WorldWideScience

Sample records for alcohol dehydrogenase adh

  1. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  2. Determining the roles of the three alcohol dehydrogenases (AdhA, AdhB and AdhE) in Thermoanaerobacter ethanolicus during ethanol formation.

    Zhou, Jilai; Shao, Xiongjun; Olson, Daniel G; Murphy, Sean Jean-Loup; Tian, Liang; Lynd, Lee R

    2017-05-01

    Thermoanaerobacter ethanolicus is a promising candidate for biofuel production due to the broad range of substrates it can utilize and its high ethanol yield compared to other thermophilic bacteria, such as Clostridium thermocellum. Three alcohol dehydrogenases, AdhA, AdhB and AdhE, play key roles in ethanol formation. To study their physiological roles during ethanol formation, we deleted them separately and in combination. Previously, it has been thought that both AdhB and AdhE were bifunctional alcohol dehydrogenases. Here we show that AdhE has primarily acetyl-CoA reduction activity (ALDH) and almost no acetaldehyde reduction (ADH) activity, whereas AdhB has no ALDH activity and but high ADH activity. We found that AdhA and AdhB have similar patterns of activity. Interestingly, although deletion of both adhA and adhB reduced ethanol production, a single deletion of either one actually increased ethanol yields by 60-70%.

  3. Isolation of protease-free alcohol dehydrogenase (ADH) from Drosophila simulans and several homozygous and heterozygous Drosophila melanogaster variants

    Smilda, T; Lamme, DA; Collu, G; Jekel, PA; Reinders, P; Beintema, JJ

    The enzyme alcohol dehydrogenase (ADH) from several naturally occurring ADH variants of Drosophila melanogaster and Drosophila simulans Lc,as isolated. Affinity chromatography with the ligand Cibacron Blue and elution with NAD(+) showed similar behavior for D. melanogaster ADH-FF, ADH-71k, and D.

  4. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol

    Liu, Xiang; Bastian, Sabine; Snow, Christopher D.; Brustad, Eric M.; Saleski, Tatyana E.; Xu, Jian-He; Meinhold, Peter; Arnold, Frances H.

    2013-01-01

    We have determined the X-ray crystal structures of the NADH-dependent alcohol dehydrogenase LlAdhA from Lactococcus lactis and its laboratory-evolved variant LlAdhA(RE1) at 1.9Å and 2.5Å resolution, respectively. LlAdhA(RE1), which contains three

  5. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam

    2016-01-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we...... developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter...... TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions...

  6. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs

    Shuen Hon

    2016-12-01

    Full Text Available Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results. Keywords: Clostridium Thermocellum, Plasmid, adhE, Structural stability, Gene expression

  7. Inactivation of alcohol dehydrogenase (ADH) by ferryl derivatives of human hemoglobin.

    Kowalczyk, Aleksandra; Puchała, Mieczysław; Wesołowska, Katarzyna; Serafin, Eligiusz

    2007-01-01

    In this paper, inactivation of alcohol dehydrogenase (ADH) by products of reactions of H2O2 with metHb has been studied. Inactivation of the enzyme was studied in two systems corresponding to two kinetic stages of the reaction. In the first system H2O2 was added to the mixture of metHb and ADH [the (metHb+ADH)+H2O2] system (ADH was present in the system since the moment of addition of H2O2 i. e. since the very beginning of the reaction of metHb with H2O2). In the second system ADH was added to the system 5 min after the initiation of the reaction of H2O2 with metHb [the (metHb+H2O2)5 min+ADH] system. In the first case all the products of reaction of H2O2 with metHb (non-peroxyl and peroxyl radicals and non-radical products, viz. hydroperoxides and *HbFe(IV)=O) could react with the enzyme causing its inactivation. In the second system, enzyme reacted almost exclusively with non-radical products (though a small contribution of reactions with peroxyl radicals cannot be excluded). ADH inactivation was observed in both system. Hydrogen peroxide alone did not inactivate ADH at the concentrations employed evidencing that enzyme inactivation was due exclusively to products of reaction of H2O2 with metHb. The rate and extent of ADH inactivation were much higher in the first than in the second system. The dependence of ADH activity on the time of incubation with ferryl derivatives of Hb can be described by a sum of three exponentials in the first system and two exponentials in the second system. Reactions of appropriate forms of the ferryl derivatives of hemoglobin have been tentatively ascribed to these exponentials. The extent of the enzyme inactivation in the second system was dependent on the proton concentration, being at the highest at pH 7.4 and negligible at pH 6.0. The reaction of H2O2 with metHb resulted in the formation of cross-links of Hb subunits (dimers and trimers). The amount of the dimers formed was much lower in the first system i. e. when the radical

  8. Engineering substrate promiscuity in halophilic alcohol dehydrogenase (HvADH2 by in silico design.

    Jennifer Cassidy

    Full Text Available An alcohol dehydrogenase from the halophilic archaeon Haloferax volcanii (HvADH2 has been engineered by rational design to broaden its substrate scope towards the conversion of a range of aromatic substrates, including flurbiprofenol, that is an intermediate of the non-steroidal anti-inflammatory drug, flurbiprofen. Wild-type HvADH2 showed minimal activity with flurbiprofenol (11.1 mU/mg. A homology model of HvADH2 was built and docking experiments with this substrate revealed that the biphenyl rings of flurbiprofenol formed strong interactions with residues F85 and F108, preventing its optimal binding in the active site. Mutations at position 85 however did not increase activity. Site directed mutagenesis at position F108 allowed the identification of three variants showing a significant (up to 2.3-fold enhancement of activity towards flurbiprofenol, when compared to wild-type HvADH2. Interestingly, F108G variant did not show the classic inhibition in the presence of (R-enantiomer when tested with rac-1-phenylethanol, underling its potential in racemic resolution of secondary alcohols.

