WorldWideScience

Sample records for alcohol ethanol propanols

  1. An investigation into the electro-oxidation of ethanol and 2-propanol for application in direct alcohol fuel cells (DAFCs)

    Indian Academy of Sciences (India)

    Sagar Sen Gupta; Jayati Datta

    2005-07-01

    A comparative study of the electro-oxidation of ethanol and 2-propanol was carried out on carbon-supported platinum particles. Cyclic voltammetry, steady state polarisation, and electrochemical impedance spectroscopy were used to investigate the oxidation reactions. A difference in the mechanistic behaviour of the oxidation of ethanol and 2-propanol on Pt was observed, thereby highlighting the fact that the molecular structure of the alcohol has great influence on its electroreactivity. The study emphasizes the fact that 2-propanol is a promising fuel candidate for a direct alcohol fuel cell.

  2. Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol) Part I: Acetaldehyde + (methanol or ethanol or 1-propanol)

    International Nuclear Information System (INIS)

    Highlights: • Formation of hemiacetal/poly(oxymethylene) hemiacetals in liquid binary mixtures. • Acetaldehyde and a low molecular alcohol (methanol or ethanol or 1-propanol). • Quantitative 13C NMR spectroscopy at temperatures between (255 and 295) K. • Hemiacetals are the predominant species. • (Acetaldehyde + methanol (50 + 50)) at 255 K: hemiacetal (polymers) >80% (≈10%). -- Abstract: Aldehydes react with alcohols to hemiacetals and poly(oxymethylene) hemiacetals. The chemical reaction equilibria of such reactions, in particular in the liquid state, can have an essential influence on the thermodynamic properties and related phenomena like, for example, on the vapour + liquid phase equilibrium. Therefore, thermodynamic models that aim to describe quantitatively such phase equilibria have to consider the chemical reaction equilibrium in the coexisting phases. This is well known in the literature for systems such as, for example, formaldehyde and methanol. However, experimental information on the chemical reaction equilibria in mixtures with other aldehydes (than formaldehyde) and alcohols is extremely scarce. Therefore, quantitative NMR spectroscopy was used to investigate the chemical reaction equilibria in binary mixtures of acetaldehyde and a single alcohol (here either methanol, ethanol or 1-propanol) at temperatures between (255 and 295) K. The results reveal that the majority of the constituents of the mixture is present as hemiacetal and the first two poly(oxymethylene) hemiacetals: in an equimolar mixture of (acetaldehyde + methanol or ethanol or 1-propanol), between about 90% at T = 255 K and about 75% at 295 K. The mole-fraction based chemical reaction equilibrium constants for the formation of those species were determined and some derived properties are reported

  3. Reprint of ''Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol). Part II: (Propanal or butanal or heptanal) + (methanol or ethanol or 1-propanol)''

    International Nuclear Information System (INIS)

    Highlights: • Formation of hemiacetal/poly(oxymethylene) hemiacetals in liquid binary mixtures. • Aldehyde (1-propanal or 1-butanal or 1-heptanal) and alcohol (methanol or ethanol or 1-propanol). • Quantitative 13C NMR spectroscopy at temperatures between (255 and 295) K. • High conversion rate to hemiacetals. • (1-Propanal + 1-propanol (50 + 50)) at 273 K: mole fraction of hemiacetal (polymers) ≈55% (≈6%). -- Abstract: The chemical reactions of aldehydes with alcohols to (hemiacetals and poly(oxymethylene) hemiacetals) have an essential influence on the thermodynamic properties and related phenomena like, for example, the vapor + liquid phase equilibrium of such liquid mixtures. This is well known in the literature for systems such as, for example, formaldehyde and methanol. Experimental information on the chemical reaction equilibria in mixtures with aldehydes other than formaldehyde and alcohols is extremely scarce. Therefore, in the first part of this series, quantitative NMR spectroscopy was used to investigate the chemical reaction equilibrium in binary liquid mixtures of acetaldehyde and an alcohol (methanol or ethanol or 1-propanol) at temperatures between (255 and 295) K. That work is here extended to three other aldehydes, viz. (1-propanal, 1-butanal and 1-heptanal). The results confirm the expectations from the first part of this series, i.e., that the majority of the constituents of the mixture is present as hemiacetal and the first two poly(oxymethylene) hemiacetals. For example, in an equimolar liquid mixture of {1-heptanal + methanol (or + ethanol or + 1-propanol)} at T = 273 K about 88% (or 81% for both other alcohols) of the aldehyde is bound to hemiacetal and the first two poly(oxymethylene) hemiacetals, i.e., the conversion rates are nearly the same as in the previous investigations with acetaldehyde instead of 1-heptanal. In the series investigated of combinations of aldehydes and alcohols, the particular aldehyde has only a small

  4. Metabolic effects of feeding ethanol or propanol to postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    2011-01-01

    propanol and ethanol. In conclusion, ruminal metabolism is a major component of alcohol metabolism in dairy cows. The postpartum transition dairy cow has sufficient metabolic capacity to cope with high dietary concentrations of primary alcohols even when alcohol intake is abruptly increased at the day of...

  5. Study on the toxic interaction of methanol, ethanol and propanol against the bovine hemoglobin (BHb) on molecular level

    Science.gov (United States)

    Jun, Chai; Xue, Yan; Liu, Rutao; Wang, Meijie

    2011-09-01

    The toxic interaction of methanol, ethanol and propanol with bovine hemoglobin (BHb) at protein molecular level was studied by resonance light scattering (RLS), fluorescence, ultraviolet-visible absorption (UV-vis) and circular dichroism (CD) techniques. The experimental results showed that the three alcohols all had toxic effects on BHb and the effects increased along with the increasing alcohol dose. The results of RLS and fluorescence spectroscopy showed that alcohols can denature BHb. They changed the microenvironment of amino acid residues and led to molecular aggregation. The decreasing order of the influence is propanol, ethanol and methanol. The results of UV-vis and CD spectra revealed that alcohols led to conformational changes of BHb, including the loosening of the skeleton structure and the decreasing of α-helix in the second structure. The changes generated by propanol were much larger than those by methanol and ethanol.

  6. Intermolecular interactions in mixtures of ethyl formate with methanol, ethanol, and 1-propanol on density, viscosity, and ultrasonic data

    Science.gov (United States)

    Elangovan, S.; Mullainathan, S.

    2014-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) have been measured for binary mixtures of ethyl formate with methanol, ethanol, and 1-propanol at 303 K. From the experimental data, adiabatic compressibility (β), acoustic impedance ( Z), viscous relaxation time (τ), free length ( L f), free volume ( V f), internal pressure (πi), and Gibbs free energy (Δ G) have been deduced. It is shown that strength of intermolecular interactions between ethyl formate with selected 1-alcohols were in the order of methanol < ethanol < 1-propanol.

  7. Measurement and modeling of densities and sound velocities of the systems [poly(propylene glycol)+methanol, +ethanol, +1-propanol, +2-propanol and +1-butanol] at T=298.15K

    International Nuclear Information System (INIS)

    Experiments have been performed at T=298.15K to measure the density and sound velocity of the systems [poly(propylene glycol)+methanol, +ethanol, +1-propanol, 2-propanol and +1-butanol] over the whole range of composition. From these measurements, values of the excess molar volume (Vmex) and excess molar isentropic compression, Ks,mex, equal to -(-bar Vmex/-bar p)s were calculated. The excess molar volume for all of these systems were found to be negative and decreases in magnitude as size of alcohol increases, except for 2-propanol solutions for which the magnitude of the excess volume is higher than that of 1-butanol solutions. Expressions for VmexandKs,mex of polymer solutions were obtained for the model of Flory-Huggins and the polymer non-random two liquid (NRTL) model. These expressions were used to fit the experimental VmexandKs,mex data of the investigated systems

  8. Solvatochromism and preferential solvation in mixtures of Methanol with Ethanol, 1-Propanol and 1-Butanol

    Directory of Open Access Journals (Sweden)

    Masoumeh Sayadian

    2014-12-01

    Full Text Available The spectral shift of 4-nitroaniline was determined in pure methanol, ethanol, 1-propanol and 1-butanol and binary mixtures of methanol with other 1-alkanols at 25 ⁰C by UV-vis spectroscopy. The effect of specific and non-specific solute-solvent interactions on the spectral shift was investigated by using the linear solvation energy relationship concept. A multiple linear regression analysis was used to correlate the spectral shift with microscopic Kamlet-Taft parameters (a, b and p* in pure solvents. Results indicate that the spectral shift is highly related with the specific solute-solvent interactions. In binary mixtures, a nonideal behavior of spectral shift was observed respective to the analytical mole fraction of alcohols; indicating preferential solvation. The spectral shifts were fitted to a known preferential solvation model named solvent exchange model to calculate the preferential solvation parameters. The preference of solute to be solvated by one of the solvating species relative to others was explained in terms of solvent-solvent and solute-solvent interactions.

  9. Extended UNIQUAC Model for Correlation and Prediction of Vapor-Liquid-Liquid-Solid Equilibria in Aqueous Salt Systems Containing Non-Electrolytes. Part B. Alcohol (Ethanol, Propanols, Butanols) - Water-salt systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Iliuta, Maria Cornelia; Rasmussen, Peter

    2004-01-01

    The Extended UNIQUAC model for electrolyte solutions is an excess Gibbs energy function consisting of a Debye-Huckel term and a term corresponding to the UNIQUAC equation. For vapor-liquid equilibrium calculations, the fugacities of gas-phase components are calculated with the Soave-Redlich-Kwong......-propanol, 2-methyl 2-propanol) and various ions (Na+, K+, NH4+, Cl-, NO3, SO42-, SO32-, HSO3-, CO32-, and HCO3-) shows the capability of the model to accurately represent the phase behavior of these kinds of systems. (C) 2004 Elsevier Ltd. All rights reserved....

  10. Excess molar enthalpies of {diethyl oxalate + (methanol, + ethanol, + 1-propanol, and + 2-propanol)} at T = (288.2, 298.2, 313.2, and 328.2) K and p = 101.3 kPa

    International Nuclear Information System (INIS)

    Highlights: • The excess molar enthalpies for four binary systems of diethyl oxalate + alcohols were determined. • The densities of the diethyl oxalate at different temperature were measured. • The excess molar enthalpies increase with temperature and the molecular size of the alcohols. • The experimental data were correlated by two local-composition models (NRTL and UNIQUAC). -- Abstract: A flow-mixing isothermal microcalorimeter was used to measure excess molar enthalpies for four binary systems of {diethyl oxalate + (methanol, + ethanol, + 1-propanol, and + 2-propanol)} at T = (288.2, 298.2, 313.2, and 328.2) K and p = 101.3 kPa. The densities of the diethyl oxalate at different temperature were measured by using a vibrating-tube densimeter. All systems exhibit endothermic behaviour over the whole composition range, which means that the rupture of interactions is energetically the main effect. The excess molar enthalpies increase with temperature and the molecular size of the alcohols. The experimental results were correlated by using the Redlich–Kister equation and two local-composition models (NRTL and UNIQUAC)

  11. Vapour pressures and vapour-liquid equilibria of propyl acetate and isobutyl acetate with ethanol or 2-propanol at 0.15 MPa. Binary systems

    Directory of Open Access Journals (Sweden)

    Susial Pedro

    2012-01-01

    Full Text Available Vapour pressures of propyl acetate, isobutyl acetate and 2-propanol from 0.004 to 1.6 MPa absolute pressure and VLE data for the binary systems propyl acetate+ethanol, propyl acetate+2-propanol, isobutyl acetate+ethanol and isobutyl acetate+2-propanol at 0.15 MPa have been determined. The experimental VLE data were verified with the test of van Ness and the Fredenslund criterion. The propyl acetate+ethanol or +2-propanol binary systems have an azeotropic point at 0.15 MPa. The different versions of the UNIFAC and ASOG group contribution models were applied.

  12. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  13. Partial molar volumes of organic solutes in water. XII. Methanol(aq), ethanol(aq), 1-propanol(aq), and 2-propanol(aq) at T = (298 to 573) K and at pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Density data for dilute aqueous solutions of methanol, ethanol, 1-propanol, and 2-propanol are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at from T = (298.15 up to 573.15) K and at pressure close to the saturated vapor pressure of water, at p = 30 MPa and at pressure between these limits. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter

  14. Sub- and supercritical liquefaction of rice straw in the presence of ethanol-water and 2-propanol-water mixture

    International Nuclear Information System (INIS)

    The critical liquefaction of rice straw to bio-oil with sub- and supercritical mixtures (ethanol-water and 2-propanol-water mixture) was studied in a 1000 ml autoclave at 533-623 K, 6-18 MPa, respectively. The results showed that the maximum yield of bio-oil was 39.7% for the 2-propanol:water volume ratio of 5:5 at 573 K, while the higher heating value (HHV) of bio-oil increased with the reaction temperature and solvent volume ratio. The formation of low-boiling-point materials was reduced by a mixture. Using a mixture could inhibit the formation of residue and then promote the conversion of rice straw with the ratio of 1:9-5:5. The bio-oil was analyzed by GC/MS and Elemental Analyzer, while the morphological changes of residue were observed by a scanning electron microscope (SEM)

  15. Gas-chromatographic analysis of some volatile congeners in different types of strong alcoholic fruit spirits

    OpenAIRE

    Kostik, Vesna; Memeti, Shaban; Bauer, Biljana

    2013-01-01

    Beside ethyl alcohol, the major active component of alcoholic beverages, almost all alcoholic drinks contain volatile and non-volatile substances called congeners. They are present in different concentrations depending on beverage type and manufacturing methods. In the current study, the major volatile compounds besides ethanol as: methanol, ethyl acetate, 1-propanol (n-propanol), 2-propanol (i-propanol), 1-butanol(n-butanol), i-butanol (2-methylpropan-1-ol), n-amyl alcohol (n-pentanol), i-am...

  16. Microbial production of propanol.

    Science.gov (United States)

    Walther, Thomas; François, Jean Marie

    2016-01-01

    Both, n-propanol and isopropanol are industrially attractive value-added molecules that can be produced by microbes from renewable resources. The development of cost-effective fermentation processes may allow using these alcohols as a biofuel component, or as a precursor for the chemical synthesis of propylene. This review reports and discusses the recent progress which has been made in the biochemical production of propanol. Several synthetic propanol-producing pathways were developed that vary with respect to stoichiometry and metabolic entry point. These pathways were expressed in different host organisms and enabled propanol production from various renewable feedstocks. Furthermore, it was shown that the optimization of fermentation conditions greatly improved process performance, in particular, when continuous product removal prevented accumulation of toxic propanol levels. Although these advanced metabolic engineering and fermentation strategies have facilitated significant progress in the biochemical production of propanol, the currently achieved propanol yields and productivities appear to be insufficient to compete with chemical propanol synthesis. The development of biosynthetic pathways with improved propanol yields, the breeding or identification of microorganisms with higher propanol tolerance, and the engineering of propanol producer strains that efficiently utilize low-cost feedstocks are the major challenges on the way to industrially relevant microbial propanol production processes. PMID:27262999

  17. Isothermal (vapour + liquid) equilibrium for binary mixtures of polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, or 2-propanol

    International Nuclear Information System (INIS)

    Highlights: → An autoclave apparatus was used for binary (vapour + liquid) equilibrium data measurement. → The studied systems are polyethylene glycol mono-4-nonylphenyl ether with alcohols. → The saturated pressure data were fitted accurately to the Antoine equation. → The NRTL model correlated well the phase equilibrium data. → The solvent activities have been calculated. - Abstract: Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.

  18. Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K

    International Nuclear Information System (INIS)

    Densities of binary mixtures of N-(2-hydroxyethyl)morpholine with ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol were measured over the entire composition range at temperatures from (293.15 to 323.15) K and atmospheric pressure using a vibrating-tube densimeter. The excess molar volumes, VE were calculated from density data and fitted to the Redlich-Kister polynomial equation. Apparent molar volumes, partial molar volume at infinite dilution and the thermal expansion coefficient of the mixtures were also calculated. The VE values were found to be negative over the entire composition range and at all temperatures studied and become less negative with increasing carbon chain length of the alkanols

  19. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation's fuel supply. Ethanol is the primary biofuel in the US martket, distributed as a blend with petroleum gasoline in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  20. Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach

    International Nuclear Information System (INIS)

    Highlights: • Binary mixtures of 1-butoxy-2-propanol with alcohols have been studied at different temperatures. • Strong H-bonding interactions between the components are confirmed that decreases with increasing chain length of alcohols. • Thermophysical and FT-IR spectroscopic studies strongly corroborate the experimental and computational analysis results. - Abstract: This paper reports densities (ρ) and speeds of sound (u) of 1-butoxy-2-propanol CH3(CH2)3OC3H6OH, 1-propanol CH3(CH2)2OH, 2-propanol (CH3)2CHOH, 1-butanol CH3(CH2)3OH and 2-butanol CH3CH2CH(OH)CH3 and their binary mixtures with 1-butoxy-2-propanol as a common component, measured at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K over the entire composition range. These experimental values of density and speed of sound were used to calculate the values of excess molar volumes, VmE, deviations in molar isentropic compressibility Δκs and deviations in speed of sound uD. Further, experimental densities were used to estimate apparent molar volumes Vϕ,i, partial molar volumes V‾m,1, excess partial molar volumes V‾m,1E and their limiting values at infinite dilution Vϕ,i∞, V‾m,i∞ and V‾m,iE,∞ respectively. The variations observed in these properties, with composition and temperature, are discussed in terms of molecular interactions due to physical and chemical effects between the unlike molecules of the binary mixtures. These properties, especially excess functions, are found to be quite sensitive towards the intermolecular interactions in liquid mixtures. These excess functions and deviations have also been correlated using Redlich–Kister type polynomial equation by the method of least-squares for the estimation of the binary coefficients and the standard errors. FT-IR studies of these mixtures are also reported

  1. Inhibition of alcohol dehydrogenase after 2-propanol exposure in different geographic races of Drosophila mojavensis: lack of evidence for selection at the Adh-2 locus.

    Science.gov (United States)

    Pfeiler, Edward; Reed, Laura K; Markow, Therese A

    2005-03-15

    High frequencies of the fast allele of alcohol dehydrogenase-2 (Adh-2F) are found in populations of Drosophila mojavensis that inhabit the Baja California peninsula (race BII) whereas the slow allele (Adh-2S) predominates at most other localities within the species' geographic range. Race BII flies utilize necrotic tissue of pitaya agria cactus (Stenocereus gummosus) which contains high levels of 2-propanol, whereas flies from most other localities utilize different cactus hosts in which 2-propanol levels are low. To test if 2-propanol acts as a selective force on Adh-2 genotype, or whether some other yet undetermined genetic factor is responsible, mature males of D. mojavensis lines derived from the Grand Canyon (race A) and Santa Catalina Island (race C), each with individuals homozygous for Adh-2F and Adh-2S, were exposed to 2-propanol for 24 h and ADH-2 specific activity was then determined on each genotype. Flies from five other localities homozygous for either the fast or slow allele also were examined. Results for all reported races of D. mojavensis were obtained. 2-propanol exposure inhibited ADH-2 specific activity in both genotypes from all localities, but inhibition was significantly less in two populations of race BII flies homozygous for Adh-2F. When F/F and S/S genotypes in flies from the same locality were compared, both genotypes showed high 2-propanol inhibition that was not statistically different, indicating that the F/F genotype alone does not provide a benefit against the inhibitory effects of 2-propanol. ADH-1 activity in female ovaries was inhibited less by 2-propanol than ADH-2. These results do not support the hypothesis that 2-propanol acts as a selective factor favoring the Adh-2F allele. PMID:15726639

  2. Solubilities of Nizatidine in Methanol + Water, Ethanol + Water and i-Propanol + Water from 273.15 to 303.15 K%Solubilities of Nizatidine in Methanol + Water, Ethanol + Water and i-Propanol + Water from 273.15 to 303.15 K

    Institute of Scientific and Technical Information of China (English)

    李音; 吕秀阳

    2012-01-01

    The solubilities of nizatidine in methanol + water, ethanol + water and i-propanol + water mixtures were determined in the temperature range from 273.15 K to 303.15 K at atmospheric pressure by a static analytical method. The general single model was used to correlate the experimental data, which fits the data very well.

  3. Apparent molar volumes and apparent molar heat capacities of dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Apparent molar volumes Vphi and apparent molar heat capacities Cp,phi have been determined for dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. The molalities investigated ranged from 0.05 mol·kg-1 to 1.0 mol·kg-1. We used a vibrating tube densimeter (DMA 512P, Anton PAAR, Austria) to determine the densities and volumetric properties. Heat capacities were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter (NanoDSC 6100, Calorimetry Sciences Corporation, American Fork, UT, USA). The results were fit by regression to equations that describe the surfaces (Vphi,T,m) and (Cp,phi,T,m). Infinite dilution partial molar volumes V20 and heat capacities C0p,2 were obtained over the range of temperatures by extrapolation of these surfaces to m=0 mol·kg-1

  4. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed. PMID:25267448

  5. Gastrointestinal symptoms and ethanol metabolism in alcoholics.

    NARCIS (Netherlands)

    Laheij, R.J.F.; Verlaan, M.; Oijen, M.G.H. van; Doelder, M.S. de; Jong, C.A.J. de; Jansen, J.B.M.J.

    2004-01-01

    Excessive alcohol intake frequently results in gastrointestinal discomfort. It is an empirical fact that the severity of gastrointestinal discomfort induced by alcohol abuse is subject to interindividual variation. The aim of this study was to determine whether genetic polymorphism in alcohol dehydr

  6. Complex formation studies on Ho(III) and Lu(III) with 1-(2-pyridylazo)-2-naphthol (PAN) in alcohol-water solutions

    International Nuclear Information System (INIS)

    The formation of PAN complexes in the systems Ln(III)-PAN-alcohol-water (where: Ln(III) = Ho, Lu and alcohol = ethanol, n-propanol, iso-propanol) was investigated by a spectrophotometric method. Equilibrium constants for the reaction Ln3+ + HL LnL2+ + H+ (HL = PAN) and stability constants of complexes LnL2+ were calculated. (Author)

  7. Alcohol and water adsorption in zeolitic imidazolate frameworks

    KAUST Repository

    Zhang, Ke

    2013-01-01

    Alcohol (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) and water vapor adsorption in zeolitic imidazolate frameworks (ZIF-8, ZIF-71 and ZIF-90) with similar crystal sizes was systematically studied. The feasibility of applying these ZIF materials to the recovery of bio-alcohols is evaluated by estimating the vapor-phase alcohol-water sorption selectivity. © 2013 The Royal Society of Chemistry.

  8. Ethanol challenge in non-alcoholic patients with schistosomiasis.

    OpenAIRE

    Martins, R D; Borges, D R

    1993-01-01

    AIMS: To evaluate serum gamma glutamyltransferase (GGT) activity in a group of non-alcoholic patients with the hepatointestinal form of schistosomiasis; and the response of both GGT and alkaline phosphatase to an ethanol challenge in two subgroups of patients with different baseline serum concentrations of GGT. METHODS: Seventy six non-alcoholic, non-smoking hepatitis B virus (HBV) negative men with normal body mass index, who denied blood product transfusion or use of medication, were studie...

  9. Anaerobic Biodegradation of Biofuels (Ethanol, Biodiesel, n-Propanol, n-Butanol, and iso-Butanol) in Aquifer Sediment (PP)

    Science.gov (United States)

    In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...

  10. Anaerobic Biodegradation of Biofuels (Ethanol, Biodiesel, n-Propanol, n-Butanol, and iso-Butanol) in Aquifer Sediment

    Science.gov (United States)

    In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...

  11. Oxidative stress, metabolism of ethanol and alcohol-related diseases.

    Science.gov (United States)

    Zima, T; Fialová, L; Mestek, O; Janebová, M; Crkovská, J; Malbohan, I; Stípek, S; Mikulíková, L; Popov, P

    2001-01-01

    Alcohol-induced oxidative stress is linked to the metabolism of ethanol. Three metabolic pathways of ethanol have been described in the human body so far. They involve the following enzymes: alcohol dehydrogenase, microsomal ethanol oxidation system (MEOS) and catalase. Each of these pathways could produce free radicals which affect the antioxidant system. Ethanol per se, hyperlactacidemia and elevated NADH increase xanthine oxidase activity, which results in the production of superoxide. Lipid peroxidation and superoxide production correlate with the amount of cytochrome P450 2E1. MEOS aggravates the oxidative stress directly as well as indirectly by impairing the defense systems. Hydroxyethyl radicals are probably involved in the alkylation of hepatic proteins. Nitric oxide (NO) is one of the key factors contributing to the vessel wall homeostasis, an important mediator of the vascular tone and neuronal transduction, and has cytotoxic effects. Stable metabolites--nitrites and nitrates--were increased in alcoholics (34.3 +/- 2.6 vs. 22.7 +/- 1.2 micromol/l, p concentration could be discussed for its excitotoxicity and may be linked to cytotoxicity in neurons, glia and myelin. Formation of NO has been linked to an increased preference for and tolerance to alcohol in recent studies. Increased NO biosynthesis also via inducible NO synthase (NOS, chronic stimulation) may contribute to platelet and endothelial dysfunctions. Comparison of chronically ethanol-fed rats and controls demonstrates that exposure to ethanol causes a decrease in NADPH diaphorase activity (neuronal NOS) in neurons and fibers of the cerebellar cortex and superior colliculus (stratum griseum superficiale and intermedium) in rats. These changes in the highly organized structure contribute to the motor disturbances, which are associated with alcohol abuse. Antiphospholipid antibodies (APA) in alcoholic patients seem to reflect membrane lesions, impairment of immunological reactivity, liver disease

  12. Benzyl alcohol increases voluntary ethanol drinking in rats.

    Science.gov (United States)

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p Deca-Durabolin containing BA need to be re-evaluated. PMID:24871566

  13. Prospects for Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  14. Estimation of vapor composition and vapor pressure of alcohols and hydrocarbons binary systems

    International Nuclear Information System (INIS)

    The objective of this study were to apply the coordination state theory to assosiated systems, especially to estimate vapor pressure and vapor composition of alcohols and hydrcarbons binary systems. To achieve these objectives, a computer programme in Q. basic language was used to compute vapor composition and vapor pressure of may alcohols and hydrcarbons binary systems. The systems studied were methane- methanol, methane- n-propanol, n-pentane - n-propanol, ethanol- cyclohexane, ethanol- isooctane, n-pentane - ethanol, methanol - benzene, n-propanol- benzene, ethane- ethanol and ethane- n-propanol. The calculated VLE values were compared with experimental data using standard deviation. The values calculated agree, in general, with the experimental ones. Variations were observed among certain cases where phase seperation may occur.(Author)

  15. Breakdown in vapors of alcohols: methanol and ethanol

    Science.gov (United States)

    Petrovic, Zoran Lj.; Sivos, Jelena; Skoro, Nikola; Maric, Dragana; Malovic, Gordana

    2014-10-01

    Breakdown data for vapors of the two simplest alcohols - methanol and ethanol - are presented. The breakdown is achieved between plan-parallel electrodes, where cathode is made of copper and anode is a thin film of platinum deposited on quartz window. Diameter of electrodes is 5.4 cm and electrode gap 1.1 cm. We compare breakdown voltages (Paschen curves) for methyl and ethyl alcohol in the pressure range 0.1--2 Torr. In both vapors, the pressure is kept well below the vapor pressure, to prevent formation of liquid droplets. For each point of Paschen curves corresponding axial profiles of emission are recorded by ICCD camera in visual part of the spectra. Axial intensity distributions reveal important processes of excitation. Both vapors show strong emission peak near the cathode at all pd values covered by measurements, which indicates that excitation by ions and fast neutrals play important role in the discharge. Preliminary spectrally resolved measurements of the discharge structure with optical filters show that dominantly emission comes from CH band at 431 nm. There is a very low intensity of H α emission detected in ethanol vapor at high E/N, while it is much stronger in methanol even at lower E/N. It is interesting to note that H α emission in methanol exhibits exponential increase of intensity from the cathode to the anode, so it comes mainly from excitation by electrons, not heavy particles. Supported by MESTD Projects ON171037 and III41011.

  16. Photodissociation dynamics of 1-propanol and 2-propanol at 193.3 nm

    International Nuclear Information System (INIS)

    193.3-nm photodissociation dynamics of jet-cooled 1-propanol and 2-propanol and their partially deuterated variants are examined by using the high-n Rydberg-atom time-of-flight technique. Isotope labeling studies show that O-H bond fission is the primary H-atom production channel in the ultraviolet photodissociation of both 1-propanol and 2-propanol. Center-of-mass (c.m.) product translational energy release of the RO-H dissociation channel is large, with T>=0.78 for H+1-propoxy (n-propoxy) and 0.79 for H+2-propoxy (isoproxy). Maximum c.m. translational energy release yields an upper limit of the O-H bond dissociation energy: 433±2 kJ/mol in 1-propanol and 435±2 kJ/mol in 2-propanol. H-atom product angular distribution is anisotropic (with β≅-0.79 for 1-propanol and -0.77 for 2-propanol), suggesting an electronic transition moment perpendicular to the H-O-C plane and a short excited-state dissociation lifetime (less than a rotational period). Information about photodissociation dynamics and bond energies of the partially deuterated propanols are also obtained. The 193.3-nm photodissociation dynamics of 1-propanol and 2-propanol are nearly identical to each other and are similar to those of methanol and ethanol. This indicates a common RO-H dissociation mechanism: after the nO→σ*(O-H)/3s excitation localized on the H-O-C moiety, the H atom is ejected promptly in the H-O-C plane in a time scale shorter than a rotational period of the parent molecule, and it dissociates along the O-H coordinate on the repulsive excited-state potential-energy surface with a large translational energy release

  17. Conversion of syngas to higher alcohols over Cu-Fe-Zr catalysts induced by ethanol

    Institute of Scientific and Technical Information of China (English)

    Hongtao Zhang; Xiaomei Yang; Lipeng Zhou; Yunlai Su; Zhongmin Liu

    2009-01-01

    Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared by the conventional precipitation method. Among various procedures for ethanol induced method,it was found that incorporation of ethanol in the precipitation process was the better. After incorporation of ethanol,the crystal size of CuO decreased and the reduction of copper species became easier. The better activity of Cu-Fe-Zr catalysts prepared by ethanol induced procedures was probably caused by the higher dispersion of Cu species.

  18. Correct quantitative determination of ethanol and volatile compounds in alcohol products

    CERN Document Server

    Charapitsa, Siarhei; Sytova, Svetlana; Yakuba, Yurii

    2014-01-01

    Determination of the volume content of ethanol in the alcohol products in practice is usually determined by pycnometry, electronic densimetry, or densimetry using a hydrostatic balance in accordance with Commission Regulation No 2870/2000. However, these methods determine directly only density of the tested liquid sample and does not take into account the effects of other volatile components such as aldehydes, esters and higher alcohols. So they are appropriate only for binary water-ethanol solutions in accordance with international table adopted by the International Legal Metrology Organization in its Recommendation No 22. Availability notable concentrations of the higher alcohols and ethers in different alcohol-based products, e. g. in whisky, cognac, brandy, wine as well as in waste alcohol and alcohol beverage production, leads to the significant contribution of these compounds in the value of the density of tested alcohol-containing sample. As a result, determination of the volume of ethanol content for ...

  19. Effect of ethanol post-treatment on the bubble-electrospun poly(vinyl alcohol) nanofiber

    OpenAIRE

    Zhao Jiang-Hui; Xu Lan; Liu Qixia

    2015-01-01

    Poly(vinyl alcohol) nanofibers were prepared by bubble electrospinning. After the ethanol post-treatment, poly(vinyl alcohol) nanofibers showed enhanced hydrophobicity with water contact angle change from 0 to 78.9°, and the break strength of poly(vinyl alcohol) nanofibers was dramatically improved from 8.23 MPa to 17.36 MPa. The facile strategy with improved hydrophobicity and mechanical properties of poly(vinyl alcohol) nanofibers will provide potential b...

  20. Involvement of AMPK in Alcohol Dehydrogenase Accentuated Myocardial Dysfunction Following Acute Ethanol Challenge in Mice

    OpenAIRE

    GUO Rui; Scott, Glenda I.; Ren, Jun

    2010-01-01

    Objectives Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca2+ homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. Methods ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3...

  1. Ceftriaxone, a Beta-Lactam Antibiotic, Reduces Ethanol Consumption in Alcohol-Preferring Rats

    OpenAIRE

    Sari, Youssef; Sakai, Makiko; Weedman, Jason M.; Rebec, George V.; Bell, Richard L.

    2011-01-01

    Aims: Changes in glutamatergic transmission affect many aspects of neuroplasticity associated with ethanol and drug addiction. For instance, ethanol- and drug-seeking behavior is promoted by increased glutamate transmission in key regions of the motive circuit. We hypothesized that because glutamate transporter 1 (GLT1) is responsible for the removal of most extracellular glutamate, up-regulation or activation of GLT1 would attenuate ethanol consumption. Methods: Alcohol-preferring (P) rats w...

  2. Neuropeptide Y Administration into the Amygdala Suppresses Ethanol Drinking in Alcohol-Preferring (P) Rats Following Multiple Deprivations

    OpenAIRE

    Gilpin, Nicholas W.; Stewart, Robert B.; Badia-Elder, Nancy E.

    2008-01-01

    The present experiment examines the effects of NPY administered into the amygdala on ethanol drinking by alcohol-preferring P rats following long-term continuous ethanol access, with and without multiple periods of imposed ethanol abstinence. P rats had access to 15% (v/v) ethanol and water for 11 weeks followed by 2 weeks of ethanol abstinence, re-exposure to ethanol for 2 weeks, 2 more weeks of ethanol abstinence, and a final ethanol re-exposure. Immediately prior to the second ethanol re-e...

  3. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    Science.gov (United States)

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs. PMID:25712038

  4. Proceedings of the international symposium on alcohol fuel technology: methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The papers presented dealt with the following topics: international situation and economic and political aspects, use of alcohol fuels as automotive fuels, production of methanol and methyl fuels, production of ethanol, methanol application and modeling, alcohol fuel optimization, and environmental considerations. Each paper was prepared for introduction into the EDB data base. (JSR)

  5. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. PMID:25733499

  6. Use of isothermal titration calorimetry to study the interaction of short-chain alcohols with lipid membranes

    DEFF Research Database (Denmark)

    Trandum, Christa; Westh-Andersen, Peter; Jørgensen, Kent; Mouritsen, Ole G.

    ganglioside (GM(1)) were investigated at temperatures above, and below, the main phase-transition temperature of DMPC. The alcohols used were ethanol, 1-propanol, and 1-butanol. The calorimetric results reveal that the interaction of short-chain alcohols with the lipid bilayer is endothermic and strongly...

  7. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P Rats.

    Directory of Open Access Journals (Sweden)

    Jessica Godfrey

    Full Text Available Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total or were given access only to water (control. Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4-desaturase (Degs2, an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels

  8. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    International Nuclear Information System (INIS)

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH-) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH- and hepatic ADH-normal (ADH+) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼ 1.5-fold greater in ADH- vs. ADH+ deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH- deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  9. Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of cornelian cherry

    OpenAIRE

    VELE TEŠEVIĆ; NINOSLAV NIKIĆEVIĆ; SLOBODAN MILOSAVLJEVIĆ; DANICA BAJIĆ; VLATKA VAJS; IVAN VUČKOVIĆ; LJUBODRAG VUJISIĆ; IRIS ĐORĐEVIĆ; MIROSLAVA STANKOVIĆ; MILOVAN VELIČKOVIĆ

    2009-01-01

    In this study, volatile compounds were analyzed in five samples of home-made spirit beverage made by the distillation of fermented fruits of cornelian cherry (Cornus mas L.). The major volatile compounds, besides ethanol, identified and quantified were: methanol, acetaldehyde, 1-propanol, ethyl acetate, 2-methyl-1-propanol, 1-butanol, amyl alcohols, 1-hexanol and 2-phenylethanol. The minor volatiles were submitted to liquid–liquid extraction with dichloromethane and analyzed by gas chromatogr...

  10. Brucine suppresses ethanol intake and preference in alcohol-preferring Fawn-Hooded rats

    OpenAIRE

    Li, Yu-ling; LIU, Qing; Gong, Qi; Li, Jun-Xu; Wei, Shou-peng; Wang, Yan-Ting; Liang, Hui; Zhang, Min; Jing, Li; Yong, Zheng; Andrew J. Lawrence; Liang, Jian-Hui

    2014-01-01

    Aim: Brucine (BRU) extracted from the seeds of Strychnos nux-vomica L is glycine receptor antagonist. We hypothesize that BRU may modify alcohol consumption by acting at glycine receptors, and evaluated the pharmacodynamic profiles and adverse effects of BRU in rat models of alcohol abuse. Methods: Alcohol-preferring Fawn-Hooded (FH/Wjd) rats were administered BRU (10, 20 or 30 mg/kg, sc). The effects of BRU on alcohol consumption were examined in ethanol 2-bottle-choice drinking paradigm, et...

  11. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  12. Influence of Calcium Ion on Ethanol Tolerance of Saccharomyces bayanus and Alcoholic Fermentation by Yeasts

    OpenAIRE

    Nabais, Regina C.; Sá-Correia, Isabel; Viegas, Cristina A.; Novais, Júlio M.

    1988-01-01

    The addition of Ca2+ (as CaCl2) in optimal concentrations (0.75 to 2.0 mM) to a fermentation medium with a trace contaminating concentration of Ca2+ (0.025 mM) led to the rapid production of higher concentrations of ethanol by Saccharomyces cerevisiae, Saccharomyces bayanus, and Kluyveromyces marxianus. The positive effect of calcium supplementation (0.75 mM) on alcoholic fermentation by S. bayanus was explained by the increase in its ethanol tolerance. The ethanol inhibition of growth and fe...

  13. Alcohol-Induced Suppression of Gluconeogenesis is Greater in Ethanol Fed Female Rat Hepatocytes Than Males

    OpenAIRE

    Sumida, Ken D.; Cogger, Alma A.; Matveyenko, Aleksey V.

    2007-01-01

    The impact of alcohol-induced suppression on hepatic gluconeogenesis (HGN) after chronic ethanol consumption between males and females is unknown. To determine the effects of chronic alcohol consumption (8 weeks) on HGN, the isolated hepatocyte technique was employed on 24 hr fasted male and female Wistar rats. Livers were initially perfused with collagenase and the hepatocytes were isolated. Aliquots of the cell suspension were placed in Krebs-Henseleit buffer and incubated for 30 minutes wi...

  14. Excess molar enthalpies of ternary mixtures of (methanol, ethanol + 2-propanol + 1,4-dioxane) at T=298.15 K

    International Nuclear Information System (INIS)

    Ternary excess molar enthalpies for the {x1CH3OH + x2i-C3H7OH + (1-x1-x2)c-C4H8O2} and {x1C2H5OH + x2i-C3H7OH + (1-x1-x2)c-C4H8O2} mixtures have been measured by a flow microcalorimeter at T=298.15 K and ambient pressure. The experimental results are correlated with a polynomial equation and used to construct constant excess enthalpy contours. Furthermore, the results have been compared with those calculated from a UNIQUAC associated-solution model. This model considers the self-association of like alcohols, multicross-association of unlike alcohols, and solvation between alcohols and 1,4-dioxane. The model with the association constants, solvation constants, and binary information alone predict the ternary excess molar enthalpies satisfactorily

  15. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  16. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    International Nuclear Information System (INIS)

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  17. Effects of ethanol on offspring of C57BL/6J mice alcoholized during gestation

    Directory of Open Access Journals (Sweden)

    Grinfeld Hermann

    1999-01-01

    Full Text Available The effects of chronic alcohol consumption during pregnancy were analysed in the gestation and offspring of alcoholized mice. Female C57BL/6J mice were placed overnight with stud males and the presence of a sperm plug in the next morning indicated the onset of gestation. Pregnant mice were distributed in two weight-matched groups. In the alcoholized group, the mice received a high protein liquid diet ad libitum containing 27.5% of ethanol-derived calories (5.28% v/v from gestation day 5 to 19. The control group received the same volume of diet containing isocaloric amounts of maltose-dextrin substituted for ethanol. After postnatal day zero, the dams received food pellets and tap water ad libitum. On postnatal day 6 the pups were counted and weighed at variable intervals up to the 60th day of life. The majority of the pregnant dams that have received ethanol completed the gestational period, and the chronic consumption of alcohol did not interfere with the number of dams that gave birth. The alcoholized and control dams gained an equivalent weight and consumed an equivalent volume of diet throughout the gestation. The number of pups from alcohol diet dams was 46,26% smaller compared with the control group. There were less male than female pups in the offspring of alcoholized mice. Teratogeny like gastroschisis and limb malformation were present in the offspring of alcoholized dams. The body weight of the offspring of alcoholized mice increased from the 18th to the 36th postnatal day.

  18. Promoting Bio-Ethanol in the United States by Incorporating Lessons from Brazil's National Alcohol Program

    Science.gov (United States)

    Du, Yangbo

    2007-01-01

    Current U.S. energy policy supports increasing the use of bio-ethanol as a gasoline substitute, which Brazil first produced on a large scale in response to the 1970s energy crises. Brazil's National Alcohol Program stood out among its contemporaries regarding its success at displacing a third of Brazil's gasoline requirements, primarily due to…

  19. Ethanol induced mitochondria injury and permeability transition pore opening: Role of mitochondria in alcoholic liver disease

    OpenAIRE

    Yan, Ming; Zhu, Ping; Liu, Hui-Min; Zhang, Hai-Tao; Liu, Li

    2007-01-01

    AIM: To observe changes of mitochondria and investigate the effect of ethanol on mitochondrial perme-ability transition pore (PTP), mitochondrial membrane potential (MMP, ΔΨm) and intracellular calcium concentration in hepatocytes by establishing an animal model of alcoholic liver disease (ALD).

  20. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation

    OpenAIRE

    Dragone, Giuliano; Mussatto, Solange I.; Oliveira, J.M.; Teixeira, J.A.

    2009-01-01

    An alcoholic beverage (35.4% v/v ethanol) was produced by distillation of the fermented broth obtained by continuous whey fermentation with a lactose-fermenting yeast Kluyveromyces marxianus. Forty volatile compounds were identified in this drink by gas chromatography. Higher alcohols were the most abundant group of volatile compounds present, with isoamyl, isobutyl, 1-propanol, and isopentyl alcohols being found in highest quantities (887, 542, 266, and 176 mg/l, respectively). Ethyl acetate...

  1. Characterization of an Arxula adeninivorans alcohol dehydrogenase involved in the metabolism of ethanol and 1-butanol.

    Science.gov (United States)

    Kasprzak, Jakub; Rauter, Marion; Riechen, Jan; Worch, Sebastian; Baronian, Kim; Bode, Rüdiger; Schauer, Frieder; Kunze, Gotthard

    2016-05-01

    In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans. PMID:26912215

  2. Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols.

    Science.gov (United States)

    Fernández-Naveira, Ánxela; Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2016-05-01

    Butanol production from carbon monoxide-rich waste gases or syngas is an attractive novel alternative to the conventional acetone-butanol-ethanol (ABE) fermentation. Solvent toxicity is a key factor reported in ABE fermentation with carbohydrates as substrates. However, in the gas-fermentation process, kinetic aspects and the inhibition effect of solvents have not thoroughly been studied. Therefore, different batch bottle experiments were carried out with the bacterial species Clostridium carboxidivorans using CO as carbon source for butanol-ethanol fermentation. A maximum specific growth rate of 0.086 ± 0.004 h(-1) and a biomass yield of 0.011 gbiomass/gCO were found, which is significantly lower than in other clostridia grown on sugars. Besides, three assays were carried out to check the inhibitory effect of butanol, ethanol, and their mixtures. Butanol had a higher inhibitory effect on the cells than ethanol and showed a lower IC50, reduced growth rate, and slower CO consumption with increasing alcohol concentrations. A concentration of 14-14.50 g/L butanol caused 50 % growth inhibition in C. carboxidivorans, and 20 g/L butanol resulted in complete inhibition, with a growth rate of 0 h(-1). Conversely, 35 g/L ethanol decreased by 50 % the final biomass concentration respect to the control and yielded the lowest growth rate of 0.024 h(-1). The inhibitory effect of mixtures of both alcohols was also checked adding similar, near identical, concentrations of each one. Growth decreased by 50 % in the presence of a total concentration of alcohols of 16.22 g/L, consisting of similar amounts of each alcohol. Occasional differences in initially added concentrations of alcohols were minimal. The lowest growth rate (0.014 h(-1)) was observed at the highest concentration assayed (25 g/L). PMID:26921183

  3. Effects of prenatal and postnatal maternal ethanol on offspring response to alcohol and psychostimulants in long evans rats.

    Science.gov (United States)

    Barbier, E; Houchi, H; Warnault, V; Pierrefiche, O; Daoust, M; Naassila, M

    2009-06-30

    An important factor that may influence addiction liability is exposure during the early life period. Exposure to ethanol, early in life, can have long-lasting implications on brain function and drugs of abuse response later in life. In the present study we investigated the behavioral responses to ethanol and to psychostimulants in Long Evans rats that have been exposed to pre- and postnatal ethanol. Since a relationship between heightened drug intake and susceptibility to drug-induced locomotor activity/sensitization has been demonstrated, we tested these behavioral responses, in control and early life ethanol-exposed animals. The young adult male and female progeny were tested for locomotor response to alcohol, cocaine and d-amphetamine. Sedative, rewarding effects of alcohol and alcohol consumption were measured. Our results show that early life ethanol exposure behaviorally sensitized animals to subsequent ethanol and psychostimulants exposure. Ethanol-exposed animals were also more sensitive to the hyperlocomotor effects of all drugs of abuse tested and to those of the dopamine receptor agonist apomorphine. Locomotor sensitization to repeated injections of cocaine was facilitated in ethanol-exposed animals. Ethanol-induced conditioned place preference was also facilitated in ethanol-exposed animals. Ethanol consumption and preference were increased after early life ethanol exposure and this was associated with decreased sensitivity to the sedative effects of ethanol. The altered behavioral responses to drugs of abuse were associated with decreased striatal dopamine transporter and hippocampal NMDAR binding. Our results outline an increased vulnerability to rewarding and stimulant effects of ethanol and psychostimulants and support the epidemiological and clinical data that suggested that early chronic exposure to ethanol may increase the propensity for later self-administration of ethanol or other substances. PMID:19348874

  4. Deletion of alcohol dehydrogenase 2 gene in Pachysolen tannophilus improves ethanol production from corn stover hydrolysates

    Directory of Open Access Journals (Sweden)

    Sen Yang

    2015-12-01

    Full Text Available Although ethanol derived from lignocellulosic biomass is a promising alternative biofuel, the conversion rate of xylose to ethanol by fermentation is not ideal due to the low efficiency of many common yeasts in utilizing xylose. Pachysolen tannophilus can convert hexose and pentose such as L-arabinose, xylose and glucose in lignocellulosic hydrolysates to ethanol simultaneously. To increase the conversion of corn stover hydrolysates to bioethanol, the effect of alcohol dehydrogenase 2 gene (adh2 deletion in P. tannophilus on bioethanol production from corn stover hydrolysates was investigated. Two adh2 deletants (heterozygote ND and homozygote MC were constructed by using the short flanking homology PCR (SFH-PCR. The ND and MC strains showed lower alcohol dehydrogenase 2 (ADH2 activity than the initial strain P-01. In the fermented pentose and hexose sugars of MC and ND, the ethanol concentrations (g/L reached 15.8 and 18.9 versus14.6 of the initial P-01, while in the corn stover hydrolysate medium, the ethanol concentrations (g/L were 9.1 for MC and 9.8 for ND versus 7.5 for the initial strain P-01. This research provides useful information for improving the conversion efficiency of hexose and pentose to bioethanol by Pachysolen tannophilus.

  5. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major......Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...

