys showed vacuolation and necrosis of proximal tubular cells.

  13. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    Science.gov (United States)

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins.

  14. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis.

    Directory of Open Access Journals (Sweden)

    J Christopher States

    Full Text Available The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE(-/- mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE(-/- mice exposed to 49 ppm arsenic in utero from gestational day (GD 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a. Gene ontology (GO annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8 and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes

  15. Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Directory of Open Access Journals (Sweden)

    Herr Caroline EW

    2010-08-01

    Full Text Available Abstract Background Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month. Methods Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3+ cells and their subsets, CD4+ and CD8+, B lymphocytes (CD19+ and natural killer (NK cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH and particulate matter 2.5 were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM2.5 and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births. Results The adjusted models show significant associations between PAHs or PM2.5 during early gestation and increases in CD3+ and CD4+ lymphocytes percentages and decreases in CD19+ and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3+ and CD4+ fractions and increases in CD19+ and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation. Conclusions PAHs and PM2.5 in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.

  16. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    Directory of Open Access Journals (Sweden)

    Dhiraj Maskey

    2013-01-01

    Full Text Available Calcium binding proteins (CaBPs such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus.

  17. Alteration of Tight and Adherens Junctions on 50-Hz Magnetic Field Exposure in Madin Darby Canine Kidney (MDCK Cells

    Directory of Open Access Journals (Sweden)

    Zoltán Somosy

    2004-01-01

    Full Text Available Adherens (AJ and tight junctions (TJ, as integrated parts of the junctional complex, are multifunctional specialized regions of the cell membrane in epithelial cells. They are responsible for cell-to-cell interactions and also have great importance in cellular signaling processes including Wnt protein-mediated signals. As electromagnetic field (EMF exposure is known to cause alterations in the function as well as supramolecular organization of different cell contacts, our goal was to investigate the effect of 50-Hz magnetic field (MF exposures on the subcellular distribution of some representative structural proteins (occludin, β-catenin, and cadherin found in AJ and TJ. Additionally, cellular β-catenin content was also quantified by Western blot analysis. 50-Hz MF exposures seemed to increase the staining intensity (amount of occludin, cadherins, and β-catenin in the junctional area of MDCK cells, while Western blot data indicated the quantity of b-catenin was found significantly decreased at both time points after EM exposures. Our results demonstrate that MF are able to modify the distribution of TJ and AJ structural proteins, tending to stabilize these cell contacts. The quantitative changes of β-catenin suggest a causative relationship between MF effects on the cell junctional complex and the Wnt signaling pathway.

  18. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  19. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... groups. NIH: National Institute on Alcohol Abuse and Alcoholism

  20. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    Science.gov (United States)

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  1. Exposure to N-ethyl-N-nitrosourea in adult mice alters structural and functional integrity of neurogenic sites.

    Directory of Open Access Journals (Sweden)

    Vivian Capilla-Gonzalez

    Full Text Available BACKGROUND: Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU, a N-nitroso compound (NOC found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ, the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG, and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test and a deficit in spatial memory (Barnes maze performance, two functions primarily related to the SVZ and the DG regions, respectively. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits.

  2. Short GSM mobile phone exposure does not alter human auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Thuróczy György

    2007-11-01

    Full Text Available Abstract Background There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Methods Auditory Brainstem Response (ABR was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18–26 years with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Results Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. Conclusion The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.

  3. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    Science.gov (United States)

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer.

  4. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Science.gov (United States)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  5. Occupational exposure to diesel engine exhaust and alterations in lymphocyte subsets

    NARCIS (Netherlands)

    Lan, Qing; Vermeulen, Roel; Dai, Yufei; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Bin, Ping; Kim, Christopher; Bassig, Bryan A; Hosgood, H Dean; Silverman, Debra; Zheng, Yuxin; Rothman, Nathaniel

    2015-01-01

    BACKGROUND: The International Agency for Research on Cancer recently classified diesel engine exhaust (DEE) as a Group I carcinogen based largely on its association with lung cancer. However, the exposure-response relationship is still a subject of debate and the underlying mechanism by which DEE ca

  6. Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads

    Science.gov (United States)

    Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen

    2011-01-01

    Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.

  7. Comparative effects of curcumin and its analog on alcohol- and polyunsaturated fatty acid-induced alterations in circulatory lipid profiles.

    Science.gov (United States)

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Rajasekaran, Kallikat Narayanan; Menon, Venugopal P

    2005-01-01

    Excessive alcohol intake induces hyperlipidemia. Studies suggest that natural principles and their analogs are known to possess anti-hyperlipidemic properties. In the present work we tested the effect of curcumin, an active principle of turmeric (Curcuma longa), and a curcumin analog on alcohol- and thermally oxidized polyunsaturated fatty acid (deltaPUFA)- induced hyperlipidemia. Male albino Wistar rats were used for the experimental study. Anti-hyperlipidemic activity of curcumin and curcumin analog was evaluated by analyzing the levels of cholesterol, triglycerides (TGs), phospholipids (PLs), and free fatty acids (FFAs). The results showed that the levels of cholesterol, TGs, PLs, and FFAs were increased significantly in alcohol-, deltaPUFA-, and alcohol + deltaPUFA-treated groups, which were brought down significantly on treatment with either of the curcuminoids. Curcumin analog treatment was found to be more effective than curcumin treatment. From the results obtained, we conclude that both curcumin and its analog effectively protect the system against alcohol- and deltaPUFA-induced hyperlipidemia and are possible candidates for the treatment of hyperlipidemia.

  8. GABA-A and NMDA receptor subunit mRNA expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics.

    Science.gov (United States)

    Bhandage, Amol K; Jin, Zhe; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis

    2014-01-01

    Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.

  9. RAB GTPASES ASSOCIATE WITH ISOLATED LIPID DROPLETS (LDS) AND SHOW ALTERED CONTENT AFTER ETHANOL ADMINISTRATION: POTENTIAL ROLE IN ALCOHOL-IMPAIRED LD METABOLISM

    Science.gov (United States)

    Rasineni, Karuna; McVicker, Benita L.; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2013-01-01

    Background Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g. Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol damaged hepatocytes. Since these Rab GTPases are crucial regulators of protein trafficking, we examined the effect ethanol administration has on hepatic Rab protein content and association with LDs. Methods Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. Results Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in ethanol-fed rats. Rabs 1, 2, 3d, 5, 7 and 18 were analyzed in post-nuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5 and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed ethanol-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an ethanol-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in ethanol-fed rat sections. Conclusion Chronic ethanol feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease. PMID:24117505

  10. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  11. Long-lasting alterations in membrane properties, K+ currents and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Igor eSpigelman

    2012-06-01

    Full Text Available Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs and larger fast afterhyperpolarizations (fAHPs than MSNs from vehicle-treated animals, all suggestive of increases in K+-channel conductances. Significant increases in the Cs+-sensitive inwardly-rectifying K+-current accounted for the increased input resistance, while increases in the A-type K+-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.

  12. Exposure to sublethal chromium and endosulfan alter the diel vertical migration (DVM) in freshwater zooplankton crustaceans.

    Science.gov (United States)

    Gutierrez, María Florencia; Gagneten, Ana María; Paggi, Juan Cesar

    2012-01-01

    Among zooplankton behaviors, diel migrations constitute one of the most effective predator avoidance strategy and confer metabolic and demographic advantages. We aim to examine whether sublethal concentrations of two widespread pollutants (a pesticide with endosulfan and chromium as potassium dichromate) alter the depth selection, vertical migration and grouping of five freshwater species: Argyrodiaptomus falcifer, Notodiaptomus conifer, Pseudosida variabilis, Ceriodaphnia dubia and Daphnia magna. In a series of experimental assays, performed with 150 cm length transparent tubes, we analyzed the ascents and descents movements through periods of 24 h. Among controls, the copepods showed a tendency to remain closest to the surface, however, N. conifer registered a downward movement of 18.14 cm between 06:00 and 12:00. The cladoceran P. variabilis occupied the deeper position (85 cm), C. dubia showed a tendency to hike to the surface at 06:00 (57.7 cm) descending to lower levels at 18:00. D. magna showed a constant movement of ascent between 00:00 and 18:00, making an average travel of 29.4 cm. When subjected to pollutants, these behaviors were altered. It is hypothesized that a reduction in swimming activity and disorientation would be the main cause of such alterations. The high sensitivity of this endpoint sugests it to be adecuate as a complement in future standard toxicity tests.

  13. Pre-conception and prenatal alcohol exposure from mothers and fathers drinking and head circumference: results from the Norwegian Mother-Child Study (MoBa).

    Science.gov (United States)

    Zuccolo, Luisa; DeRoo, Lisa A; Wills, Andrew K; Davey Smith, George; Suren, Pål; Roth, Christine; Stoltenberg, Camilla; Magnus, Per

    2016-12-23

    Although microcephaly is a feature of Fetal Alcohol Syndrome, it is currently unknown whether low-to-moderate prenatal alcohol exposure affects head circumference. Small magnitude associations reported in observational studies are likely to be misleading due to confounding and misclassification biases. Alternative analytical approaches such as the use of family negative controls (e.g. comparing the effects of maternal and paternal exposure) could help disentangle causal effects. We investigated the association of maternal and paternal alcohol drinking before and early in pregnancy with infant head circumference, using data from 68,244 mother-father-offspring trios from the Norwegian Mother and Child Cohort Study (MoBa) (1999-2009). In analyses adjusted for potential confounders, we found no consistent pattern of association between maternal or paternal alcohol intake before or during pregnancy and offspring head circumference modelled as a continuous outcome. However, we found higher odds of microcephaly at birth for higher paternal, but not maternal, alcohol consumption before pregnancy, and similar but weaker effect estimates for first trimester drinking. Associations with paternal drinking before pregnancy were unexpected and should be regarded as hypothesis generating, until independently replicated, although potentially important given the absence of guidelines on safe drinking levels for men in couples trying for a pregnancy.