  9. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs).

    Hon, Shuen; Lanahan, Anthony A; Tian, Liang; Giannone, Richard J; Hettich, Robert L; Olson, Daniel G; Lynd, Lee R

    2016-12-01

    Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE . To explore the effects of overexpressing wild-type, mutant, and exogenous adhE s, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum . As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.

  10. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol

    Liu, Xiang

    2013-03-01

    We have determined the X-ray crystal structures of the NADH-dependent alcohol dehydrogenase LlAdhA from Lactococcus lactis and its laboratory-evolved variant LlAdhA(RE1) at 1.9Å and 2.5Å resolution, respectively. LlAdhA(RE1), which contains three amino acid mutations (Y50F, I212T, and L264V), was engineered to increase the microbial production of isobutanol (2-methylpropan-1-ol) from isobutyraldehyde (2-methylpropanal). Structural comparison of LlAdhA and LlAdhA(RE1) indicates that the enhanced activity on isobutyraldehyde stems from increases in the protein\\'s active site size, hydrophobicity, and substrate access. Further structure-guided mutagenesis generated a quadruple mutant (Y50F/N110S/I212T/L264V), whose KM for isobutyraldehyde is ∼17-fold lower and catalytic efficiency (kcat/KM) is ∼160-fold higher than wild-type LlAdhA. Combining detailed structural information and directed evolution, we have achieved significant improvements in non-native alcohol dehydrogenase activity that will facilitate the production of next-generation fuels such as isobutanol from renewable resources.

  11. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  12. Effect of alcohol dehydrogenase 1C (ADH1C genotype on vitamin A restriction and marbling in Korean native steers

    Dong Qiao Peng

    2017-08-01

    Full Text Available Objective This work was to find the correlation of alcohol dehydrogenase 1C (ADH1C genotype with vitamin A reduction and carcass traits during the vitamin A restriction period. Methods In study 1, 60 Korean native steers were fed a diet (890 IU/kg with 8,000 IU and 0 IU of supplemental premix vitamin A/kg of dry matter (DM for control and treatment group, respectively. The levels of serum vitamin A were analyzed through high preparative performance liquid chromatography, and the ADH1C genotype was analyzed based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP; 78.1% TT type, 21.9% TC type; however, CC type was not found. Then, the interaction between ADH1C and carcass traits on the vitamin A restriction was investigated in study 2. A total of 136 Korean native steers were fed a diet that included 930 IU/kg vitamin A of DM. Results Serum vitamin A in treatment was reduced to 112.4 IU/dL in steers with TT type of ADH1C, while for steers with TC type the concentration of serum vitamin A was dropped to 79.5 IU/dL (p<0.1 in study 1. This showed that TC type had the potential to lower serum vitamin A concentration during vitamin A restriction compared to TT type. In study 2 we found that eye muscle area, marbling and carcass weight in Korean native steers with TC type were higher than in steers with TT type (p<0.05. Conclusion The interaction between vitamin A restriction and TC type of ADH1C gene could have the potential of increasing the marbling in Korean native steers. These results indicated that steers with TC type of the ADH1C gene were more sensitive to the change of serum vitamin A than TT types. Furthermore, this finding has the potential to enable a higher marbling score under the condition of vitamin A restriction in Korean native steers.

  13. Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis.

    Shi, Haitao; Liu, Wen; Yao, Yue; Wei, Yunxie; Chan, Zhulong

    2017-09-01

    Although the transcriptional regulation and upstream transcription factors of AtADH1 in response to abiotic stress are widely revealed, the in vivo roles of AtADH1 remain unknown. In this study, we found that the expression of AtADH1 was largely induced after salt, drought, cold and pathogen infection. Further studies found that AtADH1 overexpressing plants were more sensitive to abscisic acid (ABA) in comparison to wide type (WT), while AtADH1 knockout mutants showed no significant difference compared with WT in ABA sensitivity. Consistently, AtADH1 overexpressing plants showed improved stress resistance to salt, drought, cold and pathogen infection than WT, but the AtADH1 knockout mutants had no significant difference in abiotic and biotic stress resistance. Moreover, overexpression of AtADH1 expression increased the transcript levels of multiple stress-related genes, accumulation of soluble sugars and callose depositions. All these results indicate that AtADH1 confers enhanced resistance to both abiotic and biotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 whi...

  15. A New View of Alcohol Metabolism and Alcoholism—Role of the High-Km Class Ⅲ Alcohol Dehydrogenase (ADH3

    Youkichi Ohno

    2010-03-01

    Full Text Available The conventional view is that alcohol metabolism is carried out by ADH1 (Class I in the liver. However, it has been suggested that another pathway plays an important role in alcohol metabolism, especially when the level of blood ethanol is high or when drinking is chronic. Over the past three decades, vigorous attempts to identify the enzyme responsible for the non-ADH1 pathway have focused on the microsomal ethanol oxidizing system (MEOS and catalase, but have failed to clarify their roles in systemic alcohol metabolism. Recently, using ADH3-null mutant mice, we demonstrated that ADH3 (Class III, which has a high Km and is a ubiquitous enzyme of ancient origin, contributes to systemic alcohol metabolism in a dose-dependent manner, thereby diminishing acute alcohol intoxication. Although the activity of ADH3 toward ethanol is usually low in vitro due to its very high Km, the catalytic efficiency (kcat/Km is markedly enhanced when the solution hydrophobicity of the reaction medium increases. Activation of ADH3 by increasing hydrophobicity should also occur in liver cells; a cytoplasmic solution of mouse liver cells was shown to be much more hydrophobic than a buffer solution when using Nile red as a hydrophobicity probe. When various doses of ethanol are administered to mice, liver ADH3 activity is dynamically regulated through induction or kinetic activation, while ADH1 activity is markedly lower at high doses (3–5 g/kg. These data suggest that ADH3 plays a dynamic role in alcohol metabolism, either collaborating with ADH1 or compensating for the reduced role of ADH1. A complex two-ADH model that ascribes total liver ADH activity to both ADH1 and ADH3 explains the dose-dependent changes in the pharmacokinetic parameters (b, CLT, AUC of blood ethanol very well, suggesting that alcohol metabolism in mice is primarily governed by these two ADHs. In patients with alcoholic liver disease, liver ADH3 activity increases, while ADH1 activity decreases