  6. UNIQUAC activity coefficient model for the systems of 1-propanol + water and 2-propanol + water

    Directory of Open Access Journals (Sweden)

    Numuang, C.

    2005-12-01

    Full Text Available Predictions of vapor liquid equilibria and azeotrope conditions of binary systems of 1-propanol+ water and 2-propanol+water at 30, 60, and 100 kPa were conducted in this work. UNIQUAC activity coefficient and ideal gas models represented behavior of the systems in liquid phase and vapor phase respectively. Experimental data collected from the literature (Gobaldon et al., 1996 and Marzal et al., 1996 were used to calculate energy interaction parameters of the UNIQUAC activity coefficient model by non-linear regression method. The obtained parameters were not dependent on temperature and mole fraction; however, those parameters were dependent on pressure of the system. The mean absolute error of vapor mole fraction of alcohol and water were in the range 3.86-4.65% and 2.33-3.28% respectively for the binary system of 1-propanol +water. The mean absolute error of vapor mole fraction of alcohol and water were in the range 1.93-2.06% and 1.47-1.94% respectively for the binary system of 2-propanol+water. The thermodynamics consistency test proved that the UNIQUAC activity coefficient model was satisfied very well with Gibbs- Duhem equation.

  7. Performance analysis for direct 2-propanol fuel-cell based on Pt containing anode electrocatalysts

    OpenAIRE

    TAPAN, Niyazi Alper; ÖZTÜRK, Ezgi

    2009-01-01

    Direct 2-propanol cell performance based on Pt containing anode electrocatalyst was evaluated. Cell performance, open circuit voltage, maximum current density, and maximum power density were measured at various alcohol concentrations and cell temperatures. 2-propanol fuel cell shows the highest performance at 1 M concentration and 80 °C operating temperature. The highest practical efficiency (at the maximum power density) was found at 2 M 2-propanol concentration and 60 °C operating ...

  8. Comprehensive verification of new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography

    CERN Document Server

    Charapitsa, Siarhei V; Markovsky, Mikhail G; Yakuba, Yurii F; Kotov, Yurii N

    2014-01-01

    Recently proposed new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography is investigated from different sides. Results of experimental study from three different laboratories from Belarus and Russian Federation are presented.

  9. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    OpenAIRE

    Nicholas, H B; Persson, B; Jörnvall, H; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same c...

  10. Alcohol Dehydrogenase Accentuates Ethanol-Induced Myocardial Dysfunction and Mitochondrial Damage in Mice: Role of Mitochondrial Death Pathway

    OpenAIRE

    GUO Rui; Ren, Jun

    2010-01-01

    Objectives Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). Methods ADH and wild-type FVB mice were acutely chall...

  11. Interactions of ethanol and folate deficiency in development of alcoholic liver disease in the micropig.

    Science.gov (United States)

    Halsted, Charles H; Villanueva, Jesus A; Devlin, Angela M; James, S Jill

    2002-01-01

    Folate deficiency is present in most patients with alcoholic liver disease (ALD), whereas folate regulates and alcoholism perturbs intrahepatic methionine metabolism, and S-adenosyl-methionine prevents the development of experimental ALD. Our studies explored the hypothesis that abnormal methionine metabolism is exacerbated by folate deficiency and promotes the development of ALD in the setting of chronic ethanol exposure. Using the micropig animal model, dietary combinations of folate deficiency and a diet containing 40% of kcal as ethanol were followed by measurements of hepatic methionine metabolism and indices of ALD. Alcoholic liver injury, expressed as steatohepatitis in terminal 14 week liver specimens, was evident in micropigs fed the combined ethanol containing and folate deficient diet but not in micropigs fed each diet separately. Perturbations of methionine metabolism included decreased hepatic S-adenosylmethionine and glutathione with increased products of DNA and lipid oxidation. Thus, the development of ALD is linked to abnormal methionine metabolism and is accelerated in the presence of folate deficiency. PMID:12053707

  12. Alcoholate corrosion of aluminium in ethanol blends -the effects of water content, surface treatments, temperature, time and pressure

    OpenAIRE

    Linder, Jenny

    2012-01-01

    As it becomes more important to replace fossil fuels with alternative fuels, biofuels like ethanol are becoming more commercially used. The increased use of ethanol brings good influences such as lower impact on the environment. However, the use of ethanol can also bring negative effects regarding corrosion of metals. In the automotive industry aluminium has been seen affected by a novel very aggressive corrosion phenomenon, alcoholate corrosion. This master thesis investigation has investiga...

  13. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    OpenAIRE

    Teixeira Miguel C; Godinho Cláudia P; Cabrito Tânia R; Mira Nuno P; Sá-Correia Isabel

    2012-01-01

    Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene...

  14. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium

    Science.gov (United States)

    Sanvisens, Arantza; Robert, Neus; Hernández, José María; Zuluaga, Paola; Farré, Magí; Coroleu, Wifredo; Serra, Montserrat; Tor, Jordi; Muga, Robert

    2016-01-01

    Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates) during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography—tandem mass spectrometry (LC-MS/MS) to detect the presence of ethyl glucuronide (EtG) and ethyl sulfate (EtS). Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR): 26–34 years); EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0–110.6 ng/g). With respect to EtS, it was undetectable (<0.01 ng/g) in the majority of samples (79.1%). Only three (6%) women reported alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health. PMID:27011168

  15. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium.

    Science.gov (United States)

    Sanvisens, Arantza; Robert, Neus; Hernández, José María; Zuluaga, Paola; Farré, Magí; Coroleu, Wifredo; Serra, Montserrat; Tor, Jordi; Muga, Robert

    2016-01-01

    Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates) during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect the presence of ethyl glucuronide (EtG) and ethyl sulfate (EtS). Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR): 26-34 years); EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0-110.6 ng/g). With respect to EtS, it was undetectable (alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health. PMID:27011168

  16. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium

    Directory of Open Access Journals (Sweden)

    Arantza Sanvisens

    2016-03-01

    Full Text Available Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography—tandem mass spectrometry (LC-MS/MS to detect the presence of ethyl glucuronide (EtG and ethyl sulfate (EtS. Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR: 26–34 years; EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0–110.6 ng/g. With respect to EtS, it was undetectable (<0.01 ng/g in the majority of samples (79.1%. Only three (6% women reported alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health.

  17. The buffering-out effect and phase separation in aqueous solutions of EPPS buffer with 1-propanol, 2-propanol, or 2-methyl-2-propanol at T = 298.15 K

    International Nuclear Information System (INIS)

    Highlights: ► Buffering-out is a new liquid–liquid phase separation containing biological buffer. ► EPPS buffer-induced phase separation of aqueous solutions of aliphatic alcohols. ► Phase diagrams of EPPS + water + 1-propanol/2-propanol/2-methyl-2-propanol are studied. ► EPPS breaks the 1-propanol + water and 2-methyl-2-propanol + water azeotropes. ► The (liquid + liquid) equilibria can be well correlated by the NRTL model. - Abstract: Buffering-out is a new liquid–liquid phase separation phenomenon observed in mixtures containing a buffer as a mass separating agent. The (liquid + liquid) equilibrium (LLE) and (solid + liquid + liquid) equilibrium (SLLE) data were measured for the ternary systems {3-[4-(2-hydroxyethyl)piperazin-1-yl]propanesulfonic acid (EPPS) buffer + 1-propanol, 2-propanol, or 2-methyl-2-propanol + water} at T = 298.15 K under atmospheric pressure. The phase boundary data were fitted to an empirical equation relating to the concentrations of organic solvent and buffer. The effective excluded volume (EEV) values of EPPS were obtained from the phase boundary data. The phase-separation abilities of the investigated aliphatic alcohols were discussed. The reliability of the experimental tie-lines was satisfactorily confirmed by the Othmer–Tobias correlation. The experimental tie-lines data for the ternary systems have been correlated using the NRTL activity coefficient model. The separation of these aliphatic alcohols from their azeotropic aqueous mixtures is of particular interest to industrial process. The addition of the EPPS as an auxiliary agent breaks the (1-propanol + water) and (2-methyl-2-propanol + water) azeotropes. The possibility of using the new phase separation systems in the extraction process is demonstrated by using different dyestuffs.

  18. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Shi, Gui-Yang [Jiangnan Univ., Wuxi (China). Key Lab. of Industrial Biotechnology, Ministry of Education; Jiangnan Univ., Wuxi (China). Lab. of Biomass Refinery and Processing, School of Biotechnology; Wang, Zheng-Xiang [Jiangnan Univ., Wuxi (China). Key Lab. of Industrial Biotechnology, Ministry of Education

    2009-02-15

    The two homologous genes GPD1 and GPD2, encoding two isoenzymes of NAD{sup +}-dependent glycerol-3-phosphate dehydrogenase in industrial yeast Saccharomyces cerevisiae CICIMY0086, had been deleted. The obtained two kinds of mutants gpd1{delta} and gpd2{delta} were studied under alcoholic fermentation conditions. gpd1{delta} mutants exhibited a 4.29% (relative to the amount of substrate consumed) decrease in glycerol production and 6.83% (relative to the amount of substrate consumed) increased ethanol yield while gpd2{delta} mutants exhibited a 7.95% (relative to the amount of substrate consumed) decrease in glycerol production and 7.41% (relative to the amount of substrate consumed) increased ethanol yield compared with the parental strain. The growth rate of the two mutants were slightly lower than that of the wild type under the exponential phase whereas ANG1 (gpd1{delta}) and the decrease in glycerol production was not accompanied by any decline in the protein content of the strain ANG1 (gpd1{delta}) but a slight decrease in the strain ANG2 (gpd2{delta}). Meanwhile, dramatic decrease of acetate acid formation was observed in strain ANG1 (gpd1{delta}) and ANG2 (gpd2{delta}) compared to the parental strain. Therefore, it is possible to improve the ethanol yield by interruption of glycerol pathway in industrial alcoholic yeast. (orig.)

  19. Composition and stability of neodymium solvates in water-propanol solutions

    International Nuclear Information System (INIS)

    The spectrographical method has been used to study the composition and stability of the NdCl3 solvates, formed in the water-propanol solutions. The stability constants of mixed water-propanol solvates as well as the formation reaction equilibrium constants of the mixed solvates are calculated. The coefficients of molar extinction are determined. It is shown that the oversolvation processes in the water-propanol and water-methanol systems are similar and the oversolvation reaction equilibrium constants coincide in the both systems. It is concluded that the composition of the mixed methanol-propanol solvates will be determined by the ratio of methanol: propanol concentrations in the double alcohol methanol-propanol systems

  20. Ethanolic Extract of Acanthopanax koreanum Nakai Alleviates Alcoholic Liver Damage Combined with a High-Fat Diet in C57BL/6J Mice

    OpenAIRE

    Haein Kim; Minyoung Park; Jae-Ho Shin; Oran Kwon

    2016-01-01

    Alcoholic and nonalcoholic liver steatosis have an indistinguishable spectrum of histological features and liver enzyme elevations. In this study, we investigated the potential of the ethanolic extract of Acanthopanax koreanum Nakai (AK) to protect against experimental alcoholic liver disease in a mouse model that couples diet and daily ethanol bolus gavage. Fifty-six C57BL/6J mice were randomly divided into seven groups: normal control (NC), alcohol control (AC), alcohol/HFD control (AH), lo...

  1. Ethanol induced mitochondria injury and permeability transition pore opening: Role of mitochondria in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Ming Yan; Ping Zhu; Hui-Min Liu; Hai-Tao Zhang; Li Liu

    2007-01-01

    AIM: To observe changes of mitochondria and investigate the effect of ethanol on mitochondrial permeability transition pore (PTP), mitochondrial membrane potential (MMP, Δψm) and intracellular calcium concentration in hepatocytes by establishing an animal model of alcoholic liver disease (ALD).METHODS: Fourty adult male Wistar rats were randomly divided into two groups, the model group (20) was administered alcohol intragastrically plus an Oliver oil diet to establish an ALD model, and the control group (20) was given an equal amount of normal saline. The ultramicrostructural changes of mitochondria were observed under electron microscopy. Mitochondria of liver was extracted, and patency of PTP, mitochondrial membrane potential (Δψm), mitochondrial mass and intracellular calcium concentration of isolated hepacytes were detected by flow cytometry using rhodamine123 (Rh123), Nonyl-Acridine Orange and calcium fluorescent probe Fluo-3/AM, respectively.RESULTS: Membrane and cristae were broken or disappeared in mitochondria in different shapes under electron microscopy. Some mitochondria showed U shape or megamitochondrion. In the model group, liver mitochondria PTP was broken, and mitochondria swelled, the absorbance at 450 nm, A540 decreased (0.0136 ± 0.0025 vs 0.0321 ± O.0013,model vs control,P<O.01);mitochondria transmembrane potential (239.4638 ± 12.7263 vs 377.5850 ± 16.8119,P<0.01) was lowered;mitochondrial mass (17.4350 ± 1.9880 vs 31.6738 ± 3.4930,P<0.01);and [Ca2+]i was increased in liver cells (7.0020 ± 0.5008 vs 10.2050 ± 0.4701,P<0.01).CONCLUSION:Chronic alcohol intake might lead to broken mitochondria PTP,decreased mitochondria membrane potential and injury,and elevated intracellular Ca2+ production.Ethanol-induced chondriosome injury may be an important mechanism of alcoholic diseases.

  2. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    OpenAIRE

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin; Lee, Sang Yup

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-me...

  3. APPLICATION OF RESPONSE SURFACE METHOD ON PURIFICATION OF GLUCOMANNAN FROM AMORPHOPHALLUS ONCOPHYLLUS BY USING 2-PROPANOL

    Directory of Open Access Journals (Sweden)

    DYAH H. WARDHANI

    2016-04-01

    Full Text Available Glucomannan purification methods affect the properties of mannan and have influence to the scope of glucomannan applications. Combination between ethanol solution and thermal treatment is commonly method applied to purify glucomannan obtained from Amorphophallus sp. However, 2-propanol was reported to be more effective in removing glucomannan impurities including the starch and the carotenes. The objective of this research was to study the effect of 2-propanol concentration, temperature and time as well as their interaction on purification of glucomannan obtained from Amorphophallus oncophyllus by using response surface methods. The relevant parameters (glucomannan content, starch content, degree of whiteness, yield were investigated in order to establish mathematical model. The results showed that the linear models were reliable to predict the responses (R2 ≥ 0.926. Temperature was a significant variable for the all responses. This purification method improved the absorbance of the functional groups at ~2900 cm-1 of stretching of C-H vibration and ~1730 cm-1 of acetyl group which is responsible on glucomannan solubility. However, this method reduced the absorbance of the functional groups at ~1650, ~1070, ~1020 and 900 - 800 cm-1 of absorbed water or protein, C-O alcohol and -glucosidic and -mannosidic linkages, respectively. The morphology observation revealed that this purification method achieves separation and removal of impurities which encapsulated the glucomannan and subsequently released the glucomannan granules. The highest content of glucomannan obtained in this study was 72.30 % when 90 % 2-propanol at 75 °C for 180 min was used for purification.

  4. Methanol and ethanol from lignocellulosic Swedish wood fuels - Main report. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value. 25 figs, 29 tabs

  5. Methanol and ethanol from lignocellulosic Swedish wood fuels. Appendices. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value

  6. Formation of deep destruction products during indirect radiation action on alcohols in aqueous solutions

    International Nuclear Information System (INIS)

    Formation of deep destruction products with the scission of C-C and C-O bonds during γ-radiolysis of the iso-propanol-water system in neutral and alkaline solutions depending on the electron part of alcohol is studied. Considerable positive deviations of the yield of certain products from additivity rule are detected. It is shown that in the presence of alkali the yields of all the products increase. Similar effects are established during radiolysis of the tert.- butanol-water system. The results obtained are compared with the data known for binary mixtures of methanol, ethanol and n-propanol with water

  7. Thermochemistry of the solution of β-alanine in (H2O + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Highlights: • Enthalpies of β-alanine dissolution have been measured in aqueous solution of MeOH, EtOH, 1-PrOH and 2-PrOH. • Measured data were reported as functions of composition of water + alcohol mixtures. • Enthalpy coefficients of pairwise interactions have been analyzed in terms of McMillan–Mayer theory. - Abstract: The enthalpies of the solution of β-alanine in H2O + (methanol, ethanol, 1-propanol and 2-propanol) mixtures with alcohol content up to 0.4 mol fractions, have been determined calorimetrically at T = 298.15 K. The standard enthalpies of the solution and transfer of β-alanine from water to aqueous alcohol have been calculated. The effect of structure properties of a mixed solvent on specified enthalpy characteristics of β-alanine is discussed. The enthalpy coefficients of pairwise interactions between β-alanine and alcohol molecules have been computed. It has been found that these coefficients become increasingly positive in methanol, ethanol, 1-propanol, and 2-propanol sequence. A comparative analysis of thermodynamic characteristics of dissolution of β-alanine and D,L-α-alanine in the mixtures studied has been made

  8. Ginsenoside-free molecules from steam-dried ginseng berry promote ethanol metabolism: an alternative choice for an alcohol hangover.

    Science.gov (United States)

    Lee, Do Ik; Kim, Seung Tae; Lee, Dong Hoon; Yu, Jung Min; Jang, Su Kil; Joo, Seong Soo

    2014-07-01

    Ethanol metabolism produces harmful compounds that contribute to liver damage and cause an alcohol hangover. The intermediate metabolite acetaldehyde is responsible for alcohol hangover and CYP2E1-induced reactive oxygen species damage liver tissues. In this study, we examined whether ginsenoside-free molecules (GFMs) from steam-dried ginseng berries promote ethanol metabolism and scavenge free radicals by stimulating primary enzymes (alcohol dehydrogenase, aldehyde dehydrogenase, CYP2E1, and catalase) and antioxidant effects using in vitro and in vivo models. The results revealed that GFM effectively scavenged 2,2-diphenyl-1-picrylhydrazyl hydrate radicals and hydroxyl radicals. Notably, GFM significantly enhanced the expression of primary enzymes within 2 h in HepG2 cells. GFM clearly removed the consumed ethanol and significantly reduced the level of acetaldehyde as well as enhancement of primary gene expression in BALB/c mice. Moreover, GFM successfully protected HepG2 cells from ethanol attack. Of the major components identified in GFM, it was believed that linoleic acid was the most active ingredient. Based on these findings, we conclude that GFM holds promise for use as a new candidate for ethanol metabolism and as an antihangover agent. PMID:24962619

  9. Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

    2012-07-01

    This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

  10. Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols

    Science.gov (United States)

    Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.

    2016-06-01

    Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.

  11. Direct effect of tetrahedral alcohol species on the SPB of gold colloids: a deconvolution study

    International Nuclear Information System (INIS)

    Aqueous gold colloids with a mean diameter of 15.4 ± 1.5 nm have been transferred into a range of water–alcohol mixtures. The influence of these mixtures (methanol, ethanol, 2-propanol, and tert-butanol), which present different hydrophobic properties, on the surface plasmon band of gold nanoparticles has been studied. Shifts of gold nanoparticles’ surface plasmon band (SPB) depend on the number of methyl groups and hydrophobic character of the alcohol molecule. Results from deconvolution analysis are explained considering variations on the grade of alcohol adsorption on the nanoparticle surface. TEM images indicate aggregation of the nanoclusters in mixtures of 2-propanol and tert-butanol. ζ potential measurements support the exchange of citrate ions by alcohol molecules, which in turn reflects the existence of an additional electrostatic component

  12. Ethanol poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  13. Enthalpy of absorption and limit of solubility of CO2 in aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol, 2-[2-(dimethyl-amino)ethoxy] ethanol, and 3-dimethyl-amino-1-propanol at T = (313.15 and 353.15) K and pressures up to 2 MPa

    International Nuclear Information System (INIS)

    In order to study the influence of amine structure on absorption of carbon dioxide, enthalpies of solution of CO2 in 2.50 mol . L-1 aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (THAM), 2-[2-(dimethyl-amino)ethoxy] ethanol (DMAEOE), and 3-dimethyl-amino-1-propanol (DMAP) were measured. The enthalpies of solution are determined as function of gas loading charge (moles of CO2/mole of amine), at temperatures (313.15 and 353.15) K, and pressures range from (0.5 to 2) MPa. Measurements were carried out using a flow calorimetric technique. CO2 solubilities in the aqueous solutions of amine are derived from calorimetric data. Molar volumes of aqueous amine solutions required to handle calorimetric data were determined at 303.15 K using a vibrating tube densimeter. Experimental enthalpies of solution are discussed on the basis of amines alkalinity.

  14. Enthalpy of absorption and limit of solubility of CO{sub 2} in aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol, 2-[2-(dimethyl-amino)ethoxy] ethanol, and 3-dimethyl-amino-1-propanol at T = (313.15 and 353.15) K and pressures up to 2 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, Laurence; Ballerat-Busserolles, Karine [Clermont Universite, Universite Blaise Pascal, Laboratoire de Thermodynamique et Interactions Moleculaires, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6272, Laboratoire de Thermodynamique et Interactions Moleculaires, F-63173 Aubiere (France); Coxam, Jean-Yves, E-mail: j-yves.coxam@univ-bpclermont.f [Clermont Universite, Universite Blaise Pascal, Laboratoire de Thermodynamique et Interactions Moleculaires, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6272, Laboratoire de Thermodynamique et Interactions Moleculaires, F-63173 Aubiere (France)

    2010-06-15

    In order to study the influence of amine structure on absorption of carbon dioxide, enthalpies of solution of CO{sub 2} in 2.50 mol . L{sup -1} aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (THAM), 2-[2-(dimethyl-amino)ethoxy] ethanol (DMAEOE), and 3-dimethyl-amino-1-propanol (DMAP) were measured. The enthalpies of solution are determined as function of gas loading charge (moles of CO{sub 2}/mole of amine), at temperatures (313.15 and 353.15) K, and pressures range from (0.5 to 2) MPa. Measurements were carried out using a flow calorimetric technique. CO{sub 2} solubilities in the aqueous solutions of amine are derived from calorimetric data. Molar volumes of aqueous amine solutions required to handle calorimetric data were determined at 303.15 K using a vibrating tube densimeter. Experimental enthalpies of solution are discussed on the basis of amines alkalinity.

  15. A novel alcohol/iron (III) fuel cell

    Science.gov (United States)

    Yi, Qingfeng; Zou, Tao; Zhang, Yuanyuan; Liu, Xiaoping; Xu, Guorong; Nie, Huidong; Zhou, Xiulin

    2016-07-01

    A novel alcohol fuel cell is constructed by using Fe3+ as the oxidation agent instead of the conventional O2. Various alcohols as the fuels are tested, including methanol, ethanol, n-propanol and iso-propanol. In this fuel cell, the anode catalysts tested are PdSn/β-cd-CNT, PdSn/CNT, Pd/β-cd-CNT, Pd/CNT and Pd/β-cd-C, prepared by using multi-walled carbon nanotube (CNT) and carbon powder (C), as well as β-cyclodexdrin (β-cd) modified CNT (β-cd-CNT) and β-cd modified C (β-cd-C), as the substrates to immobilize PdSn and Pd nanoparticles in glycol solvent. The as-synthesized PdSn/β-cd-CNT catalyst presents significantly higher electroactivity for alcohol oxidation than the conventional Pd/C catalyst. Fe3+ reduction reaction is carried out on the cathode made of carbon powder. The anolyte (alcohols in 1 mol L-1 NaOH) and catholyte (Fe3+ in 0.5 mol L-1 NaCl) are separated with a Nafion 117 membrane. Open circuit voltage (OCV) of the cell with the anode PdSn/β-cd-CNT is 1.14-1.22 V, depending upon the used alcohol. The maximum power densities with methanol, ethanol, n-propanol and iso-propanol fuels are 15.2, 16.1, 19.9 and 12.2 mW cm-2, respectively.

  16. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Alves de Souza

    2015-06-01

    Full Text Available Alcoholic liver disease is characterized by a wide spectrum of liver damage, which increases when ethanol is associated with high-fat diets (HFD. This work aimed to establish a model of alcoholic hepatic steatosis (AHS by using a combination of 10% ethanol and sunflower seeds as the source of HFD. Male rats received water or 10% ethanol and regular chow diet and/or HFD, which consisted of sunflower seeds. The food consumption, liquid intake and body weight of the rats were monitored for 30 days. After this period, blood was collected for biochemical evaluation, and liver samples were collected for histological, mitochondrial enzyme activity and oxidative stress analyses. Our results indicated that the combination of 10% ethanol and HFD induced micro- and macrosteatosis and hepatocyte tumefaction, decreased the levels of reduced glutathione and glutathione S-transferase activity and increased the level of lipoperoxidation and superoxide dismutase activity. The mitochondrial oxidation of NADH and succinate were partially inhibited. Complexes I and II were the main inhibition sites. Hepatic steatosis was successfully induced after 4 weeks of the diet, and the liver function was modified. The combination of 10% ethanol and sunflower seeds as an HFD produced an inexpensive model to study AHS in rats.

  17. The thermochemistry of solution of L-α-alanyl-L-α-alanine in water-alcohol mixtures at 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Badelin, V. G.

    2008-07-01

    The integral enthalpies of solution of L-α-alanyl-L-α-alanine in water-ethanol, water- n-propanol, and water-isopropanol mixtures were measured calorimetrically at alcohol concentrations x 2 ranging from 0 to 0.4 mole fractions. The standard enthalpy of peptide solution Δsol H o and transfer Δtr H o from water into a mixed solvent were calculated. The effect of the structure and properties of peptides and mixture composition on the enthalpy characteristics is discussed. The enthalpy coefficients of pair interactions h xy between L-α-alanyl-L-α-alanine and alcohol molecules were calculated; these coefficients were positive and increased in the series ethanol, n-propanol, isopropanol. The analysis performed allowed the differences in the thermodynamic characteristics of solution of L-α-alanyl-L-α-alanine and DL-α-alanyl-DL-α-alanine in water-alcohol mixtures to be determined.

  18. Influence of the composition of aqueous-alcohol solvents on the thermodynamic characteristics of L-phenylalanine dissolution at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Badelin, Valentin G. [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045, Ivanovo (Russian Federation); Smirnov, Valeriy I., E-mail: vis@isc-ras.ru [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045, Ivanovo (Russian Federation)

    2011-11-10

    Highlights: Black-Right-Pointing-Pointer Enthalpies of L-phenylalanine dissolution have been measured in aqueous methanol, ethanol, 1-propanol and 2-propanol. Black-Right-Pointing-Pointer The measured data were reported as functions of composition of water + alcohol mixtures. Black-Right-Pointing-Pointer Enthalpy coefficients of pair-wise interactions have been analyzed in terms of McMillan-Mayer theory. Black-Right-Pointing-Pointer A comparative analysis of the characteristics of dissolution of L-phenylalanine and some other L-amino acids in the similar systems has been made. - Abstract: The enthalpies of L-phenylalanine dissolution in aqueous methanol, ethanol, 1-propanol and 2-propanol have been determined by calorimetry at 298.15 K and alcohol mole fractions up to x{sub 2} {approx}0.4. The standard enthalpies of solution {Delta}{sub sol}H Degree-Sign and transfer {Delta}{sub tr}H Degree-Sign from water to the mixed solvent as well as the enthalpy coefficients of L-phenylalanine-alcohol pair-wise interactions were calculated. The interrelation of the enthalpies of dissolution and transfer for L-phenylalanine with structural features of alcohols has been determined. A comparative analysis of the thermodynamic characteristics of dissolution of L-phenylalanine and some other amino acids (glycine, L-alanine, L-threonine and L-valine) in the mixtures studied has been made.

  19. Physical properties of gasoline/alcohol automotive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cox, F W

    1979-01-01

    Non-petroleum derived alcohols are likely candidates for near-future use as alternative automotive fuels. Low molecular weight alcohols may be used alone or in combination with gasoline, but either usage presents its own unique set of advantages and disadvantages. This report addresses the physical property changes (both beneficial and detrimental) which occur when alcohols are added to gasoline as fuel extenders. The experimental data and discussion of results cover four physical property areas: water tolerance, vapor pressure, distillation characteristics, and octane quality. The alcohols include methanol, ethanol, n-propanol, i-butanol, and synthetic methyl fuel. Several additional alcohols were tested, but only as gasoline/methanol cosolvents. The major objective of the physical properties study was to determine the interdependency among the variables which are responsible for the significant property changes so that, where possible, gasoline/alcohol properties can be estimated from blend composition. Trends are also discussed in terms of the general influences of system variables.

  20. Vapour pressures and osmotic coefficients of binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate with alcohols at T = 323.15 K

    International Nuclear Information System (INIS)

    Osmotic coefficients of binary mixtures containing alcohols (ethanol, 1-propanol, and 2-propanol) and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate were determined at T = 323.15 K. Vapour pressure and activity coefficients of the studied systems were calculated from experimental data. The extended Pitzer model modified by Archer, and the modified NRTL model (MNRTL) were used to correlate the experimental data, obtaining standard deviations lower than 0.012 and 0.031, respectively. The mean molal activity coefficients and the excess Gibbs free energy of the studied binary mixtures were calculated from the parameters obtained with the extended Pitzer model of Archer.

  1. Liquid mixtures involving fluorinated alcohols: The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol) Experimental and Simulation

    OpenAIRE

    Duarte, P.; RODRIGUES D.; M. Silva; Morgado, P; Martins, L; Filipe, E

    2012-01-01

    Liquid mixtures involving fluorinated alcohols: The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol) Experimental and Simulation Pedro Duartea, Djêide Rodriguesa, Marcelo Silvaa, Pedro Morgadoa, Luís Martinsa,b and Eduardo J. M. Filipea* aCentro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisboa, Portugal bCentro de Química de Évora, Universidade de Évora, 7000-671 Évora, Portugal Fluorinated alcohols are substances with unique propertie...

  2. Feasibility study of fuel grade ethanol plant for Alcohol Fuels of Mississippi, Inc. , Vicksburg, Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The results are presented of a feasibility study performed to determine the technical and economic viability of constructing an alcohol plant utilizing the N.Y.U. continuous acid hydrolysis process to convert wood wastes to fuel grade alcohol. The following is a summary of the results: (1) The proposed site in the Vicksburg Industrial Foundation Corporation Industrial Park is adequate from all standpoints, for all plant capacities envisioned. (2) Local hardwood sawmills can provide adequate feedstock for the facility. The price per dry ton varies between $5 and $15. (3) Sale of fuel ethanol would be made primarily through local distributors and an adequate market exists for the plant output. (4) With minor modifications to the preparation facilities, other waste cellulose materials can also be utilized. (5) There are no anticipated major environmental, health, safety or socioeconomic risks related to the construction and operation of the proposed facility. (6) The discounted cash flow and rate of return analysis indicated that the smallest capacity unit which should be built is the 16 million gallon per year plant, utilizing cogeneration. This facility has a 3.24 year payback. (7) The 25 million gallon per year plant utilizing cogeneration is an extremely attractive venture, with a zero interest break-even point of 1.87 years, and with a discounted rate of return of 73.6%. (8) While the smaller plant capacities are unattractive from a budgetary viewpoint, a prudent policy would dictate that a one million gallon per year plant be built first, as a demonstration facility. This volume contains process flowsheets and maps of the proposed site.

  3. Method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography in daily practice

    CERN Document Server

    Charapitsa, Siarhei V; Makhomet, Andrey A; Guguchkina, Tatiana I; Markovsky, Mikhail G; Yakuba, Yurii F; Kotov, Yurii N

    2016-01-01

    Recently proposed new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography (GC) is investigated from different sides including method testing on prepared standard solutions like cognac and brandy, different ethanol-water solutions and certified reference material CRM LGC5100 Whisky-Congeners. Analysis of obtained results of experimental study from four different laboratories shows that relative bias between the experimentally measured concentrations calculated in accordance with proposed method and the values of concentrations assigned during the preparation by gravimetric method for all analyzed compounds does not exceed 10 %. It is shown that relative response factors (RRF) between analyzed volatile compounds and ethanol do not depend on time of analysis and are constant for every model of GC. It is shown the possibility to use predetermined RRF in daily practice of testing laboratories and to implement this new method in the international s...

  4. The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania.

    Science.gov (United States)

    Song; Pratsinis

    2000-11-15

    Bimodally porous titania powders were made by hydrolysis of titanium tetraisopropoxide (TTIP) dissolved in various alcohols (methanol, ethanol, isopropanol, and sec-butanol). The specific surface area (SSA) of the powders dried at 150 degrees C ranged from 332 to 624 m(2)/g as determined by nitrogen adsorption. At excess alcohol concentration, the SSA of the dried powders decreased in the order of sec-butanol, iso-propanol, ethanol, and methanol at a constant alcohol/TTIP molar ratio. The pore size distribution was bimodal with fine intraparticle pore diameters at 1-6 nm and larger interparticle pore diameters at 30-120 nm as determined by nitrogen adsorption isotherms. The average intraparticle pore diameter decreased with increasing alcohol concentration for methanol and ethanol, while it was rather constant at 3.3 nm, irrespective of alcohol concentration for iso-propanol and sec-butanol. The evolution of particle phase composition was determined by X-ray diffraction ranging from amorphous to crystalline anatase and rutile largely proportional to the calcination temperature and to a lesser extent on the type and concentration of alcohols. Copyright 2000 Academic Press. PMID:11049679

  5. Photochemical reduction and reduction in darkness of vanadium (5) chloride-alcoholate complexes in ethanol

    International Nuclear Information System (INIS)

    Photochemical behaviour and behaviour in darkness of vanadium (5) chloride-alcoholate complexes in ethanol are investigated by the methods of electron spectroscopy and EPR. Under the conditions of darkness at room temperatures a slow reduction reaction with vanadium (4) complex formation takes place which is described by kinetic equation of the second order. During the light irradiation with the 254 nm wave length the process of consecutive photoreduction from Vsup(5+) to Vsup(2+) takes place. Absorption spectra are obtained in the visible and UV-regions of tri- and bivalent vanadium complexes being formed, as well as EPR spectra of Vsup(4+) and Vsup(2+) complexes. The quantum i lds values of these processes are determined. At the light action with the 254 nm wave length on the solutions containing vanadium(3) complexes in addition to photoreduction process Vsup(3+) → Vsup(2+) the oxidation Vsup(2+) → Vsup(3+) is observed which is accompained by the solvent decomposition with the molecular hydrogen deposition

  6. Percutaneous ethanol ablation of hepatocellular carcinoma: Periprocedural onset alcohol toxicity and pancreatitis following conventional percutaneous ethanol ablation treatment

    OpenAIRE

    Burton, Kirsteen Rennie; O’Dwyer, Helena; Scudamore, Charles

    2009-01-01

    A novel case of acute pancreatitis in a patient treated with percutaneous ethanol injection (PEI) ablation for hepatocellular carcinoma is described. The most commonly reported adverse effects of PEI are hepatic or peritoneal hemorrhage, hepatic insufficiency or infarction. There are no previous reports of fatal acute pancreatitis as a result of conventional PEI.

  7. Adsorption and Reaction of C1-C3 Alcohols over CeOx(111) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    D Mullins; S Senanayake; T Chen

    2011-12-31

    This study reports the interaction of methanol, ethanol, 1-propanol, and 2-propanol with well-ordered CeO{sub 2}(111) thin film surfaces. All of the alcohols adsorb at low temperature by forming alkoxy and hydroxyl species on the surface. On fully oxidized CeO{sub 2}(111), recombination occurs between some of the alkoxys and hydroxyls, resulting in alcohol desorption near 220 K. At the same temperature, some of the surface hydroxyls disproportionate to produce water and the loss of lattice O. The remaining alkoxys react above 550 K. The primary alcohols favor dehydrogenation products (aldehydes). There is a net loss of O from the system, resulting in a reduction of the ceria. The secondary alcohol, 2-propanol, undergoes primarily dehydration, producing propene with no net change in the cerium oxidation state. Reduced CeO{sub x}(111) competes with the gaseous products for available O. Little or no water is produced. The reaction selectivity for the C{sub 2} and C{sub 3} alcohols shifts toward favoring dehydration products. The loss of O from the alcohols leads to oxidation of the reduced ceria. Compared with the oxidized surface, the alkene desorption shifts to lower temperature, whereas the aldehyde desorption shifts to higher temperature. This indicates that, on the reduced surface, it is easier to break the C-O bond but more difficult to break the O-substrate bond.

  8. Relative Fluid Novelty Differentially Alters the Time Course of Limited-Access Ethanol and Water Intake in Selectively Bred High Alcohol Preferring Mice

    Science.gov (United States)

    Linsenbardt, David N.; Boehm, Stephen L.

    2015-01-01

    Background The influence of previous alcohol (ethanol) drinking experience on increasing the rate and amount of future ethanol consumption might be a genetically-regulated phenomenon critical to the development and maintenance of repeated excessive ethanol abuse. We have recently found evidence supporting this view, wherein inbred C57BL/6J (B6) mice develop progressive increases in the rate of binge-ethanol consumption over repeated Drinking-in-the-Dark (DID) ethanol access sessions (i.e. ‘front-loading’). The primary goal of the present study was to evaluate identical parameters in High Alcohol Preferring (HAP) mice to determine if similar temporal alterations in limited-access ethanol drinking develop in a population selected for high ethanol preference/intake under continuous (24hr) access conditions. Methods Using specialized volumetric drinking devices, HAP mice received 14 daily 2 hour DID ethanol or water access sessions. A subset of these mice was then given one day access to the opposite assigned fluid on day 15. Home cage locomotor activity was recorded concomitantly on each day of these studies. The possibility of behavioral/metabolic tolerance was evaluated on day 16 using experimenter administered ethanol. Results The amount of ethanol consumed within the first 15 minutes of access increased markedly over days. However, in contrast to previous observations in B6 mice, ethanol front-loading was also observed on day 15 in mice that only had previous DID experience with water. Furthermore, a decrease in the amount of water consumed within the first 15 minutes of access compared to animals given repeated water access was observed on day 15 in mice with 14 previous days of ethanol access. Conclusions These data further illustrate the complexity and importance of the temporal aspects of limited-access ethanol consumption, and suggest that previous procedural/fluid experience in HAP mice selectively alters the time course of ethanol and water consumption

  9. Determination of alcohol compounds using corona discharge ion mobility spectrometry

    Institute of Scientific and Technical Information of China (English)

    HAN Hai-yan; HUANG Guo-dong; JIN Shun-ping; ZHENG Pei-chao; XU Guo-hua; LI Jian-quan; WANG Hong-mei; CHU Yan-nan

    2007-01-01

    Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectra for six alcohol organic compounds have been systematically studied for the first time using a high-resolution IMS apparatus equipped with a discharge ionization source. Utilizing protonated water cluster ions (H2O)nH+ as the reactant ions and clean air as the drift gas, alcohol organic compounds, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol and 2-octanol, all exhibit product ion characteristic peaks in their respective ion mobility spectrometry, that is a result of proton transfer reactions between the alcohols and reaction ions (H2O)nH+. The mixture of these alcohols, including two isomers, has been detected, and the result shows that they can also be distinguished effectively in the ion mobility spectrum. The reduced mobility values have been determined, which are in very well agreement with the traditional 63Ni-IMS experimental values. The exponential dilution method was used to calibrate the alcohol concentrations, and a detection limit available for the alcohols is in order of magnitude of a few ng/L.

  10. The thermochemical characteristics of solution of DL-α-alanylglycine and DL-α-alanylalanine in water-alcohol mixtures at 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Mezhevoi, I. N.; Badelin, V. G.

    2007-05-01

    The integral enthalpies of solution of DL-α-alanylglycine and DL-α-alanylalanine in water-ethanol, water-n-propanol, and water-isopropanol mixtures were measured calorimetrically at alcohol concentrations x 2 = 0-0.4 mole fractions. The standard enthalpies of solution (Δsol H°) of the peptides and their transfer (Δtr H°) from water into the mixed solvents were calculated. The influence of the structure and properties of the solutes and mixture composition on the enthalpy characteristics were considered. The Δsol H° = f(x 2) and Δtr H° = f(x 2) dependences were found to have extrema. The enthalpy coefficients of pair interactions (h xy ) between the peptide and alcohol molecules were calculated. The coefficients were positive and increased in the series ethanol, n-propanol, isopropanol.

  11. Altering alcohol price by ethanol content: results from a Swedish tax policy in 1992.

    Science.gov (United States)

    Ponicki, W; Holder, H D; Gruenewald, P J; Romelsjö, A

    1997-07-01

    In July 1992, the Swedish alcohol retail monopoly reset the taxes for alcohol sold in state stores according to absolute alcohol content. This provided a unique opportunity to examine the effects on alcohol sales within the three beverage classes (beer, wine and spirits) in a situation where price is purposely linked to alcohol content. The most notable effects of the taxation change were a substantial compression of the range of prices for spirits and wine and a corresponding expansion of the price spectrum for beer. Consumers appear to have responded to these tax changes by shifting away from beverage brands that became relatively more expensive. These results suggest that alcohol policy strategies to reduce total alcohol consumption should consider the entire price/quality spectrum as well as differences in absolute alcohol per volume across the three alcohol beverage types. PMID:9293045

  12. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    Science.gov (United States)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  13. Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose.

    Science.gov (United States)

    Gutiérrez, Tony; Buszko, Marian L; Ingram, Lonnie O; Preston, James F

    2002-01-01

    The ethanologenic bacteria Escherichia coli strains KO11 and LYO1, and Klebsiella oxytoca strain P2, were investigated for their ability to metabolize furfural. Using high performance liquid chromatography and 13C-nuclear magnetic resonance spectroscopy, furfural was found to be completely biotransformed into furfuryl alcohol by each of the three strains with tryptone and yeast extract as sole carbon sources. This reduction appears to be constitutive with NAD(P)H acting as electron donor. Glucose was shown to be an effective source of reducing power. Succinate inhibited furfural reduction, indicating that flavins are unlikely participants in this process. Furfural at concentrations >10 mM decreased the rate of ethanol formation but did not affect the final yield. Insight into the biochemical nature of this furfural reduction process may help efforts to mitigate furfural toxicity during ethanol production by ethanologenic bacteria. PMID:12018260

  14. Electrooxidation of 2-propanol and 2-butanol on the Pt–Ni alloy nanoparticles in acidic media

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic representation of 2-propanol electrooxidation on the Pt–Ni alloy. Highlights: ► Electrocatalytic oxidation of 2-propanol and 2-butanol on the Pt–Ni nanoparticles. ► High stability and reproducibility of the Pt–Ni nanoparticles at the CCE. ► Pt–Ni/CCE as a potent electrocatalyst in the oxidation of alcohols in DAFCs. -- Abstract: The platinum–nickel nanoparticles carbon-ceramic modified electrode (Pt–Ni/CCE) was used as a potent electrocatalyst for the electrooxidation of 2-propanol and 2-butanol in a mixture of 0.15 M 2-propanol (or 0.15 M 2-butanol) and 0.1 M H2SO4 solutions. The Pt–Ni/CCE catalyst shows excellent electrocatalytic activity for electrooxidation of these fuels in comparison with platinum nanoparticles of carbon-ceramic modified (Pt/CCE) and smooth Pt electrodes due to the presence of Ni atoms in the alloy which enhances the electrocatalytic activity of Pt toward the oxidation of 2-propanol and 2-butanol and reduces the amount of Pt in the anodic material of direct 2-propanol and 2-butanol fuel cells. Furthermore, the Pt–Ni/CCE catalyst has satisfactory stability and reproducibility for the electrooxidation of 2-propanol and 2-butanol in acidic media when stored in ambient conditions or when used in constant potential applying (chronoamperometry) and continuous potential cycling (cyclic voltammetry) which makes it more attractive for alcohol-based fuel cell applications

  15. Effects of potassium sorbate and Lactobacillus plantarum MTD1 on production of ethanol and other volatile organic compounds in corn silage

    DEFF Research Database (Denmark)

    Hafner, Sasha D.; Windle, Michelle; Merrill, Caitlyn;

    2015-01-01

    evaluate the effect of additives on production of nine silage VOC in corn silage, including compounds thought to contribute to poor air quality or affect feed intake (alcohols: methanol, ethanol, 1-propanol; esters: methyl acetate, ethyl acetate, ethyl lactate; and aldehydes: acetaldehyde, valeraldehyde...... results provide additional evidence that potassium sorbate is an effective additive for reducing production of ethanol and ethyl esters in corn silage. Combining potassium sorbate with L. plantarum may provide additional benefits, although the persistence of this effect for silages with higher VOC...

  16. Metabolic effects of feeding high doses of propanol and propylacetate to lactating Holstein cows

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    Three lactating Holstein cows implanted with ruminal cannulas and permanent indwelling catheters in major splanchnic blood vessels were used to investigate alcohol metabolism and metabolic effects of feeding high doses of propanol and propylacetate. Cows were fed three diets control (basal ration...

  17. Kinetics of the γ-radiation-initiated reaction of 2-propanol with tri- and hexafluoropropylene

    International Nuclear Information System (INIS)

    The initiation of telomerization reactions by ionizing radiation provides good opportunities for studying the kinetics of free radical reactions. The fluoroalcohols and their derivatives prepared using fluoroolefins and aliphatic alcohols find wide practical application. The object of this exercise was to study the reactivity of trifluoropropylene and hexafluoropropylene with 2-propanol. The reaction products were analyzed gas chromatographically

  18. Studies with cDNA probes on the in vivo effect of ethanol on expression of the genes of alcohol metabolism.

    Science.gov (United States)

    Bond, S L; Singh, S M

    1990-01-01

    Mice (Mus musculus) from three genetic strains with variable responses to ethanol challenge (BALB/c, C57BL/6J and 129/ReJ) were used to evaluate the effect of ethanol feeding on hepatic mRNA specific to the two primary enzymes of ethanol metabolism; alcohol dehydrogenase (ADH; E.C. 1.1.1.1) and aldehyde dehydrogenase (ALDH; E.C. 1.2.1.3). Adh-1 (ADH) and Ahd-2 (ALDH) specific mRNA were evaluated on the livers of ethanol-fed mice and from their age, sex and genotype matched controls (using an isocaloric liquid diet). C57BL/6J (alcohol resistant) mice show a significant (approx. 200%) increase in ADH-1 mRNA levels after ethanol treatment, compared to their matched controls. BALB/c (alcohol sensitive) mice have approximately a 20% increase with ethanol treatment while 129/ReJ (alcohol sensitive) mice show a slight reduction in the ADH-1 specific mRNA following ethanol feeding. A strain-specific pattern is also apparent in the AHD-2 mRNA as a result of ethanol feeding in the experimental animals. C57BL/6J mice have an increase and BALB/c mice show no apparent change in the AHD-2 mRNA. 129/ReJ mice fed an ethanol diet, on the other hand, appear to have a decrease in the level of AHD-2 hepatic mRNA as compared to their matched controls. The relative mRNA levels of the two genes correlate well with the respective enzyme activity levels, but for mice on the control diet only. Ethanol feeding, which causes an apparent reduction in hepatic ADH enzyme activity in BALB/c and 129/ReJ and an apparent increase in ALDH activity in C57BL/6J (under the experimental protocols used) also alters the mRNA levels specific to the two genes. However, changes in the mRNA levels after ethanol feeding cannot be directly related to the changes seen in enzyme activity. The observed steady state level of AHD-2 mRNA and the increase in ALDH activity after ethanol feeding, which is unique to C57BL/6J mice, is expected to offer a faster clearance (metabolism) of acetaldehyde, the toxic metabolite

  19. Early Ethanol and Water Consumption: Accumulating Experience Differentially Regulates Drinking Pattern and Bout Parameters in Male Alcohol Preferring (P) vs. Wistar and Sprague Dawley Rats

    OpenAIRE

    Azarov, Alexey V.; Woodward, Donald J.

