WorldWideScience

Sample records for alcohol ethanol propanols

  1. An investigation into the electro-oxidation of ethanol and 2-propanol for application in direct alcohol fuel cells (DAFCs)

    Indian Academy of Sciences (India)

    Sagar Sen Gupta; Jayati Datta

    2005-07-01

    A comparative study of the electro-oxidation of ethanol and 2-propanol was carried out on carbon-supported platinum particles. Cyclic voltammetry, steady state polarisation, and electrochemical impedance spectroscopy were used to investigate the oxidation reactions. A difference in the mechanistic behaviour of the oxidation of ethanol and 2-propanol on Pt was observed, thereby highlighting the fact that the molecular structure of the alcohol has great influence on its electroreactivity. The study emphasizes the fact that 2-propanol is a promising fuel candidate for a direct alcohol fuel cell.

  2. Metabolic effects of feeding ethanol or propanol to postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    2011-01-01

    Eight lactating Holstein cows implanted with a ruminal cannula and permanent indwelling catheters in major splanchnic blood vessels were used to investigate metabolism of propanol and ethanol in the postpartum transition period. Cows were randomly allocated to 1 of 4 treatments in a randomized...... of propanol and ethanol. In conclusion, ruminal metabolism is a major component of alcohol metabolism in dairy cows. The postpartum transition dairy cow has sufficient metabolic capacity to cope with high dietary concentrations of primary alcohols even when alcohol intake is abruptly increased at the day...... of ethanol/kg of DM (ethanol treatment; ET). Only factor 2 data are presented in the present paper. Treatments were administered in silage-based total mixed rations and cows were fed the experimental total mixed ration from the day of parturition. Daily rations were fed in 3 equally sized portions at 8-h...

  3. Intermolecular interactions in mixtures of ethyl formate with methanol, ethanol, and 1-propanol on density, viscosity, and ultrasonic data

    Science.gov (United States)

    Elangovan, S.; Mullainathan, S.

    2014-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) have been measured for binary mixtures of ethyl formate with methanol, ethanol, and 1-propanol at 303 K. From the experimental data, adiabatic compressibility (β), acoustic impedance ( Z), viscous relaxation time (τ), free length ( L f), free volume ( V f), internal pressure (πi), and Gibbs free energy (Δ G) have been deduced. It is shown that strength of intermolecular interactions between ethyl formate with selected 1-alcohols were in the order of methanol < ethanol < 1-propanol.

  4. Postmortem production of ethanol and n-propanol in the brain of drowned persons.

    Science.gov (United States)

    Moriya, Fumio; Hashimoto, Yoshiaki

    2004-06-01

    We examined endogenous ethanol and n-propanol levels in the brain in 29 drowning cases in which ethanol consumption was excluded. Based on the stage of putrefaction of the brain, our cases were classified into 4 groups: pulpified brain (PB, n = 11), softened brain (SB, n = 6), discolored brain (DB, n = 2), and normal brain (NB, n = 10). The endogenous ethanol and n-propanol levels (mg/g), respectively, in the brains from these groups were 1.06 +/- 0.401 and 0.076 +/- 0.032 in PB, 0.195 +/- 0.136 and 0.012 +/- 0.009 in SB, and 0.053 +/- 0.032 and 0.001 +/- 0.001 in DB. Ethanol and n-propanol were not detected in NB. The concentration ratios of ethanol to n-propanol were 16.2 +/- 7.1 in specimens with ethanol levels > or = 0.50 mg/g (n = 10), and 17.6 +/- 13.5 in specimens with ethanol levels of 0.10 to 0.49 mg/g (n = 9). Drinking may strongly be suspected when (1) ethanol concentration in the brain is > or = 0.50 mg/g and cerebral ethanol to n-propanol ratio is > or = 40; and (2) the concentration of ethanol is 0.10 to 0.49 mg/g and the ethanol to n-propanol ratio is > or = 60.

  5. Solvatochromism and preferential solvation in mixtures of Methanol with Ethanol, 1-Propanol and 1-Butanol

    Directory of Open Access Journals (Sweden)

    Masoumeh Sayadian

    2014-12-01

    Full Text Available The spectral shift of 4-nitroaniline was determined in pure methanol, ethanol, 1-propanol and 1-butanol and binary mixtures of methanol with other 1-alkanols at 25 ⁰C by UV-vis spectroscopy. The effect of specific and non-specific solute-solvent interactions on the spectral shift was investigated by using the linear solvation energy relationship concept. A multiple linear regression analysis was used to correlate the spectral shift with microscopic Kamlet-Taft parameters (a, b and p* in pure solvents. Results indicate that the spectral shift is highly related with the specific solute-solvent interactions. In binary mixtures, a nonideal behavior of spectral shift was observed respective to the analytical mole fraction of alcohols; indicating preferential solvation. The spectral shifts were fitted to a known preferential solvation model named solvent exchange model to calculate the preferential solvation parameters. The preference of solute to be solvated by one of the solvating species relative to others was explained in terms of solvent-solvent and solute-solvent interactions.

  6. Extended UNIQUAC Model for Correlation and Prediction of Vapor-Liquid-Liquid-Solid Equilibria in Aqueous Salt Systems Containing Non-Electrolytes. Part B. Alcohol (Ethanol, Propanols, Butanols) - Water-salt systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Iliuta, Maria Cornelia; Rasmussen, Peter

    2004-01-01

    The Extended UNIQUAC model for electrolyte solutions is an excess Gibbs energy function consisting of a Debye-Huckel term and a term corresponding to the UNIQUAC equation. For vapor-liquid equilibrium calculations, the fugacities of gas-phase components are calculated with the Soave-Redlich-Kwong......-propanol, 2-methyl 2-propanol) and various ions (Na+, K+, NH4+, Cl-, NO3, SO42-, SO32-, HSO3-, CO32-, and HCO3-) shows the capability of the model to accurately represent the phase behavior of these kinds of systems. (C) 2004 Elsevier Ltd. All rights reserved....

  7. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  8. [Concentration of endogenous ethanol and alcoholic motivation].

    Science.gov (United States)

    Burov, Iu V; Treskov, V G; Kampov-Polevoĭ, A B; Kovalenko, A E; Rodionov, A P

    1983-11-01

    Trials with patients suffering from stage II chronic alcoholism and normal test subjects as well as experiments made on male C57BL mice (with genetically determined alcoholic motivation) and CBA mice (with genetically determined alcoholic aversion) and random-bred male rats with different levels of initial alcoholic motivation have shown the presence of reverse proportional dependence between blood plasma endogenous ethanol and alcoholic motivation.

  9. Microbial production of propanol.

    Science.gov (United States)

    Walther, Thomas; François, Jean Marie

    2016-01-01

    Both, n-propanol and isopropanol are industrially attractive value-added molecules that can be produced by microbes from renewable resources. The development of cost-effective fermentation processes may allow using these alcohols as a biofuel component, or as a precursor for the chemical synthesis of propylene. This review reports and discusses the recent progress which has been made in the biochemical production of propanol. Several synthetic propanol-producing pathways were developed that vary with respect to stoichiometry and metabolic entry point. These pathways were expressed in different host organisms and enabled propanol production from various renewable feedstocks. Furthermore, it was shown that the optimization of fermentation conditions greatly improved process performance, in particular, when continuous product removal prevented accumulation of toxic propanol levels. Although these advanced metabolic engineering and fermentation strategies have facilitated significant progress in the biochemical production of propanol, the currently achieved propanol yields and productivities appear to be insufficient to compete with chemical propanol synthesis. The development of biosynthetic pathways with improved propanol yields, the breeding or identification of microorganisms with higher propanol tolerance, and the engineering of propanol producer strains that efficiently utilize low-cost feedstocks are the major challenges on the way to industrially relevant microbial propanol production processes. PMID:27262999

  10. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  11. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  12. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation's fuel supply. Ethanol is the primary biofuel in the US martket, distributed as a blend with petroleum gasoline in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  13. Inhibition of alcohol dehydrogenase after 2-propanol exposure in different geographic races of Drosophila mojavensis: lack of evidence for selection at the Adh-2 locus.

    Science.gov (United States)

    Pfeiler, Edward; Reed, Laura K; Markow, Therese A

    2005-03-15

    High frequencies of the fast allele of alcohol dehydrogenase-2 (Adh-2F) are found in populations of Drosophila mojavensis that inhabit the Baja California peninsula (race BII) whereas the slow allele (Adh-2S) predominates at most other localities within the species' geographic range. Race BII flies utilize necrotic tissue of pitaya agria cactus (Stenocereus gummosus) which contains high levels of 2-propanol, whereas flies from most other localities utilize different cactus hosts in which 2-propanol levels are low. To test if 2-propanol acts as a selective force on Adh-2 genotype, or whether some other yet undetermined genetic factor is responsible, mature males of D. mojavensis lines derived from the Grand Canyon (race A) and Santa Catalina Island (race C), each with individuals homozygous for Adh-2F and Adh-2S, were exposed to 2-propanol for 24 h and ADH-2 specific activity was then determined on each genotype. Flies from five other localities homozygous for either the fast or slow allele also were examined. Results for all reported races of D. mojavensis were obtained. 2-propanol exposure inhibited ADH-2 specific activity in both genotypes from all localities, but inhibition was significantly less in two populations of race BII flies homozygous for Adh-2F. When F/F and S/S genotypes in flies from the same locality were compared, both genotypes showed high 2-propanol inhibition that was not statistically different, indicating that the F/F genotype alone does not provide a benefit against the inhibitory effects of 2-propanol. ADH-1 activity in female ovaries was inhibited less by 2-propanol than ADH-2. These results do not support the hypothesis that 2-propanol acts as a selective factor favoring the Adh-2F allele. PMID:15726639

  14. Solubilities of Nizatidine in Methanol + Water, Ethanol + Water and i-Propanol + Water from 273.15 to 303.15 K%Solubilities of Nizatidine in Methanol + Water, Ethanol + Water and i-Propanol + Water from 273.15 to 303.15 K

    Institute of Scientific and Technical Information of China (English)

    李音; 吕秀阳

    2012-01-01

    The solubilities of nizatidine in methanol + water, ethanol + water and i-propanol + water mixtures were determined in the temperature range from 273.15 K to 303.15 K at atmospheric pressure by a static analytical method. The general single model was used to correlate the experimental data, which fits the data very well.

  15. Metabolic effects of feeding high doses of propanol and propylacetate to lactating Holstein cows

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    2012-01-01

    Three lactating Holstein cows implanted with ruminal cannulas and permanent indwelling catheters in major splanchnic blood vessels were used to investigate alcohol metabolism and metabolic effects of feeding high doses of propanol and propylacetate. Cows were fed three diets control (basal ration...... of BHBA, propanol, isopropanol, and isobutyrate; net splanchnic flux of propionate; hepatic extraction of ethanol and portal recovery of dietary ethanol. The overall metabolic effect of feeding large doses of propanol was a glucogenic response presumably driven by hepatic metabolism of propanol...... all 3 treatments C ≪ PPA metabolic variables responded to P and PPA treatments including decreased proportion of ruminal acetate to total VFA; increased proportions of ruminal propionate, isovalerate, valerate, and caproate; increased arterial glucose concentration; decreased arterial...

  16. OZONE REACTION WITH N-ALDEHYDES (N=4-10), BENZALDEHYDE, ETHANOL, ISOPROPANOL, AND N-PROPANOL ADSORBED ON A DUAL-BED GRAPHITIZED CARBON/CARBON MOLECULAR SIEVE ADSORBENT CARTRIDGE

    Science.gov (United States)

    Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...

  17. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  18. Enantioselective Hydroxylation of 4-Alkylphenols by Vanillyl Alcohol Oxidase

    NARCIS (Netherlands)

    Drijfhout, Falko P.; Fraaije, Marco W.; Jongejan, Hugo; Berkel, Willem J.H. van; Franssen, Maurice C.R.

    1998-01-01

    Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum catalyzes the enantioselective hydroxylation of 4-ethylphenol, 4-propylphenol, and 2-methoxy-4-propylphenol into 1-(4'-hydroxyphenyl)ethanol, 1-(4'-hydroxyphenyl)propanol, and 1-(4'-hydroxy-3'-methoxyphenyl)propanol, respectively, with a

  19. SODIUM DI-N-DODECYL PHOSPHATE VESICLES IN AQUEOUS-SOLUTION - EFFECTS OF ETHANOL, PROPANOL, AND TETRAHYDROFURAN ON THE GEL TO LIQUID-PHASE TRANSITION

    NARCIS (Netherlands)

    BLANDAMER, MJ; BRIGGS, B; BUTT, MD; WATERS, M; CULLIS, PM; ENGBERTS, JBFN; HOEKSTRA, D; MOHANTY, RK

    1994-01-01

    For aqueous solutions containing vesicles formed by sodium di-n-dodecyl phosphate, the gel to liquid-crystal transition occurs near 35 degrees C, the temperature T-m. When ethanol is added, T-m decreases, but the scan shows evidence of several transitions as more alcohol is added. The effect of adde

  20. Gastrointestinal symptoms and ethanol metabolism in alcoholics.

    NARCIS (Netherlands)

    Laheij, R.J.F.; Verlaan, M.; Oijen, M.G.H. van; Doelder, M.S. de; Jong, C.A.J. de; Jansen, J.B.M.J.

    2004-01-01

    Excessive alcohol intake frequently results in gastrointestinal discomfort. It is an empirical fact that the severity of gastrointestinal discomfort induced by alcohol abuse is subject to interindividual variation. The aim of this study was to determine whether genetic polymorphism in alcohol dehydr

  1. Complex formation studies on Ho(III) and Lu(III) with 1-(2-pyridylazo)-2-naphthol (PAN) in alcohol-water solutions

    International Nuclear Information System (INIS)

    The formation of PAN complexes in the systems Ln(III)-PAN-alcohol-water (where: Ln(III) = Ho, Lu and alcohol = ethanol, n-propanol, iso-propanol) was investigated by a spectrophotometric method. Equilibrium constants for the reaction Ln3+ + HL LnL2+ + H+ (HL = PAN) and stability constants of complexes LnL2+ were calculated. (Author)

  2. Alcohol and water adsorption in zeolitic imidazolate frameworks

    KAUST Repository

    Zhang, Ke

    2013-01-01

    Alcohol (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) and water vapor adsorption in zeolitic imidazolate frameworks (ZIF-8, ZIF-71 and ZIF-90) with similar crystal sizes was systematically studied. The feasibility of applying these ZIF materials to the recovery of bio-alcohols is evaluated by estimating the vapor-phase alcohol-water sorption selectivity. © 2013 The Royal Society of Chemistry.

  3. Anaerobic Biodegradation of Biofuels (Ethanol, Biodiesel, n-Propanol, n-Butanol, and iso-Butanol) in Aquifer Sediment

    Science.gov (United States)

    In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...

  4. Anaerobic Biodegradation of Biofuels (Ethanol, Biodiesel, n-Propanol, n-Butanol, and iso-Butanol) in Aquifer Sediment (PP)

    Science.gov (United States)

    In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...

  5. Prospects for Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  6. [The comparison of concentration of endogenous ethanol blood serum in alcoholics and in non-alcoholics at different stages of abstinence].

    Science.gov (United States)

    Lukaszewicz, A; Markowski, T; Pawlak, D

    1997-01-01

    In this report the concentration of endogenous ethanol in blood serum in alcoholics at different stages of abstinence and in non-alcoholics was studied. 36 people--26 alcoholics and 10 non-alcoholics were examined and gas chromatography was used. It was revealed that the longer the period of abstinence in alcoholics, the lower the concentration of endogenous ethanol in blood serum. Moreover, the alcoholics showed a higher concentration of endogenous ethanol in blood serum as compared to non-alcoholics.

  7. Estimation of vapor composition and vapor pressure of alcohols and hydrocarbons binary systems

    International Nuclear Information System (INIS)

    The objective of this study were to apply the coordination state theory to assosiated systems, especially to estimate vapor pressure and vapor composition of alcohols and hydrcarbons binary systems. To achieve these objectives, a computer programme in Q. basic language was used to compute vapor composition and vapor pressure of may alcohols and hydrcarbons binary systems. The systems studied were methane- methanol, methane- n-propanol, n-pentane - n-propanol, ethanol- cyclohexane, ethanol- isooctane, n-pentane - ethanol, methanol - benzene, n-propanol- benzene, ethane- ethanol and ethane- n-propanol. The calculated VLE values were compared with experimental data using standard deviation. The values calculated agree, in general, with the experimental ones. Variations were observed among certain cases where phase seperation may occur.(Author)

  8. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface.

    Science.gov (United States)

    Ballal, Deepti; Chapman, Walter G

    2013-09-21

    Aqueous solutions of alcohols are interesting because of their anomalous behavior that is believed to be due to the molecular structuring of water and alcohol around each other in solution. The interfacial structuring and properties are significant for application in alcohol purification processes and biomolecular structure. Here we study aqueous mixtures of short alcohols (methanol, ethanol, 1-propanol, and 2-propanol) at a hydrophobic surface using interfacial statistical associating fluid theory which is a perturbation density functional theory. The addition of a small amount of alcohol decreases the interfacial tension of water drastically. This trend in interfacial tension can be explained by the structure of water and alcohol next to the surface. The hydrophobic group of an added alcohol preferentially goes to the surface preserving the structure of water in the bulk. For a given bulk alcohol concentration, water mixed with the different alcohols has different interfacial tensions with propanol having a lower interfacial tension than methanol and ethanol. 2-propanol is not as effective in decreasing the interfacial tension as 1-propanol because it partitions poorly to the surface due to its larger excluded volume. But for a given surface alcohol mole fraction, all the alcohol mixtures give similar values for interfacial tension. For separation of alcohol from water, methods that take advantage of the high surface mole fraction of alcohol have advantages compared to separation using the vapor in equilibrium with a water-alcohol liquid.

  9. Study on the Change of Refractive Index on Mixing, Excess Molar Volume and Viscosity Deviation for Aqueous Solution of Methanol, Ethanol, Ethylene Glycol, 1-Propanol and 1, 2, 3-Propantriol at T = 292.15 K and Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Fardad Koohyar

    2012-08-01

    Full Text Available For aqueous solutions of methanol, ethanol, ethylene glycol, 1-propanol and 1, 2, 3-propantriol the change of refractive indices on mixing, excess molar volumes and viscosity deviations were calculated from the experimental data at 292.15 K. These experimental data (refractive indices, densities and viscosities were measured over the whole mole fractions range in atmospheric pressure and at T = 292.15 K. For these mixtures, excess thermodynamic properties have been correlated with the Redlich-Kister polynomial equation (and experimental equation to derive the coefficients and standard errors.

  10. Photodissociation dynamics of 1-propanol and 2-propanol at 193.3 nm

    International Nuclear Information System (INIS)

    193.3-nm photodissociation dynamics of jet-cooled 1-propanol and 2-propanol and their partially deuterated variants are examined by using the high-n Rydberg-atom time-of-flight technique. Isotope labeling studies show that O-H bond fission is the primary H-atom production channel in the ultraviolet photodissociation of both 1-propanol and 2-propanol. Center-of-mass (c.m.) product translational energy release of the RO-H dissociation channel is large, with T>=0.78 for H+1-propoxy (n-propoxy) and 0.79 for H+2-propoxy (isoproxy). Maximum c.m. translational energy release yields an upper limit of the O-H bond dissociation energy: 433±2 kJ/mol in 1-propanol and 435±2 kJ/mol in 2-propanol. H-atom product angular distribution is anisotropic (with β≅-0.79 for 1-propanol and -0.77 for 2-propanol), suggesting an electronic transition moment perpendicular to the H-O-C plane and a short excited-state dissociation lifetime (less than a rotational period). Information about photodissociation dynamics and bond energies of the partially deuterated propanols are also obtained. The 193.3-nm photodissociation dynamics of 1-propanol and 2-propanol are nearly identical to each other and are similar to those of methanol and ethanol. This indicates a common RO-H dissociation mechanism: after the nO→σ*(O-H)/3s excitation localized on the H-O-C moiety, the H atom is ejected promptly in the H-O-C plane in a time scale shorter than a rotational period of the parent molecule, and it dissociates along the O-H coordinate on the repulsive excited-state potential-energy surface with a large translational energy release

  11. Maintenance of homeostasis of endogenous ethanol as a method for the therapy of alcoholism.

    Science.gov (United States)

    Nikolaenko, V N

    2001-03-01

    We propose a new method for the therapy of alcoholism based on maintenance of homeostasis of endogenous ethanol and inhibition of alcohol dehydrogenase with emetine. After the standard antialcohol therapy, activity of this enzyme remained high or even increased, and pathological alcohol addiction also increased. Emetine normalized activity of alcohol dehydrogenase and suppressed pathological alcohol addiction. After this therapy more than 50% patients achieved stable remissions from alcoholism over 1 year, which indicated high efficiency of the proposed method.

  12. [Endogenous blood ethanol in alcoholic patients and healthy subjects with and without a family history of alcoholism].

    Science.gov (United States)

    Pron'ko, P S; Shishkin, S N; Kolesnikov, V B; Volynets, S I; Ostrovskiĭ, Iu M

    1987-01-01

    Levels of endogenous ethanol were studied in healthy males, 12-13-year-old boys (sons of alcoholics and normal fathers) and alcoholic patients (after discontinuation of all drugs). The results showed no significant differences between the groups. On the other hand endogenous ethanol concentrations were higher than normal in oligophrenic boys irrespective of whether their fathers were alcoholics or healthy subjects. In the abstinence period endogenic ethanol concentrations were the minimal in patients with delirium tremens and a severe abstinence syndrome, the dynamics of this parameter in the process of treatment being dependent on the severity of the abstinence syndrome and on the nature of treatment.

  13. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse.

    Science.gov (United States)

    Carnicella, Sebastien; Ron, Dorit; Barak, Segev

    2014-05-01

    One of the major challenges in preclinical studies of alcohol abuse and dependence remains the development of paradigms that will elicit high ethanol intake and mimic the progressive transition from low or moderate social drinking to excessive alcohol consumption. Exposure of outbred rats to repeated cycles of free-choice ethanol intake and withdrawal with the use of intermittent access to 20% ethanol in a 2-bottle choice procedure (IA2BC) has been shown to induce a gradual escalation of voluntary ethanol intake and preference, eventually reaching ethanol consumption levels of 5-6 g/kg/24 h, and inducing pharmacologically relevant blood ethanol concentrations (BECs). This procedure has recently been gaining popularity due to its simplicity, high validity, and reliable outcomes. Here we review experimental and methodological data related to IA2BC, and discuss the usefulness and advantages of this procedure as a valuable pre-training method for initiating operant ethanol self-administration of high ethanol intake, as well as conditioned place preference (CPP). Despite some limitations, we provide evidence that IA2BC and related operant procedures provide the possibility to operationalize multiple aspects of alcohol abuse and addiction in a rat model, including transition from social-like drinking to excessive alcohol consumption, binge drinking, alcohol seeking, relapse, and neuroadaptations related to excessive alcohol intake. Hence, IA2BC appears to be a useful and relevant procedure for preclinical evaluation of potential therapeutic approaches against alcohol abuse disorders.

  14. Conversion of syngas to higher alcohols over Cu-Fe-Zr catalysts induced by ethanol

    Institute of Scientific and Technical Information of China (English)

    Hongtao Zhang; Xiaomei Yang; Lipeng Zhou; Yunlai Su; Zhongmin Liu

    2009-01-01

    Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared by the conventional precipitation method. Among various procedures for ethanol induced method,it was found that incorporation of ethanol in the precipitation process was the better. After incorporation of ethanol,the crystal size of CuO decreased and the reduction of copper species became easier. The better activity of Cu-Fe-Zr catalysts prepared by ethanol induced procedures was probably caused by the higher dispersion of Cu species.

  15. Correct quantitative determination of ethanol and volatile compounds in alcohol products

    CERN Document Server

    Charapitsa, Siarhei; Sytova, Svetlana; Yakuba, Yurii

    2014-01-01

    Determination of the volume content of ethanol in the alcohol products in practice is usually determined by pycnometry, electronic densimetry, or densimetry using a hydrostatic balance in accordance with Commission Regulation No 2870/2000. However, these methods determine directly only density of the tested liquid sample and does not take into account the effects of other volatile components such as aldehydes, esters and higher alcohols. So they are appropriate only for binary water-ethanol solutions in accordance with international table adopted by the International Legal Metrology Organization in its Recommendation No 22. Availability notable concentrations of the higher alcohols and ethers in different alcohol-based products, e. g. in whisky, cognac, brandy, wine as well as in waste alcohol and alcohol beverage production, leads to the significant contribution of these compounds in the value of the density of tested alcohol-containing sample. As a result, determination of the volume of ethanol content for ...

  16. Alcoholic fatty liver in rats: Role of fat and ethanol intake

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, H.; Deveney, C.W. (VA Medical Centers, Portland, OR (United States)); Larkin, E.C.; Rao, G.A. (VA Medical Centers, Martinez, CA (United States))

    1991-03-11

    The claim that high intake of both ethanol and fat is essential to induce fatty liver and high blood alcohol levels (BAL) was tested. Two groups of rats were fed liquid diets containing 26% and 36% of calories as ethanol respectively. After 4 weeks, all rats were bled for BAL and some were sacrificed to obtain liver morphology. Remaining rats in Group 1 (26% ethanol) were switched to 36% ethanol diet and Group 2 (36% ethanol) to 26% ethanol diet. All rats were sacrificed after 4 weeks to obtain blood for BAL and liver morphology. The results indicate that high ethanol intake and high fat ingestion is not the criterion for induction of fatty liver. Inadequate ingestion of macronutrients plays a major role in alcoholic fatty liver and BAL.

  17. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    Science.gov (United States)

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  18. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    Science.gov (United States)

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  19. Catalyst Activity Comparison of Alcohols over Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  20. Ceftriaxone, a Beta-Lactam Antibiotic, Reduces Ethanol Consumption in Alcohol-Preferring Rats

    OpenAIRE

    Sari, Youssef; Sakai, Makiko; Weedman, Jason M.; Rebec, George V.; Bell, Richard L.

    2011-01-01

    Aims: Changes in glutamatergic transmission affect many aspects of neuroplasticity associated with ethanol and drug addiction. For instance, ethanol- and drug-seeking behavior is promoted by increased glutamate transmission in key regions of the motive circuit. We hypothesized that because glutamate transporter 1 (GLT1) is responsible for the removal of most extracellular glutamate, up-regulation or activation of GLT1 would attenuate ethanol consumption. Methods: Alcohol-preferring (P) rats w...

  1. Neuropeptide Y Administration into the Amygdala Suppresses Ethanol Drinking in Alcohol-Preferring (P) Rats Following Multiple Deprivations

    OpenAIRE

    Gilpin, Nicholas W.; Stewart, Robert B.; Badia-Elder, Nancy E.

    2008-01-01

    The present experiment examines the effects of NPY administered into the amygdala on ethanol drinking by alcohol-preferring P rats following long-term continuous ethanol access, with and without multiple periods of imposed ethanol abstinence. P rats had access to 15% (v/v) ethanol and water for 11 weeks followed by 2 weeks of ethanol abstinence, re-exposure to ethanol for 2 weeks, 2 more weeks of ethanol abstinence, and a final ethanol re-exposure. Immediately prior to the second ethanol re-e...

  2. Mathematical modelling of ethanol metabolism in normal subjects and chronic alcohol misusers

    OpenAIRE

    Smith, G.D.; Shaw, L. J.; Maini, P. K.; Ward, R J; Peters, T. J.; Murray, J D

    1993-01-01

    The time course of ethanol disappearance from the blood has been examined in normal males and females and in alcohol misusers. Blood alcohol estimations were made over a period of 3 hr, following an oral dose of ethanol (0.8 g/kg body weight) administered in the form of whisky. Attempts were made to fit the data to zero order, first order and mixed zero + first order kinetics. In the majority (75%) of normal females the blood ethanol concentration was still increasing at 30 min. This was only...

  3. Proceedings of the international symposium on alcohol fuel technology: methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The papers presented dealt with the following topics: international situation and economic and political aspects, use of alcohol fuels as automotive fuels, production of methanol and methyl fuels, production of ethanol, methanol application and modeling, alcohol fuel optimization, and environmental considerations. Each paper was prepared for introduction into the EDB data base. (JSR)

  4. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. PMID:25733499

  5. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P Rats.

    Directory of Open Access Journals (Sweden)

    Jessica Godfrey

    Full Text Available Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total or were given access only to water (control. Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4-desaturase (Degs2, an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels

  6. Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of cornelian cherry

    OpenAIRE

    VELE TEŠEVIĆ; NINOSLAV NIKIĆEVIĆ; SLOBODAN MILOSAVLJEVIĆ; DANICA BAJIĆ; VLATKA VAJS; IVAN VUČKOVIĆ; LJUBODRAG VUJISIĆ; IRIS ĐORĐEVIĆ; MIROSLAVA STANKOVIĆ; MILOVAN VELIČKOVIĆ

    2009-01-01

    In this study, volatile compounds were analyzed in five samples of home-made spirit beverage made by the distillation of fermented fruits of cornelian cherry (Cornus mas L.). The major volatile compounds, besides ethanol, identified and quantified were: methanol, acetaldehyde, 1-propanol, ethyl acetate, 2-methyl-1-propanol, 1-butanol, amyl alcohols, 1-hexanol and 2-phenylethanol. The minor volatiles were submitted to liquid–liquid extraction with dichloromethane and analyzed by gas chromatogr...

  7. Irritative action of alcoholic beverages in rat stomachs: a comparative study with ethanol.

    Science.gov (United States)

    Nakagiri, Akari; Kato, Shinichi; Takeuchi, Koji

    2005-01-01

    The mucosal irritative action of alcoholic beverages such as white wine, Japanese sake and whisky was examined in rat stomachs in vivo and in vitro, in comparison with ethanol. The concentration of ethanol in these alcoholic beverages was 15%. Mucosal application of ethanol (15%) and whisky in the chambered stomach caused a decrease in gastric potential difference (PD), while that of Japanese sake and white wine caused a slight increase but not decrease in PD. Likewise, both ethanol and whisky markedly reduced the cell viability of RGM1 cells after 5 min incubation, whereas neither Japanese sake nor white wine had any effect. In addition, supplementation of glucose, one of the non-alcoholic ingredients of white wine and Japanese sake, antagonized a reduction in both PD and cell viability caused by ethanol. These results suggest that the mucosal irritative action of Japanese sake and white wine is much less than that of ethanol or whisky and that these properties may be, at least partly, due to the glucose contained in these alcoholic beverages.

  8. An attempt to evaluate diagnostic and prognostic significance of blood endogenous ethanol in alcoholics and their relatives.

    Science.gov (United States)

    Ostrovsky, Y M; Pronko, P S; Shishkin, S N; Kolesnikov, V B; Volynets, S I

    1989-01-01

    Endogenous ethanol in the blood of human subjects was measured by gas chromatography. In healthy males, 12-13-year-old boys (sons of alcoholic and nonalcoholic fathers), and alcoholic inpatients (after cessation of all drugs), the endogenous ethanol levels ranged from 0 to 4.3 mg/l. The results showed no significant differences between the groups. At the period of alcohol withdrawal reactions the concentrations of endogenous ethanol were minimal in patients with delirium tremens and maximal in patients with mild alcohol withdrawal syndrome, the dynamics of this parameter being dependent on the severity of the alcohol withdrawal syndrome and the nature of the drugs prescribed.

  9. Brucine suppresses ethanol intake and preference in alcohol-preferring Fawn-Hooded rats

    OpenAIRE

    Li, Yu-ling; LIU, Qing; Gong, Qi; Li, Jun-Xu; Wei, Shou-peng; Wang, Yan-Ting; Liang, Hui; Zhang, Min; Jing, Li; Yong, Zheng; Andrew J. Lawrence; Liang, Jian-Hui

    2014-01-01

    Aim: Brucine (BRU) extracted from the seeds of Strychnos nux-vomica L is glycine receptor antagonist. We hypothesize that BRU may modify alcohol consumption by acting at glycine receptors, and evaluated the pharmacodynamic profiles and adverse effects of BRU in rat models of alcohol abuse. Methods: Alcohol-preferring Fawn-Hooded (FH/Wjd) rats were administered BRU (10, 20 or 30 mg/kg, sc). The effects of BRU on alcohol consumption were examined in ethanol 2-bottle-choice drinking paradigm, et...

  10. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Zorzano, A. (Universidad de Barcelona (Spain)); Herrera, E. (Universidad de Madrid (Spain))

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  11. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Science.gov (United States)

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <0.2% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 were observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. PMID:24625836

  12. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  13. Influence of Calcium Ion on Ethanol Tolerance of Saccharomyces bayanus and Alcoholic Fermentation by Yeasts

    OpenAIRE

    Nabais, Regina C.; Sá-Correia, Isabel; Viegas, Cristina A.; Novais, Júlio M.

    1988-01-01

    The addition of Ca2+ (as CaCl2) in optimal concentrations (0.75 to 2.0 mM) to a fermentation medium with a trace contaminating concentration of Ca2+ (0.025 mM) led to the rapid production of higher concentrations of ethanol by Saccharomyces cerevisiae, Saccharomyces bayanus, and Kluyveromyces marxianus. The positive effect of calcium supplementation (0.75 mM) on alcoholic fermentation by S. bayanus was explained by the increase in its ethanol tolerance. The ethanol inhibition of growth and fe...

  14. Alcohol-Induced Suppression of Gluconeogenesis is Greater in Ethanol Fed Female Rat Hepatocytes Than Males

    OpenAIRE

    Sumida, Ken D.; Cogger, Alma A.; Matveyenko, Aleksey V.

    2007-01-01

    The impact of alcohol-induced suppression on hepatic gluconeogenesis (HGN) after chronic ethanol consumption between males and females is unknown. To determine the effects of chronic alcohol consumption (8 weeks) on HGN, the isolated hepatocyte technique was employed on 24 hr fasted male and female Wistar rats. Livers were initially perfused with collagenase and the hepatocytes were isolated. Aliquots of the cell suspension were placed in Krebs-Henseleit buffer and incubated for 30 minutes wi...

  15. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    OpenAIRE

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal c...

  16. [Spectral study of the conformational change of yeast alcohol dehydrogenase induced by alcohol].

    Science.gov (United States)

    Zhang, Q; Yuan, J

    1998-02-01

    The conformational change of Yeast Alcohol Dehydrogenase (YADH) at the different concentration of ethanol, n-propanol and ethylene glycol was studied by means of ultraviolet spectrum, fluorescence spectrum and circular dichroism spectrum. The results showed that the ultraviolet absorbance at 220nm and 280nm as well as the relative fluorescence intensity at 336nm of YADH increased with increasing alcohol concentration. The negative peakes at 208nm and 220nm of YADH in circular dichroism spectrum with the solvent of ethanol, ethylene glycol were obviously intensified, but the 220nm peak of YADH was increased in the presence of n-propanol while the 208nm peak was decreased and red-shifted in position as to completely lost. According to the data above, it indicates that the conformation of YADH was changed with losing activity at the various concentration of alcohol.

  17. High Yield of Liquid Range Olefins Obtained by Converting i-Propanol over Zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Shunmugavel, Saravanamurugan; Hruby, S.L.;

    2009-01-01

    Methanol, ethanol, and i-propanol were converted under methanol-to-gasoline (MTH)-like conditions (400 degrees C, 1-20 bar) over zeolite H-ZSM-5. For methanol and ethanol, the catalyst lifetimes and conversion capacities are comparable, but when i-propanol is used as the reactant, the catalyst li...

  18. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  19. Effects of ethanol on offspring of C57BL/6J mice alcoholized during gestation

    Directory of Open Access Journals (Sweden)

    Grinfeld Hermann

    1999-01-01

    Full Text Available The effects of chronic alcohol consumption during pregnancy were analysed in the gestation and offspring of alcoholized mice. Female C57BL/6J mice were placed overnight with stud males and the presence of a sperm plug in the next morning indicated the onset of gestation. Pregnant mice were distributed in two weight-matched groups. In the alcoholized group, the mice received a high protein liquid diet ad libitum containing 27.5% of ethanol-derived calories (5.28% v/v from gestation day 5 to 19. The control group received the same volume of diet containing isocaloric amounts of maltose-dextrin substituted for ethanol. After postnatal day zero, the dams received food pellets and tap water ad libitum. On postnatal day 6 the pups were counted and weighed at variable intervals up to the 60th day of life. The majority of the pregnant dams that have received ethanol completed the gestational period, and the chronic consumption of alcohol did not interfere with the number of dams that gave birth. The alcoholized and control dams gained an equivalent weight and consumed an equivalent volume of diet throughout the gestation. The number of pups from alcohol diet dams was 46,26% smaller compared with the control group. There were less male than female pups in the offspring of alcoholized mice. Teratogeny like gastroschisis and limb malformation were present in the offspring of alcoholized dams. The body weight of the offspring of alcoholized mice increased from the 18th to the 36th postnatal day.

  20. Promoting Bio-Ethanol in the United States by Incorporating Lessons from Brazil's National Alcohol Program

    Science.gov (United States)

    Du, Yangbo

    2007-01-01

    Current U.S. energy policy supports increasing the use of bio-ethanol as a gasoline substitute, which Brazil first produced on a large scale in response to the 1970s energy crises. Brazil's National Alcohol Program stood out among its contemporaries regarding its success at displacing a third of Brazil's gasoline requirements, primarily due to…

  1. Ethanol induced mitochondria injury and permeability transition pore opening: Role of mitochondria in alcoholic liver disease

    OpenAIRE

    Yan, Ming; Zhu, Ping; Liu, Hui-Min; Zhang, Hai-Tao; Liu, Li

    2007-01-01

    AIM: To observe changes of mitochondria and investigate the effect of ethanol on mitochondrial perme-ability transition pore (PTP), mitochondrial membrane potential (MMP, ΔΨm) and intracellular calcium concentration in hepatocytes by establishing an animal model of alcoholic liver disease (ALD).

  2. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    In this research we demonstrated a new method to produce alcohols. It was experimentally feasible to produce ethanol, propanol and butanol from solely volatile fatty acids (VFAs) with hydrogen as electron donor. In batch tests, VFAs such as acetic, propionic and butyric acids were reduced by mixed m

  3. Unusual productions of endogenous alcohol: report of two autopsy cases.

    Science.gov (United States)

    Moriya, F; Ishizu, H; Miyaishi, S

    1991-10-01

    We experienced two autopsy cases in which endogenous alcohol productions by saprogens had been unusual. Case 1 is a victim found in a mountain stream 3 to 4 weeks after his death. Since ethanol and n-propanol concentrations in the right intrathoracic bloody fluid, pericardial sac fluid, and blood in the right side of the heart were 0.41 mg/g and 0.052 mg/g, 0.42 mg/g and 0.032 mg/g, and 0.45 mg/g and 0.025 mg/g, respectively. The ethanol detected in those specimens appeared to have been produced postmortem. The femoral muscle and urine, however, contained very little n-propanol though the ethanol levels were 0.21 mg/g and 0.05 mg/g, respectively. Thus, we judged the victim might have died soon after drinking a little alcohol. Case 2 is a victim who was stabbed in the abdomen (liver) with a knife and died due to hemorrhagic shock after 26.5 hours in spite of a peritoneotomy. It was probable that metabolic activities of the liver had decreased significantly after getting a wound. Almost 1 mg/g of ethanol and little n-propanol were detected in the heart blood. In the intraabdominal bloody fluid, however, 2.45 mg/g of ethanol and 0.079 mg/g of n-propanol were detected. n-Propanol level in the bloody fluid is equal to that in severely decomposed body and indicates that a large amount of ethanol was endogenously produced. It may be considered that the unusual ethanol production was caused by the severe peritonitis after the operation.

  4. Estimates of Ethanol Exposure in Children from Food not Labeled as Alcohol-Containing.

    Science.gov (United States)

    Gorgus, Eva; Hittinger, Maike; Schrenk, Dieter

    2016-09-01

    Ethanol is widely used in herbal medicines, e.g., for children. Furthermore, alcohol is a constituent of fermented food such as bread or yogurt and "non-fermented" food such as fruit juices. At the same time, exposure to very low levels of ethanol in children is discussed as possibly having adverse effects on psychomotoric functions. Here, we have analyzed alcohol levels in different food products from the German market. It was found that orange, apple and grape juice contain substantial amounts of ethanol (up to 0.77 g/L). Furthermore, certain packed bakery products such as burger rolls or sweet milk rolls contained more than 1.2 g ethanol/100 g. We designed a scenario for average ethanol exposure by a 6-year-old child. Consumption data for the "categories" bananas, bread and bakery products and apple juice were derived from US and German surveys. An average daily exposure of 10.3 mg ethanol/kg body weight (b.w.) was estimated. If a high (acute) consumption level was assumed for one of the "categories," exposure rose to 12.5-23.3 mg/kg b.w. This amount is almost 2-fold (average) or up to 4-fold (high) higher than the lowest exposure from herbal medicines (6 mg/kg b.w.) suggested to require warning hints for the use in children.

  5. Estimates of Ethanol Exposure in Children from Food not Labeled as Alcohol-Containing.

    Science.gov (United States)

    Gorgus, Eva; Hittinger, Maike; Schrenk, Dieter

    2016-09-01

    Ethanol is widely used in herbal medicines, e.g., for children. Furthermore, alcohol is a constituent of fermented food such as bread or yogurt and "non-fermented" food such as fruit juices. At the same time, exposure to very low levels of ethanol in children is discussed as possibly having adverse effects on psychomotoric functions. Here, we have analyzed alcohol levels in different food products from the German market. It was found that orange, apple and grape juice contain substantial amounts of ethanol (up to 0.77 g/L). Furthermore, certain packed bakery products such as burger rolls or sweet milk rolls contained more than 1.2 g ethanol/100 g. We designed a scenario for average ethanol exposure by a 6-year-old child. Consumption data for the "categories" bananas, bread and bakery products and apple juice were derived from US and German surveys. An average daily exposure of 10.3 mg ethanol/kg body weight (b.w.) was estimated. If a high (acute) consumption level was assumed for one of the "categories," exposure rose to 12.5-23.3 mg/kg b.w. This amount is almost 2-fold (average) or up to 4-fold (high) higher than the lowest exposure from herbal medicines (6 mg/kg b.w.) suggested to require warning hints for the use in children. PMID:27405361

  6. Enduring effects of chronic ethanol in the CNS: basis for alcoholism.

    Science.gov (United States)

    Diana, Marco; Brodie, Mark; Muntoni, Annalisa; Puddu, Maria C; Pillolla, Giuliano; Steffensen, Scott; Spiga, Saturnino; Little, Hilary J

    2003-02-01

    This symposium focused on functional alterations in the mesolimbic dopamine system during the abstinence phase after chronic alcohol intake. Mark Brodie first described his recordings from midbrain slices prepared after chronic alcohol treatment in vivo by daily injection in C57BL/6J mice. No changes were found in the baseline firing frequency of dopaminergic neurones in the VTA (ventral tegmental area), but the excitation produced in these neurones by an acute ethanol challenge was significantly increased in neurons from ethanol-treated mice compared with those from the saline-treated controls. There was also a significant decrease in the inhibitory response to GABA by the dopamine neurones following the chronic ethanol treatment. These data suggest that the timing pattern and mode of ethanol administration may determine the types of changes observed in dopaminergic reward area neurons. Annalisa Muntoni lectured on the relationship between electrophysiological and biochemical in vivo evidence supporting a reduction in tonic activity of dopamine neurons projecting to the nucleus accumbens at various times after suspension of chronic ethanol treatment and morphological changes affecting dopamine neurons in rat VTA. Hilary J. Little then described changes in dopaminergic neurone function in the VTA during the abstinence phase. Decreases in baseline firing were seen at 6 days after withdrawal of mice from chronic ethanol treatment but were not apparent after 2 months abstinence. Increases in the affinity of D1 receptors in the striatum, but not in the cerebral cortex, were seen however up to 2 months after withdrawal. Scott Steffensen then described his studies recording in vivo from GABA containing neurones in the VTA in freely moving rats. Chronic ethanol administration enhanced the baseline activity of these neurones and resulted in tolerance to the inhibition by ethanol of these neurones. His results demonstrated selective adaptive circuit responses within the VTA

  7. Amelioration of alcohol-induced hepatotoxicity by the administration of ethanolic extract of Sida cordifolia Linn.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2012-10-01

    Sida cordifolia Linn. (Malvaceae) is a plant used in folk medicine for the treatment of the inflammation of oral mucosa, asthmatic bronchitis, nasal congestion and rheumatism. We studied the hepatoprotective activity of 50 % ethanolic extract of S. cordifolia Linn. against alcohol intoxication. The duration of the experiment was 90 d. The substantially elevated levels of toxicity markers such as alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase due to the alcohol treatment were significantly lowered in the extract-treated groups. The activity of antioxidant enzymes and glutathione content, which was lowered due to alcohol toxicity, was increased to a near-normal level in the co-administered group. Lipid peroxidation products, protein carbonyls, total collagen and hydroxyproline, which were increased in the alcohol-treated group, were reduced in the co-administered group. The mRNA levels of cytochrome P450 2E1, NF-κB, TNF-α and transforming growth factor-β1 were found to be increased in the alcohol-treated rats, and their expressions were found to be decreased in the co-administered group. These observations were reinforced by histopathological analysis. Thus, the present study clearly indicates that 50 % ethanolic extract of the roots of S. cordifolia Linn. has a potent hepatoprotective action against alcohol-induced toxicity, which was mediated by lowering oxidative stress and by down-regulating the transcription factors.

  8. Effects of prenatal and postnatal maternal ethanol on offspring response to alcohol and psychostimulants in long evans rats.

    Science.gov (United States)

    Barbier, E; Houchi, H; Warnault, V; Pierrefiche, O; Daoust, M; Naassila, M

    2009-06-30

    An important factor that may influence addiction liability is exposure during the early life period. Exposure to ethanol, early in life, can have long-lasting implications on brain function and drugs of abuse response later in life. In the present study we investigated the behavioral responses to ethanol and to psychostimulants in Long Evans rats that have been exposed to pre- and postnatal ethanol. Since a relationship between heightened drug intake and susceptibility to drug-induced locomotor activity/sensitization has been demonstrated, we tested these behavioral responses, in control and early life ethanol-exposed animals. The young adult male and female progeny were tested for locomotor response to alcohol, cocaine and d-amphetamine. Sedative, rewarding effects of alcohol and alcohol consumption were measured. Our results show that early life ethanol exposure behaviorally sensitized animals to subsequent ethanol and psychostimulants exposure. Ethanol-exposed animals were also more sensitive to the hyperlocomotor effects of all drugs of abuse tested and to those of the dopamine receptor agonist apomorphine. Locomotor sensitization to repeated injections of cocaine was facilitated in ethanol-exposed animals. Ethanol-induced conditioned place preference was also facilitated in ethanol-exposed animals. Ethanol consumption and preference were increased after early life ethanol exposure and this was associated with decreased sensitivity to the sedative effects of ethanol. The altered behavioral responses to drugs of abuse were associated with decreased striatal dopamine transporter and hippocampal NMDAR binding. Our results outline an increased vulnerability to rewarding and stimulant effects of ethanol and psychostimulants and support the epidemiological and clinical data that suggested that early chronic exposure to ethanol may increase the propensity for later self-administration of ethanol or other substances. PMID:19348874

  9. Deletion of alcohol dehydrogenase 2 gene in Pachysolen tannophilus improves ethanol production from corn stover hydrolysates

    Directory of Open Access Journals (Sweden)

    Sen Yang

    2015-12-01

    Full Text Available Although ethanol derived from lignocellulosic biomass is a promising alternative biofuel, the conversion rate of xylose to ethanol by fermentation is not ideal due to the low efficiency of many common yeasts in utilizing xylose. Pachysolen tannophilus can convert hexose and pentose such as L-arabinose, xylose and glucose in lignocellulosic hydrolysates to ethanol simultaneously. To increase the conversion of corn stover hydrolysates to bioethanol, the effect of alcohol dehydrogenase 2 gene (adh2 deletion in P. tannophilus on bioethanol production from corn stover hydrolysates was investigated. Two adh2 deletants (heterozygote ND and homozygote MC were constructed by using the short flanking homology PCR (SFH-PCR. The ND and MC strains showed lower alcohol dehydrogenase 2 (ADH2 activity than the initial strain P-01. In the fermented pentose and hexose sugars of MC and ND, the ethanol concentrations (g/L reached 15.8 and 18.9 versus14.6 of the initial P-01, while in the corn stover hydrolysate medium, the ethanol concentrations (g/L were 9.1 for MC and 9.8 for ND versus 7.5 for the initial strain P-01. This research provides useful information for improving the conversion efficiency of hexose and pentose to bioethanol by Pachysolen tannophilus.

  10. Ethanol-water separation by pervaporation using silicone and polyvinyl alcohol membranes

    Directory of Open Access Journals (Sweden)

    Chinchiw, S.

    2006-09-01

    Full Text Available In this research, experiments were carried out to investigate the effects of operating parameters onthe pervaporation performance for the separation of ethanol-water solutions. Composite silicone membranessupported on polysulfone prepared with varied silicone contents and commercial polyvinyl alcohol (Pervap®2211, Sulzer membranes were used. The results showed that the composite silicone/polysulfone membranescoated with 3 wt% of silicone exhibited highest permeation flux with slightly lower separation factor forethanol. Furthermore, it was found that the composite silicone/polysulfone membranes were suitable for theseparation of ethanol from a dilute ethanol solutions. Both the separation factor and permeation flux of the composite membranes increased with increasing temperature and feed concentration. A membrane coated with a 7 wt% silicone gave highest separation factor of 7.32 and permeation flux of 0.44 kg/m2h at 5 wt% ethanol feed concentration and feed temperature of 70ºC. For polyvinyl alcohol membranes, the results showed that the membranes were suitable for the dehydration of concentrated ethanol solutions. The permeation flux increased and the separation factor for water decreased with increasing water feed concentration and temperature. The membrane gave highest separation factor of 248 and permeation flux of 0.02 kg/m2h at 5 wt% water feed concentration and feed temperature of 30ºC.