  14. Morphological alterations on human radicular dentin after exposure to different fruit juice drinks

    OpenAIRE

    Daniela Leal ZANDIM-BARCELOS; Martins, Cínthia Oliveira [UNESP; CAVASSIM, Rodrigo; Rossa Júnior, Carlos; Abi-Rached, Ricardo Samih Georges [UNESP; Sampaio, José Eduardo Cezar [UNESP

    2011-01-01

    Purpose: This in vitro study aimed to evaluate the effect of different fruit juice drinks available in the Brazilian market on smear layer removal and dentinal tubules opening, as well as to verify the effect of toothbrushing subsequently to the juices exposure. Methods: Dentin specimens were prepared and randomly distributed into the control group (distilled water) and twelve types of fruit juice drinks (cashew, orange, mandarin, apple, passion fruit, guava, strawberry, grape, mango, pear, p...

  15. Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure

    OpenAIRE

    Cody S Sheik; Mitchell, Tyler W.; Fariha Z Rizvi; Yasir Rehman; Muhammad Faisal; Shahida Hasnain; McInerney, Michael J.; Krumholz, Lee R.

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr ...

  16. Removal and environmental exposure of alcohol ethoxylates in US sewage treatment.

    Science.gov (United States)

    Morrall, S W; Dunphy, J C; Cano, M L; Evans, A; McAvoy, D C; Price, B P; Eckhoff, W S

    2006-05-01

    Alcohol ethoxylates (AE) are a common nonionic surfactant employed in consumer and industrial detergents worldwide. Commercial AE are typically complex mixtures composed of > 100 homologous compounds with varying alkyl chain lengths and varying numbers of ethylene oxide (EO) units. Recent improvements in analytical methodology have enabled accurate measurement of the entire AE mixture in sewage treatment plant (STP) influents and effluents, including alkyl chain lengths from 12 to 18 carbons with a range of ethoxylation from 0 to 18 EO units. These improved analytical methods were used to measure AE concentrations at nine sites representative of sewage treatment processes and geographical locations. These new data will make possible a more accurate assessment of environmental risk for AE in the United States. The results indicate that all AE homologues are effectively removed (> 99%) in the most common treatment types. Individual STP total AE effluent concentrations ranged from a low of 0.92 microg/L for activated sludge to a high of 15.6 microg/L for a trickling filter process. For the purpose of representing a national average distribution, an average-flow-weighted wastewater treatment plant effluent concentration was determined for each AE component. The total-flow-weighted average AE effluent concentration was 3.64 microg/L.

  17. Traffic pollution exposure is associated with altered brain connectivity in school children.

    Science.gov (United States)

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain.

  18. Chronic diclofenac (DCF) exposure alters both enzymatic and haematological profile of African catfish, Clarias gariepinus.

    Science.gov (United States)

    Ajima, Malachy N O; Ogo, Ogo A; Audu, Bala S; Ugwoegbu, Kyrian C

    2015-10-01

    Pharmaceuticals are used extensively in human and veterinary medicine to eradicate or prevent diseases. The residues of these drugs have been detected in aquatic ecosystem; nevertheless, their toxicological effects on Clarias gariepinus have not been critically investigated. In this study, the toxic effects of diclofenac (DCF), a non-steroid anti-inflammatory drug, were studied in C. gariepinus by acute and chronic static renewable bioassay. The 96 h LC50 of DCF to C. gariepinus was 25.12 mg/L. Exposure to acute toxicity resulted in abnormal behavior and mortality of some fish. Compared with the control, chronic exposure of the fish to concentration (1.57, 3.14 and 6.28 mg/L) showed significantly higher mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV) and white blood cell (WBC), with significantly lower haemoglobin (Hb), haematocrit, red blood cell (RBC) and mean corpuscular haemoglobin (MCH) with increase in the concentration of the drug. Furthermore, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and glucose values significantly increased while protein levels were reduced (p < 0.05) in serum and gills throughout the 42-day exposure period. The study reports that DCF-induced enzymatic and haematological changes in the fish and recommends that these parameters be used as potential biomarkers for assessing residual pharmaceuticals available in aquatic ecosystem.

  19. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells

    Directory of Open Access Journals (Sweden)

    Yan Yin

    2012-11-01

    Developmental exposure to diethylstilbestrol (DES causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.

  20. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    Science.gov (United States)

    Liu, Qing; Spitsbergen, Jan M; Cariou, Ronan; Huang, Chun-Yuan; Jiang, Nan; Goetz, Giles; Hutz, Reinhold J; Tonellato, Peter J; Carvan, Michael J

    2014-01-01

    The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption.

  1. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    Directory of Open Access Journals (Sweden)

    Qing Liu

    Full Text Available The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb and male (18.04 ppb fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption.

  2. In vivo tungsten exposure alters B-cell development and increases DNA damage in murine bone marrow.

    Science.gov (United States)

    Kelly, Alexander D R; Lemaire, Maryse; Young, Yoon Kow; Eustache, Jules H; Guilbert, Cynthia; Molina, Manuel Flores; Mann, Koren K

    2013-02-01

    High environmental tungsten levels were identified near the site of a childhood pre-B acute lymphoblastic leukemia cluster; however, a causal link between tungsten and leukemogenesis has not been established. The major site of tungsten deposition is bone, the site of B-cell development. In addition, our in vitro data suggest that developing B lymphocytes are susceptible to tungsten-induced DNA damage and growth inhibition. To extend these results, we assessed whether tungsten exposure altered B-cell development and induced DNA damage in vivo. Wild-type mice were exposed to tungsten in their drinking water for up to 16 weeks. Tungsten concentration in bone was analyzed by inductively coupled plasma mass spectrometry and correlated with B-cell development and DNA damage within the bone marrow. Tungsten exposure resulted in a rapid deposition within the bone following 1 week, and tungsten continued to accumulate thereafter albeit at a decreased rate. Flow cytometric analyses revealed a transient increase in mature IgD(+) B cells in the first 8 weeks of treatment, in animals of the highest and intermediate exposure groups. Following 16 weeks of exposure, all tungsten groups had a significantly greater percentage of cells in the late pro-/large pre-B developmental stages. DNA damage was increased in both whole marrow and isolated B cells, most notably at the lowest tungsten concentration tested. These findings confirm an immunological effect of tungsten exposure and suggest that tungsten could act as a tumor promoter, providing leukemic "hits" in multiple forms to developing B lymphocytes within the bone marrow.

  3. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    Science.gov (United States)

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers

  4. Elucidating the Biological Basis for the Reinforcing Actions of Alcohol in the Mesolimbic Dopamine System: The Role of Active Metabolites of Alcohol

    Directory of Open Access Journals (Sweden)

    Gerald A Deehan

    2013-08-01

    Full Text Available The development of successful pharmacotherapeutics for the treatment of alcoholism is predicated upon understanding the biological action of alcohol. A limitation of the alcohol research field has been examining the effects of alcohol only and ignoring the multiple biological active metabolites of alcohol. The concept that alcohol is a ‘pro-drug’ is not new. Alcohol is readily metabolized to acetaldehyde within the brain. Acetaldehyde is a highly reactive compound that forms a number of condensation products, including salsolinol and iso-salsolinol (acetaldehyde and dopamine. Recent experiments have established that numerous metabolites of ethanol do have direct CNS action, and could, in part or whole, mediate the reinforcing actions of alcohol within the mesolimbic dopamine system. The mesolimbic dopamine system originates in the ventral tegmental area (VTA and projects to forebrain regions that include the nucleus accumbens (Acb and the medial prefrontal cortex (mPFC and is thought to be the neurocircuitry governing the rewarding properties of drugs of abuse. Within this neurocircuitry there is convincing evidence that; 1 biologically active metabolites of alcohol can directly or indirectly increase the activity of VTA dopamine neurons, 2 alcohol and alcohol metabolites are reinforcing within the mesolimbic dopamine system, 3 inhibiting the alcohol metabolic pathway inhibits the biological consequences of alcohol exposure, 4 alcohol consumption can be reduced by inhibiting/attenuating the alcohol metabolic pathway in the mesolimbic dopamine system, 5 alcohol metabolites can alter neurochemical levels within the mesolimbic dopamine system, and 6 alcohol interacts with alcohol metabolites to enhance the actions of both compounds. The data indicate that there is a positive relationship between alcohol and alcohol metabolites in regulating the biological consequences of consuming alcohol and the potential of alcohol use escalating to

  5. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides.