    2013-01-01

    Alcohol-preferring (P) rats develop high ethanol intake over several weeks of water/10% ethanol (10E) choice drinking. However, it is not yet clear precisely what components of drinking behavior undergo modification to achieve higher intake. Our concurrent report compared precisely measured daily intake in P vs. non-selected Wistar and Sprague Dawley (SD) rats. Here we analyze their drinking patterns and bouts to clarify microbehavioral components that are common to rats of different origin, ...

  20. Ethanol-derived acetaldehyde: pleasure and pain of alcohol mechanism of action.

    Directory of Open Access Journals (Sweden)

    Marco Diana

    2013-07-01

    In the present paper we review the role of EtOH-derived ACD in the reinforcing effects of EtOH and the possibility that ACD may serve as a therapeutically targetable biomarker in the search for novel treatments in alcohol abuse and alcoholism.

  1. Genetic determinants of both ethanol and acetaldehyde metabolism influence alcohol hypersensitivity and drinking behaviour among Scandinavians

    DEFF Research Database (Denmark)

    Linneberg, A; Gonzalez-Quintela, A; Vidal, C;

    2010-01-01

    Although hypersensitivity reactions following intake of alcoholic drinks are common in Caucasians, the underlying mechanisms and clinical significance are not known. In contrast, in Asians, alcohol-induced asthma and flushing have been shown to be because of a single nucleotide polymorphism (SNP...

  2. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Directory of Open Access Journals (Sweden)

    Melda Sonmez

    Full Text Available The role of membrane fluidity in determining red blood cell (RBC deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol using ektacytometry and electron paramagnetic resonance (EPR spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01. The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  3. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring.

    Science.gov (United States)

    Ceccanti, Mauro; Coccurello, Roberto; Carito, Valentina; Ciafrè, Stefania; Ferraguti, Giampiero; Giacovazzo, Giacomo; Mancinelli, Rosanna; Tirassa, Paola; Chaldakov, George N; Pascale, Esterina; Ceccanti, Marco; Codazzo, Claudia; Fiore, Marco

    2016-07-01

    Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring. PMID:25940002

  4. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    International Nuclear Information System (INIS)

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  5. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Wang, Linlong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  6. Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake.

    Science.gov (United States)

    Matson, Liana M; Grahame, Nicholas J

    2015-11-01

    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive

  7. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    OpenAIRE

    Saúl Gómez-Manzo; José E. Escamilla; Abigail González-Valdez; Gabriel López-Velázquez; América Vanoye-Carlo; Jaime Marcial-Quino; Ignacio de la Mora-de la Mora; Itzhel Garcia-Torres; Sergio Enríquez-Flores; Martha Lucinda Contreras-Zentella; Roberto Arreguín-Espinosa; Kroneck, Peter M H; Martha Elena Sosa-Torres

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to ...

  8. Molecular conformation and liquid structure of 2-propanol through neutron diffraction

    Indian Academy of Sciences (India)

    A Sahoo; S Sarkar; P S R Krishna; R N Joarder

    2010-05-01

    The neutron diffraction data analysis of deuterated liquid 2-propanol at room temperature to define its molecular conformation is presented. 2-Propanol being a large molecule with twelve atomic sites, the conformation analysis is tricky and an improved method of data analysis is given. The intermolecular structural correlations, i.e., hydrogen-bonded liquid structure, can be modelled accurately to extract the nature of the average hydrogen-bonded molecular association in liquid state at room temperature. Like other alcohols these are mostly hexamer ring chain (HRC) clusters. The cluster analysis of recent X-ray data available in the literature also support the same liquid structure.

  9. Chemical isomeric effects on propanol glassy structures

    CERN Document Server

    Cuello, G J; Bermejo, F J; Cabrillo, C

    2002-01-01

    We have studied the structure of both propanol isomers in their glassy and crystalline states by neutron diffraction. The glass-transition temperatures of 1- and 2-propanol are about 98 and 115 K, respectively and, surprisingly, even larger differences are observed for the melting temperatures of the stable crystals, which are 148 and 185 K, respectively. Their supercooled liquid phases show rather different relaxation spectra, 1-propanol manifesting strong deviations from Debye behavior, whereas 2-propanol shows a far weaker effect. We discuss the spectra obtained for the static structure factor and the static pair correlation function D(r). There is a noticeable difference in the position of the first sharp diffraction peak, which clearly indicates a density change, well correlated with the period of the intermolecular oscillations shown by D(r). (orig.)

  10. [Bim]Ac离子液体+醇二元混合体系的体积和黏度性质研究%Volumetric and Viscosity Properties of 1-Butylimidazolium Acetate Ionic Liquid/Methanol, Ethanol or 1-Propanol Binary Mixtures

    Institute of Scientific and Technical Information of China (English)

    许映杰; 俞超红; 鲁越青

    2015-01-01

    1-Butylimidazolium acetate ([Bim]Ac) ionic liquid was synthesized, and the structure was characterized by1H-NMR,13C-NMR, and IR spectroscopy. Density and viscosity of [Bim]Ac+methanol, [Bim]Ac+ethanol, and [Bim]Ac+1-propanol binary mixtures were measured over an entire range of molar fraction at T=303.15 K under atmospheric pressure using a vibrating U-shaped sample tube densimeter and Ubbelohde Suspended-level viscometer, respectively. Excess molar volumes (VE), apparent molar volumes (Vfi), partial molar volumes (Vm,i), and excess partial molar volumes (VEm,i) of the studied systems were calculated with the density data. Viscosity deviations (Δη) of the studied systems were obtained from the viscosity data.VE andΔηwere fitted by Redlich-Kister equation, respectively. The results show that theVE values of the three studied systems are negative over the entire composition range, and a minimum value is reached with mole fraction of [Bim]Acx1=0.3~0.4. TheΔηvalues of the above-mentioned systems are also negative over the entire composition range, and a minimum value is reached withx1=0.4~0.5. TheVE orΔη values of the studied systems follow an order of [Bim]Ac+methanol < [Bim]Ac+ethanol < [Bim]Ac+1-propanol, which indicates that the interaction between [Bim]Ac and alkanol increases with the increase of alkanol polarity. TheVE andΔη values can be well fitted with Redlich-Kister equation.%合成了1-丁基咪唑醋酸盐([Bim]Ac)离子液体,通过1H-NMR、13C-NMR和IR对其结构进行了表征。在303.15 K和常压下,采用U形振荡管密度计测定了[Bim]Ac+甲醇、乙醇和正丙醇二元体系的密度,用乌氏黏度计测定了体系的黏度。由密度数据计算得到了体系的超额摩尔体积(VE)、表观摩尔体积(Vfi )、偏摩尔体积(V m,i )和超额偏摩尔体积( EV m,i ),由黏度数据获得了体系的混合黏度变化(∆h),并采用Redlich-Kister方程分别关联了VE、∆h与组成的关系。结果表明:

  11. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  12. Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of cornelian cherry

    Directory of Open Access Journals (Sweden)

    VELE TEŠEVIĆ

    2009-02-01

    Full Text Available In this study, volatile compounds were analyzed in five samples of home-made spirit beverage made by the distillation of fermented fruits of cornelian cherry (Cornus mas L.. The major volatile compounds, besides ethanol, identified and quantified were: methanol, acetaldehyde, 1-propanol, ethyl acetate, 2-methyl-1-propanol, 1-butanol, amyl alcohols, 1-hexanol and 2-phenylethanol. The minor volatiles were submitted to liquid–liquid extraction with dichloromethane and analyzed by gas chromatography and gas chromatography/ /mass spectrometry (GC/MS. A total of 84 compounds were identified. The most abundant compounds were straight-chain free fatty acids, ethyl esters of C6–C18 acids, limonene, 2-phenylethanol and 4-ethylphenol. Most of the compounds found in the “Drenja” spirits investigated in this study are similar to those present in other alcoholic beverages.

  13. Sex differences in the toxicokinetics of inhaled solvent vapors in humans 2. 2-propanol

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate possible sex differences in the inhalation toxicokinetics of 2-propanol vapor. Nine women and eight men were exposed on different occasions for 2 h during light physical exercise (50 W) to 2-propanol (350 mg/m3) and to clean air (control exposure). The level corresponds to the Swedish occupational exposure limit. 2-Propanol and its metabolite acetone were monitored up to 24 h after exposure in exhaled air, blood, saliva, and urine by headspace gas chromatography. Body fat and lean body mass were estimated from sex-specific equations using bioelectrical impedance, body weight, height, and age. Genotypes were determined by PCR-based assays for alcohol dehydrogenase and cytochrome P450 2E1 (CYP2E1). The CYP2E1 phenotype was assessed by the 2-h plasma 6-hydroxychlorzoxazone/chlorzoxazone metabolic ratio in vivo. The toxicokinetic profile in blood was analyzed using a one-compartment population model. The following sex differences were significant at the p 0.05 level (Student's t test). The respiratory uptake was lower and the volume of distribution smaller in females. The women had a slightly shorter half-time of 2-propanol in blood and a higher apparent total clearance when corrected for body composition. However, women reached approximately four times higher 2-propanol levels in exhaled air at 10-min postexposure and onward. Acetone in blood was markedly higher in females than in males in the control experiment and slightly higher following exposure to 2-propanol. A marked sex difference was that of a 10-fold higher in vivo blood:breath ratio in men, suggesting sex differences in the lung metabolism of 2-propanol. The most marked sex difference was that of salivary acetone, for which an approximately 100-fold increase was seen in women, but no increase in men, after exposure to 2-propanol compared to clean air. The toxicokinetic analysis revealed no significant differences in toxicokinetics between subjects of different metabolic

  14. Direct optical observation of the formation of some aliphatic alcohol radicals. A pulse radiolysis study

    Indian Academy of Sciences (India)

    E Janata

    2002-12-01

    The kinetics of the reactions of hydroxyl radicals and hydrogen atoms with some aliphatic alcohols in aqueous solutions were studied using pulse radiolysis. Based on the increase in optical absorption in the UV region, the rate constants for the reaction of hydroxyl radicals and hydrogen atoms with methanol, ethanol, 2-propanol or -butyl alcohol were determined to be 9.0 × 108, 2.2 × 109, 2.0 × 109, 6.2 × 108 and 1.1 × 106, 1.8 × 107, 5.3 × 107, 2.3 × 105 dm3 mol-1 s-1 respectively. The bimolecular decay rate constants for the alcohol radicals produced in methanol and ethanol were evaluated to be 2 .4 × 109 and 1.5 × 109 dm3 mol-1 s-1. The values observed are in fairly good agreement with those reported earlier.

  15. MAMMALIAN METABOLISM AND DISTRIBUTION OF PERFLUOROOCTYL ETHANOL (8-2 TELOMER ALCOHOL) AND ITS OXIDATION METABOLITES

    Science.gov (United States)

    Perfluorinated compounds have been shown to be globally distributed, bioaccumulative, persistent and potentially toxic. It has been hypothesized that many precursor fluorinated compounds, including the telomer alcohols, degrade or metabolize to the common metabolite PFOA.

  16. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  17. Interaction between ADH1C Arg272Gln and alcohol intake in relation to breast cancer risk suggests that ethanol is the causal factor in alcohol related breast cancer

    DEFF Research Database (Denmark)

    Benzon Larsen, Signe; Vogel, Ulla Birgitte; Christensen, Jane;

    2010-01-01

    Alcohol is a risk factor for breast cancer. We wanted to determine if ADH polymorphisms which modify the rate of ethanol oxidation to acetaldehyde, were associated with breast cancer risk. We matched 809 postmenopausal breast cancer cases with 809 controls, nested within the prospective Diet...

  18. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  19. Exploiting gas diffusion for non-invasive sampling in flow analysis: determination of ethanol in alcoholic beverages

    Directory of Open Access Journals (Sweden)

    Simone Vicente

    2006-03-01

    Full Text Available A tubular gas diffusion PTFE membrane is exploited for non-invasive sampling in flow analysis, aiming to develop an improved spectrophotometric determination of ethanol in alcoholic beverages. The probe is immersed into the sample, allowing ethanol to diffuse through the membrane. It is collected into the acceptor stream (acidic dichromate solution, leading to formation of Cr(III, monitored at 600 nm. The analytical curve is linear up to 50% (v/v ethanol, baseline drift is Uma membrana tubular de PTFE permeável a espécies gasosas foi empregada como sonda em sistemas de análises em fluxo visando a proposta de uma estratégia de amostragem não invasiva. Como aplicação, foi selecionada a determinação espectrofotométrica de etanol em bebidas alcoólicas. A sonda é imersa na amostra, permitindo que o analito se difunda através desta e seja coletado pelo fluxo aceptor (solução ácida de dicromato, levando à formação de Cr(III, o qual é monitorado a 600 nm. Linearidade da curva analítica é verificada até 50,0% (v/v de etanol (r > 0,998; n = 8, derivas de linha base são menores do que 0,005 absorbância durante períodos de 4 horas de operação e a velocidade analítica é de 30 h-1 o que corresponde a 0.6 mmol K2Cr2O7 por determinação. Os resultados são precisos (d.p.r. < 2% e concordantes com aqueles obtidos por um método oficial.

  20. Alcoholic fermentation by the wild yeasts under thermal, osmotic and ethanol stress

    Directory of Open Access Journals (Sweden)

    Rosimeire Oenning da Silva

    2013-04-01

    Full Text Available This study aimed to explore the variability in the metabolism of nine wild yeasts isolated from the sugarcane juice from a distillery in the Brazilian State of Mato Grosso. Cell viability under the stress conditions was evaluated. The yeasts were inoculated in the test tubes containing sugarcane juice adjusted from 12 to 21º Brix, ethanol from 6 to 12% in volume and temperature at 30, 35 and 40ºC. The viability was established by the growth in Petri dishes and visually by the CO2 production in the test tubes. None of the evaluated yeasts showed simultaneous resistance to the three stress conditions. The potential of yeast BB.09 could be emphasized due to its ability to ferment up to12% ethanol at 30°C.

  1. Studies on reactions of α-hydroxyalkyl radicals derived from n-propanol and n-butanol with nicotinic acid: estimation of their reduction potential

    International Nuclear Information System (INIS)

    Reactions of α-hydroxyalkyl radicals derived from n-propanol and n-butanol with nicotinic acid were studied by pulse radiolysis techniques. In these reactions adducts of α-hydroxyalkyl radicals and nicotinic acid are formed. Rate constant for these reactions were determined. These adducts were found to decay by uni-molecular pathway giving the pyridinyl radicals. From the earlier obtained linear plot of rate constants for adduct formation versus the reduction potentials of α-hydroxyalkyl radicals of 2-propanol, ethanol and methanol, reduction potentials of α-hydroxyalkyl radicals of n-propanol and n-butanol were estimated. (author)

  2. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    Directory of Open Access Journals (Sweden)

    Michelly C. dos Santos

    2010-01-01

    Full Text Available An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, activity, and ideal solution.

  3. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    OpenAIRE

    Michelly C. dos Santos; Aline P. Moraes; Maykon A. Lemes; Emília C. D. Lima; Anselmo E. de Oliveira

    2010-01-01

    An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, acti...

  4. Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production

    International Nuclear Information System (INIS)

    Oxidative stress and inflammation are two major etiological factors that are suggested to play key roles in the development of ethanol induced liver injury. Release of proinflammatory cytokine like tumor necrosis factor alpha (TNF-α) and activation of nuclear factor kappa-B (NFκ-B) may strongly intensify inflammation and cell damage. Additionally, reactive oxygen species (ROS) also exerts significant effect in this whole cell signaling machinery. The present study was designed to investigate the protective effects of perillyl alcohol (POH) on ethanol-induced acute liver injury in Wistar rats and its probable mechanism. We have successfully demonstrated that pre-treatment with POH, besides exerting antioxidant activity might be able to modulate TNF-α release and NFκ-B activation. Rats were divided into five groups and treated with ethanol or POH via an intragastric tube for one week. Control group was treated with vehicle, and ethanol treated group was given ethanol (5 g/kg body wt). Animal of treatment groups were pretreated with POH (50 and 100 mg/kg body wt) and have been given ethanol. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase and hepatic malondialdehyde were increased significantly by ethanol treatment. Ethanol administration decreased hepatic reduced glutathione content and various antioxidant enzymes activity. TNF-α production and NFκ-B activation was also found to be increased after ethanol administration. POH pre-treatment significantly ameliorates ethanol induced acute liver injury possibly by inhibition of lipid peroxidation, replenishment of endogenous enzymatic and non-enzymatic defense system, downregulation of TNF-α as well as NFκ-B.

  5. Propanol in maize silage at Danish dairy farms

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    2010-01-01

    The objective of the present study was to investigate the prevalence maize silage containing propanol, the seasonal variation in propanol content of maize silage, and correlations between propanol and other fermentation products in maize silage collected from 20 randomly selected Danish dairy farms...... farms, the maize silage had ≥5 g propanol/kg DM. The present study indicates that dairy cows in Denmark are commonly exposed to propanol and that approximately 20% of the dairy cows will have an intake in the range of 75-100 g propanol/d under common feeding conditions....

  6. Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification

    International Nuclear Information System (INIS)

    Highlights: • Transesterification in supercritical methanol, ethanol and 1-propanol investigated. • Effect of alcohol, reaction temperature, pressure and time on yields analyzed. • Temperature has the highest impact on yield, followed by time and pressure. • Direct material and energy costs for each of the production alternatives estimated. • Lowest costs are achieved at highest yields even at very low oil prices. - Abstract: Experiments with transesterification of rapeseed oil in supercritical alcohols (methanol, ethanol and 1-propanol) were carried out in a batch reactor at various reaction temperatures (250–350 °C), working pressure (8–12 MPa), reaction time, and constant 42:1 alcohol to oil molar ratio. Influence of different alcohols and reaction conditions on biodiesel yield was investigated using linear multiple regression models. Temperature had the highest impact on yields, followed by reaction time and pressure. With increased molecular weight of alcohols, relative importance of temperature for explanation of yields decreased and relative importance of time and pressure increased. Economic assessment has revealed that transesterification in supercritical methanol has the lowest direct material and energy costs. Yield has crucial impact on process economics. Direct costs decrease with increase in biodiesel yields. Even at very low prices of oil feedstock the lowest cost is achieved at the highest yield

  7. Alcohol

    Science.gov (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  8. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

    Directory of Open Access Journals (Sweden)

    Mohamed H. Frikha

    2009-11-01

    Full Text Available Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10 were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95% without affecting the original activity of the clay.

  9. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Monakhova Yulia B

    2011-01-01

    Full Text Available Abstract Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1, with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit, without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM. The average concentration then decreased at the 2-min (156 μM, 5-min (76 μM and 10-min (40 μM sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral

  10. Structure and thermodynamics of core-softened models for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Munaò, Gianmarco, E-mail: gmunao@unime.it [Dipartimento di Fisica e di Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Urbic, Tomaz [Department of Chemistry and Chemical Technology, Chair of Physical Chemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana (Slovenia)

    2015-06-07

    The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number of CH{sub 2} groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function g{sub ij}(r) and static structure factor S{sub ij}(k); the latter shows the presence of a low−k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers.

  11. A spectroscopic and theoretical study in the near-infrared region of low concentration aliphatic alcohols.

    Science.gov (United States)

    Beć, Krzysztof B; Futami, Yoshisuke; Wójcik, Marek J; Ozaki, Yukihiro

    2016-05-11

    The near-infrared (NIR) spectra of low-concentration (5 × 10(-3) M) solutions in CCl4 of basic aliphatic alcohols, methanol, ethanol, and 1-propanol were, for the first time, calculated by second-order vibrational perturbation theory computations and were compared with the corresponding experimental data. Density functional theory (DFT) using single hybrid (B3LYP) and double hybrid (B2PLYP) density functionals and their derivatives with additional empirical dispersion correction (B3LYP-D3 and B2PLYP-D, respectively) and second order Møller-Plesset perturbation theory were used in combination with selected basis sets including fairly new basis sets from the "spectroscopic" SNS family, double-ζ SNSD and triple-ζ SNST basis sets. Each time, anharmonic vibrational modes and intensities were calculated by using second-order vibrational perturbation theory. The effect of solvent cavity on the calculated results was included by the application of a self-consistent reaction field with a polarized continuum model. Ethanol and 1-propanol have conformational isomerism; following a conformational analysis, theoretical spectra of all isomers were calculated and their final predicted NIR spectra were obtained as Boltzmann-averaged spectra of resolved conformers. For ethanol and 1-propanol, the observed broadening of the overtone band of the OH stretching mode was well reflected by the differences in the position of the relevant band among conformational isomers of these alcohols; the effect of solvent on broadening was also discussed. Detailed band assignments in the experimental NIR spectra of the studied alcohols were proposed based on the calculation of potential energy distributions. The final accuracy of the predicted NIR spectra for each of the theoretical methods was estimated based on the errors in calculated frequencies of overtones and combination bands. PMID:27137865

  12. Effects of alcohols on murine preimplantation development: relationship to relative membrane disordering potency.

    Science.gov (United States)

    Kowalczyk, C L; Stachecki, J J; Schultz, J F; Leach, R E; Armant, D R

    1996-05-01

    During in vitro culture of murine preimplantation embryos, we have observed that exposure to 0.1% ethanol induces an immediate increase in intracellular calcium levels and subsequently accelerates embryogenesis. If the observed effects of ethanol on developing embryos is mediated by its membrane disordering potency, we hypothesized that the relative membrane disordering potencies of related alcohols would correspondingly effect embryonic intracellular calcium levels and developmental rates. Two-cell embryos were exposed to 0.1% ethanol or 0.05 to 1.0% (w/v) n-butanol, n-propanol, isopropanol, 1,2-propanediol, glycerol, or methanol for 24 hr at 37 degrees C, and development to the blastocyst stage was monitored after 5 days. n-Butanol, n-propanol, isopropanol, and methanol treatment caused a dose-dependent inhibition (p propanediol or glycerol neither accelerated nor inhibited development. In a second experiment, 8-cell morulae were treated with 1,2-propanediol or glycerol, and cavitation rates were examined. There was no significant difference from control embryos in the onset of cavitation or the blastocoel expansion rate of 1,2-propanediol- or glycerol-exposed embryos, whereas exposure to 0.1% ethanol accelerate cavitation (p > 0.05). In a third experiment, morulae were exposed to 0.1% or 1.0% of each alcohol and were monitored for changes in intracellular calcium levels using the fluorescent indicator, fluo-3-acetoxymethyl ester. There was an immediate increase in intracellular calcium levels when morulae were treated with 1.0% ethanol or n-butanol, but only ethanol induced an increase (p membrane disordering potency of ethanol does not directly underlie its effects on intracellular calcium release and the acceleration of preimplantation development. PMID:8727256

  13. Gastroprotective effect and mechanism of patchouli alcohol against ethanol, indomethacin and stress-induced ulcer in rats.

    Science.gov (United States)

    Zheng, Yi-Feng; Xie, Jian-Hui; Xu, Yi-Fei; Liang, Yong-Zhuo; Mo, Zhi-Zhun; Jiang, Wei-Wen; Chen, Xiao-Ying; Liu, Yu-Hong; Yu, Xiao-Dan; Huang, Ping; Su, Zi-Ren

    2014-08-26

    Pogostemonis Herba is an important Chinese medicine widely used in the treatment of gastrointestinal dysfunction. Patchouli alcohol (PA), a tricyclic sesquiterpene, is the major active constituent of Pogostemonis Herba. This study aimed to investigate the possible anti-ulcerogenic potential of PA and the underlying mechanism against ethanol, indomethacin and water immersion restraint-induced gastric ulcers in rats. Gross and histological gastric lesions, biochemical and immunological parameters were taken into consideration. The gastric mucus content and the antisecretory activity were analyzed through pylorus ligature model in rats. Results indicated that oral administration with PA significantly reduced the ulcer areas induced by ethanol, indomethacin and water immersion restraint. PA pretreatment significantly promoted gastric prostaglandin E2 (PGE2) and non-protein sulfhydryl group (NP-SH) levels, upregulated the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) mRNA expression, and considerably boosted the gastric blood flow (GBF) and gastric mucus production in comparison with vehicle. In addition, PA modulated the levels of interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α). The levels of glutathione (GSH), catalase (CAT) and malonaldehyde (MDA) were also restored by PA. However, the gastric secretion parameters (pH, volume of gastric juice and pepsin) did not show any significant alteration. These findings suggest that PA exhibited significant gastroprotective effects against gastric ulceration. The underlying mechanisms might involve the stimulation of COX-mediated PGE2, improvement of antioxidant and anti-inflammatory status, preservation of GBF and NP-SH, as well as boost of gastric mucus production. PMID:25168850

  14. Production of ethanol from molasses at 45 C using Kluyveromyces marxianus IMB3 immobilized in calcium alginate gels and poly(vinyl alcohol) cryogel

    Energy Technology Data Exchange (ETDEWEB)

    Gough, S.; Barron, N.; McHale, A.P. [Biotechnology Research Group, Univ. of Ulster (United Kingdom); Zubov, A.L.; Lozinsky, V.I. [Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    1998-08-01

    The thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3 has been immobilized in calcium alginate gel and poly(vinyl alcohol) cryogel (PVAC) beads. The immobilized preparations were used as biocatalyst in fed-batch reactor systems for prolonged periods. The substrate utilized in each case consisted of sugar cane molasses diluted to yield a sugar load of 140 g/l. During the first cycle the maximum ethanol concentration produced by the alginate system was 57 g/l, representing 80% of the maximum theoretical yield. In the system employing the PVAC-immobilized biocatalyst, ethanol production increased to a maximum of 52-53 g/l, representing 73% of the maximum theoretical yield. In both cases, maximum ethanol concentration was achieved within a 72-hour period. When each system was operated on a fed-batch basis for a prolonged period of time the average ethanol concentrations produced in the alginate- and the PVAC-immobilized systems were 21 and 45 g/l, respectively. The results suggest that the PVAC-based immobilization system may provide a more practical alternative to alginate for the production of ethanol by K. marxianus IMB3 in continuous or semi-continuous fermentation systems. (orig.) With 1 fig., 13 refs.

  15. Characterization of the products formed by the reaction of trichlorocyanuric acid with 2-propanol.

    Science.gov (United States)

    Sandercock, P Mark L; Barnett, Julie S

    2009-11-01

    We report a recent investigation into the death of a cat that was initially thought to involve intentionally burning the animal via the use of an ignitable liquid. The exposure of the animal to flame was ruled out. Instead, forensic investigation revealed the intentional mixing together of a common outdoor swimming pool chlorinator, trichlorocyanuric acid (TCCA), and 2-propanol (aka, isopropyl alcohol or rubbing alcohol). The reaction of these two chemicals resulted in the formation of cyanuric acid residue, hydrochloric acid, and the evolution of a significant volume of chlorine gas. Further alpha-chlorination side reactions also occurred between 2-propanol and TCCA to produce a variety of chlorinated 2-propanone species that were detected on the submitted evidence. The identification of the products of both the main reaction and the side reactions allowed the authors to determine what chemicals were originally mixed together by the culprit. PMID:19818110

  16. Effect of ionic liquids on (vapor + liquid) equilibrium behavior of (water + 2-methyl-2-propanol)

    International Nuclear Information System (INIS)

    Isobaric T, x, y data were reported for ternary systems of {water + 2-methyl-2-propanol (tert-butyl alcohol, TBA) + ionic liquid (IL)} at p = 100 kPa. When the mole fraction of TBA on IL-free basis was fixed at 0.95, measurements were performed at IL mass fractions from 0.6 down to 0.05, in a way of repeated synthesis. The vapor-phase compositions were obtained by analytical methods and the liquid-phase compositions were calculated with the aid of mass balances. Activity coefficients of water and TBA were obtained without the need of a thermodynamic model of the liquid-phase. Six ILs, composed of an anion chosen from [OAc]- or [Cl]-, and a cation from [emim]+, or [bmim]+, or [hmim]+, were studied. Relative volatility and activity coefficients were presented in relation with the IL mole fraction, showing the effect of the ILs on a molar basis. The effect of the ILs on relative volatility of TBA to water was depicted by the effect of anions and cations on, respectively, the activity coefficients of water and TBA. The results indicated that, among the six ILs studied, [emim][Cl] has the most significant effect on enhancement of the relative volatility, which reaches a value of 7.2 at an IL mass fraction of 0.58. Another IL, [emim][OAc], has also significant effect, with an appreciable value of 5.2 for the relative volatility when the IL mass fraction is 0.6. Considering the relatively low viscosity and melting point of [emim][OAc], it might be a favorable candidate as solvent for the separation of water and TBA by extractive distillation. Simultaneous correlation by the NRTL model was presented for both systems of (water + ethanol + IL) and (water + TBA + IL), using consistent binary parameters for water and IL

  17. Alcohol-non-preferring Sardinian rats exhibit a higher ethanol-induced taurine increase compared to alcohol-preferring Sardinian rats: a microdialysis study

    OpenAIRE

    Quertemont, Etienne; Lallemand, Frédéric; Colombo, Giancarlo; de Witte, Philippe

    1999-01-01

    It is well known that ethanol injections induce increases in the extracellular taurine concentration from various rat brain regions. Furthermore, recent studies have shown that taurine supplementation modulates the ethanol reinforcing effects in a place conditioning experiment. However, it is unknown whether there is a relationship between this taurine increase and the ethanol drinking behaviors. In the present microdialysis experiments, we compared the effects of ethanol injections (1.0 and ...

  18. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures

    International Nuclear Information System (INIS)

    The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths.

  19. UNIQUAC activity coefficient model for the systems of 1-propanol + water and 2-propanol + water

    OpenAIRE

    Numuang, C.; Kaewsichan, L.

    2005-01-01

    Predictions of vapor liquid equilibria and azeotrope conditions of binary systems of 1-propanol+ water and 2-propanol+water at 30, 60, and 100 kPa were conducted in this work. UNIQUAC activity coefficient and ideal gas models represented behavior of the systems in liquid phase and vapor phase respectively. Experimental data collected from the literature (Gobaldon et al., 1996 and Marzal et al., 1996) were used to calculate energy interaction parameters of the UNIQUAC activity coefficient mode...

  20. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Science.gov (United States)

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  1. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  2. Effect of alcohol chain length, concentration and polarity on separations in high-performance liquid chromatography using bonded cyclodextrin columns.

    Science.gov (United States)

    Atamna, I Z; Muschik, G M; Issaq, H J

    1990-01-19

    The effect of alcohol chain length, concentration and polarity on separation in high-performance liquid chromatography using beta-cyclodextrin-bonded silica is discussed. The results show that retention times cannot be predicted merely from the polarity of the binary mobile phase. Although organic modifiers with the same physico-chemical properties and from the same solvent group were used, the retention times obtained using binary mobile phases having the same polarity, were different. It was also observed that normal-chain carbon alcohols gave retention times shorter than those obtained with a branched-chain alcohol (n-propanol vs. isopropanol), and the longer the alcohol chain the shorter the retention times. A plot of ln k' vs. alcohol volume fraction for benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, 1-phenylhexane and 1-phenyloctane gave a linear relationship in methanol, ethanol and propanol (except for 1-phenylhexane). A non-linear relationship was obtained for all the solutes in isopropanol, tert.-butanol and 1-butanol, in the alcohol volume fraction studied. PMID:2324212

  3. Alcohol

    OpenAIRE

    World Bank

    2003-01-01

    Alcohol abuse is one of the leading causes of death and disability worldwide. Alcohol abuse is responsible for 4 percent of global deaths and disability, nearly as much as tobacco and five times the burden of illicit drugs (WHO). In developing countries with low mortality, alcohol is the leading risk factor for males, causing 9.8 percent of years lost to death and disability. Alcohol abuse...

  4. Synthesis gas conversion to ethanol and other alcohols catalyzed by cobalt carbonyl

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, D.R.

    1980-08-01

    The threat of diminishing oil and gas feedstocks is forcing us to turn to alternative raw materials for chemicals and fuels production. With vast reserves in the United States and a relative ease of recovery, coal stands fall among the candidate raw-material substitutes. Furthermore, there exists proven technology for the partial oxidation of coal to synthesis gas (a mixture of carbon monoxide and hydrogen) which in turn can be transformed over catalysts into chemicals and fuels. With the exceptions of methanol and methane production, synthesis gas conversions over traditional heterogeneous catalysts yield a complex mixture of hydrocarbon and oxygenated hydrocarbon products (Fischer-Tropsh synthesis). Because of its complexity, this product mixture is more useful as a refinery feedstock than in chemicals production. Homogeneous catalysts often are capable of performing highly selective chemical transformations, so they would appear to offer potential for chemicals production from synthesis gas. Yet this area has been virtually ignored until only very recently. Of the recent reports, the most outstanding example is the rhodium-catalyzed ethylene glycol synthesis. Cobalt is also active for homogeneous catalysis of synthesis gas conversion, and its use for alcohols synthesis is now described.

  5. Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    Science.gov (United States)

    Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.

    1982-01-01

    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.

  6. Effect of water content on the stress corrosion cracking susceptibility of Zircaloy-4 in iodine-alcoholic solutions

    International Nuclear Information System (INIS)

    The stress corrosion cracking (SCC) susceptibility of Zircaloy-4 (UNS R60804) was studied in 10 g/L iodine dissolved in various alcohols: methanol, ethanol, 1 propanol, 1-butanol, 1-pentanol and 1-octanol. SCC was observed in all the systems studied and it was found that the higher the size of alcohol molecule, the lower the SCC susceptibility. The existence of intergranular attack -controlled by the diffusion of the active species- is a condition for the SCC process to occur. In the present work the inhibiting effect of water on the SCC susceptibility of Zircaloy-4 in iodine-alcoholic solutions was also investigated and the results showed that the minimum water content to inhibit the SCC process depends on the type of alcohol used as a solvent. (author)

  7. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin. PMID:25772736

  8. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Okitsu, Kenji; Nishimura, Rokuro; Maeda, Yasuaki [Department of Applied Material Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2009-03-15

    Production of fatty acid ethyl ester (FAEE) from oleic acid (FFA) with short-chain alcohols (ethanol, propanol, and butanol) under ultrasonic irradiation was investigated in this work. Batch esterification of oleic acid was carried out to study the effect of: test temperatures of 10-60 C, molar ratios of alcohol to oleic acid of 1:1-10:1, quantity of catalysts of 0.5-10% (wt of sulfuric acid/wt of oleic acid) and irradiation times of 10 h. The optimum condition for the esterification process was molar ratio of alcohol to oleic acid at 3:1 with 5 wt% of H{sub 2}SO{sub 4} at 60 C with an irradiation time of 2 h. (author)

  9. Hydrogen production from alcohol reforming in a microwave ‘tornado’-type plasma

    International Nuclear Information System (INIS)

    In this work, an experimental investigation of microwave plasma-assisted reforming of different alcohols is presented. A microwave (2.45 GHz) ‘tornado’-type plasma with a high-speed tangential gas injection (swirl) at atmospheric pressure is applied to decompose alcohol molecules, namely methanol, ethanol and propanol, and to produce hydrogen-rich gas. The reforming efficiency is investigated both in Ar and Ar+ water vapor plasma environments. The hydrogen yield dependence on the partial alcohol flux is analyzed. Mass spectrometry and Fourier transform infrared spectroscopy are used to detect the outlet gas products from the decomposition process. Hydrogen, carbon monoxide, carbon dioxide and solid carbon are the main decomposition by-products. A significant increase in the hydrogen production rate is observed with the addition of a small amount of water. Furthermore, optical emission spectroscopy is applied to detect the radiation emitted by the plasma and to estimate the gas temperature and electron density. (paper)

  10. Determination and correlation of the solubility of four Brønsted-acidic ionic liquids based on benzothiazolium cations in six alcohols

    International Nuclear Information System (INIS)

    Highlights: • Solubility of four acidic benzothiazolium cations-based ILs was measured. • The solubilities vary with the polarity of the solvent. • The solubility of some ILs is with “temperature-sensitive” property. • The measured solubilities were correlated by Apelblat model and λh model. • The dissolution enthalpy and entropy of ILs were calculated using the van’t Hoff equation. - Abstract: Solubilities of four acidic ionic liquids based on benzothiazolium cations in six alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-methyl-1-propanol) from at temperatures from (253 to 384) K were determined using a static equilibrium method under atmospheric pressure. The modified Apelblat equation and λh equation were employed to correlate the experimental data with good agreement. The solubilities of ILs increase with increasing temperature. It is interesting to find that the solubility of some ILs in alcohols are with “temperature-sensitive” properties. The solubility is related with the polarity and molecular structures of the solvent, as well as the strength of hydrogen bonding between alcohols and anionic groups of ILs. The dissolution enthalpy and entropy of ILs were calculated by the van’t Hoff equation. This study provides useful information for further research and application of the ionic liquids

  11. Ethyl glucuronide in vitreous humor and blood postmortem specimens: analysis by liquid chromatography-electrospray tandem mass spectrometry and interpreting results of neo-formation of ethanol

    Directory of Open Access Journals (Sweden)

    Sara Vezzoli

    2015-03-01

    Full Text Available Introduction. The determination of ethyl glucuronide (EtG, a stable and sensitive marker that is specific to alcohol intake, finds many applications both in the forensic toxicology and clinical fields. Aim. The aim of the study is to examine the possibility of using a cadaveric biological matrix, vitreous humor (VH, to determine EtG as a marker of recent ethanol use. Methods. The blood, taken from the femoral vein, and the VH were obtained from 63 autopsy cases. Analysis of the EtG was performed using an LC/MS/MS system. Analyses of the ethanol and putrefaction biomarkers, such as acetaldehyde and n-propanol, were performed using the HS-GC/FID technique in both the matrices. Results. In 17 cases, both ethanol and EtG were absent in both matrices.Nineteen cases presented ethanol in blood from 0.05 to 0.30 g/L, EtG-Blood concentration from 0.02 to 3.27 mg/L, and EtG-VH concentration from 0.01 mg/L to 2.88 mg/L. Thirteen cases presented ethanol in blood > 0.05 g/L but EtG concentration in blood and VH lower than 0.01 mg/L, are part of these 8 samples presented acetic aldehyde and n- propanol in blood or VH, means identification of putrefaction indicators. Fourteen cases presented ethanol in blood > 0.46 and EtG concentration in blood and VH higher than 0.01 mg/L. Conclusions. The determination of EtG in biological material is important in those cases where the intake of ethanol appears doubtful, as it allows us to exclude the possibility of any post-mortem formation of ethanol.

  12. Alcohol Use and Older Adults

    Science.gov (United States)

    ... version of this page please turn Javascript on. Alcohol Use and Older Adults Alcohol and Aging Adults of any age can have ... Escape (Esc) button on your keyboard.) What Is Alcohol? Alcohol, also known as ethanol, is a chemical ...

  13. Preliminary analysis of cellulose-based ethanol production: pathways and challenges in the Rio Grande do Sul alcohol production

    OpenAIRE

    André Luiz Fialho Blos; Tania Nunes da Silva; Angélica Margarete Magalhães; Roselene de Queiroz Chaves; Omar Inacio Santos Benedetti

    2009-01-01

    The production of ethanol in Brazil has contributed towards the replacement of fossil fuels over the past few years. Among those initiatives, the production of ethanol from cellulose is one of the areas drawing the interest of different research centers in developed countries. Hence, the production of ethanol opens up new perspectives for Brazilian states. In light of this backdrop, this paper aims at characterizing and understanding the state of the art in different technological courses and...

  14. Simultaneous and accurate real-time monitoring of glucose and ethanol in alcoholic drinks, must, and biomass by a dual-amperometric biosensor.

    Science.gov (United States)

    Mentana, Annalisa; Palermo, Carmen; Nardiello, Donatella; Quinto, Maurizio; Centonze, Diego

    2013-01-01

    In this work the optimization and application of a dual-amperometric biosensor for simultaneous monitoring of glucose and ethanol content, as quality markers in drinks and alcoholic fermentation media, are described. The biosensor is based on glucose oxidase (GOD) and alcohol oxidase (AOD) immobilized by co-cross-linking with bovine serum albumin (BSA) and glutaraldehyde (GLU) both onto a dual gold electrode, modified with a permselective overoxidized polypyrrole film (PPYox). Response, rejection of interferents, and stability of the dual biosensor were optimized in terms of PPYox thickness, BSA, and enzyme loading. The biosensor was integrated in a flow injection system coupled with an at-line microdialysis fiber as a sampling tool. Flow rates inside and outside the fiber were optimized in terms of linear responses (0.01-1 and 0.01-1.5 M) and sensitivities (27.6 ± 0.4 and 31.0 ± 0.6 μA·M(-1)·cm(-2)) for glucose and ethanol. Excellent anti-interference characteristics, the total absence of "cross-talk", and good response stability under operational conditions allowed application of the dual biosensor in accurate real-time monitoring (at least 15 samples/h) of alcoholic drinks, white grape must, and woody biomass. PMID:23205603

  15. Increased Electrochemical Oxidation Rate of Alcohols in Alkaline Media on Palladium Surfaces Electrochemically Modified by Antimony, Lead, and Tin

    International Nuclear Information System (INIS)

    Several adatoms (M = Sb, Sn, or Pb) were added to Pd nanoparticles and examined for the electrochemical oxidation of ethanol, 1-propanol, 2-propanol, ethylene glycol, propylene glycol, and glycerol. We observed a significant increase in oxidation rate on Pd-M for each of the adatoms in each of the fuels. For example, the oxidation rate of ethanol was 1.5 times greater on Pd-Pb and Pd-Sn as compared with the oxidation rate on Pd after 10 minutes of oxidation. However, even more notable is the behavior observed by the polyhydric alcohols that exhibit sluggish reaction kinetics even in alkaline media. For example, the oxidation rate of propylene glycol on Pd-Pb was observed to be 21 times greater than the oxidation rate on Pd after 10 minutes, and it was still 7.1 times greater after 12 hours. These results show particular promise for the potential of efficiently oxidizing bulkier and higher energy density alcohols in the alkaline direct liquid fuel cell. All three bimetallic surfaces induced an increase in oxidation rate with all alcohols as compared to the monometallic Pd. Based on analysis of our results, we attribute a significant amount of the increase in oxidation rate to the bifunctional effect and suggest a lesser role is played by the electronic effect

  16. Effects of Amoxicillin and Augmentin on Cystine-Glutamate Exchanger and Glutamate Transporter 1 Isoforms as well as Ethanol Intake in Alcohol-Preferring Rats

    Science.gov (United States)

    Hakami, Alqassem Y.; Hammad, Alaa M.; Sari, Youssef

    2016-01-01

    Alcohol dependence is associated with alteration of glutamate transport and glutamate neurotransmission. Glutamate transporter 1 (GLT-1) is a major transporter that regulates the majority of extracellular glutamate concentration, which is also regulated by cystine-glutamate exchanger (xCT). Importantly, we recently reported that amoxicillin and Augmentin (amoxicillin/clavulanate) upreglulated GLT-1 expression in nucleus accumbens (NAc) and prefrontal cortex (PFC) as well as reduced ethanol consumption in male P rats. In this study, we examined the effects of amoxicillin and Augmentin on GLT-1 isoforms (GLT-1a and GLT-1b), xCT, and glutamate/aspartate transporter (GLAST) expression in NAc and PFC as well as ethanol intake in male P rats. We found that both compounds significantly reduced ethanol intake, and increased GLT-1a, GLT-1b, and xCT expression in NAc. However, only Augmentin increased GLT-1a, GLT-1b, and xCT expression in PFC. There were no effects of these compounds on GLAST expression in NAc and PFC. These findings demonstrated that Augmentin and amoxicillin have the potential to upregulate GLT-1 isoforms and xCT expression, and consequently attenuate ethanol dependence. PMID:27199635

  17. Stability of fluctuating and transient aggregates of amphiphilic solutes in aqueous binary mixtures: Studies of dimethylsulfoxide, ethanol, and tert-butyl alcohol

    Science.gov (United States)

    Banerjee, Saikat; Bagchi, Biman

    2013-10-01

    In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tert-butyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures.

  18. Alcohol

    Science.gov (United States)

    ... Date reviewed: January 2014 previous 1 • 2 For Teens For Kids For Parents MORE ON THIS TOPIC Word! Alcoholism What You Need to Know About Drugs What You Need to Know About Drugs: Depressants What Kids Say About: Drinking Alcohol Dealing With Peer Pressure Contact Us Print Resources Send to a friend ...

  19. Application of the ERAS model to volumetric properties of binary mixtures of banana oil with primary and secondary alcohols (C1-C4) at different temperatures

    International Nuclear Information System (INIS)

    The densities of binary mixtures of {isoamyl acetate + alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol)}, including those of pure liquids, over the entire composition range were measured at temperatures (293.15 to 333.15) K and atmospheric pressure by means of a vibrating-tube densimeter. The excess molar volume, VmE, thermal expansion coefficients, α, and their excess values, αE, were calculated from density data. The VmE values are positive over the entire range of composition and temperature and become more positive with increasing temperature for all of the mixtures except for the (isoamyl acetate + methanol) mixture. The VmE values were correlated by Redlich-Kister equation and the extended real associated solution (ERAS) model was used for describing VmE values at T = 303.15 K.

  20. Alcohol inhibits cell-cell adhesion mediated by human L1.

    Science.gov (United States)

    Ramanathan, R; Wilkemeyer, M F; Mittal, B; Perides, G; Charness, M E

    1996-04-01

    Mental retardation, hydrocephalus, and agenesis of the corpus callosum are observed both in fetal alcohol syndrome (FAS) and in children with mutations in the gene for the cell adhesion molecule L1. We studied the effects of ethanol on cell-cell adhesion in mouse fibroblasts transfected with human L1. L1-transfected fibroblasts exhibited increased cell-cell adhesion compared with wild-type or vector-transfected controls. Ethanol potently and completely inhibited L1-mediated adhesion both in transfected L cells and NIH/3T3 cells. Half-maximal inhibition was observed at 7 mM ethanol, a concentration achieved in blood and brain after ingesting one alcoholic beverage. In contrast, ethanol did not inhibit the adhesion of fibroblasts transfected with vector alone or with N-CAM-140. L1-mediated cell-cell adhesion was inhibited with increasing potency by n-propanol and n-butanol, but was not inhibited at all by n-alcohols of 5 to 8 carbons, acetaldehyde, or acetate, suggesting that ethanol interacts directly with a small hydrophobic pocket within L1. Phenylalanine, teratogenic anticonvulsants, and high concentrations of glucose did not inhibit L1-mediated cell-cell adhesion. Ethanol also inhibited potently the heterotypic adhesion of rat cerebellar granule cells to a monolayer of L1-transfected NIH/3T3 cells, but had no effect on their adhesion to N-CAM-140 or vector-transfected NIH/3T3 cells. Because L1 plays a role in both neural development and learning, ethanol inhibition of L1-mediated cell-cell interactions could contribute to FAS and ethanol-associated memory disorders. PMID:8609170

  1. Partial oxidation of 2-propanol on perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Sumathi, R.; Viswanathan, B.; Varadarajan, T.K. [Indian Inst. of Tech., Madras (India). Dept. of Chemistry

    1998-12-31

    Partial oxidation of 2-propanol was carried out on AB{sub 1-x}B`{sub x}O{sub 3} (A=Ba, B=Pb, Ce, Ti; B`=Bi, Sb and Cu) type perovskite oxides. Acetone was the major product observed on all the catalysts. All the catalysts underwent partial reduction during the reaction depending on the composition of the reactant, nature of the B site cation and the extent of substitution at B site. The catalytic activity has been correlated with the reducibility of the perovskite oxides determined from Temperature Programmed Reduction (TPR) studies. (orig.)