  11. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease

    Science.gov (United States)

    Tsedensodnom, Orkhontuya; Vacaru, Ana M.; Howarth, Deanna L.; Yin, Chunyue; Sadler, Kirsten C.

    2013-01-01

    SUMMARY Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes. PMID

  12. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  13. [Effect of tranquilizing agents on the blood level of endogenous ethanol in alcoholics].

    Science.gov (United States)

    Burov, Iu V; Treskov, V G; Drozdov, E S; Kovalenko, A E

    1983-01-01

    Experiments on alcohol addicts blood were made to study the time course of the endogenous ethanol level after a single administration of mebicar (1.5 g), a derivative of bicyclic bisuria, 50 ml of 5% sodium hydroxybutyric syrup, a derivative of gamma-hydroxybutyric acid, and 20 mg diazepam, a derivative of 1,4-benzodiazepines. The clinical effect was recorded simultaneously. It was established that different tranquilizers stimulate the increase in the endogenous ethanol level as regards the spectrum of psychotropic activity. This effect was the most pronounced with mebicar and to a less measure with diazepam.

  14. Application of metal triflate catalysts for the trans-esterification of Jatropha curcas L. oil with methanol and higher alcohols

    NARCIS (Netherlands)

    Daniel, Louis; Rasrendra, Carolus B.; Kloekhorst, Arjan; Broekhuis, Antonius A.; Manurung, Robert; Heeres, Hero J.

    2014-01-01

    This paper describes an experimental study on the application of metal triflate salts for the (trans-) esterification of fatty esters (triolein, methyl oleate, methyl linoleate), fatty acid (oleic acid), as well as Jatropha curcas L. oil with methanol and higher alcohols (ethanol, n-propanol, iso-pr

  15. Liver haemodynamics and function in alcoholic cirrhosis. Relation to testosterone treatment and ethanol consumption

    DEFF Research Database (Denmark)

    Gluud, C; Henriksen, Jens Henrik Sahl

    1987-01-01

    Liver haemodynamics and liver function were measured in 34 alcoholic cirrhotic men before entry and after 12 months (median) in a double-blind, placebo-controlled study on the effect of oral testosterone treatment (200 mg t.i.d.). Comparing data at entry with those at follow-up in the total patient...... ethanol per day decreased significantly (P less than 0.001) from 22 (65%) before entry to one (3%) during follow-up. In conclusion, oral testosterone treatment of men with alcoholic cirrhosis does not explain the significant improvement of liver haemodynamics and function observed in this study. However...

  16. Comprehensive verification of new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography

    CERN Document Server

    Charapitsa, Siarhei V; Markovsky, Mikhail G; Yakuba, Yurii F; Kotov, Yurii N

    2014-01-01

    Recently proposed new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography is investigated from different sides. Results of experimental study from three different laboratories from Belarus and Russian Federation are presented.

  17. Composition and stability of neodymium solvates in water-propanol solutions

    International Nuclear Information System (INIS)

    The spectrographical method has been used to study the composition and stability of the NdCl3 solvates, formed in the water-propanol solutions. The stability constants of mixed water-propanol solvates as well as the formation reaction equilibrium constants of the mixed solvates are calculated. The coefficients of molar extinction are determined. It is shown that the oversolvation processes in the water-propanol and water-methanol systems are similar and the oversolvation reaction equilibrium constants coincide in the both systems. It is concluded that the composition of the mixed methanol-propanol solvates will be determined by the ratio of methanol: propanol concentrations in the double alcohol methanol-propanol systems

  18. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  19. [Endogenous ethanol and its possible participation in the activity of the central nervous system in healthy subjects and alcoholics].

    Science.gov (United States)

    Kudriavtsev, R V; Ushakova, M M; Nebarakova, T P; Valentik, Iu V; Ionova, K P

    1987-01-01

    Blood concentrations of endogenous ethanol (EE) reflects the effects of various psychic and medicinal impacts. EE levels in alcoholic patients depend on the severity of alcoholism, emotional status and efficacy of treatment. Actualization of the pathologic craving for alcohol and other types of emotional excitement are attended by reduced EE concentrations whereas the disactualization of the pathological craving for alcohol and relaxation increase the EE levels. Stabilization of alcoholic patients' clinical status is attended by stabilization of EE values. It is suggested that acetaldehyde acts as a modulator of catecholamine levels both in normal subjects and alcoholics ensuring connection between EE levels and the status of the central nervous system.

  20. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    OpenAIRE

    Nicholas, H B; Persson, B; Jörnvall, H; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same c...

  1. β-Catenin is Essential for Ethanol Metabolism and Protection Against Alcohol-mediated Liver Steatosis in Mice

    OpenAIRE

    Liu, Shiguang; Yeh, Tzu-Hsuan; Singh, Vijay P.; Shiva, Sruti; Krauland, Lindsay; Li, Huanan; Zhang, Pili; Kharbanda, Kusum; Ritov, Vladimir; Monga, Satdarshan P. S.; Scott, Donald K.; Eagon, Patricia K.; Behari, Jaideep

    2012-01-01

    The liver plays a central role in ethanol metabolism and oxidative stress is implicated in alcohol-mediated liver injury. β-Catenin regulates hepatic metabolic zonation and adaptive response to oxidative stress. We hypothesized that β-catenin regulates the hepatic response to ethanol ingestion. Female liver-specific β-catenin knockout (KO) mice and wild type (WT) littermates were fed the Lieber-Decarli liquid diet (5% ethanol) in a pair-wise fashion. Liver histology, biochemistry, and gene ex...

  2. Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats

    Science.gov (United States)

    Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.

    2015-01-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  3. Increased anxiety, voluntary alcohol consumption and ethanol-induced place preference in mice following chronic psychosocial stress.

    Science.gov (United States)

    Bahi, Amine

    2013-07-01

    Stress exposure is known to be a risk factor for alcohol use and anxiety disorders. Comorbid chronic stress and alcohol dependence may lead to a complicated and potentially severe treatment profile. To gain an understanding of the interaction between chronic psychosocial stress and drug exposure, we studied the effects of concomitant chronic stress exposure on alcohol reward using two-bottle choice and ethanol-conditioned place preference (CPP). The study consisted of exposure of the chronic subordinate colony (CSC) mice "intruders" to an aggressive "resident" mouse for 19 consecutive days. Control mice were single housed (SHC). Ethanol consumption using two-bottle choice paradigm and ethanol CPP acquisition was assessed at the end of this time period. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to SHC controls. Importantly, in the two-bottle choice procedure, CSC mice showed higher alcohol intake than SHC. When testing their response to ethanol-induced CPP, CSC mice achieved higher preference for the ethanol-paired chamber. In fact, CSC exposure increased ethanol-CPP acquisition. Taken together, these data demonstrate the long-term consequences of chronic psychosocial stress on alcohol intake in male mice, suggesting chronic stress as a risk factor for developing alcohol consumption and/or anxiety disorders.

  4. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    Science.gov (United States)

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions.

  5. Neurobiological and genetic aspects of alcohol addiction: a special focus on acetaldehyde, the first metabolite of ethanol

    OpenAIRE

    Quertemont, Etienne

    2007-01-01

    Although alcoholism is one of the most common forms of addiction, its neurobiological mechanisms still remain unclear. The reinforcing properties of ethanol are mediated by the interaction of multiple neurotransmitter systems, including dopamine, serotonin, glutamate, GABA, endogenous opioids and endocannabinoids. Additionally, long term changes in these neurotransmitter systems are believed to promote the development of alcoholism, probably through specific alterations of brain regions invol...

  6. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium.

    Science.gov (United States)

    Sanvisens, Arantza; Robert, Neus; Hernández, José María; Zuluaga, Paola; Farré, Magí; Coroleu, Wifredo; Serra, Montserrat; Tor, Jordi; Muga, Robert

    2016-01-01

    Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates) during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect the presence of ethyl glucuronide (EtG) and ethyl sulfate (EtS). Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR): 26-34 years); EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0-110.6 ng/g). With respect to EtS, it was undetectable (alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health. PMID:27011168

  7. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium

    Science.gov (United States)

    Sanvisens, Arantza; Robert, Neus; Hernández, José María; Zuluaga, Paola; Farré, Magí; Coroleu, Wifredo; Serra, Montserrat; Tor, Jordi; Muga, Robert

    2016-01-01

    Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates) during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography—tandem mass spectrometry (LC-MS/MS) to detect the presence of ethyl glucuronide (EtG) and ethyl sulfate (EtS). Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR): 26–34 years); EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0–110.6 ng/g). With respect to EtS, it was undetectable (<0.01 ng/g) in the majority of samples (79.1%). Only three (6%) women reported alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health. PMID:27011168

  8. β-Catenin is Essential for Ethanol Metabolism and Protection Against Alcohol-mediated Liver Steatosis in Mice

    Science.gov (United States)

    Liu, Shiguang; Yeh, Tzu-Hsuan; Singh, Vijay P.; Shiva, Sruti; Krauland, Lindsay; Li, Huanan; Zhang, Pili; Kharbanda, Kusum; Ritov, Vladimir; Monga, Satdarshan P. S.; Scott, Donald K.; Eagon, Patricia K.; Behari, Jaideep

    2011-01-01

    The liver plays a central role in ethanol metabolism and oxidative stress is implicated in alcohol-mediated liver injury. β-Catenin regulates hepatic metabolic zonation and adaptive response to oxidative stress. We hypothesized that β-catenin regulates the hepatic response to ethanol ingestion. Female liver-specific β-catenin knockout (KO) mice and wild type (WT) littermates were fed the Lieber-Decarli liquid diet (5% ethanol) in a pair-wise fashion. Liver histology, biochemistry, and gene expression studies were performed. Plasma alcohol and ammonia levels were measured using standard assays. Ethanol-fed KO mice exhibited systemic toxicity and early mortality. KO mice exhibited severe macrovesicular steatosis and five to six-fold higher serum ALT and AST levels. KO mice had modest increase in hepatic oxidative stress, lower expression of mitochondrial superoxide dismutase (SOD-2), and lower citrate synthase activity, the first step in the tricarboxylic acid cycle. N-Acetyl cysteine (NAC) did not prevent ethanol-induced mortality in KO mice. In WT livers, β-catenin was found to co-precipitate with FoxO3, the upstream regulator of SOD-2. Hepatic alcohol dehydrogenase and aldehyde dehydrogenase activities and expression were lower in KO mice. Hepatic cytochrome P450 2E1 protein levels were upregulated in ethanol-fed WT mice but were nearly undetectable in KO mice. These changes in ethanol-metabolizing enzymes were associated with 30-fold higher blood alcohol levels in KO mice. Conclusion β-catenin is essential for hepatic ethanol metabolism and plays a protective role in alcohol-mediated liver steatosis. Our results strongly suggest that integration of these functions by β-catenin is critical for adaptation to ethanol ingestion in vivo. PMID:22031168

  9. [Ethanol metabolism and pathobiochemistry of organ damage--1992. IV. Ethanol in relation to the cardiovascular system. Hematologic, immunologic, endocrine disorders and muscle and bone damage caused by ethanol. Fetal alcohol syndrome].

    Science.gov (United States)

    Zima, T

    1993-01-01

    Peripheral vasodilatation with increased cardiac output, tachycardia and increased blood pressure are described after alcohol administration. An increased HDL-cholesterol is found in moderate drinkers (both HDL-2 and HDL-3 fractions), with diminishing risk of coronary heart diseases. Acute ethanol intake causes an increased the level of triglycerides without changes in HDL-cholesterol level. This may be put into correlation with higher incidence of cardiovascular diseases in so-called "week-end" drinkers. Alcohol abuse may result in central diabetes insipidus. An increased elimination of lactate diminishes tubular secretion of uric acid with subsequent secondary hyperuricemia. Ethanol reduced the number of lymphocytes, reduces phagocytosis by macrophages and diminishes the activity of NK-cells. Bone marrow cellulity diminishes with the subsequent reduction in erythropoiesis, trombopoiesis and leukopoiesis. Alcohol may cause sideropenic and megaloblastic anemia. There are two forms of alcohol muscle injury: the acute one, with myonecrosis and inflammatory reaction, and chronic one, with muscle weakness and atrophy. Alcohol is one of etiologic factors of osteoporosis. An acute intoxication result in transitory hypoparatthyreoidism, while chronic ethanol intake make grow the PTH level and decreases the level of D vitamin metabolises. Stimulation of cortisol secretion, decrease of testosterone level and a reversible decrease of T3 and T4 levels have been described following ethanol administration. Hypothalamic-pituitary-adrenal axis suffers alteration in alcoholics, and secondary amenorrhea is observed in female alcoholics. Ethanol behaves as an agonist on GABA receptor. Fetal alcohol syndrome together with Down's syndrome and spina bifida are the most frequent reasons of mental retardation in developed countries. Toxicity of ethanol affects the whole pregnancy period.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Reduced blood clearance and increased urinary excretion of N-nitrosodimethylamine in patas monkeys exposed to ethanol or isopropyl alcohol.

    Science.gov (United States)

    Anderson, L M; Koseniauskas, R; Burak, E S; Moskal, T J; Gombar, C T; Phillips, J M; Sansone, E B; Keimig, S; Magee, P N; Rice, J M

    1992-03-15

    Low concentrations of N-nitrosodimethylamine are metabolized in rodent and human liver by cytochrome P450IIE1, an activity competitively inhibitable by ethanol. In rodents coadministration of ethanol with N-nitrosodimethylamine results in increased tumorigenicity in extrahepatic organs, probably as a result of reduced hepatic clearance. To test this concept in a primate, the effects of ethanol cotreatment on the pharmacokinetics of N-nitrosodimethylamine were measured in male patas monkeys. Ethanol, 1.2 g/kg given p.o. before i.v. N-nitrosodimethylamine (1 mg/kg) or concurrently with an intragastric dose resulted in a 10-50-fold increase in the area under the blood concentration versus time curves and a 4-13-fold increase in mean residence times for N-nitrosodimethylamine. Isopropyl alcohol, 3.2 g/kg 24 h before N-nitrosodimethylamine, also increased these parameters 7-10-fold; this effect was associated with persistence of isopropyl alcohol and its metabolic product acetone, both IIE1 inhibitors, in the blood. While no N-nitrosodimethylamine was detected in expired air, trace amounts were found in urine. Ethanol and isopropyl alcohol pretreatment increased the maximum urinary N-nitrosodimethylamine concentration 15-50-fold and the percentage of the dose excreted in the urine by 100-800-fold. Thus ethanol and isopropyl alcohol greatly increase systemic exposure of extrahepatic organs to N-nitrosodimethylamine in a primate.

  11. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    OpenAIRE

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin; Lee, Sang Yup

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-me...

  12. Kinetics and distribution of alcohol oxidising activity in Acholeplasma and Mycoplasma species.

    Science.gov (United States)

    Abu-Amero, K K; Abu-Groun, E A; Halablab, M A; Miles, R J

    2000-02-01

    Alcohol metabolism by Acholeplasma and Mycoplasma cell suspensions was determined using changes in dissolved oxygen tension to monitor oxygen uptake. All seven Acholeplasma test species oxidised ethanol and (where tested) propanol, butanol and pentanol. The rate of oxidation, at any particular substrate concentration, decreased with increasing alcohol molecular mass. Amongst 20 Mycoplasma species tested, M. agalactiae, M. bovis, M. dispar, M. gallisepticum, M. pneumoniae and M. ovipneumoniae oxidised ethanol. Propanol was also oxidised by M. dispar and isopropanol by M. agalactiae, M. bovis and M. ovipneumoniae. Isopropanol was oxidised at particularly high rates (V(max)100 nmol O(2) taken up min(-1) mg cell protein(-1)) and with a relatively high affinity (K(m) value<2 mM); oxygen uptake was consistent with oxidation to acetone. The significance of alcohol oxidation is unclear, as it would not be predicted to lead to ATP synthesis.

  13. Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata

    DEFF Research Database (Denmark)

    Ammam, Fariza; Tremblay, Pier-Luc; Lizak, Dawid Mariusz;

    2016-01-01

    resulted in a 2.9-fold increase in ethanol production by S. ovata during H2:CO2-dependent growth. It also promoted electrosynthesis of ethanol in a S. ovata-driven MES reactor and increased acetate production 4.4-fold compared to unmodified medium. Furthermore, fatty acids propionate and butyrate were...... successfully converted to their corresponding alcohols 1-propanol and 1-butanol by S. ovata during gas fermentation. Increasing tungstate concentration enhanced conversion efficiency for both propionate and butyrate. Gene expression analysis suggested that tungsten-containing aldehyde ferredoxin...... oxidoreductases (AORs) and a tungsten-containing formate dehydrogenase (FDH) were involved in the improved biosynthesis of acetate, ethanol, 1-propanol, and 1-butanol. AORs and FDH contribute to the fatty acids re-assimilation pathway and the Wood-Ljungdahl pathway, respectively. This study presented here shows...

  14. Ethanol induced mitochondria injury and permeability transition pore opening: Role of mitochondria in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Ming Yan; Ping Zhu; Hui-Min Liu; Hai-Tao Zhang; Li Liu

    2007-01-01

    AIM: To observe changes of mitochondria and investigate the effect of ethanol on mitochondrial permeability transition pore (PTP), mitochondrial membrane potential (MMP, Δψm) and intracellular calcium concentration in hepatocytes by establishing an animal model of alcoholic liver disease (ALD).METHODS: Fourty adult male Wistar rats were randomly divided into two groups, the model group (20) was administered alcohol intragastrically plus an Oliver oil diet to establish an ALD model, and the control group (20) was given an equal amount of normal saline. The ultramicrostructural changes of mitochondria were observed under electron microscopy. Mitochondria of liver was extracted, and patency of PTP, mitochondrial membrane potential (Δψm), mitochondrial mass and intracellular calcium concentration of isolated hepacytes were detected by flow cytometry using rhodamine123 (Rh123), Nonyl-Acridine Orange and calcium fluorescent probe Fluo-3/AM, respectively.RESULTS: Membrane and cristae were broken or disappeared in mitochondria in different shapes under electron microscopy. Some mitochondria showed U shape or megamitochondrion. In the model group, liver mitochondria PTP was broken, and mitochondria swelled, the absorbance at 450 nm, A540 decreased (0.0136 ± 0.0025 vs 0.0321 ± O.0013,model vs control,P<O.01);mitochondria transmembrane potential (239.4638 ± 12.7263 vs 377.5850 ± 16.8119,P<0.01) was lowered;mitochondrial mass (17.4350 ± 1.9880 vs 31.6738 ± 3.4930,P<0.01);and [Ca2+]i was increased in liver cells (7.0020 ± 0.5008 vs 10.2050 ± 0.4701,P<0.01).CONCLUSION:Chronic alcohol intake might lead to broken mitochondria PTP,decreased mitochondria membrane potential and injury,and elevated intracellular Ca2+ production.Ethanol-induced chondriosome injury may be an important mechanism of alcoholic diseases.

  15. Separating a water-propanol mixture using PDMS pervaporation membranes

    Directory of Open Access Journals (Sweden)

    Mahacine Amrani

    2010-04-01

    Full Text Available Recovering and purifying organic solvents during chemical and pharmaceutical synthesis has great economic and environmental importance. Water-alcohol mixture pervaporation was investigated using a pervaporation cell and hy-drophobic membranes. This work studied polydimethylsiloxane (PDMS membrane performance and hydrophobic membranes for removing propanol from aqueous mixtures. PDMS is recognised as being alcohol permselective du-ring pervaporation. It was also observed that water was transferred through a hydrophobic membrane as water’s molecular size is smaller than that of propanol. A laboratory-scale pervaporation unit was used for studying this membrane’s separation characteristics in terms of pervaporation flux and selectivity for feeds containing up to water mass and 30°C-50°C. Total propanol/water flux was observed to vary as operating temperature increased. Although PDMS membranes presented good characteristics for separating water/propanol mixtures, the separation factor and pervaporation flow decreased as water content in the feed increased. The tested membrane was found to be very e-fficient for water concentrations of less than 0.3, corresponding to total flux transfer maximum.

  16. Methanol and ethanol from lignocellulosic Swedish wood fuels. Appendices. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value

  17. Serotonin-3 Receptors in the Posterior Ventral Tegmental Area Regulate Ethanol Self-Administration of Alcohol-Preferring (P) Rats

    Science.gov (United States)

    Rodd, Zachary A.; Bell, Richard L.; Oster, Scott M.; Toalston, Jamie E.; Pommer, Tylene J.; McBride, William J.; Murphy, James M.

    2015-01-01

    Several studies indicated the involvement of serotonin-3 (5-HT3) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT3 receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers were used to examine the effects of 7 consecutive bilateral micro-infusions of ICS205-930 (ICS), a 5-HT3 receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (v/v) ethanol self-administration. P rats readily acquired ethanol self-administration by the 4th session. The three highest doses (0.125, 0.25 and 1.25 ug) of ICS prevented acquisition of ethanol self-administration. During the acquisition post-injection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the 3 highest doses (0.75, 1.0 and 1.25 ug) of ICS significantly increased responding on the ethanol lever; following the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Micro-infusion of ICS into the posterior VTA did not alter the low responding on the water lever, and did not alter saccharin (0.0125% w/v) self-administration.. Micro-infusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT3 receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration, and/or repeated treatments with a 5-HT3 receptor antagonist may alter neuronal circuitry within the posterior VTA. PMID:20682192

  18. Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols

    Science.gov (United States)

    Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.

    2016-06-01

    Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.

  19. Direct effect of tetrahedral alcohol species on the SPB of gold colloids: a deconvolution study

    International Nuclear Information System (INIS)

    Aqueous gold colloids with a mean diameter of 15.4 ± 1.5 nm have been transferred into a range of water–alcohol mixtures. The influence of these mixtures (methanol, ethanol, 2-propanol, and tert-butanol), which present different hydrophobic properties, on the surface plasmon band of gold nanoparticles has been studied. Shifts of gold nanoparticles’ surface plasmon band (SPB) depend on the number of methyl groups and hydrophobic character of the alcohol molecule. Results from deconvolution analysis are explained considering variations on the grade of alcohol adsorption on the nanoparticle surface. TEM images indicate aggregation of the nanoclusters in mixtures of 2-propanol and tert-butanol. ζ potential measurements support the exchange of citrate ions by alcohol molecules, which in turn reflects the existence of an additional electrostatic component

  20. Ginsenoside-free molecules from steam-dried ginseng berry promote ethanol metabolism: an alternative choice for an alcohol hangover.

    Science.gov (United States)

    Lee, Do Ik; Kim, Seung Tae; Lee, Dong Hoon; Yu, Jung Min; Jang, Su Kil; Joo, Seong Soo

    2014-07-01

    Ethanol metabolism produces harmful compounds that contribute to liver damage and cause an alcohol hangover. The intermediate metabolite acetaldehyde is responsible for alcohol hangover and CYP2E1-induced reactive oxygen species damage liver tissues. In this study, we examined whether ginsenoside-free molecules (GFMs) from steam-dried ginseng berries promote ethanol metabolism and scavenge free radicals by stimulating primary enzymes (alcohol dehydrogenase, aldehyde dehydrogenase, CYP2E1, and catalase) and antioxidant effects using in vitro and in vivo models. The results revealed that GFM effectively scavenged 2,2-diphenyl-1-picrylhydrazyl hydrate radicals and hydroxyl radicals. Notably, GFM significantly enhanced the expression of primary enzymes within 2 h in HepG2 cells. GFM clearly removed the consumed ethanol and significantly reduced the level of acetaldehyde as well as enhancement of primary gene expression in BALB/c mice. Moreover, GFM successfully protected HepG2 cells from ethanol attack. Of the major components identified in GFM, it was believed that linoleic acid was the most active ingredient. Based on these findings, we conclude that GFM holds promise for use as a new candidate for ethanol metabolism and as an antihangover agent. PMID:24962619

  1. Ethanol-induced conditioned taste aversion in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats.

    Science.gov (United States)

    Dyr, Wanda; Wyszogrodzka, Edyta; Paterak, Justyna; Siwińska-Ziółkowska, Agnieszka; Małkowska, Anna; Polak, Piotr

    2016-03-01

    The aversive action of the pharmacological properties of ethanol was studied in selectively bred Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. For this study, a conditioned-taste aversion test was used. Male WHP and WLP rats were submitted to daily 20-min sessions for 5 days, in which a saccharin solution (1.0 g/L) was available (pre-conditioning phase). Next, this drinking was paired with the injection of ethanol (0, 0.5, 1.0 g/kg), intraperitoneally [i.p.] immediately after removal of the saccharin bottle (conditioning phase). Afterward, the choice between the saccharin solution and water was extended for 18 subsequent days for 20-min daily sessions (post-conditioning phase). Both doses of ethanol did not produce an aversion to saccharin in WLP and WHP rats in the conditioning phase. However, injection of the 1.0 g/kg dose of ethanol produced an aversion in WLP rats that was detected by a decrease in saccharin intake at days 1, 3, 7, and 10 of the post-conditioning phase, with a decrease in saccharin preference for 16 days of the post-conditioning phase. Conditioned taste aversion, measured as a decrease in saccharin intake and saccharin preference, was only visible in WHP rats at day 1 and day 3 of the post-conditioning phase. This difference between WLP and WHP rats was apparent despite similar blood ethanol levels in both rat lines following injection of 0.5 and 1.0 g/kg of ethanol. These results may suggest differing levels of aversion to the post-ingestional effects of ethanol between WLP and WHP rats. These differing levels of aversion may contribute to the selected line difference in ethanol preference in WHP and WLP rats.

  2. Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

    2012-07-01

    This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

  3. Ethanol poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  4. A novel alcohol/iron (III) fuel cell

    Science.gov (United States)

    Yi, Qingfeng; Zou, Tao; Zhang, Yuanyuan; Liu, Xiaoping; Xu, Guorong; Nie, Huidong; Zhou, Xiulin

    2016-07-01

    A novel alcohol fuel cell is constructed by using Fe3+ as the oxidation agent instead of the conventional O2. Various alcohols as the fuels are tested, including methanol, ethanol, n-propanol and iso-propanol. In this fuel cell, the anode catalysts tested are PdSn/β-cd-CNT, PdSn/CNT, Pd/β-cd-CNT, Pd/CNT and Pd/β-cd-C, prepared by using multi-walled carbon nanotube (CNT) and carbon powder (C), as well as β-cyclodexdrin (β-cd) modified CNT (β-cd-CNT) and β-cd modified C (β-cd-C), as the substrates to immobilize PdSn and Pd nanoparticles in glycol solvent. The as-synthesized PdSn/β-cd-CNT catalyst presents significantly higher electroactivity for alcohol oxidation than the conventional Pd/C catalyst. Fe3+ reduction reaction is carried out on the cathode made of carbon powder. The anolyte (alcohols in 1 mol L-1 NaOH) and catholyte (Fe3+ in 0.5 mol L-1 NaCl) are separated with a Nafion 117 membrane. Open circuit voltage (OCV) of the cell with the anode PdSn/β-cd-CNT is 1.14-1.22 V, depending upon the used alcohol. The maximum power densities with methanol, ethanol, n-propanol and iso-propanol fuels are 15.2, 16.1, 19.9 and 12.2 mW cm-2, respectively.

  5. Influence of the composition of aqueous-alcohol solvents on the thermodynamic characteristics of L-phenylalanine dissolution at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Badelin, Valentin G. [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045, Ivanovo (Russian Federation); Smirnov, Valeriy I., E-mail: vis@isc-ras.ru [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045, Ivanovo (Russian Federation)

    2011-11-10

    Highlights: Black-Right-Pointing-Pointer Enthalpies of L-phenylalanine dissolution have been measured in aqueous methanol, ethanol, 1-propanol and 2-propanol. Black-Right-Pointing-Pointer The measured data were reported as functions of composition of water + alcohol mixtures. Black-Right-Pointing-Pointer Enthalpy coefficients of pair-wise interactions have been analyzed in terms of McMillan-Mayer theory. Black-Right-Pointing-Pointer A comparative analysis of the characteristics of dissolution of L-phenylalanine and some other L-amino acids in the similar systems has been made. - Abstract: The enthalpies of L-phenylalanine dissolution in aqueous methanol, ethanol, 1-propanol and 2-propanol have been determined by calorimetry at 298.15 K and alcohol mole fractions up to x{sub 2} {approx}0.4. The standard enthalpies of solution {Delta}{sub sol}H Degree-Sign and transfer {Delta}{sub tr}H Degree-Sign from water to the mixed solvent as well as the enthalpy coefficients of L-phenylalanine-alcohol pair-wise interactions were calculated. The interrelation of the enthalpies of dissolution and transfer for L-phenylalanine with structural features of alcohols has been determined. A comparative analysis of the thermodynamic characteristics of dissolution of L-phenylalanine and some other amino acids (glycine, L-alanine, L-threonine and L-valine) in the mixtures studied has been made.

  6. Effect of the composition of a water-alcohol solvent on the thermodynamics of dissolution of DL-α-alanyl-β-alanine at 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Badelin, V. G.

    2014-12-01

    Enthalpies of solution for DL-α-alanyl-β-alanine in H2O-ethanol, H2O-1-propanol, and H2O-2-propanol mixed solvents with the alcohol mole fraction x 2 = 0-0.3 are measured at 298.15 K. Standard enthalpies of solution (Δsol H ∘), standard enthalpies of transfer of DL-α-alanyl-β-alanine from water to binary solvent (Δtr H ∘), and coefficients of enthalpies of pair interactions with alcohol molecules ( h xy) are calculated. The effect the structure and properties of alcohols and the composition of a water-alcohol mixture have on the enthalpy of dissolution for DL-α-alanyl-β-alanine are discussed. The h xy values for dipeptides of the alanine series in water-alcohol binary solvents are compared.

  7. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Alves de Souza

    2015-06-01

    Full Text Available Alcoholic liver disease is characterized by a wide spectrum of liver damage, which increases when ethanol is associated with high-fat diets (HFD. This work aimed to establish a model of alcoholic hepatic steatosis (AHS by using a combination of 10% ethanol and sunflower seeds as the source of HFD. Male rats received water or 10% ethanol and regular chow diet and/or HFD, which consisted of sunflower seeds. The food consumption, liquid intake and body weight of the rats were monitored for 30 days. After this period, blood was collected for biochemical evaluation, and liver samples were collected for histological, mitochondrial enzyme activity and oxidative stress analyses. Our results indicated that the combination of 10% ethanol and HFD induced micro- and macrosteatosis and hepatocyte tumefaction, decreased the levels of reduced glutathione and glutathione S-transferase activity and increased the level of lipoperoxidation and superoxide dismutase activity. The mitochondrial oxidation of NADH and succinate were partially inhibited. Complexes I and II were the main inhibition sites. Hepatic steatosis was successfully induced after 4 weeks of the diet, and the liver function was modified. The combination of 10% ethanol and sunflower seeds as an HFD produced an inexpensive model to study AHS in rats.

  8. Isolation, identification and optimization of ethanol producing bacteria from Saccharomyces-based fermentation process of alcohol industries in Iran

    Directory of Open Access Journals (Sweden)

    Hoda Ebrahimi

    2013-01-01

    Full Text Available Introduction: Due to the vast growth of world population, consumption of a lot of energy, limited energy supply and rising prices of fuel oil in the future, other alternative energy source is essential. Ethanol is renewable and a safe fuel and it is mainly based on microbial fermentation. The purpose of this study was isolation of high ethanol producing bacteria from the fermentation process of alcohol industries and optimization of growth conditions to be introduced to the industries. Materials and methods: The samples that were collected from fermentation tanks of alcohol industries were enriched in ZSM medium. To isolate the ethanol producing bacteria, the enriched culture was transferred on RMA agar. Bacterial growth conditions and their effects on ethanol production were optimized based on pH, growth temperature, agitation, fermentation time, initial substrate concentration and carbon and nitrogen sources. In addition, the morphological, physiological and molecular characterizations were investigated for identification of the isolates.Results: Three bacterial isolates ZYM7, ZYM8 and ZYM9 were isolated from fermentation tank. All isolates were able to produce ethanol 5.00, 7.60 and 4.00 gL-1 after 48 hours, respectively. The results demonstrated that all isolates were able to consume most sugars sources specially pentose carbon xylose. The isolate ZYM7 produced 13.00 gL-1 ethanol by consumption of xylose. The results of morphological and physiological characteristics showed that ZYM7 belonged to Lactobacillus sp. and ZYM8 and ZYM9 belonged to Acetobacter sp. Moreover, 16S rRNA sequencing and phylogenetic analyses exhibited that ZYM7 was similar to Lactobacillus rhamnosus with 99% homology and ZYM8 and ZYM9 were similar to Acetobacter pasteurianus with 99 and 98% homology, respectively.Discussion and conclusion: The results showed that that the isolated bacteria were suitable candidates to produce ethanol from raw material enriched with

  9. The Role of Ethanol Metabolism in Development of Alcoholic Steatohepatitis in the Rat

    Science.gov (United States)

    Ronis, Martin J.; Korourian, Soheila; Blackburn, Michael L.; Badeaux, Jamie; Badger, Thomas M.

    2009-01-01

    The importance of ethanol (EtOH) metabolism in development of alcoholic liver disease remains controversial. The current study examined the effects of selective inhibition of the cytochrome P450 enzyme CYP2E1 compared to inhibition of overall EtOH metabolism on the development of alcoholic steatohepatitis. Adult male Sprague-Dawley rats were fed via total enteral nutrition for 45 d with or without 10–12 g/kg/d EtOH. Some groups were given 200 mg/kg/d of the CYP2E1 inhibitor diallylsulfide (DAS). Other groups were treated with 164 mg/kg/d of the alcohol dehydrogenase inhibitor 4-methylpyazole (4MP) and dosed at 2–3 g/kg/d EtOH to maintain similar average urine EtOH concentrations. Liver pathology scores and levels of apoptosis were elevated by EtOH (P< 0.05), but did not differ significantly on co-treatment with DAS or 4MP. However, liver triglycerides were lower when EtOH was fed with DAS or 4MP (P< 0.05). Serum alanine aminotransferase (ALT) values were significantly lower in EtOH-fed 4MP-treated rats indicating reduced necrosis. Hepatic oxidative stress and the endoplasmic reticulum (ER) stress marker TRB3 were increased after EtOH (P<0.05); further increased by DAS; but partly attenuated by 4MP. DAS and 4MP both reversed EtOH increases in the cytokine, tumor necrosis factor (TNF)α, and the chemokine CXCL-2 (P<0.05). However, neither inhibitor prevented EtOH suppression of interleukins IL-4 or IL-12. Moreover, neither inhibitor prevented EtOH increases in tumor growth factor (TGF)β mRNA. EtOH and DAS additively induced hepatic hyperplasia (P<0.05). These data suggest that a significant proportion of hepatic injury following EtOH exposure is independent of alcohol metabolism. EtOH metabolism by CYP2E1 may be linked in part to triglyceride accumulation; to induction of TNFα; and to chemokine production. EtOH metabolism by ADH may be linked in part to oxidative and ER stress and necrotic injury. PMID:20116195

  10. Association between in vivo alcohol metabolism and genetic variation in pathways that metabolize the carbon skeleton of ethanol and NADH reoxidation in the Alcohol Challenge Twin Study

    Science.gov (United States)

    Lind, Penelope A; Macgregor, Stuart; Heath, Andrew C; Madden, Pamela AF; Montgomery, Grant W; Martin, Nicholas G; Whitfield, John B

    2013-01-01

    Background Variation in alcohol metabolism affects the duration of intoxication and alcohol use. While the majority of genetic association studies investigating variation in alcohol metabolism have focused on polymorphisms in alcohol or aldehyde dehydrogenases, we have now tested for association with genes in alternative metabolic pathways that catalyze the carbon skeleton of ethanol and NADH reoxidation. Methods 950 single nucleotide polymorphisms (SNPs) spanning 14 genes (ACN9, ACSS1, ACSS2, ALDH1A1, CAT, CYP2E1, GOT1, GOT2, MDH1, MDH2, SLC25A10, SLC25A11, SLC25A12, SLC25A13) were genotyped in 352 young adults who participated in an alcohol challenge study. Traits tested were blood and breath alcohol concentration, peak alcohol concentration and rates of alcohol absorption and elimination. Allelic association was tested using quantitative univariate and multivariate methods. Results A CYP2E1 promoter SNP (rs4838767, minor allele frequency 0.008) exceeded the threshold for study-wide significance (4.01 × 10−5) for two early blood alcohol concentration (BAC), eight breath alcohol concentration (BrAC) measures and the peak BrAC. For each phenotype the minor C-allele was related to a lower alcohol concentration, most strongly for the fourth BrAC (P = 2.07 × 10−7) explaining ~8% of the phenotypic variance. We also observed suggestive patterns of association with variants in ALDH1A1 and on chromosome 17 near SLC25A11 for aspects of blood and breath alcohol metabolism. A SNP upstream of GOT1 (rs2490286) reached study-wide significance for multivariate BAC metabolism (P = 0.000040). Conclusions Overall, we did not find strong evidence that variation in genes coding for proteins that further metabolize the carbon backbone of acetaldehyde, or contribute to mechanisms for regenerating NAD from NADH, affects alcohol metabolism in our European-descent subjects. However, based on the breath alcohol data, variation in the promoter of CYP2E1 may play a role in pre

  11. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  12. The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania.

    Science.gov (United States)

    Song; Pratsinis

    2000-11-15

    Bimodally porous titania powders were made by hydrolysis of titanium tetraisopropoxide (TTIP) dissolved in various alcohols (methanol, ethanol, isopropanol, and sec-butanol). The specific surface area (SSA) of the powders dried at 150 degrees C ranged from 332 to 624 m(2)/g as determined by nitrogen adsorption. At excess alcohol concentration, the SSA of the dried powders decreased in the order of sec-butanol, iso-propanol, ethanol, and methanol at a constant alcohol/TTIP molar ratio. The pore size distribution was bimodal with fine intraparticle pore diameters at 1-6 nm and larger interparticle pore diameters at 30-120 nm as determined by nitrogen adsorption isotherms. The average intraparticle pore diameter decreased with increasing alcohol concentration for methanol and ethanol, while it was rather constant at 3.3 nm, irrespective of alcohol concentration for iso-propanol and sec-butanol. The evolution of particle phase composition was determined by X-ray diffraction ranging from amorphous to crystalline anatase and rutile largely proportional to the calcination temperature and to a lesser extent on the type and concentration of alcohols. Copyright 2000 Academic Press. PMID:11049679

  13. Method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography in daily practice

    CERN Document Server

    Charapitsa, Siarhei V; Makhomet, Andrey A; Guguchkina, Tatiana I; Markovsky, Mikhail G; Yakuba, Yurii F; Kotov, Yurii N

    2016-01-01

    Recently proposed new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography (GC) is investigated from different sides including method testing on prepared standard solutions like cognac and brandy, different ethanol-water solutions and certified reference material CRM LGC5100 Whisky-Congeners. Analysis of obtained results of experimental study from four different laboratories shows that relative bias between the experimentally measured concentrations calculated in accordance with proposed method and the values of concentrations assigned during the preparation by gravimetric method for all analyzed compounds does not exceed 10 %. It is shown that relative response factors (RRF) between analyzed volatile compounds and ethanol do not depend on time of analysis and are constant for every model of GC. It is shown the possibility to use predetermined RRF in daily practice of testing laboratories and to implement this new method in the international s...

  14. Adsorption and Reaction of C1-C3 Alcohols over CeOx(111) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    D Mullins; S Senanayake; T Chen

    2011-12-31

    This study reports the interaction of methanol, ethanol, 1-propanol, and 2-propanol with well-ordered CeO{sub 2}(111) thin film surfaces. All of the alcohols adsorb at low temperature by forming alkoxy and hydroxyl species on the surface. On fully oxidized CeO{sub 2}(111), recombination occurs between some of the alkoxys and hydroxyls, resulting in alcohol desorption near 220 K. At the same temperature, some of the surface hydroxyls disproportionate to produce water and the loss of lattice O. The remaining alkoxys react above 550 K. The primary alcohols favor dehydrogenation products (aldehydes). There is a net loss of O from the system, resulting in a reduction of the ceria. The secondary alcohol, 2-propanol, undergoes primarily dehydration, producing propene with no net change in the cerium oxidation state. Reduced CeO{sub x}(111) competes with the gaseous products for available O. Little or no water is produced. The reaction selectivity for the C{sub 2} and C{sub 3} alcohols shifts toward favoring dehydration products. The loss of O from the alcohols leads to oxidation of the reduced ceria. Compared with the oxidized surface, the alkene desorption shifts to lower temperature, whereas the aldehyde desorption shifts to higher temperature. This indicates that, on the reduced surface, it is easier to break the C-O bond but more difficult to break the O-substrate bond.

  15. Determination of alcohol compounds using corona discharge ion mobility spectrometry

    Institute of Scientific and Technical Information of China (English)

    HAN Hai-yan; HUANG Guo-dong; JIN Shun-ping; ZHENG Pei-chao; XU Guo-hua; LI Jian-quan; WANG Hong-mei; CHU Yan-nan

    2007-01-01

    Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectra for six alcohol organic compounds have been systematically studied for the first time using a high-resolution IMS apparatus equipped with a discharge ionization source. Utilizing protonated water cluster ions (H2O)nH+ as the reactant ions and clean air as the drift gas, alcohol organic compounds, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol and 2-octanol, all exhibit product ion characteristic peaks in their respective ion mobility spectrometry, that is a result of proton transfer reactions between the alcohols and reaction ions (H2O)nH+. The mixture of these alcohols, including two isomers, has been detected, and the result shows that they can also be distinguished effectively in the ion mobility spectrum. The reduced mobility values have been determined, which are in very well agreement with the traditional 63Ni-IMS experimental values. The exponential dilution method was used to calibrate the alcohol concentrations, and a detection limit available for the alcohols is in order of magnitude of a few ng/L.

  16. Relative Fluid Novelty Differentially Alters the Time Course of Limited-Access Ethanol and Water Intake in Selectively Bred High Alcohol Preferring Mice

    Science.gov (United States)

    Linsenbardt, David N.; Boehm, Stephen L.

    2015-01-01

    Background The influence of previous alcohol (ethanol) drinking experience on increasing the rate and amount of future ethanol consumption might be a genetically-regulated phenomenon critical to the development and maintenance of repeated excessive ethanol abuse. We have recently found evidence supporting this view, wherein inbred C57BL/6J (B6) mice develop progressive increases in the rate of binge-ethanol consumption over repeated Drinking-in-the-Dark (DID) ethanol access sessions (i.e. ‘front-loading’). The primary goal of the present study was to evaluate identical parameters in High Alcohol Preferring (HAP) mice to determine if similar temporal alterations in limited-access ethanol drinking develop in a population selected for high ethanol preference/intake under continuous (24hr) access conditions. Methods Using specialized volumetric drinking devices, HAP mice received 14 daily 2 hour DID ethanol or water access sessions. A subset of these mice was then given one day access to the opposite assigned fluid on day 15. Home cage locomotor activity was recorded concomitantly on each day of these studies. The possibility of behavioral/metabolic tolerance was evaluated on day 16 using experimenter administered ethanol. Results The amount of ethanol consumed within the first 15 minutes of access increased markedly over days. However, in contrast to previous observations in B6 mice, ethanol front-loading was also observed on day 15 in mice that only had previous DID experience with water. Furthermore, a decrease in the amount of water consumed within the first 15 minutes of access compared to animals given repeated water access was observed on day 15 in mice with 14 previous days of ethanol access. Conclusions These data further illustrate the complexity and importance of the temporal aspects of limited-access ethanol consumption, and suggest that previous procedural/fluid experience in HAP mice selectively alters the time course of ethanol and water consumption

  17. Conversion of alcohols ({alpha}-methylated series) on AlPO{sub 4} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Campelo, J.M.; Garcia, A.; Herencia, J.F. [Universidad de Cordoba (Spain)] [and others

    1995-02-01

    The conversion (dehydration/dehydrogenation) of alcohols in {alpha}-methylated series (methanol, ethanol, 2-propanol, and tert-butanol) on AlPO{sub 4} catalysts differently prepared has been studied by microcatalytic pulse reactor technique at different temperatures and flow rates. The kinetic parameters have been obtained by analysis of the data through the Bassett-Habgood equation. Dehydration to ether and/or olefin is the major reaction process. Dehydrogenation product was only scarcely found in 2-propanol conversion. The influence of the reaction temperature upon the conversion of alcohols and the selectivities of the products was investigated. Activity increases as a function of surface acidity of the AlPO{sub 4} catalyst as well as with the {alpha}-substitution in the alcohol. Moreover, selectivity studies indicated that ethanol and 2-propanol dehydration follows a combination pathway of parallel and consecutive reactions. A good correlation between the results of dehydration conversion and acid properties, gas-chromatographically measured through the irreversible adsorption of pyridine (473 and 573 K) and 2,6-dimethylpyridine (573 K), is observed. Also, activity poisoning results indicated that Broensted acid sites of AlPO{sub 4} catalyst participated in dehydradation processes, thus strengthening the carbenium ion reaction pathway in AlPO{sub 4} catalysts. 49 refs., 3 figs., 4 tabs.

  18. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  19. Interaction between ADH1C Arg272Gln and alcohol intake in relation to breast cancer risk suggests that ethanol is the causal factor in alcohol related breast cancer

    DEFF Research Database (Denmark)

    Benzon Larsen, Signe; Vogel, Ulla Birgitte; Christensen, Jane;

    2010-01-01

    Alcohol is a risk factor for breast cancer. We wanted to determine if ADH polymorphisms which modify the rate of ethanol oxidation to acetaldehyde, were associated with breast cancer risk. We matched 809 postmenopausal breast cancer cases with 809 controls, nested within the prospective Diet......, Cancer and Health study. Among variant allele carriers of ADH1C Arg(272)Gln, alcohol intake increased the risk of breast cancer with 14% (95% CI: 1.04-1.24) per 10g alcohol/day, but not among homozygous wild type carriers (p for interaction=0.06). Thus, slow oxidation of ethanol seemed to be associated...

  20. Chemical isomeric effects on propanol glassy structures

    CERN Document Server

    Cuello, G J; Bermejo, F J; Cabrillo, C

    2002-01-01

    We have studied the structure of both propanol isomers in their glassy and crystalline states by neutron diffraction. The glass-transition temperatures of 1- and 2-propanol are about 98 and 115 K, respectively and, surprisingly, even larger differences are observed for the melting temperatures of the stable crystals, which are 148 and 185 K, respectively. Their supercooled liquid phases show rather different relaxation spectra, 1-propanol manifesting strong deviations from Debye behavior, whereas 2-propanol shows a far weaker effect. We discuss the spectra obtained for the static structure factor and the static pair correlation function D(r). There is a noticeable difference in the position of the first sharp diffraction peak, which clearly indicates a density change, well correlated with the period of the intermolecular oscillations shown by D(r). (orig.)

  1. Ethanol Metabolism by HeLa Cells Transduced with Human Alcohol Dehydrogenase Isoenzymes: Control of the Pathway by Acetaldehyde Concentration†

    Science.gov (United States)

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C.; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W.

    2010-01-01

    Background Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. Methods The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low Km aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I ADH (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. Results The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs were constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. Conclusion The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady–state acetaldehyde concentration in hepatocytes during ethanol metabolism. PMID:21166830

  2. Process for the conversion of lower alcohols to higher branched oxygenates

    Science.gov (United States)

    Barger, P.T.

    1996-09-24

    A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  3. Molecular conformation and liquid structure of 2-propanol through neutron diffraction

    Indian Academy of Sciences (India)

    A Sahoo; S Sarkar; P S R Krishna; R N Joarder

    2010-05-01

    The neutron diffraction data analysis of deuterated liquid 2-propanol at room temperature to define its molecular conformation is presented. 2-Propanol being a large molecule with twelve atomic sites, the conformation analysis is tricky and an improved method of data analysis is given. The intermolecular structural correlations, i.e., hydrogen-bonded liquid structure, can be modelled accurately to extract the nature of the average hydrogen-bonded molecular association in liquid state at room temperature. Like other alcohols these are mostly hexamer ring chain (HRC) clusters. The cluster analysis of recent X-ray data available in the literature also support the same liquid structure.

  4. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    Science.gov (United States)

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD.