    Science.gov (United States)

    Lee, Young S; Lewis, John A; Ippolito, Danielle L; Hussainzada, Naissan; Lein, Pamela J; Jackson, David A; Stallings, Jonathan D

    2016-01-18

    Chlorpyrifos (CPF), an organophosphorus pesticide (OP), is one of the most widely used pesticides in the world. Subchronic exposures to CPF that do not cause cholinergic crisis are associated with problems in cognitive function (i.e., learning and memory deficits), but the biological mechanism(s) underlying this association remain speculative. To identify potential mechanisms of subchronic CPF neurotoxicity, adult male Long Evans (LE) rats were administered CPF at 3 or 10mg/kg/d (s.c.) for 21 days. We quantified mRNA and non-coding RNA (ncRNA) expression profiles by RNA-seq, microarray analysis and small ncRNA sequencing technology in the CA1 region of the hippocampus. Hippocampal slice immunohistochemistry was used to determine CPF-induced changes in protein expression and localization patterns. Neither dose of CPF caused overt clinical signs of cholinergic toxicity, although after 21 days of exposure, cholinesterase activity was decreased to 58% or 13% of control levels in the hippocampus of rats in the 3 or 10mg/kg/d groups, respectively. Differential gene expression in the CA1 region of the hippocampus was observed only in the 10mg/kg/d dose group relative to controls. Of the 1382 differentially expressed genes identified by RNA-seq and microarray analysis, 67 were common to both approaches. Differential expression of six of these genes (Bdnf, Cort, Crhbp, Nptx2, Npy and Pnoc) was verified in an independent CPF exposure study; immunohistochemistry demonstrated that CRHBP and NPY were elevated in the CA1 region of the hippocampus at 10mg/kg/d CPF. Gene ontology enrichment analysis suggested association of these genes with receptor-mediated cell survival signaling pathways. miR132/212 was also elevated in the CA1 hippocampal region, which may play a role in the disruption of neurotrophin-mediated cognitive processes after CPF administration. These findings identify potential mediators of CPF-induced neurobehavioral deficits following subchronic exposure to CPF at

  6. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    Directory of Open Access Journals (Sweden)

    Chivukula VK

    2015-01-01

    Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study

  7. Tetrachlorodibenzo-p-dioxin exposure alters radial arm maze performance and hippocampal morphology in female AhR mice.

    Science.gov (United States)

    Powers, B E; Lin, T-M; Vanka, A; Peterson, R E; Juraska, J M; Schantz, S L

    2005-02-01

    Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter spatial learning in rats tested on a radial arm maze (RAM). TCDD is believed to exert most of its effects through binding to the aryl hydrocarbon receptor (AhR). To determine whether the AhR mediates TCDD-induced alterations in spatial learning, we tested male and female AhR-knockout (AhR-/-), heterozygous (AhR+/-) and wild-type (AhR+/+) mice on the RAM. AhR+/- male and female mice were time mated, and treated dams were dosed with 5 microg TCDD/kg body weight on day 13 of gestation. When offspring reached adulthood, male and female AhR+/+, AhR+/- and AhR-/- mice from TCDD-exposed and unexposed litters were tested on the eight-arm RAM. After testing, we examined hippocampal morphology as visualized by the Timm's silver sulfide stain. TCDD-exposed female AhR+/- mice made more errors than their respective controls on the RAM and exhibited a decrease in the size of the intra- and infrapyramidal mossy fiber (IIP-MF) field of the hippocampus. None of the other TCDD-exposed groups differed from their respective control groups with regard to maze performance or hippocampal morphology. The reduction of IIP-MF field indicates a possible morphological basis for the learning deficit that was observed in the female AhR+/- mice. It is hypothesized that the effect of TCDD exposure is AhR dependent and that TCDD may alter GABAergic activity in the hippocampus of female mice during development.

  8. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    Science.gov (United States)

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety.

  9. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  10. Trends in toxic alcohol exposures in the United States from 2000 to 2013: a focus on the use of antidotes and extracorporeal treatments.

    Science.gov (United States)

    Ghannoum, Marc; Hoffman, Robert S; Mowry, James B; Lavergne, Valery

    2014-01-01

    Morbidity and mortality from toxic alcohols like ethylene glycol and methanol remain prevalent worldwide. The introduction of fomepizole, a potent blocker of alcohol dehydrogenase, has modified current practice over the last 15 years. The aim of the study was to describe the characteristics of toxic alcohol poisoning reported to US poison centers, the trends in the incidence of antidote use and hemodialysis treatment, as well as the related mortality. A retrospective study of all electronic entries from the AAPCC National Poison Data System database, from the years 2000 to 2013 was reviewed. When considering all exposures, the great majority of patients had a benign outcome. Major effects (e.g., life threatening) occurred in 2.1% and 4.9% of methanol and ethylene glycol cases, respectively. Mortality rates were similar for both toxic alcohols, approximately 0.6%. When only considering ingestions reported to healthcare facilities, a major effect was reported in 9.5% and 20.5%, and the mortality rate was 2.9% and 2.4% for methanol and ethylene glycol exposures, respectively, and remained constant over time. The use of fomepizole increased statistically over the study period while that of ethanol decreased, until it became proportionally negligible by 2012-2013. The use of hemodialysis significantly decreased in "Early" ethylene glycol exposures during the study period. Similar to other reports, it appears that the use of fomepizole has largely supplanted ethanol as the antidote of choice in toxic alcohol exposures and may decrease the requirements for hemodialysis in patients poisoned with ethylene glycol who have no acidosis and normal kidney function.

  11. Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.

  12. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  13. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    Science.gov (United States)

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  14. Neurochemical alterations in lemon shark (Negaprion brevirostris) brains in association with brevetoxin exposure.

    Science.gov (United States)

    Nam, Dong-Ha; Adams, Douglas H; Flewelling, Leanne J; Basu, Niladri

    2010-09-01

    Brevetoxins are persistent, bioaccumulative, lipophilic polyether neurotoxins synthesized by Karenia brevis, a harmful algal bloom (HAB) dinoflagellate. Although some marine organisms accumulate potentially harmful levels of brevetoxins, little is known about neurotoxic effects in wild populations. Here, tissue (i.e., liver, kidney, muscle, intestine, gill, brain) brevetoxin levels (as ng PbTx-3 eq/g) and four neurochemical biomarkers (monoamine oxidase, MAO; cholinesterase, ChE; muscarinic cholinergic receptor, mAChR; N-methyl-d-aspartic acid receptor, NMDAR) were compared between eleven lemon sharks collected during a K. brevis bloom and eighteen lemon sharks not exposed to a bloom (controls) in a case-control manner. Brevetoxin levels in tissues were significantly higher in HAB-exposed sharks when compared to controls, and tissue levels (e.g., 277-3112 ng/g in livers, 429-2833 ng/g in gills) in HAB-exposed sharks were comparable to levels detected in a shark (e.g., 1223 ng/g in liver, 930 ng/g in gill) that died presumably of toxin exposure. Further, there were significant correlations between brain brevetoxin levels and ChE activity (r=-0.41; pmercury, methylmercury, selenium). Overall, these results in tissues from free-ranging lemon sharks indicate that ecologically relevant exposures to brevetoxins may cause significant changes in brain neurochemistry. As disruptions to neurochemistry precede structural and functional damage to the nervous system, these results suggest that relevant exposures to HABs may be causing sub-clinical effects in lemon sharks and raise further questions about the ecological and physiological impacts of HABs on marine biota.

  15. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    Science.gov (United States)

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution.

  16. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis

    Science.gov (United States)