  2. Ethanol and neuronal metabolism.

    Science.gov (United States)

    Mandel, P; Ledig, M; M'Paria, J R

    1980-01-01

    The effect of ethanol on membrane enzymes (Na+, K+ and Mg2+ ATPases, 5'-nucleotidase, adenylate cyclase) alcohol dehydrogenase, aldehyde dehydrogenase and superoxide dismutase were studied in nerve cells (established cell lines, primary cultures of chick and rat brain) cultured in the presence of 100 mM ethanol, and in total rat brain, following various ethanol treatments of the rats (20% ethanol as the sole liquid source, intraperitoneal injection). The results show a difference between neuronal and glial cells. Most of the observed changes in enzymatic activities returned rapidly to control values when ethanol was withdrawn from the culture medium or from the diet. Alcohol dehydrogenase was more stimulated by ethanol than aldehyde dehydrogenase; therefore acetaldehyde may be accumulated. The inhibition of superoxide dismutase activity may allow an accumulation of cytotoxic O2- radicals in nervous tissue and may explain the polymorphism of lesions brought about by alcohol intoxication. PMID:6264495

  3. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations

  4. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  5. Solubility of pyrene in binary alcohol + cyclohexanol and alcohol + 1-pentanol solvent mixtures at 299.2 K

    Energy Technology Data Exchange (ETDEWEB)

    McHale, M.E.R.; Horton, A.S.M.; Padilla, S.A.; Trufant, A.L.; De La Sancha, N.U.; Vela, E.; Acree, W.E. Jr. [Univ. of North Texas, Denton, TX (United States). Dept. of Chemistry

    1996-11-01

    Experimental solubilities are reported for pyrene dissolved in five binary alcohol + cyclohexanol and seven binary alcohol + 1-pentanol solvent mixtures at 26 C. Alcohol cosolvents include 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, and 2-pentanol. Results of these measurements are used to test two mathematical representations based upon the combined nearly ideal binary solvent (NIBS)/Redlich-Kister equation and modified Wilson model. For the 12 systems studied, both equations were found to provide an accurate mathematical representation of the experimental data, with an overall average absolute deviation between measured and calculated values being on the order of 0.5%.

  6. Ethanol-induced oxidative stress and acetaldehyde formation in rat mammary tissue: Potential factors involved in alcohol drinking promotion of breast cancer

    International Nuclear Information System (INIS)

    Recent studies from our laboratory provided evidence that part of the carcinogenic effects of ethanol consumption might be related to its in situ metabolism at cytosolic and microsomal levels, to the mutagen acetaldehyde and to hydroxyl and 1-hydroxyethyl radicals. In this work, we report on our experiments where Sprague-Dawley female rats were exposed to the standard Lieber and De Carli diet for 28 days. We observed: the induction of the (xanthineoxidoreductase mediated) cytosolic and microsomal (lipoxygenase mediated) pathways of ethanol metabolism; promotion of oxidative stress as shown by increased formation of lipid hydroperoxides; delay in the t-butylhydroperoxide induced chemiluminiscence, and a significant decrease in protein sulfhydryls. In addition, the epithelial cells showed ultrastructural alterations consisting of markedly irregular nuclei, with frequent invaginations at the level of the nuclear envelope, condensation of chromatin around the inner nuclear membrane, and marked dilatation of the nuclear pores showing filamentous material exiting to the cytoplasm. In conclusion, the presence in mammary epithelial cells of cytosolic and microsomal pathways of ethanol bioactivation to carcinogenic and to tumorigenic metabolites might play a role in alcohol promotion of breast cancer

  7. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  8. Preliminary analysis of cellulose-based ethanol production: pathways and challenges in the Rio Grande do Sul alcohol production

    Directory of Open Access Journals (Sweden)

    André Luiz Fialho Blos

    2009-08-01

    Full Text Available The production of ethanol in Brazil has contributed towards the replacement of fossil fuels over the past few years. Among those initiatives, the production of ethanol from cellulose is one of the areas drawing the interest of different research centers in developed countries. Hence, the production of ethanol opens up new perspectives for Brazilian states. In light of this backdrop, this paper aims at characterizing and understanding the state of the art in different technological courses and production configuration alternatives present in different parts of the world regarding cellulose-based ethanol production. To that end, research was conducted at the lumber and industrial companies connected to cellulose-based ethanol production. In other parts of the globe, the ability of planned forests to provide energy is promising, given the positive energy balance and the increase in carbon dioxide sequestering, paramount in times of global warming. The association with other crops may become a source of productive diversity for small farmers residing in degraded areas or those presenting low economic dynamism. There is the need to develop new research efforts and look more deeply into the environmental issues involved, as well as further assessment on the economic and social viability of such projects.Key-words: cellulosic ethanol, biorefinery, biomass, agrienergy, bioenergy.

  9. Phagocytosis and production of reactive oxygen species by peripheral blood phagocytes in patients with different stages of alcohol-induced liver disease: effect of acute exposure to low ethanol concentrations

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Paulus, S. B.;

    2003-01-01

    resting and challenged phagocytes of patients with different stages of ALD in the presence of ethanol concentrations commonly found in the blood of alcohol abusers. PATIENTS AND METHODS: The release of ROS and the phagocytosis of bacteria by neutrophils and monocytes obtained from 60 patients, who were...... produced significantly more ROS than those of healthy controls. Basal values of ROS production from neutrophils correlated closely to markers of the severity of ALD. ROS formation was depressed dose-dependently by ethanol in the healthy controls but not in alcohol abusers. CONCLUSIONS: Changes in the ROS...

  10. The enthalpy of solution of DL-α-alanyl-DL-α-valine depending on the composition of water-alcohol binary solvents at 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Badelin, V. G.

    2008-12-01

    The integral enthalpies of solution of DL-α-alanyl-DL-α-valine in water-ethanol, water- n-propanol, and water-isopropanol mixtures at alcohol concentrations x 2 = 0-0.4 mole fractions were measured calorimetrically. The enthalpies of solution of the peptide Δsol H° and transfer from water to a mixed solvent Δtr H° were calculated. The effect of the structure and properties of the peptide and mixture composition on the enthalpy characteristics of the peptide are discussed. The enthalpy coefficients of pair interactions h xy of DL-α-alanyl-DL-α-valine with alcohol molecules were calculated. It was found that they were positive and increased in the series ethanol, n-propanol, isopropanol. An analysis of the results allows the general features of changes in the thermodynamic parameters of solution of peptides of the DL-α-alanine series with different amino acid residues in water-alcohol mixtures to be established.

  11. Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M=Mo, W) Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zongtang; Li, Zhenjun; Kelley, Matthew S.; Kay, Bruce D.; Li, Shenggang; Hennigan, Jamie M.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-10-02

    The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic (MO3)3 (M = Mo, W) clusters were studied experimentally with temperature programmed desorption (TPD) and theoretically with coupled cluster CCSD(T) theory and density functional theory. The reactions of two alcohols per M3O9 cluster are required to provide agreement with experiment for D2O release, dehydrogenation and dehydration. The reaction begins with the elimination of water by proton transfers and forms an intermediate dialkoxy species which can undergo further reaction. Dehydration proceeds by a β hydrogen transfer to a terminal M=O. Dehydrogenation takes place via an α hydrogen transfer to an adjacent MoVI = O atom or a WVI metal center with redox involved for M = Mo and no redox for M = W. The two channels have comparable activation energies. H/D exchange to produce alcohols can take place after olefin is released or via the dialkoxy species depending on the alcohol and the cluster. The Lewis acidity of the metal center with WVI being larger than MoVI results in the increased reactivity of W3O9 over Mo3O9 for dehydrogenation and dehydration.

  12. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NOx from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  13. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2015-01-01

    of studies [Tsivintzelis et al. Fluid Phase Equilib. 306 (2011) 38-56, J. Chem. Eng. Data 59 (2014) 2955-2972, Fluid Phase Equilib. 397 (2015) 1-17], reveals that the best approaches are those where the cross-association (solvation) of CO2 with alcohols and water is explicitly accounted for or......The Cubic plus association (CPA) equation of state has been previously applied to a variety of binary systems containing CO2 with alkanes, water, alcohols and glycols as well as a few multicomponent mixtures (with triethylene glycol, water and methane). In this study, we evaluate the performance of...... CPA for ternary and multicomponent CO2 mixtures containing alcohols (methanol, ethanol or propanol) water and hydrocarbons. This work belongs to a series of studies aiming to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes to the...

  14. From the photosynthesis to the fermentation of alcohol and the misuse of bio-ethanol; Von der Fotosynthese ueber die alkoholische Gaerung zum Missbrauch des (Bio-)Ethanols

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, Vollrath [VDI, Dreieich (Germany). Bezirksverein Frankfurt-Darmstadt

    2012-07-01

    The byproducts of cereal and maize for example their straw and waste wood also offer better possibilities to produce ethanol and (bio-)Diesel on the basis of renewable raw materials. Altogether they contain carbohydrates especially cellulose and its derivates. They are not suitable for foodstuffs. During World War II processes were developed and used in order to convert cellulose compounds into petrol. The Research Centre in Karlsruhe, Eggenstein-Leopoldshafen has built a high modern pilot plant for the synthesis of BtL-petrol (Biomass to liquids) in cooperation of Lurgi, a company of factory construction. In the first reaction step cellulose containing material is converted into a liquid intermediate product at a temperature of 500 C. This product is called Bioliqsyncrude. In the second step the bioliqsyncrude is split into synthesis gas in a flue-stream-gasifier at temperatures of 1200 C and pressures of 80 bar. Synthesis gas is a mixture of carbon monoxide, CO, and hydrogen, H{sub 2}. In presence of special catalyst the gas mixture reacts to methanol and other very interesting hydrocarbons which are suitable for petrol. In this way the old Fischer-Tropsch synthesis and the Koelbel-Engelhardt procedure get to new honours. (orig.)

  15. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    International Nuclear Information System (INIS)

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  16. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi Poodeh, Saeid, E-mail: saeid.haghighi@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, and Biocenter Oulu, University of Oulu, Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Alhonen, Leena [Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio (Finland); School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio (Finland); Salonurmi, Tuire; Savolainen, Markku J. [Institute of Clinical Medicine, Department of Internal Medicine, and Biocenter Oulu, University of Oulu, Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland)

    2014-03-28

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  17. Separation of several alcohol-benzene mixtures by pervaporation through styrene graft polyethylene membranes

    International Nuclear Information System (INIS)

    The permeation of pure liquids, such as methanol, ethanol, 1-propanol, 2-propanol and benzene, and the permeability and selectivity of 50 vol% binary mixtures of these alcohols and benzene were investigated by pervaporation technique. The used membranes (21%, 40%, and 72% graftings) were obtained by graft polymerization of styrene to polyethylene film (thickness 10 μm) by γ-radiation. The permeation rates of each of these alcohols and benzene were measured by pervaporation through the graft membranes. Those of these alcohols were very small as well as those through the original membrane. On the other hand, the permeabilities for benzene through the graft membranes were larger than that through the original membrane. The temperature dependence of the permeation rate for benzene was expressed by Arrhenius-type relationships, and the apparent activation energies were calculated to be 10.7 (21%), 10.2 (40%) and 10.0 (72%) kcal/mol. In the permeation of 50 vol% several alcohol-benzene mixtures, the permeabilities through the graft membranes were also larger than that through the original membrane, and increased with the grafting. The temperature dependence of the permeation for these mixtures was showed by Arrhenius relationships, and the apparent activation energies were calculated to be in the range of 8.4∼11.0 kcal/mol. The separation factors of the graft membranes calculated from composition of the permeates were always smaller than that of the original membrane, but became larger with increase of molecular volume of alcohol in alcohol-benzene mixtures. (author)

  18. Alcohol and Public Health: Frequently Asked Questions

    Science.gov (United States)

    ... it okay to drink when pregnant? What is alcohol? Ethyl alcohol, or ethanol, is an intoxicating ingredient ... sugars, and starches. Top of Page How does alcohol affect a person? Alcohol affects every organ in ...

  19. Does a preceding hand wash and drying time after surgical hand disinfection influence the efficacy of a propanol-based hand rub?

    OpenAIRE

    Kohlmann Thomas; Kamp Philipp; Kampf Günter; Hübner Nils-Olaf; Kramer Axel

    2006-01-01

    Abstract Background Recently, a propanol-based hand rub has been described to exceed the efficacy requirements of the European standard EN 12791 in only 1.5 min significantly. But the effect of a 1 min preceding hand wash and the effect of one additional minute for evaporation of the alcohol after its application on the efficacy after a 1.5 min application time has never been studied. Methods We have investigated a propanol-based hand rub (Sterillium®, based on 45% propan-2-ol, 30% propan-1-o...

  20. Effects Of Tin Doping On Ethanol And Isopropyl Alcohol Sensing Properties Of Sol-Gel Derived TiO2 Thin Films

    International Nuclear Information System (INIS)

    In this work, ethanol and isopropyl alcohol sensing properties of Sn-doped TiO2 thin films were investigated. Sn-doped titanium dioxide (TiO2) films were prepared by sol-gel dipping technique using titanium (IV) n-butoxide and tin (IV) chloride pentahydrate as starting materials. The starting materials were dissolved in ethanol separately. Mixture of the solutions was stirred for 1 h. Sn-doped and undoped TiO2 thin films were deposited onto glass substrate patterned with interdigitated electrodes (IDT) by a sol-gel dipping process. Final curing were performed at 820 K in air for 2 h. The structure of the films was studied by X-ray diffraction. Sn:Ti ratio (wt.) was kept between the values of 5% and 11%. Response characteristics of the films were determined in the gas concentrations range of 10%-30%. Gas concentrations were controlled by mass flow controller. Gas sensing characteristics were obtained by recording the current values of the films versus time as a function of gas concentration at the temperatures of 300 and 525 K. The results showed that sensitivity of the films increases with increasing tin doping. We can conclude that tin doping to SnO2 films improve the sensing parameters.

  1. Preparation of catalysts PtSb2O5.SnO2 supported on carbon and ATO using the alcohol reduction method for electrochemical oxidation of ethanol

    International Nuclear Information System (INIS)

    Pt Sn/C-ATO electrocatalysts with different Pt:Sn atomic ratios (90:10, 70:30 and 50:50) were prepared in a single step by an alcohol-reduction process using H2PtCl6.6H2O and SnCl2.2H2O as metal sources and ethylene glycol as solvent and reducing agent and a physical mixture of carbon Vulcan XC72 (85 wt%) and Sb2O5.SnO2 (15 wt%) as support (C-ATO). The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic activity for ethanol electro-oxidation in acid medium was investigated by cyclic voltammetry and chronoamperometry and in single direct ethanol fuel cell (DEFC). XRD analyses showed that Pt(FCC), SnO2, carbon and ATO phases coexist in the obtained materials. The electrochemical studies showed that PtSn/C-ATO electrocatalysts were more active for ethanol electro-oxidation than PtSn/C electrocatalyst. The experiments at 100 deg C on a single DEFC showed that the power density of the cell using Pt Sn/C-ATO (90:10) was nearly 100% higher than the one obtained using Pt Sn/C (50:50). FTIR measurements showed that the addition of ATO to Pt Sn/C favors the formation of acetic acid as a product while for PtSn/C acetaldehyde was the principal product formed. (author)

  2. Determination and correlation of solubility of tylosin tartrate in alcohol mixtures

    International Nuclear Information System (INIS)

    Graphical abstract: Data on (solid + liquid) equilibrium of tylosin tartrate in {methanol + (ethanol, 1-propanol or 2-propanol)} solvents was measured over temperature range from (278.15 to 323.15) K under atmospheric pressure by a gravimetric method. From the experimental results, it can be seen that solubility of tylosin tartrate increases with increasing mass fraction of methanol in mixed solvents at a constant temperature, and increases with increasing temperature at the same mass fraction. The solubility of tylosin tartrate in methanol is higher than in methanol mixture solvents, and in 2-propanol is the lowest. The solubility data were correlated well with modified Apelblat equation, λh equation and van’t Hoff equation, and that modified Apelblat equation was more accurate than λh equation and van’t Hoff equation. Further, the standard enthalpy, standard entropy and standard Gibbs free energy of solution of tylosin tartrate in mixed solvents were calculated according to solubility data and model parameters with modified Apelblat equation and van’t Hoff equation. - Highlights: • The solubility of tylosin tartrate in selected solvents has been obtained in this work. • The results show that the three models agree well with the experimental data. • The modified Apelblat model were more accurate than λh model and van’t Hoff model. • The dissolution enthalpy and entropy of tylosin tartrate were calculated from the solubility data. - Abstract: Data on (solid + liquid) equilibrium of tylosin tartrate in {methanol + (ethanol, 1-propanol or 2-propanol)} solvents will provide essential support for industrial design and further theoretical studies. In this study, the solubility of tylosin tartrate in alcohol mixtures was measured over temperature range from (278.15 to 323.15) K under atmospheric pressure by a gravimetric method. From the experimental results, the solubility of tylosin tartrate in selected solvents noted above was found to increase with

  3. NEUROPEPTIDE Y (NPY) SUPPRESSES ETHANOL DRINKING IN ETHANOL-ABSTINENT, BUT NOT NON-ETHANOL-ABSTINENT, WISTAR RATS

    OpenAIRE

    Gilpin, N W; Stewart, R B; Badia-Elder, N.E.

    2008-01-01

    In outbred rats, increases in brain neuropeptide Y (NPY) activity suppress ethanol consumption in a variety of access conditions, but only following a history of ethanol dependence. NPY reliably suppresses ethanol drinking in alcohol-preferring (P) rats and this effect is augmented following a period of ethanol abstinence. The purpose of this experiment was to examine the effects of NPY on 2-bottle choice ethanol drinking and feeding in Wistar rats that had undergone chronic ethanol vapor exp...

  4. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation

    International Nuclear Information System (INIS)

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H2PtCl6.6H2O Ru Cl xH2O, SnCl2.2H2O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2θ = 25o, which is associated with the carbon support and four additional diffraction peaks at approximately 2θ = 40o, 47o, 67o e 82o, which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H2SO4, + 1,0 mol.L-1 de C2H5OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  5. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  6. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols

    International Nuclear Information System (INIS)

    The specific peculiarities of alcohols such as heightened viscosity, boiling temperature and surface tension can be explained by the capability of their molecules to form relatively stable associates named clusters due to hydrogen bonding. In present work the stability of different chain-like and cyclic clusters of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol was investigated by means of quantum-chemical simulation and particular by recently developed DFT exchange–correlation functional M06-2X. The relative stability of the cluster structure was evaluated by the total energy per molecule at low temperatures (where all alcohols exist in solid state) and by the changing of the free Gibbs energy upon cluster formation at the room temperature. For the verification of revealed results the conformity of calculated IR spectra of the most stable cluster structures with the experimental IR spectra at different temperatures was analyzed.

  7. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  8. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  9. Volumetric Properties of Dilute Aqueous Solutions of 1- and 2-propanol to 50 MPa and 373.15 K

    Science.gov (United States)

    Seitz, J.; Bahramian, J.; Blackwell, R.; Inaki, T.; York, D.; Schulte, M. D.

    2014-12-01

    The need to accurately model and understand reactions among organic compounds and biomolecules in solution is necessary to develop realistic chemical models for the reactions leading to the emergence of life and metabolic processes of extremophiles under elevated temperature and pressure conditions. Unfortunately, the scarcity of experimentally determined volumetric (and other) properties for important compounds at high temperatures and pressures leads to uncertainty in the calculation of reaction properties. Experimentally determined volumetric properties of aqueous solutions at non-standard conditions provide direct tests of current estimation methods and aid in the refinement of these methods. The goal of our research is to provide a database of experimentally determined volumetric properties. In previous studies, we have examined important organic molecules and biomolecules such as adenosine, coenzyme M and D-ribose. In this study, we investigate the volumetric properties of the structural isomers 1- and 2-propanol. 1-propanol (n-propanol) is a primary alcohol (CH3CH2CH2OH) and 2-propanol (isopropanol) is the simplest example of a secondary alcohol (CH3CHOHCH3). These compounds differ slightly in structure depending on to which carbon atom the hydroxyl group is bonded and will provide a sensitive test of current estimation methods and lead to more accurate predictions of the properties of complex aqueous systems at elevated temperatures and pressures. We obtained the densities of aqueous solutions of the alchohols using an Anton Paar DMA HP vibrating tube densimeter. Pressure was measured (pressure transducer) to an accuracy of ±0.01% and temperature was measured (integrated platinum thermometer) with an accuracy of ±0.05 K. Experimental uncertainty of density measurements is less than ±0.0001 g·cm-3. The partial molar volumes at infinite dilution (V∞) for 1- and 2-propanol were calculated from the measured densities and are shown in the figure at 0

  10. Hepatotoxicity of ethanol in mice.

    OpenAIRE

    Goldin, R D; Wickramasinghe, S. N.

    1987-01-01

    Mice continuously exposed to ethanol vapour (for up to 19 days) developed fatty change in the liver (from 2 days onwards) and lesions resembling those of alcoholic hepatitis in man (from 5 days onwards). They also showed biochemical evidence of liver cell damage. Sera from ethanol-treated animals contained immunoglobulins that bound to the hepatocytes of ethanol-treated but not of control animals suggesting that exposure to ethanol was followed by an immunological response to a hepatocyte neo...

  11. Wetting transition and pretransitional thin films in binary liquids: alcohol/perfluoromethylcyclohexane mixtures studied by x-ray reflectivity

    International Nuclear Information System (INIS)

    In this study the wetting transition at the liquid-vapour interface of binary organic liquid mixtures has been investigated by x-ray reflectivity. Mixtures of various isomeric alcohols with perfluoromethylcyclohexane (PFMC) served as model systems, with alcohol carbon numbers ranging from 1 to 4. Remarkably different pretransitional behaviour of the thin films below the wetting temperature was observed, which could be classified according to the carbon number. At two-phase coexistence, no pretransitional thin films could be detected for methanol and ethanol, whereas thin-to-thick-film transitions were found for propanol and butanol and their isomers. For 1-propanol and 2-propanol, the surface of the upper, alcohol-rich phase of the gravity-separated mixture displays a wetting transition at Tw = 31.5 deg. C and 38.3 deg. C, respectively, where the thickness of a PFMC-rich film jumps from less than 25 A to values exceeding the experimental resolution of about 1200 A. For 1-butanol, 2-butanol and i-butanol, we found pretransitional film thicknesses increasing up to 100 A, with wetting transitions at Tw = 45.0 deg. C, 34.2 deg. C and 40.1 deg. C, respectively. In the single-phase region, the study of adsorption isotherms above Tw revealed novel behaviour of the adsorbed PFMC-rich film. We observed both a growing film thickness and a significantly changing composition as the coexistence line was approached. Nevertheless, the variation of the excess adsorption with distance from coexistence could still be described by a power law. (author)

  12. Implications of increased ethanol production

    International Nuclear Information System (INIS)

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  13. Excess Molar Volume and Apparent Molar Volume of Binary Mixtures of 2—Methyl—3—buten—2—ol with 1—Alcohol at 298.15K

    Institute of Scientific and Technical Information of China (English)

    LIUDixia; LIHaoran; 等

    2002-01-01

    Excess molar volumes (VmE) of binary mixtures of 2-methyl-3-buten-2-ol[CH3C(OH)(CH3)CHCH2] with four 1-alcohols:methanol,ethanol,1-propanol and 1-butanol at 298.15K and atmospheric pressure are derived from density measurements with a vibrating-tube densimeter.All the excess volumes are negative in the systems over the entire composition range. The results are correlated with the Redlich-Kister equation.The effects of chain length of 1-alcohols on VmE are discussed.The apparent molar volumes of 2-methyl-3-buten-2-ol and 1-alcohols are calculated respectively.

  14. Derivatives of 1,3-oxazolidines on the base of diamino-alcohols

    International Nuclear Information System (INIS)

    In this article authors investigated the reaction of 1-cyclohexyl amino-3-diethyl amino-2-propanol, 1-butylamine-3-diethyl amino-2-propanol. By authors was determined that reaction of initial diamino-alcohols with furfural passing at molar correlation of reagents 1:1 at temperature 20-22digC at presence dehydrating medium-potash during 36 hours

  15. Neural Adaptation Leads to Cognitive Ethanol Dependence

    OpenAIRE

    Robinson, Brooks G; Khurana, Sukant; Kuperman, Anna; Nigel S Atkinson

    2012-01-01

    Physiological alcohol dependence is a key adaptation to chronic ethanol consumption that underlies withdrawal symptoms, is thought to directly contribute to alcohol addiction behaviors, and is associated with cognitive problems such as deficits in learning and memory [1–3]. Based on the idea that an ethanol-adapted (dependent) animal will perform better in a learning assay than an animal experiencing ethanol withdrawal will, we have used a learning paradigm to detect physiological ethanol dep...

  16. Transmission of low-energy electrons (0-15eV) through thin films of ethers, ketones, alcohols, and ice

    International Nuclear Information System (INIS)

    The transmission of low-energy electrons (0-15 eV) through 10-100 A films of ethers, ketones, alcohols, and ice has been studied. Structures are indicated by electron current Isub(t) transmitted through a thin film as a function of the incident electron energy Vsub(i), displayed as dIsub(t)/dVsub(i), vs. V sub(i). With increasing the film thickness, a decrease of the height of the first peak (due to injection of electrons in the film) and an appearance of a second peak are observed for ethers and alcohols. The energies of quasifree electron state Vsub(o) are determined by measuring the energy of the second peak from the first peak for solid diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, and 1-nonanol. For acetone, diethyl ketone, dimethyl sulfoxide, and ice, neither a decrease of the first peak nor an appearance of a second peak is observed, indicating that these compounds have negative Vsub(o) values. From the energy of the onsets of broad negative peaks appeared at asymptotically equls 14 eV for ethers and alcohols, the solid phase ionization energies Isub(s) and the polarization energies of cations P+ by the solid media are determined. (author)

  17. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats.

    Science.gov (United States)

    Ding, Zheng-Ming; Ingraham, Cynthia M; Rodd, Zachary A; McBride, William J

    2016-10-01

    Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA. PMID:27260326

  18. Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts.

    Science.gov (United States)

    Etschmann, M M W; Kötter, P; Hauf, J; Bluemke, W; Entian, K-D; Schrader, J

    2008-09-01

    Yeasts can convert amino acids to flavor alcohols following the Ehrlich pathway, a reaction sequence comprising transamination, decarboxylation, and reduction. The alcohols can be further derivatized to the acetate esters by alcohol acetyl transferase. Using L: -methionine as sole nitrogen source and at high concentration, 3-(methylthio)-1-propanol (methionol) and 3-(methylthio)-propylacetate (3-MTPA) were produced with Saccharomyces cerevisiae. Methionol and 3-MTPA acted growth inhibiting at concentrations of >5 and >2 g L(-1), respectively. With the wild type strain S. cerevisiae CEN.PK113-7D, 3.5 g L(-1) methionol and trace amounts of 3-MTPA were achieved in a bioreactor. Overexpression of the alcohol acetyl transferase gene ATF1 under the control of a TDH3 (glyceraldehyde-3-phosphate dehydrogenase) promoter together with an optimization of the glucose feeding regime led to product concentrations of 2.2 g L(-1) 3-MTPA plus 2.5 g L(-1) methionol. These are the highest concentrations reported up to now for the biocatalytic synthesis of these flavor compounds which are applied in the production of savory aroma compositions such as meat, potato, and cheese flavorings. PMID:18597084

  19. False-positive breath-alcohol test after a ketogenic diet.

    Science.gov (United States)

    Jones, A W; Rössner, S

    2007-03-01

    A 59-year-old man undergoing weight loss with very low calorie diets (VLCD) attempted to drive a car, which was fitted with an alcohol ignition interlock device, but the vehicle failed to start. Because the man was a teetotaller, he was surprised and upset by this result. VLCD treatment leads to ketonemia with high concentrations of acetone, acetoacetate and beta-hydroxybutyrate in the blood. The interlock device determines alcohol (ethanol) in breath by electrochemical oxidation, but acetone does not undergo oxidation with this detector. However, under certain circumstances acetone is reduced in the body to isopropanol by hepatic alcohol dehydrogenase (ADH). The ignition interlock device responds to other alcohols (e.g. methanol, n-propanol and isopropanol), which therefore explains the false-positive result. This 'side effect' of ketogenic diets needs further discussion by authorities when people engaged in safety-sensitive work (e.g. bus drivers and airline pilots) submit to random breath-alcohol tests. PMID:16894360

  20. Heterogeneous catalytic process for alcohol fuels from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Minahan, D.M.; Nagaki, D.A.

    1995-12-31

    This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art. The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.

  1. Ethanol and oxidative stress.

    Science.gov (United States)

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  2. Adsorption and dehydrogenation of 2-propanol on the surface of γ-Al2O3-supported gold

    Science.gov (United States)

    Martinez-Ramirez, Z.; Gonzalez-Calderon, J. A.; Almendarez-Camarillo, A.; Fierro-Gonzalez, J. C.

    2012-08-01

    The adsorption and reactions of 2-propanol on γ-Al2O3 and γ-Al2O3-supported gold samples were investigated by infrared (IR) spectroscopy, modulated differential scanning calorimetry (MDSC) and mass spectrometry. Adsorption of the alcohol on the samples at room temperature led to formation of molecularly adsorbed 2-propanol and 2-propoxide species bonded to Al3+ sites. Treatment of γ-Al2O3 after alcohol adsorption in flowing He from 25 to 300 °C led to 2-propanol desorption, without evidence of surface reactions. In contrast, when supported gold samples were exposed to the same thermal treatment, formation of acetone and H2 was observed by mass spectra of the effluent gases from the flow reactor. Concomitantly, IR spectra of the samples showed the appearance of a band at 1698 cm- 1, assigned to νCO vibrations of adsorbed acetone. The formation of acetone occurred by the dehydrogenation of 2-propoxide species bonded to Al3+ sites, as evidenced by (a) the decrease in the intensities of their IR bands and (b) the presence of a MDSC peak at approximately the same temperature as that at which acetone was formed and the 2-propoxide species were consumed. It is proposed that gold particles on the γ-Al2O3 surface facilitate breaking of the β-Csbnd H bond of neighboring surface 2-propoxide species to give acetone. Our results emphasize the bifunctional character of supported gold catalysts for the dehydrogenation of alcohols.

  3. Alcohol and liver

    Institute of Scientific and Technical Information of China (English)

    Natalia Osna

    2009-01-01

    @@ Liver is a primary site of ethanol metabolism, which makes this organ susceptible to alcohol-induced damage.Alcoholic liver disease (ALD) has many manifestations and complicated pathogenesis. In this Topic Highlight, we included the key reviews that characterize new findings about the mechanisms of ALD development and might be of strong interest for clinicians and researchers involved in liver alcohol studies.

  4. Effects of substitution on counterflow ignition and extinction of C3 and C4 alcohols

    KAUST Repository

    Alfazazi, Adamu

    2016-06-17

    Dwindling reserves and inherent uncertainty in the price of conventional fuels necessitates a search for alternative fuels. Alcohols represent a potential source of energy for the future. The structural features of an alcohol fuel have a direct impact on combustion properties. In particular, substitution in alcohols can alter the global combustion reactivity. In this study, experiments and numerical simulations were conducted to investigate the critical conditions of extinction and autoignition of n-propanol, 1-butanol, iso-propanol and iso-butanol in non-premixed diffusion flames. Experiments were carried out in the counterflow configuration, while simulations were conducted using a skeletal chemical kinetic model for the C3 and C4 alcohols. The fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while the oxidizer stream is air. The experimental results show that autoignition temperatures of the tested alcohols increase in the following order: iso-propanol > iso-butanol > 1-butanol ≈ n-propanol. The simulated results for the branched alcohols agree with the experiments, while the autoignition temperature of 1-butanol is slightly higher than that of n-propanol. For extinction, the experiments show that the extinction limits of the tested fuels increase in the following order: n-propanol ≈ 1-butanol > iso-butanol > iso-propanol. The model suggests that the extinction limits of 1-butanol is slightly higher than n-propanol with extinction strain rate of iso-butanol and iso-propanol maintaining the experimentally observed trend. The transport weighted enthalpy (TWE) and radical index (Ri) concepts were utilized to rationalize the observed reactivity trends for these fuels.

  5. Isothermal Nucleation Rates of n-Propanol, n-Butanol, and n-Pentanol in Supersonic Nozzles: Critical Cluster Sizes and the Role of Coagulation.

    Science.gov (United States)

    Mullick, K; Bhabhe, A; Manka, A; Wölk, J; Strey, R; Wyslouzil, B E

    2015-07-23

    We follow the nucleation of n-alcohols, n-propanol through n-pentanol, in two sets of supersonic nozzles having differing linear expansion rates. Combining the data from static pressure trace measurements with small-angle X-ray scattering we report the experimental nucleation rates and critical cluster sizes. For n-propanol, position resolved measurements clearly confirm that coagulation of the 2-10 nm size (radius) droplets occurs on the time scale of the experiment but that the effect of coagulation on the results is minimal. Under the conditions of the current experiments, our results suggest that alcohols have critical clusters that range from the dimer (n-pentanol) to the hexamer (n-propanol). We then compare the experimental results with classical nucleation theory (CNT), the Girshick-Chiu variant of CNT (GC), and the mean field kinetic nucleation theory (MKNT). Both CNT and MKNT underestimate the nucleation rates by up to 5 and 7 orders of magnitude, respectively, while GC theory predicts rates within 2 orders of magnitude. Correspondingly, the critical cluster size for all alcohols is overpredicted by factors of 2-9 with agreement improving with increasing chain length. An interesting byproduct of our experiments is that we find that the coagulation rate is enhanced by a factor of 3 over the value one would calculate for the free molecule regime. PMID:25361235

  6. Scleroglucan compatibility with thickeners, alcohols and polyalcohols and downstream processing implications.

    Science.gov (United States)

    Viñarta, Silvana C; Yossen, Mariana M; Vega, Jorge R; Figueroa, Lucía I C; Fariña, Julia I

    2013-02-15

    Thickening capacity and compatibility of scleroglucan with commercial thickeners (corn starch, gum arabic, carboxymethylcellulose, gelatin, xanthan and pectin), glycols (ethylene glycol and polyethylene glycol), alcohols (methanol, ethanol, 1-propanol and isopropanol) and polyalcohols (sorbitol, xylitol and mannitol) was explored. Exopolysaccharides (EPSs) from Sclerotium rolfsii ATCC 201126 and a commercial scleroglucan were compared. Compatibility and synergism were evaluated taking into account rheology, pH and sensory properties of different thickener/scleroglucan mixtures in comparison with pure solutions. S. rolfsii ATCC 201126 EPSs induced or increased pseudoplastic behaviour with a better performance than commercial scleroglucan, showing compatibility and synergy particularly with corn starch, xanthan, pectin and carboxymethylcellulose. Compatibility and a slight synergistic behaviour were also observed with 30% (w/v) ethylene glycol whereas mixtures with polyethylene glycol (PEG) precipitated. Scleroglucan was compatible with polyalcohols, whilst lower alcohols led to scleroglucan precipitation at 20% (v/v) and above. PEG-based scleroglucan downstream processing was compared to the usual alcohol precipitation. Downstream processed EPSi (with isopropanol) and EPS-p (with PEG) were evaluated on their yield, purity, rheological properties and visual aspect pointing to alcohol downstream processing as the best methodology, whilst PEG recovery would be unsuitable. The highest purified EPSi attained a recovery yield of ~23%, similar to ethanol purification, with a high degree of purity (88%, w/w vs. EPS-p, 8%, w/w) and exhibited optimal rheological properties, water solubility and appearance. With a narrower molecular weight distribution (M(w), 2.66×10(6) g/mol) and a radius of gyration (R(w), 245 nm) slightly lower than ethanol-purified EPSs, isopropanol downstream processing showed to be a proper methodology for obtaining a refined-grade scleroglucan. PMID

  7. Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes

    Indian Academy of Sciences (India)

    Panadda Katikawong; Tanakorn Ratana; Waret Veerasai

    2009-05-01

    Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in 0.5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated from the cyclic voltammetric data in the low potential region (0.3-0.5 V vs SHE). The CV results provided Tafel slopes for alcohols in the range of 200-400 mV dec-1 which indicated a difference in the rate determining step. The decrease in Tafel slope was only observed in the case of methanol for the Ru-modified Pt electrode. This indicates that Ru improves the rate of determining step for methanol while hindering it for the other alcohols. The electrochemical impedance spectroscopy was also used to evaluate the electro-oxidation mechanism of alcohols on these electrodes. The simulated EIS results provided two important parameters: charge transfer resistance () and inductance (). The $R^{-1}_{ct}$ and -1 represent the rate of alcohol electro-oxidation and rate of desorption of intermediate species, respectively. These values increased with the increasing of temperature. The results from two techniques were well agreed that the electro-oxidation of methanol was improved by raising the temperature and ruthenium modification.

  8. Magic number effect on cluster formation of polyhydroxylated fullerenes in water-alcohol binary solution

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yuji; Ueno, Hiroshi; Kokubo, Ken, E-mail: kokubo@chem.eng.osaka-u.ac.jp; Ikuma, Naohiko; Oshima, Takumi [Osaka University, Division of Applied Chemistry, Graduate School of Engineering (Japan)

    2013-06-15

    Due to the spherical shape with a diameter of ca. 1 nm, the aggregation behaviour of fullerene C{sub 60} is very interesting in view of the possible formation of magic number particle in a similar manner as metal cluster in gas phase. Herein, we report for the first time the magic number aggregation behaviours of polyhydroxylated fullerenol C{sub 60}(OH){sub 36} in water-alcohol (methanol, ethanol and 1-propanol) binary solution with increasing alcohol component. The diameters of particle were ca. 6-8 nm depending on the alcohol used. The particle sizes were precisely measured by the novel-induced grating method which is superior for the particle-size measurement in single-nano region (1-10 nm). The magic number cluster was also detected by scanning probe microscopy observation. However, such aggregation behaviours were not found in DMSO-alcohol system or for the use of less hydroxylated C{sub 60}(OH){sub 10}.

  9. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    OpenAIRE

    Ricardo M. Pautassi; Nizhnikov, Michael E.; Norman E. Spear; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditione...

  10. New 1-Aryl-3-Substituted Propanol Derivatives as Antimalarial Agents

    Directory of Open Access Journals (Sweden)

    Antonio Monge

    2009-10-01

    Full Text Available This paper describes the synthesis and in vitro antimalarial activity against a P. falciparum 3D7 strain of some new 1-aryl-3-substituted propanol derivatives. Twelve of the tested compounds showed an IC50 lower than 1 μM. These compounds were also tested for cytotoxicity in murine J774 macrophages. The most active compounds were evaluated for in vivo activity against P. berghei in a 4-day suppressive test. Compound 12 inhibited more than 50% of parasite growth at a dose of 50 mg/kg/day. In addition, an FBIT test was performed to measure the ability to inhibit ferriprotoporphyrin biocrystallization. This data indicates that 1-aryl-3-substituted propanol derivatives hold promise as a new therapeutic option for the treatment of malaria.

  11. Effect of Non-Alcoholic Compounds of Alcoholic Drinks on the Pancreas

    OpenAIRE

    Feick, Peter; Gerloff, Andreas; Singer, Manfred V.

    2007-01-01

    Over the past 30 years the role of alcohol (ethanol) in the development of acute and chronic pancreatitis has been intensively investigated. However, ethanol is generally consumed in form of alcoholic beverages which contain numerous non-alcoholic compounds. At least on gastric acid secretion it has been convincingly demonstrated that alcohol and alcoholic beverages have markedly different effects. In the present article, we provide an overview about the effect of different non-alcoholic cons...

  12. Effect Of Polar Component(1-Propanol On The RelativeVolatility Of The Binary System N-Hexane - Benzene

    Directory of Open Access Journals (Sweden)

    Khalid Farhod Chasib Al-Jiboury

    2008-01-01

    Full Text Available Vapor-liquid equilibrium data are presented for the binary systems n-hexane - 1-propanol, benzene - 1-propanol and n-hexane – benzene at 760 mm of mercury pressure. In addition ternary data are presented at selected compositions with respect to the 1-propanol in the 1-propanol, benzene, n-hexane system at 760 mmHg. The results indicate the relative volatility of n-hexane relative to benzene increases appreciably with addition of 1-propanol

  13. The relationship between the adhesion work, the wettability and composition of the surface layer in the systems polymer/aqueous solution of anionic surfactants and alcohol mixtures

    Science.gov (United States)

    Zdziennicka, Anna; Jańczuk, Bronisław

    2010-11-01

    Measurements of advancing contact angle ( θ) were carried out on polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) for aqueous solution of sodium dodecyl sulfate (SDDS) mixtures with methanol, ethanol and propanol in the range of SDDS concentration from 10 -5 to 10 -2 M, and for sodium hexadecyl sulfonate (SHS) with the same alcohols at the SHS concentration ranging from 10 -5 to 8 × 10 -4 M at 293 K. The concentration of methanol, ethanol and propanol used for measurements varied from 0 to 21.1, 11.97 and 6.67 M, respectively. On the basis of the contact angles the critical surface tension of PTFE and PMMA wetting was determined by using for this purpose the relationship between the adhesion and the surface tension and cos θ and surface tension both at constant alcohol and surfactant concentration, respectively. The obtained contact angles were also used in the Young Dupre' equation for calculations of the adhesion work of aqueous solution of mixtures of anionic surfactants and short chain alcohols to PTFE and PMMA surface. The adhesion work calculated in this way was compared to that of the particular components of aqueous solution to these surfaces determined on the basis of the surface tension components and parameters of the surface tension of the surface active agents, water, PTFE and PMMA from van Oss et al. equation. The calculated adhesion work was discussed in the light of the concentration of surface active agents at polymer-water and water-air interface determined from Lucassen-Reynders, Gibbs and Guggenheim-Adam equations.

  14. Innovative inexpensive ethanol

    International Nuclear Information System (INIS)

    New Energy Company of Indiana which produces 70 million gallons of ethanol per year, avoids the headaches often associated with organic by-products by creating an efficient and profitable sideline business. This paper reports that stretching across 55 acres in South Bend, Ind., New Energy's plant is the largest in the U.S. built specifically for fuel alcohol. The $186-million complex is a dramatic advance in the art of producing ethanol and its co-products. As the demand grows in the coming years for fuel alcohol-proven as an octane booster and a clean-burning alternative fuel. New Energy looks forward to increase production and profits. At the company's six-year-old plant, fuel alcohol is made from 26 million bushels a year of No. 2 yellow dent corn. Left at the bottom of the first column, after the alcohol has been boiled off, is stillage that contains more than 90% of the corn's protein and fat content, and virtually all of its vitamins and minerals, along with the yeast used to make the ethanol. While technically a waste product of the fuel alcohol process, this material's quantity and organic content not only make it difficult and costly to dispose, but its nutritional quality makes it an excellent candidate to be further processed into animal feed

  15. Ethanol intake and sup 3 H-serotonin uptake II: A study in alcoholic patients using platelets sup 3 H-paroxetine binding

    Energy Technology Data Exchange (ETDEWEB)

    Daoust, M.; Boucly, P. (U.F.R. de Medecine et Pharmacie, Saint Etienne du Rouvrary (France)); Ernouf, D. (Institut du Medicament, Tours (France)); Breton, P. (Centre National de Transfusion Sanguine de Rouen (France)); Lhuintre, J.P.

    1991-01-01

    The kinetic parameters of {sup 3}H-paroxetine binding and {sup 3}H-serotonin uptake were studied in platelets of alcoholic patients. There was no difference between alcoholic and non alcoholic subjects in {sup 3}H-paroxetine binding. When binding and {sup 3}H-serotonin uptake were studied, in the same plasma of the same subjects, the Vmax of serotonin uptake was increased in alcoholics. The data confirm the involvement of serotonin uptake system in alcohol dependance and suggest that serotonin uptake and paroxetine binding sites may be regulated independently in this pathology.

  16. PRENATAL ETHANOL EXPOSURE INCREASES ETHANOL INTAKE AND REDUCES C-FOS EXPRESSION IN INFRALIMBIC CORTEX OF ADOLESCENT RATS

    OpenAIRE

    Fabio, Maria Carolina; March, Samanta M.; Molina, Juan Carlos; Nizhnikov, Michael E.; Norman E. Spear; Pautassi, Ricardo Marcos

    2012-01-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Exp. 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0 g/kg) or vehicle, on gestational days 17–20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-in...

  17. Effects of ceftriaxone on ethanol, nicotine or sucrose intake by alcohol-preferring (P) rats and its association with GLT-1 expression.

    Science.gov (United States)

    Sari, Youssef; Toalston, Jamie E; Rao, P S S; Bell, Richard L

    2016-06-21

    Increased glutamatergic neurotransmission appears to mediate the reinforcing properties of drugs of abuse, including ethanol (EtOH). We have shown that administration of ceftriaxone (CEF), a β-lactam antibiotic, reduced EtOH intake and increased glutamate transporter 1 (GLT-1) expression in mesocorticolimbic regions of male and female alcohol-preferring (P) rats. In the present study, we tested whether CEF administration would reduce nicotine (NIC) and/or EtOH intake by adult female P rats. P rats were randomly assigned to 4 groups: (a) 5% sucrose (SUC) or 10% SUC [SUC], (b) 5% SUC+0.07mg/ml NIC and 10% SUC+0.14mg/ml NIC [NIC-SUC], 15% EtOH and 30% EtOH [EtOH] and (d) 15% EtOH+0.07mg/ml NIC and 30% EtOH+0.14mg/ml NIC [NIC-EtOH]. After achieving stable intakes (4weeks), the rats were administered 7 consecutive, daily i.p. injections of either saline or 200mg/kg CEF. The effects of CEF on intake were significant but differed across the reinforcers; such that ml/kg/day SUC was reduced by ∼30%, mg/kg/day NIC was reduced by ∼70% in the NIC-SUC group and ∼40% in the EtOH-NIC group, whereas g/kg/day EtOH was reduced by ∼40% in both the EtOH and EtOH-NIC group. The effects of CEF on GLT-1 expression were also studied. We found that CEF significantly increased GLT-1 expression in the prefrontal cortex and the nucleus accumbens of the NIC and NIC-EtOH rats as compared to NIC and NIC-EtOH saline-treated rats. These findings provide further support for GLT-1-associated mechanisms in EtOH and/or NIC abuse. The present results along with previous reports of CEF's efficacy in reducing cocaine self-administration in rats suggest that modulation of GLT-1 expression and/or activity is an important pharmacological target for treating polysubstance abuse and dependence. PMID:27060486

  18. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... groups. NIH: National Institute on Alcohol Abuse and Alcoholism

  19. Ethanol-induced oxidative stress: basic knowledge

    OpenAIRE

    Comporti, Mario; Signorini, Cinzia; Leoncini, Silvia; Gardi, Concetta; Ciccoli, Lucia; Giardini, Anna; Vecchio, Daniela; Arezzini, Beatrice

    2009-01-01

    After a general introduction, the main pathways of ethanol metabolism (alcohol dehydrogenase, catalase, coupling of catalase with NADPH oxidase and microsomal ethanol-oxidizing system) are shortly reviewed. The cytochrome P450 isoform (CYP2E1) specifically involved in ethanol oxidation is discussed. The acetaldehyde metabolism and the shift of the NAD/NADH ratio in the cellular environment (reductive stress) are stressed. The toxic effects of acetaldehyde are mentioned. The ethanol-induced ox...

  20. Effects of Pregnancy and Nutritional Status on Alcohol Metabolism

    OpenAIRE

    Shankar, Kartik; Ronis, Martin J. J.; Badger, Thomas M

    2007-01-01

    Metabolism of alcohol (i.e., ethanol) is regulated by genetic and environmental factors as well as physiologic state. For a given alcohol intake, the rate of alcohol clearance, which ultimately determines tissue ethanol concentrations, may be the most significant risk factor for many of the detrimental effects of alcohol. Faster ethanol clearance would help minimize target tissue concentrations, and in pregnant women, mitigate fetal alcohol exposure. Much remains to be known about the effects...