  5. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    Science.gov (United States)

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD. PMID:27012191

  6. [Bim]Ac离子液体+醇二元混合体系的体积和黏度性质研究%Volumetric and Viscosity Properties of 1-Butylimidazolium Acetate Ionic Liquid/Methanol, Ethanol or 1-Propanol Binary Mixtures

    Institute of Scientific and Technical Information of China (English)

    许映杰; 俞超红; 鲁越青

    2015-01-01

    1-Butylimidazolium acetate ([Bim]Ac) ionic liquid was synthesized, and the structure was characterized by1H-NMR,13C-NMR, and IR spectroscopy. Density and viscosity of [Bim]Ac+methanol, [Bim]Ac+ethanol, and [Bim]Ac+1-propanol binary mixtures were measured over an entire range of molar fraction at T=303.15 K under atmospheric pressure using a vibrating U-shaped sample tube densimeter and Ubbelohde Suspended-level viscometer, respectively. Excess molar volumes (VE), apparent molar volumes (Vfi), partial molar volumes (Vm,i), and excess partial molar volumes (VEm,i) of the studied systems were calculated with the density data. Viscosity deviations (Δη) of the studied systems were obtained from the viscosity data.VE andΔηwere fitted by Redlich-Kister equation, respectively. The results show that theVE values of the three studied systems are negative over the entire composition range, and a minimum value is reached with mole fraction of [Bim]Acx1=0.3~0.4. TheΔηvalues of the above-mentioned systems are also negative over the entire composition range, and a minimum value is reached withx1=0.4~0.5. TheVE orΔη values of the studied systems follow an order of [Bim]Ac+methanol < [Bim]Ac+ethanol < [Bim]Ac+1-propanol, which indicates that the interaction between [Bim]Ac and alkanol increases with the increase of alkanol polarity. TheVE andΔη values can be well fitted with Redlich-Kister equation.%合成了1-丁基咪唑醋酸盐([Bim]Ac)离子液体,通过1H-NMR、13C-NMR和IR对其结构进行了表征。在303.15 K和常压下,采用U形振荡管密度计测定了[Bim]Ac+甲醇、乙醇和正丙醇二元体系的密度,用乌氏黏度计测定了体系的黏度。由密度数据计算得到了体系的超额摩尔体积(VE)、表观摩尔体积(Vfi )、偏摩尔体积(V m,i )和超额偏摩尔体积( EV m,i ),由黏度数据获得了体系的混合黏度变化(∆h),并采用Redlich-Kister方程分别关联了VE、∆h与组成的关系。结果表明:

  7. Sex differences in the toxicokinetics of inhaled solvent vapors in humans 2. 2-propanol

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate possible sex differences in the inhalation toxicokinetics of 2-propanol vapor. Nine women and eight men were exposed on different occasions for 2 h during light physical exercise (50 W) to 2-propanol (350 mg/m3) and to clean air (control exposure). The level corresponds to the Swedish occupational exposure limit. 2-Propanol and its metabolite acetone were monitored up to 24 h after exposure in exhaled air, blood, saliva, and urine by headspace gas chromatography. Body fat and lean body mass were estimated from sex-specific equations using bioelectrical impedance, body weight, height, and age. Genotypes were determined by PCR-based assays for alcohol dehydrogenase and cytochrome P450 2E1 (CYP2E1). The CYP2E1 phenotype was assessed by the 2-h plasma 6-hydroxychlorzoxazone/chlorzoxazone metabolic ratio in vivo. The toxicokinetic profile in blood was analyzed using a one-compartment population model. The following sex differences were significant at the p 0.05 level (Student's t test). The respiratory uptake was lower and the volume of distribution smaller in females. The women had a slightly shorter half-time of 2-propanol in blood and a higher apparent total clearance when corrected for body composition. However, women reached approximately four times higher 2-propanol levels in exhaled air at 10-min postexposure and onward. Acetone in blood was markedly higher in females than in males in the control experiment and slightly higher following exposure to 2-propanol. A marked sex difference was that of a 10-fold higher in vivo blood:breath ratio in men, suggesting sex differences in the lung metabolism of 2-propanol. The most marked sex difference was that of salivary acetone, for which an approximately 100-fold increase was seen in women, but no increase in men, after exposure to 2-propanol compared to clean air. The toxicokinetic analysis revealed no significant differences in toxicokinetics between subjects of different metabolic

  8. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols.

    Science.gov (United States)

    Prieto, Gonzalo; Beijer, Steven; Smith, Miranda L; He, Ming; Au, Yuen; Wang, Zi; Bruce, David A; de Jong, Krijn P; Spivey, James J; de Jongh, Petra E

    2014-06-16

    Combining quantum-mechanical simulations and synthesis tools allows the design of highly efficient CuCo/MoO(x) catalysts for the selective conversion of synthesis gas (CO+H2) into ethanol and higher alcohols, which are of eminent interest for the production of platform chemicals from non-petroleum feedstocks. Density functional theory calculations coupled to microkinetic models identify mixed Cu-Co alloy sites, at Co-enriched surfaces, as ideal for the selective production of long-chain alcohols. Accordingly, a versatile synthesis route is developed based on metal nanoparticle exsolution from a molybdate precursor compound whose crystalline structure isomorphically accommodates Cu(2+) and Co(2+) cations in a wide range of compositions. As revealed by energy-dispersive X-ray nanospectroscopy and temperature-resolved X-ray diffraction, superior mixing of Cu and Co species promotes formation of CuCo alloy nanocrystals after activation, leading to two orders of magnitude higher yield to high alcohols than a benchmark CuCoCr catalyst. Substantiating simulations, the yield to high alcohols is maximized in parallel to the CuCo alloy contribution, for Co-rich surface compositions, for which Cu phase segregation is prevented.

  9. Early Ethanol and Water Consumption: Accumulating Experience Differentially Regulates Drinking Pattern and Bout Parameters in Male Alcohol Preferring (P) vs. Wistar and Sprague Dawley Rats

    OpenAIRE

    Azarov, Alexey V.; Woodward, Donald J.

    2013-01-01

    Alcohol-preferring (P) rats develop high ethanol intake over several weeks of water/10% ethanol (10E) choice drinking. However, it is not yet clear precisely what components of drinking behavior undergo modification to achieve higher intake. Our concurrent report compared precisely measured daily intake in P vs. non-selected Wistar and Sprague Dawley (SD) rats. Here we analyze their drinking patterns and bouts to clarify microbehavioral components that are common to rats of different origin, ...

  10. Structure and dynamics of aqueous 2-propanol: a THz-TDS, NMR and neutron diffraction study.

    Science.gov (United States)

    McGregor, James; Li, Ruoyu; Zeitler, J Axel; D'Agostino, Carmine; Collins, James H P; Mantle, Mick D; Manyar, Haresh; Holbrey, John D; Falkowska, Marta; Youngs, Tristan G A; Hardacre, Christopher; Stitt, E Hugh; Gladden, Lynn F

    2015-11-11

    Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time-domain spectroscopy (THz-TDS) and NMR relaxation time analysis has been applied to investigate 2-propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at ∼90 mol% H2O. Furthermore, this is the same value at which well-established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz-TDS have been used to provide estimates of the size of the hydration shell around 2-propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2-propanol are found in the 2-propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2-propanol/water across the composition range is presented.

  11. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.

    Science.gov (United States)

    Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui

    2014-10-01

    As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.

  12. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Directory of Open Access Journals (Sweden)

    Melda Sonmez

    Full Text Available The role of membrane fluidity in determining red blood cell (RBC deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol using ektacytometry and electron paramagnetic resonance (EPR spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01. The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  13. Propanol in maize silage at Danish dairy farms

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    2010-01-01

    The objective of the present study was to investigate the prevalence maize silage containing propanol, the seasonal variation in propanol content of maize silage, and correlations between propanol and other fermentation products in maize silage collected from 20 randomly selected Danish dairy farms...... farms, the maize silage had ≥5 g propanol/kg DM. The present study indicates that dairy cows in Denmark are commonly exposed to propanol and that approximately 20% of the dairy cows will have an intake in the range of 75-100 g propanol/d under common feeding conditions....

  14. Genetic determinants of both ethanol and acetaldehyde metabolism influence alcohol hypersensitivity and drinking behaviour among Scandinavians

    DEFF Research Database (Denmark)

    Linneberg, A; Gonzalez-Quintela, A; Vidal, C;

    2010-01-01

    Although hypersensitivity reactions following intake of alcoholic drinks are common in Caucasians, the underlying mechanisms and clinical significance are not known. In contrast, in Asians, alcohol-induced asthma and flushing have been shown to be because of a single nucleotide polymorphism (SNP)...

  15. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring.

    Science.gov (United States)

    Ceccanti, Mauro; Coccurello, Roberto; Carito, Valentina; Ciafrè, Stefania; Ferraguti, Giampiero; Giacovazzo, Giacomo; Mancinelli, Rosanna; Tirassa, Paola; Chaldakov, George N; Pascale, Esterina; Ceccanti, Marco; Codazzo, Claudia; Fiore, Marco

    2016-07-01

    Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring. PMID:25940002

  16. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Wang, Linlong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  17. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    International Nuclear Information System (INIS)

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  18. Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake.

    Science.gov (United States)

    Matson, Liana M; Grahame, Nicholas J

    2015-11-01

    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive

  19. Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake.

    Science.gov (United States)

    Matson, Liana M; Grahame, Nicholas J

    2015-11-01

    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive

  20. A Study of the Solvation Structure of L-Leucine in Alcohol-Water Binary Solvents through Molecular Dynamics Simulations and FTIR and NMR Spectroscopy.

    Science.gov (United States)

    Takamuku, Toshiyuki; Hatomoto, Yohei; Tonegawa, Junko; Tsutsumi, Youichi; Umecky, Tatsuya

    2015-10-26

    The solvation structures of l-leucine (Leu) in aliphatic-alcohol-water and fluorinated-alcohol-water solvents are elucidated for various alcohol contents by using molecular dynamics (MD) simulations and IR, and (1) H and (13) C NMR spectroscopy. The aliphatic alcohols included methanol, ethanol, and 2-propanol, whereas the fluorinated alcohols were 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol. The MD results show that the hydrophobic alkyl moiety of Leu is surrounded by the alkyl or fluoroalkyl groups of the alcohol molecules. In particular, TFE and HFIP significantly solvate the alkyl group of Leu. IR spectra reveal that the Leu C-H stretching vibration blueshifts in fluorinated alcohol solutions with increasing alcohol content, whereas the vibration redshifts in aliphatic alcohol solutions. When the C-H stretching vibration blueshifts in the fluorinated alcohol solutions, the hydrogen and carbon atoms of the Leu alkyl group are magnetically shielded. Consequently, TFE and HFIP molecules may solvate the Leu alkyl group through the blue-shifting hydrogen bonds.

  1. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  2. Direct optical observation of the formation of some aliphatic alcohol radicals. A pulse radiolysis study

    Indian Academy of Sciences (India)

    E Janata

    2002-12-01

    The kinetics of the reactions of hydroxyl radicals and hydrogen atoms with some aliphatic alcohols in aqueous solutions were studied using pulse radiolysis. Based on the increase in optical absorption in the UV region, the rate constants for the reaction of hydroxyl radicals and hydrogen atoms with methanol, ethanol, 2-propanol or -butyl alcohol were determined to be 9.0 × 108, 2.2 × 109, 2.0 × 109, 6.2 × 108 and 1.1 × 106, 1.8 × 107, 5.3 × 107, 2.3 × 105 dm3 mol-1 s-1 respectively. The bimolecular decay rate constants for the alcohol radicals produced in methanol and ethanol were evaluated to be 2 .4 × 109 and 1.5 × 109 dm3 mol-1 s-1. The values observed are in fairly good agreement with those reported earlier.

  3. Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Stephen Mason

    2012-01-01

    Full Text Available Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P<0.01, and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function.

  4. MAMMALIAN METABOLISM AND DISTRIBUTION OF PERFLUOROOCTYL ETHANOL (8-2 TELOMER ALCOHOL) AND ITS OXIDATION METABOLITES

    Science.gov (United States)

    Perfluorinated compounds have been shown to be globally distributed, bioaccumulative, persistent and potentially toxic. It has been hypothesized that many precursor fluorinated compounds, including the telomer alcohols, degrade or metabolize to the common metabolite PFOA.

  5. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats.

    Science.gov (United States)

    Rao, P S S; Goodwani, S; Bell, R L; Wei, Y; Boddu, S H S; Sari, Y

    2015-06-01

    Chronic ethanol consumption is known to downregulate expression of the major glutamate transporter 1 (GLT-1), which increases extracellular glutamate concentrations in subregions of the mesocorticolimbic reward pathway. While β-lactam antibiotics were initially identified as potent upregulators of GLT-1 expression, only ceftriaxone has been extensively studied in various drug addiction models. Therefore, in this study, adult male alcohol-preferring (P) rats exposed chronically to ethanol were treated with other β-lactam antibiotics, ampicillin, cefazolin or cefoperazone (100mg/kg) once daily for five consecutive days to assess their effects on ethanol consumption. The results demonstrated that each compound significantly reduced ethanol intake compared to the saline-treated control group. Importantly, each compound significantly upregulated both GLT-1 and pAKT expressions in the nucleus accumbens and prefrontal cortex compared to saline-treated control group. In addition, only cefoperazone significantly inhibited hepatic aldehyde dehydrogenase-2 enzyme activity. Moreover, these β-lactams exerted only a transient effect on sucrose drinking, suggesting specificity for chronically inhibiting ethanol reward in adult male P rats. Cerebrospinal fluid concentrations of ampicillin, cefazolin or cefoperazone have been confirmed using high-performance liquid chromatography. These findings demonstrate that multiple β-lactam antibiotics demonstrate efficacy in reducing alcohol consumption and appear to be potential therapeutic compounds for treating alcohol abuse and/or dependence. In addition, these results suggest that pAKT may be an important player in this effect, possibly through increased transcription of GLT-1.

  6. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis.

    Science.gov (United States)

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-06-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.

  7. Fetal Alcohol Syndrome, Chemo-Biology and OMICS: Ethanol Effects on Vitamin Metabolism During Neurodevelopment as Measured by Systems Biology Analysis

    Science.gov (United States)

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães

    2014-01-01

    Abstract Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment. PMID:24816220

  8. Developmental regulation of neuroligin genes in Japanese ricefish (Oryzias latipes) embryogenesis maintains the rhythm during ethanol-induced fetal alcohol spectrum disorder.

    Science.gov (United States)

    Haron, Mona H; Khan, Ikhlas A; Dasmahapatra, Asok K

    2014-01-01

    Although prenatal alcohol exposure is the potential cause of fetal alcohol spectrum disorder (FASD) in humans, the molecular mechanism(s) of FASD is yet unknown. We have used Japanese ricefish (Oryzias latipes) embryogenesis as an animal model of FASD and reported that this model has effectively generated several phenotypic features in the cardiovasculature and neurocranial cartilages by developmental ethanol exposure which is analogous to human FASD phenotypes. As FASD is a neurobehavioral disorder, we are searching for a molecular target of ethanol that alters neurological functions. In this communication, we have focused on neuroligin genes (nlgn) which are known to be active at the postsynaptic side of both excitatory and inhibitory synapses of the central nervous system. There are six human NLGN homologs of Japanese ricefish reported in public data bases. We have partially cloned these genes and analyzed their expression pattern during normal development and also after exposing the embryos to ethanol. Our data indicate that the expression of all six nlgn genes in Japanese ricefish embryos is developmentally regulated. Although ethanol is able to induce developmental abnormalities in Japanese ricefish embryogenesis comparable to the FASD phenotypes, quantitative real-time PCR (qPCR) analysis of nlgn mRNAs indicate unresponsiveness of these genes to ethanol. We conclude that the disruption of the developmental rhythm of Japanese ricefish embryogenesis by ethanol that leads to FASD may not affect the nlgn gene expression at the message level.

  9. The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions.

    Science.gov (United States)

    Pineda, Erika; Encalada, Rusely; Olivos-García, Alfonso; Néquiz, Mario; Moreno-Sánchez, Rafael; Saavedra, Emma

    2013-01-16

    By applying metabolic control analysis and inhibitor titration we determined the degree of control (flux control coefficient) of pyruvate:ferredoxin oxidoreductase (PFOR) and bifunctional aldehyde-alcohol dehydrogenase (ADHE) over the fluxes of fermentative glycolysis of Entamoeba histolytica subjected to aerobic conditions. The flux-control coefficients towards ethanol and acetate formation determined for PFOR titrated with diphenyleneiodonium were 0.07 and 0.09, whereas for ADHE titrated with disulfiram were 0.33 and -0.19, respectively. ADHE inhibition induced significant accumulation of glycolytic intermediates and lower ATP content. These results indicate that ADHE exerts significant flux-control on the carbon end-product formation of amoebas subjected to aerobic conditions. PMID:23201265

  10. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    Directory of Open Access Journals (Sweden)

    Michelly C. dos Santos

    2010-01-01

    Full Text Available An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, activity, and ideal solution.

  11. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    OpenAIRE

    Michelly C. dos Santos; Aline P. Moraes; Maykon A. Lemes; Emília C. D. Lima; Anselmo E. de Oliveira

    2010-01-01

    An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, acti...

  12. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice.

    Science.gov (United States)

    Bahi, Amine; Sadek, Bassem; Nurulain, Syed M; Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2015-11-01

    It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism.

  13. Chronic Ethanol Exposure Effects on Vitamin D Levels Among Subjects with Alcohol Use Disorder

    Science.gov (United States)

    Ogunsakin, Olalekan; Hottor, Tete; Mehta, Ashish; Lichtveld, Maureen; McCaskill, Michael

    2016-01-01

    Vitamin D has been previously recognized to play important roles in human immune system and function. In the pulmonary system, vitamin D regulates the function of antimicrobial peptides, especially cathelicidin/LL-37. Human cathelicidin/LL-37 is a bactericidal, bacteriostatic, and antiviral endogenous peptide with protective immune functions. Chronic exposure to excessive alcohol has the potential to reduce levels of vitamin D (inactive vitamin D [25(OH)D3] and active vitamin D [1, 25(OH)2D3]) and leads to downregulation of cathelicidin/LL-37. Alcohol-mediated reduction of LL-37 may be partly responsible for increased incidence of more frequent and severe respiratory infections among subjects with alcohol use disorder (AUD). The objective of this study was to investigate the mechanisms by which alcohol exerts its influence on vitamin D metabolism. In addition, the aim was to establish associations between chronic alcohol exposures, levels of pulmonary vitamin D, and cathelicidin/LL-37 using broncho-alveolar lavage fluid samples of subjects with AUD and healthy controls. Findings from the experiment showed that levels of inactive vitamin D (25(OH)D3), active vitamin D (1, 25(OH)2D3), cathelicidin/LL-37, and CYP27B1 proteins were significantly reduced (P vitamin D and results in subsequent downregulation of the antimicrobial peptide, LL-37, in the human pulmonary system.

  14. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  15. RAB GTPASES ASSOCIATE WITH ISOLATED LIPID DROPLETS (LDS) AND SHOW ALTERED CONTENT AFTER ETHANOL ADMINISTRATION: POTENTIAL ROLE IN ALCOHOL-IMPAIRED LD METABOLISM

    Science.gov (United States)

    Rasineni, Karuna; McVicker, Benita L.; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2013-01-01

    Background Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g. Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol damaged hepatocytes. Since these Rab GTPases are crucial regulators of protein trafficking, we examined the effect ethanol administration has on hepatic Rab protein content and association with LDs. Methods Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. Results Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in ethanol-fed rats. Rabs 1, 2, 3d, 5, 7 and 18 were analyzed in post-nuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5 and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed ethanol-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an ethanol-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in ethanol-fed rat sections. Conclusion Chronic ethanol feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease. PMID:24117505

  16. Exploiting gas diffusion for non-invasive sampling in flow analysis: determination of ethanol in alcoholic beverages

    Directory of Open Access Journals (Sweden)

    Simone Vicente

    2006-03-01

    Full Text Available A tubular gas diffusion PTFE membrane is exploited for non-invasive sampling in flow analysis, aiming to develop an improved spectrophotometric determination of ethanol in alcoholic beverages. The probe is immersed into the sample, allowing ethanol to diffuse through the membrane. It is collected into the acceptor stream (acidic dichromate solution, leading to formation of Cr(III, monitored at 600 nm. The analytical curve is linear up to 50% (v/v ethanol, baseline drift is Uma membrana tubular de PTFE permeável a espécies gasosas foi empregada como sonda em sistemas de análises em fluxo visando a proposta de uma estratégia de amostragem não invasiva. Como aplicação, foi selecionada a determinação espectrofotométrica de etanol em bebidas alcoólicas. A sonda é imersa na amostra, permitindo que o analito se difunda através desta e seja coletado pelo fluxo aceptor (solução ácida de dicromato, levando à formação de Cr(III, o qual é monitorado a 600 nm. Linearidade da curva analítica é verificada até 50,0% (v/v de etanol (r > 0,998; n = 8, derivas de linha base são menores do que 0,005 absorbância durante períodos de 4 horas de operação e a velocidade analítica é de 30 h-1 o que corresponde a 0.6 mmol K2Cr2O7 por determinação. Os resultados são precisos (d.p.r. < 2% e concordantes com aqueles obtidos por um método oficial.

  17. INFLUENCE OF ALCOHOL-BASED NONSOLVENTS ON THE FORMATION AND MORPHOLOGY OF PVDF MEMBRANES IN PHASE INVERSION PROCESS

    Institute of Scientific and Technical Information of China (English)

    Dan-ying Zuo; Bao-ku Zhu; Jian-hua Cao; You-yi Xu

    2006-01-01

    Through the preparation of PVDF membranes using various nonsolvent coagulation baths following the phase inversion process, the influence of alcohol-based nonsolvents on the formation and structure of PVDF membranes were investigated. The light scattering and light transmission measurements were used to characterize the equilibrium phase diagram and the gelation speed, respectively. The locations of the crystallization-induced gelation boundaries for various systems and precipitation processes were explained from the corresponding thermodynamic and kinetic parameters. It was found that the better affinity between alcohol-based nonsolvents and DMAc solvent caused the gelation boundaries further away from the PVDF-DMAc axis with the coagulation bath varying from water, methanol, ethanol to iso-propanol. Due to the lower exchange rate of DMAc and alcohols, the delayed demixing took place for the membrane-forming using alcohols as baths, and the delayed time became longer when the coagulation bath was changed from methanol, ethanol to iso-propanol.The characterization results of membranes indicate that the influence of nonsolvents on the phase diagram and the precipitation process are in agreement with those on the membrane morphology. The better thermodynamic stability and a low exchange diffusion rate of PVDF/DMAc/alcohols favor the liquid-solid phase separation in gelation process, and therefore yield the membranes with a porous upper surface, a particular bottom surface and symmetrical structure.

  18. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2015-01-01

    The Cubic plus association (CPA) equation of state has been previously applied to a variety of binary systems containing CO2 with alkanes, water, alcohols and glycols as well as a few multicomponent mixtures (with triethylene glycol, water and methane). In this study, we evaluate the performance...... of CPA for ternary and multicomponent CO2 mixtures containing alcohols (methanol, ethanol or propanol) water and hydrocarbons. This work belongs to a series of studies aiming to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes...

  19. Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production.

    Science.gov (United States)

    Khan, Abdul Quaiyoom; Nafees, Sana; Sultana, Sarwat

    2011-01-11

    Oxidative stress and inflammation are two major etiological factors that are suggested to play key roles in the development of ethanol induced liver injury. Release of proinflammatory cytokine like tumor necrosis factor alpha (TNF-α) and activation of nuclear factor kappa-B (NFκ-B) may strongly intensify inflammation and cell damage. Additionally, reactive oxygen species (ROS) also exerts significant effect in this whole cell signaling machinery. The present study was designed to investigate the protective effects of perillyl alcohol (POH) on ethanol-induced acute liver injury in Wistar rats and its probable mechanism. We have successfully demonstrated that pre-treatment with POH, besides exerting antioxidant activity might be able to modulate TNF-α release and NFκ-B activation. Rats were divided into five groups and treated with ethanol or POH via an intragastric tube for one week. Control group was treated with vehicle, and ethanol treated group was given ethanol (5 g/kg body wt). Animal of treatment groups were pretreated with POH (50 & 100 mg/kg body wt) and have been given ethanol. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase and hepatic malondialdehyde were increased significantly by ethanol treatment. Ethanol administration decreased hepatic reduced glutathione content and various antioxidant enzymes activity. TNF-α production and NFκ-B activation was also found to be increased after ethanol administration. POH pre-treatment significantly ameliorates ethanol induced acute liver injury possibly by inhibition of lipid peroxidation, replenishment of endogenous enzymatic and non-enzymatic defense system, downregulation of TNF-α as well as NFκ-B.

  20. Influence of ethanol on development of hyperplastic nodules in alcoholic men with micronodular cirrhosis

    DEFF Research Database (Denmark)

    Gluud, C; Christoffersen, Pernille Yde; Eriksen, J;

    1987-01-01

    The type of cirrhosis was blindly evaluated in follow-up liver biopsies performed on 106 alcoholic men with micronodular cirrhosis. The median time interval from entry to follow-up liver biopsy was 31 mo (range, 3-44 mo). Patients were stratified into four groups according to their maximal...

  1. Liver haemodynamics and function in alcoholic cirrhosis. Relation to testosterone treatment and ethanol consumption

    DEFF Research Database (Denmark)

    Gluud, C; Henriksen, J H

    1987-01-01

    Liver haemodynamics and liver function were measured in 34 alcoholic cirrhotic men before entry and after 12 months (median) in a double-blind, placebo-controlled study on the effect of oral testosterone treatment (200 mg t.i.d.). Comparing data at entry with those at follow-up in the total patient...

  2. Studies of the behaviour of alcohols as co-surfactants in stabilizing microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, P. (Chemistry Dept., D.A.V. (P.G.) Coll., Muzaffarnagar- (India)); Chand, M. (Chemistry Dept., D.A.V. (P.G.) Coll., Muzaffarnagar- (India))

    Micoremulsion formation was investigated in the following quaternary systems. Water/oil/surfactant/co-surfactant alcohol systems i.e. (i) water/xylene, benzene, toluene/tween-20/propanol-1, propanol-2, methanol, (ii) water/xylene, benzene, toluene/sodium dodecyl benzene sulphonate/propanol-1, propanol-2, methanol, (iii) water/xylene, benzene, toluene/dodecyl ammonium chloride/propanol-1, propanol-2, methanol. The formation of microemulsions is explained in terms of ternary phase diagrams for all three nonionic, anionic and cationic surfactants used. The viscosities and densities of the microemulsions were determined in all the systems. (orig.)

  3. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

    Directory of Open Access Journals (Sweden)

    Mohamed H. Frikha

    2009-11-01

    Full Text Available Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10 were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95% without affecting the original activity of the clay.

  4. Is the hypoxia-inducible factor-1 alpha mRNA expression activated by ethanol-induced injury, the mechanism underlying alcoholic liver disease?

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Shao-Hua Chen; Yu Zhang; Chao-Hui Yu; Shu-Dan Li; You-Ming Li

    2006-01-01

    BACKGROUND: Excessive alcohol consumption can result in multiple organ injury, of which alcoholic liver disease (ALD) is the most common. With economic development and improvement of living standards, the incidence of diseases caused by alcohol abuse has been increasing in China, although its pathogenesis remains obscure. The aim of this study was to investigate the role of hypoxia in chronic ALD. METHODS:Twenty-eight male Sprague-Dawley rats were randomized into a control group (n=12) with a normal history and an experimental group (n=16) fed with 10 ml/kg of 56%(vol/vol) ethanol once per day by gastric lavage for 24 weeks. At 24 weeks, blood samples were collected and then the rats were killed. Liver samples were frozen at-80 ℃and used for RT-PCR;other liver samples were obtained for immunohistochemical staining. RESULTS:When the period of alcohol consumption increased, the positive rate of expression of hypoxia-inducible factor-1 alpha (HIF-1α) mRNA was more signiifcantly elevated in the liver of the alcohol group than in the control group (P≤0.05). The HIF-1αprotein located in the cytoplasm was seldom expressed in the control group, but signiifcantly in the alcohol group (P≤0.01). CONCLUSION: HIF-1α mRNA expression was activated by ethanol-induced injury in this study, suggesting that hypoxia is involved in the underlying mechanism of ALD.

  5. Alcohol

    Science.gov (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  6. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  7. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Monakhova Yulia B

    2011-01-01

    Full Text Available Abstract Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1, with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit, without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM. The average concentration then decreased at the 2-min (156 μM, 5-min (76 μM and 10-min (40 μM sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral

  8. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    Science.gov (United States)

    2011-01-01

    Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM). The average concentration then decreased at the 2-min (156 μM), 5-min (76 μM) and 10-min (40 μM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral cancer associated with

  9. Ethanol oxidation and the inhibition by drugs in human liver, stomach and small intestine: Quantitative assessment with numerical organ modeling of alcohol dehydrogenase isozymes.

    Science.gov (United States)

    Chi, Yu-Chou; Lee, Shou-Lun; Lai, Ching-Long; Lee, Yung-Pin; Lee, Shiao-Pieng; Chiang, Chien-Ping; Yin, Shih-Jiun

    2016-10-25

    Alcohol dehydrogenase (ADH) is the principal enzyme responsible for metabolism of ethanol. Human ADH constitutes a complex isozyme family with striking variations in kinetic function and tissue distribution. Liver and gastrointestinal tract are the major sites for first-pass metabolism (FPM). Their relative contributions to alcohol FPM and degrees of the inhibitions by aspirin and its metabolite salicylate, acetaminophen and cimetidine remain controversial. To address this issue, mathematical organ modeling of ethanol-oxidizing activities in target tissues and that of the ethanol-drug interactions were constructed by linear combination of the corresponding numerical rate equations of tissue constituent ADH isozymes with the documented isozyme protein contents, kinetic parameters for ethanol oxidation and the drug inhibitions of ADH isozymes/allozymes that were determined in 0.1 M sodium phosphate at pH 7.5 and 25 °C containing 0.5 mM NAD(+). The organ simulations reveal that the ADH activities in mucosae of the stomach, duodenum and jejunum with ADH1C*1/*1 genotype are less than 1%, respectively, that of the ADH1B*1/*1-ADH1C*1/*1 liver at 1-200 mM ethanol, indicating that liver is major site of the FPM. The apparent hepatic KM and Vmax for ethanol oxidation are simulated to be 0.093 ± 0.019 mM and 4.0 ± 0.1 mmol/min, respectively. At 95% clearance in liver, the logarithmic average sinusoidal ethanol concentration is determined to be 0.80 mM in accordance with the flow-limited gradient perfusion model. The organ simulations indicate that higher therapeutic acetaminophen (0.5 mM) inhibits 16% of ADH1B*1/*1 hepatic ADH activity at 2-20 mM ethanol and that therapeutic salicylate (1.5 mM) inhibits 30-31% of the ADH1B*2/*2 activity, suggesting potential significant inhibitions of ethanol FPM in these allelotypes. The result provides systematic evaluations and predictions by computer simulation on potential ethanol FPM in target tissues and hepatic

  10. Ultrasonic study on molecular interactions in binary mixtures of formamide with 1-propanol or 2-propanol

    Institute of Scientific and Technical Information of China (English)

    Manju Rani; Suman Gahlyan; Ankur Gaur; Sanjeev Maken

    2015-01-01

    Ultrasonic speeds have been measured at 298.15 K and 308.15 K for mixtures of formamide+1-propanol or 2-propanol. For an equimolar mixture, excess molar compressibility follows the sequence of 1-propanol N 2-propanol. The ultrasonic speed data are correlated by various correlations such as Nomoto's relation, van Dael's mixing relation and impedance dependence relation, and analyzed in terms of Jacobson's free length theory and Schaaff's collision factor theory. Excess isentropic compressibility is calculated from ex-perimental ultrasonic speed data and previously reported excess volume data. The excess molar ultrasonic speed and isentropic compressibility values are fitted to Redlich–Kister polynomial equation. Other proper-ties such as molecular association, avallable volume, free volume, and intermolecular free length are also calculated. The excess isentropic compressibility data are also interpreted in terms of graph theoretical ap-proach. The calculated isentropic compressibility values are well consistent with the experimental data. It is found that the interaction between formamide and propanol increases when hydroxyl group attached to a carbon atom has more–CH3 groups.

  11. 2-甲基-3-丁烯-2-醇+直链一元醇二元体系的过量摩尔体积和表观摩尔体积298.15 K)%Excess Molar Volume and Apparent Molar Volume of Binary Mixtures of 2-Methyl-3-buten-2-ol with 1-Alcohol at 298.15 K

    Institute of Scientific and Technical Information of China (English)

    刘迪霞; 李浩然; 邓东顺; 韩世钧

    2002-01-01

    Excess molar volumes (VEm) of binary mixtures of 2-methyl-3-buten-2-ol [CH3C(OH)(CH3)CHCH2]with four 1-alcohols: methanol, ethanol, 1-propanol and 1-butanol at 298.15 K and atmospheric pressure are derived from density measurements with a vibrating-tube densimeter. All the excess volumes are negative in the systems over the entire composition range. The results are correlated with the Redlich-Kister equation. The effects of chain length of 1-alcohols on VmE are discussed. The apparent molar volumes of 2-methyl-3-buten-2-ol and 1-alcohols are calculated respectively.

  12. Alcohol-non-preferring Sardinian rats exhibit a higher ethanol-induced taurine increase compared to alcohol-preferring Sardinian rats: a microdialysis study

    OpenAIRE

    Quertemont, Etienne; Lallemand, Frédéric; Colombo, Giancarlo; de Witte, Philippe

    1999-01-01

    It is well known that ethanol injections induce increases in the extracellular taurine concentration from various rat brain regions. Furthermore, recent studies have shown that taurine supplementation modulates the ethanol reinforcing effects in a place conditioning experiment. However, it is unknown whether there is a relationship between this taurine increase and the ethanol drinking behaviors. In the present microdialysis experiments, we compared the effects of ethanol injections (1.0 and ...

  13. Close correlation between heat shock response and cytotoxicity in Neurospora crassa treated with aliphatic alcohols and phenols

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, U.; Schweim, P.; Fracella, F.; Rensing, L. [Univ. of Bremen (Germany)

    1995-03-01

    In Neurospora crassa the aliphatic alcohols methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, ethylene glycol, glycerol, and allyl alcohol and the phenolic compounds phenol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, sodium salicylate, and acetylsalicylic acid were analyzed with respect to their capacities to induce heat shock proteins (HSP) and to inhibit protein synthesis. Both the alcohols and phenols showed the greatest levels of HSP induction at concentrations which inhibited the overall protein synthesis by about 50%. The abilities of the different alcohols to induce the heat shock response are proportional to their lipophilicities: the lipophilic alcohol isobutanol is maximally inductive at about 0.6 M, whereas the least lipophilic alcohol, methanol, causes maximal induction at 5.7 M. The phenols, in general, show a higher capability to induce the heat shock response. The concentrations for maximal induction range between 25 mM (sodium salicylate) and 100 mM (resorcinol). Glycerol (4.1 M) shifted the concentration necessary for maximal HSP induction by hydroquinone from 50 to 200 mM. The results reveal that the induction of HSP occurs under conditions which considerably constrain cell metabolism. The heat shock response, therefore, does not represent a sensitive marker for toxicity tests but provides a good estimate for the extent of cell damage.

  14. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Science.gov (United States)

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  15. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  16. Endogenous ethanol production in trauma victims associated with medical treatment.

    Science.gov (United States)

    Moriya, F; Hashimoto, Y

    1996-08-01

    Four cases of trauma, where endogenous ethanol production was suspected to have been occurred in association with medical treatment, are reported. To discriminate endogenous ethanol produced de novo by bacteria from exogenous ethanol by drinking, various tissues and body fluids, such as brain and cerebrospinal fluid, together with blood obtained from various locations, were subjected to analysis for both ethanol and n-propanol. The first individual was a 40-year-old man who had been stabbed in the abdomen with a knife and had died of bleeding about 12 h after peritoneotomy, and autopsied 12 h later. In the heart blood, 0.44 mg/g ethanol and 0.005 mg/g n-propanol were detected. Ethanol levels in the cerebrospinal fluid, vitreous humor and brain, reflecting exogenous ethanol levels, were 0.08-0.16 mg/g, and no n-propanol was detected in any of the specimens. The second individual was a 45-year-old man who had been punched hard in the head and face and had died of traumatic shock about 12 h after hospitalization, and autopsied 12 h later. The heart blood concentrations of ethanol and n-propanol were 0.15 and 0.008 mg/g respectively, and a subdural hematoma contained only 0.05 mg/g ethanol and non n-propanol. The third individual was a 34-year-old man who suffered incised wounds of the left arm and head with a sickle and had died of hemorrhagic shock. In the heart blood, 0.30 mg/g ethanol and 0.026 mg/g n-propanol were detected; there was 0.04 mg/g ethanol and no n-propanol in the brain. The fourth individual was a 76-year-old woman who had been hit by a motorcycle and had died of liver rupture about 1 h after admission to a hospital. The heart blood contained 0.22 mg/g ethanol and 0.002 mg/g n-propanol. Only a trace of ethanol and no n-propanol were detected in the pericardial sac fluid and cerebrospinal fluid.

  17. Effect of calcium chloride on the isobaric vapor-liquid equilibrium of 1-propanol + water

    Energy Technology Data Exchange (ETDEWEB)

    Iliuta, M.C.; Thyrion, F.C. [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.; Landauer, O.M. [Univ. Politehnica Bucharest (Romania)

    1996-05-01

    The effect of calcium chloride at salt mole fractions from 0.02 to saturation on the vapor-liquid equilibrium (VLE) of 1-propanol + water has been studied at 101.32 kPa using a modified Othmer equilibrium still. The salt exhibited a salting-out effect of the alcohol over the whole range of liquid composition, the azeotrope being eliminated at salt mole fractions greater than 0.080. A liquid phase splitting into two immiscible liquid phases on the whole range of salt concentration and over a liquid range of about 0.01--0.54 1-propanol mole fraction (salt-free basis) was observed. The results were compared with the values predicted from the extended UNIQUAC models of Sander et al. and Macedo et al. and the modified UNIFAC group-contribution model of Kikic et al.

  18. Comparison of dehydroepiandrosterone (DHEA) and pregnanolone with existing pharmacotherapies for alcohol abuse on ethanol- and food-maintained responding in male rats.

    Science.gov (United States)

    Hulin, Mary W; Lawrence, Michelle N; Amato, Russell J; Weed, Peter F; Winsauer, Peter J

    2015-03-01

    The present study compared two putative pharmacotherapies for alcohol abuse and dependence, dehydroepiandrosterone (DHEA) and pregnanolone, with two Food and Drug Administration (FDA)-approved pharmacotherapies, naltrexone and acamprosate. Experiment 1 assessed the effects of different doses of DHEA, pregnanolone, naltrexone, and acamprosate on both ethanol- and food-maintained responding under a multiple fixed-ratio (FR)-10 FR-20 schedule, respectively. Experiment 2 assessed the effects of different mean intervals of food presentation on responding for ethanol under a FR-10 variable-interval (VI) schedule, whereas Experiment 3 assessed the effects of a single dose of each drug under a FR-10 VI-80 schedule. In Experiment 1, all four drugs dose-dependently decreased response rate for both food and ethanol, although differences in the rate-decreasing effects were apparent among the drugs. DHEA and pregnanolone decreased ethanol-maintained responding more potently than food-maintained responding, whereas the reverse was true for naltrexone. Acamprosate decreased responding for both reinforcers with equal potency. In Experiment 2, different mean intervals of food presentation significantly affected the number of food reinforcers obtained per session; however, changes in the number of food reinforcements did not significantly affect responding for ethanol. Under the FR-10 VI-80 schedule in Experiment 3, only naltrexone significantly decreased both the dose of alcohol presented and blood ethanol concentration (BEC). Acamprosate and pregnanolone had no significant effects on any of the dependent measures, whereas DHEA significantly decreased BEC, but did not significantly decrease response rate or the dose presented. In summary, DHEA and pregnanolone decreased ethanol-maintained responding more potently than food-maintained responding under a multiple FR-10 FR-20 schedule, and were more selective for decreasing ethanol self-administration than either naltrexone or

  19. Effect of endogenously synthesized and exogenously applied ethanol on tomato fruit ripening

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, M.O.; Saltveit, M.E. Jr.

    1988-09-01

    Tomato (Lycopersicon esculentum Mill. var Castlemart) fruit ripening was inhibited by tissue concentrations of ethanol that were produced by either exposure to exogenous ethanol vapors or synthesis under anaerobic atmospheres. Ethanol was not detected in aerobically ripened tomato fruit. Ripening was not inhibited by exposure to methanol at an equivalent molar concentration to inhibitory concentrations of ethanol, while ripening was slightly more inhibited by n-propanol than by equivalent molar concentrations of ethanol. The mottled appearance of a few ripened ethanol-treated fruit was not observed in n-propanol-treated fruit.

  20. Partial oxidation of 2-propanol on perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Sumathi, R.; Viswanathan, B.; Varadarajan, T.K. [Indian Inst. of Tech., Madras (India). Dept. of Chemistry

    1998-12-31

    Partial oxidation of 2-propanol was carried out on AB{sub 1-x}B`{sub x}O{sub 3} (A=Ba, B=Pb, Ce, Ti; B`=Bi, Sb and Cu) type perovskite oxides. Acetone was the major product observed on all the catalysts. All the catalysts underwent partial reduction during the reaction depending on the composition of the reactant, nature of the B site cation and the extent of substitution at B site. The catalytic activity has been correlated with the reducibility of the perovskite oxides determined from Temperature Programmed Reduction (TPR) studies. (orig.)

  1. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic CVD technique: Ab initio molecular dynamics simulation

    Science.gov (United States)

    Oguri, Tomoya; Shimamura, Kohei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2014-03-01

    Dissociation of ethanol on a nickel cluster is investigated by ab initio molecular dynamics simulation to reveal the bond dissociation mechanism of carbon source molecules during carbon nanotube synthesis. C-C bonds in only CHxCO fragments are dissociated on the nickel cluster, whereas there is no preferential structure among the fragments for C-O bond dissociation. The dissociation preference is uncorrelated with the bond dissociation energy of corresponding bonds in freestanding molecules but is correlated with the energy difference between fragment molecules before and after dissociation on the nickel surface. Moreover, carbon-chain formation occurs after C-C bond dissociation in a continuous simulation. What determines the chirality of CNTs? What happens at the dissociation stage of carbon source molecules? Regarding the former question, many researchers have pointed out the good epitaxial relationship between a graphite network and a close-packed facet (i.e., fcc(1 1 1) or hcp(0 0 0 1)) of transition metals [17-19]. Therefore, the correlation between the chirality of CNTs and the angle of the step edge on metal (or metal carbide) surfaces has been closely investigated [20-22]. In association with this geometric matching, the epitaxial growth of graphene on Cu(1 1 1) and Ni(1 1 1) surfaces has recently been achieved via CCVD technique [23-25], which is a promising technique for the synthesis of large-area and monolayer graphene.Regarding the latter question, it is empirically known that the yield and quality of CNT products strongly depend on the choice of carbon source molecules and additives. For example, it is well known that the use of ethanol as carbon source molecules yields a large amount of SWNTs without amorphous carbons (called the alcohol CCVD (ACCVD) technique) compared with the CCVD process using hydrocarbons [4]. Moreover, the addition of a small amount of water dramatically enhances the activity and lifetime of the catalytic metal (called the

  2. Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression.

    Science.gov (United States)

    Badawy, A A; Morgan, C J; Lovett, J W; Bradley, D M; Thomas, R

    1995-10-01

    Acute ethanol consumption by fasting male volunteers decreases circulating trytophan (Trp) concentration and availability to the brain as determined by the ratio of (Trp) to the sum of its five competitors ([Trp]/[CAA]ratio). These effects of alcohol are specific to Trp, because levels of the 5 competitors are not increased. The decrease in circulating (Trp) is not associated with altered binding to albumin and may therefore be due to enhancement of hepatic Trp pyrrolase activity. It is suggested that, under these conditions brain serotonin synthesis is likely to be impaired and that, as a consequence, a possible strong depletion of brain serotonin in susceptible individuals may induce aggressive behaviour after alcohol consumption. The possible implications of these findings in the relationship between alcohol and depression are also briefly discussed.

  3. Effects of (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline on glutamate transporter 1 and cysteine/glutamate exchanger as well as ethanol drinking behavior in male, alcohol-preferring rats.

    Science.gov (United States)

    Aal-Aaboda, Munaf; Alhaddad, Hasan; Osowik, Francis; Nauli, Surya M; Sari, Youssef

    2015-06-01

    Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We recently showed that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for 5 weeks in alcohol-preferring (P) rats and that upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex results, in part, in attenuating ethanol consumption. Cystine glutamate antiporter (xCT) is also downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. This study examines the effect of a synthetic compound, (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expressions of GLT-1 and xCT in the amygdala and the hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for 5 weeks, after which they received treatments of MS-153 or vehicle for 5 days. The results show that MS-153 treatment significantly reduces ethanol consumption. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and the hippocampus of ethanol-vehicle-treated rats (ethanol-vehicle group) compared with water-control animals. MS-153 treatment upregulated GLT-1 and xCT expressions in these brain regions. These findings demonstrate an important role for MS-153 in these glutamate transporters for the attenuation of ethanol-drinking behavior.

  4. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  5. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin. PMID:25772736

  6. Determination and correlation of the solubility of four Brønsted-acidic ionic liquids based on benzothiazolium cations in six alcohols

    International Nuclear Information System (INIS)

    Highlights: • Solubility of four acidic benzothiazolium cations-based ILs was measured. • The solubilities vary with the polarity of the solvent. • The solubility of some ILs is with “temperature-sensitive” property. • The measured solubilities were correlated by Apelblat model and λh model. • The dissolution enthalpy and entropy of ILs were calculated using the van’t Hoff equation. - Abstract: Solubilities of four acidic ionic liquids based on benzothiazolium cations in six alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-methyl-1-propanol) from at temperatures from (253 to 384) K were determined using a static equilibrium method under atmospheric pressure. The modified Apelblat equation and λh equation were employed to correlate the experimental data with good agreement. The solubilities of ILs increase with increasing temperature. It is interesting to find that the solubility of some ILs in alcohols are with “temperature-sensitive” properties. The solubility is related with the polarity and molecular structures of the solvent, as well as the strength of hydrogen bonding between alcohols and anionic groups of ILs. The dissolution enthalpy and entropy of ILs were calculated by the van’t Hoff equation. This study provides useful information for further research and application of the ionic liquids

  7. Ethyl glucuronide in vitreous humor and blood postmortem specimens: analysis by liquid chromatography-electrospray tandem mass spectrometry and interpreting results of neo-formation of ethanol

    Directory of Open Access Journals (Sweden)

    Sara Vezzoli

    2015-03-01

    Full Text Available Introduction. The determination of ethyl glucuronide (EtG, a stable and sensitive marker that is specific to alcohol intake, finds many applications both in the forensic toxicology and clinical fields. Aim. The aim of the study is to examine the possibility of using a cadaveric biological matrix, vitreous humor (VH, to determine EtG as a marker of recent ethanol use. Methods. The blood, taken from the femoral vein, and the VH were obtained from 63 autopsy cases. Analysis of the EtG was performed using an LC/MS/MS system. Analyses of the ethanol and putrefaction biomarkers, such as acetaldehyde and n-propanol, were performed using the HS-GC/FID technique in both the matrices. Results. In 17 cases, both ethanol and EtG were absent in both matrices.Nineteen cases presented ethanol in blood from 0.05 to 0.30 g/L, EtG-Blood concentration from 0.02 to 3.27 mg/L, and EtG-VH concentration from 0.01 mg/L to 2.88 mg/L. Thirteen cases presented ethanol in blood > 0.05 g/L but EtG concentration in blood and VH lower than 0.01 mg/L, are part of these 8 samples presented acetic aldehyde and n- propanol in blood or VH, means identification of putrefaction indicators. Fourteen cases presented ethanol in blood > 0.46 and EtG concentration in blood and VH higher than 0.01 mg/L. Conclusions. The determination of EtG in biological material is important in those cases where the intake of ethanol appears doubtful, as it allows us to exclude the possibility of any post-mortem formation of ethanol.

  8. Determination and Correlation of Solubilities of Four Novel Benzothiazolium Ionic Liquids with 6PF- in Six Alcohols

    Institute of Scientific and Technical Information of China (English)

    何志坚; 王小敏; 姚田; 宋航; 姚舜

    2014-01-01

    Four novel benzothiazolium ionic liquids with 6PF- ([C1Bth][PF6], [C4Bth][PF6], [C5Bth][PF6] and [C6Bth][PF6]) were synthesized, and the rang of their melting points were determined between 358.35 K-424.05 K. The relationship of their melting points and the length of the straight alkyl chain on cation reflected‘S’ type ten-dency. Then, the solubilities of the four ionic liquids in six lower alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-methyl-1-propanol) were measured in the temperature rang of 253.15-383.15 K at at-mospheric pressure with static analytical method, respectively. It was found that [C6Bth][PF6] in all investigated ionic liquids had the largest solubility in six alcohols and the solubility of [C4Bth][PF6] in methanol was very sensi-tive for temperature in 313.15-333.15 K, which was so-called “temperature-sensitivity”. This feature is of great significance to their application of catalyzing reaction or extraction process, and makes the recovery and reuse of ionic liquids (ILs) become easier. Moreover, the experimental solubility data were correlated with the modified Apelblat equation andλh equation, respectively. It was found that the result of correlation using two divided tem-perature ranges was better than that of using the whole temperature range.

  9. Alcohol Use and Older Adults

    Science.gov (United States)

    ... version of this page please turn Javascript on. Alcohol Use and Older Adults Alcohol and Aging Adults of any age can have ... Escape (Esc) button on your keyboard.) What Is Alcohol? Alcohol, also known as ethanol, is a chemical ...

  10. Stability of fluctuating and transient aggregates of amphiphilic solutes in aqueous binary mixtures: Studies of dimethylsulfoxide, ethanol, and tert-butyl alcohol

    Science.gov (United States)

    Banerjee, Saikat; Bagchi, Biman

    2013-10-01

    In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tert-butyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures.