  16. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol degrad...

  17. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh....... Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel...

  18. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice

    Takagi, T.; Alderman, J.; Lieber, C.S.

    1985-01-01

    The relative importance of ADH and MEOS for ethanol oxidation in the liver has yet to be elucidated. The discovery of a strain of deermice genetically lacking ADH (ADH-) which can consume ethanol at greater than 50% of the rates seen in deermice having ADH (ADH+) suggested a significant role for non-ADH pathways in vivo. To quantitate contributions of the various pathways, the authors examined first the ethanol oxidation rates with or without 4-methylpyrazole in isolated deermice hepatocytes. 4-Methylpyrazole significantly reduced the ethanol oxidation in both ADH+ and ADH- hepatocytes. The reduction seen in ADH- cells can be applied to correct for the effect of 4-methylpyrazole on non-ADH pathways of ADH+ deermouse hepatocytes. After correction, non-ADH pathways were found to contribute 28% of ethanol metabolism at 10 mM and 52% at 50 mM. When using a different approach namely measurement of the isotope effect, MEOS was calculated to account for 35% at low and about 70% at high blood ethanol concentrations. Thus, they found that two different complementary approaches yielded similar results, namely that non-ADH pathways play a significant role in ethanol oxidation even in the presence of ADH

  19. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    Short, Duncan M.; Lyon, Robert; Watson, David G.; Barski, Oleg A.; McGarvie, Gail; Ellis, Elizabeth M.

    2006-01-01

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V max of 2141 ± 500 nmol/min/mg and a K m of 11 ± 4 μM. This enzyme was inhibited by pyrazole with a K I of 3.1 ± 0.57 μM. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V max of 115 nmol/min/mg and a K m of 15 ± 2 μM and was not inhibited by pyrazole

  20. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  1. Combined Effect of ADH1B RS1229984, RS2066702 and ADH1C RS1693482/ RS698 Alleles on Alcoholism and Chronic Liver Diseases

    Réka Tóth

    2011-01-01

    Full Text Available The aim of this study was to analyze the combined effect of the most frequent alcohol dehydrogenase polymorphisms (Arg48His and Arg370Cys in ADH1B, Arg272Gln and Ile350Val in ADH1C on the alcohol use habits, alcohol dependence and chronic liver diseases in Hungary.

  2. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  3. Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker.

    Chien, Po-Jen; Suzuki, Takuma; Tsujii, Masato; Ye, Ming; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2017-05-15

    Exhaled breath analysis has attracted lots of researchers attention in the past decades due to its advantages such as its non-invasive property and the possibility of continuous monitoring. In addition, several volatile organic compounds in breath have been identified as biomarkers for some diseases. Particularly, studies have pointed out that concentration of isopropanol (IPA) in exhaled air might relate with certain illnesses such as liver disease, chronic obstructive pulmonary (COPD), and lung cancer. In this study, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for the breath IPA concentration determination was constructed and optimized. This bio-sniffer measures the concentration of IPA according to the fluorescence intensity of oxidized nicotinamide adenine dinucleotide (NADH), which was produced by an enzymatic reaction of secondary alcohol dehydrogenase (S-ADH). The NADH detection system employed an UV-LED as the excitation light, and a highly sensitive photomultiplier tube (PMT) as a fluorescence intensity detector. A gas-sensing region was developed using an optical fiber probe equipped with a flow-cell and enzyme immobilized membrane, and connected to the NADH measurement system. The calibration range of the IPA bio-sniffer was confirmed from 1ppb to 9060ppb that was comparable to other IPA analysis methods. The results of the analysis of breath IPA concentration in healthy subjects using the bio-sniffer showed a mean concentration of 16.0ppb, which was similar to other studies. These results have demonstrated that this highly sensitive and selective bio-sniffer could be used to measure the IPA in exhaled air, and it is expected to apply for breath IPA research and investigation of biomarkers for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Polymorphism of alcohol metabolizing gene ADH3 predisposes to development of alcoholic pancreatitis in North Indian population