  1. Effect of γ-irradiation on the catalytic decomposition of 2-propanol

    International Nuclear Information System (INIS)

    70 kGy of γ-irradiation enhances the catalytic transformation of 2-propanol into acetone and propylene on transition metal oxides. Fragment products are formed and for TiO2, V2O5 and Fe2O3 the selectivity of 2-propanol decomposition is shifted towards dehydration by the irradiation. Both catalytic and radiocatalytic transformation of 2-propanol correlate with the adsorption capacity of metal oxides, which suggests that irradiation acts mainly on the adsorbed 2-propanol. Possible changes in the catalyst's chemical properties due to the irradiation are discussed. (author)

  2. Volumetric and viscometric study of molecular interactions in the mixtures of some secondary alcohols with equimolar mixture of ethanol and N,N-dimethylacetamide at 308.15 K

    International Nuclear Information System (INIS)

    Densities and viscosities of mixtures of isopropanol, isobutanol and isoamylalcohol with equimolar mixture of ethanol and N,N-dimethylacetamide have been measured at 308.15 K over the entire composition range. Deviations in viscosity, excess molar volume and excess Gibb's free energy of activation of viscous flow have been calculated from the experimental values of densities and viscosities. Excess properties have been fitted to the Redlich-Kister type polynomial equation and the corresponding standard deviations have been calculated. The experimental data of viscosity have been used to test the applicability of empirical relations of Grunberg-Nissan, Hind-McLaughlin, Katti-Chaudhary and Heric-Brewer for the systems studied. Molecular interactions in the liquid mixtures have been investigated in the light of variation of deviation and of excess values in evaluated properties. -- Research highlights: → Volumetric and viscometric studies of liquid mixtures are useful in pharmacy field. → Molecular interactions in ethanol and N,N-dimethylacetamide with alcohols are studied. → Weak interactions observed due to rupture of hydrogen bond between alcohol molecules. → Measured viscosity values compared with theoretical values obtained by polynomials.

  3. Volumetric and viscometric study of molecular interactions in the mixtures of some secondary alcohols with equimolar mixture of ethanol and N,N-dimethylacetamide at 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Government Degree College, Visakhapatnam 530 013, Andhra Pradesh (India); Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: krdhanekula@yahoo.co.i [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India)

    2011-02-15

    Densities and viscosities of mixtures of isopropanol, isobutanol and isoamylalcohol with equimolar mixture of ethanol and N,N-dimethylacetamide have been measured at 308.15 K over the entire composition range. Deviations in viscosity, excess molar volume and excess Gibb's free energy of activation of viscous flow have been calculated from the experimental values of densities and viscosities. Excess properties have been fitted to the Redlich-Kister type polynomial equation and the corresponding standard deviations have been calculated. The experimental data of viscosity have been used to test the applicability of empirical relations of Grunberg-Nissan, Hind-McLaughlin, Katti-Chaudhary and Heric-Brewer for the systems studied. Molecular interactions in the liquid mixtures have been investigated in the light of variation of deviation and of excess values in evaluated properties. -- Research highlights: {yields} Volumetric and viscometric studies of liquid mixtures are useful in pharmacy field. {yields} Molecular interactions in ethanol and N,N-dimethylacetamide with alcohols are studied. {yields} Weak interactions observed due to rupture of hydrogen bond between alcohol molecules. {yields} Measured viscosity values compared with theoretical values obtained by polynomials.

  4. ECONOMIC AND TECHNICAL ANALYSIS OF ETHANOL DRY MILLING: MODEL DESCRIPTION

    OpenAIRE

    Rhys T. Dale; Tyner, Wallace E.

    2006-01-01

    Ethanol, the common name for ethyl alcohol, is fuel grade alcohol that is predominately produced through the fermentation of simple carbohydrates by yeasts. In the United States, the carbohydrate feedstock most commonly used in the commercial production of ethanol is yellow dent corn (YDC). The use of ethanol in combustion engines emits less greenhouse gasses than its petroleum equivalent, and it is widely hoped that the increased substitution of petroleum by ethanol will reduce US dependence...

  5. Mass balance evaluation of alcohol emission from cattle feed

    Science.gov (United States)

    Silage on dairy farms has been recognized as an important source of volatile organic compounds (VOCs) to the atmosphere, and therefore a contributor to tropospheric ozone. Considering reactivity and likely emission rates, ethanol, 1-propanol, and acetaldehyde probably make the largest contribution t...

  6. RHEOLOGICAL PROPERTIES OF WHEAT GLIADINS IN AQUEOUS PROPANOL

    Institute of Scientific and Technical Information of China (English)

    Shao-min Sun; Yi-hu Song; Qiang Zheng

    2013-01-01

    Rheological properties of wheat gliadins in 50% (V/V) aqueous propanol were carried out as a function of gliadin concentration c and temperature.The solutions at 20 g L-1 to 200 g L-1 behave as Newtonian fluids with an flow activation energy of 23.5-27.3 kJ mol-1.Intrinsic viscosity [η] and Huggins constant kn are determined according to Huggins plot at c ≤120 gL-1.The results reveal that gliadins are not spherical shaped and the molecular size tends to increase with temperature due to improved solvation.

  7. Comparative studies on the alcohol types presence in Gracilaria sp. and rice fermentation using Sasad

    Science.gov (United States)

    Mansa, R.; Mansuit, H.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.

    2016-06-01

    Alternative fuel sources such as biofuels are needed in order to overcome environmental problem caused by fossil fuel consumption. Currently, most biofuel are produced from land based crops and there is a possibility that marine biomass such as macroalgae can be an alternative source for biofuel production. The carbohydrate in macroalgae can be broken down into simple sugar through thermo-chemical hydrolysis and enzymatic hydrolysis. Dilute-acid hydrolysis was believed to be the most available and affordable method. However, the process may release inhibitors which would affect alcohol yield from fermentation. Thus, this work was aimed at investigating if it is possible to avoid this critical pre-treatment step in macroalgae fermentation process by using Sasad, a local Sabahan fermentation agent and to compare the yield with rice wine fermentation. This work hoped to determine and compare the alcohol content from Gracilaria sp. and rice fermentation with Sasad. Rice fermentation was found containing ethanol and 2 - methyl - 1 - propanol. Fermentation of Gracilaria sp. had shown the positive presence of 3 - methyl - 1 - butanol. It was found that Sasad can be used as a fermentation agent for bioalcohol production from Gracilaria sp. without the need for a pretreatment step. However further investigations are needed to determine if pre-treatment would increase the yield of alcohol.

  8. Interaction of ethanol with opiate receptors

    International Nuclear Information System (INIS)

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 370C was shown to produce dose-dependent inhibition of binding of 3H-naloxone with opiate receptors. ID50 under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of 3H-naloxone. Analysis of the inhibitory action of ethanol on 3H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization

  9. Catalytic properties of pure and K+-doped Cu O/Mg O system towards 2-propanol conversion

    International Nuclear Information System (INIS)

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K+ species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N2 at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu2O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K+-doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K+-doping increased the catalytic activity and catalytic durability. (Author)

  10. Catalytic properties of pure and K{sup +}-doped Cu O/Mg O system towards 2-propanol conversion

    Energy Technology Data Exchange (ETDEWEB)

    El-Molla, S. A.; Amin, N. H.; Hammed, M. N.; Sultan, S. N. [Ain Shams University, Faculty of Education, Chemistry Department, Roxy, Heliopolis, Cairo 11757 (Egypt); El-Shobaky, G. A., E-mail: saharelmolla@yahoo.com [National Research Center, Dokki, Cairo (Egypt)

    2013-08-01

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K{sup +} species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N{sub 2} at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu{sub 2}O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K{sup +}-doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K{sup +}-doping increased the catalytic activity and catalytic durability. (Author)

  11. Partial ionisation cross-sections of 2-propanol and ethanal

    International Nuclear Information System (INIS)

    Electron impact ionisation of 2-propanol and ethanal is studied using mass spectrometry. Cross-sections of the formation of molecular ions and ionic fragments are measured between 14 and 86eV. Free energy changes are evaluated using ab initio calculations. For 2-propanol, two ions, identified as CH3CHOH+ (45amu) and CH3CHCH3+ (43amu), contribute more than 75% to the total cross-section over the whole range of electron energies and are produced by simple bond cleavage in the molecular ion. Both processes occur spontaneously, leaving the molecular ion as a minority species. For ethanal, two ions, identified as HCO+ (29amu) and CH3CO+ (43amu), and the molecular ion (44amu) contribute more than 80% to the total cross-section. The ions of 29 and 43amu result from a simple bond cleavage in the molecular ion. These sprocesses are not spontaneous and the contribution of the molecular ion becomes predominant at 15eV and is therefore significant over the whole range of ionisation energies

  12. Establishment of a mouse model of alcohol drinking and the effect of ethanol on estrogen in mice%饮酒小鼠动物模型建立及其对雌性激素的影响

    Institute of Scientific and Technical Information of China (English)

    卢艳敏; 李菲菲; 杨金莲; 桂照华; 陈吉; 余科科; 汪思应

    2012-01-01

    Objective A mouse model of ethanol consumption was set up. This model was used to investigate the effect of ethanol-exposed on the serum estrogen level and breast cancer progression in mice. Methods 2% ethanol in drinking water was given in the ethanol-exposure group mice (n = 15) from 8; 00 pm to 8; 00 am and then replaced with regular water without ethanol at the remaining 12 hours each day for 3 weeks. Mice in the control group (n = 15) were provided with regular drinking water only. The water intake, body weight and blood ethanol concentration (BEC) of the mice were checked. The estrogen level in mice serum was quantified by enzyme-linked immunosorbent assay (ELASA). Results The BEC in mice was much higher than that in control mice and similar to drinking humans. No water intake, body weight differences were found in mice with ethanol exposure or without. The serum estrogen level in ethanol drinking group was much higher than that in the control group. Conclusion A mouse alcohol-exposure model has been successfully established. Ethanol consumption might increase the serum estrogen level in mouse.%目的 建立模拟人类饮酒的小鼠动物模型,并以此动物模型进一步研究酒精对小鼠雌激素水平及乳腺癌的影响.方法 SPF级C57BL/6雌性小鼠,随机分对照组和酒精组两组,酒精组20:00到次日8:00给予含有一定浓度酒精的饮用水,其他时间给予常规饮用水,对照组全天给予常规饮用水.观察两组小鼠的饮水量及体重变化;用ANALOX AM1酒精分析仪检测小鼠凌晨2:00和8:00血液的酒精浓度(BEC);酶联免疫法(ELASA)检测两组小鼠血清中雌激素水平的差异.结果 饮酒组小鼠血液BEC明显增高,类似人类饮酒水平,饮酒组小鼠的饮水量及体重无明显变化;饮酒组小鼠体内雌激素的水平明显高于对照组.结论 成功的建立模拟人类饮酒的动物模型,并通过此动物模型初步证实酒精刺激可以增加小鼠体内血清雌激素的水平.

  13. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Science.gov (United States)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-03-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  14. Calorimetric investigations of hydrogen bonding in binary mixtures containing pyridine and its methyl-substituted derivatives. II. The dilute solutions of methanol and 2-methyl-2-propanol

    International Nuclear Information System (INIS)

    Enthalpies of solution of methanol and 2-methyl-2-propanol (tert-butanol) in pyridine and its methyl derivatives were investigated in the range of mole fractions of alcohol x≤0.02 at temperature 298.15 K by a titration calorimeter. Dissolution of methanol is an exothermic process, with heat effects very close to those for water reported in part I of this study. The negative enthalpy of solution increases in the following order: pyridine < 3-methylpyridine < 4-methylpyridine < 2-methylpyridine < 2,6-dimethylpyridine < 2,4,6-trimethylpyridine. Positive enthalpies of solution of 2-methyl-2-propanol increase as follows: 2-methylpyridine < 2,4,6-trimethylpyridine < 4-methylpyridine < 2,6-dimethylpyridine < 3-methylpyridine < pyridine. The propensity of pyridine derivatives to hydrogen bonding is enhanced by the ortho effect. Methyl groups are probably too small to prevent the nitrogen atom in the pyridine ring from hydrogen bonding. However, spacious hydrocarbon group in 2-methyl-2-propanol molecule makes the bonding difficult for 2,6-dimethylpyridine and 2,4,6-trimethylpyridine, thus the number of O-H···N bonds is smaller than that in the solutions of methanol or water. The two latter seem to be very close to each other

  15. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  16. Experimental Distillation of Ethanol-Propanol Mixture Using a Horizontal Column

    International Nuclear Information System (INIS)

    A lab-sized distillation experiment was conducted using small-size packings and a horizontal distillation column. The 6.7 mm Raschig ring type packings of stainless steel and a 40 mm glass column were used, and five independent electric heaters were installed in the axial direction to adjust the column inside temperature separately. The temperature was continuously distributed along the column length to provide equivalent equilibrium to the temperature for the separation. From the experimental results, a larger HETP of the column than the vertical distillation column was obtained, but it was found that the practical separation with proper processing capacity and separation efficiency was available

  17. Efficacy of ethanol-based hand foams using clinically relevant amounts: a cross-over controlled study among healthy volunteers

    Directory of Open Access Journals (Sweden)

    Marschall Sigunde

    2010-03-01

    Full Text Available Abstract Background Foams containing 62% ethanol are used for hand decontamination in many countries. A long drying time may reduce the compliance of healthcare workers in applying the recommended amount of foam. Therefore, we have investigated the correlation between the applied amount and drying time, and the bactericidal efficacy of ethanol foams. Methods In a first part of tests, four foams (Alcare plus, Avagard Foam, Bode test foam, Purell Instant Hand Sanitizer containing 62% ethanol, which is commonly used in U.S. hospitals, were applied to 14 volunteers in a total of seven variations, to measure drying times. In a second part of tests, the efficacy of the established amount of foam for a 30 s application time of two foams (Alcare plus, Purell Instant Hand Sanitizer and water was compared to the EN 1500 standard of 2 × 3 mL applications of 2-propanol 60% (v/v, on hands artificially contaminated with Escherichia coli. Each application used a cross-over design against the reference alcohol with 15 volunteers. Results The mean weight of the applied foam varied between 1.78 and 3.09 g, and the mean duration to dryness was between 37 s and 103 s. The correlation between the amount of foam applied and time until hands felt dry was highly significant (p 10-reduction: 3.05 ± 0.45 and Alcare plus (3.58 ± 0.71 was significantly less effective than the reference disinfection (4.83 ± 0.89 and 4.60 ± 0.59, respectively; p 10-reduction of 2.39 ± 0.57. Conclusions When using 62% ethanol foams, the time required for dryness often exceeds the recommended 30 s. Therefore, only a small volume is likely to be applied in clinical practice. Small amounts, however, failed to meet the efficacy requirements of EN 1500 and were only somewhat more effective than water.

  18. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  19. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    OpenAIRE

    Monakhova Yulia B; Lachenmeier Dirk W

    2011-01-01

    Abstract Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has b...

  20. ALCOHOL AND HEART RHYTHM DISORDERS

    Directory of Open Access Journals (Sweden)

    A. O. Yusupova

    2015-09-01

    Full Text Available Alcohol abuse and particularly extension of alcohol consumption in alcohol diseas increases the risk of cardiac arrhythmias development and aggravates existing arrhythmias. Patients do not always receive the necessary specific treatment due to lack of detection of the ethanol genesis of these arrhythmias. Management of patients with alcohol abuse and alcohol dependence, including its cardiac complications among other cardiac arrhythmias should use both antiarrhythmic and anti-alcohol drugs and antidepressants. Such issues as diagnosis and management of patients with alcohol-induced cardiac arrhythmias are presented.

  1. Molecular probe dynamics and free volume in organic glass-formers and their relationships to structural relaxation: 1-propanol

    International Nuclear Information System (INIS)

    A joint study of the rotational dynamics and free volume in amorphous 1-propanol (1-PrOH) as a prototypical monohydroxy alcohol by electron spin resonance (ESR) or positron annihilation lifetime spectroscopy (PALS), respectively, is reported. The dynamic parameters of the molecular spin probe 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the annihilation ones of the atomic ortho-positronium (o-Ps) probe as a function of temperature are compared. A number of coincidences between various effects in the ESR and PALS responses at the corresponding characteristic ESR and PALS temperatures were found suggesting a common origin of the underlying dynamic processes that were identified using viscosity (VISC) in terms of the two-order parameter (TOP) model and broadband dielectric spectroscopy (BDS) data. (paper)

  2. Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols

    International Nuclear Information System (INIS)

    Highlights: • Physical properties of the pure [EMim][MSO4] ionic liquid. • Physical and excess properties of its binary mixtures with alcohols. • The excess properties were fitted using the Redlich–Kister equation. • The effect of temperature on the VE, and KS,mE was analyzed. - Abstract: Experimental density, speed of sound, refractive index and viscosity data of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate, [EMim][MSO4], were measured as a function of temperature from T = (293.15 to 343.15) K, every 5 K, and atmospheric pressure. Density, speed of sound and refractive index data were satisfactorily correlated with a linear equation, while viscosity data were fitted to the Vogel–Fulcher–Tamman (VFT) equation. Besides, from the experimental density values, the thermal expansion coefficient, α, was calculated. Furthermore, density and speed of sound for the binary systems of {methanol, or ethanol, or 1-propanol, or 2-propanol, or 1-butanol, or 1-pentanol + [EMim][MSO4]} were experimentally determined over the whole composition range, at T = (288.15, 298.15 and 308.15) K and p = 0.1 MPa. These properties were used to calculate the corresponding excess molar volumes and excess molar isentropic compressions, which were satisfactorily fitted to the Redlich–Kister equation. Finally, a comparison with available literature data was also carried out and the obtained results are discussed in terms of interactions and structure factors in these binary mixtures

  3. Acid membranes of poly(vinyl alcohol) for direct ethanol fuel cell applications; Membranes acidas de poli(alcool vinilico) para aplicacoes em celulas a combustivel via etanol direto

    Energy Technology Data Exchange (ETDEWEB)

    Dutra Filho, Jose C.; Gomes, Ailton S. [Instituto de Macromoleculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, RJ (Brazil)], e-mail: asgomes@ima.ufrj.br

    2011-07-01

    Proton-conducting hybrid membranes composed of poly(vinyl alcohol) (PVA), phosphotungstic acid (HPW) and diethylenetriaminepentaacetic acid (DTPA) where prepared. The effect of HPW doping and crosslink with DTPA on the membranes properties such as uptake, pervaporation and proton conductivity was investigated. Uptake and permeated flux decreases with increasing content of HPW and DTPA. Ethanol permeabilities obtained was about two orders of magnitude smaller than Nafion 117. FTIR spectra indicated that HPW was incorporated into the polymer matrix and DTPA acted as crosslink agent. The proton conductivity was in the order of 10-3 S.cm-1 with added 4 wt.% of DTPA and generally increases with the addition of HPW. (author)

  4. Study on Ionization Energies of 3-Amino-1-propanol

    Institute of Scientific and Technical Information of China (English)

    Ke-dong Wang; Ying-bin Jia; Zhen-jiang Lai; Yu-fang Liu

    2011-01-01

    Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP,MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH…N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.

  5. Electron solvation in liquid alcohols. Effect of microscopic liquid structure

    International Nuclear Information System (INIS)

    Complete text of publication follows. Numerous theoretical works show that excess electrons in polar liquids can localize in cavities in which the surrounding solvent molecules create an attractive potential well. These cavities are called the pre-existing traps. Existence of the preformed traps in liquids is also suggested by results of the femtosecond time-resolved studies on the solvated electron. Thus, theoretical description of the pre-existing traps in various liquids is important for understanding the process of primary electron localization in these media. In the present work the structure of liquid alcohols, obtained by computer simulation, has been analyzed in order to identify the regions that can serve as pre-existing sites for primary localization of an excess electron. The calculations were performed for two alcohols: 1-propanol and 2-propanol, at 298 K. Configurations of molecules for each liquid sample were generated in a classical Molecular Dynamics Simulations. The static and dynamical properties of the traps have been investigated and described in terms of the statistical distributions of their geometrical parameters and their lifetimes, respectively. Moreover, we have connected these properties with the local structure of the medium around the traps. Our general conclusions are as follows: (1) electron traps in 1-propanol (generally in primary alcohols) are deeper in comparison with traps in 2-propanol (secondary alcohols), (2) electron solvation process in 1-propanol, in contrast to 2-propanol, does not involve breaking of hydrogen bonding net, (3) and they are consistent with the experimental results of Zhang et al. (Radiat. Phys. Chem., 1999, 54, 433) for electrons localized in those matrices

  6. Sugar consumption unrelated to ethanol production in several industrial alcoholic yeasts%几种酒类酿造酵母产酒精以外的糖消耗的研究

    Institute of Scientific and Technical Information of China (English)

    徐扬; 安家彦

    2011-01-01

    以葡萄酒1#酵母、葡萄酒6#生产酵母和啤酒酵母为研究对象,采用3,5-二硝基水杨酸光度法和比重瓶法分别测还原糖和酒精,对酒精以外的糖消耗进行研究.结果表明,酒类生产酵母在酒精发酵进入减速阶段初时达到峰值,对于控制压榨酒的风味具有指导意义.%The glucose consumption unrelated to ethanol production was studied on wine yeast 1*, wine yeast 6* and a beer yeast strain. The contentsof reducing sugar and ethanol were determined by 3, S-dinitrosalicylic acid method and bottle method, respectively. The results showed that the yeastbiomass reached a peak at the beginning of deceleration phase of alcohol fermentation, which provided the guidance to the flavor control of presswine.

  7. Separation of alcohol-water mixtures using salts

    Energy Technology Data Exchange (ETDEWEB)

    Card, J. C.; Farrell, L. M.

    1982-04-01

    Use of a salt (KF or Na/sub 2/SO/sub 4/) to induce phase separation of alcohol-water mixtures was investigated in three process flowsheets to compare operating and capital costs with a conventional distillation process. The process feed was the Clostridia fermentation product, composed of 98 wt % water and 2 wt % solvents (70% 1-butanol, 27% 2-propanol, and 3% ethanol). The design basis was 150 x 10/sup 6/ kg/y of solvents. Phase equilibria and tieline data were obtained from literature and experiments. Three separation-process designs were developed and compared by an incremental economic analysis (+-30%) with the conventional separation technique using distillation alone. The cost of salt recovery for recycle was found to be the critical feature. High capital and operating costs make recovery of salt by precipitation uneconomical; however, a separation scheme using multiple-effect evaporation for salt recovery has comparable incremental capital costs ($1.72 x 10/sup 6/ vs $1.76 x 10/sup 6/) and lower incremental operating costs ($2.14 x 10/sup 6//y vs $4.83 x 10/sup 6//y) than the conventional separation process.

  8. Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater

    OpenAIRE

    Scow, K M; MacKay, Douglas

    2008-01-01

    Methyl tert-butyl ether (MTBE) is a contaminant of concern to groundwater resources due to its persistence in subsurface environments. MTBE appears to be degraded readily in the presence of oxygen but is recalcitrant under the anaerobic conditions prevalent in the subsurface, and can be converted into the more toxic compound tert-butanol (TBA). As ethanol is being promoted as a renewable fuel and a replacement for MTBE in gasoline formulations, its potential impact on the biodegradation of pr...

  9. The effect of the presence of alcohol in the dispersing phase of oxide sols on the properties of RuO2-TiO2/Ti anodes obtained by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    R. ATANASOSKI

    2000-09-01

    Full Text Available The effect of the addition of ethanol and 2-propanol to the dispersing phase of TiO2 and RuO2 sols mixture on the morphology and, consequently, on the electrochemical properties of the sol-gel obtained activated titanium anodes was investigated. The properties of the obtained anodes were compared to those obtained by the thermal decomposition of appropriate chloride salts. The morphology of the anode coatings was examined by scanning tunneling microscopy. The electrochemical behaviour was investigated by cyclic voltammetry and by polarization measurements. An accelerated stability test was used for the examination of the stability of the anodes under simultaneous oxygen and chlorine evolution reaction. A dependence of the anode stability on the type of added alcohol is indicated.

  10. Thermodynamic properties of solutions of sodium di-hydrogen phosphate in (1-propanol + water) mixed-solvent media over the temperature range of (283.15 to 303.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Pasdran Street, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)], E-mail: rsadeghi@uok.ac.ir; Parhizkar, Hana [Department of Chemistry, University of Kurdistan, Pasdran Street, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2008-06-15

    The apparent molar volume and apparent molar isentropic compressibility of solutions of sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}) in (1-propanol + water) mixed-solvent media with alcohol mass fractions of 0.00, 0.05, 0.10, and 0.15 are reported over the range of temperature (283.15 to 303.15) K at 5 K intervals. The results were fitted to a Redlich-Mayer type equation from which the apparent molar volume and apparent molar isentropic compressibility of the solutions at the infinite dilution were also calculated at the working temperature. The results show a positive transfer volume of NaH{sub 2}PO{sub 4} from an aqueous solution to an aqueous 1-propanol solution. The apparent molar isentropic compressibility of NaH{sub 2}PO{sub 4} in aqueous 1-propanol solutions is negative and it increases with increasing the concentration of NaH{sub 2}PO{sub 4}, 1-propanol, and temperature. Electrical conductivity and refractive index of the solutions are also studied at T = 298.15 K. The effects of the electrolyte concentration and relative permittivity of the medium on the molar conductivity were also investigated.

  11. Motor impairment: a new ethanol withdrawal phenotype in mice

    OpenAIRE

    Philibin, Scott D.; Cameron, Andy J.; Metten, Pamela; Crabbe, John C.

    2008-01-01

    Alcoholism is a complex disorder with genetic and environmental risk factors. The presence of withdrawal symptoms is one criterion for alcohol dependence. Genetic animal models have followed a reductionist approach by quantifying various effects of ethanol withdrawal separately. Different ethanol withdrawal symptoms may have distinct genetic etiologies, and therefore differentiating distinct neurobiological mechanisms related to separate signs of withdrawal would increase our understanding of...

  12. Kinetics of ethanol decay in mouth- and nose-exhaled breath measured on-line by selected ion flow tube mass spectrometry following varying doses of alcohol

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Pysanenko, Andriy; Španěl, Patrik

    2010-01-01

    Roč. 24, č. 7 (2010), s. 1066-1074. ISSN 0951-4198 R&D Projects: GA ČR GA202/09/0800 Institutional research plan: CEZ:AV0Z40400503 Keywords : mass spectrometry * blood-alcohol * breath Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.846, year: 2010

  13. Influence of charge exchange in acidic aqueous and alcoholic titania dispersions on viscosity.

    Science.gov (United States)

    Rosenholm, Jarl B; Dahlsten, Per

    2015-12-01

    Charging effects resulting from adsorption of acid, acid anions, and protons on titania (anatase) surfaces in anhydrous or mixed alcohol-water dispersions is summarized. The suddenly enhanced conductivity as compared to titania-free solutions has previously been modeled and explained as surface-induced electrolytic dissociation (SIED) of weak acids. This model and recently published results identifying concurrent surface-induced liquid (solvent) dissociation (SILD) are evaluated with experimentally determined conductivity and pH of solutions, zeta-potential of particles, and viscosity of dispersions. Titania (0-25wt%)-alcohol (methanol, ethanol, and propanol) dispersions mixed with (0-100wt%) water were acidified with oxalic, phosphoric, and sulfuric acids. It was found that the experimental results could in many cases be condensed to master curves representing extensive experimental results. These curves reveal that major properties of the systems appear within three concentration regions were different mechanisms (SILD, surface-induced liquid dissociation; SIAD, surface-induced acid dissociation) and charge rearrangement were found to be simultaneously active. In particular, zeta-potential - pH and viscosity - pH curves are in acidified non-polar solvents mirror images to those dependencies observed in aqueous dispersions to which hydroxyl is added. The results suggest that multiple dispersion and adsorption equilibria should be considered in order to characterize the presented exceptionally extensive and complex experimental results. PMID:26520241

  14. Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source

    Directory of Open Access Journals (Sweden)

    Francisco Espinosa-Magaña

    2013-06-01

    Full Text Available Carbon nanotubes with single and few walls are highly appreciated for their technological applications, regardless of the limited availability due to their high production cost. In this paper we present an alternative process that can lead to lowering the manufacturing cost of CNTs of only few walls by means of the use of the spray pyrolysis technique. For this purpose, ferrocene is utilized as a catalyst and aliphatic alcohols (methanol, ethanol, propanol or butanol as the carbon source. The characterization of CNTs was performed by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The study of the synthesized carbon nanotubes (CNTs show important differences in the number of layers that constitute the nanotubes, the diameter length, the quantity and the quality as a function of the number of carbons employed in the alcohol. The main interest of this study is to give the basis of an efficient synthesis process to produce CNTs of few walls for applications where small diameter is required.

  15. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H2PtCl6.6H2O (Aldrich), SnCl2.2H2O (Aldrich),and RhCl2.XH2O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 400, 470, 670 and 820, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 340 and 520 that were identified as a SnO2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  16. (Vapor + liquid) equilibria of the binary mixtures of m-cresol with C1-C4 aliphatic alcohols at 95.5 kPa

    International Nuclear Information System (INIS)

    Bubble point temperatures at 95.5 kPa, over the entire composition range, are measured for the binary mixtures formed by m-cresol with: methanol, ethanol, 1-propanol, 2-propanol, and n-, iso-, sec-, and tert-butanols - using a Swietoslawski-type ebulliometer. The liquid phase composition - bubble point temperature measurements are well represented by the Wilson model. (Vapor + liquid) equilibria predicted from the model are presented

  17. Facts on the Effects of Alcohol. Clearinghouse Fact Sheet.

    Science.gov (United States)

    Milgram, Gail Gleason

    Ethyl alcohol (ethanol) is one of the few alcohols that humans can drink. This alcohol is a byproduct of yeast's reaction with the sugars in fruit or vegetable juice and the process stops naturally with about an 11 to 14 percent alcoholic concentration, although distillation can greatly increase the alcoholic content. Once ingested, most alcohol…

  18. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II.

    OpenAIRE

    Ohta, K.; Beall, D S; Mejia, J P; Shanmugam, K. T.; Ingram, L O

    1991-01-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selec...

  19. Ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The inulin of chicory slices was hydrolyzed enzymically and fermented to ethanol. Maximum ethanol yield was achieved with fermentation combined with saccharification, using cellulase and inulinase for saccharification. The fermenting organism was Saccharomyces cerevisiae. Kluyveromyces fragilis, containing endogenous inulinase, was also used, but with lower yield.

  20. Regulation of Ethanol-Related Behavior and Ethanol Metabolism by the Corazonin Neurons and Corazonin Receptor in Drosophila melanogaster

    OpenAIRE

    Kai Sha; Seung-Hoon Choi; Jeongdae Im; Gyunghee G Lee; Frank Loeffler; Park, Jae H.

    2014-01-01

    Impaired ethanol metabolism can lead to various alcohol-related health problems. Key enzymes in ethanol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH); however, neuroendocrine pathways that regulate the activities of these enzymes are largely unexplored. Here we identified a neuroendocrine system involving Corazonin (Crz) neuropeptide and its receptor (CrzR) as important physiological regulators of ethanol metabolism in Drosophila. Crz-cell deficient (Crz-CD) fli...

  1. Volumetric and viscometric properties of binary mixtures of {methyl tert-butyl ether (MTBE) + alcohol} at several temperatures and p = 0.1 MPa: Experimental results and application of the ERAS model

    International Nuclear Information System (INIS)

    Highlights: → Binary mixtures of MTBE + alcohol have been studied. → Volumetric and viscometric properties have been determined at several temperatures. → Excess molar volumes have been used to test the applicability of the ERAS model. → The results are discussed in terms of chemical and structural effects. - Abstract: Densities and viscosities of binary mixtures of {methyl tert-butyl ether (MTBE) + methanol, or +ethanol, or +1-propanol, or +2-propanol, or +1-butanol, or +1-pentanol, or +1-hexanol} have been determined as a function of composition at several temperatures and atmospheric pressure. The temperatures studied were (293.15, 298.15, 303.15, and 308.15) K. The experimental results have been used to calculate the excess molar volume (VmE) and viscosity deviation (Δη). Both VmE and Δη values were negative over the entire range of mole fraction for all temperatures and systems studied. Moreover, the VmE values have been used to test the applicability of the Extended Real Associated Solution (ERAS) model.

  2. (3-Aminophenyldiphenylphosphine oxide–2-propanol (1/1

    Directory of Open Access Journals (Sweden)

    Jafar Attar Gharamaleki

    2008-03-01

    Full Text Available The title compound, C18H16NOP·C3H8O, was synthesized by the reduction of (3-nitrophenyldiphenylphosphine oxide in the presence of 2-propanol as recrystallization solvent. There are two molecules in the asymmetric unit. Each P atom is tetracoordinated by three C and one O atom from two phenyl fragments, one aniline group and one double-bonded O atom in a distorted tetrahedral geometry. C—H...π and N—H...π interactions are present. In the crystal structure, a wide range of non-covalent interactions consisting of hydrogen bonding [of the types of O—H...O, N—H...O and C—H...O, with D...A distances ranging from 2.680 (3 to 3.478 (3 Å] and π–π [centroid–centroid distance of 3.7720 (15 Å] stacking interactions connect the various components into a supramolecular structure.

  3. Ethanol consumption as inductor of pancreatitis

    Institute of Scientific and Technical Information of China (English)

    José; A; Tapia; Ginés; M; Salido; Antonio; González

    2010-01-01

    Alcohol abuse is a major cause of pancreatitis, a condition that can manifest as both acute necroinflammation and chronic damage (acinar atrophy and f ibrosis). Pancreatic acinar cells can metabolize ethanol via the oxidative pathway, which generates acetaldehyde and involves the enzymes alcohol dehydrogenase and possibly cytochrome P4502E1. Additionally, ethanol can be metabolized via a nonoxidative pathway involving fatty acid ethyl ester synthases. Metabolism of ethanol by acinar and other pancreatic cells and the consequent generation of toxic metabolites, are postulated to play an important role in the development of alcohol-related acute and chronic pancreatic injury. This current work will review some recent advances in the knowledge about ethanol actions on the exocrine pancreas and its relationship to inflammatory disease and cancer.

  4. Ethanol consumption as inductor of pancreatitis

    Directory of Open Access Journals (Sweden)

    José A Tapia

    2010-02-01

    Full Text Available Alcohol abuse is a major cause of pancreatitis, a condition that can manifest as both acute necroinflammation and chronic damage (acinar atrophy and fibrosis. Pancreatic acinar cells can metabolize ethanol via the oxidative pathway, which generates acetaldehyde and involves the enzymes alcohol dehydrogenase and possibly cytochrome P4502E1. Additionally, ethanol can be metabolized via a nonoxidative pathway involving fatty acid ethyl ester synthases. Metabolism of ethanol by acinar and other pancreatic cells and the consequent generation of toxic metabolites, are postulated to play an important role in the development of alcohol-related acute and chronic pancreatic injury. This current work will review some recent advances in the knowledge about ethanol actions on the exocrine pancreas and its relationship to inflammatory disease and cancer.

  5. Pulse radiolysis of malachite green leucocyanide in alcoholic solvents, the influence of oxygen

    International Nuclear Information System (INIS)

    The solutions of malachite green leucocyanide (MGCN) in methanol, n-propanol and 2-propanol were investigated using pulse radiolysis. In the presence of oxygen, MG+-carbonium ions were radiolytically formed in two different time steps. The yield of MG+ in the slower process was dependent on oxygen concentration and was proportional to the yield of intermediate MG radicals. The yield of MG was about ten times higher in 2-propanol than in methanol and n-propanol solutions. The reactants responsible for MG oxidation to MG+ were RO2, hydroxyalkylperoxyl radicals derived from alcohols. The rate constant for MG reaction with RO2 were estimated as (6.5±1) x 108M-1s-1. The molar extinction coefficient of MG was calculated. (author)

  6. First-pass gastric mucosal metabolism of ethanol is negligible in the rat.

    OpenAIRE

    SMITH, T; DeMaster, E G; Furne, J K; Springfield, J; Levitt, M D

    1992-01-01

    Ethanol metabolism by gastric alcohol dehydrogenase (ADH) is thought to be an important determinant of peripheral ethanol time-concentration curves (AUCs) in rats and humans. We quantitated this metabolism in rats by measuring the gastric absorption of oral ethanol (0.25 g/kg) and the gastric venous-arterial (V-A) difference of ethanol versus ethanol metabolites (acetate, acetaldehyde, and bicarbonate). Over 1 h, approximately 20% of the ethanol was absorbed from the stomach and 70% was empti...

  7. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    Science.gov (United States)

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  8. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on...... glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate...... dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  9. Innovative production technology ethanol from sweet sorghum

    Science.gov (United States)

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. X.; Nafikova, M. M.; Nigmatzyanov, A. R.

    2016-06-01

    The paper considers the technological aspects of production of ethanol from nontraditional for Russian Federation crops - sweet sorghum. Presents the technological scheme of alcohol production and fuel pellets from sweet sorghum. Special attention is paid to assessing the efficiency of alcohol production from sweet sorghum. The described advantage of sugar content in stem juice of sweet sorghum compared with other raw materials. Allegedly, the use of the technology for producing alcohol from sweet sorghum allows to save resources.

  10. Alcohol and liver, 2010

    Institute of Scientific and Technical Information of China (English)

    Natalia; A; Osna

    2010-01-01

    Liver is known as an organ that is primarily affected by alcohol. Alcoholic liver disease (ALD) is the cause of an increased morbidity and mortality worldwide. Progression of ALD is driven by "second hits". These second hits include the complex of nutritional, pharmacological, genetic and viral factors, which aggravate liver pathology. However, in addition to liver failure, ethanol causes damage to other organs and systems. These extrahepatic manifestations are regulated via the similar hepatitis mechanisms...

  11. Performance PtSnRh electrocatalysts supported on carbon-Sb2O5.SbO2 for the electro-oxidation of ethanol, prepared by an alcohol-reduction process

    International Nuclear Information System (INIS)

    PtSnRh electrocatalysts supported on carbon-Sb2O5.SnO2, with metal loading of 20 wt%, were prepared by an alcohol-reduction process, using H2PtCl6.6H2O (Aldrich), RhCl3.xH2O (Aldrich) and SnCl2.2H2O (Aldrich), as source of metals; Sb2O5.SnO2 (ATO) and carbon Vulcan XC72, as support; and ethylene glycol as reducing agent. The electrocatalysts obtained were characterized physically by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The diffractograms showed which PtSnRh/C-ATO electrocatalysts had FCC structure of Pt and Pt alloys, besides several peaks associated with SnO2 and ATO. The average sizes of crystallites were between 2 and 4 nm. TEM micrographs showed a good distribution of the nanoparticles on the support. The average sizes of particles were between 2 and 3 nm, with good agreement for the average size of the crystallites. The performances of the electrocatalysts were analyzed by electrochemical techniques and in real conditions of operation using single direct ethanol fuel cell. In the chronoamperometry at 50 deg C, the electrocatalysts with carbon (85 wt%) and ATO (15 wt%) support, showed the best activity, and the atomic proportions which achieved the best results were PtSnRh(70:25:05) e (90:05:05). PtSnRh(70:25:05)/85C+15ATO electrocatalysts showed the best performance in a direct ethanol fuel cell. (author)

  12. Exposure - dependent effects of ethanol on the innate immune system

    OpenAIRE

    Goral, Joanna; Karavitis, John; Kovacs, Elizabeth J.

    2008-01-01

    Extensive evidence indicates that ethanol (alcohol) has immunomodulatory properties. Many of its effects on innate immune response are dose-dependent, with acute or moderate use associated with attenuated inflammatory responses, and heavy ethanol consumption linked with augmentation of inflammation. Ethanol may modify innate immunity via functional alterations of the cells of the innate immune system. Mounting evidence indicates that ethanol can diversely affect antigen recognition and intrac...

  13. The long pursued Holy Grail of the true "alcoholic" rat.

    Science.gov (United States)

    Gessa, Gian Luigi

    2016-08-15

    An anthology of microdialysis and electrophysiological studies on ethanol effect on mesolimbic dopaminergic neurons is presented. The usefulness of rats with innate preference for ethanol, such as the Sardinian alcohol-preferring (sP), in studying ethanol rewarding and reinforcing effects is signaled. The generation of the long sought "alcoholics rat" from sP rats is announced. Rats of the sP line avoid the shortcomings of using rats non selected for ethanol preference. PMID:26867703

  14. Epigenetic effects of ethanol on liver and gastrointestinal injury

    Institute of Scientific and Technical Information of China (English)

    Shivendra D Shukla; Annayya R Aroor

    2006-01-01

    Alcohol consumption causes cellular injury. Recent developments indicate that ethanol induces epigenetic alterations, particularly acetylation, methylation of histones, and hypo- and hypermethylation of DNA. This has opened up a new area of interest in ethanol research and is providing novel insight into actions of ethanol at the nucleosomal level in relation to gene expression and patho-physiological consequences. The epigenetic effects are mainly attributable to ethanol metabolic stress (Emess), generated by the oxidative and non-oxidative metabolism of ethanol, and dysregulation of methionine metabolism. Epigenetic changes are important in ethanol-induced hepatic steatosis, fibrosis, carcinoma and gastrointestinal injury. This editorial highlights these new advances and its future potential.

  15. Encephalon Condition in Chronic Alcohol Intoxication and the Role of Amoebic Invasion of this Organ in the Development of Ethanol Attraction in Men

    Directory of Open Access Journals (Sweden)

    Sergey V. Shormanov

    2013-12-01

    Full Text Available This presentation reviews data from studies on the encephalon in 27 men ranging in age from 21 to 51 years, showing signs of chronic alcohol intoxication and who died from causes other than skull injury and 14 control subjects. The specimens were fixed in formalin or Karnua liquid, filled with paraffin and then examined, utilizing a variety of histological, histochemical and morphometric techniques. The data refers to the structural changes in the various tissue components of the brain (nervous, glia-cells, arteries, veins, as well as pertinent information concerning the presence of Protozoa in all the sections examined which according to their morphological signs and behavioral reactions indicate that amoeba had been present. The degree of cerebral tissue insemination by these parasites has been demonstrated. The condition of the membranes of these microorganisms, their cytoplasm, nucleus and nucleoli as well as the chromatoid corpuscles has been assessed and recorded. The ability of these microorganisms to split, migrate within the CNS limits, to trigger incitement and dystrophic changes and in the case of death – calcification or exulceration is shown. Further, the issue of species characteristics of amoeba occurring in the patients’ brains is discussed. The hypothesis of a possible link of amebic invasion with the development of alcohol dependence in humans is proposed.

  16. OPTIMIZATION OF YEAST FOR ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Taghizadeh Ghassem

    2012-02-01

    Full Text Available The production of pure ethanol apparently begins in the 12-14th century. Improvements in the distillation process with the condensation of vapors of lower boiling liquids. Ethanol is produced commercially by chemical synthesis or biosynthesis. High ethanol producing yeast exhibits rapid metabolic activity and a high fermentation rate with high product output in less time.Yeasts were isolated from Corn, Curd, Grapes, Water 1, Water 2, and Paneer. Isolation was done on MGYP (Malt Extract Glucose Yeast extract Peptone media. Contamination was less in selected media. Grape sample yeast was observed as high in producing ethanol after optimization in jaggery broth. Curd yeast gives 4.6% alcohol by volume alcohol (a.b.v after fermentation .Paneer yeast gives 2.88% alcohol by volume alcohol (a.b.v after fermentation. Corn yeast gives 5.25% (a.b.v alcohol after fermentation Water-1 yeast gives 5.51% (a.b.v alcohol after fermentation.Water-2 yeast gives 4.98% (a.b.v alcohol after fermentation.

  17. Excess enthalpies of ternary mixtures of (oxygenated additives + aromatic hydrocarbon) mixtures in fuels and bio-fuels: (Dibutyl-ether + 1-propanol + benzene), or toluene, at T = (298.15 and 313.15) K

    International Nuclear Information System (INIS)

    Highlights: • New excess enthalpy data for ternary mixtures of (dibutyl ether + aromatic hydrocarbon + 1-propanol) are reported. • 2 ternary systems at T = (298.15 and 313.15) K were measured by means of an isothermal flow calorimeter. • 230 data were fitted to a Redlich–Kister rational equation. • Intermolecular and association effects involved in these systems have been discussed. - Abstract: New experimental excess molar enthalpy data of the ternary systems (dibutyl ether + 1-propanol + benzene, or toluene), and the corresponding binary systems at T = (298.15 and 313.15) K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the binary and ternary systems show endothermic character at both temperatures. The experimental data for the systems have been fitted using the Redlich–Kister rational equation. Considerations with respect the intermolecular interactions amongst ether, alcohol and hydrocarbon compounds are presented

  18. Effect of the temperature on the physical properties of pure 1-propyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide and characterization of its binary mixtures with alcohols

    International Nuclear Information System (INIS)

    Highlights: ► The temperature dependence of the physical properties of [PMim][NTf2] was studied. ► Physical properties of its binary mixtures with alcohols were determined at 298.15 K. ► The thermal expansion coefficient of the pure ionic liquid was calculated. ► The heat capacity of the pure ionic liquid at 298.15 K was determined. ► The excess properties of binary mixtures were adjusted with Redlich–Kister equation. - Abstract: In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.

  19. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.

    Science.gov (United States)

    ter Schure, E G; Flikweert, M T; van Dijken, J P; Pronk, J T; Verrips, C T

    1998-04-01

    The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production. PMID:9546164

  20. Dehydration pathways of 1-propanol on HZSM-5 in the presence and absence of water

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Yuchun; Shi, Hui; Mu, Linyu; Liu, Yue; Mei, Donghai; Camaioni, Donald M.; Lercher, Johannes A.

    2015-12-23

    The Brønsted acid-catalyzed gas-phase dehydration of 1-propanol (0.075-4 kPa) was studied on zeolite H-MFI (Si/Al = 26, containing minimal amounts of extraframework Al moieties) in the absence and presence of co-fed water (0-2.5 kPa) at 413-443 K. It is shown that propene can be formed from monomeric and dimeric adsorbed 1-propanol. The stronger adsorption of 1-propanol relative to water indicates that the reduced dehydration rates in the presence of water are not a consequence of the competitive adsorption between 1-propanol and water. Instead, the deleterious effect is related to the different extents of stabilization of adsorbed intermediates and the relevant elimination/substitution transition states by water. Water stabilizes the adsorbed 1-propanol monomer significantly more than the elimination transition state, leading to a higher activation barrier and a greater entropy gain for the rate-limiting step, which eventually leads to propene. In a similar manner, an excess of 1-propanol stabilizes the adsorbed state of 1-propanol more than the elimination transition state. In comparison with the monomer-mediated pathway, adsorbed dimer and the relevant transition states for propene and ether formation are similarly, while less effectively, stabilized by intrazeolite water molecules. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and was performed in part using the Molecular Sciences Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located and the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.

  1. Infrared laser induced organic reactions. 2. Laser vs. thermal inducment of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols

    International Nuclear Information System (INIS)

    It has been demonstrated that a mixture of reactant molecules can be induced by pulsed infrared laser radiation to react via a route which is totally different from the pathway resulting from heating the mixture at 3000C. The high-energy unimolecular elimination of H2O from ethanol in the presence of 2-propanol and HBr can be selectively induced with a pulsed CO2 laser in preference to either a lower energy bimolecular HBr-catalyzed dehydration or the more facile dehydration of 2-propanol. Heating the mixture resulted in the almost exclusive reaction of 2-propanol to produce propylene. It was demonstrated that the bimolecular ethanol + HBr reaction cannot be effectively induced by the infrared laser radiation as evidenced by the detrimental effect on the yield of ethylene as the HBr pressure was increased. The selective, nonthermal inducement of H2O elimination from vibrationally excited ethanol in the presence of 2-propanol required relatively low reactant pressures. At higher pressures intermolecular V--V energy transfer allowed the thermally more facile dehydration from 2-propanol to become the predominant reaction channel

  2. Photometric determination of vanadium (5) in water-propanol solutions by 5-(8-quinolylazo)-2-monoethylamino-p-cresol

    International Nuclear Information System (INIS)

    Acid-base properties of 5-(8-qinolylazo)-2-monoethylamino-p-cresol (8-QAAC) in water propanol solutions have been studied. Acidic properties of 8-QAAC decrease with an increase of propanol concentration. A complexing between vanadium (5) and 8-QAAC in water-propanol solutions has been examined. 8-QAAC has proved to be a promising reagent for vanadium. A method has been developed for photometric determination of vanadium in soils, determination limit is 0.02%

  3. The Pathogenesis of Ethanol versus Methionine and Choline Deficient Diet-Induced Liver Injury

    OpenAIRE

    Gyamfi, Maxwell Afari; Damjanov, Ivan; French, Samuel; Wan, Yu-Jui Yvonne

    2007-01-01

    The differences and similarities of the pathogenesis of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) were examined. Mice (6/group) received 1 of 4 Lieber-Decarli liquid diets for 6 weeks: (1) paired-fed control diet; (2) control diet with ethanol (ethanol); (3) paired-fed methionine/choline deficient (MCD) diet; and (4) MCD plus ethanol (combination). Hepatotoxicity, histology, and gene expression changes were examined. Both MCD and ethanol induced macrovesicular steatosis. Howeve...