    Whitcomb, David C.; LaRusch, Jessica; Krasinskas, Alyssa M.; Klei, Lambertus; Smith, Jill P.; Brand, Randall E.; Neoptolemos, John P.; Lerch, Markus M.; Tector, Matt; Sandhu, Bimaljit S.; Guda, Nalini M.; Orlichenko, Lidiya; Alkaade, Samer; Amann, Stephen T.; Anderson, Michelle A.; Baillie, John; Banks, Peter A.; Conwell, Darwin; Coté, Gregory A.; Cotton, Peter B.; DiSario, James; Farrer, Lindsay A.; Forsmark, Chris E.; Johnstone, Marianne; Gardner, Timothy B.; Gelrud, Andres; Greenhalf, William; Haines, Jonathan L.; Hartman, Douglas J.; Hawes, Robert A.; Lawrence, Christopher; Lewis, Michele; Mayerle, Julia; Mayeux, Richard; Melhem, Nadine M.; Money, Mary E.; Muniraj, Thiruvengadam; Papachristou, Georgios I.; Pericak-Vance, Margaret A.; Romagnuolo, Joseph; Schellenberg, Gerard D.; Sherman, Stuart; Simon, Peter; Singh, Vijay K.; Slivka, Adam; Stolz, Donna; Sutton, Robert; Weiss, Frank Ulrich; Wilcox, C. Mel; Zarnescu, Narcis Octavian; Wisniewski, Stephen R.; O'Connell, Michael R.; Kienholz, Michelle L.; Roeder, Kathryn; Barmada, M. Michael; Yadav, Dhiraj; Devlin, Bernie; Albert, Marilyn S.; Albin, Roger L.; Apostolova, Liana G.; Arnold, Steven E.; Baldwin, Clinton T.; Barber, Robert; Barnes, Lisa L.; Beach, Thomas G.; Beecham, Gary W.; Beekly, Duane; Bennett, David A.; Bigio, Eileen H.; Bird, Thomas D.; Blacker, Deborah; Boxer, Adam; Burke, James R.; Buxbaum, Joseph D.; Cairns, Nigel J.; Cantwell, Laura B.; Cao, Chuanhai; Carney, Regina M.; Carroll, Steven L.; Chui, Helena C.; Clark, David G.; Cribbs, David H.; Crocco, Elizabeth A.; Cruchaga, Carlos; DeCarli, Charles; Demirci, F. Yesim; Dick, Malcolm; Dickson, Dennis W.; Duara, Ranjan; Ertekin-Taner, Nilufer; Faber, Kelley M.; Fallon, Kenneth B.; Farlow, Martin R.; Ferris, Steven; Foroud, Tatiana M.; Frosch, Matthew P.; Galasko, Douglas R.; Ganguli, Mary; Gearing, Marla; Geschwind, Daniel H.; Ghetti, Bernardino; Gilbert, John R.; Gilman, Sid; Glass, Jonathan D.; Goate, Alison M.; Graff-Radford, Neill R.; Green, Robert C.; Growdon, John H.; Hakonarson, Hakon; Hamilton-Nelson, Kara L.; Hamilton, Ronald L.; Harrell, Lindy E.; Head, Elizabeth; Honig, Lawrence S.; Hulette, Christine M.; Hyman, Bradley T.; Jicha, Gregory A.; Jin, Lee-Way; Jun, Gyungah; Kamboh, M. Ilyas; Karydas, Anna; Kaye, Jeffrey A.; Kim, Ronald; Koo, Edward H.; Kowall, Neil W.; Kramer, Joel H.; Kramer, Patricia; Kukull, Walter A.; LaFerla, Frank M.; Lah, James J.; Leverenz, James B.; Levey, Allan I.; Li, Ge; Lin, Chiao-Feng; Lieberman, Andrew P.; Lopez, Oscar L.; Lunetta, Kathryn L.; Lyketsos, Constantine G.; Mack, Wendy J.; Marson, Daniel C.; Martin, Eden R.; Martiniuk, Frank; Mash, Deborah C.; Masliah, Eliezer; McKee, Ann C.; Mesulam, Marsel; Miller, Bruce L.; Miller, Carol A.; Miller, Joshua W.; Montine, Thomas J.; Morris, John C.; Murrell, Jill R.; Naj, Adam C.; Olichney, John M.; Parisi, Joseph E.; Peskind, Elaine; Petersen, Ronald C.; Pierce, Aimee; Poon, Wayne W.; Potter, Huntington; Quinn, Joseph F.; Raj, Ashok; Raskind, Murray; Reiman, Eric M.; Reisberg, Barry; Reitz, Christiane; Ringman, John M.; Roberson, Erik D.; Rosen, Howard J.; Rosenberg, Roger N.; Sano, Mary; Saykin, Andrew J.; Schneider, Julie A.; Schneider, Lon S.; Seeley, William W.; Smith, Amanda G.; Sonnen, Joshua A.; Spina, Salvatore; Stern, Robert A.; Tanzi, Rudolph E.; Trojanowski, John Q.; Troncoso, Juan C.; Tsuang, Debby W.; Valladares, Otto; Van Deerlin, Vivianna M.; Van Eldik, Linda J.; Vardarajan, Badri N.; Vinters, Harry V.; Vonsattel, Jean Paul; Wang, Li-San; Weintraub, Sandra; Welsh-Bohmer, Kathleen A.; Williamson, Jennifer; Woltjer, Randall L.; Wright, Clinton B.; Younkin, Steven G.; Yu, Chang-En; Yu, Lei

    2012-01-01

    Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07. PMID:23143602

  17. LOWER DOSE OF AMINOGLYCOSIDE OTOTOXIC EXPOSURE CAUSES PRESYNAPTIC ALTERATIONS ASSOICATED WITH HEARING LOSS

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; WANG Xiaoyu; LI Sijun; TANG Siquan; XU Yice; WANG Xuefeng; SUN Jianhe; YANG Weiyan; YANG Shiming

    2014-01-01

    Objective To study presynaptic alternations of cochlear ribbons arising from aminoglycoside ototoxic stimuli in C57BL/6J mice. Methods Animals were injected with low dose gentamicin (100 mg/kg/day) for 14 days, From the 14th to 28th days, the mice were maintained free of gentamicin treatment. Immunohisto-chemistry labeling was employed to trace RIBEYE, a major presynaptic componment of ribbon synapses. RIBEYE/CtBP2 expression levels were assessed and compared with hearing threshold shifts. Auditory func-tion was assessed by auditory brainstem responses. The stereocilia of outer hair cells (OHCs) and IHCs was examined by scanning electron microscopy (SEM). Results Hearing thresholds were elevated with peak hearing loss observed on the 7th day after gentamicin exposure, followed by improvement after the 7th day. RIBEYE/CtBP2 expression directly correlated with observed hearing threshold shifts. Strikingly, we did not see any obvious changes in stereocilia in both OHCs and IHCs until the 28th day. Mild changes in stereocil-ia were only observed in OHCs on the 28th day. Conclusions These findings indicate that presynapse co-chlear ribbons, rather than stereocilia, may be sensitive to aminoglycoside ototoxic exposure in mice cochle-ae. A pattern of RIBEYE/CtBP2 expression changes seems to parallel hearing threshold shifts and suggests presynaptic response properties to lower dosage of aminoglycoside ototoxic stimuli.

  18. Neonatal caffeine exposure alters seizure susceptibility in rats in an age-related manner.

    Science.gov (United States)

    Guillet, R

    1995-10-27

    Early developmental exposure to caffeine in rats results in decreased susceptibility to certain chemically-induced seizures in the adult. To determine whether this effect first appears in adulthood or is present during preceding developmental stages, we exposed neonatal rats to caffeine and determined seizure thresholds in animals 28, 42 and 70-90 days of age. Rats were unhandled or received either vehicle (water) or caffeine (15-20 mg/kg/day) by gavage (0.05 ml/10 g) over postnatal days 2-6. At 28, 42, or 70-90 days of age, rats were infused intravenously with picrotoxin (PIC), bicuculline (BIC), pentylenetetrazol (PTZ), caffeine (CAFF), strychnine (STR), or kainic acid (KA). Seizure thresholds for each compound were analyzed as a function of neonatal treatment, sex, and age. At 28 days, neonatally caffeine-exposed rats had a higher seizure threshold only for PTZ (P PIC (P < 0.0007) and PTZ (P < 0.0001) than did controls. These results at 28 and 42 days are compared with previously reported data that demonstrated that in adulthood, rats neonatally exposed to caffeine have higher thresholds for seizure induction with CAFF, PTZ, and KA. Thus, early developmental exposure to caffeine results in decreases in seizure susceptibility that are agent specific and may result in a delay in the decrease in seizure threshold that occurs for many agents between late juvenile ages and adulthood.

  19. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    Science.gov (United States)

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal.

  20. Sublethal exposure to azamethiphos causes neurotoxicity, altered energy allocation and high mortality during simulated live transport in American lobster.

    Science.gov (United States)

    Couillard, C M; Burridge, L E

    2015-05-01

    In the Bay of Fundy, New Brunswick, sea lice outbreaks in caged salmon are treated with pesticides including Salmosan(®), applied as bath treatments and then released into the surrounding seawater. The effect of chronic exposure to low concentrations of this pesticide on neighboring lobster populations is a concern. Adult male lobsters were exposed to 61 ngL(-1) of azamethiphos (a.i. in Salmosan(®) formulation) continuously for 10 days. In addition to the direct effects of pesticide exposure, effects on the ability to cope with shipping conditions and the persistence of the effects after a 24h depuration period in clean seawater were assessed. Indicators of stress and hypoxia (serum total proteins, hemocyanin and lactate), oxidative damage (protein carbonyls in gills and serum) and altered energy allocation (hepatosomatic and gonadosomatic indices, hepatopancreas lipids) were assessed in addition to neurotoxicity (chlolinesterase activity in muscle). Directly after exposure, azamethiphos-treated lobsters had inhibition of muscle cholinesterase, reduced gonadosomatic index and enhanced hepatosomatic index and hepatopancreas lipid content. All these responses persisted after 24-h depuration, increasing the risk of cumulative impacts with further exposure to chemical or non-chemical stressors. In both control and treated lobsters exposed to simulated shipment conditions, concentrations of protein and lactate in serum, and protein carbonyls in gills increased. However, mortality rate was higher in azamethiphos-treated lobsters (33 ± 14%) than in controls (2.6 ± 4%). Shipment and azamethiphos had cumulative impacts on serum proteins. Both direct effects on neurological function and energy allocation and indirect effect on ability to cope with shipping stress could have significant impacts on lobster population and/or fisheries.