    Divya eSingh

    2015-12-01

    Full Text Available Background and aim- Genetic factors regulating alcohol metabolism could predispose in developing alcoholic pancreatitis (ACP. Studies revealed that alcohol could be metabolized by both ways, oxidative and non-oxidative. The main oxidative pathway includes alcohol dehydrogenase (ADH, aldehyde dehydrogenase (ALDH and cytochrome P450 enzyme. We investigated whether polymorphism in these alcohol metabolizing enzyme genes could be associated with alcoholic pancreatitis and is the purpose of our study. Method- Patients with alcoholic pancreatitis (ACP (n=72, tropical calcific pancreatitis (TCP (n=75, alcoholic controls (AC (n=40 and healthy controls (HC (n=100 were included in the study. Blood samples were collected from the subjects in EDTA coated vials. DNA was extracted and genotyping for ADH3, ALDH2 and CYP2E1 was done by PCR-RFLP (polymerase chain reaction- restriction fragment length polymorphism. The products were analyzed by gel electrophoresis. Result- The frequency distribution of ADH3*1/*1 genotype was significantly higher in ACP group (59.7% compared with TCP (38.7%, HC (42% and AC (37.5% and was found to be associated with increased risk of alcoholic pancreatitis. There was no statistically significant difference between the frequency distribution of ADH3*1/*1, ADH3*1/*2 and ADH3*2/*2 genotype between TCP and HC and healthy alcoholics. ALDH2 gene was monomorphic in our population, and the frequencies for CYP2E1 intron 6 Dra I polymorphism were comparable in all four groups. Conclusion- This study shows that carriers of ADH3*1/*1 individuals consuming alcohol are at higher risk for alcoholic pancreatitis than those with other genotypes such as ADH3*1/*2 and ADH3*2/*2.

  5. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  6. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently

  7. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    Nils Klüver

    Full Text Available Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L. Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1 during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos. Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L. Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes

  8. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.: Bioinformatic Analysis and Expression Patterns

    Yazhong eJin

    2016-05-01

    Full Text Available Alcohol dehydrogenases (ADH, encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH, designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into 3 groups respectively, namely long-, medium- and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into 6 medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed.

  9. ADH1B and ADH1C Genotype, Alcohol Consumption and Biomarkers of Liver Function

    Lawlor, Debbie A; Benn, Marianne; Zuccolo, Luisa

    2014-01-01

    BACKGROUND: The effect of alcohol consumption on liver function is difficult to determine because of reporting bias and potential residual confounding. Our aim was to determine this effect using genetic variants to proxy for the unbiased effect of alcohol. METHODS: We used variants in ADH1B and A...

  10. Membrane-bound alcohol dehydrogenase is essential for glyceric acid production in Acetobacter tropicalis.

    Habe, Hiroshi; Sato, Shun; Fukuoka, Tokuma; Kitamoto, Dai; Yakushi, Toshiharu; Matsushita, Kazunobu; Sakaki, Keiji

    2011-01-01

    Acetobacter tropicalis NBRC16470 can produce highly enantiomerically pure D-glyceric acid (D-GA; >99 % enantiomeric excess) from glycerol. To investigate whether membrane-bound alcohol dehydrogenase (mADH) is involved in GA production in A. tropicalis, we amplified part of the gene encoding mADH subunit I (adhA) using polymerase chain reaction and constructed an adhA-disrupted mutant of A. tropicalis (ΔadhA). Because ΔadhA did not produce GA, we confirmed that mADH is essential for the conversion of glycerol to GA. We also cloned and sequenced the entire region corresponding to adhA and adhB, which encodes mADH subunit II. The sequences showed high identities (84-86 %) with the equivalent mADH subunits from other Acetobacter spp.

  11. Coupled reactions by coupled enzymes : alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions

    Aalbers, Friso S; Fraaije, Marco W

    2017-01-01

    The combination of redox enzymes for redox-neutral cascade reactions has received increasing appreciation. An example is the combination of an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO). The ADH can use NADP(+) to oxidize cyclohexanol to form cyclohexanone and NADPH. Both

  12. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  13. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati...

  14. Combined effect of ADH1B RS1229984, RS2066702 and ADH1C RS1693482/ RS698 alleles on alcoholism and chronic liver diseases.

    Tóth, Réka; Fiatal, Szilvia; Petrovski, Beáta; McKee, Martin; Adány, Róza

    2011-01-01

    The aim of this study was to analyze the combined effect of the most frequent alcohol dehydrogenase polymorphisms (Arg48His and Arg370Cys in ADH1B, Arg272Gln and Ile350Val in ADH1C) on the alcohol use habits, alcohol dependence and chronic liver diseases in Hungary. The study included men, aged 45-64 years. Altogether, 241 cases with chronic liver disease (CLD) and 666 randomly selected controls without CLD were analysed for all four polymorphisms. Associations between the polymorphisms, individually, and in combination, and excessive and problem drinking and CLD, were assessed using logistic regression. In this study we have identified a novel mutation, called ADH1B Arg370His. The ADH1C Arg272Gln and Ile350Val showed almost complete linkage. The 272Gln/35Val allele increased the risk of excessive and problem drinking in homozygous form (OR=1.582, p=0.035, CI=1.034-2.421, OR=1.780, p=0.016, CI=1.113-2.848, respectively). The joint analysis showed that when combined with the wild type ADH1C Arg272/Ile350 allele, the ADH1B 48His is protective against CLD (OR=0.368, p=0.019, CI=0.159-0.851). The results obtained in the study help not only to clarify the effects of different ADH SNPs but to better understand how these polymorphisms modify each other's effects in the development of alcoholism and related diseases.

  15. The Alcohol Dehydrogenase Isoenzyme as a Potential Marker of Pancreatitis.

    Jelski, Wojciech; Piechota, Joanna; Orywal, Karolina; Szmitkowski, Maciej

    2018-05-01

    Human pancreas parenchyma contains various alcohol dehydrogenase (ADH) isoenzymes and also possesses aldehyde dehydrogenase (ALDH) activity. The altered activities of ADH and ALDH in damaged pancreatic tissue in the course of pancreatitis are reflected in the human serum. The aim of this study was to investigate a potential role of ADH and ALDH as markers for acute (AP) and chronic pancreatitis (CP). Serum samples were collected for routine biochemical investigations from 75 patients suffering from acute pancreatitis and 70 patients with chronic pancreatitis. Fluorometric methods were used to measure the activity of class I and II ADH and ALDH activity. The total ADH activity and activity of class III and IV isoenzymes were measured by a photometric method. There was a significant increase in the activity of ADH III isoenzyme (15.06 mU/l and 14.62 mU/l vs. 11.82 mU/l; ppancreatitis or chronic pancreatitis compared to the control. The diagnostic sensitivity for ADH III was about 84%, specificity was 92 %, positive and negative predictive values were 93% and 87% respectively in acute pancreatitis. Area under the Receiver Operating Curve (ROC) curve for ADH III in AP and CP was 0.88 and 0.86 respectively. ADH III has a potential role as a marker of acute and chronic pancreatitis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  17. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  18. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for

  19. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisia...