  4. Sex differences in the effects of ethanol pre-exposure during adolescence on ethanol-induced conditioned taste aversion in adult rats

    OpenAIRE

    Sherrill, Luke K.; Berthold, Claire; Koss, Wendy A.; Juraska, Janice M.; Gulley, Joshua M.

    2011-01-01

    Alcohol use, which typically begins during adolescence and differs between males and females, is influenced by both the rewarding and aversive properties of the drug. One way adolescent alcohol use may modulate later consumption is by reducing alcohol s aversive properties. Here, we used a conditioned taste aversion (CTA) paradigm to determine if pre-exposure to alcohol (ethanol) during adolescence would attenuate ethanol-induced CTA assessed in adulthood in a sex-dependent manner. Male and f...

  5. Effect of an Aspartame-Ethanol Mixture on Daphnia magna Cardiac Activity

    OpenAIRE

    Rebecca Kohn; Cierra Lewis; Ashley Feigenbutz; Danielle Indelicato; Stephanie Schleidt

    2009-01-01

    Aspartame in conjunction with alcohol has been shown to increase the blood alcohol level in humans faster than alcohol and sucrose (Wu et al., 2006). To determine the potential effects of various mixtures of ethanol and aspartame on the nervous system, the heart rate of Daphnia magna (D.magna, water flea) was measured in deionized water (control), ethanol, aspartame, and five different mixtures of ethanol and aspartame. The heart rate was chosen as a representative measure since it is control...

  6. GSK3β in Ethanol Neurotoxicity

    Science.gov (United States)

    2016-01-01

    Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3β (GSK3β), a multifunctional serine/ threonine kinase, responds to various cellular stresses. GSK3β is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3β in the CNS is affected by ethanol. GSK3β inhibition provides protection against ethanol neurotoxicity, whereas high GSK3β activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3β is a converging signaling point that mediates some of ethanol’s neurotoxic effects. PMID:19507062

  7. Pd-gate MOS sensor for detection of methanol and propanol

    Institute of Scientific and Technical Information of China (English)

    Preeti Pandey; J.K.Srivastava; V.N.Mishra; R.Dwivedi

    2011-01-01

    The present paper focused on the detection of methanol and propanol using Pd-gate metal-oxide-semiconductor(MOS)sensor.Surface morphology and composition of the gate film were studied by scanning electron microscopy(SEM)and atomic force microscopy(AFM).The response of the sensor for propanol and methanol was measured as shift in capacitance-voltage(C-V) and conductance-voltage(G-V) curves of the MOS structure.The sensitivity of the sensor towards methanol was found to be greater than that towards propanol.It was 58.2% for methanol and 32% for propanol(at 0.6 V,1 MHz)in terms of capacitance measurements,while in terms of conductance results the sensitivity was found to be 57.2% for methanol and 38.9% for propanol at 1 kHz.The discontinuities or cracks present in the microstructure of the gate material are believed to be mainly responsible for the high sensitivity of the sensor,going with the decomposition of gas molecules and subsequent hydrogen permeation through Pd.

  8. The economics of alcohol abuse and alcohol-control policies.

    Science.gov (United States)

    Cook, Philip J; Moore, Michael J

    2002-01-01

    Economic research has contributed to the evaluation of alcohol policy through empirical analysis of the effects of alcohol-control measures on alcohol consumption and its consequences. It has also provided an accounting framework for defining and comparing costs and benefits of alcohol consumption and related policy interventions, including excise taxes. The most important finding from the economics literature is that consumers tend to drink less ethanol, and have fewer alcohol-related problems, when alcoholic beverage prices are increased or alcohol availability is restricted. That set of findings is relevant for policy purposes because alcohol abuse imposes large "external" costs on others. Important challenges remain, including developing a better understanding of the effects of drinking on labor-market productivity. PMID:11900152

  9. Alcohol and Suicide: Neurobiological and Clinical Aspects

    OpenAIRE

    Leo Sher

    2006-01-01

    Alcohol, primarily in the form of ethyl alcohol (ethanol), has occupied an important place in the history of humankind for at least 8,000 years. In most Western societies, at least 90% of people consume alcohol at some time during their lives, and 30% or more of drinkers develop alcohol-related problems. Severe alcohol-related life impairment, alcohol dependence (alcoholism), is observed at some time during their lives in about 10% of men and 3—5% of women. An additional 5—10% of each sex dev...

  10. Can Intensive Use of Alcohol-Based Hand Rubs Lead to Passive Alcoholization?

    OpenAIRE

    Olivier Thomas; Michel Clément; Vincent Bessonneau

    2010-01-01

    Hand disinfection with alcohols-based hand rubs (ABHRs) are known to be the most effective measure to prevent nosocomial infections in healthcare. ABHRs contain on average 70% by weight of one or more alcohols. During the hand rubbing procedure, users are exposed to these alcohols not only through dermal contact, but also via inhalation, due to the physical and chemical properties of alcohols volatilizing from alcoholic solutions or gels into the air. Ethanol ingestion is well known to increa...

  11. Producción endógena de alcohol en pacientes con cirrosis hepática, alteración motora y sobrecrecimiento bacteriano Endogenous ethanol production, alterations in gastrointestinal motility and bacterial overgrowth and cirrhosis

    OpenAIRE

    Ana María Madrid S; Carmen Hurtado H; Sara Gatica I; Inelia Chacón B; Ana Toyos D; Carlos Defilippi C

    2002-01-01

    Background: Small intestinal bacterial overgrowth generates endogenous ethanol production both in experimental animals and humans. Patients with cirrhosis have small intestinal bacterial overgrowth, but endogenous ethanol production has not been studied in them. Aim: To investigate endogenou ethanol production in patients with cirrhosis, altered intestinal motility and small intestinal bacterial overgrowth. Patients and methods: Eight patients with cirrhosis of different etiologies and altere...

  12. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  13. Interaction of ethanol with opiate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Yukhananov, R.Y.; Bujov, Y.V.; Maiskii, A.I.

    1986-04-01

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 37/sup 0/C was shown to produce dose-dependent inhibition of binding of /sup 3/H-naloxone with opiate receptors. ID/sub 50/ under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of /sup 3/H-naloxone. Analysis of the inhibitory action of ethanol on /sup 3/H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization.

  14. Derived thermodynamic properties of alcohol + cyclohexylamine mixtures

    Directory of Open Access Journals (Sweden)

    IVONA R. RADOVIĆ

    2010-02-01

    Full Text Available Thermal expansion coefficients, α, excess thermal expansion coefficients, αE, isothermal coefficients of pressure excess molar enthalpy, (∂HE/∂pT,x, partial molar volumes, , partial molar volumes at infinite dilution, , partial excess molar volumes, , and partial excess molar volumes at infinite dilution, , were calculated using experimental densities and excess molar volumes, , data. All calculations are performed for the binary systems of cyclohexylamine with 1-propanol or 1-butanol or 2-butanol or 2-methyl-2-propanol. The Redlich–Kister polynomial and the reduced excess molar volume approach were used in the evaluation of these properties. In addition, the aim of this investigation was to provide a set of various volumetric data in order to asses the influence of temperature, chain length and position of hydroxyl group in the alcohol molecule on the molecular interactions in the examined binary mixtures.

  15. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  16. Analysis of methanol and ethanol in virgin olive oil

    Science.gov (United States)

    Gómez-Coca, Raquel B.; Cruz-Hidalgo, Rosario; Fernandes, Gabriel D.; Pérez-Camino, María del Carmen; Moreda, Wenceslao

    2014-01-01

    This work provides a short and easy protocol that allows the analysis of both methanol and ethanol in the static headspace of olive oil. The procedure avoids any kind of sample pre-treatment beyond that of heating the oil to allow a maximum volatile concentration in the headspace of the vials. The method's LOD is 0.55 mg kg−1 and its LOQ is 0.59 mg kg−1. Advantages of this method are:•Simultaneous determination of methanol and ethanol (the pre-existing Spanish specification UNE-EN 14110 only analyses methanol).•No need of equipment modifications (standard split injectors work perfectly). Use of a highly polar capillary GC column, leading in most cases to chromatograms in which only three dominant peaks are present – methanol, ethanol, and propanol (that is extremely positive for easy interpretation of results).•Use of an internal standard (1-propanol) to determine the concentration of the analytes, reducing the presence of error sources. PMID:26150954

  17. Factor Analysis of the Aftereffects of Drinking in Alcoholics.

    Science.gov (United States)

    Watson, Charles G.; And Others

    1985-01-01

    Performed factor analyses of 100 alcoholics' reports of the effects that they experience after alcohol consumption. Five factors emerged: Hangover, Euphoria, Flushing, Seizures, and Sleepiness. These factors may be helpful in assessing theories on the etiology of alcoholism and in studies of ethanol's effects on subsets of alcohol abusers. (BH)

  18. Selective Adsorption of Water from Mixtures with 1-Alcohols by Exploitation of Molecular Packing Effects in CuBTC

    NARCIS (Netherlands)

    J.J. Gutiérrez-Sevillano; S. Calero; R. Krishna

    2015-01-01

    The selective removal of water from mixtures with methanol, ethanol, and 1-propanol is an important task in the processing industries. With the aid of configurational-bias Monte Carlo simulations of unary and mixture adsorption, we establish the potential of CuBTC for this separation task. For opera

  19. Alcohol misuse and renal damage.

    Science.gov (United States)

    Cecchin, E; De Marchi, S

    1996-01-01

    Recent clinical and experimental studies have demonstrated that the habitual consumption of large amounts of ethanol has deleterious effects on the kidney. A variety of tubular defects have been described in patients with chronic alcoholism. Evidence is emerging that tubular dysfunction has an important pathophysiological role in a wide range of electrolyte and acid-base disturbances commonly observed in these patients, and possibly in alcohol-induced bone disease. These renal abnormalities are often reversible, disappearing with abstinence. However, since 1990 a few cases of a syndrome of acute tubular necrosis due to binge drinking of ethanol in the absence of other evident nephrotoxic mechanisms, or in association with the use of nonsteroidal anti-inflammatory drugs, have been reported. A link between glomerulonephritis and alcoholism has become evident. IgA nephropathy has been demonstrated at autopsy in 64% of chronic alcoholics and, more recently, the association between alcoholism and postinfectious glomerulonephritis has been described. Structural and functional abnormalities of the kidney are reported with increasing frequency in the fetal alcohol syndrome seen in children who have been prenatally exposed to ethanol. In addition, over the last few years experimental studies in vitro or in animal models have provided information about the biochemical and molecular basis of alcohol-induced injury to kidney. It is hoped that future experimental and clinical research will provide us with a more comprehensive knowledge of the mechanisms of renal damage in alcohol misuse. PMID:12893483

  20. Solid-State Characterization and Interconversion of Recrystallized Amodiaquine Dihydrochloride in Aliphatic Monohydric Alcohols.

    Science.gov (United States)

    Sirikun, Wiriyaporn; Chatchawalsaisin, Jittima; Sutanthavibul, Narueporn

    2016-04-01

    Amodiaquine dihydrochloride monohydrate (AQ-DM) was obtained by recrystallizing amodiaquine dihydrochloride dihydrate (AQ-DD) in methanol, ethanol, and n-propanol. Solid-state characterization of AQ-DD and AQ-DM was performed using X-ray powder diffractometry, Fourier transform infrared spectroscopy, thermogravimetry, and differential scanning calorimetry. All recrystallized samples were identified as AQ-DM. Crystal habits of AQ-DD and AQ-DM were shown to be needle-like and rhombohedral crystals, respectively. When AQ-DD and AQ-DM were exposed to various relative humidity in dynamic vapor sorption apparatus, no solid-state interconversion was observed. However, AQ-DM showed higher solubility than AQ-DD when exposed to bulk water during solubility study, while excess AQ-DM was directly transformed back to a more stable AQ-DD structure. Heating AQ-DM sample to temperatures ≥190°C induced initial change to metastable amorphous form (AQ-DA) which was rapidly recrystallized to AQ-DD upon ≥80%RH moisture exposure. AQ-DD was able to be recrystallized in alcohols (C1-C3) as AQ-DM solid-state structure. In summary, AQ-DM was shown to have different solubility, moisture and temperature stability, and interconversion pathways when compared to AQ-DD. Thus, when AQ-DM was selected for any pharmaceutical applications, these critical transformation and property differences should be observed and closely monitored. PMID:26206402

  1. Scaffolding of Fyn Kinase to the NMDA Receptor Determines Brain Region Sensitivity to Ethanol

    OpenAIRE

    Yaka, Rami; Phamluong, Khanhky; Ron, Dorit

    2003-01-01

    Alcohol (ethanol) abuse is a major societal problem. Although ethanol is a structurally simple, diffusible molecule, its sites of action are surprisingly selective, and the molecular mechanisms underlying specificity in ethanol actions are not understood. The NMDA receptor channel is one of the main targets for ethanol in the brain. We report here that the brain region-specific compartmentalization of Fyn kinase determines NMDA receptor sensitivity to ethanol. We demonstrate that, in the hipp...

  2. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning;

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2...... differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment. --------------------------------------------------------------------------------...

  3. Tailoring the key fuel properties using different alcohols (C2–C6) and their evaluation in gasoline engine

    International Nuclear Information System (INIS)

    Highlights: • Optimized C2–C6 alcohols–gasoline blends achieved better properties than E15. • Optimum blends improved torque and reduced BSFC than that of E15 fuel. • Higher peak in-cylinder pressure obtained for alcohol gasoline blends. • Compared to E15, optimum blends reduced BSCO, BSHC and BSNOx emission. - Abstract: The use of ethanol as a fuel for internal combustion engines has been given much attention mostly because of its possible environmental and long-term economical advantages over fossil fuel. Higher carbon number alcohols, such as propanol, butanol, pentanol and hexanol also have the potential to use as alternatives as they have higher energy content, octane number and can displace more petroleum gasoline than that of ethanol. Therefore, this study focuses on improvement of different physicochemical properties using multiple alcohols at different ratios compared to that of the ethanol–gasoline blend (E10/E15). To optimize the properties of multiple alcohol–gasoline blends, properties of each fuel were measured. An optimization tool of Microsoft Excel “Solver” was used to find out the optimum blend. Three optimum blends with maximum heating value (MaxH), maximum research octane number (MaxR) and maximum petroleum displacement (MaxD) are selected for testing in a four cylinder gasoline engine. Tests were conducted under the wide open throttle condition with varying speeds and compared results with that of E15 (Ethanol 15% with gasoline 85%) as well as gasoline. Optimized blends have shown higher brake torque than gasoline. In the terms of BSFC (Brake specific fuel consumption), optimized blends performed better than that of E15. In-cylinder pressure started to rise earlier for all alcohol–gasoline blends than gasoline. The peak in-cylinder pressure and peak heat release rate obtained higher for alcohol gasoline blend than that of gasoline. On the other hand, the use of optimized blends reduces BSCO (Brake specific carbon monoxide

  4. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... drinking once you've started Physical dependence - withdrawal symptoms Tolerance - the need to drink more alcohol to feel the same effect With alcohol abuse, you are not physically dependent, but you still ...

  5. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and...... challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  6. How do yeast cells become tolerant to high ethanol concentrations?

    Science.gov (United States)

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance. PMID:26758993

  7. Molecular mechanisms of alcohol associated pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Dahn; L; Clemens; Mark; A; Wells; Katrina; J; Schneider; Shailender; Singh

    2014-01-01

    Alcohol abuse is commonly associated with the development of both acute and chronic pancreatitis. Despite this close association, the fact that only a small percentage of human beings who abuse alcohol develop pancreatitis indicates that alcohol abuse alone is not sufficient to initiate clinical pancreatitis. This contention is further supported by the fact that administration of ethanol to experimental animals does not cause pancreatitis. Because of these findings, it is widely believed that ethanol sensitizes the pancreas to injury and additional factors trigger the development of overt pancreatitis. How ethanol sensitizes the pancreas to pancreatitis is not entirely known. Numerous studies have demonstrated that ethanol and its metabolites have a number of deleterious effects on acinar cells. Important acinar cells properties that are affected by ethanol include: calcium signaling, secretion of zymogens, autophagy, cellular regeneration, the unfolded protein response, and mitochondrial membrane integrity. In addition to the actions of ethanol on acinar cells, it is apparent that ethanol also affects pancreatic stellatecells. Pancreatic stellate cells have a critical role in normal tissue repair and the pathologic fibrotic response. Given that ethanol and its metabolites affect so many pancreatic functions, and that all of these effects occur simultaneously, it is likely that none of these effects is "THE" effect. Instead, it is most likely that the cumulative effect of ethanol on the pancreas predisposes the organ to pancreatitis. The focus of this article is to highlight some of the important mechanisms by which ethanol alters pancreatic functions and may predispose the pancreas to disease.

  8. Pharmacokinetics of Ethanol - Issues of Forensic Importance.

    Science.gov (United States)

    Jones, A W

    2011-07-01

    A reliable method for the quantitative analysis of ethanol in microvolumes (50-100 μL) of blood became available in 1922, making it possible to investigate the absorption, distribution, metabolism, and excretion (ADME) of ethanol in healthy volunteers. The basic principles of ethanol pharmacokinetics were established in the 1930s, including the notion of zero-order elimination kinetics from blood and distribution of the absorbed dose into the total body water. The hepatic enzyme alcohol dehydrogenase (ADH) is primarily responsible for the oxidative metabolism of ethanol. This enzyme was purified and characterized in the early 1950s and shown to have a low Michaelis constant (km), being about ~0.1 g/L. Liver ADH is therefore saturated with substrate after the first couple of drinks and for all practical purposes the concentration-time (C-T) profiles of ethanol are a good approximation to zero-order kinetics. However, because of dose-dependent saturation kinetics, the entire postabsorptive declining part of the blood-alcohol concentration (BAC) curve looks more like a hockey stick rather than a straight line. A faster rate of ethanol elimination from blood in habituated individuals (alcoholics) is explained by participation of a high km microsomal enzyme (CYP2E1), which is inducible after a period of chronic heavy drinking. Owing to the combined influences of genetic and environmental factors, one expects a roughly threefold difference in elimination rates of ethanol from blood (0.1-0.3 g/L/h) between individuals. The volume of distribution (Vd) of ethanol, which depends on a person's age, gender, and proportion of fat to lean body mass, shows a twofold variation between individuals (0.4-0.8 L/kg). This forensic science review traces the development of forensic pharmacokinetics of ethanol from a historical perspective, followed by a discussion of important issues related to the disposition and fate of ethanol in the body, including (a) quantitative evaluation of

  9. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  10. The Effect of the Crystalline Phase of Zirconia for the Dehydration of Iso-propanol

    International Nuclear Information System (INIS)

    Zirconium hydroxide was synthesized by varying the aging time of the zirconyl chloride octahydrate at 100 .deg. C in aqueous solution and the resulting hydroxides were calcined at 700 .deg. C for 6 h to obtain the crystalline ZrO2. The materials used in this study were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), N2-sorption, transmission electron microscopy (TEM), NH3 temperature-programmed desorption (NH3-TPD), CO2-TPD and iso-propanol TPD analyses to correlate with catalytic activity for the dehydration of iso-propanol. The pure tetragonal ZrO2 phase was obtained after 24 h aging of zirconium hydroxide and successive calcination at 700 .deg. C. The increase of aging time showed the production of smaller particle size ZrO2 resulting that the higher specific surface area and total pore volume. NH3-TPD results revealed that the relative acidity of the catalysts increased along with the increase of aging time. On the other hand, the results of CO2-TPD showed the reverse trend of NH3-TPD results. The best catalytic activity for the dehydration of iso-propanol to propylene was shown over ZrO2 catalyst aged for 168 h which had the highest SBET (178 m2 g-1). The catalytic activity could be correlated with high surface area, relative acidity and easy desorption of iso-propanol

  11. Solvation thermodynamics of ammonium iodide ions in 2-propanol and its mixtures with water

    International Nuclear Information System (INIS)

    The electrometric method using chains without transfer has been applied to determine total thermodynamic characteristics of ammonium iodide ions salvation in 2-propanol and its mixtures with water at 278.15-308.15 K.Regularities of their changes with temperature and composition of a mixed solvent are considered

  12. Electrocatalytic oxidation of n-propanol to produce propionic acid using an electrocatalytic membrane reactor.

    Science.gov (United States)

    Li, Jiao; Li, Jianxin; Wang, Hong; Cheng, Bowen; He, Benqiao; Yan, Feng; Yang, Yang; Guo, Wenshan; Ngo, Huu Hao

    2013-05-18

    An electrocatalytic membrane reactor assembled using a nano-MnO2 loading microporous Ti membrane as an anode and a tubular stainless steel as a cathode was used to oxidize n-propanol to produce propionic acid. The high efficiency and selectivity obtained is related to the synergistic effect between the reaction and separation in the reactor. PMID:23572114

  13. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    JiaLuo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  14. Alcohol consumption, Wnt/ß-catenin cignaling, and hepatocarcinogenesis

    Science.gov (United States)

    Alcohol is a well-established risk factor for hepatocellular carcinoma, and the mechanisms by which alcohol liver cancer is complex. It has been suggested that ethanol (EtOH) metabolism may enhance tumor progression by increasing hepatocyte proliferation. To test this hypothesis, ethanol (EtOH) feed...

  15. Actions of acute and chronic ethanol on presynaptic terminals.

    Science.gov (United States)

    Roberto, Marisa; Treistman, Steven N; Pietrzykowski, Andrzej Z; Weiner, Jeff; Galindo, Rafael; Mameli, Manuel; Valenzuela, Fernando; Zhu, Ping Jun; Lovinger, David; Zhang, Tao A; Hendricson, Adam H; Morrisett, Richard; Siggins, George Robert

    2006-02-01

    This article presents the proceedings of a symposium entitled "The Tipsy Terminal: Presynaptic Effects of Ethanol" (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a "hot" topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol's behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication

  16. New microbe can make ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1989-03-01

    Researchers have created a bacterium that converts all of the sugars from inedible vegetable waste and other woody material into ethanol by inserting the genes of the bacterium Zymomonas mobilis into Escherichia coli. The resulting bacterium converts 90% -95% of the main forms of sugar in biomass into 4% - 6% concentrations of ethanol. The goal is to reach a 7% to 8% concentration. Current ethanol production from corn in a yeast-fermentation process yields a 10% - 12% ethanol concentration, but the conversion rate is less efficient than with the new bacterium. Zymomonas, found in cactus plants and used by the Aztecs to make alcohol, was selected for its known conversion efficiency. Providing the engineering challenges can be overcome, there could be several pilot plants running in 3-5 years. Even though it is not currently profitable to make ethanol from vegetable waste, if the fact that this new process reduces the total material by 90% were taken into account, perhaps a landfill reduction credit based on current tipping fees would make the actual costs both more realistic and more attractive.

  17. Alcohol fuels

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This issue is devoted almost entirely to alcohol fuels, the following topics being presented: A History of Alcohol Fuels; In the Midwest - Focus on Alcohol Fuels; Gasohol - A DOE Priority; Alcohol Fuels Potential; Gasohol - The Nutritious Fuel; Energy from Agriculture; Alcohol and the Price of Food; A New Look at Economics and Energy Balance in Alcohol Production; Economics of small-scale alcohol producers; Get the Lead Out with Alcohol; Biomass and the Carbon Dioxide Buildup; Federal Agency Activity in Alcohol Fuels; Congressional Activity in Alchol Fuels; Licensing a Small Still; Funding Sources for Alcohol Facilities; Safety in Alcohol Production; Alcohol Fuels Information; State-by-State Guide to Alcohol Activity; Alcohol Fuels Glossary; Alcohol Fuels and Your Car; Alcohol Fuels Training Grants Progam; Citizen Action Plan for Gasohol; and Alcohol Fuels - a Path to Reconciliation.

  18. Insulinoma presenting as alcoholic stupor.

    OpenAIRE

    Dandona, P; Fonseca, V A; Mikhailidis, D P; Menon, R. K.

    1987-01-01

    We report a case of prolonged loss of consciousness due to hypoglycaemia following ethanol abuse in a non-diabetic. The patient also reported symptoms compatible with hypoglycaemia following heavy manual work. Further investigations revealed a pancreatic insulinoma, which was successfully removed surgically. The patient remains asymptomatic 18 months later, despite occasional episodes of ethanol abuse. This case illustrates how heavy exercise and/or alcohol abuse can aggravate spontaneous hyp...

  19. Direct ethanol process. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Huff, G.F.

    Several points were made. First, Gulf Oil Company has not to date solicited government funds for this program. Gulf Oil Chemicals Company has expended more than 6 million dollars developing the technology and hopes to continue to commercialization. Second, feedstocks which are now a part of the food chain, i.e., corn, wheat, sugar cane, etc., are not being used; only waste biomass in cases where the value of the material can be upgraded. Thirdly, the technology which is being intensely pursued is for production of ethyl alcohol from annually renewable resources. This ethyl alcohol can be utilized as a solvent in laboratory and industry in the manufacture of denatured alcohol, pharmaceuticals, such as rubbing compounds, lotions, tonics and colognes, in perfumery and in organic synthesis of other materials. It can also be utilized as fuel in selected local situations. Fourth, the needs include feedstock availability in commercial quantities and a market for ethanol.

  20. Involvement of Sphingolipids in Ethanol Neurotoxicity in the Developing Brain

    OpenAIRE

    Mitsuo Saito; Mariko Saito

    2013-01-01

    Ethanol-induced neuronal death during a sensitive period of brain development is considered one of the significant causes of fetal alcohol spectrum disorders (FASD). In rodent models, ethanol triggers robust apoptotic neurodegeneration during a period of active synaptogenesis that occurs around the first two postnatal weeks, equivalent to the third trimester in human fetuses. The ethanol-induced apoptosis is mitochondria-dependent, involving Bax and caspase-3 activation. Such apoptotic pathwa...

  1. Preparation of Pt Ru/C + rare earths by the method of reduction by alcohol for the electro-oxidation of ethanol; Preparacao de eletrocatalisadores PtRu/C + terras raras pelo metodo da reducao por alcool para a eletro-oxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Tusi, M.M.; Rodrigues, R.M.S.; Spinace, E.V.; Oliveira Neto, A., E-mail: aolivei@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    PtRu/C electrocatalyst was prepared in a single step, while that PtRu/85%C-15%Ce, PtRu/85%C-15%La, PtRu/85%C-15%Nd and PtRu/85%C-15%Er electrocatalyst were prepared in a two step. In the first step a Carbon Vulcan XC72 + rare earth supports were prepared. In the second step PtRu electrocatalyst were prepared by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and supported on Vulcan XC72 + earth rare. The obtained electrocatalysts were characterized by EDAX, XRD and chronoamperometry. The electro-oxidation of ethanol was studied by chronoamperometry at room temperature. PtRu/85%C- 15%Ce electrocatalyst showed a significant increase of performance for ethanol oxidation compared to PtRu/C electrocatalyst. (author)

  2. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol

    Science.gov (United States)

    Lopez, M. F.; Becker, H. C.; Chandler, L. J.

    2014-01-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. PMID:25266936

  3. Prevalence of alcohol problems in general practice

    DEFF Research Database (Denmark)

    Rambaldi, A; Todisco, N; Gluud, C;

    1996-01-01

    The Michigan Alcoholism Screening Test (MAST) and the response to a question about heavy alcohol consumption were used to assess the prevalence of alcohol problems in consecutive patients (77 males and 46 females) consulting a general practitioner in an urban area in the South of Italy...... (Castellammare di Stabia). Alcohol problems, which were defined by a cut-off score of 5 on the MAST and/or by heavy alcohol consumption (corresponding to at least 60 g of ethanol daily for males and 36 g of ethanol daily for females for at least 2 years), were identified in 54 patients [43.9%; 95% confidence...... screening question in order to detect alcohol problems and give advice regarding reduction of alcohol consumption....

  4. Identification and dosage by HRGC of minor alcohol and esters in Brazilian sugar-cane spirit

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, Mauricio; Bezerra, Cicero W.B.; Cardoso, Daniel R.; Lima Neto, Benedito S.; Franco, Douglas W. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica

    2000-02-01

    The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaca), were investigated by high-resolution gas chromatography (HRGC). The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a) and total esters content (24 mg/100 mL a.a) in cachacas, are smaller than in other spirits. The average methanol content in cachacas (6 mg/100 mL a.a) is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachacas have been observed. (author)

  5. Identification and dosage by HRGC of minor alcohol and esters in Brazilian sugar-cane spirit

    International Nuclear Information System (INIS)

    The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaca), were investigated by high-resolution gas chromatography (HRGC). The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a) and total esters content (24 mg/100 mL a.a) in cachacas, are smaller than in other spirits. The average methanol content in cachacas (6 mg/100 mL a.a) is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachacas have been observed. (author)

  6. Silver sub-nanoclusters electrocatalyze ethanol oxidation and provide protection against ethanol toxicity in cultured mammalian cells.

    Science.gov (United States)

    Selva, Javier; Martínez, Susana E; Buceta, David; Rodríguez-Vázquez, María J; Blanco, M Carmen; López-Quintela, M Arturo; Egea, Gustavo

    2010-05-26

    Silver atomic quantum clusters (AgAQCs), with two or three silver atoms, show electrocatalytic activities that are not found in nanoparticles or in bulk silver. AgAQCs supported on glassy carbon electrodes oxidize ethanol and other alcohols in macroscopic electrochemical cells in acidic and basic media. This electrocatalysis occurs at very low potentials (from approximately +200 mV vs RHE), at physiological pH, and at ethanol concentrations that are found in alcoholic patients. When mammalian cells are co-exposed to ethanol and AgAQCs, alcohol-induced alterations such as rounded cell morphology, disorganization of the actin cytoskeleton, and activation of caspase-3 are all prevented. This cytoprotective effect of AgAQCs is also observed in primary cultures of newborn rat astrocytes exposed to ethanol, which is a cellular model of fetal alcohol syndrome. AgAQCs oxidize ethanol from the culture medium only when ethanol and AgAQCs are added to cells simultaneously, which suggests that cytoprotection by AgAQCs is provided by the ethanol electro-oxidation mediated by the combined action of AgAQCs and cells. Overall, these findings not only show that AgAQCs are efficient electrocatalysts at physiological pH and prevent ethanol toxicity in cultured mammalian cells, but also suggest that AgAQCs could be used to modify redox reactions and in this way promote or inhibit biological reactions. PMID:20218576

  7. Alcohol Alert

    Science.gov (United States)

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  8. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  9. Neurobiological Basis of Alcohol Addiction

    Directory of Open Access Journals (Sweden)

    Milagros Lisset León Regal

    2014-02-01

    Full Text Available Alcoholism is a serious social problem due to its impact on individual and collective health. In order to provide an update on the latest findings that explain the development and symptoms of alcohol addiction, the short and long term changes that this disorder causes in the central nervous system are shown in this paper. A total of 52 information sources were consulted, including 43 journal articles, 4 books and statistical reports. The main network managers were used. The interaction of ethanol with various structures of the neuronal membrane affects the cytoarchitecture and brain function associated with the reward system, motor processing, learning and memory, resulting in the development of alcohol dependence. In addition, ethanol-induced changes in excitation/inhibition explain the phenomena of alcohol tolerance and withdrawal.

  10. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    OpenAIRE

    Shunji Oshima; Sachie Shiiya; Tomomasa Kanda

    2015-01-01

    Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF) of 18 kinds of botanical foods to maintain 15% (v/v) ethanol solution was examined using ea...

  11. Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K

    International Nuclear Information System (INIS)

    Highlights: • Densities and viscosities of [TMG]IM + alcohol mixtures were measured. • Coefficient of thermal expansion, molecular volume, standard entropy, and lattice energy were obtained. • Excess molar volumes and viscosity deviations were calculated and fitted to Redlich–Kister equation. • Other volumetric properties and excess Gibbs free energy of activation for viscous flow were deduced. • The intermolecular interactions between [TMG]IM and alcohols were analyzed. - Abstract: Densities and viscosities of the pure ionic liquid 1,1,3,3-tetramethylguanidine imidazole ([TMG]IM) and its binary mixtures with methanol, ethanol, 1-propanol, and 1-butanol were measured at temperatures from T = (293.15 to 313.15) K. The thermal expansion coefficient, molecular volume, standard entropy, and lattice energy of [TMG]IM were obtained from the experimental density value. The temperature dependence of the viscosity of [TMG]IM was fitted to the fluidity equation. Excess molar volumes VE and viscosity deviations Δη of the binary mixtures were calculated and fitted to the Redlich–Kister equation with satisfactory results. The result shows that the VE values of the binary mixtures are negative over the whole composition range, while Δη values have an S-shape deviation. Temperature has little effect on the VE of the systems, but it has significant effect on the Δη. Furthermore, the absolute values of VE for {[TMG]IM (1) + alcohol (2)} systems at the same temperature decrease with increasing carbon alkyl chain of the primary alcohol. Other derived properties, such as the apparent molar volumes, partial molar volumes, excess partial molar volumes, Gibbs free energy of activation for viscous flow, and excess Gibbs free energy of activation for viscous flow of the above-mentioned systems were also calculated

  12. Alcohol Alert: Genetics of Alcoholism

    Science.gov (United States)

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  13. Paracetamol, alcohol and the liver

    OpenAIRE

    Prescott, Laurie F

    2000-01-01

    It is claimed that chronic alcoholics are at increased risk of paracetamol (acetaminophen) hepatotoxicity not only following overdosage but also with its therapeutic use. Increased susceptibility is supposed to be due to induction of liver microsomal enzymes by ethanol with increased formation of the toxic metabolite of paracetamol. However, the clinical evidence in support of these claims is anecdotal and the same liver damage after overdosage occurs in patients who are not chronic alcoholic...

  14. Effects of 20 Selected Fruits on Ethanol Metabolism: Potential Health Benefits and Harmful Impacts

    OpenAIRE

    Zhang, Yu-Jie; Wang, Fang; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-01-01

    The consumption of alcohol is often accompanied by other foods, such as fruits and vegetables. This study is aimed to investigate the effects of 20 selected fruits on ethanol metabolism to find out their potential health benefits and harmful impacts. The effects of the fruits on ethanol metabolism were characterized by the concentrations of ethanol and acetaldehyde in blood, as well as activities of alcohol dehydrogenase and acetaldehyde dehydrogenase in liver of mice. Furthermore, potential ...

  15. Functional Alterations in the Dorsal Raphe Nucleus Following Acute and Chronic Ethanol Exposure

    OpenAIRE

    Lowery-Gionta, Emily G; Marcinkiewcz, Catherine A.; Kash, Thomas L.

    2014-01-01

    Alcoholism is a pervasive disorder perpetuated in part to relieve negative mood states like anxiety experienced during alcohol withdrawal. Emerging evidence demonstrates a role for the serotonin-rich dorsal raphe (DR) in anxiety following ethanol withdrawal. The current study examined the effects of chronic ethanol vapor exposure on the DR using slice electrophysiology in male DBA2/J mice. We found that chronic ethanol exposure resulted in deficits in social approach indicative of increased a...

  16. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons

    OpenAIRE

    Ullah Ikram; Ullah Najeeb; Naseer Muhammad Imran; Lee Hae Young; Kim Myeong OK

    2012-01-01

    Abstract Background Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysf...

  17. SIRT1 IS INVOLVED IN ENERGY METABOLISM: THE ROLE OF CHRONIC ETHANOL FEEDING AND RESVERATROL

    OpenAIRE

    Oliva, Joan; French, Barbara A.; Li, Jun; Bardag-Gorce, Fawzia; Fu, Paul; French, Samuel W.

    2008-01-01

    Sirt1, a deacetylase involved in regulating energy metabolism in response to calorie restriction, is up regulated after chronic ethanol feeding using the intragastric feeding model of alcohol liver disease. PGC1α is also up regulated in response to ethanol. These changes are consistent with activation of the Sirt1/PGC1α pathway of metabolism and aging, involved in alcohol liver disease including steatosis, necrosis and fibrosis of the liver. To test this hypothesis, male rats fed ethanol intr...

  18. Ethanol and parturition: a role for prostaglandins.

    Science.gov (United States)

    Cook, J L; Randall, C L

    1998-02-01

    A common pattern of birth defects was reported in children born to alcoholic women over 20 years ago. Shortly thereafter the constellation of defects became known as the Fetal Alcohol Syndrome, and reports from around the world served to acknowledge the pervasiveness of the disorder. Simultaneously with the clinical reports, animal models were developed to characterize the full spectrum of the teratogenic effects of ethanol. Not only did these animal models serve to define the actions of ethanol on fetal growth and development at the molecular pharmacological, neuroanatomical, and behavioral level, but unintentionally, they have resulted in renewed scientific interest in the effects of ethanol on pregnancy and parturition itself. The purpose of this review is twofold. First we will consolidate and summarize data from both clinical and basic research that pertains to ethanol and parturition. These data will demonstrate that ethanol consumption during pregnancy results in both delayed as well as premature delivery depending upon the pattern of consumption and timing of exposure. With these data as a background, the second objective will be to present a theoretical case for prostaglandins as possible mediators of ethanol-induced effects on the onset of parturition. PMID:9578152

  19. Adolescent rats are resistant to forming ethanol seeking habits

    Directory of Open Access Journals (Sweden)

    Hannah Serlin

    2015-12-01

    Full Text Available Early age of onset alcohol drinking is significantly more likely to lead to alcohol use disorders (AUDs than alcohol drinking that begins after the age of 18. Unfortunately, the majority of people in the United States begin drinking in adolescence. Therefore, it is important to understand how early alcohol drinking leads to increased risk for AUDs so that better treatments and prevention strategies can be developed. Adolescents perceive greater rewarding properties of alcohol, and adolescents may be more likely to form alcohol-seeking habits that promote continued use throughout the lifetime. Therefore, we compared the development of alcohol seeking habits in adolescent and adult male, Sprague-Dawley rats. Rats were trained to lever press to receive 10% ethanol + 0.1% saccharin on a schedule that promotes habit formation. Rats were tested using a contingency degradation procedure at different points in training. Adult rats formed ethanol-seeking habits with only moderate training, while adolescents remained goal-directed even with extended training. Nevertheless, adolescents consumed more ethanol than adults throughout the experiment and continued to consume more ethanol than adults when they reached adulthood. Therefore, early onset alcohol use may promote AUD formation through establishment of high levels of drinking that becomes habitual in adulthood.

  20. Excess molar enthalpies of ethylformate and (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) at T=(298.15 and 308.15)K and p=(5 and 10)MPa

    International Nuclear Information System (INIS)

    A high-pressure flow-mixing isothermal microcalorimeter is used to determine the excess molar enthalpies of five binary systems for ethylformate and (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) at T=(298.15 and 308.15) K and p=(5 and 10)MPa. The smooth values calculated by Redlich-Kister equation of HmE are also compared with the experimental results

  1. Dependence Induced Increases in Intragastric Alcohol Consumption (IGAC) in Mice

    OpenAIRE

    Fidler, Tara L.; Powers, Matthew S.; Ramirez, Jason J.; Crane, Andrew; Mulgrew, Jennifer; Smitasin, Phoebe; Cunningham, Christopher L.

    2011-01-01

    Three experiments used the Intragastric Alcohol Consumption (IGAC) procedure to examine effects of variations in passive ethanol exposure on withdrawal and voluntary ethanol intake in two inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2). Experimental treatments were selected to induce quantitative differences in ethanol dependence and withdrawal severity by: (a) varying the periodicity of passive ethanol exposure (3, 6 or 9 infusions/day), (b) varying the dose per infusion (Low, Medium or ...

  2. Apoptotic Damage of Pancreatic Ductal Epithelia by Alcohol and Its Rescue by an Antioxidant

    OpenAIRE

    Seo, Jong Bae; Gowda, G. A. Nagana; Koh, Duk-Su

    2013-01-01

    Alcohol abuse is a major cause of pancreatitis. However alcohol toxicity has not been fully elucidated in the pancreas and little is known about the effect of alcohol on pancreatic ducts. We report the molecular mechanisms of ethanol-induced damage of pancreatic duct epithelial cells (PDEC). Ethanol treatment for 1, 4, and 24 h resulted in cell death in a dose-dependent manner. The ethanol-induced cell damage was mainly apoptosis due to generation of reactive oxygen species (ROS), depolarizat...

  3. Feasibility of transdermal ethanol sensing for the detection of intoxicated drivers.

    Science.gov (United States)

    Webster, Gregory D; Gabler, Hampton C

    2007-01-01

    Transdermal ethanol detection is a promising method that could prevent drunk driving if integrated into an ignition interlock system. However, experimental data from previous research has shown significant time delays between alcohol ingestion and detection at the skin which makes real time estimation of blood alcohol concentration via skin measurement difficult. Using a validated model we studied the effects that body weight, metabolic rate and ethanol dose had on the time lag between the blood alcohol concentration and transdermal alcohol concentration. The dose of alcohol ingested was found to have the most significant effect on the skin alcohol lag time; a dose of 15 ml of ethanol resulted in a peak lag time of approximately 33 minutes, while a dose of 60 ml of ethanol resulted in a peak time lag of 53 minutes. The time lag was found to be insensitive to body mass and only moderately sensitive to changes in metabolic rates. PMID:18184507

  4. Solvent structure effects on solvated electron reactions in mixed solvents: negative ions in 1-propanol-water and 2-propanol-water

    International Nuclear Information System (INIS)

    In models of the kinetics of chemical reactions in solution the solvent is commonly assumed to be a uniform continuum. An example is the Smoluchowski-Debye-Stokes-Einstein equation for the rate constant k2 of a bimolecular reaction between charged or polar species: k2 κRTfrr/1.5ηrd where κ = probability that a reactant encounter pair will react, R = gas constant, T = temperature, f = Coulombic interaction factor, rr = effective radius for reaction, η = solvent viscosity, and rd = effective radius for mutual diffusion. The equation is useful in evaluating effects of bulk-fluid properties on reaction rates. Residual effects are attributed to more specific solvent behaviour. Rate constants and activation energies E2 of reactions of solvated electrons es- with NO3- and CrOr2- ions vary with the composition of 1-propanol-water and 2-propanol-water mixed solvents. Plots of k2η/fT against solvent composition are nonlinear and change with solvent pair and with reactant pair. Measured molar conductivities Λ0(Li+, NO3-) and Λ0(2Li+, CrO42-) indicate the solvent dependence of rd for the mutual diffusion of Li+ and NO3- or CrO42-. The liquid structure influences both the rate of diffusion of the reactants and the probability of reaction of a reactant encounter pair. (author)

  5. Solvation of benzophenone anion radical in ethanol and ethanol/2-methyltetrahydrofuran mixture

    International Nuclear Information System (INIS)

    The electron spin-echo modulations and the absoprtion spectra of benzophenone anion radicals generated by γ-irradiation in the glassy matrices of ethanol and ethanol2-methyltetrahydrofuran mixtures have been measured for elucidating the mechanism of spectral shift observed during the solvation of the anion radicals in alcohols. The anion radical generated at 4.2 K in the ethanol matrix maintains the same solvation structure as that of neutral benzophenone. At 77 K ethanol molecules solvate the anion radical by orienting the O-H dipoles toward the anion radical. The anion radical is hydrogen-bonded by two ethanol molecules through the p/sub z/ orbital on the benzophenone oxygen which composes the π orbitals of anion radical. Three kinds of anion radicals are observed in the mixed matrix at 77 K. Two of them are essentially the same as those observed in the ethanol matrix at 4.2 and 77 K. The third has the absorption maximum at 700 nm and is attributed to the anion radical hydrogen-bonded by one ethanol molecule through the p/sub z/ orbital. It is concluded that the spectral shift observed in alcohols is caused by the stabilization of a SOMO π* orbital induced by the hydrogen bonding with the (RO)H--O--H(OR) angle perpendicular to the molecular plane of the anion radical

  6. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    Science.gov (United States)

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  7. Molecular conformation and structural correlations of liquid D-1-propanol through neutron diffraction

    Indian Academy of Sciences (India)

    A Sahoo; S Sarkar; P S R Krishna; V Bhagat; R N Joarder

    2008-07-01

    An analysis of neutron diffraction data of liquid deuterated 1-propanol at room temperature to extract its molecular conformation is presented. Being a big molecule with twelve atomic sites, the analysis is tricky and needs careful consideration. The resulting molecular parameters are compared with electron diffraction (gas phase), X-ray diffraction (liquid phase) and MD simulation results. Information about the hydrogen-bonded intermolecular structure in liquid is extracted and nature of the probable molecular association suggested.

  8. Cβ-H stretching vibration as a new probe for conformation of n-propanol in gaseous and liquid states.

    Science.gov (United States)

    Yu, Yuanqin; Wang, Yuxi; Hu, Naiyin; Lin, Ke; Zhou, Xiaoguo; Liu, Shilin

    2016-04-21

    The development of potential probes to identify molecular conformation is essential in organic and biological chemistry. In this work, we investigated a site-specific C-H stretching vibration as a conformational probe for a model compound, 1,1,3,3,3-deuterated n-propanol (CD3CH2CD2OH), using stimulated photoacoustic Raman spectroscopy in the gas phase and conventional spontaneous Raman spectroscopy in the liquid state. Along with quantum chemistry calculations, the experiment shows that the CH2 symmetric stretching mode at the β-carbon position is very sensitive to the conformational structure of n-propanol and can serve as a new probe for all five of its conformers. Compared with the O-H stretching vibration, a well-established conformational sensor for n-propanol, the Cβ-H stretching vibration presented here shows better conformational resolution in the liquid state. Furthermore, using this probe, we investigated the conformational preference of n-propanol in pure liquid and in dilute water solution. It is revealed that in pure liquid, n-propanol molecules prefer the trans-OH conformation, and in dilute water solution, this preference is enhanced, indicating that the water molecules play a role of further stabilizing the trans-OH n-propanol conformers. This leads to conformational evolution that n-propanol molecules with gauche-OH structure are transferred to the trans-OH structure upon diluting with water. These results not only provide important information on structures of n-propanol in different environments, but also demonstrate the potential of the C-H stretching vibration as a new tool for conformational analysis. This is especially important when considering that hydrocarbon chains are structural units in organic and biological molecules. PMID:27031287

  9. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte

    2009-11-15

    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  10. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria

    OpenAIRE

    Haft, Rembrandt J F; Keating, David H.; Schwaegler, Tyler; Schwalbach, Michael S.; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M.; Kotlajich, Matthew V.; Pohlmann, Edward L.; Ong, Irene M.; Grass, Jeffrey A.; Kiley, Patricia J.; Landick, Robert

    2014-01-01

    Microbially produced aliphatic alcohols are important biocommodities but exert toxic effects on cells. Understanding the mechanisms by which these alcohols inhibit microbial growth and generate resistant microbes will provide insight into microbial physiology and improve prospects for microbial biotechnology and biofuel production. We find that Escherichia coli ribosomes and RNA polymerase are mechanistically affected by ethanol, identifying the ribosome decoding center as a likely target of ...