  1. Hepatic and intestine alterations in mice after prolonged exposure to low oral doses of Microcystin-LR.

    Science.gov (United States)

    Sedan, Daniela; Laguens, Martín; Copparoni, Guido; Aranda, Jorge Oswaldo; Giannuzzi, Leda; Marra, Carlos Alberto; Andrinolo, Darío

    2015-09-15

    Oral intake of Microcystin-LR (MC-LR) is the principal route of exposure to this toxin, with prolonged exposure leading to liver damage of unspecific symptomatology. The aim of the present paper was therefore to investigate the liver and intestine damage generated by prolonged oral exposure to low MC-LR doses (50 and 100 μg MC-LR/kg body weight, administrated every 48 h during a month) in a murine model. We found alterations in TBARS, SOD activity and glutathione content in liver and intestine of mice exposed to both doses of MC-LR. Furthermore, the presence of MC-LR was detected in both organs. We also found hepatic steatosis (3.6 ± 0.6% and 15.3 ± 1.6%) and a decrease in intraepithelial lymphocytes (28.7 ± 5.0% and 44.2 ± 8.7%) in intestine of 50- and 100-μg MC-LR/kg treated animals, respectively. This result could have important implications for mucosal immunity, since intraepithelial lymphocytes are the principal effectors of this system. Our results indicate that prolonged oral exposure at 50 μg MC-LR/kg every 48 h generates significant damage not only in liver but also in intestine. This finding calls for a re-appraisal of the currently accepted NOAEL (No Observed Adverse Effect Level), 40 μg MC-LR/kg body weight, used to derive the guideline value for MC-LR in drinking water.

  2. Exposure to (12)C particles alters the normal dynamics of brain monoamine metabolism and behaviour in rats.

    Science.gov (United States)

    Belov, Oleg V; Belokopytova, Ksenia V; Bazyan, Ara S; Kudrin, Vladimir S; Narkevich, Viktor B; Ivanov, Aleksandr A; Severiukhin, Yury S; Timoshenko, Gennady N; Krasavin, Eugene A

    2016-09-01

    Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1Gy of 500MeV/u (12)C particles with a relatively moderate linear energy transfer (10.6keV/μm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to (12)C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems' functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer.

  3. Acute fluoxetine exposure alters crab anxiety-like behaviour, but not aggressiveness.

    Science.gov (United States)

    Hamilton, Trevor James; Kwan, Garfield T; Gallup, Joshua; Tresguerres, Martin

    2016-01-25

    Aggression and responsiveness to noxious stimuli are adaptable traits that are ubiquitous throughout the animal kingdom. Like vertebrate animals, some invertebrates have been shown to exhibit anxiety-like behaviour and altered levels of aggression that are modulated by the neurotransmitter serotonin. To investigate whether this influence of serotonin is conserved in crabs and whether these behaviours are sensitive to human antidepressant drugs; the striped shore crab, Pachygrapsus crassipes, was studied using anxiety (light/dark test) and aggression (mirror test) paradigms. Crabs were individually exposed to acute doses of the selective serotonin reuptake inhibitor, fluoxetine (5 or 25 mg/L), commonly known as Prozac®, followed by behavioural testing. The high dose of fluoxetine significantly decreased anxiety-like behaviour but had no impact on mobility or aggression. These results suggest that anxiety-like behaviour is more sensitive to modulation of serotonin than is aggressiveness in the shore crab.

  4. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure.

    Science.gov (United States)

    Liu, Qing; Rise, Matthew L; Spitsbergen, Jan M; Hori, Tiago S; Mieritz, Mark; Geis, Steven; McGraw, Joseph E; Goetz, Giles; Larson, Jeremy; Hutz, Reinhold J; Carvan, Michael J

    2013-09-15

    The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ngTCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ngTCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down-regulated gene among each group based on microarray data, and their QPCR validations are consistent with microarray data for the 10 and 100 ppb TCDD treatment groups after 28 days exposure (pTCDD-responsive rainbow trout transcripts identified in the present study may lead to the development of new molecular biomarkers for assessing the potential impacts of

  5. Exposure and Figure Out of Climate Induced Alterations in the Wetlands of Banglades

    Science.gov (United States)

    Siddiquee, S. A.; Rahman, M. Z.

    2015-12-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  6. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure

    DEFF Research Database (Denmark)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H

    2016-01-01

    similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae......, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota...... of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature....

  7. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    Science.gov (United States)

    Chen, Yichang; Shu, Le; Qiu, Zhiqun; Lee, Dong Yeon; Settle, Sara J; Que Hee, Shane; Telesca, Donatello; Yang, Xia; Allard, Patrick

    2016-07-01

    Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.

  8. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice.

    Directory of Open Access Journals (Sweden)

    Jennifer T Wolstenholme

    Full Text Available Bisphenol A (BPA is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5 because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.

  9. Breath gas concentrations mirror exposure to sevoflurane and isopropyl alcohol in hospital environments in non-occupational conditions.

    Science.gov (United States)

    Castellanos, Mar; Xifra, Gemma; Fernández-Real, José Manuel; Sánchez, Juan M

    2016-01-29

    Anaesthetic gases and disinfectants are a primary source of air contamination in hospitals. A highly sensitive sorbent-trap methodology has been used to analyse exhaled breath samples with detection limits in the pptv range, which allows volatile organic compounds (VOCs) to be detected at significantly lower levels (5-6 orders of magnitude below) than the recommended exposure limits by different organizations. Two common VOCs used in hospital environments, isopropyl alcohol (IPA) and sevoflurane, have been evaluated. Forced-expiratory breath samples were obtained from 100 volunteers (24 hospital staff, 45 hospital visitors and 31 external controls). Significant differences for IPA were found between samples from volunteers who had not been in contact with hospital environments (mean value of 8.032 ppbv) and people staying (20.981 ppbv, p  =  0.0002) or working (19.457 ppbv, p  =  0.000 09) in such an environment. Sevoflurane, an anaesthetic gas routinely used as an inhaled anaesthetic, was detected in all samples from volunteers in the hospital environment but not in volunteers who had not been in recent contact with a hospital environment. The levels of sevoflurane were significantly higher (p  =  0.000 24) among staff members (0.522 ppbv) than among visitors to the hospital (0.196 ppbv). We conclude that highly sensitive methods are required to detect anaesthetic gas contamination in hospital environments.

  10. Community violence exposure, coping, and problematic alcohol and drug use among urban, female caregivers: A prospective study.

    Science.gov (United States)

    Kliewer, Wendy; Zaharakis, Nikola

    2013-08-01

    Victimization is associated with substance use in women, but less is known about linkages between witnessing community violence and substance use, even though more women witness versus directly experience violence. Further, factors that contribute to or protect against women's problematic substance use are less well understood. Urban female caregivers (N = 318; > 92% African American/black) living in low-income communities were interviewed annually for three waves regarding exposure to community violence, coping behaviors, substance use, and protective factors. Path analyses revealed that lifetime witnessing of violence, but not victimization, assessed at baseline, was associated with changes in avoidant coping, but not active coping, one year later; avoidant coping, in turn, was related to changes in and higher levels of problematic drug use the following year. Victimization was directly related to problematic drug use, but not to alcohol use. Regression analyses indicated that high levels of religious commitment and social support at baseline were prospectively associated with lower levels of avoidant coping. Because caregivers are important role models for their children, it is important to attend to the factors that contribute to their substance use and abuse.

  11. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  12. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States); Rise, Matthew L. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Spitsbergen, Jan M. [Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331 (United States); Hori, Tiago S. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Mieritz, Mark; Geis, Steven [Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706 (United States); McGraw, Joseph E. [School of Pharmacy, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097 (United States); Goetz, Giles [School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle, WA 98195 (United States); Larson, Jeremy; Hutz, Reinhold J. [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); Carvan, Michael J., E-mail: carvanmj@uwm.edu [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States)

    2013-09-15

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  13. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    Science.gov (United States)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  14. Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus.

    Science.gov (United States)

    Bristot Silvestrin, Roberta; Bambini-Junior, Victorio; Galland, Fabiana; Daniele Bobermim, Larissa; Quincozes-Santos, André; Torres Abib, Renata; Zanotto, Caroline; Batassini, Cristiane; Brolese, Giovana; Gonçalves, Carlos-Alberto; Riesgo, Rudimar; Gottfried, Carmem

    2013-02-07

    Autism spectrum disorders (ASD) are characterized by deficits in social interaction, language and communication impairments and repetitive and stereotyped behaviors, with involvement of several areas of the central nervous system (CNS), including hippocampus. Although neurons have been the target of most studies reported in the literature, recently, considerable attention has been centered upon the functionality and plasticity of glial cells, particularly astrocytes. These cells participate in normal brain development and also in neuropathological processes. The present work investigated hippocampi from 15 (P15) and 120 (P120) days old male rats prenatally exposed to valproic acid (VPA) as an animal model of autism. Herein, we analyzed astrocytic parameters such as glutamate transporters and glutamate uptake, glutamine synthetase (GS) activity and glutathione (GSH) content. In the VPA group glutamate uptake was unchanged at P15 and increased 160% at P120; the protein expression of GLAST did not change neither in P15 nor in P120, while GLT1 decreased 40% at P15 and increased 92% at P120; GS activity increased 43% at P15 and decreased 28% at P120; GSH content was unaltered at P15 and had a 27% increase at P120. These data highlight that the astrocytic clearance and destination of glutamate in the synaptic cleft might be altered in autism, pointing out important aspects to be considered from both pathophysiologic and pharmacological approaches in ASD.