  20. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria.

    Radianingtyas, Helia; Wright, Phillip C

    2003-12-01

    Many studies have been undertaken to characterise alcohol dehydrogenases (ADHs) from thermophiles and hyperthermophiles, mainly to better understand their activities and thermostability. To date, there are 20 thermophilic archaeal and 17 thermophilic bacterial strains known to have ADHs or similar enzymes, including the hypothetical proteins. Some of these thermophiles are found to have multiple ADHs, sometimes of different types. A rigid delineation of amino acid sequences amongst currently elucidated thermophilic ADHs and similar proteins is phylogenetically apparent. All are NAD(P)-dependent, with one exception that utilises the cofactor F(420) instead. Within the NAD(P)-dependent group, the thermophilic ADHs are orderly clustered as zinc-dependent ADHs, short-chain ADHs, and iron-containing/activated ADHs. Distance matrix calculations reveal that thermophilic ADHs within one type are homologous, with those derived from a single genus often showing high similarities. Elucidation of the enzyme activity and stability, coupled with structure analysis, provides excellent information to explain the relationship between them, and thermophilic ADHs diversity.

  1. Immobilization of alcohol dehydrogenase on ceramic silicon carbide membranes for enzymatic CH3 OH production

    Zeuner, Birgitte; Ma, Nicolaj; Berendt, Kasper

    2018-01-01

    BACKGROUND Alcohol dehydrogenase (ADH; EC 1.1.1.1) catalyzes oxidation of CH3OH to CHOH during NAD+ reduction to NADH. ADH can also accelerate the reverse reaction, which is studied as part of cascadic enzymatic conversion of CO2 to CH3OH. In the present study, immobilization of ADH onto macropor......BACKGROUND Alcohol dehydrogenase (ADH; EC 1.1.1.1) catalyzes oxidation of CH3OH to CHOH during NAD+ reduction to NADH. ADH can also accelerate the reverse reaction, which is studied as part of cascadic enzymatic conversion of CO2 to CH3OH. In the present study, immobilization of ADH onto......‐of‐concept for the use of NaOH‐treated SiC membranes for covalent enzyme immobilization and biocatalytic efficiency improvement of ADH during multiple reaction cycles. These data have implications for the development of robust extended enzymatic reactions....

  2. Investigation of structure and function of mitochondrial alcohol dehydrogenase isozyme III from Komagataella phaffii GS115.

    Zhang, Huaidong; Li, Qin; Wang, Lina; Chen, Yan

    2018-05-01

    Alcohol dehydrogenases (ADHs) catalyze the reversible oxidation of alcohol using NAD + or NADP + as cofactor. Three ADH homologues have been identified in Komagataella phaffii GS115 (also named Pichia pastoris GS115), ADH1, ADH2 and ADH3, among which adh3 is the only gene responsible for consumption of ethanol in Komagataella phaffii GS115. However, the relationship between structure and function of mitochondrial alcohol dehydrogenase isozyme III from Komagataella phaffii GS115 (KpADH3) is still not clear yet. KpADH3 was purified, identified and characterized by multiple biophysical techniques (Nano LC-MS/MS, Enzymatic activity assay, X-ray crystallography). The crystal structure of KpADH3, which was the first ADH structure from Komagataella phaffii GS115, was solved at 1.745 Å resolution. Structural analysis indicated that KpADH3 was the sole dimeric ADH structure with face-to-face orientation quaternary structure from yeast. The major structural different conformations located on residues 100-114 (the structural zinc binding loop) and residues 337-344 (the loop between α12 and β15 which covered the catalytic domain). In addition, three channels were observed in KpADH3 crystal structure, channel 2 and channel 3 may be essential for substrate specific recognition, ingress and egress, channel 1 may be the pass-through for cofactor. KpADH3 plays an important role in the metabolism of alcohols in Komagataella phaffii GS115, and its crystal structure is the only dimeric medium-chain ADH from yeast described so far. Knowledge of the relationship between structure and function of KpADH3 is crucial for understanding the role of KpADH3 in Komagataella phaffii GS115 mitochondrial metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The alcohol dehydrogenase system in the xylose-fermenting yeast Candida maltosa.

    Yuping Lin

    2010-07-01

    Full Text Available The alcohol dehydrogenase (ADH system plays a critical role in sugar metabolism involving in not only ethanol formation and consumption but also the general "cofactor balance" mechanism. Candida maltosa is able to ferment glucose as well as xylose to produce a significant amount of ethanol. Here we report the ADH system in C. maltosa composed of three microbial group I ADH genes (CmADH1, CmADH2A and CmADH2B, mainly focusing on its metabolic regulation and physiological function.Genetic analysis indicated that CmADH2A and CmADH2B tandemly located on the chromosome could be derived from tandem gene duplication. In vitro characterization of enzymatic properties revealed that all the three CmADHs had broad substrate specificities. Homo- and heterotetramers of CmADH1 and CmADH2A were demonstrated by zymogram analysis, and their expression profiles and physiological functions were different with respect to carbon sources and growth phases. Fermentation studies of ADH2A-deficient mutant showed that CmADH2A was directly related to NAD regeneration during xylose metabolism since CmADH2A deficiency resulted in a significant accumulation of glycerol.Our results revealed that CmADH1 was responsible for ethanol formation during glucose metabolism, whereas CmADH2A was glucose-repressed and functioned to convert the accumulated ethanol to acetaldehyde. To our knowledge, this is the first demonstration of function separation and glucose repression of ADH genes in xylose-fermenting yeasts. On the other hand, CmADH1 and CmADH2A were both involved in ethanol formation with NAD regeneration to maintain NADH/NAD ratio in favor of producing xylitol from xylose. In contrast, CmADH2B was expressed at a much lower level than the other two CmADH genes, and its function is to be further confirmed.