  11. Gas Chromatography Method of Cleaning Validation Process for 2-Propanol Residue Determination in Pharmaceutical Manufacturing Equipment

    Directory of Open Access Journals (Sweden)

    Łukasz Czubak

    2014-07-01

    Full Text Available Cleaning validation is an integral operation of good manufacturing practice in pharmaceutical industry. The aim of this study was to validate simple analytical method for detection of 2-propanol residue in equipment, which is likely contaminated with 2-propanol, usually used in the production area. The gas chromatography with flame ionization detection (GC-FID method was validated on a GC system using DB-FFAP capillary column at the flow rate of 4.9 mL/min. The calibration curve was linear over concentration range from 2.8µg/mL to 110.7µg/mL with a correlation coefficient equal to 0.99981. The detection limit (LOD and quantitation limit (LOQ were 1.1µg/mL and 2.8µg/mL, respectively. The simplicity of gas chromatography method makes it useful for routine analysis of 2-propanol residue and is an alternative to corresponding methods.

  12. Structure Chemical Composition And Reactivity Correlations during the In Situ Oxidation of 2-Propanol

    Energy Technology Data Exchange (ETDEWEB)

    K Paredis; L Ono; S Mostafa; L Li; Z Zhang; J Yang; L Barrio; A Frenkel; B Roldan Cuenya

    2011-12-31

    Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step toward gaining fundamental insight in catalysis. We report the evolution of the structure and chemical composition of size-selected micellar Pt nanoparticles ({approx}1 nm) supported on nanocrystalline {gamma}-Al{sub 2}O{sub 3} during the catalytic oxidation of 2-propanol using X-ray absorption fine-structure spectroscopy. Platinum oxides were found to be the active species for the partial oxidation of 2-propanol (<140 C), while the complete oxidation (>140 C) is initially catalyzed by oxygen-covered metallic Pt nanoparticles, which were found to regrow a thin surface oxide layer above 200 C. The intermediate reaction regime, where the partial and complete oxidation pathways coexist, is characterized by the decomposition of the Pt oxide species due to the production of reducing intermediates and the blocking of O{sub 2} adsorption sites on the nanoparticle surface. The high catalytic activity and low onset reaction temperature displayed by our small Pt particles for the oxidation of 2-propanol is attributed to the large amount of edge and corner sites available, which facilitate the formation of reactive surface oxides. Our findings highlight the decisive role of the nanoparticle structure and chemical state in oxidation catalytic reactions.

  13. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    Science.gov (United States)

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min. PMID:21108142

  14. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    Science.gov (United States)

    Wang, Guang; Zhong, Shan; Zhang, Shi-Yao; Ma, Zheng-Lai; Chen, Jian-Long; Lu, Wen-Hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-Xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26177723

  15. An innovative approach for highly selective direct conversion of CO₂ into propanol using C₂H₄ and H₂.

    Science.gov (United States)

    Ahlers, Stefan J; Bentrup, Ursula; Linke, David; Kondratenko, Evgenii V

    2014-09-01

    Multifunctional catalysts are developed for converting CO2 with C2H4 and H2 into propanol. Au nanoparticles (NP) supported on TiO2 are found to facilitate this reaction. The activity and selectivity strongly depend on NP size, which can be tuned by the method of Au deposition and by promoting with K. The promoter improves the selectivity to propanol. Under optimized reaction conditions (2 MPa, 473 K, and CO2/H2/C2H4=1:1:1), CO2 is continuously converted into propanol with a near-to-100% selectivity. Catalytic tests as well as mechanistic studies by in situ FTIR and temporal analysis of products with isotopic tracers allow the overall reaction scheme to be determined. Propanol is formed through a sequence of reactions starting with reverse water-gas shift to reduce CO2 to CO, which is further consumed in the hydroformylation of ethylene to propanal. The latter is finally hydrogenated to propanol, while propanol hydrogenation to propane is suppressed. PMID:25044696

  16. Fluorescence excitation spectra of jet-cooled complexes of carbazole and mono-atomic alcohols

    International Nuclear Information System (INIS)

    Fluorescence excitation spectra of jet-cooled complexes of carbazole and one molecule of methyl, deuterated methyl, ethyl and propyl (propanol-1 and propanol-2) alcohols are analyzed. Shifts of the fluorescence excitation spectra of complexes relative to the frequency of a pure electron transition of unbound carbazole are determined. They are formed owing to the hydrogen bonds of the N-H groups of carbazole with the OH-group of alcohols. The frequencies of stretching vibrations of hydrogen groups with various alcohols vary within the range 150-157 cm-1, whereas for the deformation ones the frequencies fall in the interval 21-22.9 cm-1. The belonging of complexes to rotational conformers is determined through the shape of the rotational contours of bands of their pure electronic and electron-vibration transitions. Equilibrium configurations of complexes in the ground state are calculated (authors)

  17. Alcohol synthesis from CO or CO.sub.2

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Dagle, Robert A [Richland, WA; Holladay, Jamelyn D [Kennewick, WA; Cao, Chunshe [Houston, TX; Wang, Yong [Richland, WA; White, James F [Richland, WA; Elliott, Douglas C [Richland, WA; Stevens, Don J [Richland, WA

    2010-12-28

    Methods for producing alcohols from CO or CO.sub.2 and H.sub.2 utilizing a palladium-zinc on alumina catalyst are described. Methods of synthesizing alcohols over various catalysts in microchannels are also described. Ethanol, higher alcohols, and other C.sub.2+ oxygenates can produced utilizing Rh--Mn or a Fisher-Tropsch catalyst.

  18. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  19. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    International Nuclear Information System (INIS)

    Highlights: • Mo2C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η2(C,O)-propanal). • Mo2C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds

  20. The histone deacetylase (HDAC) inhibitor valproic acid reduces ethanol consumption and ethanol-conditioned place preference in rats.

    Science.gov (United States)

    Al Ameri, Mouza; Al Mansouri, Shamma; Al Maamari, Alyazia; Bahi, Amine

    2014-10-01

    Recent evidence suggests that epigenetic mechanisms such as chromatin modification (specifically histone acetylation) may play a crucial role in the development of addictive behavior. However, little is known about the role of epigenetic modifications in the rewarding properties of ethanol. In the current study, we studied the effects of systemic injection of the histone deacetylase (HDAC) inhibitor, valproic acid (VPA) on ethanol consumption and ethanol-elicited conditioned place preference (CPP). The effect of VPA (300 mg/kg) on voluntary ethanol intake and preference was assessed using continuous two-bottle choice procedure with escalating concentrations of alcohol (2.5-20% v/v escalating over 4 weeks). Taste sensitivity was studies using saccharin (sweet; 0.03% and 0.06%) and quinine (bitter; 20 µM and 40 µM) tastants solutions. Ethanol conditioned reward was investigated using an unbiased CPP model. Blood ethanol concentration (BEC) was also measured. Compared to vehicle, VPA-injected rats displayed significantly lower preference and consumption of ethanol in a two-bottle choice paradigm, with no significant difference observed with saccharin and quinine. More importantly, 0.5 g/kg ethanol-induced-CPP acquisition was blocked following VPA administration. Finally, vehicle- and VPA-treated mice had similar BECs. Taken together, our results implicated HDAC inhibition in the behavioral and reinforcement-related effects of alcohol and raise the question of whether specific drugs that target HDAC could potentially help to tackle alcoholism in humans. PMID:25108044

  1. Alcohol interaction with zirconia powders

    International Nuclear Information System (INIS)

    The mechanism by which alcohol washing of ceramic powders produces soft agglomerates has been investigated by studying the interaction of ethanol with hydrous ZrO2 powders using Fourier transform infrared (FTIR) spectroscopy. Unambiguous evidence of ethoxide formation has been found, which apparently prevents bond formation between adjacent particles and thus the formation of hard agglomerates

  2. 21 CFR 184.1293 - Ethyl alcohol.

    Science.gov (United States)

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl alcohol. 184.1293 Section 184.1293 Food and... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  3. Effect of ethanol on liver antioxidant defense systems: Adose dependent study

    OpenAIRE

    Das, Subir Kumar; Vasudevan, D. M.

    2005-01-01

    Alcohol induced oxidative stress is linked to the metabolism of ethanol. In this study it has been observed that administration of ethanol in lower concentration caused gain in body and liver weight. while higher concentration of ethanol caused lesser gain in body and liver weight. Ethanol treatment enhanced lipid peroxidation significantly, depletion in levels of hepatic glutathione and ascorbate, accompanied by a decline in the activities of glutathione peroxidase and glutathione reductase,...

  4. Pathogenesis of Alcoholic Liver Disease.

    Science.gov (United States)

    Dunn, Winston; Shah, Vijay H

    2016-08-01

    Alcoholic liver disease includes a broad clinical-histological spectrum from simple steatosis, cirrhosis, acute alcoholic hepatitis with or without cirrhosis to hepatocellular carcinoma as a complication of cirrhosis. The pathogenesis of alcoholic liver disease can be conceptually divided into (1) ethanol-mediated liver injury, (2) inflammatory immune response to injury, (3) intestinal permeability and microbiome changes. Corticosteroids may improve outcomes, but this is controversial and probably only impacts short-term survival. New pathophysiology-based therapies are under study, including antibiotics, caspase inhibition, interleukin-22, anakinra, FXR agonist and others. These studies provide hope for better future outcomes for this difficult disease. PMID:27373608

  5. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4

    International Nuclear Information System (INIS)

    Accumulation of alcohol during fermentation is accompanied by a progressive decrease in the rate of sugar conversion to ethanol. In this study, the authors provided evidence that inhibition of fermentation by ethanol can be attributed to an indirect effect of ethanol on the enzymes of glycolysis involving the plasma membrane. Ethanol decreased the effectiveness of the plasma membrane as a semipermeable barrier, allowing leakage of essential cofactors and coenzymes. This leakage of cofactors and coenzymes, coupled with possible additional leakage of intermediary metabolites en route to ethanol formation, is sufficient to explain the inhibitory effects of ethanol on fermentation in Zymomonas mobilis

  6. Excess molar enthalpies and excess molar volumes of formamide + 1-propanol or 2-propanol and thermodynamic modeling by Prigogine–Flory–Patterson theory and Treszczanowicz–Benson association model

    International Nuclear Information System (INIS)

    Highlights: ► Measured HmE and VmE data of formamide + propanol were interpreted in terms of PFP theory. ► Treszczanowicz–Benson association model was also applied to these binary systems. ► The calculated HmE and VmE values compared well with corresponding experimental data. ► Extent of H-bonding in formamide and propanol in their mixture was reflected in ΔhH0 and KH. - Abstract: Excess molar enthalpies (HmE) at 298.15 K and 308.15 K and excess molar volumes (VmE) at 308.15 K for formamide (1) + 1-propanol or 2-propanol (2) mixtures have been measured over the entire composition range. The excess enthalpies and excess volumes data have been utilized to study the thermodynamics of molecular interactions in terms of Prigogine–Flory–Patterson theory and Treszczanowicz–Benson association model with a Flory contribution term. In this paper, this Treszczanowicz–Benson association model was applied, for the first time, to binary mixtures containing both components associated (propanol and formamide) through hydrogen bonding. In both the cases, when either of formamide or propanol was assumed to be associated, the calculated HmE and VmE values compared well with corresponding experimental data. Extent of inter-molecular H-bonding in formamide and propanol in their binary mixtures was also reflected in their molar enthalpy of association of H-bonding ΔhH0 and association constant KH

  7. Alcoholic neuropathy

    Science.gov (United States)

    ... objects in the shoes Guarding the extremities to prevent injury from pressure Alcohol must be stopped to prevent the damage from ... The only way to prevent alcoholic neuropathy is not to drink excessive amounts of alcohol.

  8. DO SOBER EYEWITNESSES OUTPERFORM ALCOHOL INTOXICATED EYEWITNESSES IN A LINEUP?

    OpenAIRE

    Claudia Fahlke; Pär Anders Granhag; Angelica Hagsand; Emma Roos-af-Hjelmsäter; Anna Söderpalm-Gordh

    2013-01-01

    Although alcohol intoxicated eyewitnesses are common, there are only a few studies in the area. The aim of the current study is to investigate how different doses of alcohol affect eyewitness lineup identification performance. The participants (N = 123) were randomly assigned to a 3 [Beverage: control (0.0 g/kg ethanol) vs. lower (0.4 g/kg ethanol) vs. higher alcohol dose (0.7 g/kg ethanol)] X 2 (Lineup: target-present vs. target-absent) between-subject design. Participants consumed two glass...

  9. The Effects of Alcohol on Spiders: What Happens to Web Construction after Spiders Consume Alcohol?

    Science.gov (United States)

    Cross, Victor E.

    2006-01-01

    In the high school experiment reported in this paper, spiders were provided with 40% ethanol (ETOH) in order to determine the effects of alcohol on the web-spinning ability of orb weaver spiders. It was hypothesized that alcohol would have a deleterious effect on the number of radii, number of cells, and area of cells in the webs of orb weaving…

  10. Histopathological and imaging modifications in chronic ethanolic encephalopathy.

    Science.gov (United States)

    Folescu, Roxana; Zamfir, Carmen Lăcrămioara; Sişu, Alina Maria; Motoc, Andrei Gheorghe Marius; Ilie, Adrian Cosmin; Moise, Marius

    2014-01-01

    Chronic abuse of alcohol triggers different types of brain damage. The Wernicke-Korsakoff syndrome gets together Wernicke's encephalopathy and Korsakoff's syndrome. Another type of encephalopathy associated with chronic ethanol consumption is represented by the Marchiafava-Bignami malady or syndrome, an extremely rare neurological disorder, which is characterized by a demielinization of corpus callosum, extending as far as a necrosis. Because the frequency of ethanolic encephalopathy is increased and plays a major role in the sudden death of ethanolic patients, we have studied the chronic ethanolic encephalopathy both in deceased and in living patients, presenting different pathologies related to the chronic ethanol consumption. The present study investigated the effects of chronic ethanolic encephalopathy on the central nervous system based both on the histopathological exam of the tissular samples and the imaging investigation, such as MRI and CT. PMID:25329105

  11. Location of ethanol in sodium dodecyl sulfate aggregates

    Institute of Scientific and Technical Information of China (English)

    LIU, Tian-Qing; YU, Wei-Li; GUO, Rong

    2000-01-01

    The hexagonal liquid crystalline phase of SDS ( Sodium dodecyl sulfate)/H2O system changes into lamellar liquid crystal and the effective length of surfactant molecule d0/2 in the lamellar liquid crystal decreases with the addition of ethanol.The micellar aggregation number N of SDS decreases and the micellar diffusion coefficient increases with the added ethanol.Under a constant concentration of SDS, the molecule number ratio of ethanol to SDS in the micelle increases with the concentration of ethanol and even exceeds 10 when ethanol concentration is 1.085 mol/L. All these results show that ethanol, even though a short chain alcohol and soluble in water, can partly exist in the interphase of the amphiphilic aggregates showing some properties of co-surfactant.

  12. Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid in water/alcoholic solvents

    Institute of Scientific and Technical Information of China (English)

    Ben Li; Cuiping Wang; Guang Chen; Zhiqiang Zhang

    2013-01-01

    Highly active,air-stable and water-soluble palladium-phosphinous acid complexes have been applied to Suzuki cross-coupling reaction of heteroaryl bromides under mild conditions in water/alcoholic solvents.Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid occurred efficiently using palladium phosphinous acid complexes (POPd) and phase transfer catalyst (tetrabutylammonium bromide and polyethylene glycol) in water/ethanol mixture,water/propanol mixture and neat water respectively,the corresponding yields of cross-coupling heteroaryl-aryls were satisfied.The tert-butyl substituted ligand di-tert-butylphosphino in combination with POPd was found to be more active than the same family derived catalysts dipalladium complexes POPdl and POPd2,and other two kinds of Pd-catalysts Pd(PPh3)4 and Pd2(dba)3.The mechanism of Suzuki cross-coupling reaction between heteroaryl bromides and phenylboronic acid in water was proposed with respect to the key role of phase transfer catalyst on the transmetallation step.Compared with other solid phase transfer catalysts,TBAB was tested as the ideal one.The alkalinity of base and the molar proportion between POPd and TBAB were investigated in water and alcoholic solvents.Notably,in the presence of TBAB adding alcoholic solvents into water enhanced the yields of target products.However in terms of the liquid phase transfer catalyst of PEGs,mixing water into PEGs could slightly decrease the yields with respect to the water free PEGs bulk phase,which was probably due to the homogenous liquid conditions in pure PEGs and weak interactions between PEGs and heteroaryl bromide molecules in water depending on their molecular chain lengths.

  13. Effect of alcohol vapor treatment on electrical and optical properties of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films for indium tin oxide-free organic light-emitting diodes

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A simple alcohol vapor treatment (AVT) technique was applied to enhance the conductivity of PEDOT:PSS films. • Alcohols with one OH group can improve conductivity of PEDOT:PSS films by this technique. • Mechanism of conductivity enhancement of PEDOT:PSS films by AVT method was explained. • ITO-free OLEDs were fabricated using highly conductive AVT PEDOT:PSS films standalone anode. - Abstract: A simple alcohol vapor treatment (AVT) technique was proposed to improve the conductivity of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. In this technique, various alcohols, i.e. methanol, ethanol, 2-propanol and ethylene glycol, were applied to treat the surface of the films formed and then they were annealed. The sheet resistance of PEDOT:PSS films was significantly reduced from 130 kΩ/sq to 60 Ω/sq when treated with methanol vapor. The investigation of the vertical resistance of the films showed that the sample treated with methanol vapor displayed the lowest resistance as well. The mechanism of conductivity enhancement of PEDOT:PSS films through AVT method was explained by surface phase images, UV and IR spectra of PEDOT:PSS films. Optical transmittance spectrum of treated films exhibited that AVT has even enhanced the optical transmittance slightly. Improvement in the morphology, electrical and optical properties of PEDOT:PSS films prompted their applications as a transparent anode in the fabrication of ITO-free organic light-emitting diodes (OLEDs). The OLED manufactured based on methanol-treated PEDOT:PSS films demonstrated the highest luminance

  14. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H2PtCl6.6H2O, SnCl2.2H2O and CuCl2.2H2O as metal sources, NaBH4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  15. [Gender influence on the formation of alcohol preference and combination of alcohol with caffein in the condition of the long-term experiment].

    Science.gov (United States)

    Kucher, E O; Egorov, A Iu; Filatova, E V; Kulagina, K O; Chernikova, N A

    2012-01-01

    The goal of the study was the investigation of ethanol and caffeine influence on the alcohol preference formation and behavior in male and female rats under the conditions of long-term experiment. For both sexes, the long consumption of caffeine, ethanol and their combination leads to the increase of alcohol consumption compared to the controls. The maximum ethanol consumption has been observed in the group with ethanol + caffeine intake. In these experiments, the behavioral activity has increased compared to the rats who received only alcohol and controls. The significant elevation of anxiety levels was noted in female, but not in male, rats in all experimental groups compared to the controls. PMID:23235416

  16. Formation of 2-propanol in condensed molecular films of acetaldehyde following electron impact ionisation-induced proton transfer*

    Science.gov (United States)

    Borrmann, Tobias; Swiderek, Petra

    2016-06-01

    Experimental studies on thin condensed layers of acetaldehyde have previously revealed that electron exposure at an energy above the ionisation threshold leads to formation of 2-propanol. However, the mechanism of this reaction remained unclear. Therefore, a computational approach is used to explore the electron-induced reactions of acetaldehyde yielding 2-propanol. Starting from hydrogen-bonded dimers of acetaldehyde we show that the initial ionisation event triggers proton transfer between the two acetaldehyde moieties resulting in a hydrogen-bonded complex of a [OCCH3] radical and a protonated acetaldehyde cation. Given an excess energy of up to 0.75 eV and a favourable arrangement, a methyl radical released upon dissociation of the CC bond within the [OCCH3] radical can migrate to the carbonyl carbon of the protonated acetaldehyde cation. This produces a 2-propanol radical cation and CO. Neutral 2-propanol is then obtained by recombination with a second electron. A mechanism involving ionisation-driven proton transfer is thus proposed as pathway to the formation of 2-propanol during electron exposure of condensed layers of acetaldehyde.

  17. FTIR/PCA study of propanol in argon matrix: the initial stage of clustering and conformational transitions

    International Nuclear Information System (INIS)

    FTIR spectra of 1-propanol in an argon matrix were studied in the range 11 to 30 K. Principal component analysis of dynamic FTIR spectra and nonlinear band shape fitting has been carried out. The peaks of monomer, open dimer, mixed propanol-water dimer and those of higher H-bond clusters have been resolved and analyzed. The attribution of certain FTIR peaks has been supported by proper density functional theory calculations. Analyzing dependences of the integral band intensities of various aggregates on temperature it has been deduced that in the initial stage of clustering monomers and dimers are the basic building blocks forming higher H-bond clusters. The peaks assigned to two conformers of monomers and mixed propanol-water dimers were investigated processing the temperature dependences of their integral intensities in Arrhenius plot. The obtained values of 0.18 kJ.mol-1 for propanol monomer and 0.26 kJ.mol-1 for mixed dimer are well comparable with the energy differences between the global minimum conformation of 1-propanol (Gt) and some other energetically higher structures (Tt or Tg).

  18. The irritant potential of n-propanol (nonanoic acid vehicle) in cumulative skin irritation

    DEFF Research Database (Denmark)

    Clemmensen, A; Andersen, F; Petersen, Thomas Kongsted;

    2008-01-01

    have diverse mechanisms of action on the skin. We used sodium lauryl sulfate (SLS) and nonanoic acid (NON) in three different concentrations plus their vehicles, water and n-propanol, respectively, to validate our test models and to optimize test concentrations. METHODS: Healthy volunteer forearm skin......BACKGROUND/PURPOSE: Human in vivo cumulative irritation tests with low-grade irritants simulate real-life exposure to skin irritants. The test outcome depends not only on the substance tested but also on the design of the assay. More than one experimental irritant is usually used because chemicals...

  19. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine.

    Science.gov (United States)

    Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa

    2016-12-15

    The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers. PMID:27451159

  20. Drosophila larvae as a model to study physiological alcohol dependence

    OpenAIRE

    Robinson, Brooks G.; Khurana, Sukant; Atkinson, Nigel S.

    2013-01-01

    Alcohol addiction is a disease that includes a diverse set of phenotypes. Functional alcohol tolerance is an adaptation to the effects of alcohol that restores neuronal homeostatic balance while the drug is present. When the drug is suddenly withheld, these adaptations unbalance the nervous system and are thought to be the origin of some withdrawal symptoms. Withdrawal symptoms, which can be a motivating factor for alcoholics to relapse, are taken as evidence of physiological ethanol dependen...

  1. Alcohol and Suicide: Neurobiological and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Leo Sher

    2006-01-01

    Full Text Available Alcohol, primarily in the form of ethyl alcohol (ethanol, has occupied an important place in the history of humankind for at least 8,000 years. In most Western societies, at least 90% of people consume alcohol at some time during their lives, and 30% or more of drinkers develop alcohol-related problems. Severe alcohol-related life impairment, alcohol dependence (alcoholism, is observed at some time during their lives in about 10% of men and 3—5% of women. An additional 5—10% of each sex develops persistent, but less intense, problems that are diagnosed as alcohol abuse. It this review, neurobiological aspects of suicidal behavior in alcoholism is discussed. In individuals with comorbid depression and alcoholism, greater serotonergic impairment may be associated with higher risk of completed suicide. Dopaminergic dysfunction may play an important role in the pathophysiology of suicidal behavior in alcoholism. Brain damage and neurobehavioral deficits are associated with alcohol use disorders and may contribute to suicidal behavior in persons with alcohol dependence or abuse. Aggression/impulsivity and alcoholism severity affect risk for suicide among individuals with alcoholism. Major depressive episodes and stressful life events particularly, partner-relationship disruptions, may precipitate suicidal behavior in individuals with alcohol use disorders. Alcohol misuse and psychosocial adversity can combine to increase stress on the person, and, thereby, potentially, increase the risk for suicidal behavior. The management of suicidal patients with alcohol use disorders is also discussed. It is to be hoped that the efforts of clinicians will reduce morbidity and mortality associated with alcohol misuse.

  2. Role of cannabinoidergic mechanisms in ethanol self-administration and ethanol seeking in rat adult offspring following perinatal exposure to Δ9-tetrahydrocannabinol

    International Nuclear Information System (INIS)

    The present study evaluated the consequences of perinatal Δ9-tetrahydrocannabinol (Δ9-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB1 receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with Δ9-tetrahydrocannabinol, ethanol or their combination causes long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, Δ9-THC, or EtOH + Δ9-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to Δ9-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB1 receptor antagonists may represent interesting agents for the pharmacotherapy of alcoholism

  3. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death

    OpenAIRE

    Vaudry, David; Rousselle, Cécile; Basille, Magali; Falluel-Morel, Anthony; Pamantung, Tommy F.; Fontaine, Marc; Fournier, Alain; Vaudry, Hubert; Gonzalez, Bruno J

    2002-01-01

    Alcohol exposure during development can cause brain malformations and neurobehavioral abnormalities. In view of the teratogenicity of ethanol, identification of molecules that could counteract the neurotoxic effects of alcohol deserves high priority. Here, we report that pituitary adenylate cyclase-activating polypeptide (PACAP) can prevent the deleterious effect of ethanol on neuronal precursors. Exposure of cultured cerebellar granule cells to ethanol inhibited neurite outgrowth and provoke...

  4. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  5. Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K

    International Nuclear Information System (INIS)

    This paper reports densities and speeds of sound for the binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K. Excess volumes and excess isentropic compressibility coefficients have been calculated from experimental data and fitted by means of a Redlich-Kister type equation. The ERAS model has been used to calculate the excess volumes of the four systems at both temperatures

  6. Elimination Kinetics of Ethanol in a 5-Week-Old Infant and a Literature Review of Infant Ethanol Pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Jonathan B. Ford

    2013-01-01

    Full Text Available Primary ethanol metabolism occurs through alcohol dehydrogenase, but minor metabolic pathways such as the P450 enzymes CYP2E1 and CYP1A2 and the enzyme catalase exist. These enzymes have distinct developmental stages. Elimination kinetics of ethanol in the infant is limited. We report the elimination kinetics of ethanol in a 5-week-old African-American male who had a serum ethanol level of 270 mg/dL on admission. A previously healthy 5-week-old African-American male was brought to the ED with a decreased level of consciousness. His initial blood ethanol level was 270 mg/dL. Serial blood ethanol levels were obtained. The elimination rate of ethanol was calculated to be in a range from 17.1 to 21.2 mg/dL/hr and appeared to follow zero-order elimination kinetics with a R2=0.9787. Elimination kinetics for ethanol in the young infant has been reported in only four previously published reports. After reviewing these reports, there appears to be variability in the elimination rates of ethanol in infants. Very young infants may not eliminate ethanol as quickly as previously described. Given that there are different stages of enzyme development in children, caution should be used when generalizing the elimination kinetics in young infants and children.

  7. Thermodynamic models for determination of the solubility of (-)-shikimic acid in different pure solvents and in (H2O + ethanol) binary solvent mixtures

    International Nuclear Information System (INIS)

    Highlights: • Solubility of (-)-shikimic acid in different pure solvents was studied. • Solubility of (-)-shikimic acid in (H2O + ethanol) binary solvent mixtures was studied. • The solubility data were fitted using three semiempirical models. • The Gibbs free energy, enthalpy, entropy were calculated by the van’t Hoff analysis. - Abstract: In this paper, we focused on solubility and solution thermodynamics of (-)-shikimic acid. The solubility of (-)-shikimic acid ((3R,4S,5R)-(E)-3,4,5-trihydroxy-1-cyclohexenecarboxylic acid, CASRN 138-59-0) in H2O, ethanol, n-propanol, isopropanol, n-pentanol, n-heptane and in (H2O + ethanol) binary solvent mixtures was measured at temperatures from (303.45 to 362.15) K using the synthetic method under atmospheric pressure. Its corresponding (solid + liquid) equilibrium results will provide essential support for industrial design and further theoretical studies. The solubility of (-)-shikimic acid in H2O, ethanol, n-propanol, isopropanol, n-pentanol, n-heptane and in (H2O + ethanol) binary solvent mixtures were correlated with the Apelblat equation, the λh equation and the ideal equation. In addition, the thermodynamic properties of the solution process, including the Gibbs free energy, enthalpy, and entropy, were calculated by the van’t Hoff analysis. The experimental results showed that ethanol could be used as effective antisolvents in the crystallization process

  8. Thermodynamics of mixtures containing amines. XIV. C{sub pm}{sup E} of benzylamine with heptane at 293.15 K or with methanol, 1-propanol or 1-pentanol at 293.15–308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Páramo, Ricardo; Alonso, Víctor; González, Juan Antonio, E-mail: jagl@termo.uva.es; García de la Fuente, Isaías; Casanova, Carlos; Cobos, José Carlos

    2014-06-01

    Graphical abstract: - Highlights: • C{sub pm}{sup E}s are reported for benzylamine + heptane, +methanol, +1-propanol, +1-pentanol systems. • The heptane solution shows a W-shaped C{sub pm}{sup E} concentration dependence. • This reveals the existence of strong non-random effects in that mixture. • Systems with 1-alkanols are characterized by large and positive C{sub pm}{sup E} values. • This remarks that self-association/solvation effects are predominant in such systems. - Abstract: Molar excess heat capacities, C{sub pm}{sup E}, are reported for the benzylamine + heptane mixture at 293.15 K and for methanol, 1-propanol or 1-pentanol + benzylamine systems at 293.15–308.15 K. These values were determined from isobaric molar heat capacities obtained with a Setaram Micro DSC II microcalorimeter using a scanning method. The heptane solution shows a W-shaped C{sub pm}{sup E} concentration dependence, which reveals the existence of strong non-random effects. Systems including 1-alkanols are characterized by large and positive C{sub pm}{sup E} values. This remarks that self-association and/or solvation effects are predominant in such solutions. On the other hand, their C{sub pm}{sup E} curves are skewed towards higher mole fractions of the alcohol, which might be ascribed to the existence of more interactions between unlike molecules in that region.

  9. Human alcohol-related neuropathology.

    Science.gov (United States)

    de la Monte, Suzanne M; Kril, Jillian J

    2014-01-01

    Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions

  10. The alcohol program

    International Nuclear Information System (INIS)

    The rationale for the launching of the Alcohol Program from sugarcane in Brazil in the mid-1970s is described as an answer to the first ''oil crisis'' as well as a solution to the problem of the fluctuating sugar prices in the international market. The technical characteristics of ethanol as a fuel are given as well as a discussion of the evolution of the cost of production, environmental and social consequences. Regarding costs, ethanol production was close to 100 dollars a barrel in the initial stages of the Program in 1980 falling rapidly due to economies of scale and technological progress to half that value in 1990, followed by a slower decline in recent years. Considering the hard currency saved by avoiding oil importation through the significant displacement of gasoline by ethanol and the decrease in the amount of external debt that the displaced oil importation was able to provide it is possible to demonstrate that the Alcohol Program has been an efficient way of exchanging dollar debt by national currency subsidies which are paid by the liquid fossil fuel users. Even with this economic gains for society, the continuity of the Program is difficult to maintain. Two solutions to this problem are discussed: internal expansion of the use of ethanol and exports to industrialized countries where it could be used as an octane enhancer. The main attractiveness of the Program - the reduction of CO2 emissions as compared to fossil fuels - is stressed, mainly as a solution for industrialized countries to fulfill their commitments with the United Nations Framework Climate Change Convention. (Author)

  11. Alcohol intoxications during adolescence increase motivation for alcohol in adult rats and induce neuroadaptations in the nucleus accumbens.

    Science.gov (United States)

    Alaux-Cantin, Stéphanie; Warnault, Vincent; Legastelois, Rémi; Botia, Béatrice; Pierrefiche, Olivier; Vilpoux, Catherine; Naassila, Mickaël

    2013-04-01

    Adolescent alcohol binge drinking constitutes a major vulnerability factor to develop alcoholism. However, mechanisms underlying this susceptibility remain unknown. We evaluated the effect of adolescent binge-like ethanol intoxication on vulnerability to alcohol abuse in Sprague-Dawley rats. To model binge-like ethanol intoxication, every 2 days, rats received an ethanol injection (3.0 g/kg) for 2 consecutive days across 14 days either from postnatal day 30 (PND30) to 43 (early adolescence) or from PND 45 to PND 58 (late adolescence). In young adult animals, we measured free ethanol consumption in the two-bottle choice paradigm, motivation for ethanol in the operant self-administration task and both ethanol's rewarding and aversive properties in the conditioned place preference (CPP) and taste aversion (CTA) paradigms. While intermittent ethanol intoxications (IEI) during late adolescence had no effect on free-choice 10% ethanol consumption, we found that IEI during early adolescence promoted free-choice 10% ethanol consumption, enhanced motivation for ethanol in the self-administration paradigm and induced a loss of both ethanol-induced CPP and CTA in young adults. No modification in either sucrose self-administration or amphetamine-induced CPP was observed. As the nucleus accumbens (Nac) is particularly involved in addictive behavior, we analyzed IEI-induced long-term neuroadaptations in the Nac using c-Fos immunohistochemistry and an array of neurotransmission-related genes. This vulnerability to ethanol abuse was associated with a lower c-Fos immunoreactivity in the Nac and enduring alterations of the expression of Penk and Slc6a4, 2 neurotransmission-related genes that have been shown to play critical roles in the behavioral effects of ethanol and alcoholism. PMID:23287538

  12. IL-6-deficient Mice Are Susceptible to Ethanol-induced Hepatic Steatosis: IL-6 Protects against Ethanol-induced Oxidative Stress and Mitochondrial Permeability Transition in the Liver

    Institute of Scientific and Technical Information of China (English)

    OsamaEl-Assal; FengHong; Won-HoKim; SvetlanaRadaeva; BinGao

    2004-01-01

    Interleukin-6 (IL-6)-deficient mice are prone to ethanol-induced apoptosis and steatosis in the liver; however,the underlying mechanism is not fully understood. Mitochondrial dysfunction caused by oxidative stress is an early event that plays an important role in the pathogenesis of alcoholic liver disease. Therefore, we hypothesize that the protective role of IL-6 in ethanol-induced liver injury is mediated via suppression of ethanol-induced oxidative stress and mitochondrial dysfunction. To test this hypothesis, we examined the effects of IL-6 on ethanol-induced oxidative stress, mitochondrial injury, and energy depletion in the livers of IL-6 (-/-) mice and hepatocytes from ethanol-fed rats. Ethanol consumption leads to stronger induction of malondialdehyde (MDA) in IL-6 (-/-) mice compared to wild-type control mice, which can be corrected by administration of IL-6. In vitro,IL-6 treatment prevents ethanol-mediated induction of reactive oxygen species (ROS), MDA, mitochondrial permeability transition (MPT), and ethanol-mediated depletion of adenosine triphosphate (ATP) in hepatocytes from ethanol-fed rats. Administration of IL-6 in vivo also reverses ethanol-induced MDA and ATP depletion in hepatocytes. Finally, IL-6 treatment induces metallothionein protein expression, but not superoxide dismutase and glutathione peroxidase in cultured hepatocytes. In conclusion, IL-6 protects against ethanol-induced oxidative stress and mitochondrial dysfunction in hepatocytes v/a induction of metallothionein protein expression, which mav account for the nrotective role of IL-6 in alcoholic liver disease.

  13. IL-6-deficient Mice Are Susceptible to Ethanol-induced Hepatic Steatosis: IL-6 Protects against Ethanol-induced Oxidative Stress and Mitochondrial Permeability Transition in the Liver

    Institute of Scientific and Technical Information of China (English)

    Osama El-Assal; Feng Hong; Won-Ho Kim; Svetlana Radaeva; Bin Gao

    2004-01-01

    Interleukin-6 (IL-6)-deficient mice are prone to ethanol-induced apoptosis and steatosis in the liver; however, the underlying mechanism is not fully understood. Mitochondrial dysfunction caused by oxidative stress is an early event that plays an important role in the pathogenesis of alcoholic liver disease. Therefore, we hypothesize that the protective role of IL-6 in ethanol-induced liver injury is mediated via suppression of ethanol-induced oxidative stress and mitochondrial dysfunction. To test this hypothesis, we examined the effects of IL-6 on ethanol-induced oxidative stress, mitochondrial injury, and energy depletion in the livers of IL-6 (-/-) mice and hepatocytes from ethanol-fed rats. Ethanol consumption leads to stronger induction of malondialdehyde (MDA) in IL-6 (-/-) mice compared to wild-type control mice, which can be corrected by administration of IL-6. In vitro,IL-6 treatment prevents ethanol-mediated induction of reactive oxygen species (ROS), MDA, mitochondrial permeability transition (MPT), and ethanol-mediated depletion of adenosine triphosphate (ATP) in hepatocytes from ethanol-fed rats. Administration of IL-6 in vivo also reverses ethanol-induced MDA and ATP depletion in hepatocytes. Finally, IL-6 treatment induces metallothionein protein expression, but not superoxide dismutase and glutathione peroxidase in cultured hepatocytes. In conclusion, IL-6 protects against ethanol-induced oxidative stress and mitochondrial dysfunction in hepatocytes via induction of metallothionein protein expression, which may account for the protective role of IL-6 in alcoholic liver disease.

  14. Alcohol, biomass energy: technological and economical aspects of production

    International Nuclear Information System (INIS)

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed

  15. Fluid Phase Topology of Benzene + Cyclohexane + 1-Propanol at 101.3 kPa

    Science.gov (United States)

    Andrade, R. S.; Iglesias, M.

    2015-07-01

    Isobaric vapor-liquid equilibria for the benzene + cyclohexane + 1-propanol ternary mixture were experimentally investigated at atmospheric pressure. Data were tested and considered thermodynamically consistent by means of the McDermott and Ellis method. The experimental results showed that this ternary mixture is completely miscible and exhibits three binary minimum homogeneous azeotropes and a ternary minimum azeotrope at the studied conditions. Satisfactory results were obtained for correlation of equilibrium compositions with the UNIQUAC equation and also for prediction with the UNIFAC method. In both cases, low root-mean-square deviations of the vapor mole fraction and temperature were calculated. The capability of 1-propanol as a modified distillation agent at atmospheric conditions is discussed in terms of thermodynamic topological analysis. However, because of the complex topology of the ternary mixture, it leads to a distillation scheme with two columns specifying ternary azeotrope recycling and difficult operation. Thus, this compound is not recommended as a separation agent for the binary benzene + cyclohexane azeotrope.

  16. Sex differences in the effects of ethanol pre-exposure during adolescence on ethanol-induced conditioned taste aversion in adult rats.

    Science.gov (United States)

    Sherrill, Luke K; Berthold, Claire; Koss, Wendy A; Juraska, Janice M; Gulley, Joshua M

    2011-11-20

    Alcohol use, which typically begins during adolescence and differs between males and females, is influenced by both the rewarding and aversive properties of the drug. One way adolescent alcohol use may modulate later consumption is by reducing alcohol's aversive properties. Here, we used a conditioned taste aversion (CTA) paradigm to determine if pre-exposure to alcohol (ethanol) during adolescence would attenuate ethanol-induced CTA assessed in adulthood in a sex-dependent manner. Male and female Long-Evans rats were given intraperitoneal (i.p.) injections of saline or 3.0g/kg ethanol in a binge-like pattern during postnatal days (PD) 35-45. In adulthood (>PD 100), rats were given access to 0.1% saccharin, followed by saline or ethanol (1.0 or 1.5g/kg, i.p.), over four conditioning sessions. We found sex differences in ethanol-induced CTA, with males developing a more robust aversion earlier in conditioning. Sex differences in the effects of pre-exposure were also evident: males, but not females, showed an attenuated CTA in adulthood following ethanol pre-exposure, which occurred approximately nine weeks earlier. Taken together, these findings indicate that males are more sensitive to the aversive properties of ethanol than females. In addition, the ability of pre-exposure to the ethanol US to attenuate CTA is enhanced in males compared to females. PMID:21767576

  17. Ethanol: No Free Lunch

    OpenAIRE

    Schmitz Andrew; Moss Charles B.; Schmitz Troy G.

    2007-01-01

    The sharp rise in energy prices in the 1980s triggered a strong interest in the production of ethanol as an additional energy component. Economists are divided as to the payoffs from ethanol derived corn in part because of the complex interrelationship between energy produced from ethanol and energy from fossil fuels. Using a welfare economic framework, we calculate that there can be treasury savings from ethanol using tax credits as these subsidies can be smaller than direct payments to corn...

  18. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption

    OpenAIRE

    Smith, Maren L.; Lopez, Marcelo F; Archer, Kellie J; Wolen, Aaron R.; Howard C Becker; Miles, Michael F.

    2016-01-01

    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive eth...

  19. Severe hypotension and hypothermia caused by acute ethanol toxicity

    OpenAIRE

    Wilson, E; W. S. Waring

    2007-01-01

    This article reports the time course and clinical features of acute ethanol poisoning in an elderly man who had previously abstained from alcohol. Several hours after ingestion, severe hypotension and hypothermia developed, and the consciousness level was reduced. Supportive measures were sufficient to allow the patient's blood pressure and temperature to recover by 24 h post ingestion. The clinical manifestations of ethanol toxicity are often confounded by coexistent drug ingestion and varia...

  20. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    OpenAIRE

    Ambrish Kumar; LaVoie, Holly A.; DiPette, Donald J; Singh, Ugra S.

    2013-01-01

    Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal develop...

  1. Effects of ethanol on the proteasome interacting proteins

    Institute of Scientific and Technical Information of China (English)

    Fawzia; Bardag-Gorce

    2010-01-01

    Proteasome dysfunction has been repeatedly reported in alcoholic liver disease. Ethanol metabolism endproducts affect the structure of the proteasome, and, therefore, change the proteasome interaction with its regulatory complexes 19S and PA28, as well as its interacting proteins. Chronic ethanol feeding alters the ubiquitin-proteasome activity by altering the interaction between the 19S and the 20S proteasome interaction. The degradation of oxidized and damaged proteins is thus decreased and leads to accum...

  2. Modeling of Ethanol Metabolism and Transdermal Transport

    OpenAIRE

    Webster, Gregory Daniel

    2008-01-01

    Approximately 14,500 people were killed in traffic crashes where the driver was legally intoxicated in 2005, constituting 33% of all traffic fatalities that year. While social efforts to reduce the number of traffic fatalities have shown to be moderately successful, alcohol has remained a factor in 40% of all traffic deaths over the past decade. Transdermal ethanol detection is a promising method that could prevent drunk driving if integrated into an ignition interlock system; potentially ...

  3. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  4. Potassium sorbate reduces production of ethanol and 2 esters in corn silage

    DEFF Research Database (Denmark)

    Hafner, Sasha; Franco, Roberta B; Kung, Limin;

    2014-01-01

    The objective of this work was to evaluate the effects of biological and chemical silage additives on the production of volatile organic compounds (VOC; methanol, ethanol, 1-propanol, methyl acetate, and ethyl acetate) within corn silage. Recent work has shown that silage VOC can contribute to poor...... air quality and reduce feed intake. Silage additives may reduce VOC production in silage by inhibiting the activity of bacteria or yeasts that produce them. We produced corn silage in 18.9-L bucket silos using the following treatments: (1) control (distilled water); (2) Lactobacillus buchneri 40788...

  5. Degradation of ascorbic acid in ethanolic solutions.

    Science.gov (United States)

    Hsu, Hsin-Yun; Tsai, Yi-Chin; Fu, Chi-Chang; Wu, James Swi-Bea

    2012-10-24

    Ascorbic acid occurs naturally in many wine-making fruits. The industry also uses ascorbic acid as an antioxidant and color stabilizer in the making of alcoholic beverages including white wine, wine cooler, alcopop, and fruit liqueur. However, the degradation of ascorbic acid itself may cause browning and the deterioration of color quality. This study was aimed to monitor the degradation of ascorbic acid, the formation of degradation products, and the browning in storage of ascorbic acid containing 0-40% (v/v) ethanolic solutions buffered at pH 3.2 as models of alcoholic beverages. The results show that ascorbic acid degradation in the ethanolic solutions during storage follows first-order reaction, that the degradation and browning rates increase with the increase of ethanol concentration, that the activation energy for the degradation of ascorbic acid is in the range 10.35-23.10 (kcal/mol), that 3-hydroxy-2-pyrone is an indicator and a major product of ascorbic acid degradation, and that aerobic degradation pathway dominants over anaerobic pathway in ascorbic acid degradation in ethanolic solutions. PMID:22994409

  6. First pass metabolism of ethanol is strikingly influenced by the speed of gastric emptying

    OpenAIRE

    ONETA, C; Simanowski, U; Martinez, M.; Allali-Hassani, A; Pares, X; Homann, N; Conradt, C; Waldherr, R; Fiehn, W.; Coutelle, C; Seitz, H.

    1998-01-01

    Background—Ethanol undergoes a first pass metabolism (FPM) in the stomach and liver. Gastric FPM of ethanol primarily depends on the activity of gastric alcohol dehydrogenase (ADH). In addition, the speed of gastric emptying (GE) may modulate both gastric and hepatic FPM of ethanol. 
Aims—To study the effect of modulation of GE on FPM of ethanol in the stomach and liver. 
Methods—Sixteen volunteers (eight men and eight women) received ethanol (0.225 g/kg body weight) orally ...

  7. Ethanol: the importance of the new regulatory framework for the sugar-alcohol market in Brazil; Etanol: a importancia do novo marco regulatorio para o mercado sucroalcooleiro do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jessica de Araujo; Alves, Rayana Lins [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil). Programa de Recursos Humanos em Direito do Petroleo, Gas Natural e Biocombustiveis

    2010-07-01

    The present work intends to make an analysis concerning the panorama which it inserts the regulation of the industry of ethanol in Brazil, in detaining in the problematic that it is detached in the economic scene and present politics: the necessity of a new regulatory framework that could adapt on necessities and requirements of the sugarcane industry of Brazil. In the present time, the absence of regulation makes that the sugarcane sector is regulated by some actors, who act of determinant and diffuse form, in the creation of public politics that deal with ethanol fuel. Thus, with the divergence of interests and the absence of consensus, occurs an impediment to energy development of ethanol. In this work, it was used doctrinal research regarding the sugarcane sector, with the intention to analyze it historically, since the previous period the Constitution of 1988 until the energy planning 2030. It is had as resulted the necessity of the creation of a new regulatory framework for the sugarcane sector, which must contain clauses to develop the paper of the ANP in the sector; to diminish the technological specifications; to increase the advantages taxes etc. In this way, it was reached the conclusion that it is not any creation of regulatory framework that will go to benefit the development of the sector, but a legislation resultant of discussions concerning the present sugarcane industry. (author)

  8. Genetically selected Marchigian Sardinian alcohol-preferring (msP) rats: an animal model to study the neurobiology of alcoholism

    OpenAIRE

    Ciccocioppo, Roberto; Economidou, Daina; Cippitelli, Andrea; Cucculelli, Marino; Ubaldi, Massimo; Soverchia, Laura; Anbarasu, Lourdusami; Massi, Maurizio

    2006-01-01

    The present article provides an up-to-date review that summarize almost 18 years of research in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. The results of this work demonstrate that msP rats have natural preference for ethanol characterized by a spontaneous binge-type of drinking leading to pharmacologically significant blood ethanol levels. This rat line is highly vulnerable to relapse and presentation of stimuli predictive of alcohol availability or foot-shock s...