  15. Developmental Exposure to Aroclor 1254 Alters Migratory Behavior in Juvenile European Starlings (Sturnus vulgaris).

    Science.gov (United States)

    Flahr, Leanne M; Michel, Nicole L; Zahara, Alexander R D; Jones, Paul D; Morrissey, Christy A

    2015-05-19

    Birds exposed to endocrine disrupting chemicals during development could be susceptible to neurological and other physiological changes affecting migratory behaviors. We investigated the effects of ecologically relevant levels of Aroclor 1254, a polychlorinated biphenyl (PCB) mixture, on moult, fattening, migratory activity, and orientation in juvenile European starlings (Sturnus vulgaris). Birds were orally administered 0 (control), 0.35 (low), 0.70 (intermediate), or 1.05 (high) μg Aroclor 1254/g-body weight by gavage from 1 through 18 days posthatch and later exposed in captivity to a photoperiod shift simulating an autumn migration. Migratory activity and orientation were examined using Emlen funnel trials. Across treatments, we found significant increases in mass, fat, and moulting and decreasing plasma thyroid hormones over time. We observed a significant increase in activity as photoperiod was shifted from 13L:11D (light:dark) to 12L:12D, demonstrating that migratory condition was induced in captivity. At 12L:12D, control birds oriented to 155.95° (South-Southeast), while high-dosed birds did not. High-dosed birds showed a delayed orientation to 197.48° (South-Southwest) under 10L:14D, concomitant with apparent delays in moult. These findings demonstrate how subtle contaminant-induced alterations during development could lead to longer-scale effects, including changes in migratory activity and orientation, which could potentially result in deleterious effects on fitness and survival.

  16. Developmental exposure to Passiflora incarnata induces behavioural alterations in the male progeny.

    Science.gov (United States)

    Bacchi, André D; Ponte, Bianca; Vieira, Milene L; de Paula, Jaqueline C C; Mesquita, Suzana F P; Gerardin, Daniela C C; Moreira, Estefânia G

    2013-01-01

    Passiflora incarnata is marketed in many countries as a phytomedicine and is prescribed mainly as a sedative and anxiolytic. Even though the directions of most marketed phytomedicines recommend them to be used under medical supervision, reproductive and developmental studies are sparse and not mandatory for regulatory purposes. To evaluate the reproductive and developmental toxicity of P. incarnata, Wistar female rats were gavaged with 30 or 300 mg kg(-1) of this herb from gestational Day (GD) 0 to postnatal Day (PND) 21. P. incarnata treatment did not influence dams' bodyweight or food intake or their reproductive performance (post-implantation loss, litter size, litter weight). There was also no influence on the physical development of pups (bodyweight gain, day of vaginal opening or preputial separation) or their behaviour in the open-field at PND 22, 35 and 75. Sexual behaviour was disrupted in adult male pups exposed to 300 mg kg(-1) of P. incarnata; in this group, only 3 out of 11 pups were sexually competent. This behavioural disruption was not accompanied by alterations in plasma testosterone levels, reproductive-related organs and glands weights or sperm count. It is hypothesised that aromatase inhibition may be involved in the observed effect.

  17. TOTAL NUMBER: A BRIEF REVIEW OF ITS IMPORTANCE AND ITS USE IN ASSESSING CEREBELLAR DAMAGE IN THE RAT FOLLOWING EARLY POSTNATAL ALCOHOL EXPOSURE

    Directory of Open Access Journals (Sweden)

    Ruth MA Napper

    2011-05-01

    Full Text Available Knowledge of the total number of structural components that make up the various neural networks within the central nervous system is fundamental to our understanding of its normal function and of dysfunction that may accompany injury and disease. This paper briefly reviews the methodology currently used to estimate number and discusses the importance of unbiased estimates of total number in determining changes in brain structure that may underlie dysfunction. An example from the olfactory bulb is used to demonstrate the potential invalidity of using estimates of total number of objects per single section. Exposure to alcohol during the early postnatal period results in motor dysfunction in adult rats. This paper presents data on the extent and magnitude of cell loss within the cerebellar network of the rat following alcohol exposure during postnatal days 4 to 9. High transient blood alcohol concentrations result in a Purkinje cell of 27% across the entire cerebellum but with regional variabiltiy, vermal lobule X has a 43% Purkinje cell deficit. This alcohol regimen also results in a neuronal loss of 28% and 25% within the deep cerebellar nucleus and inferior olivary nucleus respectively. Consistency of overall neuronal loss across diverse neuronal populations within the cerebellar network is discussed in the context of the maintenance of cerebellar connectivity.

  18. The Contribution of Childhood Parental Rejection and Early Androgen Exposure to Impairments in Socio-Cognitive Skills in Intimate Partner Violence Perpetrators with High Alcohol Consumption

    Directory of Open Access Journals (Sweden)

    Luis Moya-Albiol

    2013-08-01

    Full Text Available Alcohol consumption, a larger history of childhood parental rejection, and high prenatal androgen exposure have been linked with facilitation and high risk of recidivism in intimate partner violence (IPV perpetrators. Participants were distributed into two groups according to their alcohol consumption scores as high (HA and low (LA. HA presented a higher history of childhood parental rejection, prenatal masculinization (smaller 2D:4D ratio, and violence-related scores than LA IPV perpetrators. Nonetheless, the former showed poor socio-cognitive skills performance (cognitive flexibility, emotional recognition and cognitive empathy. Particularly in HA IPV perpetrators, the history of childhood parental rejection was associated with high hostile sexism and low cognitive empathy. Moreover, a masculinized 2D:4D ratio was associated with high anger expression and low cognitive empathy. Parental rejection during childhood and early androgen exposure are relevant factors for the development of violence and the lack of adequate empathy in adulthood. Furthermore, alcohol abuse plays a key role in the development of socio-cognitive impairments and in the proneness to violence and its recidivism. These findings contribute to new coadjutant violence intervention programs, focused on the rehabilitation of basic executive functions and emotional decoding processes and on the treatment of alcohol dependence.

  19. Biochemical and histological alterations in liver following sub chronic exposure of arsenic

    Directory of Open Access Journals (Sweden)

    Madhuri Mehta

    2015-07-01

    Full Text Available Objective: Contamination of groundwater with arsenic is of global concern. The present work was aimed to evaluate the biochemical and histological changes in liver of female rats induced by sodium arsenite at doses naturally found in groundwater of Punjab. Method: Twenty four female rats were divided into four groups of 6 animals each. Group I animals received distilled water and served as control; Group II-IV received arsenic at the dose of 10, 30 and 50 ppb (μg/L dissolved in distilled water ad libitum for 30 days. At the end of experiment, animals were sacrificed and liver was collected for biochemical and histological evaluation. Results: Biochemical analysis showed an increase in the activity of hepatic marker enzymes including transferases, phosphatases and lactate dehydrogenase (LDH. Also, the levels of antioxidant enzymes (catalase, reduced glutathione and glutathione-S-transferase decreased significantly (P<0.05 in treated animals when compared to control. A significant (P<0.05 dose dependent increase in the levels of lipid peroxidation and arsenic concentration in liver tissue was observed. Histological examination showed the presence of pyknotic bodies (necrosis and sinusoidal dilation in hepatocytes of treated groups. Conclusion: Sub chronic exposure of arsenic at these doses induces hepatotoxicity leading to oxidative stress.

  20. Long-term exposure to elevated CO2 and O3 alters aspen foliar chemistry across developmental stages.

    Science.gov (United States)

    Couture, J J; Holeski, L M; Lindroth, R L

    2014-03-01

    Anthropogenic activities are altering levels of greenhouse gases to the extent that multiple and diverse ecosystem processes are being affected. Two gases that substantially influence forest health are atmospheric carbon dioxide (CO2 ) and tropospheric ozone (O3 ). Plant chemistry will play an important role in regulating ecosystem processes in future environments, but little information exists about the longitudinal effects of elevated CO2 and O3 on phytochemistry, especially for long-lived species such as trees. To address this need, we analysed foliar chemical data from two genotypes of trembling aspen, Populus tremuloides, collected over 10 years of exposure to levels of CO2 and O3 predicted for the year 2050. Elevated CO2 and O3 altered both primary and secondary chemistry, and the magnitude and direction of the responses varied across developmental stages and between aspen genotypes. Our findings suggest that the effects of CO2 and O3 on phytochemical traits that influence forest processes will vary over tree developmental stages, highlighting the need to continue long-term, experimental atmospheric change research.

  1. Rigorous tests of gene-environment interactions in a lab study of the oxytocin receptor gene (OXTR), alcohol exposure, and aggression.

    Science.gov (United States)

    LoParo, Devon; Johansson, Ada; Walum, Hasse; Westberg, Lars; Santtila, Pekka; Waldman, Irwin

    2016-07-01

    Naturalistic studies of gene-environment interactions (G X E) have been plagued by several limitations, including difficulty isolating specific environmental risk factors from other correlated aspects of the environment, gene-environment correlation (rGE ), and the use of a single genetic variant to represent the influence of a gene. We present results from 235 Finnish young men in two lab studies of aggression and alcohol challenge that attempt to redress these limitations of the extant G X E literature. Specifically, we use a latent variable modeling approach in an attempt to more fully account for genetic variation across the oxytocin receptor gene (OXTR) and to robustly test its main effects on aggression and its interaction with alcohol exposure. We also modeled aggression as a latent variable comprising various indices, including the average and maximum levels of aggression, the earliest trial on which aggression was expressed, and the proportion of trials on which the minimum and maximum levels of aggression were expressed. The best fitting model for the genetic variation across OXTR included six factors derived from an exploratory factor analysis, roughly corresponding to six haplotype blocks. Aggression levels were higher on trials in which participants were administered alcohol, won, or were provoked. There was a significant main effect of OXTR on aggression across studies after controlling for covariates. The interaction of OXTR and alcohol was also significant across studies, such that OXTR had stronger effects on aggression in the alcohol administration condition. © 2015 Wiley Periodicals, Inc.