  11. Alcohol

    NARCIS (Netherlands)

    Hendriks, H.F.; Tol, A. van

    2005-01-01

    Alcohol consumption affects overall mortality. Light to moderate alcohol consumption reduces the risk of coronary heart disease; epidemiological, physiological and genetic data show a causal relationship. Light to moderate drinking is also associated with a reduced risk of other vascular diseases an

  12. Alcohol

    Science.gov (United States)

    ... Date reviewed: January 2014 previous 1 • 2 For Teens For Kids For Parents MORE ON THIS TOPIC Word! Alcoholism What You Need to Know About Drugs What You Need to Know About Drugs: Depressants What Kids Say About: Drinking Alcohol Dealing With Peer Pressure Contact Us Print Resources Send to a friend ...

  13. Ethanol administration dampens the prolactin response to psychosocial stress exposure in sons of alcohol-dependent fathers

    OpenAIRE

    Zimmermann, Ulrich S.; Arlette F Buchmann; Spring, Constance; Uhr, Manfred; Holsboer, Florian; Wittchen*, Hans-Ulrich

    2013-01-01

    Genetic predisposition and exposure to alcohol and stress increase the risk for alcoholism, possibly by forming a threefold interaction. This is suggested by various aspects of alcohol-induced stress response dampening in offspring of alcoholics. We tested whether such an interaction is also revealed by prolactin secretion, which is predominantly controlled by hypothalamic dopamine. Plasma prolactin was measured during four experimental days in 26 young males with a paternal history of alcoho...

  14. Molecular changes during neurodevelopment following second-trimester binge ethanol exposure in a mouse model of fetal alcohol spectrum disorder: from immediate effects to long-term adaptation.

    Science.gov (United States)

    Mantha, Katarzyna; Laufer, Benjamin I; Singh, Shiva M

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is an umbrella term that refers to a wide range of behavioral and cognitive deficits resulting from prenatal alcohol exposure. It involves changes in brain gene expression that underlie lifelong FASD symptoms. How these changes are achieved from immediate to long-term effects, and how they are maintained, is unknown. We have used the C57BL/6J mouse to assess the dynamics of genomic alterations following binge alcohol exposure. Ethanol-exposed fetal (short-term effect) and adult (long-term effect) brains were assessed for gene expression and microRNA (miRNA) changes using Affymetrix mouse arrays. We identified 48 and 68 differentially expressed genes in short- and long-term groups, respectively. No gene was common between the 2 groups. Short-term (immediate) genes were involved in cellular compromise and apoptosis, which represent ethanol's toxic effects. Long-term genes were involved in various cellular functions, including epigenetics. Using quantitative RT-PCR, we confirmed the downregulation of long-term genes: Camk1g, Ccdc6, Egr3, Hspa5, and Xbp1. miRNA arrays identified 20 differentially expressed miRNAs, one of which (miR-302c) was confirmed. miR-302c was involved in an inverse relationship with Ccdc6. A network-based model involving altered genes illustrates the importance of cellular redox, stress and inflammation in FASD. Our results also support a critical role of apoptosis in FASD, and the potential involvement of miRNAs in the adaptation of gene expression following prenatal ethanol exposure. The ultimate molecular footprint involves inflammatory disease, neurological disease and skeletal and muscular disorders as major alterations in FASD. At the cellular level, these processes represent abnormalities in redox, stress and inflammation, with potential underpinnings to anxiety.

  15. Improved regioselectivity in pyrazole formation through the use of fluorinated alcohols as solvents: synthesis and biological activity of fluorinated tebufenpyrad analogs.

    Science.gov (United States)

    Fustero, Santos; Román, Raquel; Sanz-Cervera, Juan F; Simón-Fuentes, Antonio; Cuñat, Ana C; Villanova, Salvador; Murguía, Marcelo

    2008-05-01

    The preparation of N-methylpyrazoles is usually accomplished through reaction of a suitable 1,3-diketone with methylhydrazine in ethanol as the solvent. This strategy, however, leads to the formation of regioisomeric mixtures of N-methylpyrazoles, which sometimes are difficult to separate. We have determined that the use of fluorinated alcohols such as 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as solvents dramatically increases the regioselectivity in the pyrazole formation, and we have used this modification in a straightforward synthesis of fluorinated analogs of Tebufenpyrad with acaricide activity.

  16. Ethanol and neuronal metabolism.

    Science.gov (United States)

    Mandel, P; Ledig, M; M'Paria, J R

    1980-01-01

    The effect of ethanol on membrane enzymes (Na+, K+ and Mg2+ ATPases, 5'-nucleotidase, adenylate cyclase) alcohol dehydrogenase, aldehyde dehydrogenase and superoxide dismutase were studied in nerve cells (established cell lines, primary cultures of chick and rat brain) cultured in the presence of 100 mM ethanol, and in total rat brain, following various ethanol treatments of the rats (20% ethanol as the sole liquid source, intraperitoneal injection). The results show a difference between neuronal and glial cells. Most of the observed changes in enzymatic activities returned rapidly to control values when ethanol was withdrawn from the culture medium or from the diet. Alcohol dehydrogenase was more stimulated by ethanol than aldehyde dehydrogenase; therefore acetaldehyde may be accumulated. The inhibition of superoxide dismutase activity may allow an accumulation of cytotoxic O2- radicals in nervous tissue and may explain the polymorphism of lesions brought about by alcohol intoxication. PMID:6264495

  17. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, T.; Alderman, J.; Lieber, C.S.

    1985-01-01

    The relative importance of ADH and MEOS for ethanol oxidation in the liver has yet to be elucidated. The discovery of a strain of deermice genetically lacking ADH (ADH-) which can consume ethanol at greater than 50% of the rates seen in deermice having ADH (ADH+) suggested a significant role for non-ADH pathways in vivo. To quantitate contributions of the various pathways, the authors examined first the ethanol oxidation rates with or without 4-methylpyrazole in isolated deermice hepatocytes. 4-Methylpyrazole significantly reduced the ethanol oxidation in both ADH+ and ADH- hepatocytes. The reduction seen in ADH- cells can be applied to correct for the effect of 4-methylpyrazole on non-ADH pathways of ADH+ deermouse hepatocytes. After correction, non-ADH pathways were found to contribute 28% of ethanol metabolism at 10 mM and 52% at 50 mM. When using a different approach namely measurement of the isotope effect, MEOS was calculated to account for 35% at low and about 70% at high blood ethanol concentrations. Thus, they found that two different complementary approaches yielded similar results, namely that non-ADH pathways play a significant role in ethanol oxidation even in the presence of ADH.

  18. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  19. Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M=Mo, W) Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zongtang; Li, Zhenjun; Kelley, Matthew S.; Kay, Bruce D.; Li, Shenggang; Hennigan, Jamie M.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-10-02

    The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic (MO3)3 (M = Mo, W) clusters were studied experimentally with temperature programmed desorption (TPD) and theoretically with coupled cluster CCSD(T) theory and density functional theory. The reactions of two alcohols per M3O9 cluster are required to provide agreement with experiment for D2O release, dehydrogenation and dehydration. The reaction begins with the elimination of water by proton transfers and forms an intermediate dialkoxy species which can undergo further reaction. Dehydration proceeds by a β hydrogen transfer to a terminal M=O. Dehydrogenation takes place via an α hydrogen transfer to an adjacent MoVI = O atom or a WVI metal center with redox involved for M = Mo and no redox for M = W. The two channels have comparable activation energies. H/D exchange to produce alcohols can take place after olefin is released or via the dialkoxy species depending on the alcohol and the cluster. The Lewis acidity of the metal center with WVI being larger than MoVI results in the increased reactivity of W3O9 over Mo3O9 for dehydrogenation and dehydration.

  20. Propanol er ikke gift for køer

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Raun, Birgitte Marie Løvendahl

    2010-01-01

    I de seneste år har der været stort fokus på alkohol og ikke mindst propanol i ensilage. En række forsøg med blandt andet propanol har ikke kunnet påvise en effekt af alkohol i ensilage på køernes sundhed.......I de seneste år har der været stort fokus på alkohol og ikke mindst propanol i ensilage. En række forsøg med blandt andet propanol har ikke kunnet påvise en effekt af alkohol i ensilage på køernes sundhed....

  1. Preliminary analysis of cellulose-based ethanol production: pathways and challenges in the Rio Grande do Sul alcohol production

    Directory of Open Access Journals (Sweden)

    André Luiz Fialho Blos

    2009-08-01

    Full Text Available The production of ethanol in Brazil has contributed towards the replacement of fossil fuels over the past few years. Among those initiatives, the production of ethanol from cellulose is one of the areas drawing the interest of different research centers in developed countries. Hence, the production of ethanol opens up new perspectives for Brazilian states. In light of this backdrop, this paper aims at characterizing and understanding the state of the art in different technological courses and production configuration alternatives present in different parts of the world regarding cellulose-based ethanol production. To that end, research was conducted at the lumber and industrial companies connected to cellulose-based ethanol production. In other parts of the globe, the ability of planned forests to provide energy is promising, given the positive energy balance and the increase in carbon dioxide sequestering, paramount in times of global warming. The association with other crops may become a source of productive diversity for small farmers residing in degraded areas or those presenting low economic dynamism. There is the need to develop new research efforts and look more deeply into the environmental issues involved, as well as further assessment on the economic and social viability of such projects.Key-words: cellulosic ethanol, biorefinery, biomass, agrienergy, bioenergy.

  2. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  3. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  4. SELECTIVE VULNERABILITY OF EMBRYONIC CELL POPULATIONS TO ETHANOL-INDUCED APOPTOSIS: IMPLICATIONS FOR ALCOHOL RELATED BIRTH DEFECTS AND NEURODEVELOPMENTAL DISORDER

    Science.gov (United States)

    The locations of cell death and resulting malformations in embryos following teratogen exposure vary depending on the teratogen used, the genotype of the conceptus, and the developmental stage of the embryo at time of exposure. To date, ethanol-induced cell death has been charac...

  5. Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to α4/6β3δ GABAA receptors

    Science.gov (United States)

    Hanchar, H. Jacob; Chutsrinopkun, Panida; Meera, Pratap; Supavilai, Porntip; Sieghart, Werner; Wallner, Martin; Olsen, Richard W.

    2006-01-01

    Although GABAA receptors have long been implicated in mediating ethanol (EtOH) actions, receptors containing the “nonsynaptic” δ subunit only recently have been shown to be uniquely sensitive to EtOH. Here, we show that δ subunit-containing receptors bind the imidazo-benzodiazepines (BZs) flumazenil and Ro15-4513 with high affinity (Kd < 10 nM), contrary to the widely held belief that these receptors are insensitive to BZs. In immunopurified native cerebellar and recombinant δ subunit-containing receptors, binding of the alcohol antagonist [3H]Ro15-4513 is inhibited by low concentrations of EtOH (Ki ≈ 8 mM). Also, Ro15-4513 binding is inhibited by BZ-site ligands that have been shown to reverse the behavioral alcohol antagonism of Ro15-4513 (i.e., flumazenil, β-carbolinecarboxylate ethyl ester (β-CCE), and N-methyl-β-carboline-3-carboxamide (FG7142), but not including any classical BZ agonists like diazepam). Experiments that were designed to distinguish between a competitive and allosteric mechanism suggest that EtOH and Ro15-4513 occupy a mutually exclusive binding site. The fact that only Ro15-4513, but not flumazenil, can inhibit the EtOH effect, and that Ro15-4513 differs from flumazenil by only a single group in the molecule (an azido group at the C7 position of the BZ ring) suggest that this azido group in Ro15-4513 might be the area that overlaps with the alcohol-binding site. Our findings, combined with previous observations that Ro15-4513 is a behavioral alcohol antagonist, suggest that many of the behavioral effects of EtOH at relevant physiological concentrations are mediated by EtOH/Ro15-4513-sensitive GABAA receptors. PMID:16581914

  6. Phagocytosis and production of reactive oxygen species by peripheral blood phagocytes in patients with different stages of alcohol-induced liver disease: effect of acute exposure to low ethanol concentrations

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Paulus, S. B.;

    2003-01-01

    BACKGROUND: In rodents, the development of alcoholic liver disease (ALD) after chronic alcohol feeding was shown to depend on the activity of enzymes that are necessary for production of reactive oxygen species (ROS) in phagocytes. The aim of this study was to determine the formation of ROS...... by resting and challenged phagocytes of patients with different stages of ALD in the presence of ethanol concentrations commonly found in the blood of alcohol abusers. PATIENTS AND METHODS: The release of ROS and the phagocytosis of bacteria by neutrophils and monocytes obtained from 60 patients, who were...

  7. From the photosynthesis to the fermentation of alcohol and the misuse of bio-ethanol; Von der Fotosynthese ueber die alkoholische Gaerung zum Missbrauch des (Bio-)Ethanols

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, Vollrath [VDI, Dreieich (Germany). Bezirksverein Frankfurt-Darmstadt

    2012-07-01

    The byproducts of cereal and maize for example their straw and waste wood also offer better possibilities to produce ethanol and (bio-)Diesel on the basis of renewable raw materials. Altogether they contain carbohydrates especially cellulose and its derivates. They are not suitable for foodstuffs. During World War II processes were developed and used in order to convert cellulose compounds into petrol. The Research Centre in Karlsruhe, Eggenstein-Leopoldshafen has built a high modern pilot plant for the synthesis of BtL-petrol (Biomass to liquids) in cooperation of Lurgi, a company of factory construction. In the first reaction step cellulose containing material is converted into a liquid intermediate product at a temperature of 500 C. This product is called Bioliqsyncrude. In the second step the bioliqsyncrude is split into synthesis gas in a flue-stream-gasifier at temperatures of 1200 C and pressures of 80 bar. Synthesis gas is a mixture of carbon monoxide, CO, and hydrogen, H{sub 2}. In presence of special catalyst the gas mixture reacts to methanol and other very interesting hydrocarbons which are suitable for petrol. In this way the old Fischer-Tropsch synthesis and the Koelbel-Engelhardt procedure get to new honours. (orig.)

  8. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    International Nuclear Information System (INIS)

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  9. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi Poodeh, Saeid, E-mail: saeid.haghighi@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, and Biocenter Oulu, University of Oulu, Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Alhonen, Leena [Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio (Finland); School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio (Finland); Salonurmi, Tuire; Savolainen, Markku J. [Institute of Clinical Medicine, Department of Internal Medicine, and Biocenter Oulu, University of Oulu, Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland)

    2014-03-28

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  10. Alcohol metabolism by oral streptococci and interaction with human papillomavirus leads to malignant transformation of oral keratinocytes.

    Science.gov (United States)

    Tao, Lin; Pavlova, Sylvia I; Gasparovich, Stephen R; Jin, Ling; Schwartz, Joel

    2015-01-01

    Poor oral hygiene, ethanol consumption, and human papillomavirus (HPV) are associated with oral and esophageal cancers. However, the mechanism is not fully known. This study examines alcohol metabolism in Streptococcus and its interaction with HPV-16 in the malignant transformation of oral keratinocytes. The acetaldehyde-producing strain Streptococcus gordonii V2016 was analyzed for adh genes and activities of alcohol and aldehyde dehydrogenases. Streptococcus attachment to immortalized HPV-16 infected human oral keratinocytes, HOK (HPV/HOK-16B), human oral buccal keratinocytes, and foreskin keratinocytes was studied. Acetaldehyde, malondialdehyde, DNA damage, and abnormal proliferation among keratinocytes were also quantified. We found that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB, and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol, and ethanol, respectively. S. gordonii V2016 did not show a detectable aldehyde dehydrogenase. AdhE is the major alcohol dehydrogenase in S. gordonii. Acetaldehyde and malondialdehyde production from permissible Streptococcus species significantly increased the bacterial attachment to keratinocytes, which was associated with an enhanced expression of furin to facilitate HPV infection and several malignant phenotypes including acetaldehyde adduct formation, abnormal proliferation, and enhanced migration through integrin-coated basement membrane by HPV-infected oral keratinocytes. Therefore, expression of multiple alcohol dehydrogenases with no functional aldehyde dehydrogenase contributes to excessive production of acetaldehyde from ethanol by oral streptococci. Oral Streptococcus species and HPV may cooperate to transform oral keratinocytes after ethanol exposure. These results suggest a significant clinical interaction, but further validation is warranted.

  11. Alcohol and Public Health: Frequently Asked Questions

    Science.gov (United States)

    ... it okay to drink when pregnant? What is alcohol? Ethyl alcohol, or ethanol, is an intoxicating ingredient ... sugars, and starches. Top of Page How does alcohol affect a person? Alcohol affects every organ in ...

  12. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Golub, P., E-mail: pavelgolub87@gmail.com; Doroshenko, I.; Pogorelov, V.

    2014-05-01

    The specific peculiarities of alcohols such as heightened viscosity, boiling temperature and surface tension can be explained by the capability of their molecules to form relatively stable associates named clusters due to hydrogen bonding. In present work the stability of different chain-like and cyclic clusters of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol was investigated by means of quantum-chemical simulation and particular by recently developed DFT exchange–correlation functional M06-2X. The relative stability of the cluster structure was evaluated by the total energy per molecule at low temperatures (where all alcohols exist in solid state) and by the changing of the free Gibbs energy upon cluster formation at the room temperature. For the verification of revealed results the conformity of calculated IR spectra of the most stable cluster structures with the experimental IR spectra at different temperatures was analyzed.

  13. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation

    International Nuclear Information System (INIS)

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H2PtCl6.6H2O Ru Cl xH2O, SnCl2.2H2O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2θ = 25o, which is associated with the carbon support and four additional diffraction peaks at approximately 2θ = 40o, 47o, 67o e 82o, which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H2SO4, + 1,0 mol.L-1 de C2H5OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  14. NEUROPEPTIDE Y (NPY) SUPPRESSES ETHANOL DRINKING IN ETHANOL-ABSTINENT, BUT NOT NON-ETHANOL-ABSTINENT, WISTAR RATS

    OpenAIRE

    Gilpin, N.W.; Stewart, R B; Badia-Elder, N.E.

    2008-01-01

    In outbred rats, increases in brain neuropeptide Y (NPY) activity suppress ethanol consumption in a variety of access conditions, but only following a history of ethanol dependence. NPY reliably suppresses ethanol drinking in alcohol-preferring (P) rats and this effect is augmented following a period of ethanol abstinence. The purpose of this experiment was to examine the effects of NPY on 2-bottle choice ethanol drinking and feeding in Wistar rats that had undergone chronic ethanol vapor exp...

  15. Wetting transition and pretransitional thin films in binary liquids: alcohol/perfluoromethylcyclohexane mixtures studied by x-ray reflectivity

    International Nuclear Information System (INIS)

    In this study the wetting transition at the liquid-vapour interface of binary organic liquid mixtures has been investigated by x-ray reflectivity. Mixtures of various isomeric alcohols with perfluoromethylcyclohexane (PFMC) served as model systems, with alcohol carbon numbers ranging from 1 to 4. Remarkably different pretransitional behaviour of the thin films below the wetting temperature was observed, which could be classified according to the carbon number. At two-phase coexistence, no pretransitional thin films could be detected for methanol and ethanol, whereas thin-to-thick-film transitions were found for propanol and butanol and their isomers. For 1-propanol and 2-propanol, the surface of the upper, alcohol-rich phase of the gravity-separated mixture displays a wetting transition at Tw = 31.5 deg. C and 38.3 deg. C, respectively, where the thickness of a PFMC-rich film jumps from less than 25 A to values exceeding the experimental resolution of about 1200 A. For 1-butanol, 2-butanol and i-butanol, we found pretransitional film thicknesses increasing up to 100 A, with wetting transitions at Tw = 45.0 deg. C, 34.2 deg. C and 40.1 deg. C, respectively. In the single-phase region, the study of adsorption isotherms above Tw revealed novel behaviour of the adsorbed PFMC-rich film. We observed both a growing film thickness and a significantly changing composition as the coexistence line was approached. Nevertheless, the variation of the excess adsorption with distance from coexistence could still be described by a power law. (author)

  16. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  17. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  18. Excess Molar Volume and Apparent Molar Volume of Binary Mixtures of 2—Methyl—3—buten—2—ol with 1—Alcohol at 298.15K

    Institute of Scientific and Technical Information of China (English)

    LIUDixia; LIHaoran; 等

    2002-01-01

    Excess molar volumes (VmE) of binary mixtures of 2-methyl-3-buten-2-ol[CH3C(OH)(CH3)CHCH2] with four 1-alcohols:methanol,ethanol,1-propanol and 1-butanol at 298.15K and atmospheric pressure are derived from density measurements with a vibrating-tube densimeter.All the excess volumes are negative in the systems over the entire composition range. The results are correlated with the Redlich-Kister equation.The effects of chain length of 1-alcohols on VmE are discussed.The apparent molar volumes of 2-methyl-3-buten-2-ol and 1-alcohols are calculated respectively.

  19. Neural Adaptation Leads to Cognitive Ethanol Dependence

    OpenAIRE

    Robinson, Brooks G; Khurana, Sukant; Kuperman, Anna; Nigel S Atkinson

    2012-01-01

    Physiological alcohol dependence is a key adaptation to chronic ethanol consumption that underlies withdrawal symptoms, is thought to directly contribute to alcohol addiction behaviors, and is associated with cognitive problems such as deficits in learning and memory [1–3]. Based on the idea that an ethanol-adapted (dependent) animal will perform better in a learning assay than an animal experiencing ethanol withdrawal will, we have used a learning paradigm to detect physiological ethanol dep...

  20. High-accuracy measurements of OH(•) reaction rate constants and IR and UV absorption spectra: ethanol and partially fluorinated ethyl alcohols.

    Science.gov (United States)

    Orkin, Vladimir L; Khamaganov, Victor G; Martynova, Larissa E; Kurylo, Michael J

    2011-08-11

    Rate constants for the gas phase reactions of OH(•) radicals with ethanol and three fluorinated ethyl alcohols, CH(3)CH(2)OH (k(0)), CH(2)FCH(2)OH (k(1)), CHF(2)CH(2)OH (k(2)), and CF(3)CH(2)OH (k(3)) were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions over the indicated temperature intervals: k(0)(220-370 K) = 5.98 × 10(-13)(T/298)(1.99) exp(+515/T) cm(3) molecule(-1) s(-1), k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1) [for atmospheric modeling purposes, k(0)(T) is essentially temperature-independent below room temperature, k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1)], k(1)(230-370 K) = 3.47 × 10(-14)(T/298)(4.49) exp(+977/T) cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 3.87 × 10(-14)(T/298)(4.25) exp(+578/T) cm(3) molecule(-1) s(-1), and k(3)(220-370 K) = 2.48 × 10(-14)(T/298)(4.03) exp(+418/T) cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH(•) were estimated to be 4, 16, 62, and 171 days, respectively, under the assumption of a well-mixed atmosphere. UV absorption cross sections of all four ethanols were measured between 160 and 215 nm. The IR absorption cross sections of the three fluorinated ethanols were measured between 400 and 1900 cm(-1), and their global warming potentials were estimated.

  1. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats.

    Science.gov (United States)

    Ding, Zheng-Ming; Ingraham, Cynthia M; Rodd, Zachary A; McBride, William J

    2016-10-01

    Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA. PMID:27260326

  2. False-positive breath-alcohol test after a ketogenic diet.

    Science.gov (United States)

    Jones, A W; Rössner, S

    2007-03-01

    A 59-year-old man undergoing weight loss with very low calorie diets (VLCD) attempted to drive a car, which was fitted with an alcohol ignition interlock device, but the vehicle failed to start. Because the man was a teetotaller, he was surprised and upset by this result. VLCD treatment leads to ketonemia with high concentrations of acetone, acetoacetate and beta-hydroxybutyrate in the blood. The interlock device determines alcohol (ethanol) in breath by electrochemical oxidation, but acetone does not undergo oxidation with this detector. However, under certain circumstances acetone is reduced in the body to isopropanol by hepatic alcohol dehydrogenase (ADH). The ignition interlock device responds to other alcohols (e.g. methanol, n-propanol and isopropanol), which therefore explains the false-positive result. This 'side effect' of ketogenic diets needs further discussion by authorities when people engaged in safety-sensitive work (e.g. bus drivers and airline pilots) submit to random breath-alcohol tests. PMID:16894360

  3. Diffusion studies of dihydroxybenzene isomers in water-alcohol systems.

    Science.gov (United States)

    Codling, Dale J; Zheng, Gang; Stait-Gardner, Tim; Yang, Shu; Nilsson, Mathias; Price, William S

    2013-03-01

    Nuclear magnetic resonance diffusion studies can be used to identify different compounds in a mixture. However, because the diffusion coefficient is primarily dependent on the effective hydrodynamic radius, it is particularly difficult to resolve compounds with similar size and structure, such as isomers, on the basis of diffusion. Differential solution interactions between species in certain solutions can afford possibilities for separation. In the present study, the self-diffusion of the three isomers of dihydroxybenzene (i.e., (1,2-) catechol, (1,3-) resorcinol, and (1,4-) hydroquinone) was studied in water, aqueous monohydric alcohols (i.e., ethanol, 1-propanol, tert-butanol), and aqueous ethylene glycol. These systems allowed the effects of isomerism and differential solvent interactions on diffusion to be examined. It was found that, while in aqueous solution these isomers had the same diffusion coefficient, in water-monohydric alcohol systems the diffusion coefficient of catechol differed from those of resorcinol and hydroquinone. The separation was found to increase at higher concentrations of monohydric alcohols. The underlying chemical reasons for these differences were investigated.

  4. Heterogeneous catalytic process for alcohol fuels from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Minahan, D.M.; Nagaki, D.A.

    1995-12-31

    This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art. The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.

  5. Effects of Alcohol and Saccharin Deprivations on Concurrent Ethanol and Saccharin Operant Self-Administration by Alcohol-Preferring (P) Rats

    Science.gov (United States)

    Toalston, Jamie E.; Oster, Scott M.; Kuc, Kelly A.; Pommer, Tylene J.; Murphy, James M.; Lumeng, Lawrence; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.

    2008-01-01

    Consumption of sweet solutions has been associated with a reduction in withdrawal symptoms and alcohol craving in humans. The objective of the present study was to determine the effects of EtOH and saccharin (SACC) deprivations on operant oral self-administration. P rats were allowed to lever press concurrently self-administer EtOH (15% v/v) and SACC (0.0125% g/v) for 8 weeks. Rats were then maintained on daily operant access (non-deprived), deprived of both fluids (2 weeks), deprived of SACC and given 2 ml of EtOH daily, or deprived of EtOH and given 2 ml of SACC daily. All groups were then given two weeks of daily operant access to EtOH and SACC, followed by an identical second deprivation period. P rats responded more for EtOH than SACC. All deprived groups increased responding on the EtOH lever, but not on the SACC lever. Daily consumption of 2 ml EtOH decreased the duration of the ADE. Home cage access to 2 ml SACC also decreased the ADE but to a lesser extent than access to EtOH. A second deprivation period further increased and prolonged the expression of an ADE. These results show EtOH is a more salient reinforcer than SACC. With concurrent access to EtOH and SACC, P rats do not display a saccharin deprivation effect. Depriving P rats of both EtOH and SACC had the most pronounced effect on the magnitude and duration of the ADE, suggesting that there may be some interactions between EtOH and SACC in their CNS reinforcing effects. PMID:18400451

  6. Ethanol and oxidative stress.

    Science.gov (United States)

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  7. Effects of substitution on counterflow ignition and extinction of C3 and C4 alcohols

    KAUST Repository

    Alfazazi, Adamu

    2016-06-17

    Dwindling reserves and inherent uncertainty in the price of conventional fuels necessitates a search for alternative fuels. Alcohols represent a potential source of energy for the future. The structural features of an alcohol fuel have a direct impact on combustion properties. In particular, substitution in alcohols can alter the global combustion reactivity. In this study, experiments and numerical simulations were conducted to investigate the critical conditions of extinction and autoignition of n-propanol, 1-butanol, iso-propanol and iso-butanol in non-premixed diffusion flames. Experiments were carried out in the counterflow configuration, while simulations were conducted using a skeletal chemical kinetic model for the C3 and C4 alcohols. The fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while the oxidizer stream is air. The experimental results show that autoignition temperatures of the tested alcohols increase in the following order: iso-propanol > iso-butanol > 1-butanol ≈ n-propanol. The simulated results for the branched alcohols agree with the experiments, while the autoignition temperature of 1-butanol is slightly higher than that of n-propanol. For extinction, the experiments show that the extinction limits of the tested fuels increase in the following order: n-propanol ≈ 1-butanol > iso-butanol > iso-propanol. The model suggests that the extinction limits of 1-butanol is slightly higher than n-propanol with extinction strain rate of iso-butanol and iso-propanol maintaining the experimentally observed trend. The transport weighted enthalpy (TWE) and radical index (Ri) concepts were utilized to rationalize the observed reactivity trends for these fuels.

  8. Effect Of Polar Component(1-Propanol On The RelativeVolatility Of The Binary System N-Hexane - Benzene

    Directory of Open Access Journals (Sweden)

    Khalid Farhod Chasib Al-Jiboury

    2008-01-01

    Full Text Available Vapor-liquid equilibrium data are presented for the binary systems n-hexane - 1-propanol, benzene - 1-propanol and n-hexane – benzene at 760 mm of mercury pressure. In addition ternary data are presented at selected compositions with respect to the 1-propanol in the 1-propanol, benzene, n-hexane system at 760 mmHg. The results indicate the relative volatility of n-hexane relative to benzene increases appreciably with addition of 1-propanol

  9. Alcohol and liver

    Institute of Scientific and Technical Information of China (English)

    Natalia Osna

    2009-01-01

    @@ Liver is a primary site of ethanol metabolism, which makes this organ susceptible to alcohol-induced damage.Alcoholic liver disease (ALD) has many manifestations and complicated pathogenesis. In this Topic Highlight, we included the key reviews that characterize new findings about the mechanisms of ALD development and might be of strong interest for clinicians and researchers involved in liver alcohol studies.

  10. Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes

    Indian Academy of Sciences (India)

    Panadda Katikawong; Tanakorn Ratana; Waret Veerasai

    2009-05-01

    Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in 0.5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated from the cyclic voltammetric data in the low potential region (0.3-0.5 V vs SHE). The CV results provided Tafel slopes for alcohols in the range of 200-400 mV dec-1 which indicated a difference in the rate determining step. The decrease in Tafel slope was only observed in the case of methanol for the Ru-modified Pt electrode. This indicates that Ru improves the rate of determining step for methanol while hindering it for the other alcohols. The electrochemical impedance spectroscopy was also used to evaluate the electro-oxidation mechanism of alcohols on these electrodes. The simulated EIS results provided two important parameters: charge transfer resistance () and inductance (). The $R^{-1}_{ct}$ and -1 represent the rate of alcohol electro-oxidation and rate of desorption of intermediate species, respectively. These values increased with the increasing of temperature. The results from two techniques were well agreed that the electro-oxidation of methanol was improved by raising the temperature and ruthenium modification.

  11. Genomic clones of Aspergillus nidulans containing alcA, the structural gene for alcohol dehydrogenase and alcR, a regulatory gene for ethanol metabolism.

    Science.gov (United States)

    Doy, C H; Pateman, J A; Olsen, J E; Kane, H J; Creaser, E H

    1985-04-01

    Our aim was to obtain from Aspergillus nidulans a genomic bank and then clone a region we expected from earlier genetic mapping to contain two closely linked genes, alcA, the structural gene for alcohol dehydrogenase (ADH) and alcR, a positive trans-acting regulatory gene for ethanol metabolism. The expression of alcA is repressed by carbon catabolites. A genomic restriction fragment characteristic of the alcA-alcR region was identified, cloned in pBR322, and used to select from a genomic bank in lambda EMBL3A three overlapping clones covering 24 kb of DNA. Southern genomic analysis of wild-type, alcA and alcR mutants showed that the mutants contained extra DNA at sites near the center of the cloned DNA and are close together, as expected for alcA and alcR. Transcription from the cloned DNA and hybridization with a clone carrying the Saccharomyces cerevisiae gene for ADHI (ADC1) are both confined to the alcA-alcR region. At least one of several species of mature mRNA is about 1 kb, the size required to code for ADH. For all species, carbon catabolite repression overrides control by induction. The overall characteristics of transcription, hybridization to ADC1 and earlier work suggest that alcA consists of a number of exons and/or that the alcA-alcR region represents a cluster of alcA-related genes or sequences.

  12. RHEOLOGICAL PROPERTIES OF WHEAT GLIADINS IN AQUEOUS PROPANOL

    Institute of Scientific and Technical Information of China (English)

    Shao-min Sun; Yi-hu Song; Qiang Zheng

    2013-01-01

    Rheological properties of wheat gliadins in 50% (V/V) aqueous propanol were carried out as a function of gliadin concentration c and temperature.The solutions at 20 g L-1 to 200 g L-1 behave as Newtonian fluids with an flow activation energy of 23.5-27.3 kJ mol-1.Intrinsic viscosity [η] and Huggins constant kn are determined according to Huggins plot at c ≤120 gL-1.The results reveal that gliadins are not spherical shaped and the molecular size tends to increase with temperature due to improved solvation.

  13. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    OpenAIRE

    Ricardo M. Pautassi; Nizhnikov, Michael E.; Norman E. Spear; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditione...

  14. Ethanol Metabolism and Osmolarity Modify Behavioral Responses to Ethanol in C. elegans

    Science.gov (United States)

    Alaimo, Joseph T.; Davis, Scott J.; Song, Sam S.; Burnette, Christopher R.; Grotewiel, Mike; Shelton, Keith L.; Pierce-Shimomura, Jonathan T.; Davies, Andrew G.; Bettinger, Jill C.

    2012-01-01

    Background Ethanol is metabolized by a two-step process in which alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in ethanol metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of altered ethanol metabolism. Here, we used the nematode C. elegans to directly examine how changes in ethanol metabolism alter behavioral responses to alcohol during an acute exposure. Additionally, we investigated ethanol solution osmolarity as a potential explanation for contrasting published data on C. elegans ethanol sensitivity. Methods We developed a gas chromatography assay and validated a spectrophotometric method to measure internal ethanol in ethanol-exposed worms. Further, we tested the effects of mutations in ADH and ALDH genes on ethanol tissue accumulation and behavioral sensitivity to the drug. Finally, we tested the effects of ethanol solution osmolarity on behavioral responses and tissue ethanol accumulation. Results Only a small amount of exogenously applied ethanol accumulated in the tissues of C. elegans and consequently their tissue concentrations were similar to those that intoxicate humans. Independent inactivation of an ADH-encoding gene (sodh-1) or an ALDH-encoding gene (alh-6 or alh-13) increased the ethanol concentration in worms and caused hypersensitivity to the acute sedative effects of ethanol on locomotion. We also found that the sensitivity to the depressive effects of ethanol on locomotion is strongly influenced by the osmolarity of the exogenous ethanol solution. Conclusions Our results indicate that ethanol metabolism via ADH and ALDH has a statistically discernable but surprisingly minor influence on ethanol sedation and internal ethanol accumulation in worms. In contrast, the osmolarity of the medium in which ethanol is delivered to the animals has a more substantial effect on

  15. Effect of Short Chain Alcohols upon Viscosity of TTAB Solution

    Institute of Scientific and Technical Information of China (English)

    Yun-fei Yan; Hua-zhen Li; Hai-yang Yang; Jia-sheng Qian; Ping-ping Zhu; Ping-sheng He

    2008-01-01

    The effect of ethanol (C2H5OH),propanol (C3H7OH),and butanol (C4H9OH) upon the viscosity of tetrade- cyltrimethylammonium bromide (TTAB) solution in the presence or absence of KBr at 30℃ was investi- gated,where the surfactant concentration Cs is kept constant.In the absence of KBr,the relative viscosity ηr of TTAB solution increases linearly with the alcohol concentration CA,indicating that the alcohols do not promote micelle formation of TTAB.In the presence of KBr,ηr linearly decreases with CA for C2H5OH, but it exhibits a maximum with increasing CA for C3H7OH or C4H9OH.The facts reveal that C2H5OH or C4H9OH promotes the micelle formation of TTAB.A possible explanation is that the hydrophobicity of the micellar interior is enhanced by KBr,so that C2H5OH or C4H9OH can dissolve in micelle and promotes micelle formation.In the presence of KCl,which is less efficient in promoting the micelle formation of cationic surfactant,both C3H7OH and C4H9OH have only a slight effect on the micelle formation.In contrast,due to the hydrophilicity,C2H5OH cannot dissolve in micelles in the presence of KBr or KCl.

  16. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    Science.gov (United States)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  17. Fetal Alcohol Syndrome, Chemo-Biology and OMICS: Ethanol Effects on Vitamin Metabolism During Neurodevelopment as Measured by Systems Biology Analysis

    OpenAIRE

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-01-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the...

  18. Catalytic properties of pure and K{sup +}-doped Cu O/Mg O system towards 2-propanol conversion

    Energy Technology Data Exchange (ETDEWEB)

    El-Molla, S. A.; Amin, N. H.; Hammed, M. N.; Sultan, S. N. [Ain Shams University, Faculty of Education, Chemistry Department, Roxy, Heliopolis, Cairo 11757 (Egypt); El-Shobaky, G. A., E-mail: saharelmolla@yahoo.com [National Research Center, Dokki, Cairo (Egypt)

    2013-08-01

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K{sup +} species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N{sub 2} at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu{sub 2}O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K{sup +}-doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K{sup +}-doping increased the catalytic activity and catalytic durability. (Author)

  19. Catalytic properties of pure and K+-doped Cu O/Mg O system towards 2-propanol conversion

    International Nuclear Information System (INIS)

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K+ species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N2 at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu2O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K+-doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K+-doping increased the catalytic activity and catalytic durability. (Author)

  20. Ethanol intake and sup 3 H-serotonin uptake II: A study in alcoholic patients using platelets sup 3 H-paroxetine binding

    Energy Technology Data Exchange (ETDEWEB)

    Daoust, M.; Boucly, P. (U.F.R. de Medecine et Pharmacie, Saint Etienne du Rouvrary (France)); Ernouf, D. (Institut du Medicament, Tours (France)); Breton, P. (Centre National de Transfusion Sanguine de Rouen (France)); Lhuintre, J.P.

    1991-01-01

    The kinetic parameters of {sup 3}H-paroxetine binding and {sup 3}H-serotonin uptake were studied in platelets of alcoholic patients. There was no difference between alcoholic and non alcoholic subjects in {sup 3}H-paroxetine binding. When binding and {sup 3}H-serotonin uptake were studied, in the same plasma of the same subjects, the Vmax of serotonin uptake was increased in alcoholics. The data confirm the involvement of serotonin uptake system in alcohol dependance and suggest that serotonin uptake and paroxetine binding sites may be regulated independently in this pathology.

  1. Effects of ceftriaxone on ethanol, nicotine or sucrose intake by alcohol-preferring (P) rats and its association with GLT-1 expression.

    Science.gov (United States)

    Sari, Youssef; Toalston, Jamie E; Rao, P S S; Bell, Richard L

    2016-06-21

    Increased glutamatergic neurotransmission appears to mediate the reinforcing properties of drugs of abuse, including ethanol (EtOH). We have shown that administration of ceftriaxone (CEF), a β-lactam antibiotic, reduced EtOH intake and increased glutamate transporter 1 (GLT-1) expression in mesocorticolimbic regions of male and female alcohol-preferring (P) rats. In the present study, we tested whether CEF administration would reduce nicotine (NIC) and/or EtOH intake by adult female P rats. P rats were randomly assigned to 4 groups: (a) 5% sucrose (SUC) or 10% SUC [SUC], (b) 5% SUC+0.07mg/ml NIC and 10% SUC+0.14mg/ml NIC [NIC-SUC], 15% EtOH and 30% EtOH [EtOH] and (d) 15% EtOH+0.07mg/ml NIC and 30% EtOH+0.14mg/ml NIC [NIC-EtOH]. After achieving stable intakes (4weeks), the rats were administered 7 consecutive, daily i.p. injections of either saline or 200mg/kg CEF. The effects of CEF on intake were significant but differed across the reinforcers; such that ml/kg/day SUC was reduced by ∼30%, mg/kg/day NIC was reduced by ∼70% in the NIC-SUC group and ∼40% in the EtOH-NIC group, whereas g/kg/day EtOH was reduced by ∼40% in both the EtOH and EtOH-NIC group. The effects of CEF on GLT-1 expression were also studied. We found that CEF significantly increased GLT-1 expression in the prefrontal cortex and the nucleus accumbens of the NIC and NIC-EtOH rats as compared to NIC and NIC-EtOH saline-treated rats. These findings provide further support for GLT-1-associated mechanisms in EtOH and/or NIC abuse. The present results along with previous reports of CEF's efficacy in reducing cocaine self-administration in rats suggest that modulation of GLT-1 expression and/or activity is an important pharmacological target for treating polysubstance abuse and dependence.

  2. PRENATAL ETHANOL EXPOSURE INCREASES ETHANOL INTAKE AND REDUCES C-FOS EXPRESSION IN INFRALIMBIC CORTEX OF ADOLESCENT RATS

    OpenAIRE

    Fabio, Maria Carolina; March, Samanta M.; Molina, Juan Carlos; Nizhnikov, Michael E.; Norman E. Spear; Pautassi, Ricardo Marcos

    2012-01-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Exp. 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0 g/kg) or vehicle, on gestational days 17–20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-in...

  3. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Science.gov (United States)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  4. Protein engineering of alcohol dehydrogenase--1. Effects of two amino acid changes in the active site of yeast ADH-1.

    Science.gov (United States)

    Murali, C; Creaser, E H

    1986-01-01

    One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.

  5. Mass balance evaluation of alcohol emission from cattle feed

    Science.gov (United States)

    Silage on dairy farms has been recognized as an important source of volatile organic compounds (VOCs) to the atmosphere, and therefore a contributor to tropospheric ozone. Considering reactivity and likely emission rates, ethanol, 1-propanol, and acetaldehyde probably make the largest contribution t...

  6. Comparative studies on the alcohol types presence in Gracilaria sp. and rice fermentation using Sasad

    Science.gov (United States)

    Mansa, R.; Mansuit, H.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.

    2016-06-01

    Alternative fuel sources such as biofuels are needed in order to overcome environmental problem caused by fossil fuel consumption. Currently, most biofuel are produced from land based crops and there is a possibility that marine biomass such as macroalgae can be an alternative source for biofuel production. The carbohydrate in macroalgae can be broken down into simple sugar through thermo-chemical hydrolysis and enzymatic hydrolysis. Dilute-acid hydrolysis was believed to be the most available and affordable method. However, the process may release inhibitors which would affect alcohol yield from fermentation. Thus, this work was aimed at investigating if it is possible to avoid this critical pre-treatment step in macroalgae fermentation process by using Sasad, a local Sabahan fermentation agent and to compare the yield with rice wine fermentation. This work hoped to determine and compare the alcohol content from Gracilaria sp. and rice fermentation with Sasad. Rice fermentation was found containing ethanol and 2 - methyl - 1 - propanol. Fermentation of Gracilaria sp. had shown the positive presence of 3 - methyl - 1 - butanol. It was found that Sasad can be used as a fermentation agent for bioalcohol production from Gracilaria sp. without the need for a pretreatment step. However further investigations are needed to determine if pre-treatment would increase the yield of alcohol.

  7. Volumetric and viscometric study of molecular interactions in the mixtures of some secondary alcohols with equimolar mixture of ethanol and N,N-dimethylacetamide at 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Government Degree College, Visakhapatnam 530 013, Andhra Pradesh (India); Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: krdhanekula@yahoo.co.i [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India)

    2011-02-15

    Densities and viscosities of mixtures of isopropanol, isobutanol and isoamylalcohol with equimolar mixture of ethanol and N,N-dimethylacetamide have been measured at 308.15 K over the entire composition range. Deviations in viscosity, excess molar volume and excess Gibb's free energy of activation of viscous flow have been calculated from the experimental values of densities and viscosities. Excess properties have been fitted to the Redlich-Kister type polynomial equation and the corresponding standard deviations have been calculated. The experimental data of viscosity have been used to test the applicability of empirical relations of Grunberg-Nissan, Hind-McLaughlin, Katti-Chaudhary and Heric-Brewer for the systems studied. Molecular interactions in the liquid mixtures have been investigated in the light of variation of deviation and of excess values in evaluated properties. -- Research highlights: {yields} Volumetric and viscometric studies of liquid mixtures are useful in pharmacy field. {yields} Molecular interactions in ethanol and N,N-dimethylacetamide with alcohols are studied. {yields} Weak interactions observed due to rupture of hydrogen bond between alcohol molecules. {yields} Measured viscosity values compared with theoretical values obtained by polynomials.

  8. Study on Ionization Energies of 3-Amino-1-propanol

    Institute of Scientific and Technical Information of China (English)

    Ke-dong Wang; Ying-bin Jia; Zhen-jiang Lai; Yu-fang Liu

    2011-01-01

    Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP,MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH…N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.

  9. Prediction of solvation enthalpy of gaseous organic compounds in propanol

    Science.gov (United States)

    Golmohammadi, Hassan; Dashtbozorgi, Zahra

    2016-09-01

    The purpose of this paper is to present a novel way for developing quantitative structure-property relationship (QSPR) models to predict the gas-to-propanol solvation enthalpy (Δ H solv) of 95 organic compounds. Different kinds of descriptors were calculated for each compound using the Dragon software package. The variable selection technique of replacement method (RM) was employed to select the optimal subset of solute descriptors. Our investigation reveals that the dependence of physical chemistry properties of solution on solvation enthalpy is nonlinear and that the RM method is unable to model the solvation enthalpy accurately. The results established that the calculated Δ H solv values by SVM were in good agreement with the experimental ones, and the performances of the SVM models were superior to those obtained by RM model.

  10. Molecular probe dynamics and free volume in organic glass-formers and their relationships to structural relaxation: 1-propanol

    International Nuclear Information System (INIS)

    A joint study of the rotational dynamics and free volume in amorphous 1-propanol (1-PrOH) as a prototypical monohydroxy alcohol by electron spin resonance (ESR) or positron annihilation lifetime spectroscopy (PALS), respectively, is reported. The dynamic parameters of the molecular spin probe 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the annihilation ones of the atomic ortho-positronium (o-Ps) probe as a function of temperature are compared. A number of coincidences between various effects in the ESR and PALS responses at the corresponding characteristic ESR and PALS temperatures were found suggesting a common origin of the underlying dynamic processes that were identified using viscosity (VISC) in terms of the two-order parameter (TOP) model and broadband dielectric spectroscopy (BDS) data. (paper)

  11. ECONOMIC AND TECHNICAL ANALYSIS OF ETHANOL DRY MILLING: MODEL DESCRIPTION

    OpenAIRE

    Rhys T. Dale; Tyner, Wallace E.

    2006-01-01

    Ethanol, the common name for ethyl alcohol, is fuel grade alcohol that is predominately produced through the fermentation of simple carbohydrates by yeasts. In the United States, the carbohydrate feedstock most commonly used in the commercial production of ethanol is yellow dent corn (YDC). The use of ethanol in combustion engines emits less greenhouse gasses than its petroleum equivalent, and it is widely hoped that the increased substitution of petroleum by ethanol will reduce US dependence...

  12. Postmortem endogenous ethanol production and diffusion from the lung due to aspiration of wood chip dust in the work place.

    Science.gov (United States)

    Furumiya, Junichi; Nishimura, Hiroyuki; Nakanishi, Akinori; Hashimoto, Yoshiaki

    2011-07-01

    We report an autopsy case of postmortem ethanol diffusion into the cardiac blood after aspiration of wood chips, although antemortem ethanol consumption was not evident. A man in his twenties, who was loading a truck with small wood chips in a hot, humid storehouse, was accidentally buried in a heap of chips. At the time the body was discovered, 20 h after the accident, rectal temperature was 36°C. Autopsy showed the cause of death to be asphyxia due to obstruction of the airway by aspiration of wood chips. The ethanol and n-propanol levels were significantly higher in the lungs (left, 0.603 and 0.009 mg/g; right, 0.571 and 0.006 mg/g) than in other tissues. A significant difference in ethanol concentration was observed between the left cardiac blood (0.243 mg/g) and the right femoral blood (0.042 mg/g). Low levels of ethanol and n-propanol were detected in the stomach contents (0.105 and 0.001 mg/g, respectively). In order to determine whether aspiration of wood chips affects postmortem ethanol production in the lung, we measured the ethanol and n-propanol levels of homogenized rabbit lung tissue incubated with autoclaved or non-autoclaved wood chips. Levels of ethanol and n-propanol were significantly higher in the homogenates incubated with non-autoclaved chips for 24h. The results of this animal experiment suggested that the ethanol detected in the lung was produced by putrefactive bacteria within the wood chips. After death, the ethanol produced endogenously in the lung appears to have diffused and affected the ethanol concentration of the left cardiac blood.

  13. [Alcohol and nutrition].

    Science.gov (United States)

    Maillot, F; Farad, S; Lamisse, F

    2001-11-01

    Alcoholism and alcohol-associated organ injury is one of the major health problems worldwide. Alcohol may lead to an alteration in intermediary metabolism and the relation between alcohol intake and body weight is a paradox. The effect of alcohol intake on resting metabolic rate, assessed by indirect calorimetry, and lipid oxidation, is still controversial. Small quantities of ethanol seem to have no effect on body weight. Ingestion of moderate amounts may lead to an increase in body weight, via a lipid-oxidizing suppressive effect. Chronic intake of excessive amounts in alcoholics leads to a decrease in body weight, probably via increased lipid oxidation and energy expenditure. Chronic ethanol abuse alters lipid-soluble (vitamins A, D and E) and water-soluble (B-complex vitamins, vitamin C) vitamins status, and some trace elements status such as magnesium, selenium or zinc.