  4. Alcohol drinking habits, alcohol dehydrogenase genotypes and risk of acute coronary syndrome

    Tolstrup, J.S.; Hansen, J.L.; Gronbaek, M.

    2010-01-01

    Aims: The risk of myocardial infarction is lower among light-to-moderate drinkers compared with abstainers. Results from some previous studies, but not all, suggest that this association is modified by variations in genes coding for alcohol dehydrogenase (ADH). We aimed to test this hypothesis......, including alcohol as both the amount of alcohol and the frequency of drinking. Methods: we conducted a nested case-cohort study within the Danish Diet, Cancer and Health study, including 1,645 men (770 incident cases of acute coronary syndrome from 1993-1997 through 2004 and 875 randomly selected controls......). Results: Higher alcohol intake (measured as amount or drinking frequency) was associated with lower risk of acute coronary syndrome; however, there was no evidence that these finding were modified by ADH1B or ADH1C genotypes. Conclusions: The importance of functional variation in alcohol dehydrogenase...

  5. Alcohol consumption and type 2 diabetes: Influence of genetic variation in alcohol dehydrogenase

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.

    2007-01-01

    OBJECTIVE - We sought to investigate whether a polymorphism in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS - In nested case-control studies of 640 women with incident diabetes and 1,000 control

  6. Alcohol consumption and type 2 diabetes - Influence of genetic variation in alcohol dehydrogenase

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.

    2007-01-01

    OBJECTIVE-We sought to investigate whether a polymorphism I in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS-In nested case-control studies of 640 women with incident diabetes and 1,000 control subjects

  7. Interaction between ADH1B*3 and alcohol-facilitating social environments in alcohol behaviors among college students of african descent.

    Desalu, Jessica M; Zaso, Michelle J; Kim, Jueun; Belote, John M; Park, Aesoon

    2017-06-01

    Although alcohol-facilitating social environmental factors, such as alcohol offers and high perceived peer drinking norms, have been extensively studied as determinants of college drinking, their role among college students of African descent remains understudied. Furthermore, gene-environment interaction research suggests that the effects of alcohol-facilitating environments may differ as a function of genetic factors. Specifically, the alcohol dehydrogenase gene's ADH1B*3 allele, found almost exclusively in persons of African descent, may modulate the association of risky social environments with alcohol behaviors. The current study examined whether the ADH1B*3 allele attenuated the relationship between alcohol-facilitating environments (ie, alcohol offers and perceived peer drinking norms) and alcohol behaviors. Participants were 241 undergraduate students who self-identified as being of African descent (mean age = 20 years [SD = 4.11]; 66% female). Significant interaction effects of ADH1B*3 with alcohol offers were found on alcohol use frequency (incidence rate ratio [IRR] = 1.14) and on drinking consequences (IRR = 1.21). ADH1B*3 also interacted with perceived peer norms on drinking consequences (IRR = 1.41). Carriers of the ADH1B*3 allele drank less frequently and experienced fewer negative consequences than non-carriers when exposed to lower levels of alcohol offers and perceived peer drinking. In contrast, in high alcohol-facilitating environments, no protective genetic effect was observed. This study demonstrates that ADH1B*3 may protect college students of African descent against alcohol outcomes, although only in low alcohol-facilitating environments. Findings add to the growing body of knowledge regarding genetic and social determinants of alcohol behaviors among college students of African descent. (Am J Addict 2017;26:349-356). © 2017 American Academy of Addiction Psychiatry.

  8. Association between ALDH2 and ADH1B polymorphisms, alcohol drinking and gastric cancer: a replication and mediation analysis.

    Ishioka, Kuka; Masaoka, Hiroyuki; Ito, Hidemi; Oze, Isao; Ito, Seiji; Tajika, Masahiro; Shimizu, Yasuhiro; Niwa, Yasumasa; Nakamura, Shigeo; Matsuo, Keitaro

    2018-04-03

    Aldehyde dehydrogenase 2 (ALDH2; rs671, Glu504Lys) and alcohol dehydrogenase 1B (ADH1B; rs1229984, His47Arg) polymorphisms have a strong impact on carcinogenic acetaldehyde accumulation after alcohol drinking. To date, however, evidence for a significant ALDH2-alcohol drinking interaction and a mediation effect of ALDH2/ADH1B through alcohol drinking on gastric cancer have remained unclear. We conducted two case-control studies to validate the interaction and to estimate the mediation effect on gastric cancer. We calculated odds ratios (OR) and 95% confidence intervals (CI) for ALDH2/ADH1B genotypes and alcohol drinking using conditional logistic regression models after adjustment for potential confounding in the HERPACC-2 (697 cases and 1372 controls) and HERPACC-3 studies (678 cases and 678 controls). We also conducted a mediation analysis of the combination of the two studies to assess whether the effects of these polymorphisms operated through alcohol drinking or through other pathways. ALDH2 Lys alleles had a higher risk with increased alcohol consumption compared with ALDH2 Glu/Glu (OR for heavy drinking, 3.57; 95% CI 2.04-6.27; P for trend = 0.007), indicating a significant ALDH2-alcohol drinking interaction (P interaction  = 0.024). The mediation analysis indicated a significant positive direct effect (OR 1.67; 95% CI 1.38-2.03) and a protective indirect effect (OR 0.84; 95% CI 0.76-0.92) of the ALDH2 Lys alleles with the ALDH2-alcohol drinking interaction. No significant association of ADH1B with gastric cancer was observed. The observed ALDH2-alcohol drinking interaction and the direct effect of ALDH2 Lys alleles may suggest the involvement of acetaldehyde in the development of gastric cancer.