  2. Alcohol Consumption Patterns among Adolescents are Related to Family Structure and Exposure to Drunkenness within the Family: Results from the SEYLE Project

    Science.gov (United States)

    Rüütel, Erik; Sisask, Merike; Värnik, Airi; Värnik, Peeter; Carli, Vladimir; Wasserman, Camilla; Hoven, Christina W.; Sarchiapone, Marco; Apter, Alan; Balazs, Judit; Bobes, Julio; Brunner, Romuald; Corcoran, Paul; Cosman, Doina; Haring, Christian; Iosue, Miriam; Kaess, Michael; Kahn, Jean-Pierre; Poštuvan, Vita; Sáiz, Pilar A.; Wasserman, Danuta

    2014-01-01

    There is expedient evidence showing that differences in adolescent alcohol consumption and other risk-behaviour depend on both family structure and family member drunkenness exposure. Data were obtained among adolescents (N = 12,115, mean age 14.9 ± 0.89) in Austria, Estonia, France, Germany, Hungary, Ireland, Israel, Italy, Romania, Slovenia and Spain within the European Union’s 7th Framework Programme funded project, ‘Saving and Empowering Young Lives in Europe (SEYLE)’. The current study reveals how adolescents’ alcohol consumption patterns are related to their family structure and having seen their family member drunk. The results revealed statistically significant differences in adolescent alcohol consumption depending on whether the adolescent lives in a family with both birth parents, in a single-parent family or in a family with one birth parent and one step-parent. The study also revealed that the abstaining from alcohol percentage among adolescents was greater in families with both birth parents compared to other family types. The study also showed that the more often adolescents see their family member drunk the more they drink themselves. There is no difference in adolescent drinking patterns whether they see their family member drunk once a month or once a week. This study gives an insight on which subgroups of adolescents are at heightened risk of alcohol abuse and that decrease of family member drunkenness may have positive effects on the drinking habits of their children. PMID:25493392

  3. Alcohol Consumption Patterns among Adolescents are Related to Family Structure and Exposure to Drunkenness within the Family: Results from the SEYLE Project

    Directory of Open Access Journals (Sweden)

    Erik Rüütel

    2014-12-01

    Full Text Available There is expedient evidence showing that differences in adolescent alcohol consumption and other risk-behaviour depend on both family structure and family member drunkenness exposure. Data were obtained among adolescents (N = 12,115, mean age 14.9 ± 0.89 in Austria, Estonia, France, Germany, Hungary, Ireland, Israel, Italy, Romania, Slovenia and Spain within the European Union’s 7th Framework Programme funded project, ‘Saving and Empowering Young Lives in Europe (SEYLE’. The current study reveals how adolescents’ alcohol consumption patterns are related to their family structure and having seen their family member drunk. The results revealed statistically significant differences in adolescent alcohol consumption depending on whether the adolescent lives in a family with both birth parents, in a single-parent family or in a family with one birth parent and one step-parent. The study also revealed that the abstaining from alcohol percentage among adolescents was greater in families with both birth parents compared to other family types. The study also showed that the more often adolescents see their family member drunk the more they drink themselves. There is no difference in adolescent drinking patterns whether they see their family member drunk once a month or once a week. This study gives an insight on which subgroups of adolescents are at heightened risk of alcohol abuse and that decrease of family member drunkenness may have positive effects on the drinking habits of their children.

  4. Prenatal Hyperandrogenization Induces Metabolic and Endocrine Alterations Which Depend on the Levels of Testosterone Exposure

    Science.gov (United States)

    Amalfi, Sabrina; Velez, Leandro Martín; Heber, María Florencia; Vighi, Susana; Ferreira, Silvana Rocío; Orozco, Adriana Vega; Pignataro, Omar; Motta, Alicia Beatriz

    2012-01-01

    Prenatal hyperandrogenism is able to induce polycystic ovary syndrome (PCOS) in rats. The aim of the present study was to establish if the levels of prenatal testosterone may determine the extent of metabolic and endocrine alterations during the adult life. Pregnant Sprague Dawley rats were prenatally injected with either 2 or 5 mg free testosterone (groups T2 and T5 respectively) from day 16 to day 19 day of gestation. Female offspring from T2 and T5 displayed different phenotype of PCOS during adult life. Offspring from T2 showed hyperandrogenism, ovarian cysts and ovulatory cycles whereas those from T5 displayed hyperandrogenism, ovarian cysts and anovulatory cycles. Both group showed increased circulating glucose levels after the intraperitoneal glucose tolerance test (IPGTT; an evaluation of insulin resistance). IPGTT was higher in T5 rats and directly correlated with body weight at prepubertal age. However, the decrease in the body weight at prepubertal age was compensated during adult life. Although both groups showed enhanced ovarian steroidogenesis, it appears that the molecular mechanisms involved were different. The higher dose of testosterone enhanced the expression of both the protein that regulates cholesterol availability (the steroidogenic acute regulatory protein (StAR)) and the protein expression of the transcriptional factor: peroxisome proliferator-activated receptor gamma (PPAR gamma). Prenatal hyperandrogenization induced an anti-oxidant response that prevented a possible pro-oxidant status. The higher dose of testosterone induced a pro-inflammatory state in ovarian tissue mediated by increased levels of prostaglandin E (PG) and the protein expression of cyclooxygenase 2 (COX2, the limiting enzyme of PGs synthesis). In summary, our data show that the levels of testosterone prenatally injected modulate the uterine environment and that this, in turn, would be responsible for the endocrine and metabolic abnormalities and the phenotype of PCOS

  5. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  6. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  7. Experimental exposure of African catfish Clarias Gariepinus (Burchell, 1822 to phenol: Clinical evaluation, tissue alterations and residue assessment

    Directory of Open Access Journals (Sweden)

    Mai D. Ibrahem

    2012-04-01

    Full Text Available There is lack of information regarding; the toxicological and pathological consequences of phenol stressed Clarias gariepinus; as well as; the susceptibility of the stressed fish to disease occurrence. Static renewal bioassay was experimentally conducted to evaluate the toxic effects of phenol on the African catfish C. gariepinus. Ninety-six-hour acute toxicity tests revealed that the median lethal concentration of phenol (LC50 is 35 mg/L by immersion. Four experimental fish groups were assigned for 3 weeks exposure test; three were exposed 20%, 50% and 70% LC50, the fourth control fish group received a vehicle of dechlorinated water. Abnormal signs including cessation of feeding, nervous manifestations; skin expressed perfuses mucous, black patches with skin erosion and ulcerations in the later stages. All observations were correlated to the time and dose of exposure. Post mortem examination revealed adhesion of the internal organs. For tissue alterations; Skin, gills, brain, liver and kidney showed variable degrees of degenerative changes and necrosis. Muscle residues shown in mean ± SE were 4.3 ± 0.05 and 6.65 ± 0.05 ppm in groups that received 20 and 50% LD50, respectively. Infection with Aeromonas hydrophila resulted in high percent of mortalities with a non significant difference between the challenged fish groups. The study cleared that phenol is toxic to C. gariepinus under experimental conditions.

  8. Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure

    Science.gov (United States)

    Sokolov, Mykyta; Neumann, Ronald

    2015-01-01

    Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes. PMID:26729107

  9. Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Mykyta Sokolov

    2015-12-01

    Full Text Available Exposure to ionizing radiation (IR is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR compared to those observed after a short-term high-dose IR exposure (HDIR. With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes.

  10. Alteration of the carbon and nitrogen isotopic composition in the Martian surface rocks due to cosmic ray exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-06-01

    13C/12C and 15N/14N isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce 13C and 15N isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both 13C and 15N due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is Mars can explain its high-temperature heavy nitrogen isotopic composition (15N/14N). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  11. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs.

    Science.gov (United States)

    Groner, Maya L; Buck, Julia C; Gervasi, Stephanie; Blaustein, Andrew R; Reinert, Laura K; Rollins-Smith, Louise A; Bier, Mark E; Hempel, John; Relyea, Rick A

    2013-09-01

    For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life.

  12. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    Science.gov (United States)

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.

  13. Alteration of shell nacre micromorphology in blue mussel Mytilus edulis after exposure to free-ionic silver and silver nanoparticles.

    Science.gov (United States)

    Zuykov, Michael; Pelletier, Emilien; Belzile, Claude; Demers, Serge

    2011-07-01

    This study describes the morphology of inner shell surface (ISS) of the blue mussel Mytilus edulis Linnaeus after short-term exposures to radiolabeled silver in free-ionic ((110m)Ag(+)) and engineered nanoparticulate ((110m)AgNPs, <40 nm) phases. Radiolabeled silver in starting solutions was used in a similar low concentration (∼15 Bq mL(-1)) for both treatments. After exposure experiments radiolabeled silver was leached from the ISS using HCl. It concentration for shells from both treatments was ∼0.5 Bq mL(-1). Whole ISS of young individuals and prismatic layer of adults showed no evidence of any major alteration process after silver uptake. However, the nacre portion of adult mussels exposed to both treatments revealed distinct doughnut shape structures (DSS) formed by calcium carbonate micrograins that covered the surface of aragonite tablets. Scanning electron microscope (SEM) imaging revealed the existence of only minor differences in DSS morphology between mussels exposed to Ag(+) and AgNPs. From literature survey, DSS were also found in bivalves exposed to Cd(2+). The DSS occurring in a specimen of a field-collected bivalve is also shown. Formation of distinctive DSS can be explained by a disturbance of the shell calcification mechanism. Although the occurrence of DSS is not exclusively associated with metal bioavailability to the mussels, the morphology of DSS seems to be linked to the speciation of the metal used in the uptake experiments.