  14. A many-body model for alcohols: applications to the cyclic methanol/water hetero trimers, and to the (methanol)n, (ethanol)n and (t-butanol)n cyclic clusters (n=2-6)

    Science.gov (United States)

    Flament, Michel Masella Jean-Pierre

    The TCPE many-body model for water has been adapted to alcohols. As for water, the model parameters have been assigned to reproduce ab initio results at the MP2 level with the methanol/water hetero dimers and the methanol cyclic trimer. Model results have been shown to be in good agreement with available ab initio calculations on methanol/water hetero cyclic trimers and with experiment for (methanol)n, (ethanol)n and (t-butanol)n cyclic clusters (n = 2-6). Cooperative effects estimated from this model have been shown to increase with cluster size (from about 15% for n = 3 to about 25% for n = 6, and even 33% in the case of t-butanol), and the polarization many-body effects shown to represent more than 70% (81% for t-butanol) of the total cooperative effects in such systems. All of these results suggest that the TCPE model is well suited to use in simulations of alcohol or alcohol/water systems.

  15. Application of the ERAS model to volumetric properties of binary mixtures of banana oil with primary and secondary alcohols (C1-C4) at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Mahboobe [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Zarei, Hosseinali, E-mail: zareih@basu.ac.i [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2011-05-15

    The densities of binary mixtures of {l_brace}isoamyl acetate + alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol){r_brace}, including those of pure liquids, over the entire composition range were measured at temperatures (293.15 to 333.15) K and atmospheric pressure by means of a vibrating-tube densimeter. The excess molar volume, V{sub m}{sup E}, thermal expansion coefficients, {alpha}, and their excess values, {alpha}{sup E}, were calculated from density data. The V{sub m}{sup E} values are positive over the entire range of composition and temperature and become more positive with increasing temperature for all of the mixtures except for the (isoamyl acetate + methanol) mixture. The V{sub m}{sup E} values were correlated by Redlich-Kister equation and the extended real associated solution (ERAS) model was used for describing V{sub m}{sup E} values at T = 303.15 K.

  16. Efficacy of ethanol-based hand foams using clinically relevant amounts: a cross-over controlled study among healthy volunteers

    Directory of Open Access Journals (Sweden)

    Marschall Sigunde

    2010-03-01

    Full Text Available Abstract Background Foams containing 62% ethanol are used for hand decontamination in many countries. A long drying time may reduce the compliance of healthcare workers in applying the recommended amount of foam. Therefore, we have investigated the correlation between the applied amount and drying time, and the bactericidal efficacy of ethanol foams. Methods In a first part of tests, four foams (Alcare plus, Avagard Foam, Bode test foam, Purell Instant Hand Sanitizer containing 62% ethanol, which is commonly used in U.S. hospitals, were applied to 14 volunteers in a total of seven variations, to measure drying times. In a second part of tests, the efficacy of the established amount of foam for a 30 s application time of two foams (Alcare plus, Purell Instant Hand Sanitizer and water was compared to the EN 1500 standard of 2 × 3 mL applications of 2-propanol 60% (v/v, on hands artificially contaminated with Escherichia coli. Each application used a cross-over design against the reference alcohol with 15 volunteers. Results The mean weight of the applied foam varied between 1.78 and 3.09 g, and the mean duration to dryness was between 37 s and 103 s. The correlation between the amount of foam applied and time until hands felt dry was highly significant (p 10-reduction: 3.05 ± 0.45 and Alcare plus (3.58 ± 0.71 was significantly less effective than the reference disinfection (4.83 ± 0.89 and 4.60 ± 0.59, respectively; p 10-reduction of 2.39 ± 0.57. Conclusions When using 62% ethanol foams, the time required for dryness often exceeds the recommended 30 s. Therefore, only a small volume is likely to be applied in clinical practice. Small amounts, however, failed to meet the efficacy requirements of EN 1500 and were only somewhat more effective than water.

  17. Establishment of a mouse model of alcohol drinking and the effect of ethanol on estrogen in mice%饮酒小鼠动物模型建立及其对雌性激素的影响

    Institute of Scientific and Technical Information of China (English)

    卢艳敏; 李菲菲; 杨金莲; 桂照华; 陈吉; 余科科; 汪思应

    2012-01-01

    Objective A mouse model of ethanol consumption was set up. This model was used to investigate the effect of ethanol-exposed on the serum estrogen level and breast cancer progression in mice. Methods 2% ethanol in drinking water was given in the ethanol-exposure group mice (n = 15) from 8; 00 pm to 8; 00 am and then replaced with regular water without ethanol at the remaining 12 hours each day for 3 weeks. Mice in the control group (n = 15) were provided with regular drinking water only. The water intake, body weight and blood ethanol concentration (BEC) of the mice were checked. The estrogen level in mice serum was quantified by enzyme-linked immunosorbent assay (ELASA). Results The BEC in mice was much higher than that in control mice and similar to drinking humans. No water intake, body weight differences were found in mice with ethanol exposure or without. The serum estrogen level in ethanol drinking group was much higher than that in the control group. Conclusion A mouse alcohol-exposure model has been successfully established. Ethanol consumption might increase the serum estrogen level in mouse.%目的 建立模拟人类饮酒的小鼠动物模型,并以此动物模型进一步研究酒精对小鼠雌激素水平及乳腺癌的影响.方法 SPF级C57BL/6雌性小鼠,随机分对照组和酒精组两组,酒精组20:00到次日8:00给予含有一定浓度酒精的饮用水,其他时间给予常规饮用水,对照组全天给予常规饮用水.观察两组小鼠的饮水量及体重变化;用ANALOX AM1酒精分析仪检测小鼠凌晨2:00和8:00血液的酒精浓度(BEC);酶联免疫法(ELASA)检测两组小鼠血清中雌激素水平的差异.结果 饮酒组小鼠血液BEC明显增高,类似人类饮酒水平,饮酒组小鼠的饮水量及体重无明显变化;饮酒组小鼠体内雌激素的水平明显高于对照组.结论 成功的建立模拟人类饮酒的动物模型,并通过此动物模型初步证实酒精刺激可以增加小鼠体内血清雌激素的水平.

  18. Thermodynamic properties of solutions of sodium di-hydrogen phosphate in (1-propanol + water) mixed-solvent media over the temperature range of (283.15 to 303.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Pasdran Street, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)], E-mail: rsadeghi@uok.ac.ir; Parhizkar, Hana [Department of Chemistry, University of Kurdistan, Pasdran Street, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2008-06-15

    The apparent molar volume and apparent molar isentropic compressibility of solutions of sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}) in (1-propanol + water) mixed-solvent media with alcohol mass fractions of 0.00, 0.05, 0.10, and 0.15 are reported over the range of temperature (283.15 to 303.15) K at 5 K intervals. The results were fitted to a Redlich-Mayer type equation from which the apparent molar volume and apparent molar isentropic compressibility of the solutions at the infinite dilution were also calculated at the working temperature. The results show a positive transfer volume of NaH{sub 2}PO{sub 4} from an aqueous solution to an aqueous 1-propanol solution. The apparent molar isentropic compressibility of NaH{sub 2}PO{sub 4} in aqueous 1-propanol solutions is negative and it increases with increasing the concentration of NaH{sub 2}PO{sub 4}, 1-propanol, and temperature. Electrical conductivity and refractive index of the solutions are also studied at T = 298.15 K. The effects of the electrolyte concentration and relative permittivity of the medium on the molar conductivity were also investigated.

  19. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  20. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  1. ALCOHOL AND HEART RHYTHM DISORDERS

    Directory of Open Access Journals (Sweden)

    A. O. Yusupova

    2015-01-01

    Full Text Available Alcohol abuse and particularly extension of alcohol consumption in alcohol diseas increases the risk of cardiac arrhythmias development and aggravates existing arrhythmias. Patients do not always receive the necessary specific treatment due to lack of detection of the ethanol genesis of these arrhythmias. Management of patients with alcohol abuse and alcohol dependence, including its cardiac complications among other cardiac arrhythmias should use both antiarrhythmic and anti-alcohol drugs and antidepressants. Such issues as diagnosis and management of patients with alcohol-induced cardiac arrhythmias are presented.

  2. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Suzuki, Amelia; Ruiz-Agudo, Encarnacion

    2013-09-10

    Alcohol dispersions of Ca(OH)2 nanoparticles, the so-called nanolimes, are emerging as an effective conservation material for the consolidation of stone, mortars, and plasters present in old masonry and/or mural paintings. To better understand how this treatment operates, to optimize its performance and broaden its applications, here we study the nano and microstructural characteristics, carbonation behavior, and consolidation efficacy of colloidal alcohol dispersions of Ca(OH)2 nanoparticles produced by both homogeneous (commercial nanolime) and heterogeneous phase synthesis (aged slaked lime and carbide lime putties). We observe that the alcohol not only provides a high colloidal stability to Ca(OH)2 particles, but also affects the kinetics of carbonation and CaCO3 polymorph selection. This is due to the pseudomorphic replacement of Ca(OH)2 particles by calcium alkoxides upon reaction with ethanol or 2-propanol. The extent of this replacement reaction depends on Ca(OH)2 size and time. Hydrolysis of alkoxides speeds up the carbonation process and increases the CaCO3 yield. The higher degree of transformation into calcium alkoxide of both the commercial nanolime and the carbide lime fosters metastable vaterite formation, while calcite precipitation is promoted upon carbonation of the aged slaked lime due its lower reactivity, which limits calcium alkoxide formation. A higher consolidation efficacy in terms of strength gain of treated porous stone is achieved in the latter case, despite the fact that the carbonation is much faster and reaches a higher yield in the former ones. Formation of alkoxides, which has been neglected in previous studies, needs to be considered when applying nanolime treatments. These results show that the use Ca(OH)2 nanoparticle dispersions prepared with either aged slaked lime or carbide lime putties is an economical and effective conservation alternative to commercial nanolimes produced by homogeneous phase synthesis. Ultimately, this

  3. Spreading pressures of water and n-propanol on polymer surfaces

    NARCIS (Netherlands)

    Busscher, H.J.; Kip, G.A.M.; Silfhout, van A.; Arends, J.

    1986-01-01

    Spreading pressures of water and n-propanol on polytetrafluoroethylene (PTFE), polystyrene (PS), polymethylmethacrylate (PMMA), polycarbonate (PC), and glass are determined from ellipsometrically measured adsorption isotherms by graphical integration, yielding for water 9, 37, 26, 33, and 141 erg ·

  4. Methyl orbital signatures in 2-amino-l-propanol

    Institute of Scientific and Technical Information of China (English)

    Wang Ke-Dong; Duan Kun-Jie; Liu Yu-Fang

    2012-01-01

    Electron density distributions of 2-aminoethanol (2AE) and 2-amino-1-propanol (2AP) are calculated in both the coordinate and the momentum spaces using the B3LYP/TZVP method.Using the dual space analysis,molecular orbital signatures of the methyl substituent in 2AP are identified with respect to 2AE.Relaxations of the geometry and the valence orbital in 2AP are found to be due to the insertion of the methyl group.Five orbitals,not four orbitals,are identified as the methyl signatures.They are orbital 5a in the core shell,orbitals 9a and 10a in the inner valence shell,and orbitals 15a and 16a in the outer valence.In the inner valence shell,the attachment of methyl to 2AE causes a splitting of its orbital 8a into orbitals 9a and 10a of 2AP,whereas in the outer valence shell,the methyl group results in the insertion of an additional orbital pair of 15a and 16a.The frontier molecular orbitals 21a,20a,and 19a are found to have no significant role in the methylation of 2AE.

  5. Separation of alcohol-water mixtures using salts

    Energy Technology Data Exchange (ETDEWEB)

    Card, J. C.; Farrell, L. M.

    1982-04-01

    Use of a salt (KF or Na/sub 2/SO/sub 4/) to induce phase separation of alcohol-water mixtures was investigated in three process flowsheets to compare operating and capital costs with a conventional distillation process. The process feed was the Clostridia fermentation product, composed of 98 wt % water and 2 wt % solvents (70% 1-butanol, 27% 2-propanol, and 3% ethanol). The design basis was 150 x 10/sup 6/ kg/y of solvents. Phase equilibria and tieline data were obtained from literature and experiments. Three separation-process designs were developed and compared by an incremental economic analysis (+-30%) with the conventional separation technique using distillation alone. The cost of salt recovery for recycle was found to be the critical feature. High capital and operating costs make recovery of salt by precipitation uneconomical; however, a separation scheme using multiple-effect evaporation for salt recovery has comparable incremental capital costs ($1.72 x 10/sup 6/ vs $1.76 x 10/sup 6/) and lower incremental operating costs ($2.14 x 10/sup 6//y vs $4.83 x 10/sup 6//y) than the conventional separation process.

  6. Acid membranes of poly(vinyl alcohol) for direct ethanol fuel cell applications; Membranes acidas de poli(alcool vinilico) para aplicacoes em celulas a combustivel via etanol direto

    Energy Technology Data Exchange (ETDEWEB)

    Dutra Filho, Jose C.; Gomes, Ailton S. [Instituto de Macromoleculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, RJ (Brazil)], e-mail: asgomes@ima.ufrj.br

    2011-07-01

    Proton-conducting hybrid membranes composed of poly(vinyl alcohol) (PVA), phosphotungstic acid (HPW) and diethylenetriaminepentaacetic acid (DTPA) where prepared. The effect of HPW doping and crosslink with DTPA on the membranes properties such as uptake, pervaporation and proton conductivity was investigated. Uptake and permeated flux decreases with increasing content of HPW and DTPA. Ethanol permeabilities obtained was about two orders of magnitude smaller than Nafion 117. FTIR spectra indicated that HPW was incorporated into the polymer matrix and DTPA acted as crosslink agent. The proton conductivity was in the order of 10-3 S.cm-1 with added 4 wt.% of DTPA and generally increases with the addition of HPW. (author)

  7. The effect of the presence of alcohol in the dispersing phase of oxide sols on the properties of RuO2-TiO2/Ti anodes obtained by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    R. ATANASOSKI

    2000-09-01

    Full Text Available The effect of the addition of ethanol and 2-propanol to the dispersing phase of TiO2 and RuO2 sols mixture on the morphology and, consequently, on the electrochemical properties of the sol-gel obtained activated titanium anodes was investigated. The properties of the obtained anodes were compared to those obtained by the thermal decomposition of appropriate chloride salts. The morphology of the anode coatings was examined by scanning tunneling microscopy. The electrochemical behaviour was investigated by cyclic voltammetry and by polarization measurements. An accelerated stability test was used for the examination of the stability of the anodes under simultaneous oxygen and chlorine evolution reaction. A dependence of the anode stability on the type of added alcohol is indicated.

  8. Postmortem degradation of administered ethanol-d6 and production of endogenous ethanol: experimental studies using rats and rabbits.

    Science.gov (United States)

    Takayasu, T; Ohshima, T; Tanaka, N; Maeda, H; Kondo, T; Nishigami, J; Nagano, T

    1995-12-18

    Deuterium-labeled ethanol-d6 was employed to study the metabolism and postmortem change of ethanol in putrefied organ tissues. First, 4 ml/kg body weight of 25% (w/v) solution of ethanol-d6 was administered orally to each of 15 rats. The heart blood and organs were collected 15-90 min after the administration and the ethanol-d6 was analyzed by head space gas chromatography/mass spectrometry. The ethanol-d6 concentration in the organ tissues reached its maximum at 15 min after the administration and then gradually declined, showing the same pattern as human ethanol metabolism. Ethanol-d6 (3 ml of the same solution/kg body weight) was injected into the vein of a rabbit's ear (total of 12 rabbits). The rabbit was killed with carbon monoxide 30 min after the administration and the carcass was allowed to stand for 1-4 days at 30 degrees C in a moist chamber. The concentration of ethanol-d6 decreased moderately. Postmortem ethanol and 1-propanol concentrations, in contrast, showed marked increases 2.5 days and more after sacrifice in line with the degree of putrefaction of each organ tissue including skeletal muscle. This suggests the postmortem activation of micro-organism activity. These results indicate that ethanol concentrations in cadaver tissues must be carefully assessed with due consideration of postmortem degradation and production.

  9. Sugar consumption unrelated to ethanol production in several industrial alcoholic yeasts%几种酒类酿造酵母产酒精以外的糖消耗的研究

    Institute of Scientific and Technical Information of China (English)

    徐扬; 安家彦

    2011-01-01

    以葡萄酒1#酵母、葡萄酒6#生产酵母和啤酒酵母为研究对象,采用3,5-二硝基水杨酸光度法和比重瓶法分别测还原糖和酒精,对酒精以外的糖消耗进行研究.结果表明,酒类生产酵母在酒精发酵进入减速阶段初时达到峰值,对于控制压榨酒的风味具有指导意义.%The glucose consumption unrelated to ethanol production was studied on wine yeast 1*, wine yeast 6* and a beer yeast strain. The contentsof reducing sugar and ethanol were determined by 3, S-dinitrosalicylic acid method and bottle method, respectively. The results showed that the yeastbiomass reached a peak at the beginning of deceleration phase of alcohol fermentation, which provided the guidance to the flavor control of presswine.

  10. Gene-specific disruption of endocannabinoid receptor 1 (cnr1a) by ethanol probably leads to the development of fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish (Oryzias latipes) embryogenesis.

    Science.gov (United States)

    Dasmahapatra, Asok K; Khan, Ikhlas A

    2015-01-01

    The present study was designed to investigate the probable roles played by cannabinoid (CB) receptors in fetal alcohol spectrum disorder (FASD) induction in Japanese rice fish (Oryzias latipes). Searching of public databases (GenBank, Ensembl) indicated that the Japanese rice fish genome includes three human ortholog CB receptor genes (cnr1a, cnr1b and cnr2). Quantitative real-time PCR (qPCR) and whole mount in situ hybridization (WMISH) techniques were used to analyze the expression of these cnr genes during Japanese rice fish embryogenesis and also in response to developmental ethanol exposure. qPCR analyses showed that the expression of all three CB receptor genes were developmentally regulated and only cnr2 showed maternal expression. The mRNA concentrations of these genes were found to be enhanced after 3 dpf and attained maximal levels either prior to or after hatching. WMISH technique indicated that all three cnr genes were expressed in the head region of hatchlings. During development, ethanol selectively attenuated the expression of cnr1a mRNA only. Blocking of cnr1a mRNA by CB1 receptor antagonists rimonabant (10-20 μM) or AM251 (0.2-1 μM) 0-2 dpf were unable to induce any FASD-related phenotypic features in embryos or in hatchlings. However, continuous exposure of the embryos (0-6 dpf) to AM251 (1 μM) was able to reduce the hatching efficiency of the embryos. Our data indicated that in Japanese rice fish, ethanol disrupted the expression of only cnr1a in a concentration-dependent manner that induced delay in hatching and might be responsible for the development of FASD phenotypes.

  11. Thermodynamic properties of Sodium Dodecyl Sulfate aqueous solutions with Methanol, Ethanol, n-Propanol and iso-Propanol at different temperatures

    Directory of Open Access Journals (Sweden)

    Md. Abdul Motin

    2015-03-01

    The ΔH# values that are positive for all the studied systems indicate that positive work has to be done to overcome the energy barrier for the flow process. The variation of ΔS# is reversing the variation of the ΔH#. The excess parameters (ΔG#E, ΔH#E data have been fitted by the least square method to the four parameter Redlich–Kister equation and the values of the parameter aj have been reported. The observed increase of thermodynamic values in the aqueous SDS region are thought to be mainly due to the combined effect of hydrophobic hydration and hydrophilic effect.

  12. Prenatal ethanol exposure leads to greater ethanol-induced appetitive reinforcement.

    Science.gov (United States)

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C

    2012-09-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of 'this effect of prenatal ethanol on the sensitivity to ethanol's reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol's aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30-45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance.

  13. Excess molar volume of the acetonitrile + alcohol systems at 298.15 K. Part I: Density measurements for acetonitrile + methanol, + ethanol systems

    Directory of Open Access Journals (Sweden)

    SLOBODAN P. SERBANOVIC

    2002-09-01

    Full Text Available The excess molar volume VE of the binary liquid systems acetonitrile + methanol and acetonitrile + ethanol has been evaluated from density measurements at 298.15 K and at atmospheric pressure over the entire composition range. A vibrating tube densimeter, type Anton Paar DMA 55, was applied for these measurements. The Redlich–Kister equation was used to fit the experimental VE data.

  14. Influence of charge exchange in acidic aqueous and alcoholic titania dispersions on viscosity.

    Science.gov (United States)

    Rosenholm, Jarl B; Dahlsten, Per

    2015-12-01

    Charging effects resulting from adsorption of acid, acid anions, and protons on titania (anatase) surfaces in anhydrous or mixed alcohol-water dispersions is summarized. The suddenly enhanced conductivity as compared to titania-free solutions has previously been modeled and explained as surface-induced electrolytic dissociation (SIED) of weak acids. This model and recently published results identifying concurrent surface-induced liquid (solvent) dissociation (SILD) are evaluated with experimentally determined conductivity and pH of solutions, zeta-potential of particles, and viscosity of dispersions. Titania (0-25wt%)-alcohol (methanol, ethanol, and propanol) dispersions mixed with (0-100wt%) water were acidified with oxalic, phosphoric, and sulfuric acids. It was found that the experimental results could in many cases be condensed to master curves representing extensive experimental results. These curves reveal that major properties of the systems appear within three concentration regions were different mechanisms (SILD, surface-induced liquid dissociation; SIAD, surface-induced acid dissociation) and charge rearrangement were found to be simultaneously active. In particular, zeta-potential - pH and viscosity - pH curves are in acidified non-polar solvents mirror images to those dependencies observed in aqueous dispersions to which hydroxyl is added. The results suggest that multiple dispersion and adsorption equilibria should be considered in order to characterize the presented exceptionally extensive and complex experimental results. PMID:26520241

  15. Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source

    Directory of Open Access Journals (Sweden)

    Francisco Espinosa-Magaña

    2013-06-01

    Full Text Available Carbon nanotubes with single and few walls are highly appreciated for their technological applications, regardless of the limited availability due to their high production cost. In this paper we present an alternative process that can lead to lowering the manufacturing cost of CNTs of only few walls by means of the use of the spray pyrolysis technique. For this purpose, ferrocene is utilized as a catalyst and aliphatic alcohols (methanol, ethanol, propanol or butanol as the carbon source. The characterization of CNTs was performed by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The study of the synthesized carbon nanotubes (CNTs show important differences in the number of layers that constitute the nanotubes, the diameter length, the quantity and the quality as a function of the number of carbons employed in the alcohol. The main interest of this study is to give the basis of an efficient synthesis process to produce CNTs of few walls for applications where small diameter is required.

  16. Catching a conserved mechanism of ethanol teratogenicity

    OpenAIRE

    Lovely, Charles Ben; Eberhart, Johann Karl

    2014-01-01

    Due to its profound impact on human development, ethanol teratogenicity is a field of intense study. The complexity of variables that influence the outcomes of embryonic or prenatal ethanol exposure compels the use of animal models in which these variables can be isolated. Numerous model systems have been used in these studies. The zebrafish is a powerful model system, which has seen a recent increase in usage for ethanol studies. Those using zebrafish for alcohol studies often face two quest...

  17. (Vapor + liquid) equilibria of the binary mixtures of m-cresol with C1-C4 aliphatic alcohols at 95.5 kPa

    International Nuclear Information System (INIS)

    Bubble point temperatures at 95.5 kPa, over the entire composition range, are measured for the binary mixtures formed by m-cresol with: methanol, ethanol, 1-propanol, 2-propanol, and n-, iso-, sec-, and tert-butanols - using a Swietoslawski-type ebulliometer. The liquid phase composition - bubble point temperature measurements are well represented by the Wilson model. (Vapor + liquid) equilibria predicted from the model are presented

  18. Motor impairment: a new ethanol withdrawal phenotype in mice

    OpenAIRE

    Philibin, Scott D.; Cameron, Andy J.; Metten, Pamela; Crabbe, John C.

    2008-01-01

    Alcoholism is a complex disorder with genetic and environmental risk factors. The presence of withdrawal symptoms is one criterion for alcohol dependence. Genetic animal models have followed a reductionist approach by quantifying various effects of ethanol withdrawal separately. Different ethanol withdrawal symptoms may have distinct genetic etiologies, and therefore differentiating distinct neurobiological mechanisms related to separate signs of withdrawal would increase our understanding of...

  19. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    Science.gov (United States)

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans.

  20. Dehydration pathways of 1-propanol on HZSM-5 in the presence and absence of water

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Yuchun; Shi, Hui; Mu, Linyu; Liu, Yue; Mei, Donghai; Camaioni, Donald M.; Lercher, Johannes A.

    2015-12-23

    The Brønsted acid-catalyzed gas-phase dehydration of 1-propanol (0.075-4 kPa) was studied on zeolite H-MFI (Si/Al = 26, containing minimal amounts of extraframework Al moieties) in the absence and presence of co-fed water (0-2.5 kPa) at 413-443 K. It is shown that propene can be formed from monomeric and dimeric adsorbed 1-propanol. The stronger adsorption of 1-propanol relative to water indicates that the reduced dehydration rates in the presence of water are not a consequence of the competitive adsorption between 1-propanol and water. Instead, the deleterious effect is related to the different extents of stabilization of adsorbed intermediates and the relevant elimination/substitution transition states by water. Water stabilizes the adsorbed 1-propanol monomer significantly more than the elimination transition state, leading to a higher activation barrier and a greater entropy gain for the rate-limiting step, which eventually leads to propene. In a similar manner, an excess of 1-propanol stabilizes the adsorbed state of 1-propanol more than the elimination transition state. In comparison with the monomer-mediated pathway, adsorbed dimer and the relevant transition states for propene and ether formation are similarly, while less effectively, stabilized by intrazeolite water molecules. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and was performed in part using the Molecular Sciences Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located and the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.

  1. Photometric determination of vanadium (5) in water-propanol solutions by 5-(8-quinolylazo)-2-monoethylamino-p-cresol

    International Nuclear Information System (INIS)

    Acid-base properties of 5-(8-qinolylazo)-2-monoethylamino-p-cresol (8-QAAC) in water propanol solutions have been studied. Acidic properties of 8-QAAC decrease with an increase of propanol concentration. A complexing between vanadium (5) and 8-QAAC in water-propanol solutions has been examined. 8-QAAC has proved to be a promising reagent for vanadium. A method has been developed for photometric determination of vanadium in soils, determination limit is 0.02%

  2. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II.

    OpenAIRE

    Ohta, K.; Beall, D S; Mejia, J P; Shanmugam, K. T.; Ingram, L O

    1991-01-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selec...

  3. Ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The inulin of chicory slices was hydrolyzed enzymically and fermented to ethanol. Maximum ethanol yield was achieved with fermentation combined with saccharification, using cellulase and inulinase for saccharification. The fermenting organism was Saccharomyces cerevisiae. Kluyveromyces fragilis, containing endogenous inulinase, was also used, but with lower yield.

  4. Pd-gate MOS sensor for detection of methanol and propanol

    Institute of Scientific and Technical Information of China (English)

    Preeti Pandey; J.K.Srivastava; V.N.Mishra; R.Dwivedi

    2011-01-01

    The present paper focused on the detection of methanol and propanol using Pd-gate metal-oxide-semiconductor(MOS)sensor.Surface morphology and composition of the gate film were studied by scanning electron microscopy(SEM)and atomic force microscopy(AFM).The response of the sensor for propanol and methanol was measured as shift in capacitance-voltage(C-V) and conductance-voltage(G-V) curves of the MOS structure.The sensitivity of the sensor towards methanol was found to be greater than that towards propanol.It was 58.2% for methanol and 32% for propanol(at 0.6 V,1 MHz)in terms of capacitance measurements,while in terms of conductance results the sensitivity was found to be 57.2% for methanol and 38.9% for propanol at 1 kHz.The discontinuities or cracks present in the microstructure of the gate material are believed to be mainly responsible for the high sensitivity of the sensor,going with the decomposition of gas molecules and subsequent hydrogen permeation through Pd.

  5. Endogenous opioids and excessive alcohol consumption.

    OpenAIRE

    Gianoulakis, C

    1993-01-01

    Alcohol is one of the most popular drugs of abuse in our society, and alcoholism is an important cause of absenteeism at work and a major health and social problem. Ethanol induces a number of effects, such as disinhibition, a feeling of general well-being, tolerance and physical dependence. Since there are no specific receptors with which ethanol interacts, it has been proposed that ethanol exerts its effects by altering the activity of a number of neuronal and neuroendocrine systems. Studie...

  6. Regulation of Ethanol-Related Behavior and Ethanol Metabolism by the Corazonin Neurons and Corazonin Receptor in Drosophila melanogaster

    OpenAIRE

    Kai Sha; Seung-Hoon Choi; Jeongdae Im; Gyunghee G Lee; Frank Loeffler; Park, Jae H.

    2014-01-01

    Impaired ethanol metabolism can lead to various alcohol-related health problems. Key enzymes in ethanol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH); however, neuroendocrine pathways that regulate the activities of these enzymes are largely unexplored. Here we identified a neuroendocrine system involving Corazonin (Crz) neuropeptide and its receptor (CrzR) as important physiological regulators of ethanol metabolism in Drosophila. Crz-cell deficient (Crz-CD) fli...

  7. Ethanol consumption as inductor of pancreatitis

    Institute of Scientific and Technical Information of China (English)

    José; A; Tapia; Ginés; M; Salido; Antonio; González

    2010-01-01

    Alcohol abuse is a major cause of pancreatitis, a condition that can manifest as both acute necroinflammation and chronic damage (acinar atrophy and f ibrosis). Pancreatic acinar cells can metabolize ethanol via the oxidative pathway, which generates acetaldehyde and involves the enzymes alcohol dehydrogenase and possibly cytochrome P4502E1. Additionally, ethanol can be metabolized via a nonoxidative pathway involving fatty acid ethyl ester synthases. Metabolism of ethanol by acinar and other pancreatic cells and the consequent generation of toxic metabolites, are postulated to play an important role in the development of alcohol-related acute and chronic pancreatic injury. This current work will review some recent advances in the knowledge about ethanol actions on the exocrine pancreas and its relationship to inflammatory disease and cancer.

  8. First-pass gastric mucosal metabolism of ethanol is negligible in the rat.

    OpenAIRE

    SMITH, T; DeMaster, E G; Furne, J K; Springfield, J; Levitt, M D

    1992-01-01

    Ethanol metabolism by gastric alcohol dehydrogenase (ADH) is thought to be an important determinant of peripheral ethanol time-concentration curves (AUCs) in rats and humans. We quantitated this metabolism in rats by measuring the gastric absorption of oral ethanol (0.25 g/kg) and the gastric venous-arterial (V-A) difference of ethanol versus ethanol metabolites (acetate, acetaldehyde, and bicarbonate). Over 1 h, approximately 20% of the ethanol was absorbed from the stomach and 70% was empti...

  9. The influence of clay on K{sub 2}CO{sub 3}/Co-MoS{sub 2} catalyst in the production of higher alcohol fuel

    Energy Technology Data Exchange (ETDEWEB)

    Iranmahboob, Jamshid; Nadim, Farhad [The Environmental Research Institute, University of Connecticut, Longley Building, 270 Middle Turnpike (Route 44) U-5210, 06269-5210 Storrs, CT (United States); Toghiani, Hossein; Hill, Donald O. [The Department of Chemical Engineering, Mississippi State University, Swalm Engineering Building, Room 330, Box 9595, 39762 Mississippi State, MS (United States)

    2002-08-20

    The K{sub 2}CO{sub 3}/Co-MoS{sub 2}/clay catalyst was synthesized and its productivity and selectivity toward higher alcohol synthesis (HAS) fuel were tested at temperature and pressure ranges of 290-320 C, H{sub 2}/CO=1.1 syngas, GHSV{sub avg}=1800 h{sup -1}, and 13790 kPa, respectively. Highest oxygenates productivity (0.32 kg/kg catalyst/h) was obtained at 310 C with an oxygenates selectivity of 70%. Under the above conditions, the major oxygenates produced were ethanol, 1-propanol, methanol, and isobutanol, respectively. Increasing the reaction temperature for K{sub 2}CO{sub 3}/Co-MoS{sub 2}/clay catalyst led to a decreasing trend in the selectivity of oxygenates. However, at higher temperatures, the clay-combined catalyst produced more hydrocarbons and CO{sub 2}. The results indicated that clay had a significant impact on higher alcohol synthesis when K{sub 2}CO{sub 3} was incorporated into the Co-MoS{sub 2}, and acted as a modifier of the catalyst serving to increase the activity and selectivity to higher alcohol fuel in the temperature range of 290-310 C.

  10. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    Science.gov (United States)

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  11. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  12. Innovative production technology ethanol from sweet sorghum

    Science.gov (United States)

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. X.; Nafikova, M. M.; Nigmatzyanov, A. R.

    2016-06-01

    The paper considers the technological aspects of production of ethanol from nontraditional for Russian Federation crops - sweet sorghum. Presents the technological scheme of alcohol production and fuel pellets from sweet sorghum. Special attention is paid to assessing the efficiency of alcohol production from sweet sorghum. The described advantage of sugar content in stem juice of sweet sorghum compared with other raw materials. Allegedly, the use of the technology for producing alcohol from sweet sorghum allows to save resources.

  13. Endogenous bufadienolide mediates pressor response to ethanol withdrawal in rats

    OpenAIRE

    Kashkin, Vladimir A.; Zvartau, Edwin E.; Fedorova, Olga V.; Bagrov, Yakov Y.; Lakatta, Edward G.; Bagrov, Alexei Y.

    2007-01-01

    An endogenous natriuretic and vasoconstrictor Na/K-ATPase inhibitor, marinobufagenin (MBG), is implicated in NaCl-induced hypertension and in ethanol addiction. In rats, MBG suppresses voluntary alcohol intake, while immunization against MBG induces alcohol-seeking behavior. Since alcohol withdrawal is associated with elevation of blood pressure (BP) and renal sodium retention, we hypothesized that MBG mediates pressor response to ethanol withdrawal. In male Sprague-Dawley rats, forced ethano...

  14. Joining Astrobiology to Medicine, Resurrecting Ancient Alcohol Metabolism

    Science.gov (United States)

    Carrigan, M. A.; Uryasev, O.; Davis, R. W.; Chamberlin, S. G.; Benner, S. A.

    2010-04-01

    We apply an astrobiological approach to understand how primates responded to the emergence of ethanol in their environment by resurrecting two enzymes involved in the degradation of ethanol, alcohol dehydrogenase and aldehyde dehydrgenase.

  15. Alcohol and liver, 2010

    Institute of Scientific and Technical Information of China (English)

    Natalia; A; Osna

    2010-01-01

    Liver is known as an organ that is primarily affected by alcohol. Alcoholic liver disease (ALD) is the cause of an increased morbidity and mortality worldwide. Progression of ALD is driven by "second hits". These second hits include the complex of nutritional, pharmacological, genetic and viral factors, which aggravate liver pathology. However, in addition to liver failure, ethanol causes damage to other organs and systems. These extrahepatic manifestations are regulated via the similar hepatitis mechanisms...

  16. Determination of N-propanol Content in Liquor by Gas Chromatography with Internal Standard Substance%内标-气相色谱法分析白酒中的正丙醇含量

    Institute of Scientific and Technical Information of China (English)

    宋光林; 杨昌彪; 肖飞; 李荣华; 文锡梅

    2012-01-01

    A quantitative method was established for determination of n-propanol content in liquor by gas chroma- tography with internal standard substance. N-butyl acetate was used as an internal standard substance. 0.2 ml of 2.00 % of internal standard solution was shifted into 10 ml of liquor, mixed and gained the liquor sample with the quantity of 0. 358 7 g/L of the internal standard substance. The liquor sample in GC was injected by the automatic injector, sample of n-propanol was separated from ethanol by ZB-624 column, and then the n-propanol content in the liquor was determined by the internal standard substance and analyzed by gas chromatography with the internal standard substance. The recovery of n-propanol was from 94.47 % to 103.4 %, the relative standard deviation was 3.16 % , and the reproducibility was good. The method could determinate the content of n-propanol in liquor and meet the quantitative requirements, which was suitable for the determination of n-propanol content in large quanti- ties of liquor.%建立内标定量方式测定白酒中正丙醇含量的气相色谱检测方法。用醋酸正丁酯作内标物,抽取白酒10ml,移入2.00%的内标液0.2ml,混匀,其白酒样品中添加内标液的量为0.3587g/L。应用自动进样器进样,采用ZB-624柱分离样品中的正丙醇和乙醇,然后采用内标定量方式分析白酒中正丙醇含量。内标一气相色谱法分析白酒中正丙醇含量,正丙醇的加标回收率在94.47%~103.4%,相对标准偏差为3.16%,且重现性好。该法分析白酒中的正丙醇含量,能满足检测工作要求,适合于大批量白酒中正丙醇含量的测定。

  17. Exposure - dependent effects of ethanol on the innate immune system

    OpenAIRE

    Goral, Joanna; Karavitis, John; Kovacs, Elizabeth J.

    2008-01-01

    Extensive evidence indicates that ethanol (alcohol) has immunomodulatory properties. Many of its effects on innate immune response are dose-dependent, with acute or moderate use associated with attenuated inflammatory responses, and heavy ethanol consumption linked with augmentation of inflammation. Ethanol may modify innate immunity via functional alterations of the cells of the innate immune system. Mounting evidence indicates that ethanol can diversely affect antigen recognition and intrac...

  18. Biodiesel production by direct esterification of fatty acids with propyl and butyl alcohols

    Directory of Open Access Journals (Sweden)

    Ferial A. Zaher

    2015-12-01

    Full Text Available The expected depletion of natural petroleum resources in the near future and pollution of the environment due to excessive carbon dioxide emissions by fossil fuel and its adverse effect on global warming constitute two major problems facing the whole world. In view of these problems, much research work is now directed worldwide to find fuels alternative to those derived from petroleum which should be renewable and more environmentally friendly fuels. Biodiesel fuel which is a blend of fatty acid esters with alcohols is considered the most suitable alternative fuel for diesel engines. In this scope of research work, a previous study (Soliman et al., 2013 has been made to explore the opportunity of utilizing the fatty acids that can be obtained from the waste of edible oil industry in Egypt to produce biodiesel fuel by direct esterification with methanol as well as ethanol in the presence of sulfuric acid as a catalyst. This paper is a continuation of that work where two other alcohols of a chain length longer than ethanol have been used being propanol and butanol. The performance of a diesel engine running using a 50% blend of regular diesel fuel and each of the two biodiesels prepared was compared to that using regular diesel fuel. The results have shown that the brake specific fuel consumption (BSFC and the brake thermal efficiency at full engine loading were almost the same in all cases. This indicates that the produced fuel could be used as an efficient fuel substitute for diesel engines. By comparing the results of the present work to those reported in our previous work, it appeared that methanol which has the shortest carbon chain length is the most recommended in view of the brake thermal efficiency of a diesel engine at full loading.

  19. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    Science.gov (United States)

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  20. Encephalon Condition in Chronic Alcohol Intoxication and the Role of Amoebic Invasion of this Organ in the Development of Ethanol Attraction in Men

    Directory of Open Access Journals (Sweden)

    Sergey V. Shormanov

    2013-12-01

    Full Text Available This presentation reviews data from studies on the encephalon in 27 men ranging in age from 21 to 51 years, showing signs of chronic alcohol intoxication and who died from causes other than skull injury and 14 control subjects. The specimens were fixed in formalin or Karnua liquid, filled with paraffin and then examined, utilizing a variety of histological, histochemical and morphometric techniques. The data refers to the structural changes in the various tissue components of the brain (nervous, glia-cells, arteries, veins, as well as pertinent information concerning the presence of Protozoa in all the sections examined which according to their morphological signs and behavioral reactions indicate that amoeba had been present. The degree of cerebral tissue insemination by these parasites has been demonstrated. The condition of the membranes of these microorganisms, their cytoplasm, nucleus and nucleoli as well as the chromatoid corpuscles has been assessed and recorded. The ability of these microorganisms to split, migrate within the CNS limits, to trigger incitement and dystrophic changes and in the case of death – calcification or exulceration is shown. Further, the issue of species characteristics of amoeba occurring in the patients’ brains is discussed. The hypothesis of a possible link of amebic invasion with the development of alcohol dependence in humans is proposed.

  1. Epigenetic effects of ethanol on liver and gastrointestinal injury

    Institute of Scientific and Technical Information of China (English)

    Shivendra D Shukla; Annayya R Aroor

    2006-01-01

    Alcohol consumption causes cellular injury. Recent developments indicate that ethanol induces epigenetic alterations, particularly acetylation, methylation of histones, and hypo- and hypermethylation of DNA. This has opened up a new area of interest in ethanol research and is providing novel insight into actions of ethanol at the nucleosomal level in relation to gene expression and patho-physiological consequences. The epigenetic effects are mainly attributable to ethanol metabolic stress (Emess), generated by the oxidative and non-oxidative metabolism of ethanol, and dysregulation of methionine metabolism. Epigenetic changes are important in ethanol-induced hepatic steatosis, fibrosis, carcinoma and gastrointestinal injury. This editorial highlights these new advances and its future potential.

  2. The long pursued Holy Grail of the true "alcoholic" rat.

    Science.gov (United States)

    Gessa, Gian Luigi

    2016-08-15

    An anthology of microdialysis and electrophysiological studies on ethanol effect on mesolimbic dopaminergic neurons is presented. The usefulness of rats with innate preference for ethanol, such as the Sardinian alcohol-preferring (sP), in studying ethanol rewarding and reinforcing effects is signaled. The generation of the long sought "alcoholics rat" from sP rats is announced. Rats of the sP line avoid the shortcomings of using rats non selected for ethanol preference. PMID:26867703

  3. KBPh4由水到系列水 -醇混合溶剂的迁移自由能%Systematic Study of the Standard Transfer Gibbs Energy of Potassium Tetrophenylborate from Water to Water and Alcohol Mixtures

    Institute of Scientific and Technical Information of China (English)

    曹立新; 周保学; 史鹏飞; 邹立壮

    2001-01-01

    The standard transfer Gibbs energies (Δ trG° )of KBPh4 from reference solvent of water to water/ethanol, water/propanol, water/2-propanol,water/ethylene glycol, water/glycerol mixtures in different proportional ratio have been studied. The interactions of KBPh4 with the above mixed solvents were analyzed. The standard transfer Gibbs energy of cavity(Δ trG° cav) and the standard transfer Gibbs energy of interaction(Δ trG° int) from water to water/2-propanol mixtures at 298.15 K were calculated by the Scaled Particle Theory (SPT).

  4. Endogenous ethanol--its metabolic, behavioral and biomedical significance.

    Science.gov (United States)

    Ostrovsky YuM

    1986-01-01

    Ethanol is constantly formed endogenously from acetaldehyde, and level of the former can be measured in both human beings and animals. Acetaldehyde can be generated in situ from the metabolism of pyruvate, threonine, deoxyribose-5-phosphate, phosphoethanolamine, alanine and presumably from other substrates. The levels of blood and tissue endogenous ethanol change as a function of various physiologic and experimental conditions such as starvation, aging, stress, cooling, adrenalectomy, etc. and are regulated by many exogenous compounds such as antimetabolites, derivatives of amino acids, lithium salts, disulfiram, cyanamide, etc. Under free choice alcohol selection situations, the levels of endogenous ethanol in rat blood and alcohol preference by the animals are negatively correlated. Similar negative correlations have been found between the levels of blood endogenous ethanol and the frequency of delirium in alcoholic patients undergoing alcohol withdrawal. Endogenous ethanol and acetaldehyde can therefore be regarded as compounds which fulfil substrate, regulatory and modulator functions.

  5. The Pathogenesis of Ethanol versus Methionine and Choline Deficient Diet-Induced Liver Injury

    OpenAIRE

    Gyamfi, Maxwell Afari; Damjanov, Ivan; French, Samuel; Wan, Yu-Jui Yvonne

    2007-01-01

    The differences and similarities of the pathogenesis of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) were examined. Mice (6/group) received 1 of 4 Lieber-Decarli liquid diets for 6 weeks: (1) paired-fed control diet; (2) control diet with ethanol (ethanol); (3) paired-fed methionine/choline deficient (MCD) diet; and (4) MCD plus ethanol (combination). Hepatotoxicity, histology, and gene expression changes were examined. Both MCD and ethanol induced macrovesicular steatosis. Howeve...

  6. Sex differences in the effects of ethanol pre-exposure during adolescence on ethanol-induced conditioned taste aversion in adult rats

    OpenAIRE

    Sherrill, Luke K.; Berthold, Claire; Koss, Wendy A.; Juraska, Janice M.; Gulley, Joshua M.

    2011-01-01

    Alcohol use, which typically begins during adolescence and differs between males and females, is influenced by both the rewarding and aversive properties of the drug. One way adolescent alcohol use may modulate later consumption is by reducing alcohol s aversive properties. Here, we used a conditioned taste aversion (CTA) paradigm to determine if pre-exposure to alcohol (ethanol) during adolescence would attenuate ethanol-induced CTA assessed in adulthood in a sex-dependent manner. Male and f...

  7. GSK3β in Ethanol Neurotoxicity

    Science.gov (United States)

    2016-01-01

    Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3β (GSK3β), a multifunctional serine/ threonine kinase, responds to various cellular stresses. GSK3β is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3β in the CNS is affected by ethanol. GSK3β inhibition provides protection against ethanol neurotoxicity, whereas high GSK3β activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3β is a converging signaling point that mediates some of ethanol’s neurotoxic effects. PMID:19507062

  8. Density measurements under pressure for the binary system 1-propanol plus toluene

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Andersen, Simon Ivar

    2005-01-01

    The density of the binary system composed of 1-propanol and toluene has been measured under pressure using a vibrating-tube densimeter. The measurements have been performed for four different compositions as well as the pure compounds at four temperatures in the range of (303.15 to 333.15) K and ...

  9. The Effect of the Crystalline Phase of Zirconia for the Dehydration of Iso-propanol

    International Nuclear Information System (INIS)

    Zirconium hydroxide was synthesized by varying the aging time of the zirconyl chloride octahydrate at 100 .deg. C in aqueous solution and the resulting hydroxides were calcined at 700 .deg. C for 6 h to obtain the crystalline ZrO2. The materials used in this study were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), N2-sorption, transmission electron microscopy (TEM), NH3 temperature-programmed desorption (NH3-TPD), CO2-TPD and iso-propanol TPD analyses to correlate with catalytic activity for the dehydration of iso-propanol. The pure tetragonal ZrO2 phase was obtained after 24 h aging of zirconium hydroxide and successive calcination at 700 .deg. C. The increase of aging time showed the production of smaller particle size ZrO2 resulting that the higher specific surface area and total pore volume. NH3-TPD results revealed that the relative acidity of the catalysts increased along with the increase of aging time. On the other hand, the results of CO2-TPD showed the reverse trend of NH3-TPD results. The best catalytic activity for the dehydration of iso-propanol to propylene was shown over ZrO2 catalyst aged for 168 h which had the highest SBET (178 m2 g-1). The catalytic activity could be correlated with high surface area, relative acidity and easy desorption of iso-propanol

  10. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine

    NARCIS (Netherlands)

    Sietsma, H; Veldman, Robert; Ausema, B; Nijhof, W; Kamps, W; Vellenga, E; Kok, JW

    2000-01-01

    In this study, we show that an inhibitor of glycosphingolipid biosynthesis, D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), increases the chemosensitivity of neuroblastoma tumor cells for Taxol and vincristine. At noneffective low doses of Taxol or vincristine, the addition of a n

  11. Derived thermodynamic properties of alcohol + cyclohexylamine mixtures

    Directory of Open Access Journals (Sweden)

    IVONA R. RADOVIĆ

    2010-02-01

    Full Text Available Thermal expansion coefficients, α, excess thermal expansion coefficients, αE, isothermal coefficients of pressure excess molar enthalpy, (∂HE/∂pT,x, partial molar volumes, , partial molar volumes at infinite dilution, , partial excess molar volumes, , and partial excess molar volumes at infinite dilution, , were calculated using experimental densities and excess molar volumes, , data. All calculations are performed for the binary systems of cyclohexylamine with 1-propanol or 1-butanol or 2-butanol or 2-methyl-2-propanol. The Redlich–Kister polynomial and the reduced excess molar volume approach were used in the evaluation of these properties. In addition, the aim of this investigation was to provide a set of various volumetric data in order to asses the influence of temperature, chain length and position of hydroxyl group in the alcohol molecule on the molecular interactions in the examined binary mixtures.

  12. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  13. Selective Adsorption of Water from Mixtures with 1-Alcohols by Exploitation of Molecular Packing Effects in CuBTC

    NARCIS (Netherlands)

    J.J. Gutiérrez-Sevillano; S. Calero; R. Krishna

    2015-01-01

    The selective removal of water from mixtures with methanol, ethanol, and 1-propanol is an important task in the processing industries. With the aid of configurational-bias Monte Carlo simulations of unary and mixture adsorption, we establish the potential of CuBTC for this separation task. For opera

  14. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  15. Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P., E-mail: pb-etc-besu@yahoo.com [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India); Chattopadhyay, P. P. [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India)

    2014-08-25

    Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  16. Application of lower aliphatic alcohols as reducing agents for increasing efficiency of the LCLD process

    Science.gov (United States)

    Semenok, Dmitrii

    2014-05-01

    A method is described that is promising for application metal conductors on ceramic substrates during printed-circuit boards (PCBs) production without masking plate. The main idea of laser-induced metal deposition from solution (LCLD) consists of implementation of chemical micro reactor by using a focused laser beam. In this reactor the red/ox reaction would be initiated due to heating of a reaction medium. We used a 532 nm DPSS laser (power: 2100 mW) and water solutions of organic alcohols with low molecular weight, ethanol and isopropanol as reductants. The results of deposition were studied using the SEM, EDX methods and impedance spectroscopy. The equivalent resistance-capacitance circuit of copper tracks was constructed. The experiments showed that increasing the rate of deposition of nanostructured copper tracks up to 50 μm/s with electrical resistivity 5 Ohm/cm is possible by replacing the well-known reductants such as formaldehyde and D-sorbitol with iso-propanol.