  9. ALDH2 and ADH1B interactions in retrospective reports of low-dose reactions and initial sensitivity to alcohol in Asian American college students.

    Luczak, Susan E; Pandika, Danielle; Shea, Shoshana H; Eng, Mimy Y; Liang, Tiebing; Wall, Tamara L

    2011-07-01

    A mechanistic model has been proposed for how alcohol-metabolizing gene variants protect individuals from the development of alcohol use disorders, with heightened sensitivity to alcohol being an early step (endophenotype) in this model. This study was designed to determine whether possession of 2 alcohol-metabolizing genes variations, the aldehyde dehydrogenase ALDH2*2 allele and the alcohol dehydrogenase ADH1B*2 allele, was associated with self-reported sensitivity to alcohol at low doses and at initial use. Asian-American college students (N=784) of Chinese and Korean descent were genotyped at the ALDH2 and ADH1B loci and assessed for lifetime alcohol symptoms following 1 or 2 drinks and level of response to alcohol during the first 5 lifetime drinking episodes. Participants who had an ALDH2*2 allele were more likely to report experiencing all 6 low-dose symptoms and having heightened initial response to alcohol. An interaction was found between ALDH2*2 and ADH1B*2, with ADH1B*2 being associated with heightened self-reported sensitivity to alcohol only in individuals who also possessed 1 ALDH2*2 allele. These findings suggest the effects of ADH1B*2 may be felt more strongly in Asians who already have some heightened sensitivity to alcohol from possessing 1 ALDH2*2 allele, but who are not too sensitized to alcohol from possessing 2 ALDH2*2 alleles. These results offer additional insight into the discrepant findings that have been reported in the literature for the role of ADH1B*2 in response to alcohol and the development of alcohol-related problems. Copyright © 2011 by the Research Society on Alcoholism.

  10. Alcohol dehydrogenase-1B genotype (rs1229984) is a strong determinant of the relationship between body weight and alcohol intake in Japanese alcoholic men.

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2013-07-01

    The calories in alcoholic beverages consumed by alcoholics are a major energy source and a strong modifier of their body weight. Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) affect susceptibility to alcoholism and may affect body weight via gene-associated differences in fuel utilization in alcoholics. We evaluated associations between ADH1B/ALDH2 genotypes and the body weight and body mass index (BMI) of 1,301 Japanese alcoholic men at the time of their first visit to an addiction center. Median (25th to 75th) caloric intake in the form of alcoholic beverages was 864 (588 to 1,176) kcal/d. Age-adjusted caloric intake did not differ according to ADH1B/ALDH2 genotypes. The body weight and BMI values showed that the ADH1B*2/*2 and *1/*2 carriers (n = 939) were significantly leaner than the ADH1B*1/*1 carriers (n = 362) irrespective of age, drinking, smoking, and dietary habits. The age-adjusted body weight values of the ADH1B*2/*2, ADH1B*1/*2, and ADH1B*1/*1 carriers were 58.4 ± 0.4, 58.7 ± 0.5, and 63.6 ± 0.5 kg, respectively (ADH1B*2 vs. ADH1B*1/*1 carriers, p strong determinant of body weight in the alcoholics. The more rapid EtOH elimination associated with the ADH1B*2 allele may result in less efficient utilization of EtOH as an energy source in alcoholics. Copyright © 2013 by the Research Society on Alcoholism.

  11. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-06-20

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production.

  12. Alcohol and aldehyde dehydrogenase gene polymorphisms influence susceptibility to esophageal cancer in Japanese alcoholics.

    Yokoyama, A; Muramatsu, T; Omori, T; Matsushita, S; Yoshimizu, H; Higuchi, S; Yokoyama, T; Maruyama, K; Ishii, H

    1999-11-01

    Studies have consistently demonstrated that inactive aldehyde dehydrogenase-2 (ALDH2), encoded by ALDH2*1/2*2, is closely associated with alcohol-related carcinogenesis. Recently, the contributions of alcohol dehydrogenase-2 (ADH2) polymorphism to alcoholism, esophageal cancer, and the flushing response have also been described. To determine the effects of ALDH2 and ADH2 genotypes in genetically based cancer susceptibility, lymphocyte DNA samples from 668 Japanese alcoholic men more than 40 years of age (91 with and 577 without esophageal cancer) were genotyped and the results were expressed as odds ratios (ORs). This study also tested 82 of the alcoholics with esophageal cancer to determine whether cancer susceptibility is associated with patients' responses to simple questions about current or former flushing after drinking a glass of beer. The frequencies of ADH2*1/2*1 and ALDH2*1/2*2 were significantly higher in alcoholics with, than in those without, esophageal cancer (0.473 vs. 0.289 and 0.560 vs. 0.099, respectively). After adjustment for drinking and smoking, the analysis showed significantly increased cancer risk for alcoholics with either ADH2*1/2*I (OR = 2.03) or ALDH2*1/2*2 (OR = 12.76). For those having ADH2*1/2*1 combined with ALDH2*1/2*2, the esophageal cancer risk was enhanced in a multiplicative fashion (OR = 27.66). Responses to flushing questions showed that only 47.8% of the ALDH2*1/2*2 heterozygotes with ADH2*1/ 2*1, compared with 92.3% of those with ALDH2*1/2*2 and the ADH2*2 allele, reported current or former flushing. Genotyping showed that for alcoholics who reported ever flushing, the questionnaire was 71.4% correct in identifying ALDH2*1/2*2 and 87.9% correct in identifying ALDH2*1/2*1. Japanese alcoholics can be divided into cancer susceptibility groups on the basis of their combined ADH2 and ALDH2 genotypes. The flushing questionnaire can predict high risk ALDH2*1/2*2 fairly accurately in persons with ADH2*2 allele, but a reliable