  9. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation; Preparacao e caracterizacao de eletrocatalisadores PtSn/C-terras raras e PtRu/C-terras raras para a eletro-oxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rita Maria de Sousa

    2011-07-01

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H{sub 2}PtCl{sub 6}.6H{sub 2}O Ru Cl xH{sub 2}O, SnCl{sub 2}.2H{sub 2}O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2{theta} = 25{sup o}, which is associated with the carbon support and four additional diffraction peaks at approximately 2{theta} = 40{sup o}, 47{sup o}, 67{sup o} e 82{sup o}, which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H{sub 2}SO{sub 4}, + 1,0 mol.L-1 de C{sub 2}H{sub 5}OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  10. Adenosine Signaling in Striatal Circuits and Alcohol Use Disorders

    OpenAIRE

    Nam, Hyung Wook; Bruner, Robert C.; Choi, Doo-Sup

    2013-01-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, ...

  11. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    Science.gov (United States)

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  12. Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine–Flory–Patterson theory

    International Nuclear Information System (INIS)

    Highlights: ► Density and viscosity of binary mixtures of propanol derivatives were measured at T = (293.15 to 333.15) K. ► The excess molar properties were calculated from these experimental data and correlated by Redlich–Kister equation. ► The PFP model was applied for correlating the excess molar volumes. - Abstract: Density and viscosity of binary mixtures of (x13-amino-1-propanol + x2isobutanol) and (x13-amino-1-propanol + x22-propanol) were measured over the entire composition range and from temperatures (293.15 to 333.15) K at ambient pressure. The excess molar volumes and viscosity deviations were calculated and correlated by the Redlich–Kister (RK) equation. The thermal expansion coefficient and its excess value, isothermal coefficient of excess molar enthalpy, and excess partial molar volumes were determined by using the experimental values of density and are described as a function of composition and temperature. The excess molar volumes are negative over the entire mole fraction range for both mixtures and increase with increasing temperature. The excess molar volumes obtained were correlated by the Prigogine–Flory–Patterson (PFP) model. The viscosity deviations of the binary mixtures are negative over the entire composition range and decrease with increasing temperature.

  13. Alcohol Facts

    Science.gov (United States)

    ... alcohol. Alcohol is the ingredient that gets you drunk. Hard liquor—such as whiskey, rum, or gin— ... of malt liquor 12 ounces of beer Being drunk can make a person feel very silly, angry, ...

  14. Alcoholics Anonymous

    Science.gov (United States)

    ... Banners Site Help What's New Welcome to Alcoholics Anonymous ® NEED HELP WITH A DRINKING PROBLEM? If you ... drinking problem, wish to learn more about Alcoholics Anonymous or want to find A.A. near you, ...

  15. Grain and cellulosic ethanol: History, economics, and energy policy

    International Nuclear Information System (INIS)

    The United States (US) and Brazil have been the two leading producers of fuel ethanol since the 1970s. National policies have supported the production and use of ethanol from corn and sugarcane. US support in particular has included exemption from federal gasoline excise taxes, whole or partial exemption from road use (sales) taxes in nine states, a federal production tax credit, and a federal blender's credit. In the last decade the subsidization of grain-based ethanol has been increasingly criticized as economically inefficient and of questionable social benefit. In addition, much greater production of ethanol from corn may conflict with food production needs. A promising development is the acceleration of the technical readiness of cellulosic alcohol fuels, which can be produced from the woody parts of trees and plants, perennial grasses, or residues. This technology is now being commercialized and has greater long-term potential than grain ethanol. Cellulosic ethanol is projected to be much more cost-effective, environmentally beneficial, and have a greater energy output to input ratio than grain ethanol. The technology is being developed in North America, Brazil, Japan and Europe. In this paper, we will review the historical evolution of US federal and state energy policy support for and the currently attractive economics of the production and use of ethanol from biomass. The various energy and economic policies will be reviewed and assessed for their potential effects on cellulosic ethanol development relative to gasoline in the US

  16. Grain and cellulosic ethanol: History, economics, and energy policy

    International Nuclear Information System (INIS)

    The United States (US) and Brazil have been the two leading producers of fuel ethanol since the 1970s. National policies have supported the production and use of ethanol from corn and sugarcane. US support in particular has included exemption from federal gasoline excise taxes, whole or partial exemption from road use (sales) taxes in nine states, a federal production tax credit, and a federal blender's credit. In the last decade the subsidization of grain-based ethanol has been increasingly criticized as economically inefficient and of questionable social benefit. In addition, much greater production of ethanol from corn may conflict with food production needs. A promising development is the acceleration of the technical readiness of cellulosic alcohol fuels, which can be produced from the woody parts of trees and plants, perennial grasses, or residues. This technology is now being commercialized and has greater long-term potential than grain ethanol. Cellulosic ethanol is projected to be much more cost-effective, environmentally beneficial, and have a greater energy output to input ratio than grain ethanol. The technology is being developed in North America, Brazil, Japan and Europe. In this paper, we will review the historical evolution of US federal and state energy policy support for and the currently attractive economics of the production and use of ethanol from biomass. The various energy and economic policies will be reviewed and assessed for their potential effects on cellulosic ethanol development relative to gasoline in the US. (author)

  17. Determination of some volatile compounds in fruit spirits produced from grapes (Vitis Vinifera L.) and plums (Prunus domestica L.) cultivars

    OpenAIRE

    Kostik, Vesna; Gjorgjeska, Biljana; Angelovska, Bistra; Kovacevska, Ivona

    2014-01-01

    Fruit spirits contain a large array of volatile compounds among which the important role from toxicological aspect besides ethanol has methanol, aliphatic esters and fusel alcohols. This study evaluates the content of ethanol, ethyl acetate, methanol, isopropyl alcohol (2-propanol), n-propyl alcohol (propan-l-ol), isobutyl alcohol (2-methylpropan-1-ol), n-butyl alcohol (1-butanol), isoamyl alcohol (3-methyl-1-butanol) and n-amyl alcohol (pentan-1-ol) in different grapes and plum brandies i...

  18. Alcoholic hallucinosis.

    Science.gov (United States)

    Bhat, Pookala S; Ryali, Vssr; Srivastava, Kalpana; Kumar, Shashi R; Prakash, Jyoti; Singal, Ankit

    2012-07-01

    Alcoholic hallucinosis is a rare complication of chronic alcohol abuse characterized by predominantly auditory hallucinations that occur either during or after a period of heavy alcohol consumption. Bleuler (1916) termed the condition as alcohol hallucinosis and differentiated it from Delirium Tremens. Usually it presents with acoustic verbal hallucinations, delusions and mood disturbances arising in clear consciousness and sometimes may progress to a chronic form mimicking schizophrenia. One such case with multimodal hallucinations in a Defence Service Corps soldier is presented here. PMID:24250051

  19. Caenorhabditis elegans battling starvation stress: low levels of ethanol prolong lifespan in L1 larvae.

    Directory of Open Access Journals (Sweden)

    Paola V Castro

    Full Text Available The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%; higher concentrations to 68 mM (0.4% did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response.

  20. Alcohol misuse

    OpenAIRE

    Robson, W

    2009-01-01

    Alcohol use is a leading cause of mortality and morbidity internationally, and is ranked by the WHO as one of the top five risk factors for disease burden. Without treatment, approximately 16% of hazardous or harmful alcohol users will progress to more dependent patterns of alcohol consumption.

  1. Alcohol Test

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The recent alcohol tax increase poses a challenge to China’s white spirits makers Alcohol, rather than wine, is an in-dispensable component to Chinese table culture. The financial crisis has failed to affect white spirits sales, but an alcohol tax increase might.

  2. Ethanol Self-Administration in Serotonin Transporter Knockout Mice: Unconstrained Demand & Elasticity

    OpenAIRE

    Lamb, R. J.; Daws, L. C.

    2013-01-01

    Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (KO), one (HET), or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ...

  3. Chronic Ethanol Intake Modulates Photic and Non-Photic Circadian Phase Responses in the Syrian Hamster

    OpenAIRE

    Seggio, Joseph A.; Logan, Ryan W.; Rosenwasser, Alan M.

    2007-01-01

    Chronic alcohol intake disrupts sleep and other circadian biological rhythms in both human alcoholics and in experimental animals. Recent studies from our laboratory indicate that these effects may be due, in part, to ethanol-induced alterations in fundamental properties of the circadian pacemaker. The present study explored the effects of chronic voluntary ethanol intake (25% v/v) on circadian phase responses to both photic and non-photic stimuli in Syrian hamsters. Hamsters were used in the...

  4. Stimulant effects of ethanol in adolescent Swiss mice: development of sensitization and consequences in adulthood

    OpenAIRE

    Quoilin, Caroline; Didone, Vincent; Quertemont, Etienne

    2011-01-01

    The adolescent period is characterized by behavioral and neurobiological changes, which might predispose adolescents to the long-term negative consequences of alcohol. For example, enhanced risks of alcohol dependence are reported when drinking is initiated early. In the present studies, we used Swiss female mice to test whether chronic ethanol injections during adolescence durably affect the sensitivity to the stimulant effects of ethanol in adulthood. In a first set of experiments, several ...

  5. Effects of ethanol and protein deficiency on pancreatic digestive and lysosomal enzymes.

    OpenAIRE

    Apte, M V; Wilson, J. S.; Korsten, M A; McCaughan, G W; Haber, P S; Pirola, R. C.

    1995-01-01

    The pathogenesis of alcoholic pancreatitis is not fully understood. An increase in pancreatic digestive and lysosomal enzyme synthesis because of ethanol consumption could contribute to the development of pancreatic injury in alcoholics. This study aimed, firstly, to determine the effect of ethanol on the content and messenger RNA levels of pancreatic digestive enzymes and on the messenger RNA level of the lysosomal enzyme cathepsin B, and secondly, to examine the influence of concomitant pro...

  6. Gender differences in ethanol preference and ingestion in rats. The role of the gonadal steroid environment.

    OpenAIRE

    Almeida, O F; Shoaib, M.; Deicke, J; Fischer, D.; Darwish, M H; Patchev, V K

    1998-01-01

    An ethanol oral self administration paradigm showed the existence of gender differences in alcohol preference in rats: whereas males and females initiated alcohol drinking at similar rates, females maintained their preference for ethanol over a longer duration. Neonatal estrogenization of females, which effectively confers a male phenotype on a genetically female brain, resulted in patterns of drinking that were similar to those displayed by intact male rats, indicating that gender difference...

  7. Feasibility of Transdermal Ethanol Sensing for the Detection of Intoxicated Drivers

    OpenAIRE

    Webster, Gregory D.; Gabler, Hampton C.

    2007-01-01

    Transdermal ethanol detection is a promising method that could prevent drunk driving if integrated into an ignition interlock system. However, experimental data from previous research has shown significant time delays between alcohol ingestion and detection at the skin which makes real time estimation of blood alcohol concentration via skin measurement difficult. Using a validated model we studied the effects that body weight, metabolic rate and ethanol dose had on the time lag between the bl...

  8. DEVELOPMENT AND CHARACTARIZATION OF PERINDOPRIL ERBUMINE LOADED ETHANOLIC LIPOSOMES

    OpenAIRE

    Prakash Goudanavar; Manjunatha; Doddayya Hiremath

    2014-01-01

    The present work describes the preparation of Perindopril erbumine ethosomes and study of effect of alcohol and phospholipid on transdermal delivery. Perindopril erbumine is an ACE inhibitor which slowly inhibits the activity of the enzyme ACE, which decreases the production of angiotensin II, is being involved in the blood pressure regulation. Perindopril erbumine loaded ethanolic Liposomes were prepared by an hot - cold method using different concentrations of Alcohol and Soya lecithin in d...

  9. Zinc Enhances Ethanol Modulation of the α1 Glycine Receptor

    OpenAIRE

    McCracken, Lindsay M.; Trudell, James R.; Goldstein, Beth E.; Harris, R. Adron; Mihic, S. John

    2009-01-01

    Glycine receptor function mediates most inhibitory neurotransmission in the brainstem and spinal cord and is enhanced by alcohols, volatile anesthetics, inhaled drugs of abuse, and endogenous compounds including zinc. Because zinc exists ubiquitously throughout the brain, investigations of its effects on the enhancement of GlyR function by alcohols and anesthetics are important to understanding the effects of these agents in vivo. In the present study, the effects of zinc plus ethanol, pentan...

  10. Autophagy and ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Terrence M Donohue Jr

    2009-01-01

    The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism.Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients,endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury.

  11. Neurobiological alterations in alcohol addiction: a review.

    Science.gov (United States)

    Erdozain, Amaia M; Callado, Luis F

    2014-01-01

    The exact mechanism by which ethanol exerts its effects on the brain is still unknown. However, nowadays it is well known that ethanol interacts with specific neuronal membrane proteins involved in signal transmission, resulting in changes in neural activity. In this review different neurochemical alterations produced by ethanol are described. Primarily, ethanol interacts with two membrane receptors: GABAA and NMDA ion channel receptors. Ethanol enhances the GABA action and antagonizes glutamate action, therefore acting as a CNS depressant. In addition, ethanol affects most other neurochemical and endocrine systems. In regard to the brain reward system, both dopaminergic and opioid system are affected by this drug. Furthermore, the serotonergic, noradrenergic, corticotropin-releasing factor and cannabinoid systems seem to play an important role in the neurobiology of alcoholism. At last but not least, ethanol can also modulate cytoplasmic components, including the second messengers. We also review briefly the different actual and putative pharmacological treatments for alcoholism, based on the alterations produced by this drug. PMID:25578004

  12. Oxidation of 2-propanol ligands during collision-induced dissociation of a gas-phase uranyl complex

    Science.gov (United States)

    van Stipdonk, Michael J.; Chien, Winnie; Anbalagan, Victor; Gresham, Garold L.; Groenewold, Gary S.

    2004-10-01

    We demonstrate, by way of multi-stage tandem mass spectrometry and extensive deuterium labeling, that 2-propanol is converted to acetone, and 2-propoxide to acetaldehyde, when monopositive 2-propanol-coordinated uranyl-ligand cations are subjected to collision-induced dissociation in the gas-phase environment of an ion trap mass spectrometer. A species with formula [(UO2OCH(CH3)2)(HOCH(CH3)2)]+, derived from dissociation of the gas-phase precursor [(UO2NO3)(HOCH(CH3)2)3]+ eliminates two H atoms and CH3 in consecutive stages to generate a monopositive complex composed of the U(V) species UO2+ coordinated by acetone and acetaldehyde, i.e. [UO2+(OC(CH3)2)(OC(H)CH3)]. Dissociation of this latter ion resulted in elimination of the two coordinating carbonyl ligands in two consecutive dissociation stages to leave UO2+. Analogous reactions were not observed for uranyl complexes containing 1-propanol or 2-methyl-2-propanol, or for cationic complexes with divalent metals such as Ni2+, Co2+, Pb2+ and Ca2+. One explanation for these reactions is bond insertion by the metal center in the bis-ligated uranyl complex, which would be expected to have an LUMO consisting of unoccupied 6d-orbitals that would confer transition metal-like behavior on the complex.

  13. High Yield of Liquid Range Olefins Obtained by Converting i-Propanol over Zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Shunmugavel, Saravanamurugan; Hruby, S.L.;

    2009-01-01

    , the selectivity toward alkanes and aromatics declines rapidly over time on stream, and at 20 bar of pressure the liquid product mixture consists almost exclusively Of C-4-C-12 alkenes after approximately a third of the full reaction time. This discovery could open a new route to hydrocarbons via i-propanol from...

  14. Novel Dehalogenase Mechanism for 2,3-Dichloro-1-Propanol Utilization in Pseudomonas putida Strain MC4

    NARCIS (Netherlands)

    Arif, Muhammad Ilan; Samin, Ghufrana; van Leeuwen, Jan G. E.; Oppentocht, Jantien; Janssen, Dick B.

    2012-01-01

    A Pseudomonas putida strain (MC4) that can utilize 2,3-dichloro-1-propanol (DCP) and several aliphatic haloacids and haloalcohols as sole carbon and energy source for growth was isolated from contaminated soil. Degradation of DCP was found to start with oxidation and concomitant dehalogenation catal

  15. Neurosteroid effects on sensitivity to ethanol

    Directory of Open Access Journals (Sweden)

    Christa M Helms

    2012-01-01

    Full Text Available Harrison and Simmonds (1984 provided the first clear evidence that neuroactive steroids act at specific neurotransmitter receptors, investigating the potentiation of muscimol-induced GABAA responses by alphaxalone (3α-hydroxy 5α -pregnane l l,20-dione in cortical slices. Within 2 years, a progesterone metabolite (3α-hydroxy-5α-pregnan-20-one, 3α,5α-THP, allopregnanolone and a deoxycorticosterone metabolite (3α,21-dihydroxy-5α-pregnan-20-one, 3α,5α-THDOC, tetrahydrodeoxycorticosterone, THDOC were shown to be positive modulators of GABAA receptors (Majewska et al., 1986. That same year, publications showed that ethanol has direct action at GABAA receptors (Allan and Harris, 1986, Suzdak et al., 1986. Thus, the GABAA receptor complex was identified as a membrane-bound target providing a pharmacological basis for shared sensitivity between neurosteroids and ethanol. The common behavioral effects of ethanol and neuroactive steroids were compared directly using drug discrimination procedures (Ator et al., 1993. The N-methyl-D-aspartate (NMDA receptor complex, a membrane-bound ionophore important for excitatory glutamate neurotransmission, was shown to be antagonized by low concentrations of ethanol (Lovinger et al., 1989. Since data were emerging for neurosteroid activity at NMDA receptors (Wu et al., 1991, the stage was set for the suggestion that neurosteroids, and physiological states that alter circulating neuroactive steroids, could affect sensitivity to alcohol (Grant et al., 1997. The unique interface of ethanol and neurosteroids encompasses molecular, cellular, physiological and behavioral processes. This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including metabolic pathways, physiological states associated with activity of the hypothalamic-pituitary adrenal (HPA and hypothalamic-pituitary-gonadal (HPG axes, and the effects of chronic exposure to ethanol, in addition to

  16. Alcohol dimers - how much diagonal OH anharmonicity?

    OpenAIRE

    Kollipost, Franz; Papendorf, Kim; Lee, Yu-Fang; Lee, Yuan-Pern; Suhm, Martin A

    2014-01-01

    The OH bond of methanol, ethanol and t-butyl alcohol becomes more anharmonic upon hydrogen bonding and the infrared intensity ratio between the overtone and the fundamental transition of the bridging OH stretching mode decreases drastically. FTIR spectroscopy of supersonic slit jet expansions allows to quantify these effects for isolated alcohol dimers, enabling a direct comparison to anharmonic vibrational predictions. The diagonal anharmonicity increase amounts to 15-18%, growing with incre...

  17. Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol

    International Nuclear Information System (INIS)

    The enthalpies of solution of CO2 in aqueous solution of 2-amino-2-methyl-1-propanol (AMP) 15 wt% and 30 wt% were measured at 322.5 K and pressures range from (0.2 to 5) MPa using a flow calorimetric technique. The gas solubilities were simultaneously determined from the calorimetric data. The solubilities were compared to available literature values obtained by direct measurements. The experimental enthalpies of solution were compared to the values derived from the literature vapor liquid equilibrium data. This work provides calorimetric data that will be used later for the development of a thermodynamic model to predict both solubilities and enthalpies of solution of acid gases in aqueous amine solutions

  18. Crystallization of 2-propanol studied by neutron diffraction and dielectric spectroscopy in real-time

    International Nuclear Information System (INIS)

    The crystallization of 2-propanol was investigated in order to monitor the change of the molecular dynamics with increasing crystallinity by means of real-time dielectric spectroscopy and neutron-diffraction experiments. Both experiments were performed during isothermal crystallization at 135.5 K, above the glass-transition temperature (Tg=115 K). In the dielectric spectrum was observed a moderate shift of the peak of the α-relaxation and a broadening of the spectrum. The crystallization at that temperature is explained with a simple model of the transformed volume fraction based on steady-state homogeneous nucleation of crystallites which grow at a constant rate. Although no direct information about the morphology of the sample is available, the indirect measurements by means of neutron diffraction indicate a three-dimensional crystal growth. (orig.)

  19. Solid-liquid interface of a 2-propanol-perfluoromethylcyclohexane mixture: From adsorption to wetting

    International Nuclear Information System (INIS)

    The liquid-solid interface between a silicon substrate and the binary mixture perfluoromethylcyclohexane (PFMC) and 2-propanol (IP) is examined by x-ray specular reflectivity and diffuse scattering under grazing angles. The wetting films between the PFMC-rich phase and the substrate are characterized with respect to the density profile and lateral fluctuations. We find that the liquid-liquid interface of the film is anomalously broadened as compared to capillary wave theory. This broadening is caused by a locally slow variation of the density between the liquid phases and marks an adsorption profile that does not reflect the bulk properties of the film phase. Essentially the same behavior is present for a fused silica substrate

  20. Adsorption of 2-propanol on MgO surface: A combined experimental and theoretical study

    Science.gov (United States)

    Fuente, Silvia A.; Ferretti, Cristián A.; Domancich, Nicolás F.; Díez, Verónica K.; Apesteguía, Carlos R.; Di Cosimo, J. Isabel; Ferullo, Ricardo M.; Castellani, Norberto J.

    2015-02-01

    The adsorption of 2-propanol (or isopropanol) on MgO was studied using infrared (IR) spectroscopy and density functional theory (DFT) simulations. The analysis of IR spectra indicates that the molecule can adsorb either molecularly or dissociatively. DFT calculations show that the adsorption mode depends on the active site of the catalyst. While on perfect terrace it adsorbs non-dissociatively, on edge and on threefold coordinated O anion (O-corner sites) the adsorption occurs dissociatively by breaking the Osbnd H bond without activation barrier giving 2-propoxide and a surface hydroxyl group. Calculations also suggest that vacant oxygen centers on terrace, edge and corner are also possible sites for non-dissociative adsorption. On Mg ions located at corners the adsorption is strong but non-dissociative, while on a Mg vacancy at the same position the molecule easily dissociates. Frequency modes are also calculated and compared in detail with experimental IR spectra.

  1. Thermodynamic investigation on the azeotropic mixture composed of water + n-propanol + benzene

    International Nuclear Information System (INIS)

    Molar heat capacity of the azeotropic mixture composed of water, n-propanol, and benzene was measured by an adiabatic calorimeter from 79 to 320 K. The glass transition and melting processes of the mixture were determined based on the curve of the heat capacity with respect to temperature. The glass transition occurred at 101.920 K. The melting processes took place in temperature ranges 258-268 and 268-279 K. The corresponding melting enthalpies and entropies were calculated to be 1.474 kJ mol-1, 5.508 J K-1 mol-1; 6.144 kJ mol-1, 22.28 J K-1 mol-1, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to temperature 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature

  2. Isopropylation of benzene with 2-propanol over substituted large pore aluminophosphate-based molecular sieves

    Indian Academy of Sciences (India)

    K Joseph Antony Raj; V R Vijayaraghavan

    2004-03-01

    Large pore aluminophosphate-based molecular sieves like AlPO4-5, MAPO-5, MnAPO-5 and ZAPO-5 were synthesised hydrothermally using triethylamine as a structure directing agent. These materials were characterised by X-ray diffraction (XRD), 27Al and 31P MAS-NMR, ICP-MS, -butylamine- TPD, BET and SEM. The catalytic performance of these materials was tested for isopropylation of benzene with 2-propanol at 250, 300, 350 and 400°C. The products were cumene, -DIPB (-diisopropylbenzene) and -DIPB (-diisopropylbenzene). MnAPO-5 was found to be more active than the other catalysts. Maximum conversion (20%) was noted at 350°C over MnAPO-5. The selectivity to DIPB was found to decrease with time on stream but the selectivity to cumene showed an increase after 3 h of time on stream.

  3. A Simple Laboratory Exercise for Ethanol Production by Immobilized Bakery Yeasts ("Saccharomyces Cerevisiae")

    Science.gov (United States)

    Vullo, Diana L.; Wachsman, Monica B.

    2005-01-01

    This laboratory experiment was designed for Chemistry, Food Technology, Biology, and Chemical Engineering undergraduate students. This laboratory experience shows the advantages of immobilized bakery yeasts in ethanol production by alcoholic fermentation. The students were able to compare the ethanol production yields by free or calcium alginate…

  4. The Protective Role of Zinc Sulphate on Ethanol -Induced Liver and Kidney Damages in Rats

    International Nuclear Information System (INIS)

    Around the world more and more people suffer from alcoholism. Addiction problems, alcoholism and excessive use of drugs both medical and nonmedical, are major causes of liver and kidney damage in adults. The purpose of this study was to investigate on the protective role of zinc sulphate on liver and kidney in rats with acute alcoholism. Wistar albino rats were divided into four groups. Group I; control group, group 2; given only Zinc Sulphate (100 mg/kg/day for 3days), group 3; rats given absolute ethanol (1 ml of absolute ethanol administrated by gavage technique to each rat), group 4 given Zinc sulphate prior to the administration of absolute ethanol. The results of this study revealed that acute ethanol exposure caused degenerative morphological changes in the liver and kidney. Significant difference were found in the levels of serum, liver, kidney super oxide dismutase(SOD), catalase (CAT), nitric oxide(NO), and malondialdehyde (MDA) in the ethanol group compared to the control group. Moreover ,serum urea, creatnine, uric acid, alkaline phoshpatase and transaminases activities (GOTand GPT) were increased in the ethanol group compared to the control group. On the other hand,administration of zinc sulphate in the ethanol group caused a significant decrease in the degenerative changes, lipid peroxidation, antioxidant enzymes, and nitric oxide in serum, liver, and kidney. It can be concluded that zinc Sulphate has a protective role on the ethanol induced liver and kidney injury. In addition ,nitric oxide is involved in the mechanism of acute alcohol intoxication. (author)

  5. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  6. Protective Effect of Blackcurrant on Liver Cell Membrane of Rats Intoxicated with Ethanol

    OpenAIRE

    Szachowicz-Petelska, Barbara; Dobrzyńska, Izabela; Skrzydlewska, Elżbieta; Figaszewski, Zbigniew

    2012-01-01

    Chronic ethanol intoxication oxidative stress participates in the development of many diseases. Nutrition and the interaction of food nutrients with ethanol metabolism may modulate alcohol toxicity. One such compound is blackcurrant, which also has antioxidant abilities. We investigated the effect of blackcurrant as an antioxidant on the composition and electrical charge of liver cell membranes in ethanol-intoxicated rats. Qualitative and quantitative phospholipid composition and the presence...

  7. Overexpression of Glycogen Synthase Kinase 3β Sensitizes Neuronal Cells to Ethanol Toxicity

    OpenAIRE

    Liu, Ying(College of Nuclear Science and Technology, Beijing Normal University, 100875, Beijing, China); Chen, Gang; Ma, Cuiling; Bower, Kimberly A.; Xu, Mei; Fan, Zhiqin; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia

    2009-01-01

    The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. The loss of neurons underlies many of the behavioral deficits observed in fetal alcohol spectrum disorders (FASD). The mechanisms of ethanol-induced neuronal loss, however, remain incompletely elucidated. We demonstrated that glycogen synthase kinase 3β (GSK3β), a multifunctional serine/threonine kinase, was involved in ethanol neurotoxicity. The activity of GSK3β is negatively regulated by its phosph...

  8. The Effect of Ethanol Production on the U.S. National Corn Price

    OpenAIRE

    Park, Hwanil; Fortenbery, T. Randall

    2007-01-01

    A system of equations representing corn supply, feed demand, export demand, food, alcohol and industrial (FAI) demand, and corn price is estimated by three-stage least squares. A price dependent reduced form equation is then formed to investigate the effect of ethanol production on the national average corn price. The elasticity of corn price with respect to ethanol production is then obtained. Results suggest that ethanol production has a positive impact on the national corn price and that t...

  9. Enhancement of rat brain metabolism of a tryptophan load by chronic ethanol administration

    OpenAIRE

    1980-01-01

    We have previously shown that chronic ethanol administration enhances brain 5-hydroxytryptamine synthesis by increasing the availability of circulating tryptophan to the brain secondary to the decreased liver tryptophan pyrrolase activity. We now find that ethanol enhances the brain metabolism of a tryptophan load by the same mechanism. The results are discussed in relation to ethanol preference and the need for further clinical work on the effects of alcoholism on tryptophan metabolism.

  10. Reduced limbic metabolism and fronto-cortical volume in rats vulnerable to alcohol addiction

    OpenAIRE

    Gozzi, Alessandro; Agosta, Federica; Massi, Maurizio; Ciccocioppo, Roberto; Bifone, Angelo

    2012-01-01

    Alcohol abuse is associated with long-term reductions in fronto-cortical volume and limbic metabolism. However, an unanswered question in alcohol research is whether these alterations are the sole consequence of chronic alcohol use, or contain heritable contributions reflecting biological propensity toward ethanol addiction. Animal models of genetic predisposition to alcohol dependence can be used to investigate the role of inborn brain abnormalities in the aetiology of alcoholism. Here we us...

  11. Erythrocyte Glutathione Depletion Impairs Resistance to Haemolysis in Women Consuming Alcohol

    OpenAIRE

    Padmini, Ekambaram; Sundari, Balasubramaniam Thiripura

    2007-01-01

    Alcohol abuse is known to cause an array of ethanol induced abnormalities in men but very few reports are available on the effect of alcohol in women. None of them discuss the effect of ethanol consumption on erythrocyte membrane. In the present study, erythrocytes in women who consume alcohol showed significant decrease in their ability to resist haemolysis with HPLC studies. Erythrocyte membrane indicates decreased phospholipid (p

  12. Coupling of Alcohols over Alkali-Promoted Cobalt-Molybdenum Sulfide

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Jensen, Peter Arendt; Schiødt, N.C.;

    2010-01-01

    Double or nothing: Higher alcohols are produced by the hydrogenation of CO with a K-promoted Co-MoS2/C catalyst. Ethanol, which is passed over the sulfide catalyst along with CO and H2, is mainly converted into 1-butanol, which indicates that alcohol condensation contributes to the build-up of...... higher alcohols over the sulfide catalyst. In a nitrogen atmosphere, ethanol is also in part converted into 1-butanol, although ethyl acetate is the major product....

  13. Alcohol Induces Synaptotagmin 1 Expression in Neurons via Activation of Heat Shock Factor 1

    OpenAIRE

    Varodayan, Florence P.; Pignataro, Leonardo; Harrison, Neil L.

    2011-01-01

    Many synapses within the central nervous system are sensitive to ethanol. Although alcohol is known to affect the probability of neurotransmitter release in specific brain regions, the effects of alcohol on the underlying synaptic vesicle fusion machinery have been little studied. To identify a potential pathway by which ethanol can regulate neurotransmitter release, we investigated the effects of acute alcohol exposure (1–24 hours) on the expression of the gene encoding Synaptotagmin 1 (Syt1...

  14. 2-Pyridinium propanol hydrogen squarate: experimental and computational study of a nonlinear optical material.

    Science.gov (United States)

    Korkmaz, Ufuk; Bulut, Ahmet

    2015-02-01

    The experimental and theoretical investigation of a novel organic nonlinear optical (NLO) squarate salt of 2-pyridinium propanol hydrogen squarate (1), C8H12ON(+)·C4HO4(-), were reported in this study. The crystal structure of the title compound was found to crystallize in the triclinic P-1 space group. In the asymmetric unit each squaric acid molecules have donated one H atom to the pyridines N1 and N2 atoms of a 2-pyridine propanol molecule, forming the salt (1). The X-ray analysis clearly indicated that the crystal packing has shown the hydrogen bonding ring pattern of D2(2)(10) (α-dimer) through N-H⋯O interactions. The structural and vibrational properties of the compound were also studied by computational methods of ab initio performed on the compound at DFT/B3LYP/6-31++G(d,p) (2) and HF/6-31++G(d,p) (3) level of theory. The calculation results on the basis of two models for both the optimized molecular structure and vibrational properties for the 1 are presented and compared with the X-ray analysis result. The molecular electrostatic potential (MEP), electronic absorption spectra, frontier molecular orbitals (FMOs), conformational flexibility and non-linear optical properties (NLO) of the title compound were also studied at the 2 level and the results are reported. In order to evaluate the suitability for NLO applications thermal analysis (TG, DTA and DTG) data of 1 were also obtained. PMID:25459503

  15. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats.Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores.These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions.

  16. Alcohol Withdrawal and Cerebellar Mitochondria.

    Science.gov (United States)

    Jung, Marianna E

    2015-08-01

    Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new

  17. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent. PMID:12830881

  18. Alcoholic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Gonzalo; Guzzo-Merello; Marta; Cobo-Marcos; Maria; Gallego-Delgado; Pablo; Garcia-Pavia

    2014-01-01

    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy(ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM.

  19. Proteasome inhibitor treatment in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce

    2011-01-01

    Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-341 (Bortezomib, Velcade(r)). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease

  20. GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse

    OpenAIRE

    Carnicella, Sebastien; Kharazia, Viktor; Jeanblanc, Jerome; Janak, Patricia H.; Ron, Dorit

    2008-01-01

    Previously, we demonstrated that the action of the natural alkaloid, ibogaine, to reduce alcohol (ethanol) consumption is mediated by the glial cell line-derived neurotrophic factor (GDNF) in the ventral tegmental area (VTA). Here we set out to test the actions of GDNF in the VTA on ethanol-drinking behaviors. We found that GDNF infusion very rapidly and dose-dependently reduced rat ethanol, but not sucrose, operant self-administration. A GDNF-mediated decrease in ethanol consumption was also...

  1. Preparation of PtRu/C and PtSn/C electrocatalysts using electron beam irradiation for direct and ethanol fuel cell

    International Nuclear Information System (INIS)

    PtRu/C and PtSn/C electrocatalysts were prepared using electron beam irradiation. The metal ions were dissolved in water/2-propanol and water/ethylene glycol solutions and the carbon support was added. The resulting mixtures were irradiated under stirring. The effect of water/ethylene glycol and water/2-propanol (v/v) ratio, Pt:Ru and Pt:Sn atomic ratios, the irradiation time and dose rate were studied. The obtained materials were characterized by Energy dispersive analysis of X-rays (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV) and Moessbauer spectroscopy. The electro-oxidation of methanol and ethanol were studied by cyclic voltammetry and chronoamperometry using the thin porous coating technique. The electrocatalysts were also tested on the Direct Methanol and Ethanol Fuel Cells. PtRu/C electrocatalysts prepared in water/ethylene glycol showed Pt:Ru atomic ratios different from the nominal ones. The results suggested that part of the Ru(III) ions were not reduced. The obtained materials showed the face-centered cubic (fcc) structure of Pt and Pt alloys with crystallite sizes of 2-3 nm. PtRu/C electrocatalysts prepared in water/2-propanol showed Pt:Ru atomic ratios similar to the nominal ones. The obtained materials also showed the fcc structure of platinum and platinum alloys with crystallite sizes of 3-4 nm. PtSn/C electrocatalysts prepared in water/ethylene glycol and water/2-propanol showed Pt:Sn atomic ratios similar to the nominal ones. The obtained materials showed the platinum (fcc) phase with crystallite sizes in the range of 2 - 4 nm and a SnO2 (cassiterite) phase. The obtained PtRu/C and PtSn/C electrocatalysts showed similar or superior performance for methanol and ethanol electro-oxidation compared to commercial PtRu/C (E-TEK) and PtSn/C (BASF) electrocatalysts. (author)

  2. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Donna eGruol

    2014-04-01

    Full Text Available Chronic exposure to ethanol produces a number of detrimental effects on behavior. Neuroadaptive changes in brain structure or function underlie these behavioral changes and may be transient or persistent in nature. Central to the functional changes are alterations in the biology of neuronal and glial cells of the brain. Recent data show that ethanol induces glial cells of the brain to produce elevated levels of neuroimmune factors including CCL2, a key innate immune chemokine. Depending on the conditions of ethanol exposure, the upregulated levels of CCL2 can be transient or persistent and outlast the period of ethanol exposure. Importantly, results indicate that the upregulated levels of CCL2 may lead to CCL2-ethanol interactions that mediate or regulate the effects of ethanol on the brain. Glial cells are in close association with neurons and regulate many neuronal functions. Therefore, effects of ethanol on glial cells may underlie some of the effects of ethanol on neurons. To investigate this possibility, we are studying the effects of chronic ethanol on hippocampal synaptic function in a transgenic mouse model that expresses elevated levels of CCL2 in the brain through enhanced glial expression, a situation know to occur in alcoholics. Both CCL2 and ethanol have been reported to alter synaptic function in the hippocampus. In the current study, we determined if interactions are evident between CCL2 and ethanol at level of hippocampal synaptic proteins. Two ethanol exposure paradigms were used; the first involved ethanol exposure by drinking and the second involved ethanol exposure in a paradigm that combines drinking plus ethanol vapor. The first paradigm does not produce dependence on ethanol, whereas the second paradigm is commonly used to produce ethanol dependence. Results show modest effects of both ethanol exposure paradigms on the level of synaptic proteins in the hippocampus of CCL2 transgenic mice compared with their non

  3. Acceptorless Photocatalytic Dehydrogenation for Alcohol Decarbonylation and Imine Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hung-An; Manna, Kuntal; Sadow, Aaron D.

    2012-07-29

    It has come to light: Renewed interest in conversions of highly oxygenated materials has motivated studies of the organometallic-catalyzed photocatalytic dehydrogenative decarbonylation of primary alcohols into alkanes, CO, and H2 (see scheme). Methanol, ethanol, benzyl alcohol, and cyclohexanemethanol are readily decarbonylated. The photocatalysts are also active for amine dehydrogenation to give N-alkyl aldimines and H2.

  4. Alcohol consumption and blood lipids in elderly coronary patients

    NARCIS (Netherlands)

    Jong, de H.J.I.; Goede, de J.; Oude Griep, L.M.; Geleijnse, J.M.

    2008-01-01

    Alcohol may have a beneficial effect on coronary heart disease (CHD) that could be mediated by elevation of high-density lipoprotein cholesterol (HDLC). Data on alcohol consumption and blood lipids in coronary patients are scarce. We studied whether total ethanol intake and consumption of specific t

  5. Fermentation method producing ethanol

    Science.gov (United States)

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  6. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  7. Effect of Alcohol Administration on Blood Sugar of Normal and Alcohol Habituated Rates during Acute Cold Exposure

    Directory of Open Access Journals (Sweden)

    K. K. Srivastava

    1968-10-01

    Full Text Available Thermoregulatory failure of alcohol administered fasted rates has been studied under acute cold stress. Twentyfour hour fasted rates developed acute hypoglycemia on being given a single oral dose of ethanol (1.3g/kg body weight during a two hour exposure at -20 degree calcius. Alcohol habituated rates, under similar conditions, more or less maintained their blood sugar concentration.

  8. Determination of microquantities of methanol and ethanol in toluene by gas chromatography

    International Nuclear Information System (INIS)

    A study is made of the detection of methanol and ethanol in toluene by means of gas chromatography, using Porapak Q columns, 1 m long at 189 degree centigree, employing a flame ionization detector, with propanol as an internal standard. The variation od the detector absolute and relative response was found to be linear within the range of concentration studied, that is, from 5 to 1000 ppm. The limit of sensitivity for the detection of ethanol in a column of 2% Ucon, over Chromosorob G deactivated with 0,1% Carbowax 400, was 20 ppm, which was four times higher than the limit of sensitivity of the Porapak Q column. Also in this case, the absolute and relative response of the detector was linear. (Author) 3 refs

  9. Effect of the ethanol concentration in the anode on the direct ethanol fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Belchor, Pablo Martins; Loeser, Neiva; Forte, Maria Madalena de Camargo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Carpenter, Deyse [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil)], Email: rafarstv@hotmail.com

    2010-07-01

    Changes in the climate, sources and development of renewable energy are issues that have gain greater importance, and fuel cells have been investigated as an alternative source to produce energy through electrochemical reactions. Among the fuel cells types the Proton Exchange Membrane (PEMFC), fed with pure hydrogen at the anode and oxygen at the cathode, seen be the more promising ones as an electrolyte for portable, mobile and stationary applications due to its low emissions, low operating temperature, high power density and quick configuration. To avoid inconvenience of storage and transportation of pure hydrogen a PEMFC fed with alcohols has been developed, named Direct Alcohol Fuel Cells (DAFC). One way to increase the performance of DAFC is added water in the alcohol inserted into the anode, because the water keeps the membrane hydrated. In this work, the performance of a DAFC was evaluated by following the loss in the polarization curve and cell power by varying the ethanol/water ratio. The aim of this study was determine the optimal water/ethanol ratio to be feed in a DEFC prototype mounted in the lab. By the results it was possible to point that the best concentration of ethanol aqueous solution for the DEFC tested was around 1 mol.L-1. (author)

  10. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1.

    Science.gov (United States)

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Chatterjee, Suvro; Clemens, Dahn L; Dey, Aparajita

    2011-06-01

    Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis. PMID:21414402

  11. EPIDEMIOLOGICAL ASPECTS OF ALCOHOL DRINKING IN CHILDREN AND ADOLESCENTS

    Directory of Open Access Journals (Sweden)

    Alina-Costina LUCA

    2015-04-01

    Full Text Available A growing number of children and adolescents drinking alcohol have become a global issue. Drinking alcohol at a young age is associated with alcohol dependence in adulthood and numerous further medical and social issues. Alcohol (ethanol is the oldest drug used since the dawn of civilization, being used as food, medicine or for religious and social purposes. It was considered a gift from gods, a belief that persisted for centuries. Although it was regarded as healing and tonic for the body, its abuse was condemned. First alcoholic beverages were those fermented naturally, wine and beer, distillation appeared during the 8-9th centuries.

  12. Electro-oxidation of ethanol and bioethanol in direct alcohol fuel cells by microparticulated amorphous Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.2}Sn{sub 0.2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, Javier; Pierna, Angel R.; Blanco, Tamara C. [Department of Chemical Engineering and Environment, UPV/EHU, San Sebastian (Spain); Val, Juan J. del [Department of Materials Physics, Faculty of Chemistry, UPV/EHU, San Sebastian (Spain)

    2011-10-15

    This work has focused on the development of metallic amorphous microparticulated alloys of composition Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.2}Sn{sub 0.2}, obtained by mechanical alloying (MA), for use as anodes in direct alcohol fuel cells (DAFCs). The addition of copper modifies the electronic properties of platinum due to its special electronic configuration (3d{sup 10}4s{sup 1}), demonstrating a better performance for ethanol/bioethanol electro-oxidation. Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.4} alloy provides higher current densities than Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.2}Sn{sub 0.2} alloy. In spite of tin significantly improving the tolerance to different adsorbed species such as CO, its presence does not improve the electro-oxidation reaction due to limit the distribution of platinum atoms by the ligand effect, avoiding the final oxidation to CO{sub 2}. In both alloys higher current densities were obtained for bioethanol electro-oxidation than ethanol, due mainly to the presence of acetaldehyde, formic acid and another organic compounds (ppb), which may contribute to improvement of catalytic results. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice

    DEFF Research Database (Denmark)

    Buschard, Karsten; Hansen, Axel Jacob Kornerup; Jensen, Karen;

    2011-01-01

    Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules.......Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules....

  14. Market penetration of ethanol

    International Nuclear Information System (INIS)

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  15. DO SOBER EYEWITNESSES OUTPERFORM ALCOHOL INTOXICATED EYEWITNESSES IN A LINEUP?

    Directory of Open Access Journals (Sweden)

    Claudia Fahlke

    2013-01-01

    Full Text Available Although alcohol intoxicated eyewitnesses are common, there are only a few studies in the area. The aim of the current study is to investigate how different doses of alcohol affect eyewitness lineup identification performance. The participants (N = 123 were randomly assigned to a 3 [Beverage: control (0.0 g/kg ethanol vs. lower (0.4 g/kg ethanol vs. higher alcohol dose (0.7 g/kg ethanol] X 2 (Lineup: target-present vs. target-absent between-subject design. Participants consumed two glasses of beverage at an even pace for 15 minutes. Five minutes after consumption the participants witnessed a film depicting a staged kidnapping. Seven days later, the participants returned to the laboratory and were asked to identify the culprit in a simultaneous lineup. The result showed that overall, the participants performed better than chance; however, their lineup performance was poor. There were no significant effects of alcohol intoxication with respect to performance, neither in target-present nor target-absent lineups. The study’s results suggest that eyewitnesses who have consumed a lower (0.4 g/kg ethanol or a higher (0.7 g/kg ethanol dose of alcohol perform at the same level as sober eyewitnesses in a lineup. The results are discussed in relation to the alcohol myopia theory and suggestions for future research are made.

  16. Volumetric and viscometric study of molecular interactions in the mixtures of some secondary alcohols with equimolar mixture of ethanol and N, N-dimethylacetamide at 308.15 K

    Science.gov (United States)

    Sreekanth, K.; Sravana Kumar, D.; Kondaiah, M.; Krishna Rao, D.

    2011-02-01

    Densities and viscosities of mixtures of isopropanol, isobutanol and isoamylalcohol with equimolar mixture of ethanol and N, N-dimethylacetamide have been measured at 308.15 K over the entire composition range. Deviations in viscosity, excess molar volume and excess Gibb’s free energy of activation of viscous flow have been calculated from the experimental values of densities and viscosities. Excess properties have been fitted to the Redlich-Kister type polynomial equation and the corresponding standard deviations have been calculated. The experimental data of viscosity have been used to test the applicability of empirical relations of Grunberg-Nissan, Hind-McLaughlin, Katti-Chaudhary and Heric-Brewer for the systems studied. Molecular interactions in the liquid mixtures have been investigated in the light of variation of deviation and of excess values in evaluated properties.

  17. Ethanol Production and Maximum Cell Growth Are Highly Correlated with Membrane Lipid Composition during Fermentation as Determined by Lipidomic Analysis of 22 Saccharomyces cerevisiae Strains

    OpenAIRE

    Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E.

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cere...

  18. Quantity of ethanol absorption after excessive hand disinfection using three commercially available hand rubs is minimal and below toxic levels for humans

    OpenAIRE

    Toma Cyril D; Kampf Guenter; Bieber Nora; Below Harald; Kramer Axel; Huebner Nils-Olaf; Assadian Ojan

    2007-01-01

    Abstract Background Despite the increasing promotion of alcohol-based hand rubs and the worldwide use of ethanol-based hand rubs in hospitals only few studies have specifically addressed the issue of ethanol absorption when repeatedly applied to human skin. The aim of this study was to assess if ethanol absorption occurs during hygienic and surgical hand disinfection using three different alcohol-based hand-rubs, and to quantify absorption levels in humans. Methods Twelve volunteers applied t...

  19. Going the distance with ethyl alcohol

    International Nuclear Information System (INIS)

    If all had gone according to plan, ethyl alcohol would be in the driver's seat now, cruising down the highway and getting ready to speed into high gear. Instead, this renewable fuel, chemical reagent and solvent is navigating a complex obstacle course, watching warily for sharp turns and mixed signals. Globally, the supply and demand for all grades of ethyl alcohol is awry. Production of industrial-grade material is running at full throttle and prices are going up. Much of the upheaval over ethanol can be traced to the US Environmental Protection Agency and the renewable oxygenate standard (ROS) of the Clean Air Act. Under ROS, 15% of oxygenates used in gasoline sold this year was to be derived from a renewable source. Next month, that percentage was to have been doubled to 30%. Enticed by projections of upwards of 2 billion gal/yr of fermentation alcohol to comply with ROS, producers rushed to expand capacity. But to the producers' dismay, EPA was forced to backpedal on ROS. When representatives of the petroleum industry filed suit and won a stay, EPA rescinded its ROS regulation and ethanol producers were left in the lurch. High prices for corn is also putting the squeeze on inventories of industrial alcohol. Synthetic ethanol production, from ethylene for example, is booming, however. This paper discusses the ethanol market factors

  20. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice.

    Science.gov (United States)

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P; Nadav, Tali; Roberto, Marisa; Lasek, Amy W; Roberts, Amanda J

    2016-08-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk -/-) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk -/- mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk -/- mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk -/- mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk -/- mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429