  17. Factor Analysis of the Aftereffects of Drinking in Alcoholics.

    Science.gov (United States)

    Watson, Charles G.; And Others

    1985-01-01

    Performed factor analyses of 100 alcoholics' reports of the effects that they experience after alcohol consumption. Five factors emerged: Hangover, Euphoria, Flushing, Seizures, and Sleepiness. These factors may be helpful in assessing theories on the etiology of alcoholism and in studies of ethanol's effects on subsets of alcohol abusers. (BH)

  18. Ethanol as a Prodrug: Brain Metabolism of Ethanol Mediates its Reinforcing effects

    Science.gov (United States)

    Karahanian, Eduardo; Quintanilla, María Elena; Tampier, Lutske; Rivera-Meza, Mario; Bustamante, Diego; Gonzalez-Lira, Víctor; Morales, Paola; Herrera-Marschitz, Mario; Israel, Yedy

    2011-01-01

    Backround While the molecular entity responsible for the rewarding effects of virtually all drugs of abuse is known; that for ethanol remains uncertain. Some lines of evidence suggest that the rewarding effects of alcohol are mediated not by ethanol per se but by acetaldehyde generated by catalase in the brain. However, the lack of specific inhibitors of catalase has not allowed strong conclusions to be drawn about its role on the rewarding properties of ethanol. The present studies determined the effect on voluntary alcohol consumption of two gene vectors; one designed to inhibit catalase synthesis and one designed to synthesize alcohol dehydrogenase, to respectively inhibit or increase brain acetaldehyde synthesis. Methods The lentiviral vectors, which incorporate the genes they carry into the cell genome, were: (i) one encoding a shRNA anticatalase synthesis and (ii) one encoding alcohol dehydrogenase (rADH1). These were stereotaxically microinjected into the brain ventral tegmental area (VTA) of Wistar-derived rats bred for generations for their high alcohol preference (UChB), which were allowed access to an ethanol solution and water. Results Microinjection into the VTA of the lentiviral vector encoding the anticatalase shRNA virtually abolished (-94% p<0.001) the voluntary consumption of alcohol by the rats. Conversely, injection into the VTA of the lentiviral vector coding for alcohol dehydrogenase greatly stimulated (2-3 fold p<0.001) their voluntary ethanol consumption. Conclusions The study strongly suggests that to generate reward and reinforcement, ethanol must be metabolized into acetaldehyde in the brain. Data suggest novel targets for interventions aimed at reducing chronic alcohol intake. PMID:21332529

  19. Tailoring the key fuel properties using different alcohols (C2–C6) and their evaluation in gasoline engine

    International Nuclear Information System (INIS)

    Highlights: • Optimized C2–C6 alcohols–gasoline blends achieved better properties than E15. • Optimum blends improved torque and reduced BSFC than that of E15 fuel. • Higher peak in-cylinder pressure obtained for alcohol gasoline blends. • Compared to E15, optimum blends reduced BSCO, BSHC and BSNOx emission. - Abstract: The use of ethanol as a fuel for internal combustion engines has been given much attention mostly because of its possible environmental and long-term economical advantages over fossil fuel. Higher carbon number alcohols, such as propanol, butanol, pentanol and hexanol also have the potential to use as alternatives as they have higher energy content, octane number and can displace more petroleum gasoline than that of ethanol. Therefore, this study focuses on improvement of different physicochemical properties using multiple alcohols at different ratios compared to that of the ethanol–gasoline blend (E10/E15). To optimize the properties of multiple alcohol–gasoline blends, properties of each fuel were measured. An optimization tool of Microsoft Excel “Solver” was used to find out the optimum blend. Three optimum blends with maximum heating value (MaxH), maximum research octane number (MaxR) and maximum petroleum displacement (MaxD) are selected for testing in a four cylinder gasoline engine. Tests were conducted under the wide open throttle condition with varying speeds and compared results with that of E15 (Ethanol 15% with gasoline 85%) as well as gasoline. Optimized blends have shown higher brake torque than gasoline. In the terms of BSFC (Brake specific fuel consumption), optimized blends performed better than that of E15. In-cylinder pressure started to rise earlier for all alcohol–gasoline blends than gasoline. The peak in-cylinder pressure and peak heat release rate obtained higher for alcohol gasoline blend than that of gasoline. On the other hand, the use of optimized blends reduces BSCO (Brake specific carbon monoxide

  20. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (Ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentaton demand; the optimization of value of agricultureal crops; and the efficiencies of combining related industries. Anhydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grains can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural-environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  1. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentation demand; the optimizaton of value of agricultural crops; and the efficiencies of combining related industries. Ahydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grain can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural- environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  2. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    Science.gov (United States)

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  3. Scaffolding of Fyn Kinase to the NMDA Receptor Determines Brain Region Sensitivity to Ethanol

    OpenAIRE

    Yaka, Rami; Phamluong, Khanhky; Ron, Dorit

    2003-01-01

    Alcohol (ethanol) abuse is a major societal problem. Although ethanol is a structurally simple, diffusible molecule, its sites of action are surprisingly selective, and the molecular mechanisms underlying specificity in ethanol actions are not understood. The NMDA receptor channel is one of the main targets for ethanol in the brain. We report here that the brain region-specific compartmentalization of Fyn kinase determines NMDA receptor sensitivity to ethanol. We demonstrate that, in the hipp...

  4. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  5. How do yeast cells become tolerant to high ethanol concentrations?

    Science.gov (United States)

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance. PMID:26758993

  6. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    Science.gov (United States)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  7. Genes Encoding Enzymes Involved in Ethanol Metabolism

    Science.gov (United States)

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  8. Pharmacokinetics of Ethanol - Issues of Forensic Importance.

    Science.gov (United States)

    Jones, A W

    2011-07-01

    A reliable method for the quantitative analysis of ethanol in microvolumes (50-100 μL) of blood became available in 1922, making it possible to investigate the absorption, distribution, metabolism, and excretion (ADME) of ethanol in healthy volunteers. The basic principles of ethanol pharmacokinetics were established in the 1930s, including the notion of zero-order elimination kinetics from blood and distribution of the absorbed dose into the total body water. The hepatic enzyme alcohol dehydrogenase (ADH) is primarily responsible for the oxidative metabolism of ethanol. This enzyme was purified and characterized in the early 1950s and shown to have a low Michaelis constant (km), being about ~0.1 g/L. Liver ADH is therefore saturated with substrate after the first couple of drinks and for all practical purposes the concentration-time (C-T) profiles of ethanol are a good approximation to zero-order kinetics. However, because of dose-dependent saturation kinetics, the entire postabsorptive declining part of the blood-alcohol concentration (BAC) curve looks more like a hockey stick rather than a straight line. A faster rate of ethanol elimination from blood in habituated individuals (alcoholics) is explained by participation of a high km microsomal enzyme (CYP2E1), which is inducible after a period of chronic heavy drinking. Owing to the combined influences of genetic and environmental factors, one expects a roughly threefold difference in elimination rates of ethanol from blood (0.1-0.3 g/L/h) between individuals. The volume of distribution (Vd) of ethanol, which depends on a person's age, gender, and proportion of fat to lean body mass, shows a twofold variation between individuals (0.4-0.8 L/kg). This forensic science review traces the development of forensic pharmacokinetics of ethanol from a historical perspective, followed by a discussion of important issues related to the disposition and fate of ethanol in the body, including (a) quantitative evaluation of

  9. Molecular mechanisms of alcohol associated pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Dahn; L; Clemens; Mark; A; Wells; Katrina; J; Schneider; Shailender; Singh

    2014-01-01

    Alcohol abuse is commonly associated with the development of both acute and chronic pancreatitis. Despite this close association, the fact that only a small percentage of human beings who abuse alcohol develop pancreatitis indicates that alcohol abuse alone is not sufficient to initiate clinical pancreatitis. This contention is further supported by the fact that administration of ethanol to experimental animals does not cause pancreatitis. Because of these findings, it is widely believed that ethanol sensitizes the pancreas to injury and additional factors trigger the development of overt pancreatitis. How ethanol sensitizes the pancreas to pancreatitis is not entirely known. Numerous studies have demonstrated that ethanol and its metabolites have a number of deleterious effects on acinar cells. Important acinar cells properties that are affected by ethanol include: calcium signaling, secretion of zymogens, autophagy, cellular regeneration, the unfolded protein response, and mitochondrial membrane integrity. In addition to the actions of ethanol on acinar cells, it is apparent that ethanol also affects pancreatic stellatecells. Pancreatic stellate cells have a critical role in normal tissue repair and the pathologic fibrotic response. Given that ethanol and its metabolites affect so many pancreatic functions, and that all of these effects occur simultaneously, it is likely that none of these effects is "THE" effect. Instead, it is most likely that the cumulative effect of ethanol on the pancreas predisposes the organ to pancreatitis. The focus of this article is to highlight some of the important mechanisms by which ethanol alters pancreatic functions and may predispose the pancreas to disease.

  10. Measurement and Correlation of Solubility for Propylene in 2-Propanol-Water Solutions

    Institute of Scientific and Technical Information of China (English)

    刘国柱; 任永利; 米镇涛; 吴玉龙

    2003-01-01

    In order to obtain the solubility data of propylene in 2-propanol-water solutions, gas-liquid equilibrium (GLE) experiments were carried out at 303.15-333.15 K, 0.27-0.98 MPa in a static equilibrium still. The original mass ratio of 2-propanol to water was 9∶1,8∶2,7∶3,1∶0, respectively. The equilibrium data were correlated with an empirical model and the regression of model parameters was completed by Gauss-Newton nonlinear least square (NLS). The average relative deviation (ARD) between the experimental and calculated value is 1.5700, and the maximum relative deviation (MRD) is 4.8200. In addition, a simple approach that correlated the model parameters with the system composition was also provided.

  11. Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

    Science.gov (United States)

    Zhong, Zhi; Ramshesh, Venkat K.; Rehman, Hasibur; Liu, Qinlong; Theruvath, Tom P.; Krishnasamy, Yasodha; Lemasters, John J.

    2014-01-01

    Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to

  12. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  13. Molecular conformation and structural correlations of liquid D-1-propanol through neutron diffraction

    Indian Academy of Sciences (India)

    A Sahoo; S Sarkar; P S R Krishna; V Bhagat; R N Joarder

    2008-07-01

    An analysis of neutron diffraction data of liquid deuterated 1-propanol at room temperature to extract its molecular conformation is presented. Being a big molecule with twelve atomic sites, the analysis is tricky and needs careful consideration. The resulting molecular parameters are compared with electron diffraction (gas phase), X-ray diffraction (liquid phase) and MD simulation results. Information about the hydrogen-bonded intermolecular structure in liquid is extracted and nature of the probable molecular association suggested.

  14. Actions of acute and chronic ethanol on presynaptic terminals.

    Science.gov (United States)

    Roberto, Marisa; Treistman, Steven N; Pietrzykowski, Andrzej Z; Weiner, Jeff; Galindo, Rafael; Mameli, Manuel; Valenzuela, Fernando; Zhu, Ping Jun; Lovinger, David; Zhang, Tao A; Hendricson, Adam H; Morrisett, Richard; Siggins, George Robert

    2006-02-01

    This article presents the proceedings of a symposium entitled "The Tipsy Terminal: Presynaptic Effects of Ethanol" (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a "hot" topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol's behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication

  15. New microbe can make ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1989-03-01

    Researchers have created a bacterium that converts all of the sugars from inedible vegetable waste and other woody material into ethanol by inserting the genes of the bacterium Zymomonas mobilis into Escherichia coli. The resulting bacterium converts 90% -95% of the main forms of sugar in biomass into 4% - 6% concentrations of ethanol. The goal is to reach a 7% to 8% concentration. Current ethanol production from corn in a yeast-fermentation process yields a 10% - 12% ethanol concentration, but the conversion rate is less efficient than with the new bacterium. Zymomonas, found in cactus plants and used by the Aztecs to make alcohol, was selected for its known conversion efficiency. Providing the engineering challenges can be overcome, there could be several pilot plants running in 3-5 years. Even though it is not currently profitable to make ethanol from vegetable waste, if the fact that this new process reduces the total material by 90% were taken into account, perhaps a landfill reduction credit based on current tipping fees would make the actual costs both more realistic and more attractive.

  16. Identification and dosage by HRGC of minor alcohol and esters in Brazilian sugar-cane spirit

    International Nuclear Information System (INIS)

    The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaca), were investigated by high-resolution gas chromatography (HRGC). The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a) and total esters content (24 mg/100 mL a.a) in cachacas, are smaller than in other spirits. The average methanol content in cachacas (6 mg/100 mL a.a) is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachacas have been observed. (author)

  17. Identification and dosage by HRGC of minor alcohol and esters in Brazilian sugar-cane spirit

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, Mauricio; Bezerra, Cicero W.B.; Cardoso, Daniel R.; Lima Neto, Benedito S.; Franco, Douglas W. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica

    2000-02-01

    The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaca), were investigated by high-resolution gas chromatography (HRGC). The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a) and total esters content (24 mg/100 mL a.a) in cachacas, are smaller than in other spirits. The average methanol content in cachacas (6 mg/100 mL a.a) is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachacas have been observed. (author)

  18. Gas Chromatography Method of Cleaning Validation Process for 2-Propanol Residue Determination in Pharmaceutical Manufacturing Equipment

    Directory of Open Access Journals (Sweden)

    Łukasz Czubak

    2014-07-01

    Full Text Available Cleaning validation is an integral operation of good manufacturing practice in pharmaceutical industry. The aim of this study was to validate simple analytical method for detection of 2-propanol residue in equipment, which is likely contaminated with 2-propanol, usually used in the production area. The gas chromatography with flame ionization detection (GC-FID method was validated on a GC system using DB-FFAP capillary column at the flow rate of 4.9 mL/min. The calibration curve was linear over concentration range from 2.8µg/mL to 110.7µg/mL with a correlation coefficient equal to 0.99981. The detection limit (LOD and quantitation limit (LOQ were 1.1µg/mL and 2.8µg/mL, respectively. The simplicity of gas chromatography method makes it useful for routine analysis of 2-propanol residue and is an alternative to corresponding methods.

  19. The irritant potential of n-propanol (nonanoic acid vehicle) in cumulative skin irritation

    DEFF Research Database (Denmark)

    Clemmensen, A; Andersen, F; Petersen, Thomas Kongsted;

    2008-01-01

    have diverse mechanisms of action on the skin. We used sodium lauryl sulfate (SLS) and nonanoic acid (NON) in three different concentrations plus their vehicles, water and n-propanol, respectively, to validate our test models and to optimize test concentrations. METHODS: Healthy volunteer forearm skin...... was exposed in two different cumulative test models: a repeated open model (ROAT) and an exaggerated wash test model. ROAT: 10-min daily exposures for 5+4 days (no irritation on weekend) to SLS 0% (water), 0.5%, 1.0% and 2.0% on the right arm and NON 0% (n-propanol neat), 10%, 20% and 30% on the left arm...... and hydration) at sequential time points. Additionally, for the wash test, subjective pain scores were obtained from the volunteers. RESULTS: In the ROAT, n-propanol exhibited irritation potential at the level of SLS 1.0% and, by visual scoring, was only found to be significantly different from the two highest...

  20. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    Science.gov (United States)

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.

  1. Ethanol dehydration

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2010-04-01

    Full Text Available This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the operational, energy consumption and industrial services points of view.

  2. Direct ethanol process. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Huff, G.F.

    Several points were made. First, Gulf Oil Company has not to date solicited government funds for this program. Gulf Oil Chemicals Company has expended more than 6 million dollars developing the technology and hopes to continue to commercialization. Second, feedstocks which are now a part of the food chain, i.e., corn, wheat, sugar cane, etc., are not being used; only waste biomass in cases where the value of the material can be upgraded. Thirdly, the technology which is being intensely pursued is for production of ethyl alcohol from annually renewable resources. This ethyl alcohol can be utilized as a solvent in laboratory and industry in the manufacture of denatured alcohol, pharmaceuticals, such as rubbing compounds, lotions, tonics and colognes, in perfumery and in organic synthesis of other materials. It can also be utilized as fuel in selected local situations. Fourth, the needs include feedstock availability in commercial quantities and a market for ethanol.

  3. Insulinoma presenting as alcoholic stupor.

    OpenAIRE

    Dandona, P; Fonseca, V A; Mikhailidis, D P; Menon, R. K.

    1987-01-01

    We report a case of prolonged loss of consciousness due to hypoglycaemia following ethanol abuse in a non-diabetic. The patient also reported symptoms compatible with hypoglycaemia following heavy manual work. Further investigations revealed a pancreatic insulinoma, which was successfully removed surgically. The patient remains asymptomatic 18 months later, despite occasional episodes of ethanol abuse. This case illustrates how heavy exercise and/or alcohol abuse can aggravate spontaneous hyp...

  4. An innovative approach for highly selective direct conversion of CO₂ into propanol using C₂H₄ and H₂.

    Science.gov (United States)

    Ahlers, Stefan J; Bentrup, Ursula; Linke, David; Kondratenko, Evgenii V

    2014-09-01

    Multifunctional catalysts are developed for converting CO2 with C2H4 and H2 into propanol. Au nanoparticles (NP) supported on TiO2 are found to facilitate this reaction. The activity and selectivity strongly depend on NP size, which can be tuned by the method of Au deposition and by promoting with K. The promoter improves the selectivity to propanol. Under optimized reaction conditions (2 MPa, 473 K, and CO2/H2/C2H4=1:1:1), CO2 is continuously converted into propanol with a near-to-100% selectivity. Catalytic tests as well as mechanistic studies by in situ FTIR and temporal analysis of products with isotopic tracers allow the overall reaction scheme to be determined. Propanol is formed through a sequence of reactions starting with reverse water-gas shift to reduce CO2 to CO, which is further consumed in the hydroformylation of ethylene to propanal. The latter is finally hydrogenated to propanol, while propanol hydrogenation to propane is suppressed. PMID:25044696

  5. Correlation and Prediction of Salt Effect on Vapor Liquid Equilibrium for the System of 2-Propanol/Water

    Institute of Scientific and Technical Information of China (English)

    Fu Jiquan

    2008-01-01

    Binary vapor liquid equilibrium (VLE) data were measured for the systems of 2-propanol/ethanediol and ethanediol/potassium acetate (KAc). VLE data for the system of propanol/ethanediol was tested using thermodynamic consistency test. The average values of Δy1 and ΔP were 0.0776 and 0.1542 kPa, respectively. The above two sets of VLE data were correlated with the NRTL model. Ternary VLE data for the system of 2-propanol/water/KAc was used to obtain the more suitable parameters of NRTL model for binary systems of 2-propanol/KAc and water/KAC (called TDCM). For multicomponent systems, ternary and quaternary, the VLE values predicted by the NRTL model agreed well with the literature data. Influence of KAc, ethanediol, and the mixture of KAc and ethanediol on volatility between 2propanol and water was investigated respectively. The results showed that the above-mentioned materials and mixture had different influence on volatility between 2-propanol and water. The method for correlation and prediction of salt-containing VLE is simple and effective for the said system.

  6. Multi-enzyme catalyzed rapid ethanol lowering in vitro.

    Science.gov (United States)

    Whitmire, D R; Chambers, R P; Dillon, A R

    1991-10-01

    Ethanol was oxidized to acetate by an enzyme system using yeast alcohol dehydrogenase (YADH), yeast aldehyde dehydrogenase (YALDH), and lactic dehydrogenase (LDH) recycling NAD in two model duodenal fluids and in canine duodenal aspirate in vitro. Sufficient enzyme activities were maintained to convert as much as 34% of the original ethanol to acetate with negligible acetaldehyde accumulation.

  7. Preparation of Pt Ru/C + rare earths by the method of reduction by alcohol for the electro-oxidation of ethanol; Preparacao de eletrocatalisadores PtRu/C + terras raras pelo metodo da reducao por alcool para a eletro-oxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Tusi, M.M.; Rodrigues, R.M.S.; Spinace, E.V.; Oliveira Neto, A., E-mail: aolivei@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    PtRu/C electrocatalyst was prepared in a single step, while that PtRu/85%C-15%Ce, PtRu/85%C-15%La, PtRu/85%C-15%Nd and PtRu/85%C-15%Er electrocatalyst were prepared in a two step. In the first step a Carbon Vulcan XC72 + rare earth supports were prepared. In the second step PtRu electrocatalyst were prepared by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and supported on Vulcan XC72 + earth rare. The obtained electrocatalysts were characterized by EDAX, XRD and chronoamperometry. The electro-oxidation of ethanol was studied by chronoamperometry at room temperature. PtRu/85%C- 15%Ce electrocatalyst showed a significant increase of performance for ethanol oxidation compared to PtRu/C electrocatalyst. (author)

  8. Molecular dynamics study of n-alcohols adsorbed on an aqueous electrolyte solution

    Science.gov (United States)

    Daiguji, Hirofumi

    2001-07-01

    The distribution of normal alcohol (n-alcohol) on water and the effect of salt on the structural and dynamical properties of n-alcohol on aqueous electrolyte solutions were investigated using molecular dynamics simulation. The stability of the alcohol distribution was studied for three types of n-alcohol (n-propanol, C3H7OH; n-heptanol, C7H15OH; and n-undecanol, C11H23OH), four or five concentrations of alcohol, and three concentrations of salt. The simulation results reveal the following. The distribution of n-propanol on water is homogeneous at all n-alcohol concentrations studied here and the distribution of n-heptanol and n-undecanol on water is heterogeneous. The n-alcohol concentration at which fluctuations in the alcohol distribution begin to increase depends on the length of the hydrocarbon chain of the n-alcohol. Salt concentration affects the surface excess concentration of n-alcohol and the stability of the adsorbed layer of n-alcohol. The degree of each effect depends on the length of the hydrocarbon chain of the n-alcohol. For n-undecanol, the surface structure of n-alcohol is independent of salt concentration because interaction between the hydrocarbon chains is sufficiently strong. In absorption refrigeration technology, to enhance the absorption rate of water vapor into a highly concentrated aqueous electrolyte solution, a small amount of alcohols is added to the aqueous electrolyte solution, which induces cellular convection referred to as Marangoni instability. Among the three types of n-alcohol studied here, only n-heptanol induces strong cellular convection. The simulations reveal two required conditions for Marangoni instability: generation of fluctuations in the alcohol distribution on water, and strong correlation between the structural and dynamical properties and salt concentration. Among the three types of n-alcohol studied here, based on the simulations, only n-heptanol satisfies both conditions.

  9. Alcoholism - resources

    Science.gov (United States)

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  10. Alcohol Alert

    Science.gov (United States)

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  11. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  12. Influence of the endogenous opioid system on high alcohol consumption and genetic predisposition to alcoholism

    OpenAIRE

    Gianoulakis, Christina

    2001-01-01

    There is increasing evidence supporting a link between the endogenous opioid system and excessive alcohol consumption. Acute or light alcohol consumption stimulates the release of opioid peptides in brain regions that are associated with reward and reinforcement and that mediate, at least in part, the reinforcing effects of ethanol. However, chronic heavy alcohol consumption induces a central opioid deficiency, which may be perceived as opioid withdrawal and may promote alcohol consumption th...

  13. Neurobiological Basis of Alcohol Addiction

    Directory of Open Access Journals (Sweden)

    Milagros Lisset León Regal

    2014-02-01

    Full Text Available Alcoholism is a serious social problem due to its impact on individual and collective health. In order to provide an update on the latest findings that explain the development and symptoms of alcohol addiction, the short and long term changes that this disorder causes in the central nervous system are shown in this paper. A total of 52 information sources were consulted, including 43 journal articles, 4 books and statistical reports. The main network managers were used. The interaction of ethanol with various structures of the neuronal membrane affects the cytoarchitecture and brain function associated with the reward system, motor processing, learning and memory, resulting in the development of alcohol dependence. In addition, ethanol-induced changes in excitation/inhibition explain the phenomena of alcohol tolerance and withdrawal.

  14. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    OpenAIRE

    Shunji Oshima; Sachie Shiiya; Tomomasa Kanda

    2015-01-01

    Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF) of 18 kinds of botanical foods to maintain 15% (v/v) ethanol solution was examined using ea...

  15. Alcohol Alert: Genetics of Alcoholism

    Science.gov (United States)

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  16. Functional Alterations in the Dorsal Raphe Nucleus Following Acute and Chronic Ethanol Exposure

    OpenAIRE

    Lowery-Gionta, Emily G; Marcinkiewcz, Catherine A.; Kash, Thomas L.

    2014-01-01

    Alcoholism is a pervasive disorder perpetuated in part to relieve negative mood states like anxiety experienced during alcohol withdrawal. Emerging evidence demonstrates a role for the serotonin-rich dorsal raphe (DR) in anxiety following ethanol withdrawal. The current study examined the effects of chronic ethanol vapor exposure on the DR using slice electrophysiology in male DBA2/J mice. We found that chronic ethanol exposure resulted in deficits in social approach indicative of increased a...

  17. Effects of 20 Selected Fruits on Ethanol Metabolism: Potential Health Benefits and Harmful Impacts

    OpenAIRE

    Zhang, Yu-Jie; Wang, Fang; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-01-01

    The consumption of alcohol is often accompanied by other foods, such as fruits and vegetables. This study is aimed to investigate the effects of 20 selected fruits on ethanol metabolism to find out their potential health benefits and harmful impacts. The effects of the fruits on ethanol metabolism were characterized by the concentrations of ethanol and acetaldehyde in blood, as well as activities of alcohol dehydrogenase and acetaldehyde dehydrogenase in liver of mice. Furthermore, potential ...

  18. SIRT1 IS INVOLVED IN ENERGY METABOLISM: THE ROLE OF CHRONIC ETHANOL FEEDING AND RESVERATROL

    OpenAIRE

    Oliva, Joan; French, Barbara A.; Li, Jun; Bardag-Gorce, Fawzia; Fu, Paul; French, Samuel W.

    2008-01-01

    Sirt1, a deacetylase involved in regulating energy metabolism in response to calorie restriction, is up regulated after chronic ethanol feeding using the intragastric feeding model of alcohol liver disease. PGC1α is also up regulated in response to ethanol. These changes are consistent with activation of the Sirt1/PGC1α pathway of metabolism and aging, involved in alcohol liver disease including steatosis, necrosis and fibrosis of the liver. To test this hypothesis, male rats fed ethanol intr...

  19. Blockade of Ethanol Reward by the Kappa Opioid Receptor Agonist U50,488h

    OpenAIRE

    Logrip, Marian L.; Janak, Patricia H; Ron, Dorit

    2009-01-01

    Alcoholism is a pervasive social problem, and thus understanding factors which regulate alcohol (ethanol) reward is important for designing effective therapies. One putative regulatory system includes the kappa opioid receptor (KOR) and its endogenous ligand, dynorphin. Previously we demonstrated that acute ethanol increased preprodynorphin expression via brain-derived neurotrophic factor (BDNF) in striatal neurons, and that blockade of the KOR attenuated decreases in ethanol intake observed ...

  20. Fluorescence excitation spectra of jet-cooled complexes of carbazole and mono-atomic alcohols

    International Nuclear Information System (INIS)

    Fluorescence excitation spectra of jet-cooled complexes of carbazole and one molecule of methyl, deuterated methyl, ethyl and propyl (propanol-1 and propanol-2) alcohols are analyzed. Shifts of the fluorescence excitation spectra of complexes relative to the frequency of a pure electron transition of unbound carbazole are determined. They are formed owing to the hydrogen bonds of the N-H groups of carbazole with the OH-group of alcohols. The frequencies of stretching vibrations of hydrogen groups with various alcohols vary within the range 150-157 cm-1, whereas for the deformation ones the frequencies fall in the interval 21-22.9 cm-1. The belonging of complexes to rotational conformers is determined through the shape of the rotational contours of bands of their pure electronic and electron-vibration transitions. Equilibrium configurations of complexes in the ground state are calculated (authors)

  1. Carcinogenic compounds in alcoholic beverages: an update.

    Science.gov (United States)

    Pflaum, Tabea; Hausler, Thomas; Baumung, Claudia; Ackermann, Svenja; Kuballa, Thomas; Rehm, Jürgen; Lachenmeier, Dirk W

    2016-10-01

    The consumption of alcoholic beverages has been classified as carcinogenic to humans by the International Agency for Research on Cancer (IARC) since 1988. More recently, in 2010, ethanol as the major constituent of alcoholic beverages and its metabolite acetaldehyde were also classified as carcinogenic to humans. Alcoholic beverages as multi-component mixtures may additionally contain further known or suspected human carcinogens as constituent or contaminant. This review will discuss the occurrence and toxicology of eighteen carcinogenic compounds (acetaldehyde, acrylamide, aflatoxins, arsenic, benzene, cadmium, ethanol, ethyl carbamate, formaldehyde, furan, glyphosate, lead, 3-MCPD, 4-methylimidazole, N-nitrosodimethylamine, pulegone, ochratoxin A, safrole) occurring in alcoholic beverages as identified based on monograph reviews by the IARC. For most of the compounds of alcoholic beverages, quantitative risk assessment provided evidence for only a very low risk (such as margins of exposure above 10,000). The highest risk was found for ethanol, which may reach exposures in ranges known to increase the cancer risk even at moderate drinking (margin of exposure around 1). Other constituents that could pose a risk to the drinker were inorganic lead, arsenic, acetaldehyde, cadmium and ethyl carbamate, for most of which mitigation by good manufacturing practices is possible. Nevertheless, due to the major effect of ethanol, the cancer burden due to alcohol consumption can only be reduced by reducing alcohol consumption in general or by lowering the alcoholic strength of beverages.

  2. Feasibility of transdermal ethanol sensing for the detection of intoxicated drivers.

    Science.gov (United States)

    Webster, Gregory D; Gabler, Hampton C

    2007-01-01

    Transdermal ethanol detection is a promising method that could prevent drunk driving if integrated into an ignition interlock system. However, experimental data from previous research has shown significant time delays between alcohol ingestion and detection at the skin which makes real time estimation of blood alcohol concentration via skin measurement difficult. Using a validated model we studied the effects that body weight, metabolic rate and ethanol dose had on the time lag between the blood alcohol concentration and transdermal alcohol concentration. The dose of alcohol ingested was found to have the most significant effect on the skin alcohol lag time; a dose of 15 ml of ethanol resulted in a peak lag time of approximately 33 minutes, while a dose of 60 ml of ethanol resulted in a peak time lag of 53 minutes. The time lag was found to be insensitive to body mass and only moderately sensitive to changes in metabolic rates. PMID:18184507

  3. Solvation of benzophenone anion radical in ethanol and ethanol/2-methyltetrahydrofuran mixture

    International Nuclear Information System (INIS)

    The electron spin-echo modulations and the absoprtion spectra of benzophenone anion radicals generated by γ-irradiation in the glassy matrices of ethanol and ethanol2-methyltetrahydrofuran mixtures have been measured for elucidating the mechanism of spectral shift observed during the solvation of the anion radicals in alcohols. The anion radical generated at 4.2 K in the ethanol matrix maintains the same solvation structure as that of neutral benzophenone. At 77 K ethanol molecules solvate the anion radical by orienting the O-H dipoles toward the anion radical. The anion radical is hydrogen-bonded by two ethanol molecules through the p/sub z/ orbital on the benzophenone oxygen which composes the π orbitals of anion radical. Three kinds of anion radicals are observed in the mixed matrix at 77 K. Two of them are essentially the same as those observed in the ethanol matrix at 4.2 and 77 K. The third has the absorption maximum at 700 nm and is attributed to the anion radical hydrogen-bonded by one ethanol molecule through the p/sub z/ orbital. It is concluded that the spectral shift observed in alcohols is caused by the stabilization of a SOMO π* orbital induced by the hydrogen bonding with the (RO)H--O--H(OR) angle perpendicular to the molecular plane of the anion radical

  4. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  5. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning;

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.......5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could...... be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher...

  6. FTIR/PCA study of propanol in argon matrix: the initial stage of clustering and conformational transitions

    International Nuclear Information System (INIS)

    FTIR spectra of 1-propanol in an argon matrix were studied in the range 11 to 30 K. Principal component analysis of dynamic FTIR spectra and nonlinear band shape fitting has been carried out. The peaks of monomer, open dimer, mixed propanol-water dimer and those of higher H-bond clusters have been resolved and analyzed. The attribution of certain FTIR peaks has been supported by proper density functional theory calculations. Analyzing dependences of the integral band intensities of various aggregates on temperature it has been deduced that in the initial stage of clustering monomers and dimers are the basic building blocks forming higher H-bond clusters. The peaks assigned to two conformers of monomers and mixed propanol-water dimers were investigated processing the temperature dependences of their integral intensities in Arrhenius plot. The obtained values of 0.18 kJ.mol-1 for propanol monomer and 0.26 kJ.mol-1 for mixed dimer are well comparable with the energy differences between the global minimum conformation of 1-propanol (Gt) and some other energetically higher structures (Tt or Tg).

  7. Formation of 2-propanol in condensed molecular films of acetaldehyde following electron impact ionisation-induced proton transfer*

    Science.gov (United States)

    Borrmann, Tobias; Swiderek, Petra

    2016-06-01

    Experimental studies on thin condensed layers of acetaldehyde have previously revealed that electron exposure at an energy above the ionisation threshold leads to formation of 2-propanol. However, the mechanism of this reaction remained unclear. Therefore, a computational approach is used to explore the electron-induced reactions of acetaldehyde yielding 2-propanol. Starting from hydrogen-bonded dimers of acetaldehyde we show that the initial ionisation event triggers proton transfer between the two acetaldehyde moieties resulting in a hydrogen-bonded complex of a [OCCH3] radical and a protonated acetaldehyde cation. Given an excess energy of up to 0.75 eV and a favourable arrangement, a methyl radical released upon dissociation of the CC bond within the [OCCH3] radical can migrate to the carbonyl carbon of the protonated acetaldehyde cation. This produces a 2-propanol radical cation and CO. Neutral 2-propanol is then obtained by recombination with a second electron. A mechanism involving ionisation-driven proton transfer is thus proposed as pathway to the formation of 2-propanol during electron exposure of condensed layers of acetaldehyde.

  8. Molecular Basis and Current Treatment for Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Juan Armendariz-Borunda

    2010-04-01

    Full Text Available Alcohol use disorders and alcohol dependency affect millions of individuals worldwide. The impact of these facts lies in the elevated social and economic costs. Alcoholic liver disease is caused by acute and chronic exposure to ethanol which promotes oxidative stress and inflammatory response. Chronic consumption of ethanol implies liver steatosis, which is the first morphological change in the liver, followed by liver fibrosis and cirrhosis. This review comprises a broad approach of alcohol use disorders, and a more specific assessment of the pathophysiologic molecular basis, and genetics, as well as clinical presentation and current modalities of treatment for alcoholic liver disease.

  9. Sodium alginate-polyvinyl alcohol/polysulfone (SA-PVA/PSF) hollow fiber composite pervaporation membrane for dehydration of ethanol-water solution%用于乙醇-水分离的SA-PVA/PSF中空纤维渗透汽化复合膜

    Institute of Scientific and Technical Information of China (English)

    吴凯; 许振良; 魏永明

    2008-01-01

    Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and poly-vinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cross-linked agent, SA-PVA/PSF hollow fiber composite membranes were prepared for the dehydration of ethanol-water. The effects of differentsodium alginate concentration in the coating solutions and different operating temperatures on pervaporation performance wereinvestigated. The experimental results showed that pervaporation performance of the SA-PVA/PSF composite membranesfor ethanol-water solution exhibited a high separation factor although they had a relatively low permeation flux. As SAconcentration in SA-PVA coating solution was 66.7% and the operating temperature was 40 C, SA-PVA/PSF hollow fibercomposite membrane (PS4) had a separation factor of 886 and flux of 12.6 g/(m2.h). Besides, SA-PVA/PSF hollow fibercomposite membranes (PS3 and PS4) were used for the investigation of the effect of ethanol concentration in the feed solutionon pervaporation performance.

  10. Alcohol synthesis from CO or CO.sub.2

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Dagle, Robert A [Richland, WA; Holladay, Jamelyn D [Kennewick, WA; Cao, Chunshe [Houston, TX; Wang, Yong [Richland, WA; White, James F [Richland, WA; Elliott, Douglas C [Richland, WA; Stevens, Don J [Richland, WA

    2010-12-28

    Methods for producing alcohols from CO or CO.sub.2 and H.sub.2 utilizing a palladium-zinc on alumina catalyst are described. Methods of synthesizing alcohols over various catalysts in microchannels are also described. Ethanol, higher alcohols, and other C.sub.2+ oxygenates can produced utilizing Rh--Mn or a Fisher-Tropsch catalyst.

  11. 21 CFR 184.1293 - Ethyl alcohol.

    Science.gov (United States)

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl alcohol. 184.1293 Section 184.1293 Food and... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  12. Reduced alcohol consumption in mice lacking preprodynorphin.

    OpenAIRE

    Blednov, Yuri A.; Walker, Danielle; Martinez, Marni; Harris, R. Adron

    2006-01-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the κ-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower a...

  13. Effect of ethanol on liver antioxidant defense systems: Adose dependent study

    OpenAIRE

    Das, Subir Kumar; Vasudevan, D. M.

    2005-01-01

    Alcohol induced oxidative stress is linked to the metabolism of ethanol. In this study it has been observed that administration of ethanol in lower concentration caused gain in body and liver weight. while higher concentration of ethanol caused lesser gain in body and liver weight. Ethanol treatment enhanced lipid peroxidation significantly, depletion in levels of hepatic glutathione and ascorbate, accompanied by a decline in the activities of glutathione peroxidase and glutathione reductase,...

  14. Pathogenesis of Alcoholic Liver Disease.

    Science.gov (United States)

    Dunn, Winston; Shah, Vijay H

    2016-08-01

    Alcoholic liver disease includes a broad clinical-histological spectrum from simple steatosis, cirrhosis, acute alcoholic hepatitis with or without cirrhosis to hepatocellular carcinoma as a complication of cirrhosis. The pathogenesis of alcoholic liver disease can be conceptually divided into (1) ethanol-mediated liver injury, (2) inflammatory immune response to injury, (3) intestinal permeability and microbiome changes. Corticosteroids may improve outcomes, but this is controversial and probably only impacts short-term survival. New pathophysiology-based therapies are under study, including antibiotics, caspase inhibition, interleukin-22, anakinra, FXR agonist and others. These studies provide hope for better future outcomes for this difficult disease. PMID:27373608

  15. 正丙醇和异丙醇的紫外光解动力学%Ultraviolet Photodissociation Dynamics of 1-Propanol and 2-Propanol by High-n Rydberg-Atom Time-of-flight(HRTOF) Technique

    Institute of Scientific and Technical Information of China (English)

    周卫东; 张劲松

    2002-01-01

    利用高里德堡态氢原子飞行时间(HRTOF)探测技术,研究了正丙醇和异丙醇的紫外光解动力学过程.在193.3 nm光辐射下,O-H键快速断裂过程构成主要的氢原子生成通道.伴随O-H键的碎裂,相当大的一部分能量转换成氢原子及其相应碎片的平动能(正丙醇〈fv〉=0.76; 异丙醇〈fv〉=0.78).氢原子碎片具有各向异性的角度分布;其角分布异向因子β分别为-0.79(正丙醇)和-0.77(异丙醇).研究结果表明,吸收1个193.3 nm光子后,丙醇分子跃迁到一个寿命很短的电子激发态;沿着O-H反应坐标,该激发态势能面是排斥的,因而O-H键快速断裂.此外,还得到了丙醇的O-H键离解能: (432±2)kJ/mol(正丙醇)和(433±2)kJ/mol(异丙醇).%193.3 nm photodissociation dynamics of jet-cooled 1-propanol and 2-propanol has been examined by using high-n Rydberg-atom time-of-flight (HRTOF) technique. Isotope labeling study indicates that O-H bond fission is the primary H-atom production channel. Center-of-mass (CM) product translational energy release of this channel is large, with 〈fT〉= 0.76 for H+1-propoxy and 0.78 for H+2-propoxy. Maximum CM translational energy release yields an upper limit of the O-H bond dissociation energy: (432±2)kJ/mol in 1-propanol and (433±2)kJ/mol in 2-propanol. H-atom product angular distribution is anisotropic (with β≈-0.79 for 1-propanol and -0.77 for 2-propanol), indicating a short excited-state lifetime. The 193.3 nm H-atom dissociation of both 1-propanol and 2-propanol is prompt and occurs on a repulsive excited-state potential energy surface.

  16. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... cancers. It can cause damage to the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of death from car crashes, injuries, homicide, and suicide. If you want to stop ...

  17. Fluid Phase Topology of Benzene + Cyclohexane + 1-Propanol at 101.3 kPa

    Science.gov (United States)

    Andrade, R. S.; Iglesias, M.

    2015-07-01

    Isobaric vapor-liquid equilibria for the benzene + cyclohexane + 1-propanol ternary mixture were experimentally investigated at atmospheric pressure. Data were tested and considered thermodynamically consistent by means of the McDermott and Ellis method. The experimental results showed that this ternary mixture is completely miscible and exhibits three binary minimum homogeneous azeotropes and a ternary minimum azeotrope at the studied conditions. Satisfactory results were obtained for correlation of equilibrium compositions with the UNIQUAC equation and also for prediction with the UNIFAC method. In both cases, low root-mean-square deviations of the vapor mole fraction and temperature were calculated. The capability of 1-propanol as a modified distillation agent at atmospheric conditions is discussed in terms of thermodynamic topological analysis. However, because of the complex topology of the ternary mixture, it leads to a distillation scheme with two columns specifying ternary azeotrope recycling and difficult operation. Thus, this compound is not recommended as a separation agent for the binary benzene + cyclohexane azeotrope.

  18. Alcohol abuse and glycoconjugate metabolism

    Directory of Open Access Journals (Sweden)

    Sylwia Chojnowska

    2012-04-01

    Full Text Available The relationship between alcohol consumption and glycoconjugate metabolism is complex and multidimensional. This review summarizes the advances in basic and clinical research on the molecular and cellular events involved in the metabolic effects of alcohol on glycoconjugates (glycoproteins, glycolipids, and proteoglycans. We summarize the action of ethanol, acetaldehyde, reactive oxygen species (ROS, nonoxidative metabolite of alcohol — fatty acid ethyl esters (FAEEs, and the ethanol-water competition mechanism, on glycoconjugate biosynthesis, modification, transport and secretion, as well as on elimination and catabolism processes. As the majority of changes in the cellular metabolism of glycoconjugates are generally ascribed to alterations in synthesis, transport, glycosylation and secretion, the degradation and elimination processes, of which the former occurs also in extracellular matrix, seem to be underappreciated. The pathomechanisms are additionally complicated by the fact that the effect of alcohol intoxication on the glycoconjugate metabolism depends not only on the duration of ethanol exposure, but also demonstrates dose- and regional-sensitivity. Further research is needed to bridge the gap in transdisciplinary research and enhance our understanding of alcohol- and glycoconjugate-related diseases.

  19. Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid in water/alcoholic solvents

    Institute of Scientific and Technical Information of China (English)

    Ben Li; Cuiping Wang; Guang Chen; Zhiqiang Zhang

    2013-01-01

    Highly active,air-stable and water-soluble palladium-phosphinous acid complexes have been applied to Suzuki cross-coupling reaction of heteroaryl bromides under mild conditions in water/alcoholic solvents.Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid occurred efficiently using palladium phosphinous acid complexes (POPd) and phase transfer catalyst (tetrabutylammonium bromide and polyethylene glycol) in water/ethanol mixture,water/propanol mixture and neat water respectively,the corresponding yields of cross-coupling heteroaryl-aryls were satisfied.The tert-butyl substituted ligand di-tert-butylphosphino in combination with POPd was found to be more active than the same family derived catalysts dipalladium complexes POPdl and POPd2,and other two kinds of Pd-catalysts Pd(PPh3)4 and Pd2(dba)3.The mechanism of Suzuki cross-coupling reaction between heteroaryl bromides and phenylboronic acid in water was proposed with respect to the key role of phase transfer catalyst on the transmetallation step.Compared with other solid phase transfer catalysts,TBAB was tested as the ideal one.The alkalinity of base and the molar proportion between POPd and TBAB were investigated in water and alcoholic solvents.Notably,in the presence of TBAB adding alcoholic solvents into water enhanced the yields of target products.However in terms of the liquid phase transfer catalyst of PEGs,mixing water into PEGs could slightly decrease the yields with respect to the water free PEGs bulk phase,which was probably due to the homogenous liquid conditions in pure PEGs and weak interactions between PEGs and heteroaryl bromide molecules in water depending on their molecular chain lengths.

  20. Thermodynamics of mixtures containing amines. XIV. C{sub pm}{sup E} of benzylamine with heptane at 293.15 K or with methanol, 1-propanol or 1-pentanol at 293.15–308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Páramo, Ricardo; Alonso, Víctor; González, Juan Antonio, E-mail: jagl@termo.uva.es; García de la Fuente, Isaías; Casanova, Carlos; Cobos, José Carlos

    2014-06-01

    Graphical abstract: - Highlights: • C{sub pm}{sup E}s are reported for benzylamine + heptane, +methanol, +1-propanol, +1-pentanol systems. • The heptane solution shows a W-shaped C{sub pm}{sup E} concentration dependence. • This reveals the existence of strong non-random effects in that mixture. • Systems with 1-alkanols are characterized by large and positive C{sub pm}{sup E} values. • This remarks that self-association/solvation effects are predominant in such systems. - Abstract: Molar excess heat capacities, C{sub pm}{sup E}, are reported for the benzylamine + heptane mixture at 293.15 K and for methanol, 1-propanol or 1-pentanol + benzylamine systems at 293.15–308.15 K. These values were determined from isobaric molar heat capacities obtained with a Setaram Micro DSC II microcalorimeter using a scanning method. The heptane solution shows a W-shaped C{sub pm}{sup E} concentration dependence, which reveals the existence of strong non-random effects. Systems including 1-alkanols are characterized by large and positive C{sub pm}{sup E} values. This remarks that self-association and/or solvation effects are predominant in such solutions. On the other hand, their C{sub pm}{sup E} curves are skewed towards higher mole fractions of the alcohol, which might be ascribed to the existence of more interactions between unlike molecules in that region.

  1. KINETICS OF HYDROLYSIS IN AQUEOUS-SOLUTION OF 1-BENZOYL-1,2,4-TRIAZOLE - THE ROLE OF PAIRWISE AND TRIPLET GIBBS ENERGY INTERACTION PARAMETERS IN DESCRIBING THE EFFECTS OF ADDED SALTS AND ADDED ALCOHOLS

    NARCIS (Netherlands)

    NOORDMAN, WH; BLOKZIJL, W; ENGBERTS, JBF; BLANDAMER, MJ

    1995-01-01

    Kinetic data are reported for the spontaneous hydrolysis of 1-benzoyl-1,2,4-triazole in aqueous solutions at ambient-pressure and 298.2 K, in aqueous solutions containing added ethanol, propanol and sodium chloride. Kinetic-data are also reported for the same reaction in aqueous mixtures of sodium c

  2. Kinetics of hydrolysis in aqueous solution of 1-benzoyl-1,2,4-triazole; the role of pairwise and triplet Gibbs energy interaction parameters in describing the effects of added salts and added alcohols

    NARCIS (Netherlands)

    Noordman, Wouter H.; Blokzijl, Wilfried; Engberts, Jan B.F.N.; Blandamer, Michael J.

    1995-01-01

    Kinetic data are reported for the spontaneous hydrolysis of 1-benzoyl-1,2,4-triazole in aqueous solutions at ambient pressure and 298.2 K, in aqueous solutions containing added ethanol, propanol and sodium chloride. Kinetic data are also reported for the same reaction in aqueous mixtures of sodium c

  3. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H2PtCl6.6H2O, SnCl2.2H2O and CuCl2.2H2O as metal sources, NaBH4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  4. A thermodynamic study of 1-propanol-glycerol-H2O at 25 degrees C: Effect of glycerol on molecular organization of H2O

    DEFF Research Database (Denmark)

    Parsons, M.T.; Westh, Peter; Davies, J.V.;

    2001-01-01

    The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol-glycerol-H2O at 25degreesC. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization...

  5. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    Science.gov (United States)

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired.

  6. The Effects of Alcohol on Spiders: What Happens to Web Construction after Spiders Consume Alcohol?

    Science.gov (United States)

    Cross, Victor E.

    2006-01-01

    In the high school experiment reported in this paper, spiders were provided with 40% ethanol (ETOH) in order to determine the effects of alcohol on the web-spinning ability of orb weaver spiders. It was hypothesized that alcohol would have a deleterious effect on the number of radii, number of cells, and area of cells in the webs of orb weaving…

  7. Location of ethanol in sodium dodecyl sulfate aggregates

    Institute of Scientific and Technical Information of China (English)

    LIU, Tian-Qing; YU, Wei-Li; GUO, Rong

    2000-01-01

    The hexagonal liquid crystalline phase of SDS ( Sodium dodecyl sulfate)/H2O system changes into lamellar liquid crystal and the effective length of surfactant molecule d0/2 in the lamellar liquid crystal decreases with the addition of ethanol.The micellar aggregation number N of SDS decreases and the micellar diffusion coefficient increases with the added ethanol.Under a constant concentration of SDS, the molecule number ratio of ethanol to SDS in the micelle increases with the concentration of ethanol and even exceeds 10 when ethanol concentration is 1.085 mol/L. All these results show that ethanol, even though a short chain alcohol and soluble in water, can partly exist in the interphase of the amphiphilic aggregates showing some properties of co-surfactant.