  14. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology.

    Science.gov (United States)

    Cacciaglia, Raffaele; Nees, Frauke; Grimm, Oliver; Ridder, Stephanie; Pohlack, Sebastian T; Diener, Slawomira J; Liebscher, Claudia; Flor, Herta

    2017-02-01

    Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology.

  15. Acute alcohol-induced liver injury

    Directory of Open Access Journals (Sweden)

    Gavin Edward Arteel

    2012-06-01

    Full Text Available Alcohol consumption is customary in most cultures and alcohol abuse is common worldwide. For example, more than 50% of Americans consume alcohol, with an estimated 23.1% of Americans participating in heavy and/or binge drinking at least once a month. A safe and effective therapy for alcoholic liver disease (ALD in humans is still elusive, despite significant advances in our understanding of how the disease is initiated and progresses. It is now clear that acute alcohol binges not only can be acutely toxic to the liver, but also can contribute to the chronicity of ALD. Potential mechanisms by which acute alcohol causes damage include steatosis, dysregulated immunity and inflammation and altered gut permeability. Recent interest in modeling acute alcohol exposure has yielded new insights into potential mechanisms of acute injury, that also may well be relevant for chronic ALD. Recent work by this group on the role of PAI-1 and fibrin metabolism in mediating acute alcohol-induced liver damage serve as an example of possible new targets that may be useful for alcohol abuse, be it acute or chronic.

  16. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio).

    Science.gov (United States)

    Dishaw, Laura V; Hunter, Deborah L; Padnos, Beth; Padilla, Stephanie; Stapleton, Heather M

    2014-12-01

    Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect the developing nervous system. This study evaluated the overt toxicity, uptake, and neurobehavioral effects of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP) in early life stage zebrafish. Chlorpyrifos was used as a positive control. For overt toxicity and neurobehavioral assessments, zebrafish were exposed from 0 to 5 days postfertilization (dpf). Hatching, death, or malformations were evaluated daily. Teratogenic effects were scored by visual examination on 6 dpf. To evaluate uptake and metabolism, zebrafish were exposed to 1 µM of each organophosphate (OP) flame retardant and collected on 1 and 5 dpf to monitor accumulation. Larval swimming activity was measured in 6 dpf larvae to evaluate neurobehavioral effects of exposures below the acute toxicity threshold. TDBPP elicited the greatest toxicity at >1 µM. TDCPP and chlorpyrifos were overtly toxic at concentrations ≥10 µM, TCEP, and TCPP were not overtly toxic at the doses tested. Tissue concentrations increased with increasing hydrophobicity of the parent chemical after 24 h exposures. TDCPP and TDBPP and their respective metabolites were detected in embryos on 5 dpf. For all chemicals tested, developmental exposures that were not overtly toxic significantly altered larval swimming activity. These data indicate that OPFRs adversely affect development of early life stage zebrafish.

  17. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    Science.gov (United States)

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species.

  18. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  19. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats.

    Science.gov (United States)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE+ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE+HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE+HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a "two-programming" hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is "the first programming", and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as "the second programming".

  20. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol.

    Science.gov (United States)

    Sawant, Onkar B; Ramadoss, Jayanth; Hankins, Gary D; Wu, Guoyao; Washburn, Shannon E

    2014-08-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.

  1. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol

    Science.gov (United States)

    Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao

    2014-01-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy. PMID:24810329

  2. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    Science.gov (United States)

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  3. Epigenetics-beyond the genome in alcoholism.

    Science.gov (United States)

    Starkman, Bela G; Sakharkar, Amul J; Pandey, Subhash C

    2012-01-01

    Genetic and environmental factors play a role in the development of alcoholism. Whole-genome expression profiling has highlighted the importance of several genes that may contribute to alcohol abuse disorders. In addition, more recent findings have added yet another layer of complexity to the overall molecular mechanisms involved in a predisposition to alcoholism and addiction by demonstrating that processes related to genetic factors that do not manifest as DNA sequence changes (i.e., epigenetic processes) play a role. Both acute and chronic ethanol exposure can alter gene expression levels in specific neuronal circuits that govern the behavioral consequences related to tolerance and dependence. The unremitting cycle of alcohol consumption often includes satiation and self-medication with alcohol, followed by excruciating withdrawal symptoms and the resultant relapse, which reflects both the positive and negative affective states of alcohol addiction. Recent studies have indicated that behavioral changes induced by acute and chronic ethanol exposure may involve chromatin remodeling resulting from covalent histone modifications and DNA methylation in the neuronal circuits involving a brain region called the amygdala. These findings have helped identify enzymes involved in epigenetic mechanisms, such as the histone deacetylase, histone acetyltransferase, and DNA methyltransferase enzymes, as novel therapeutic targets for the development of future pharmacotherapies for the treatment of alcoholism.

  4. A prospective cohort study of alcohol exposure in early and late pregnancy within an urban population in Ireland.

    LENUS (Irish Health Repository)

    Murphy, Deirdre J

    2014-02-01

    Most studies of alcohol consumption in pregnancy have looked at one time point only, often relying on recall. The aim of this longitudinal study was to determine whether alcohol consumption changes in early and late pregnancy and whether this affects perinatal outcomes. We performed a prospective cohort study, conducted from November 2010 to December 2011 at a teaching hospital in the Republic of Ireland. Of the 907 women with a singleton pregnancy who booked for antenatal care and delivered at the hospital, 185 (20%) abstained from alcohol in the first trimester but drank in the third trimester, 105 (12%) consumed alcohol in the first and third trimesters, and the remaining 617 (68%) consumed no alcohol in pregnancy. Factors associated with continuing to drink in pregnancy included older maternal age (30-39 years), Irish nationality, private healthcare, smoking, and a history of illicit drug use. Compared to pre-pregnancy, alcohol consumption in pregnancy was markedly reduced, with the majority of drinkers consuming ≤ 5 units per week (92% in first trimester, 72-75% in third trimester). Perhaps because of this, perinatal outcomes were similar for non-drinkers, women who abstained from alcohol in the first trimester, and women who drank in the first and third trimester of pregnancy. Most women moderate their alcohol consumption in pregnancy, especially in the first trimester, and have perinatal outcomes similar to those who abstain.

  5. The Difference between Anxiolytic and Anxiogenic Effects Induced by Acute and Chronic Alcohol Exposure and Changes in Associative Learning and Memory Based on Color Preference and the Cause of Parkinson-Like Behaviors in Zebrafish.

    Science.gov (United States)

    Li, Xiang; Li, Xu; Li, Yi-Xiang; Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng

    2015-01-01

    We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an "inverted V" dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure.

  6. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.

    Directory of Open Access Journals (Sweden)

    Perinaaz R Wadia

    Full Text Available Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a associated with changes in mRNA expression reflecting estrogenic actions and/or b dependent on the estrogen receptor α (ERα, we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2 on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.

  7. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  8. The pancreas is altered by in utero androgen exposure: implications for clinical conditions such as polycystic ovary syndrome (PCOS.

    Directory of Open Access Journals (Sweden)

    Mick Rae

    Full Text Available Using an ovine model of polycystic ovary syndrome (PCOS, (pregnant ewes injected with testosterone propionate (TP (100 mg twice weekly from day (d62 to d102 of d147 gestation (maternal injection - MI-TP, we previously reported female offspring with normal glucose tolerance but hyperinsulinemia. We therefore examined insulin signalling and pancreatic morphology in these offspring using quantitative (Q RT-PCR and western blotting. In addition the fetal pancreatic responses to MI-TP, and androgenic and estrogenic contributions to such responses (direct fetal injection (FI of TP (20 mg or diethylstilbestrol (DES (20 mg at d62 and d82 gestation were assessed at d90 gestation. Fetal plasma was assayed for insulin, testosterone and estradiol, pancreatic tissue was cultured, and expression of key β-cell developmental genes was assessed by QRT-PCR. In female d62MI-TP offspring insulin signalling was unaltered but there was a pancreatic phenotype with increased numbers of β-cells (P<0.05. The fetal pancreas expressed androgen receptors in islets and genes involved in β-cell development and function (PDX1, IGF1R, INSR and INS were up-regulated in female fetuses after d62MI-TP treatment (P<0.05-0.01. In addition the d62MI-TP pancreas showed increased insulin secretion under euglycaemic conditions (P<0.05 in vitro. The same effects were not seen in the male fetal pancreas or when MI-TP was started at d30, before the male programming window. As d62MI-TP increased both fetal plasma testosterone (P<0.05 and estradiol concentrations (P<0.05 we assessed the relative contribution of androgens and estrogens. FI-TP (commencing d62 (not FI-DES treatment caused elevated basal insulin secretion in vitro and the genes altered by d62MI-TP treatment were similarly altered by FI-TP but not FI-DES. In conclusion, androgen over-exposure alters fetal pancreatic development and β-cell numbers in offspring. These data suggest that that there may be a primary pancreatic

  9. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    <