  8. Myths about drinking alcohol

    Science.gov (United States)

    ... to. I spend a lot of time getting alcohol, drinking alcohol, or recovering from the effects of alcohol. ... Institute on Alcohol Abuse and Alcoholism. Overview of Alcohol Consumption. www.niaaa.nih.gov/alcohol-health/overview-alcohol- ...

  9. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    Full Text Available While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses. Tissue was collected 7 hours after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol

  10. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine.

    Science.gov (United States)

    Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa

    2016-12-15

    The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers. PMID:27451159

  11. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    Science.gov (United States)

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  12. SIRT1 IS INVOLVED IN ENERGY METABOLISM: THE ROLE OF CHRONIC ETHANOL FEEDING AND RESVERATROL

    Science.gov (United States)

    Oliva, Joan; French, Barbara A.; Li, Jun; Bardag-Gorce, Fawzia; Fu, Paul; French, Samuel W.

    2010-01-01

    Sirt1, a deacetylase involved in regulating energy metabolism in response to calorie restriction, is up regulated after chronic ethanol feeding using the intragastric feeding model of alcohol liver disease. PGC1α is also up regulated in response to ethanol. These changes are consistent with activation of the Sirt1/PGC1α pathway of metabolism and aging, involved in alcohol liver disease including steatosis, necrosis and fibrosis of the liver. To test this hypothesis, male rats fed ethanol intragastrically for 1 month were compared with rats fed ethanol plus resveratrol or naringin. Liver histology showed macrovesicular steatosis caused by ethanol and this change was unchanged by resveratrol or naringin treatment. Necrosis occurred with ethanol alone but was accentuated by resveratrol treatment, as was fibrosis. The expression of Sirt1 and PGC1α was increased by ethanol but not when naringin or resveratrol was fed with ethanol. Sirt3 was also up regulated by ethanol but not when resveratrol was fed with ethanol. These results support the concept that ethanol induces the Sirt1/PGC1α pathway of gene regulation and both naringin and resveratrol prevent the activation of this pathway by ethanol. However, resveratrol did not reduce the liver pathology caused by chronic ethanol feeding. PMID:18793633

  13. Acute alcohol intoxication in a child following ingestion of an ethyl-alcohol-based hand sanitizer.

    Science.gov (United States)

    Hertzog, James H; Radwick, Allison

    2015-07-01

    While uncommon, ingestion of ethanol-based hand sanitizers by children may be associated with significant intoxication. We report the case of a 7-year-old with acute alcohol intoxication following hand sanitizer ingestion. Alcohol elimination in this patient followed zero-order kinetics with a clearance rate of 22.5 mg/kg/h, consistent with the limited pharmacokinetic information available for children who experience alcohol intoxication from more traditional sources. PMID:25943177

  14. Novel Dehalogenase Mechanism for 2,3-Dichloro-1-Propanol Utilization in Pseudomonas putida Strain MC4

    NARCIS (Netherlands)

    Arif, Muhammad Ilan; Samin, Ghufrana; van Leeuwen, Jan G. E.; Oppentocht, Jantien; Janssen, Dick B.

    2012-01-01

    A Pseudomonas putida strain (MC4) that can utilize 2,3-dichloro-1-propanol (DCP) and several aliphatic haloacids and haloalcohols as sole carbon and energy source for growth was isolated from contaminated soil. Degradation of DCP was found to start with oxidation and concomitant dehalogenation catal

  15. The effect of prior alcohol consumption on the ataxic response to alcohol in high-alcohol preferring mice.

    Science.gov (United States)

    Fritz, Brandon M; Boehm, Stephen L

    2014-12-01

    We have previously shown that ethanol-naïve high-alcohol preferring (HAP) mice, genetically predisposed to consume large quantities of alcohol, exhibited heightened sensitivity and more rapid acute functional tolerance (AFT) to alcohol-induced ataxia compared to low-alcohol preferring mice. The goal of the present study was to evaluate the effect of prior alcohol self-administration on these responses in HAP mice. Naïve male and female adult HAP mice from the second replicate of selection (HAP2) underwent 18 days of 24-h, 2-bottle choice drinking for 10% ethanol vs. water, or water only. After 18 days of fluid access, mice were tested for ataxic sensitivity and rapid AFT following a 1.75 g/kg injection of ethanol on a static dowel apparatus in Experiment 1. In Experiment 2, a separate group of mice was tested for more protracted AFT development using a dual-injection approach where a second, larger (2.0 g/kg) injection of ethanol was given following the initial recovery of performance on the task. HAP2 mice that had prior access to alcohol exhibited a blunted ataxic response to the acute alcohol challenge, but this pre-exposure did not alter rapid within-session AFT capacity in Experiment 1 or more protracted AFT capacity in Experiment 2. These findings suggest that the typically observed increase in alcohol consumption in these mice may be influenced by ataxic functional tolerance development, but is not mediated by a greater capacity for ethanol exposure to positively influence within-session ataxic tolerance.

  16. Isopropylation of benzene with 2-propanol over substituted large pore aluminophosphate-based molecular sieves

    Indian Academy of Sciences (India)

    K Joseph Antony Raj; V R Vijayaraghavan

    2004-03-01

    Large pore aluminophosphate-based molecular sieves like AlPO4-5, MAPO-5, MnAPO-5 and ZAPO-5 were synthesised hydrothermally using triethylamine as a structure directing agent. These materials were characterised by X-ray diffraction (XRD), 27Al and 31P MAS-NMR, ICP-MS, -butylamine- TPD, BET and SEM. The catalytic performance of these materials was tested for isopropylation of benzene with 2-propanol at 250, 300, 350 and 400°C. The products were cumene, -DIPB (-diisopropylbenzene) and -DIPB (-diisopropylbenzene). MnAPO-5 was found to be more active than the other catalysts. Maximum conversion (20%) was noted at 350°C over MnAPO-5. The selectivity to DIPB was found to decrease with time on stream but the selectivity to cumene showed an increase after 3 h of time on stream.

  17. PHOTOREDUCTION OF ALKYL VIOLOGENS AND POLYVIOLOGENS IN 2-PROPANOL AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhaoxi; LI Wen; LI Manfu

    1987-01-01

    In order to study the effect of alkyl chain length and the polymer effect on the photoreduction behavior of some viologens, a series of alkyl viologen, polyviologen and bisviologen compounds have been synthesized. In the presence of excess 2-propanol, the initial photoreduction of alkyl viologens and polyviologens follow the peudo-second-order reaction, the calculated rate constants are related to the alkyl chain length. In addition, the intramolecular association of radical cations of polyviologens has been found even in dilute solution. However the extent of association is varied with the alkyl chain length. The observed polymer effect of polyviologens in the photoreduction is significant which can be explained in terms of the nature of second order reaction.

  18. Roles for the endocannabinoid system in ethanol-motivated behavior.

    Science.gov (United States)

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2016-02-01

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.

  19. Alcohol and Suicide: Neurobiological and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Leo Sher

    2006-01-01

    Full Text Available Alcohol, primarily in the form of ethyl alcohol (ethanol, has occupied an important place in the history of humankind for at least 8,000 years. In most Western societies, at least 90% of people consume alcohol at some time during their lives, and 30% or more of drinkers develop alcohol-related problems. Severe alcohol-related life impairment, alcohol dependence (alcoholism, is observed at some time during their lives in about 10% of men and 3—5% of women. An additional 5—10% of each sex develops persistent, but less intense, problems that are diagnosed as alcohol abuse. It this review, neurobiological aspects of suicidal behavior in alcoholism is discussed. In individuals with comorbid depression and alcoholism, greater serotonergic impairment may be associated with higher risk of completed suicide. Dopaminergic dysfunction may play an important role in the pathophysiology of suicidal behavior in alcoholism. Brain damage and neurobehavioral deficits are associated with alcohol use disorders and may contribute to suicidal behavior in persons with alcohol dependence or abuse. Aggression/impulsivity and alcoholism severity affect risk for suicide among individuals with alcoholism. Major depressive episodes and stressful life events particularly, partner-relationship disruptions, may precipitate suicidal behavior in individuals with alcohol use disorders. Alcohol misuse and psychosocial adversity can combine to increase stress on the person, and, thereby, potentially, increase the risk for suicidal behavior. The management of suicidal patients with alcohol use disorders is also discussed. It is to be hoped that the efforts of clinicians will reduce morbidity and mortality associated with alcohol misuse.

  20. The temperature dependent structure of liquid 1-propanol as studied by neutron diffraction and EPSR simulations

    Science.gov (United States)

    Sillrén, Per; Swenson, Jan; Mattsson, Johan; Bowron, Daniel; Matic, Aleksandar

    2013-06-01

    The structure of liquid 1-propanol is investigated as a function of temperature using neutron diffraction together with Empirical Potential Structure Refinement modelling. The combined diffraction and computer modelling analysis demonstrates that propanol molecules form hydrogen bonded clusters with a relatively wide size distribution, which broadens at lower temperatures. We find that the cluster size distribution is well described by a recently proposed statistical model for branched H-bonded networks [P. Sillrén, J. Bielecki, J. Mattsson, L. Börjesson, and A. Matic, J. Chem. Phys. 136, 094514 (2012)], 10.1063/1.3690137. The average cluster size increases from ˜3 to 7 molecules, whilst the standard deviation of the size distribution increases from 3.3 to 8.5 as the temperature is decreased from 293 to 155 K. The clusters are slightly branched, with a higher degree of branching towards lower temperatures. An analysis of the cluster gyration tensor (Rmn) reveals an average elongated ellipsoidal shape with axes having proportions 1:1.4:1.9. We find that the average radius of gyration has a cluster size dependence consistent with that of fractal clusters, Rg ∝ n1/D, with a fractal dimension D ≈ 2.20, which is close to D = 2.00 expected for an ideal random walk or D = 2.11 expected for reaction limited aggregation. The characteristic angles between the H-bonded OH-groups that constitute the clusters show only a weak temperature dependence with O-H⋯O angles becoming more narrowly distributed around 180° at lower temperatures.

  1. National Institute on Alcohol Abuse and Alcoholism

    Science.gov (United States)

    Skip to main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use ...

  2. Effect of Alcohol Detoxication Prescription Consisting of Semen Hoveniae and Puerarialobata at an Optimal Proportion on Ethanol Absorption and Metabolism in Humans%枳椇子、葛花的最佳配比解酒方影响人体乙醇吸收代谢过程研究

    Institute of Scientific and Technical Information of China (English)

    潘敏; 谢少龙; 丘慧秋; 谢海萍

    2016-01-01

    Objective:To study the effect of alcohol detoxication prescription consisting of semen hoveniae and puerarialobata at an optimal proportion on the ethanol absorption and metabolism in humans.Methods:A within-volunteer comparison in the same group was performed. The study was completed in blank control group at first,while in trial group 14 d later,and the results in two groups were compared. The blank control group consisted of 12 volunteers,6 male and 6 female,who were given 100 mL Luzhou Laojiao Erqu Jiu of containing 53% of alcohol by oral route after fasting for 6 h,then subjected to human balance test. The symptoms after drinking,such as heart rate,blood pressure and urine volume,were recorded,and breath alcohol content test and human blood alcohol content test were performed 30,60,120 and 180 min after drinking were performed separately. The trial groups consisted of 12 volunteers,6 for male and 6 for female,who were given alcohol detoxication drug 6 h after fasting and 100 ml Luzhou Laojiao Erqu Jiu containing 53% alcohol 30 min later,then subjected to human balance test. The symptoms after drinking were recorded,while breath alcohol content test and human blood alcohol content test were performed,as described above.Results:The ethanol value in breath alcohol content test in trial group showed significant difference with that in control group(P< 0.05),of which theP values 30,60,120 and 180 min after drinking were 0.032 3,0.000 2,0.000 1 and 0.000 4 respectively. However,the blood alcohol contents in trial group 120 and 180 min after drinking showed significant difference with those in control group(P< 0.05),of which thePvalues 60,120 and 180 min after drinking were 0.087 0, 0.028 3 and 0.000 4 respectively.Conclusion:The alcohol detoxication drug accelerated the ethanol metabolism in humans significantly,which was suitable for the clinical treatment of alcoholism.%目的:研究枳椇子、葛花的最佳配比解酒处方影响人体乙醇吸收代谢的

  3. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  4. Elimination Kinetics of Ethanol in a 5-Week-Old Infant and a Literature Review of Infant Ethanol Pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Jonathan B. Ford

    2013-01-01

    Full Text Available Primary ethanol metabolism occurs through alcohol dehydrogenase, but minor metabolic pathways such as the P450 enzymes CYP2E1 and CYP1A2 and the enzyme catalase exist. These enzymes have distinct developmental stages. Elimination kinetics of ethanol in the infant is limited. We report the elimination kinetics of ethanol in a 5-week-old African-American male who had a serum ethanol level of 270 mg/dL on admission. A previously healthy 5-week-old African-American male was brought to the ED with a decreased level of consciousness. His initial blood ethanol level was 270 mg/dL. Serial blood ethanol levels were obtained. The elimination rate of ethanol was calculated to be in a range from 17.1 to 21.2 mg/dL/hr and appeared to follow zero-order elimination kinetics with a R2=0.9787. Elimination kinetics for ethanol in the young infant has been reported in only four previously published reports. After reviewing these reports, there appears to be variability in the elimination rates of ethanol in infants. Very young infants may not eliminate ethanol as quickly as previously described. Given that there are different stages of enzyme development in children, caution should be used when generalizing the elimination kinetics in young infants and children.

  5. The alcohol program

    International Nuclear Information System (INIS)

    The rationale for the launching of the Alcohol Program from sugarcane in Brazil in the mid-1970s is described as an answer to the first ''oil crisis'' as well as a solution to the problem of the fluctuating sugar prices in the international market. The technical characteristics of ethanol as a fuel are given as well as a discussion of the evolution of the cost of production, environmental and social consequences. Regarding costs, ethanol production was close to 100 dollars a barrel in the initial stages of the Program in 1980 falling rapidly due to economies of scale and technological progress to half that value in 1990, followed by a slower decline in recent years. Considering the hard currency saved by avoiding oil importation through the significant displacement of gasoline by ethanol and the decrease in the amount of external debt that the displaced oil importation was able to provide it is possible to demonstrate that the Alcohol Program has been an efficient way of exchanging dollar debt by national currency subsidies which are paid by the liquid fossil fuel users. Even with this economic gains for society, the continuity of the Program is difficult to maintain. Two solutions to this problem are discussed: internal expansion of the use of ethanol and exports to industrialized countries where it could be used as an octane enhancer. The main attractiveness of the Program - the reduction of CO2 emissions as compared to fossil fuels - is stressed, mainly as a solution for industrialized countries to fulfill their commitments with the United Nations Framework Climate Change Convention. (Author)

  6. IL-6-deficient Mice Are Susceptible to Ethanol-induced Hepatic Steatosis: IL-6 Protects against Ethanol-induced Oxidative Stress and Mitochondrial Permeability Transition in the Liver

    Institute of Scientific and Technical Information of China (English)

    OsamaEl-Assal; FengHong; Won-HoKim; SvetlanaRadaeva; BinGao

    2004-01-01

    Interleukin-6 (IL-6)-deficient mice are prone to ethanol-induced apoptosis and steatosis in the liver; however,the underlying mechanism is not fully understood. Mitochondrial dysfunction caused by oxidative stress is an early event that plays an important role in the pathogenesis of alcoholic liver disease. Therefore, we hypothesize that the protective role of IL-6 in ethanol-induced liver injury is mediated via suppression of ethanol-induced oxidative stress and mitochondrial dysfunction. To test this hypothesis, we examined the effects of IL-6 on ethanol-induced oxidative stress, mitochondrial injury, and energy depletion in the livers of IL-6 (-/-) mice and hepatocytes from ethanol-fed rats. Ethanol consumption leads to stronger induction of malondialdehyde (MDA) in IL-6 (-/-) mice compared to wild-type control mice, which can be corrected by administration of IL-6. In vitro,IL-6 treatment prevents ethanol-mediated induction of reactive oxygen species (ROS), MDA, mitochondrial permeability transition (MPT), and ethanol-mediated depletion of adenosine triphosphate (ATP) in hepatocytes from ethanol-fed rats. Administration of IL-6 in vivo also reverses ethanol-induced MDA and ATP depletion in hepatocytes. Finally, IL-6 treatment induces metallothionein protein expression, but not superoxide dismutase and glutathione peroxidase in cultured hepatocytes. In conclusion, IL-6 protects against ethanol-induced oxidative stress and mitochondrial dysfunction in hepatocytes v/a induction of metallothionein protein expression, which mav account for the nrotective role of IL-6 in alcoholic liver disease.

  7. IL-6-deficient Mice Are Susceptible to Ethanol-induced Hepatic Steatosis: IL-6 Protects against Ethanol-induced Oxidative Stress and Mitochondrial Permeability Transition in the Liver

    Institute of Scientific and Technical Information of China (English)

    Osama El-Assal; Feng Hong; Won-Ho Kim; Svetlana Radaeva; Bin Gao

    2004-01-01

    Interleukin-6 (IL-6)-deficient mice are prone to ethanol-induced apoptosis and steatosis in the liver; however, the underlying mechanism is not fully understood. Mitochondrial dysfunction caused by oxidative stress is an early event that plays an important role in the pathogenesis of alcoholic liver disease. Therefore, we hypothesize that the protective role of IL-6 in ethanol-induced liver injury is mediated via suppression of ethanol-induced oxidative stress and mitochondrial dysfunction. To test this hypothesis, we examined the effects of IL-6 on ethanol-induced oxidative stress, mitochondrial injury, and energy depletion in the livers of IL-6 (-/-) mice and hepatocytes from ethanol-fed rats. Ethanol consumption leads to stronger induction of malondialdehyde (MDA) in IL-6 (-/-) mice compared to wild-type control mice, which can be corrected by administration of IL-6. In vitro,IL-6 treatment prevents ethanol-mediated induction of reactive oxygen species (ROS), MDA, mitochondrial permeability transition (MPT), and ethanol-mediated depletion of adenosine triphosphate (ATP) in hepatocytes from ethanol-fed rats. Administration of IL-6 in vivo also reverses ethanol-induced MDA and ATP depletion in hepatocytes. Finally, IL-6 treatment induces metallothionein protein expression, but not superoxide dismutase and glutathione peroxidase in cultured hepatocytes. In conclusion, IL-6 protects against ethanol-induced oxidative stress and mitochondrial dysfunction in hepatocytes via induction of metallothionein protein expression, which may account for the protective role of IL-6 in alcoholic liver disease.

  8. Alcohol, biomass energy: technological and economical aspects of production

    International Nuclear Information System (INIS)

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed

  9. Sex differences in the effects of ethanol pre-exposure during adolescence on ethanol-induced conditioned taste aversion in adult rats.

    Science.gov (United States)

    Sherrill, Luke K; Berthold, Claire; Koss, Wendy A; Juraska, Janice M; Gulley, Joshua M

    2011-11-20

    Alcohol use, which typically begins during adolescence and differs between males and females, is influenced by both the rewarding and aversive properties of the drug. One way adolescent alcohol use may modulate later consumption is by reducing alcohol's aversive properties. Here, we used a conditioned taste aversion (CTA) paradigm to determine if pre-exposure to alcohol (ethanol) during adolescence would attenuate ethanol-induced CTA assessed in adulthood in a sex-dependent manner. Male and female Long-Evans rats were given intraperitoneal (i.p.) injections of saline or 3.0g/kg ethanol in a binge-like pattern during postnatal days (PD) 35-45. In adulthood (>PD 100), rats were given access to 0.1% saccharin, followed by saline or ethanol (1.0 or 1.5g/kg, i.p.), over four conditioning sessions. We found sex differences in ethanol-induced CTA, with males developing a more robust aversion earlier in conditioning. Sex differences in the effects of pre-exposure were also evident: males, but not females, showed an attenuated CTA in adulthood following ethanol pre-exposure, which occurred approximately nine weeks earlier. Taken together, these findings indicate that males are more sensitive to the aversive properties of ethanol than females. In addition, the ability of pre-exposure to the ethanol US to attenuate CTA is enhanced in males compared to females. PMID:21767576

  10. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption

    OpenAIRE

    Smith, Maren L.; Lopez, Marcelo F; Archer, Kellie J; Wolen, Aaron R.; Howard C Becker; Miles, Michael F.

    2016-01-01

    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive eth...

  11. Modeling of Ethanol Metabolism and Transdermal Transport

    OpenAIRE

    Webster, Gregory Daniel

    2008-01-01

    Approximately 14,500 people were killed in traffic crashes where the driver was legally intoxicated in 2005, constituting 33% of all traffic fatalities that year. While social efforts to reduce the number of traffic fatalities have shown to be moderately successful, alcohol has remained a factor in 40% of all traffic deaths over the past decade. Transdermal ethanol detection is a promising method that could prevent drunk driving if integrated into an ignition interlock system; potentially ...

  12. Effects of ethanol on the proteasome interacting proteins

    Institute of Scientific and Technical Information of China (English)

    Fawzia; Bardag-Gorce

    2010-01-01

    Proteasome dysfunction has been repeatedly reported in alcoholic liver disease. Ethanol metabolism endproducts affect the structure of the proteasome, and, therefore, change the proteasome interaction with its regulatory complexes 19S and PA28, as well as its interacting proteins. Chronic ethanol feeding alters the ubiquitin-proteasome activity by altering the interaction between the 19S and the 20S proteasome interaction. The degradation of oxidized and damaged proteins is thus decreased and leads to accum...

  13. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  14. Fermentation to ethanol of pentose-containing spent sulphite liquor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Wayman, M.; Parekh, S.K.

    1987-06-01

    Ethanolic fermentation of spent sulphite liquor with ordinary bakers' yeast is incomplete because this yeast cannot ferment the pentose sugars in the liquor. This results in poor alcohol yields, and a residual effluent problem. By using the yeast Candida shehatae (R) for fermentation of the spent sulphite liquor from a large Canadian alcohol-producing sulphite pulp and paper mill, pentoses as well as hexoses were fermented nearly completely, alcohol yields were raised by 33%, and sugar removal increased by 46%. Inhibitors were removed prior to fermentation by steam stripping. Major benefits were obtained by careful recycling of this yeast, which was shown to be tolerant both of high sugar concentrations and high alcohol concentrations. When sugar concentrations over 250 g/L (glucose:xylose 70:30) were fermented, ethanol became an inhibitor when its concentration reached 90 g/L. However, when the ethanol was removed by low-temperature vacuum distillation, fermentation continued and resulted in a yield of 0.50 g ethanol/g sugar consumed. Further improvement was achieved by combining enzyme saccharification of sugar oligomers with fermentation. This yeast is able to ferment both hexoses and pentoses simultaneously, efficiently, and rapidly. Present indications are that it is well suited to industrial operations wherever hexoses and pentoses are both to be fermented to ethanol, for example, in wood hydrolysates. (Refs. 6).

  15. Determination of some volatile compounds in fruit spirits produced from grapes (Vitis Vinifera L.) and plums (Prunus domestica L.) cultivars

    OpenAIRE

    Kostik, Vesna; Gjorgjeska, Biljana; Angelovska, Bistra; Kovacevska, Ivona

    2014-01-01

    Fruit spirits contain a large array of volatile compounds among which the important role from toxicological aspect besides ethanol has methanol, aliphatic esters and fusel alcohols. This study evaluates the content of ethanol, ethyl acetate, methanol, isopropyl alcohol (2-propanol), n-propyl alcohol (propan-l-ol), isobutyl alcohol (2-methylpropan-1-ol), n-butyl alcohol (1-butanol), isoamyl alcohol (3-methyl-1-butanol) and n-amyl alcohol (pentan-1-ol) in different grapes and plum brandies i...

  16. Ethanol: the importance of the new regulatory framework for the sugar-alcohol market in Brazil; Etanol: a importancia do novo marco regulatorio para o mercado sucroalcooleiro do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jessica de Araujo; Alves, Rayana Lins [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil). Programa de Recursos Humanos em Direito do Petroleo, Gas Natural e Biocombustiveis

    2010-07-01

    The present work intends to make an analysis concerning the panorama which it inserts the regulation of the industry of ethanol in Brazil, in detaining in the problematic that it is detached in the economic scene and present politics: the necessity of a new regulatory framework that could adapt on necessities and requirements of the sugarcane industry of Brazil. In the present time, the absence of regulation makes that the sugarcane sector is regulated by some actors, who act of determinant and diffuse form, in the creation of public politics that deal with ethanol fuel. Thus, with the divergence of interests and the absence of consensus, occurs an impediment to energy development of ethanol. In this work, it was used doctrinal research regarding the sugarcane sector, with the intention to analyze it historically, since the previous period the Constitution of 1988 until the energy planning 2030. It is had as resulted the necessity of the creation of a new regulatory framework for the sugarcane sector, which must contain clauses to develop the paper of the ANP in the sector; to diminish the technological specifications; to increase the advantages taxes etc. In this way, it was reached the conclusion that it is not any creation of regulatory framework that will go to benefit the development of the sector, but a legislation resultant of discussions concerning the present sugarcane industry. (author)

  17. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation; Preparacao e caracterizacao de eletrocatalisadores PtSn/C-terras raras e PtRu/C-terras raras para a eletro-oxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rita Maria de Sousa

    2011-07-01

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H{sub 2}PtCl{sub 6}.6H{sub 2}O Ru Cl xH{sub 2}O, SnCl{sub 2}.2H{sub 2}O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2{theta} = 25{sup o}, which is associated with the carbon support and four additional diffraction peaks at approximately 2{theta} = 40{sup o}, 47{sup o}, 67{sup o} e 82{sup o}, which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H{sub 2}SO{sub 4}, + 1,0 mol.L-1 de C{sub 2}H{sub 5}OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  18. Caenorhabditis elegans battling starvation stress: low levels of ethanol prolong lifespan in L1 larvae.

    Directory of Open Access Journals (Sweden)

    Paola V Castro

    Full Text Available The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%; higher concentrations to 68 mM (0.4% did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response.

  19. 家蚕乙醇脱氢酶基因的表达特征及乙醇在蚕体内的代谢分析%Expressional Profile of Alcohol Dehydrogenase Genes and Metabolic Analysis of Ethanol in Bombyx mori Larvae

    Institute of Scientific and Technical Information of China (English)

    杜丽; 王长春; 徐云敏; 李玉欣; 何宁佳

    2012-01-01

    Alcohol dehydrogenase (ADH) is a critical ethanol metabolic enzyme in organisms. Bioinformatics analysis showed that there are 7 ADH coding genes in the silkworm (Bombyx mori) genome ( BmADH1 ~ BmADH7). Semi-quantitative RT-PCR indicated that BmADH2, BmADH3, BmADHA and BmADH5 had high expression level in silk gland of day 3 silkworm larvae of the 5th instar and BmADH1 , BmADH6 and BmADH7 had high expression level in fat body. After day 3 silkworm larvae of the 5th instar were treated with 28% or 56% ethanol via direct injection and oral feeding, the metabolism of ethanol in silkworm larvae as well as the variations of ADH gene expression and ADH enzyme activity in fat body were investigated. Semi-quantitative RT-PCR analysis indicated that the expressions of BmADH1, BmADH6 and BmADH1 genes were up-regulated in silkworm fat body after being treated by direct injection of 56% ethanol, while the expressions of these three genes remained unchanged after treatment with 28% ethanol. Enzyme activity assay revealed that ADH enzyme activities were predominantly increased in silkworm fat body at 1 h after treatment with 28% or 56% ethanol (P<0. 05). Gas chromatography analysis showed that ethanol was quickly converted into acetaldehyde in the larval hemolymph. These results indicate that, after silkworm larvae receive stimulation of high concentration ethanol, the expression of ADH genes is up-regulated in fat body, and the increased ADH enzyme activities participate in ethanol metabolic process to protect the larvae from being harmed by high concentration ethanol.%乙醇脱氢酶(alcohol dehydrogenase,ADH)是生物体内重要的乙醇代谢酶.生物信息学分析显示家蚕基因组中存在7个ADH编码基因(BmADH1 ~ BmADH7),半定量RT-PCR检测BmADH2、BmADH3、BmADH4和BmADH5在家蚕5龄第3天幼虫的丝腺中表达水平较高,BmADH1、BmADH6、BmADH7在脂肪体中高水平表达.利用直接注射和口器灌喂2种方式,对家蚕5龄第3

  20. A Deficit in Face-Voice Integration in Developing Vervet Monkeys Exposed to Ethanol during Gestation

    DEFF Research Database (Denmark)

    Zangenehpour, Shahin; Javadi, Pasha; Ervin, Frank R;

    2014-01-01

    Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet m...

  1. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    Science.gov (United States)

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  2. Alcohol Test

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The recent alcohol tax increase poses a challenge to China’s white spirits makers Alcohol, rather than wine, is an in-dispensable component to Chinese table culture. The financial crisis has failed to affect white spirits sales, but an alcohol tax increase might.

  3. Developmental Ethanol Exposure Leads to Dysregulation of Lipid Metabolism and Oxidative Stress in Drosophila

    Science.gov (United States)

    Logan-Garbisch, Theresa; Bortolazzo, Anthony; Luu, Peter; Ford, Audrey; Do, David; Khodabakhshi, Payam; French, Rachael L.

    2014-01-01

    Ethanol exposure during development causes an array of developmental abnormalities, both physiological and behavioral. In mammals, these abnormalities are collectively known as fetal alcohol effects (FAE) or fetal alcohol spectrum disorder (FASD). We have established a Drosophila melanogaster model of FASD and have previously shown that developmental ethanol exposure in flies leads to reduced expression of insulin-like peptides (dILPs) and their receptor. In this work, we link that observation to dysregulation of fatty acid metabolism and lipid accumulation. Further, we show that developmental ethanol exposure in Drosophila causes oxidative stress, that this stress is a primary cause of the developmental lethality and delay associated with ethanol exposure, and, finally, that one of the mechanisms by which ethanol increases oxidative stress is through abnormal fatty acid metabolism. These data suggest a previously uncharacterized mechanism by which ethanol causes the symptoms associated with FASD. PMID:25387828

  4. DEVELOPMENT AND CHARACTARIZATION OF PERINDOPRIL ERBUMINE LOADED ETHANOLIC LIPOSOMES

    OpenAIRE

    Prakash Goudanavar; Manjunatha; Doddayya Hiremath

    2014-01-01

    The present work describes the preparation of Perindopril erbumine ethosomes and study of effect of alcohol and phospholipid on transdermal delivery. Perindopril erbumine is an ACE inhibitor which slowly inhibits the activity of the enzyme ACE, which decreases the production of angiotensin II, is being involved in the blood pressure regulation. Perindopril erbumine loaded ethanolic Liposomes were prepared by an hot - cold method using different concentrations of Alcohol and Soya lecithin in d...

  5. Gender differences in ethanol preference and ingestion in rats. The role of the gonadal steroid environment.

    OpenAIRE

    Almeida, O F; Shoaib, M.; Deicke, J; Fischer, D.; Darwish, M H; Patchev, V K

    1998-01-01

    An ethanol oral self administration paradigm showed the existence of gender differences in alcohol preference in rats: whereas males and females initiated alcohol drinking at similar rates, females maintained their preference for ethanol over a longer duration. Neonatal estrogenization of females, which effectively confers a male phenotype on a genetically female brain, resulted in patterns of drinking that were similar to those displayed by intact male rats, indicating that gender difference...

  6. Stimulant effects of ethanol in adolescent Swiss mice: development of sensitization and consequences in adulthood

    OpenAIRE

    Quoilin, Caroline; Didone, Vincent; Quertemont, Etienne

    2011-01-01

    The adolescent period is characterized by behavioral and neurobiological changes, which might predispose adolescents to the long-term negative consequences of alcohol. For example, enhanced risks of alcohol dependence are reported when drinking is initiated early. In the present studies, we used Swiss female mice to test whether chronic ethanol injections during adolescence durably affect the sensitivity to the stimulant effects of ethanol in adulthood. In a first set of experiments, several ...

  7. Feasibility of Transdermal Ethanol Sensing for the Detection of Intoxicated Drivers

    OpenAIRE

    Webster, Gregory D.; Gabler, Hampton C.

    2007-01-01

    Transdermal ethanol detection is a promising method that could prevent drunk driving if integrated into an ignition interlock system. However, experimental data from previous research has shown significant time delays between alcohol ingestion and detection at the skin which makes real time estimation of blood alcohol concentration via skin measurement difficult. Using a validated model we studied the effects that body weight, metabolic rate and ethanol dose had on the time lag between the bl...

  8. One-Pot Synthesis of Dialkyl Hexane-1,6-Dicarbamate from 1,6-Hexanediamine, Urea, and Alcohol over Zinc-Incorporated Berlinite (ZnAlPO4 Catalyst

    Directory of Open Access Journals (Sweden)

    Da-Lei Sun

    2016-02-01

    Full Text Available Dialkyl hexane-1,6-dicarbamate was synthesized, for the first time, by a one-pot reaction of 1,6-hexanediamine (HDA, urea, and alcohols, including methanol, ethanol, propanol, and butanol, in a self-designed batch reactor, using zinc-incorporated berlinite (ZnAlPO4 as a catalyst. The yield of dibutyl hexane-1,6-dicarbamate (2 was systematically investigated as a function of Zn/Al molar ratio, reaction temperature, reaction time, catalyst usage and urea/HDA/butanol molar ratio. Based on these studies, the optimized reaction conditions were as follows: molar ratio urea/HDA/butanol = 2.6:1:8.6, catalyst usage = 3.0 g, reaction temperature = 493 K, reaction time = 6 h and reaction pressure = 1.2 MPa; a yield of 2 of 89.7% was achieved over the ZnAlPO4 (molar ratio Zn/Al = 0.04 catalyst. The catalysts were characterized by X-ray photoelectric spectroscopy (XPS and scanning electron microscope (SEM. Additionally, based on these experimental results, it was also proposed that the catalysis recycle of the one-pot synthesis of 2 from urea, HDA, and butanol over the ZnAlPO4 catalyst.

  9. Autophagy and ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Terrence M Donohue Jr

    2009-01-01

    The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism.Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients,endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury.

  10. Neurobiological alterations in alcohol addiction: a review.

    Science.gov (United States)

    Erdozain, Amaia M; Callado, Luis F

    2014-01-01

    The exact mechanism by which ethanol exerts its effects on the brain is still unknown. However, nowadays it is well known that ethanol interacts with specific neuronal membrane proteins involved in signal transmission, resulting in changes in neural activity. In this review different neurochemical alterations produced by ethanol are described. Primarily, ethanol interacts with two membrane receptors: GABAA and NMDA ion channel receptors. Ethanol enhances the GABA action and antagonizes glutamate action, therefore acting as a CNS depressant. In addition, ethanol affects most other neurochemical and endocrine systems. In regard to the brain reward system, both dopaminergic and opioid system are affected by this drug. Furthermore, the serotonergic, noradrenergic, corticotropin-releasing factor and cannabinoid systems seem to play an important role in the neurobiology of alcoholism. At last but not least, ethanol can also modulate cytoplasmic components, including the second messengers. We also review briefly the different actual and putative pharmacological treatments for alcoholism, based on the alterations produced by this drug. PMID:25578004

  11. Refractive indices of ternary liquid mixtures containing aliphatic alcohols at several temperatures

    Directory of Open Access Journals (Sweden)

    Sovilj Milan N.

    2005-01-01

    Full Text Available The refractive indices of ternary liquid mixtures (2-propanol+2-butanol+ethanol and (chloroform+2-propanol+2-butanol were measured at 20, 25, 30, and 35°C, and atmospheric pressure. The results were used to calculate the refractive index deviations over the entire mole fraction range for the mixtures. The refractive index deviations for the ternary mixtures were further fitted to empirical correlations (Cibulka Nagata-Tamura, and Lopez et al to estimate the ternary fitting parameters. Standard deviations and average percentage deviations from the regression lines are shown. The best fit was obtained by the Nagata-Tamura empirical correlation. Some of the existing predictive equations for the refractive index deviations (Tsao-Smith, Köhler, and Colinet were tested.

  12. Neurosteroid effects on sensitivity to ethanol

    Directory of Open Access Journals (Sweden)

    Christa M Helms

    2012-01-01

    Full Text Available Harrison and Simmonds (1984 provided the first clear evidence that neuroactive steroids act at specific neurotransmitter receptors, investigating the potentiation of muscimol-induced GABAA responses by alphaxalone (3α-hydroxy 5α -pregnane l l,20-dione in cortical slices. Within 2 years, a progesterone metabolite (3α-hydroxy-5α-pregnan-20-one, 3α,5α-THP, allopregnanolone and a deoxycorticosterone metabolite (3α,21-dihydroxy-5α-pregnan-20-one, 3α,5α-THDOC, tetrahydrodeoxycorticosterone, THDOC were shown to be positive modulators of GABAA receptors (Majewska et al., 1986. That same year, publications showed that ethanol has direct action at GABAA receptors (Allan and Harris, 1986, Suzdak et al., 1986. Thus, the GABAA receptor complex was identified as a membrane-bound target providing a pharmacological basis for shared sensitivity between neurosteroids and ethanol. The common behavioral effects of ethanol and neuroactive steroids were compared directly using drug discrimination procedures (Ator et al., 1993. The N-methyl-D-aspartate (NMDA receptor complex, a membrane-bound ionophore important for excitatory glutamate neurotransmission, was shown to be antagonized by low concentrations of ethanol (Lovinger et al., 1989. Since data were emerging for neurosteroid activity at NMDA receptors (Wu et al., 1991, the stage was set for the suggestion that neurosteroids, and physiological states that alter circulating neuroactive steroids, could affect sensitivity to alcohol (Grant et al., 1997. The unique interface of ethanol and neurosteroids encompasses molecular, cellular, physiological and behavioral processes. This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including metabolic pathways, physiological states associated with activity of the hypothalamic-pituitary adrenal (HPA and hypothalamic-pituitary-gonadal (HPG axes, and the effects of chronic exposure to ethanol, in addition to

  13. 正丙醇和异丙醇对水溶液中牛血清白蛋白的构象及其荧光光谱的影响%Effects of 1-Propanol and 2-Propanol on the Conformation and Fluorescence Spectra of Bovine Serum Albumin in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    马林; 刘东群; 杨华; 童张法

    2008-01-01

      A combination of emission fluorescence spectroscopy (λex=280 nm,295 nm) and synchronous fluorescence spectroscopy (Δλ=15 nm、60 nm) with static light scattering measurement was used to investigate the effects of 1-propanol and 2-propanol on the conformation and fluorescence spectroscopy of Bovine Serum Albumin (BSA) in BSA-1-propanol-water and BSA-2-propanol-water systems. The results showed that 1-propanol and 2-propanol generally decreased, however at dilute solutions slightly increased, the stability of the structure of protein. And it was found that 1-propanol and 2-propanol were week protein denaturants, so that the fluorescence intensity of BSA was controlled by the mixing state of the mixtures at high 1-propanol and 2-propanol concentration.%  通过测定BSA-正丙醇-水和BSA-异丙醇-水体系中BSA的发射荧光(λex=280 nm、295 nm)和同步荧光(△λ=15 nm、60 nm),结合静态光散射技术,探索正丙醇和异丙醇对水溶液中蛋白质的构象和荧光光谱的影响。结果表明,正丙醇和异丙醇使蛋白质发生部分解折叠现象,但是,低浓度的正丙醇和异丙醇水溶液能轻微增强蛋白质的结构稳定性。总体上,正丙醇和异丙醇是弱的蛋白质变性剂,在浓度较高的体系中,体系的混合状态的变化对 BSA 的荧光强度的变化起主导作用。

  14. Obtaining superfine ethanol in a Cuban distillery

    Directory of Open Access Journals (Sweden)

    Yailet Albernas Carvajal

    2012-12-01

    Full Text Available This paper describes obtaining superfine ethanol in a Cuban distillery from molasses as base raw material. The operational characteristics of the main stages for obtaining superfine alcohol have been described, emphasising alcohol fermentation due to its complexity in achieving process continuity; a Gantt chart led to determining a 31-hour process time and 5-hour cycle time. The influence of fermentation yield on process profitability was determined through mass and energy balances, demonstrating that a 4ºGL degree of alcohol was feasible. The main water-consuming elements were also determined (98% in molasses dilution as well as steam consumption (91% during distillation. A preliminary analysis was made of the opportunities provided by material and energy integration, mainly for distillation, contributing towards a positive environmental impact.

  15. Enthalpies of dilution of glycine and L-alanine in aqueous 1-propanol solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    The dilution enthalpies of glycine and L-alanine in aqueous 1-propanol solutions have been measured by a mixing-flow microcalorimeter at T = 298.15 K. The homogeneous enthalpic interaction coefficients of the two zwitterions have been calculated according to the analysis of the excess enthalpy suggested by Friedman [J. Solution Chem. 1 (1972) 387-390]. The enthalpic pairwise interaction coefficients h2 of glycine are negative and pass through a minimum with increasing 1-propanol content in mixed solvents, while those of L-alanine decrease from positive to negative. The variations of the enthalpic pairwise interaction coefficients are interpreted in terms of solute - solute and solute - solvent interactions

  16. Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent

    Science.gov (United States)

    Sarr, Mouhamadou; Bahlawane, Naoufal; Arl, Didier; Dossot, Manuel; McRae, Edward; Lenoble, Damien

    2016-08-01

    The investigation of highly conformal thin films using Atomic Layer Deposition (ALD) is driven by a variety of applications in modern technologies. In particular, the emergence of 3D memory device architectures requires conformal materials with tuneable magnetic properties. Here, nanocomposites of carbon, cobalt and cobalt carbide are deposited by ALD using cobalt acetylacetonate with propanol as a reducing agent. Films were grown by varying the ALD deposition parameters including deposition temperature and propanol exposure time. The morphology, the chemical composition and the crystalline structure of the cobalt carbide film were investigated. Vibrating Sample Magnetometer (VSM) measurements revealed magnetic hysteresis loops with a coercivity reaching 500 Oe and a maximal saturation magnetization of 0.9 T with a grain size less than 15 nm. Magnetic properties are shown to be tuneable by adjusting the deposition parameters that significantly affect the microstructure and the composition of the deposited films.

  17. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  18. A Thermodynamic Study of the Effects of Cholesterol on the Interaction between Liposomes and Ethanol

    DEFF Research Database (Denmark)

    Trandum, Christa; Westh, Peter; Jørgensen, Kent;

    2000-01-01

    temperature region may play an important role for association of ethanol with the lipid bilayers. Finally, the relation between cholesterol content and the affinity of ethanol for the lipid bilayer provides some support for the in vivo observation that cholesterol acts as a natural antagonist against alcohol...

  19. The Protective Role of Zinc Sulphate on Ethanol -Induced Liver and Kidney Damages in Rats

    International Nuclear Information System (INIS)

    Around the world more and more people suffer from alcoholism. Addiction problems, alcoholism and excessive use of drugs both medical and nonmedical, are major causes of liver and kidney damage in adults. The purpose of this study was to investigate on the protective role of zinc sulphate on liver and kidney in rats with acute alcoholism. Wistar albino rats were divided into four groups. Group I; control group, group 2; given only Zinc Sulphate (100 mg/kg/day for 3days), group 3; rats given absolute ethanol (1 ml of absolute ethanol administrated by gavage technique to each rat), group 4 given Zinc sulphate prior to the administration of absolute ethanol. The results of this study revealed that acute ethanol exposure caused degenerative morphological changes in the liver and kidney. Significant difference were found in the levels of serum, liver, kidney super oxide dismutase(SOD), catalase (CAT), nitric oxide(NO), and malondialdehyde (MDA) in the ethanol group compared to the control group. Moreover ,serum urea, creatnine, uric acid, alkaline phoshpatase and transaminases activities (GOTand GPT) were increased in the ethanol group compared to the control group. On the other hand,administration of zinc sulphate in the ethanol group caused a significant decrease in the degenerative changes, lipid peroxidation, antioxidant enzymes, and nitric oxide in serum, liver, and kidney. It can be concluded that zinc Sulphate has a protective role on the ethanol induced liver and kidney injury. In addition ,nitric oxide is involved in the mechanism of acute alcohol intoxication. (author)

  20. Genotype of ethanol metabolizing enzyme genes by oligonucleotide microarray in alcoholic liver disease in Chinese people%芯片检测乙醇代谢相关酶基因多态性及其在酒精性肝病中的应用

    Institute of Scientific and Technical Information of China (English)

    虞朝辉; 厉有名; 陈卫星; 乐敏

    2002-01-01

    Objective To explore the relationship between genetic polymorphisms of the ethanol metabolizing enzymes and the occurrence of alcoholic liver disease (ALD). Methods Sixty-five healthy male controls and 165 alcoholisms (including 122 ALD patients and 43 male alcohol abusers without liver complications defined as alcohol-dependent) were analyzed by polymerase chain reaction and hybridized with oligonucleotide microarray to detect the polymorphisms of the ethanol metabolizing enzymes genes. Were shown as 37.69%, 46.51% and 59.02% in control, alcohol-dependent and alcoholisms (ALD group and alcohol-dependent group) than in healthy controls (P<0.01), and significantly higher in ALD group than in significantly higher in alcohol-dependents than in healthy controls lower in alcoholisms than that in the healthy controls, and the deference between ALD group and alcohol-dependent group was significant. No groups.Conclusions Polymorphic ADH2, ADH3 and ALDH2 genes can affect the propensity for alcohol drinking in Chinese.The alleles of ADH2*2,ADH3*1and ALDH2*2 are most likely to play a rotective role against%目的利用基因芯片检测乙醇代谢相关酶的单核苷酸多态性(SNPs),并阐明乙醇代谢相关酶基因多态性与酒精性肝病的关系.方法参照"酒精性肝病的诊断依据及治愈、好转标准", 并排除乙型肝炎表面抗原和丙型肝炎抗体阳性者,不典型者做肝穿刺活检,选择165例嗜酒者,其中无肝脏损害的有43例,酒精性肝病122例;正常对照组65例为研究对象.抽取3ml外周血,分离外周血单核细胞,按常规提取DNA,行4重不对称PCR, PCR 产物与寡核苷酸探针微阵列芯片杂交,并扫描分析结果.结果健康对照组、嗜酒者组、无肝脏损害的嗜酒者组和酒精性肝病组的ADH2*1等位基因频率分别为37.69%, 55.76%, 46.51%,59.02%; ADH2*2 等位基因频率相应为62.31%, 44.24%, 53.49%, 40.98%; 未发现ADH2*3型等位基因.嗜酒者

  1. The Effect of Ethanol Production on the U.S. National Corn Price

    OpenAIRE

    Park, Hwanil; Fortenbery, T. Randall

    2007-01-01

    A system of equations representing corn supply, feed demand, export demand, food, alcohol and industrial (FAI) demand, and corn price is estimated by three-stage least squares. A price dependent reduced form equation is then formed to investigate the effect of ethanol production on the national average corn price. The elasticity of corn price with respect to ethanol production is then obtained. Results suggest that ethanol production has a positive impact on the national corn price and that t...

  2. Reduced limbic metabolism and fronto-cortical volume in rats vulnerable to alcohol addiction

    OpenAIRE

    Gozzi, Alessandro; Agosta, Federica; Massi, Maurizio; Ciccocioppo, Roberto; Bifone, Angelo

    2012-01-01

    Alcohol abuse is associated with long-term reductions in fronto-cortical volume and limbic metabolism. However, an unanswered question in alcohol research is whether these alterations are the sole consequence of chronic alcohol use, or contain heritable contributions reflecting biological propensity toward ethanol addiction. Animal models of genetic predisposition to alcohol dependence can be used to investigate the role of inborn brain abnormalities in the aetiology of alcoholism. Here we us...

  3. Alcohol Induces Synaptotagmin 1 Expression in Neurons via Activation of Heat Shock Factor 1

    OpenAIRE

    Varodayan, Florence P.; Pignataro, Leonardo; Harrison, Neil L.

    2011-01-01

    Many synapses within the central nervous system are sensitive to ethanol. Although alcohol is known to affect the probability of neurotransmitter release in specific brain regions, the effects of alcohol on the underlying synaptic vesicle fusion machinery have been little studied. To identify a potential pathway by which ethanol can regulate neurotransmitter release, we investigated the effects of acute alcohol exposure (1–24 hours) on the expression of the gene encoding Synaptotagmin 1 (Syt1...

  4. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats.Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores.These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions.

  5. Study on Salt-Containing Extractive Distillation for the 2-Propanol/Water System

    Institute of Scientific and Technical Information of China (English)

    Fu Jiquan

    2008-01-01

    The salt-containing extractive distillation column and the salt-containing agent recovery column for the 2-propanol/water/ethanediol/KAc system were simulated by the NRTL model and the modified Rose Relaxation method. The simulation results showed that prediction of the salt effect in vapor-liquid equilib-rium and the correlation method (TDCM) of NRTL parameters were suitable for the said system. Four different distillation technology processes were investigated; the results showed that the salt-containing extractive distillation process was the best one. The simulating design of the extractive distillation column was performed under the conditions of different total stage number, feeding location, reflux ratio, amount of mixed agent and concentration of KAc. The results showed that such factors as 17 stages, a feeding location at the 9th stage, a reflux ratio of 1.2, and a mixed agent feeding rate of 1.141 kmol/h, might be the best suited operating conditions. The simulating design was also done for the column for recovering the salt-containing agent. The simulation method of the salt-containing extractive distillation is simple and effective in this work.

  6. PROPIEDADES VOLUMÉTRICAS DE LA MEZCLA N,NDIMETILFORMAMIDA + 1-PROPANOL A DIFERENTES TEMPERATURAS

    Directory of Open Access Journals (Sweden)

    Manuel Páez

    2011-12-01

    Full Text Available Las densidades del sistema binario N,NDimetilformamida+ 1-propanol se midieroncomo una función de la fracciónmolar a las temperaturas de (283,15;288,15; 293,15; 298,15; 303,15; 308,15y 313,15 K y 1011 bar, usando un densímetrode tubo vibratorio DMA 5000. Losdatos experimentales de densidad se utilizaronpara calcular los volúmenes molaresde exceso (VEm, volúmenes molaresparciales de exceso del soluto y del solvente( ¯VEi , volúmenes molares parcialesa dilución infinita (¯V∞i y los coeficientesviriales (bv de acuerdo con la teoría deMcMillan–Mayer, que se discutieron entérminos de las interacciones presentesen solución. Los volúmenes molaresde exceso se correlacionaron usando laecuación polinomial de Redlich–Kister.Los volúmenes molares de exceso yvolúmenes molares parciales de excesodel soluto y del solvente son negativosen todo el intervalo de fracción molar atodas las temperaturas de estudio, hechoque puede deberse a interacciones específicasentre los componentes o a la asociacióna través de fuerzas débiles.

  7. Alcoholic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Gonzalo; Guzzo-Merello; Marta; Cobo-Marcos; Maria; Gallego-Delgado; Pablo; Garcia-Pavia

    2014-01-01

    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy(ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM.

  8. Proteasome inhibitor treatment in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce

    2011-01-01

    Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-341 (Bortezomib, Velcade(r)). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease

  9. Measurement and Modeling of Vapor-Liquid Equilibrium for Ternary System Water+2-Propanol+1-Butyl-3-methylimidazolium Chloride

    Institute of Scientific and Technical Information of China (English)

    邓东顺; 乔玉珍; 姬登祥; 葛筠; 章连众

    2014-01-01

    Vapor-liquid equilibrium (VLE) data for water+2-propanol+1-butyl-3-methylimidazolium chloride ([bmim]Cl) were measured. Six sets of complete T, x, y data are reported, in which the 2-propanol mole fraction on IL-free basis is fixed separately at 0.1, 0.2, 0.4, 0.6, 0.8, and approximate 0.98, while the IL mass fraction is varied from 0.1 to 0.8, in an interval of 0.1. The non-random-two-liquid (NRTL) and electrolyte non-random-two-liquid (eNRTL) equations are used to correlate the experimental data with satisfactory results. The ternary VLE behavior is also modeled with the parameters obtained by correlating two data sets, in which the mole fraction of 2-propanol on IL-free basis is approximately 0.1 and 0.98. In this way, the six sets of data are reproduced satisfactorily. With the eNRTL model, the root-mean-square deviation for temperature is 0.82 K and that for vapor-phase mole fraction is 0.0078. The influences of IL on activity coefficients and relative volatility of the volatile components are also graphically illustrated.

  10. Studies on Dechlorination of DDT with Alkaline 2-propanol and Iron-Nickel (Fe-Ni) Catalyst.

    Science.gov (United States)

    Shareef, A.; Zaman, S. U.

    2009-05-01

    The Persistent Organic Pollutants (POPs) pesticides were previously extensively used in the cotton production and other agricultural activities in Pakistan and at least three thousand metric tons of obsolete pesticides have been stored under extreme hazardous conditions in more than thousand sites. Locally banned or severely restricted pesticides are easily available and DDT is continuously illegally imported and use in our country. Elimination of organochlorine pesticides (OCPs) waste has received considerable attention over the past two decades. Existing catalytic hydrodechlorinated techniques for disposing of OCPs are very costly due to the use of noble metals as catalysts. The aim of our study is to develop the cost effective and efficient method for the safe disposal of OCPs. This study is in continuation work on dechlorination of organochlorine pesticides with Fe-Ni catalyst in alkaline 2-propanol media. We turned our attention to the development of DDT disposal method for the third world countries. Herein, we report our first finding that in alkaline 2-propanol with Fe-Ni catalyst is an effective method for dechlorination of DDT. Catalytic dechlorination of DDT was carried out in an alkaline solution of NaOH and 2-propanol in the presence of catalyst at the temperature below 82 oC and end products were analyzed by using Gas Chromatography (GC-ECD) and Ion Chromatography (IC) techniques. Results obtained with initial concentration of DDT ranging between 10-100 μg/ml showed conversion of DDT to chlorine free product within 4 hrs.

  11. The electro-oxidation of the mixture of formaldehyde and 2-propanol on gold (100) and (111) single crystal planes in alkaline medium

    OpenAIRE

    BRANISLAV Z. NIKOLIC; MILKA L. AVRAMOV-IVIC; TANJA R. VIDAKOVIC

    2000-01-01

    The effect of formaldehyde on the oxidation of 2-propanol and vice versa on gold single crystal planes (100 and 111) was studied. An activating effect in the reaction of the simultaneous oxidation of 2-propanol and formaldehyde was obtained on a gold (100) plane. In the case of a gold (111) electrode, the activation effect was not obtained. It was concluded that the adsorption of formaldehyde on the electrode surface prevents the adsorption of poisoning species formed during the electro-oxida...

  12. Extraction Separation of Mercury in NaCl-KI-Propanol System%氯化钠-碘化钾-丙醇体系萃取分离汞

    Institute of Scientific and Technical Information of China (English)

    李全民; 张志洁; 耿新华; 刘奇

    2001-01-01

    Mercury ion separation from another metal ions has been carriedout in phase system consisted of propanol, NaCl and KI. The results showed that propanol could extract the associates formed by mercury with iodide. Hg(Ⅱ) can be separated completely from Fe(Ⅲ), Co(Ⅱ), Mn(Ⅱ), Mo(Ⅵ) and Zn(Ⅱ) in solution system of pH=2.0.

  13. Potassium sorbate reduces production of ethanol and 2 esters in corn silage.

    Science.gov (United States)

    Hafner, Sasha D; Franco, Roberta B; Kung, Limin; Rotz, C Alan; Mitloehner, Frank

    2014-12-01

    The objective of this work was to evaluate the effects of biological and chemical silage additives on the production of volatile organic compounds (VOC; methanol, ethanol, 1-propanol, methyl acetate, and ethyl acetate) within corn silage. Recent work has shown that silage VOC can contribute to poor air quality and reduce feed intake. Silage additives may reduce VOC production in silage by inhibiting the activity of bacteria or yeasts that produce them. We produced corn silage in 18.9-L bucket silos using the following treatments: (1) control (distilled water); (2) Lactobacillus buchneri 40788, with 400,000 cfu/g of wet forage; (3) Lactobacillus plantarum MTD1, with 100,000 cfu/g; (4) a commercial buffered propionic acid-based preservative (68% propionic acid, containing ammonium and sodium propionate and acetic, benzoic, and sorbic acids) at a concentration of 1 g/kg of wet forage (0.1%); (5) a low dose of potassium sorbate at a concentration of 91 mg/kg of wet forage (0.0091%); (6) a high dose of potassium sorbate at a concentration of 1g/kg of wet forage (0.1%); and (7) a mixture of L. plantarum MTD1 (100,000 cfu/g) and a low dose of potassium sorbate (91 mg/kg). Volatile organic compound concentrations within silage were measured after ensiling and sample storage using a headspace gas chromatography method. The high dose of potassium sorbate was the only treatment that inhibited the production of multiple VOC. Compared with the control response, it reduced ethanol by 58%, ethyl acetate by 46%, and methyl acetate by 24%, but did not clearly affect production of methanol or 1-propanol. The effect of this additive on ethanol production was consistent with results from a small number of earlier studies. A low dose of this additive does not appear to be effective. Although it did reduce methanol production by 24%, it increased ethanol production by more than 2-fold and did not reduce the ethyl acetate concentration. All other treatments increased ethanol production

  14. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Donna eGruol

    2014-04-01

    Full Text Available Chronic exposure to ethanol produces a number of detrimental effects on behavior. Neuroadaptive changes in brain structure or function underlie these behavioral changes and may be transient or persistent in nature. Central to the functional changes are alterations in the biology of neuronal and glial cells of the brain. Recent data show that ethanol induces glial cells of the brain to produce elevated levels of neuroimmune factors including CCL2, a key innate immune chemokine. Depending on the conditions of ethanol exposure, the upregulated levels of CCL2 can be transient or persistent and outlast the period of ethanol exposure. Importantly, results indicate that the upregulated levels of CCL2 may lead to CCL2-ethanol interactions that mediate or regulate the effects of ethanol on the brain. Glial cells are in close association with neurons and regulate many neuronal functions. Therefore, effects of ethanol on glial cells may underlie some of the effects of ethanol on neurons. To investigate this possibility, we are studying the effects of chronic ethanol on hippocampal synaptic function in a transgenic mouse model that expresses elevated levels of CCL2 in the brain through enhanced glial expression, a situation know to occur in alcoholics. Both CCL2 and ethanol have been reported to alter synaptic function in the hippocampus. In the current study, we determined if interactions are evident between CCL2 and ethanol at level of hippocampal synaptic proteins. Two ethanol exposure paradigms were used; the first involved ethanol exposure by drinking and the second involved ethanol exposure in a paradigm that combines drinking plus ethanol vapor. The first paradigm does not produce dependence on ethanol, whereas the second paradigm is commonly used to produce ethanol dependence. Results show modest effects of both ethanol exposure paradigms on the level of synaptic proteins in the hippocampus of CCL2 transgenic mice compared with their non

  15. Acceptorless Photocatalytic Dehydrogenation for Alcohol Decarbonylation and Imine Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hung-An; Manna, Kuntal; Sadow, Aaron D.

    2012-07-29

    It has come to light: Renewed interest in conversions of highly oxygenated materials has motivated studies of the organometallic-catalyzed photocatalytic dehydrogenative decarbonylation of primary alcohols into alkanes, CO, and H2 (see scheme). Methanol, ethanol, benzyl alcohol, and cyclohexanemethanol are readily decarbonylated. The photocatalysts are also active for amine dehydrogenation to give N-alkyl aldimines and H2.

  16. Transgenic Mouse Models for Alcohol Metabolism, Toxicity and Cancer

    Science.gov (United States)

    Heit, Claire; Dong, Hongbin; Chen, Ying; Shah, Yatrik M.; Thompson, David C.; Vasiliou, Vasilis

    2015-01-01

    Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remains to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol metabolizing enzymes and GSH synthesizing enzymes and their relevance to alcohol research. PMID:25427919

  17. Alcohol consumption and blood lipids in elderly coronary patients

    NARCIS (Netherlands)

    Jong, de H.J.I.; Goede, de J.; Oude Griep, L.M.; Geleijnse, J.M.

    2008-01-01

    Alcohol may have a beneficial effect on coronary heart disease (CHD) that could be mediated by elevation of high-density lipoprotein cholesterol (HDLC). Data on alcohol consumption and blood lipids in coronary patients are scarce. We studied whether total ethanol intake and consumption of specific t

  18. Determination of microquantities of methanol and ethanol in toluene by gas chromatography

    International Nuclear Information System (INIS)

    A study is made of the detection of methanol and ethanol in toluene by means of gas chromatography, using Porapak Q columns, 1 m long at 189 degree centigree, employing a flame ionization detector, with propanol as an internal standard. The variation od the detector absolute and relative response was found to be linear within the range of concentration studied, that is, from 5 to 1000 ppm. The limit of sensitivity for the detection of ethanol in a column of 2% Ucon, over Chromosorob G deactivated with 0,1% Carbowax 400, was 20 ppm, which was four times higher than the limit of sensitivity of the Porapak Q column. Also in this case, the absolute and relative response of the detector was linear. (Author) 3 refs

  19. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  20. Preparation of promoted platinum catalysts of designed geometry and the role of promoters in the liquid-phase oxidation of 1-methoxy-2-propanol

    Energy Technology Data Exchange (ETDEWEB)

    Mallat, T.; Bodnar, Z.; Baiker, A. (Swiss Federal Institute of Technology, Zuerich (Switzerland)); Greis, O.; Struebig, H. (Technical Univ., Hamburg (Germany)); Reller, A. (Univ. of Hamburg (Germany))

    1993-07-01

    Alumina-supported or unsupported M/Pt-type catalysts were prepared by consecutive reduction of Bi, Pb, Sn, Ru, Au, or Ag modifiers (M) onto Pt particles. Structural and chemical properties of the bimetallics were studied by electron microscopy combined with energy dispersive X-ray analysis and an electrochemical (cyclic voltammetric) polarization method. Preferential deposition of promoter metal submonolayers on Pt was observed at moderate surface coverages ([theta][sub M]<0.5-0.8). Some bulk metal crystallite formation as [open quotes]bridges[close quotes] between small Pt particles covered partially with promoter was also observed on alumina-supported Bi/Pt and Pb/Pt catalysts. Measurement of the electrochemical potential of the catalyst slurry during the oxidation of 1-methoxy-2-propanol to methoxyacetone and the cyclic voltammetric polarization of the bimetallic catalysts revealed that the catalysts are in an oxidized state during reaction. The following order of promoting influence was observed: Bi > Pb [approximately] Sn > Au [approximately] Ru. Two major effects of promoters are suggested: (i) they suppress the initial irreversible adsorption of the reactant alcohol on Pt which results in self-poisoning, and (ii) they form new active centers that adsorb the oxidizing species (OH) better than Pt. A formal rate equation is suggested (r = f [center dot] [theta][sub org] [center dot] [theta][sub OH]) which explains the optimum in promoter/platinum ratio. The different influences of the promoters are explained by their hydrogen and oxygen sorption characteristics and by the surface geometry of the bimetallic catalysts. 51 refs., 12 figs., 1 tab.

  1. Effect of Alcohol Administration on Blood Sugar of Normal and Alcohol Habituated Rates during Acute Cold Exposure

    Directory of Open Access Journals (Sweden)

    K. K. Srivastava

    1968-10-01

    Full Text Available Thermoregulatory failure of alcohol administered fasted rates has been studied under acute cold stress. Twentyfour hour fasted rates developed acute hypoglycemia on being given a single oral dose of ethanol (1.3g/kg body weight during a two hour exposure at -20 degree calcius. Alcohol habituated rates, under similar conditions, more or less maintained their blood sugar concentration.

  2. GAS-LIQUID SOLUBILITIES OF CARBON-MONOXIDE, CARBON-DIOXIDE, HYDROGEN, WATER, 1-ALCOHOLS (1-LESS-THAN-OR-EQUAL-TO-N-LESS-THAN-OR-EQUAL-TO-6), AND N-PARAFFINS (2-LESS-THAN-OR-EQUAL-TO-N-LESS-THAN-OR-EQUAL-TO-6) IN HEXADECANE, OCTACOSANE, 1-HEXADECANOL, PHENANTHRENE, AND TETRAETHYLENE GLYCOL AT PRESSURES UP TO 5.5 MPA AND TEMPERATURES FROM 293 TO 553-K

    NARCIS (Netherlands)

    BREMAN, BB; BEENACKERS, AACM; RIETJENS, EWJ; STEGE, RJH

    1994-01-01

    The gas-liquid solubilities of the solutes carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents tetraethylene glycol, hexadecane, octacosane, 1-hexadecanol, and phenanthrene were measur

  3. C02在醇中溶解度的测定与分子连接性指数的关联%Measurement of the Solubility for CO2 in Alcohols and its Correlation with the Molecular Connectivity Index

    Institute of Scientific and Technical Information of China (English)

    李铁枝; 汤志刚; 胡晖; 郭栋

    2012-01-01

    用恒定溶剂法测定了303.15K下CO2在乙醇、正丙醇、异丙醇、正丁醇、正戊醇、异戊醇、正己醇、正辛醇、乙二醇、1,2-丙二醇中的溶解度.实验表明:随着碳链的增长,吸收CO2的效果越好,CO2在正辛醇中的溶解度最大,CO2在二元醇中的亨利常数显著大于一元醇.利用线性回归方法建立CO2在醇中的亨利常数1gH与分子连接性指数的相关关系模型,模型计算简单易行,对CO2在醇中的亨利常数有良好的估算和预测能力,相关系数R>0.99,计算值和实验值吻合良好.研究表明:用一阶分子连接性指数1x(v)、羟基的个数N、经验参数CoH三个参数可以描述CO2在醇中的溶解特性1gH,且精确度很高.%The solubility of CO2 in ethanol, propanol, isopropanol, butanol, amyl alcohol, isoamyl alcohol, hexanol, octanol, ethylene glycol and 1,2-propanediol were experimentally determined by the constant volume method at 303.15 K. The results show that the solubility of CO2 in above solvents increase with increasing the carbon-chain length in the alcohols, and the solubility of CO2 in octanol is the largest. It was found that the Henry's law constant of CO2 in diolis is significantly greater than that in monohydric alcohol. Using the linear correlation method, the Henry's law constant was correlated with MCI (Molecular Connectivity Index) and the correlated model could predict the Henry's law constant and the solubility of CO2 in alcohols well with the relative coefficient R>0.99. The study also shows that using the first order MCI V combined with the number of hydroxyl N and empirical parameters Coh could satisfactorily predict the solubility of CO2 in alcohols mentioned above with very high accuracy.

  4. Fermentation to ethanol of pentose-containing spent sulfite liquor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Wayman, M.; Parekh, S.K.

    1987-01-01

    Ethanolic fermentation of spent sulfite liquor with ordinary bakers' yeast is incomplete because of this yeast cannot ferment the pentose sugars in the liquor. This results in poor alcohol yields, and a residual effluent problem. By using the yeast Candida shehatae (R) for fermentation of the spent sulfite liquor from a large Canadian alcohol-producing sulfite pulp and paper mill, pentoses as well as hexoses were fermented nearly completely, alcohol yields were raised by 33%, and sugar removal increased by 46%. Inhibitors were removed prior to fermentation by steam stripping. Major benefits were obtained by careful recycling of this yeast, which was shown to be tolerant both of high sugar concentrations and high alcohol concentrations. When sugar concentrations over 250 g/L (glucose:xylose 70:30) were fermented, ethanol became an inhibitor when its concentration reached over 90 g/L. However, when the ethanol was removed by low-temperature vacuum distillation, fermentation continued and resulted in a yield of 0.50 g ethanol/g sugar consumed. Further improvement was achieved by combining enzyme saccharification of sugar oligomers with fermentation. This yeast is able to ferment both hexoses and pentoses simultaneously, efficiently, and rapidly.

  5. Effect of the ethanol concentration in the anode on the direct ethanol fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Belchor, Pablo Martins; Loeser, Neiva; Forte, Maria Madalena de Camargo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Carpenter, Deyse [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil)], Email: rafarstv@hotmail.com

    2010-07-01

    Changes in the climate, sources and development of renewable energy are issues that have gain greater importance, and fuel cells have been investigated as an alternative source to produce energy through electrochemical reactions. Among the fuel cells types the Proton Exchange Membrane (PEMFC), fed with pure hydrogen at the anode and oxygen at the cathode, seen be the more promising ones as an electrolyte for portable, mobile and stationary applications due to its low emissions, low operating temperature, high power density and quick configuration. To avoid inconvenience of storage and transportation of pure hydrogen a PEMFC fed with alcohols has been developed, named Direct Alcohol Fuel Cells (DAFC). One way to increase the performance of DAFC is added water in the alcohol inserted into the anode, because the water keeps the membrane hydrated. In this work, the performance of a DAFC was evaluated by following the loss in the polarization curve and cell power by varying the ethanol/water ratio. The aim of this study was determine the optimal water/ethanol ratio to be feed in a DEFC prototype mounted in the lab. By the results it was possible to point that the best concentration of ethanol aqueous solution for the DEFC tested was around 1 mol.L-1. (author)

  6. Electro-oxidation of ethanol and bioethanol in direct alcohol fuel cells by microparticulated amorphous Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.2}Sn{sub 0.2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, Javier; Pierna, Angel R.; Blanco, Tamara C. [Department of Chemical Engineering and Environment, UPV/EHU, San Sebastian (Spain); Val, Juan J. del [Department of Materials Physics, Faculty of Chemistry, UPV/EHU, San Sebastian (Spain)

    2011-10-15

    This work has focused on the development of metallic amorphous microparticulated alloys of composition Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.2}Sn{sub 0.2}, obtained by mechanical alloying (MA), for use as anodes in direct alcohol fuel cells (DAFCs). The addition of copper modifies the electronic properties of platinum due to its special electronic configuration (3d{sup 10}4s{sup 1}), demonstrating a better performance for ethanol/bioethanol electro-oxidation. Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.4} alloy provides higher current densities than Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Cu{sub 0.2}Sn{sub 0.2} alloy. In spite of tin significantly improving the tolerance to different adsorbed species such as CO, its presence does not improve the electro-oxidation reaction due to limit the distribution of platinum atoms by the ligand effect, avoiding the final oxidation to CO{sub 2}. In both alloys higher current densities were obtained for bioethanol electro-oxidation than ethanol, due mainly to the presence of acetaldehyde, formic acid and another organic compounds (ppb), which may contribute to improvement of catalytic results. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1.

    Science.gov (United States)

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Chatterjee, Suvro; Clemens, Dahn L; Dey, Aparajita

    2011-06-01

    Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis. PMID:21414402

  8. Experimental study of thermodynamic and transport properties of binary mixtures of poly(ethylene glycol) diacrylate and alcohols at different temperatures

    OpenAIRE

    Vuksanović Jelena M.; Radović Ivona R.; Šerbanović Slobodan P.; Kijevčanin Mirjana Lj.

    2015-01-01

    Experimental density r, refractive index nD and viscosity h data of three binary systems of poly(ethylene glycol) diacrylate (PEGDA) + ethanol, + 1-propanol, and + 1-butanol were measured at eight temperatures from (288.15 to 323.15) K, with temperature step of 5 K, and at atmospheric pressure. The experimental data were correlated as a function of PEGDA mole fraction and temperature. Densities and refractive indices of the investigated mixtures could be fi...

  9. Market penetration of ethanol

    International Nuclear Information System (INIS)

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  10. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice

    DEFF Research Database (Denmark)

    Buschard, Karsten; Hansen, Axel Jacob Kornerup; Jensen, Karen;

    2011-01-01

    Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules.......Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules....

  11. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases

    NARCIS (Netherlands)

    Smilda, T; Kamminga, AH; Reinders, P; Baron, W; Vlieg, JETV; Beintema, JJ

    2001-01-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D, simulans is more active on secondary than on primary alcohols, although ethanol is i

  12. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice.

    Science.gov (United States)

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P; Nadav, Tali; Roberto, Marisa; Lasek, Amy W; Roberts, Amanda J

    2016-08-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk -/-) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk -/- mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk -/- mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk -/- mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk -/- mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  13. Biomarker-Based Approaches for Assessing Alcohol Use Disorders

    OpenAIRE

    Onni Niemelä

    2016-01-01

    Although alcohol use disorders rank among the leading public health problems worldwide, hazardous drinking practices and associated morbidity continue to remain underdiagnosed. It is postulated here that a more systematic use of biomarkers improves the detection of the specific role of alcohol abuse behind poor health. Interventions should be initiated by obtaining information on the actual amounts of recent alcohol consumption through questionnaires and measurements of ethanol and its specif...

  14. Going the distance with ethyl alcohol

    International Nuclear Information System (INIS)

    If all had gone according to plan, ethyl alcohol would be in the driver's seat now, cruising down the highway and getting ready to speed into high gear. Instead, this renewable fuel, chemical reagent and solvent is navigating a complex obstacle course, watching warily for sharp turns and mixed signals. Globally, the supply and demand for all grades of ethyl alcohol is awry. Production of industrial-grade material is running at full throttle and prices are going up. Much of the upheaval over ethanol can be traced to the US Environmental Protection Agency and the renewable oxygenate standard (ROS) of the Clean Air Act. Under ROS, 15% of oxygenates used in gasoline sold this year was to be derived from a renewable source. Next month, that percentage was to have been doubled to 30%. Enticed by projections of upwards of 2 billion gal/yr of fermentation alcohol to comply with ROS, producers rushed to expand capacity. But to the producers' dismay, EPA was forced to backpedal on ROS. When representatives of the petroleum industry filed suit and won a stay, EPA rescinded its ROS regulation and ethanol producers were left in the lurch. High prices for corn is also putting the squeeze on inventories of industrial alcohol. Synthetic ethanol production, from ethylene for example, is booming, however. This paper discusses the ethanol market factors

  15. Rsu1 regulates ethanol consumption in Drosophila and humans.

    Science.gov (United States)

    Ojelade, Shamsideen A; Jia, Tianye; Rodan, Aylin R; Chenyang, Tao; Kadrmas, Julie L; Cattrell, Anna; Ruggeri, Barbara; Charoen, Pimphen; Lemaitre, Hervé; Banaschewski, Tobias; Büchel, Christian; Bokde, Arun L W; Carvalho, Fabiana; Conrod, Patricia J; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny A; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lubbe, Steven; Martinot, Jean-Luc; Paus, Tomás; Smolka, Michael N; Spanagel, Rainer; O'Reilly, Paul F; Laitinen, Jaana; Veijola, Juha M; Feng, Jianfeng; Desrivières, Sylvane; Jarvelin, Marjo-Riitta; Schumann, Gunter; Rothenfluh, Adrian

    2015-07-28

    Alcohol abuse is highly prevalent, but little is understood about the molecular causes. Here, we report that Ras suppressor 1 (Rsu1) affects ethanol consumption in flies and humans. Drosophila lacking Rsu1 show reduced sensitivity to ethanol-induced sedation. We show that Rsu1 is required in the adult nervous system for normal sensitivity and that it acts downstream of the integrin cell adhesion molecule and upstream of the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase to regulate the actin cytoskeleton. In an ethanol preference assay, global loss of Rsu1 causes high naïve preference. In contrast, flies lacking Rsu1 only in the mushroom bodies of the brain show normal naïve preference but then fail to acquire ethanol preference like normal flies. Rsu1 is, thus, required in distinct neurons to modulate naïve and acquired ethanol preference. In humans, we find that polymorphisms in RSU1 are associated with brain activation in the ventral striatum during reward anticipation in adolescents and alcohol consumption in both adolescents and adults. Together, these data suggest a conserved role for integrin/Rsu1/Rac1/actin signaling in modulating reward-related phenotypes, including ethanol consumption, across phyla.

  16. Alcohol fuels program technical review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  17. Effect of (+)-limonene and 1-methoxy-2-propanol on Ips typographus response to pheromone blends

    Institute of Scientific and Technical Information of China (English)

    Miroslav Bla(z)enec; Rastislav Jaku(s)

    2009-01-01

    We compared two different strategies to increase the catches of Ips typographus (L.), particularly males, in pheromone-baited traps. The first of these strategies, the barrier approach, used alternating pheromone blends, targeting males and females respectively, in closely-spaced traps forming a barrier around forest stands. The second strategy, the single trap approach, used widely-spaced traps that were all baited with the same lure and intended to trap the highest possible numbers of males without compromising trapping of females. In the blend used for the barrier traps targeting primarily males, with a lower percentage of (4S)-cis-verbenol (cV), the (-)-α-pinene was replaced step wise with (+)-limonene at rates of 0%, 1%, 10%, 35%, 60% and 90%. This replacement had no significant effect on the numbers of responding I. Typographus males, but there was a slight effect on the percentage of males caught. In the attractant blend for the barrier traps targeting females, with a higher percentage of cV, the 2-methyl-3-buten-2-ol (MB) was replaced with 1-methoxy-2-propanol (MP) in a similar fashion as for the male-specific blends. The replacement did not significantly affect the catch of females. Thus, it is possible to use the MP in the blend with cV and ipsdienol without significant change in catch efficacy. In the blends for single traps, the (-)-α-pinene was replaced with (+)-limonene and MB with MP. The replacement of (-)-α-pinene had only a slight effect on the percentage of males, but the results suggest that replacing MB with MP in the blend will not significantly reduce trapping efficacy.

  18. Intraperitoneal Injection of Ethanol Results in Drastic Changes in Bone Metabolism Not Observed When Ethanol is Administered by Oral Gavage

    Science.gov (United States)

    Iwaniec, Urszula T.; Turner, Russell T.

    2013-01-01

    Background Chronic alcohol abuse is associated with increased risk for osteoporosis while light to moderate alcohol intake correlates with reduced osteoporosis risk. Addition of alcohol to a liquid diet is often used to model chronic alcohol abuse. Methods to model intermittent drinking (including bindge drinking and light to moderate consumption) include 1) intragastric administration of alcohol by oral gavage or 2) intraperitoneal (ip) administration of alcohol by injection. However, it is unclear whether the latter two methods produce comparable results. The purpose of this investigation was to determine the skeletal response to alcohol delivered daily by oral gavage or ip injection. Materials and Methods Ethanol or vehicle was administered to 4-month-old female Sprague Dawley rats once daily at 1.2 g/kg body weight for 7 days. Following necropsy, bone formation and bone architecture were evaluated in tibial diaphysis (cortical bone) and proximal tibial metaphysis (cancellous bone) by histomorphometry. mRNA was measured for bone matrix proteins in distal femur metaphysis. Results Administration of alcohol by gavage had no significant effect on body weight gain or bone measurements. In contrast, administration of the same dose of alcohol by ip injection resulted in reduced body weight, total suppression of periosteal bone formation in tibial diaphysis, decreased cancellous bone formation in proximal tibial metaphysis, and decreased mRNA levels for bone matrix proteins in distal femur. Conclusions Our findings raise concerns regarding the use of ip injection of ethanol in rodents as a method for modeling the skeletal effects of intermittent exposure to alcohol in humans. This concern is based on a failure of the ip route to replicate the oral route of alcohol administration. PMID:23550821

  19. Energy Integration by Fuel Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Frosterud, Daniel [Christian Berner AB, Partille (Sweden); Geest, Jan de [GEA Wiegand GmbH, Ettlingen (Germany)

    2006-07-15

    The presentation gives an overview of 3 different concepts for energy integration by fuel ethanol production; for a typical wheat and rye based bio ethanol plant, for the ethanol plants with corn as basic material, and for products on cellulose or sugar basis, such as sugar cane. For the latter, the Ecostill concept is presented, consisting of a combination of a mash evaporator heated by the rectification column.The differences between the rye and the corn based plants is in the temperature tolerance of the stillage, giving different options for energy integration. For the wheat, rye and corn based processes the stillage evaporation is explained, using an MVR driven pre-evaporator and a finisher on drier vapours. The ecostill concept for sugar and celloluse based feedstock is a combination of beer or molasses concentration in combination with ethanol rectification, without any drying of the vinasses. The rectifier supplies the energy for the evaporator. With the 3 vessel ethanol de-hydration system there is always a constant energy stream available which is re-used.Further more operational cost, investment and energy cost figures of a typical up to date 400,000 l/d Bio Ethanol plant on corn are given in the form of pies.These show how important it is the have a low energy consumption and how important it is to generate as much alcohol from the feed material as possible, since 1/2 of the operational cost of a corn based plant is the costs for the feedstock. (Full text of contribution)

  20. Biomarkers of chronic alcohol misuse

    Directory of Open Access Journals (Sweden)

    Gonzalo P

    2014-01-01

    Full Text Available Philippe Gonzalo,1 Sylvie Radenne,2 Sylvie Gonzalo31Laboratoire de Biochimie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France; 2Service d'Hépatologie-Gastroentérologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France; 3Laboratoire Biomnis, Lyon, FranceAbstract: Biological markers of chronic alcoholism can be divided into two groups: direct and indirect markers. Direct markers (mainly blood or serum and urine ethanol, ethylglucuronide, ethyl sulfate, and phosphatidylethanol directly track the intake of alcohol and vary in their sensitivity and kinetics of appearance and clearance. Indirect markers (mean corpuscular volume,γ-glutamyl transferase, alanine aminotransferase and aspartate aminotransferase, and carbohydrate-deficient transferrin are biological parameters that are influenced by a steady and significant alcohol intake. We discuss the values of these tests and the relevance of their prescriptions for the clinical evaluation of heavy drinking. We indicate, when known, the pathophysiological mechanism of their elevations. We also discuss the amount and time of alcohol consumption required to give a positive result and the duration of abstinence required for the return to normal values. The forensic use of these biomarkers will not be considered in this review.Keywords: alcoholism, biomarker, CDT, relapse, alcohol-induced liver disease

  1. Liver proteomics in progressive alcoholic steatosis

    International Nuclear Information System (INIS)

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  2. Liver proteomics in progressive alcoholic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Harshica [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Wiktorowicz, John E.; Soman, Kizhake V. [Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Kaphalia, Bhupendra S.; Khan, M. Firoze [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Shakeel Ansari, G.A., E-mail: sansari@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-02-01

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  3. Neuromuscular disorders in chronic alcohol intoxication

    Directory of Open Access Journals (Sweden)

    A. Yu. Emelyanova

    2015-01-01

    Full Text Available The paper reviews the present-day Russian and foreign literature on neuromuscular disorders in chronic alcohol intoxication. The most common manifestations of alcohol disease include alcoholic polyneuropathy (PNP and alcohol-induced skeletal muscle injury. The clinical polymorphism of alcoholic PNP is discussed. The paper considers a chronic sensory automatic form due to the direct toxic effects of ethanol and its metabolites during long-term alcohol intoxication, as well as acute/subacute sensorimotor neuropathy, the basis for the pathogenesis of which is B group vitamins, predominantly thiamine, deficiency that develops in the presence of drinking bouts concurrent with malnutrition and/or alcohol-related gastrointestinal tract diseases. In addition to nonuse of alcohol and a properly balanced diet, antioxidant therapy with alphalipoic acid and neurotropic B group vitamins is considered to be pathogenetic therapy for neuropathy. The most common and least studied clinicalform of alcohol-induced musculoskeletal injury is chronic alcoholic myopathy (AM, the diagnostic standard for which is morphometricand immunohistochemical examination of a muscle biopsy specimen. The morphological base for this form of myopathy is predominantly type 2 muscle fiber atrophy caused by impaired protein synthesis and a decreased regenerative potential of muscle fiber. The efficacy of antioxidants and leucine-containing amino acid mixtures in the treatment of chronic AM is discussed.

  4. 1-丙醇和2-丙醇真空紫外光电离质谱研究%A Vacu um Ultraviolet Photoionization Mass Spectrometric Study of 1-Propanol and 2-Propanol

    Institute of Scientific and Technical Information of China (English)

    卫立夏; 杨斌; 王晶; 黄超群; 盛六四; 齐飞

    2006-01-01

    The photoionization and dissociative photoionization of 1-propanol and 2-propanols have been studied at the photon energy range of 9.84~11.80 eV. Photoionization efficiency spectra for ions CH3CH2CH2OH+, CH3CH2CHOH+,CH2CH2OH+, CH3CH2CH2+, CH3CH=CH+2, CH2OH+ from 1-propanol, and CH3CH(OH)CH3+, CH3C(OH)CH3+, CH3CHOH+,CH2=CHOH+, CH3CHCH3+, CH3CH=CH2+ from 2-propanol have been measured. In addition, the energetics of the dissociative photoionization has been examined by ab initio Gaussion-3(G3) calculations. The computational results are useful in establishing the dissociation channels near the ionization thresholds. With the help of G3 results, the dissociation channels for formation of the fragment ions CH3CH2CHOH+, CH2CH2OH+, CH3CH2CH2+, CH3CH=CH2+,CH2OH+ from 1-propanol, and CH3C(OH)CH3+, CH3CHOH+, CH2=CHOH+, CH3CHCH3+, CH3CH=CH2+ from 2-propanol have been established. The G3 results are in excellent agreement with the experimental data.%研究了9.84~11.80 eV光子能量范围内1-丙醇和2-丙醇的光电离和离解光电离现象,测量了1-丙醇离解光电离产生的碎片离子CH3CH2CH2OH+、CH3CH2CHOH+、CH2CH2OH+、CH3CH2CH2+、CH3CH=CH2+和CH2OH+及2-丙醇离解光电离产生的碎片离子CH3CH(OH)CH3+、CH3C(OH)CH3+、CH3CHOH+、CH2=CHOH+、CH3CHCH3+和CH3CH=CH2+的光电离效率谱,得到了这些离子的出现势.结合从头算理论计算,给出了1-丙醇的碎片离子CH3CH2CHOH+、CH2CH2OH+、CH3CH2CH2+、CH3CH=CH2+、CH2OH+和2-丙醇的碎片离子CH3C(OH)CH3+、CH3CHOH+、CH2=CHOH+、CH3CHCH+3、CH3CH=CH2+等的解离通道和解离能.理论计算结果与实验结果符合得很好.

  5. Alcohols and bio-alcohols steam and autothermal reforming in a membrane reactor

    OpenAIRE

    Llorca Piqué, Jordi; Hedayati, Ali

    2014-01-01

    Considerable work has been reported concerning catalytic steam reforming, partial oxidation and oxidative steam reforming (autothermal reforming) aimed at hydrogen generation from alcohol-water mixtures. They include methanol, ethanol, glycerol, and the exploitiation of renewable bio-alcohols. The use of catalytic membrane reactors, with simultaneous generation and separation of hydrogen, appears as an attractive approach to optimize downstream separation and to substantially simplify on-site...

  6. Measurement and modeling of high-pressure (vapour + liquid) equilibria of (CO2 + alcohol) binary systems

    International Nuclear Information System (INIS)

    An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at 2 + 1-propanol), (CO2 + 2-methyl-1-propanol), (CO2 + 3-methyl-1-butanol), and (CO2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.

  7. Effects of Alcohol-related Health Education on Alcohol and Drinking Behavior Awareness among Japanese Junior College Students: A Randomized Controlled Trial

    OpenAIRE

    Geshi, Masayo; Hirokawa, Kumi; TANIGUCHI, Toshiyo; Fujii, Yasuhito; Kawakami, Norito

    2007-01-01

    We conducted a randomized controlled trial involving Japanese junior college students aimed at investigating the effects of a single session of alcohol health education concerning the effects of alcohol, alcohol-related health problems, and drinking behavior. Students were randomly assigned to an intervention (n=38) or a control group (n=33). The intervention group attended a 90-minute alcohol health education session that included demonstration of an ethanol patch test, watching videos, and ...

  8. Influência do etanol das bebidas alcoólicas na aterosclerose em artérias carótidas extracranianas The influence of the ethanol in alcoholic beverages in the extracranial carotid arteries atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ibsen Thadeo Damiani

    2004-12-01

    Full Text Available Existem fortes evidências de menor incidência de doença cerebrovascular oclusiva, de aterosclerose coronariana e de outros vasos em indivíduos com consumo leve ou moderado de álcool. Este estudo procura analisar o efeito do etanol, em diferentes doses no comportamento da aterosclerose carotídea extracraniana. Através do ultrassom Doppler colorido, foram investigadas 328 artérias carótidas extracranianas, de homens e mulheres brancos, com mais de 35 anos de idade, normotensos, não tabagistas e sem as principais doenças que constituam fatores de risco para doenças cardiovasculares. Foram divididos de acordo com o consumo de álcool por semana (em mililitros em abstêmios, etilistas leves (1 a 100, moderados (101 a 300 e pesados (301 ou mais. Houve menor incidência de placas de aterosclerose e de estenose naqueles que ingeriram moderada quantidade. CONCLUSÃO: O estudo sugere uma ação protetora do álcool etílico para aterosclerose carotídea, quando ingerido em moderada quantidade.There is less incidence of occlusive cerebrovascular disease, of coronarian atherosclerosis and of other arteries with a light to moderate consumption of alcohol, suggesting that the same may occur with respect with the extracranial carotid arteries. Using color Doppler ultrasonography, we studied 328 extracranial carotid arteries of white male and females over 35 year old, with normal blood pressure, non-smokers and free of the main diseases make up the risk factors for cardiovascular diseases. They were stratified, according to the level of weekly alcohol consumption in milliliters (ml, in abstainers, light drinkers (1 to 100, moderate drinkers (101 to 300 and heavy drinkers (over 301. There was a lower incidence of atherosclerotic plaque and stenosis in the moderate drinkers. CONCLUSION: The study suggests that ethyl alcohol when drunk with moderation exerts a protective action from carotid atherosclerosis.

  9. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

    Science.gov (United States)

    Varodayan, Florence P; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Parsons, Loren H; Roberto, Marisa

    2016-07-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2 ) antagonism. After 2-3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol-exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling.

  10. Effect of Alcohol on Interaction of Model Biological Membrane with Steroids

    Science.gov (United States)

    Pinna, Marco; Mura, Manuela; Famili, Marjan; Zhou, Yuhua; Zvelindovsky, Andrei

    2014-03-01

    The effect of alcohol in the lipid bilayer changes the gel-phase structure of the lipid bilayer. Interactions between the alcohol molecules and the lipid bilayer were investigated using molecular dynamics. Alcohols such as ethanol and methanol are often used in drug delivery application. Ethanol is used to dissolve hydrophobic steroidal drugs such as Beclamethasone dipropionate, Fluticasone propionate and Prednisone. All the systems considered were equilibrated at 310K and ran for 100ns in the presence of dimyristoylphosphatidylcholine (DMPC) lipid bilayer. In addition the simulations were performed to investigate the behaviour of anti-asthma drugs such as Beclamethasone dipropionate in the water environment and 2.5% of ethanol.

  11. Ethanol Metabolism Activates Cell Cycle Checkpoint Kinase, Chk2

    Science.gov (United States)

    Clemens, Dahn L.; Mahan Schneider, Katrina J.; Nuss, Robert F.

    2011-01-01

    Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of these regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM, and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest, and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrate that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C, and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury. PMID:21924579

  12. Quaternary liquid/liquid equilibria of sodium sulfate, sodium sulfite and water with two solvents: Acetone and 2-propanol

    Energy Technology Data Exchange (ETDEWEB)

    Schiozer, A.L.

    1994-03-01

    Aqueous solutions of sodium sulfate and sodium sulfite are produced from sodium carbonate in flue-gas scrubbers; recovery of these salts often requires multi-effect evaporators; however, a new energy-efficient unit operation called extractive crystallization has been shown to have reduced energy costs. In this process, an organic solvent is added to the aqueous salt solution to precipitate salt. Acetone is a suitable solvent for this process, better than 2-propanol. Liquid/liquid/solid equilibria for ternary systems containing a salt, water, and an organic solvent were measured. Systems investigated were sodium sulfite/water/acetone and sodium sulfite/water/2-propanol. Experiments were conducted at salt saturation covering a temperature range between the lower consolute temperature and 48.6{degrees}C. In the attempt to improve the extractive crystallization process for recovery of sodium sulfate from flue-gas scrubbers, attention was given to a feed containing a mixture of sodium sulfite and sodium sulfate. Liquid-liquid equilibria for quaternary systems containing two salts, water, and an organic solvent were experimentally determined at 35{degrees}C. The systems investigated were sodium sulfate/sodium sulfite/water/acetone and sodium sulfate/sodium sulfite/water/2propanol. The systems were studied at three salt ratios. For each salt ratio, experiments were conducted starting at saturation, water was then added until the one-phase region was reached. Mixtures of the two salts proved to have a small disadvantage relative to the 100 % sulfate feed process. Therefore, a sulfate-based extractive crystallization process is recommended.

  13. Acute but not chronic ethanol exposure impairs retinol oxidation in the small and large intestine of the rat

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Ellendt, K.; Lindros, K.;

    2005-01-01

    BACKGROUND AND AIM: Ethanol has been shown to inhibit retinol oxidation at the level of alcohol dehydrogenase in liver and colon but not previously in the small intestine. In the present study we investigated how chronic alcohol feeding and acute ethanol exposure affects retinol dehydrogenase...... activity in the colon and small intestine of the rat. METHODS: Rats were fed ethanol in a liquid diet for six weeks. Control rats received a similar diet but with ethanol isocalorically replaced by carbohydrates. Retinol dehydrogenase was analyzed from cell cytosol samples from the small and the large...... higher, respectively). While chronic alcohol feeding did not affect these parameters, acute ethanol exposure reduced V(max) and V(max)/K(m) dose-dependently (p retinol...

  14. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.

    Science.gov (United States)

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G

    2016-02-01

    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.

  15. The Role of Fluorinated Alcohols as Mobile Phase Modifiers for LC-MS Analysis of Oligonucleotides

    Science.gov (United States)

    Basiri, Babak; van Hattum, Hilde; van Dongen, William D.; Murph, Mandi M.; Bartlett, Michael G.

    2016-09-01

    Hexafluoroisopropanol (HFIP) has been widely used as an acidic modifier for mobile phases for liquid chromatography-mass spectrometry (LC-MS) analysis of oligonucleotides ever since the first report of its use for this purpose. This is not surprising, considering the exceptional performance of HFIP compared with carboxylic acids, which cause significant MS signal suppression in electrospray ionization. However, we have found that other fluorinated alcohols can also be utilized for mobile phase preparation and the choice of optimal fluorinated alcohol is determined by the ion-pairing (IP) agent. Although HFIP is a very good choice to be used alongside less hydrophobic IP agents, other fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (HFMIP) can significantly outperform HFIP when used with more hydrophobic IP agents. We also found that more acidic fluorinated alcohols assist with the transfer of oligonucleotides with secondary structure (e.g., folded strands and hairpins) into the gas phase.

  16. Effect of Beverage Containing Fermented Akebia quinata Extracts on Alcoholic Hangover.

    Science.gov (United States)

    Jung, Suhan; Lee, Sang Hoon; Song, Young Sun; Lee, Seo Yeon; Kim, So Young; Ko, Kwang Suk

    2016-03-01

    The present study was conducted to investigate the effects of beverages containing fermented Akebia quinata extracts on alcoholic hangover. For this study, 25 healthy young men were recruited. All participants consumed 100 mL of water (placebo), commercial hangover beverage A or B, fermented A. quinata leaf (AQL) or fruit (AQF) extract before alcohol consumption. After 1 h, all participants consumed a bottle of Soju, Korean distilled liquor (360 mL), containing 20% alcohol. Blood was collected at 0 h, 1 h, 3 h, and 5 h after alcohol consumption. The plasma alanine transaminase (ALT) activity was highest in the placebo group. Compared with the control group, the AQL and AQF groups showed decreased ALT activity at 5 h after alcohol consumption. Plasma ethanol concentration was increased after alcohol intake and peaked at 3 h after alcohol consumption. Compared with the control group, the A group showed a higher plasma ethanol concentration at 1 h (Palcohol consumption, the AQF group showed the lowest mean plasma ethanol concentration compared to the other groups; however, there were no statistical differences. After 5 h of alcohol consumption, the AQL and AQF groups showed lower plasma ethanol concentrations compared with the B group. The sensory evaluation score for the fermented A. quinata fruit extract was lower than for the commercial hangover beverages. In conclusion, the present intervention study results suggest that fermented A. quinata extracts alleviate alcoholic hangover and reduce plasma ethanol concentrations. PMID:27069900

  17. Alcohol Energy Drinks

    Science.gov (United States)

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 17728 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  18. Alcohol during Pregnancy

    Science.gov (United States)

    ... Home > Pregnancy > Is it safe? > Alcohol during pregnancy Alcohol during pregnancy E-mail to a friend Please ... and fetal alcohol spectrum disorders. How does drinking alcohol during pregnancy affect your baby's health? Drinking alcohol ...

  19. Alcohol and pregnancy

    Science.gov (United States)

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... lead to lifelong damage. DANGERS OF ALCOHOL DURING PREGNANCY Drinking a lot of alcohol during pregnancy can ...

  20. Alcohol-Seeking Triggered by Discrete Pavlovian Cues is Invigorated by Alcohol Contexts and Mediated by Glutamate Signaling in the Basolateral Amygdala.

    Science.gov (United States)

    Sciascia, Joanna M; Reese, Rebecca M; Janak, Patricia H; Chaudhri, Nadia

    2015-11-01

    The environmental context in which a discrete Pavlovian conditioned stimulus (CS) is experienced can profoundly impact conditioned responding elicited by the CS. We hypothesized that alcohol-seeking behavior elicited by a discrete CS that predicted alcohol would be influenced by context and require glutamate signaling in the basolateral amygdala (BLA). Male, Long-Evans rats were allowed to drink 15% ethanol (v/v) until consumption stabilized. Next, rats received Pavlovian conditioning sessions in which a 10 s CS (15 trials/session) was paired with ethanol (0.2 ml/CS). Entries into a port where ethanol was delivered were measured. Pavlovian conditioning occurred in a specific context (alcohol context) and was alternated with sessions in a different context (non-alcohol context) where neither the CS nor ethanol was presented. At test, the CS was presented without ethanol in the alcohol context or the non-alcohol context, following a bilateral microinfusion (0.3 μl/hemisphere) of saline or the AMPA glutamate receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) in the BLA (0, 0.3, or 1.0 μg/0.3 μl). The effect of NBQX (0, 0.3 μg/0.3 μl) in the caudate putamen (CPu) on CS responding in the non-alcohol context was also tested. The discrete alcohol CS triggered more alcohol-seeking behavior in the alcohol context than the non-alcohol context. NBQX in the BLA reduced CS responding in both contexts but had no effect in the CPu. These data indicate that AMPA glutamate receptors in the BLA are critical for alcohol-seeking elicited by a discrete CS and that behavior triggered by the CS is strongly invigorated by an alcohol context.