  13. Variation in gastric alcohol dehydrogenase and the risk of alcohol dependence

    Paulina Całka

    2017-03-01

    Full Text Available Alcohol dependence is both a medical and socioeconomic problem. The disease is multifactorial, i.e. its development is attributable to gene-gene and gene-environment interactions. Multi-centre studies investigating the genetic background of alcoholism stress the role of genes encoding enzymes of the ethanol decomposition pathway in the human body, particularly alcohol dehydrogenase (ADH, in the development of alcohol dependence. Among five classes of alcohol dehydrogenases, class I and IV isoenzymes have been found to be associated with alcohol dependence. Class IV is of particular interest due to its occurrence in the upper gastrointestinal tract, mainly in the stomach. No activity of the enzyme has been demonstrated in the liver. Single nucleotide polymorphism (SNP of the gene encoding ADH class IV (ADH7 affects its ethanol-oxidizing activity in the gastric lumen, thereby influencing the first-pass metabolism (FPM of the substance. The findings published by various research centres have demonstrated that specific SNP changes in the ADH7 gene are of different significance for the risk of alcohol dependence according to the population studied.

  14. Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols.

    Alsafadi, Diya; Alsalman, Safaa; Paradisi, Francesca

    2017-11-07

    Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol. The efficiency of HvADH2 for the conversion of aromatic ketones was markedly influenced by the steric and electronic factors as well as the solubility of ketones in the reaction medium. Furthermore, carbonyl stretching band frequencies ν (C[double bond, length as m-dash]O) have been measured for different ketones to understand the effect of electron withdrawing or donating properties of the ketone substituents on the reaction rate catalyzed by HvADH2. Good correlation was observed between ν (C[double bond, length as m-dash]O) of methyl aryl-ketones and the reaction rate catalyzed by HvADH2. The enzyme catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that HvADH2 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.

  15. The Diagnostic Significance of Serum Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase Activity in Urinary Bladder Cancer Patients.

    Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej

    2017-07-01

    The aim of this study was to investigate a potential role of alcohol dehydrogenase and aldehyde dehydrogenase as tumor markers for urinary bladder cancer. Serum samples were obtained from 41 patients with bladder cancer and 52 healthy individuals. Class III and IV of ADH and total ADH activity were measured by the photometric method. For measurement of class I and II ADH and ALDH activity, the fluorometric method was employed. Significantly higher total activity of ADH was found in sera of both, low-grade and high-grade bladder cancer patients. The diagnostic sensitivity for total ADH activity was 81.5%, specificity 98.1%, positive (PPV) and negative (NPV) predictive values were 97.4% and 92.3% respectively. Area under ROC curve for total ADH activity was 0.848. A potential role of total ADH activity as a marker for bladder cancer, is herein proposed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. ADH1B*2 allele is protective against alcoholism but not chronic liver disease in the Hungarian population.

    Toth, Reka; Pocsai, Zsuzsa; Fiatal, Szilvia; Szeles, Gyorgy; Kardos, Laszlo; Petrovski, Beata; McKee, Martin; Adany, Roza

    2010-05-01

    Standardized death rates from chronic liver diseases (CLDs) in Hungary are much higher than the European Union average. Carrying the alcohol dehydrogenase 1B 48His allele (rs1229984 or ADH1B*2) could decrease the risk of alcoholism, but with persistent drinking may confer a greater risk of CLDs. The aim of this study was to assess the prevalence of this polymorphism in the Hungarian population and its association with alcohol consumption and with CLDs. A total of 278 cases with diagnosed CLDs and 752 controls without any alterations in liver function, all males aged 45-64, were screened for ADH1B Arg48His polymorphism. ADH1B*2 allele frequencies in controls and cases were 8.31% and 4.50%, respectively (chi(2) = 9.2; P = 0.01). Carrying the ADH1B*2 allele was associated with significantly lower odds ratio (OR) for drinking frequency (OR = 0.63; P = 0.003), the number of positive answers on CAGE (Cut-down, Annoyed, Guilt, Eye-opener) assessment (OR = 0.58; P = 0.005) and a positive CAGE status (OR = 0.55; P = 0.007). There was a significant association between ADH1B*2 and CLDs (OR = 0.50; P = 0.003), but it disappeared after adjusting for CAGE status and scores (OR = 0.67 P = 0.134; OR = 0.67 P = 0.148, respectively) and weakened after adjusting for drinking frequency (OR = 0.61; P = 0.045). Among heavy drinkers the presence of ADH1B*2 did not increase the risk of cirrhosis but there was a significant interaction between genotype and CAGE status (P = 0.003, P = 0.042), with ADH1B*2 conferring reduced risk of CLDs in CAGE negatives. In Hungarians, the ADH1B 48His allele reduces the risk of alcoholism, but not the risk of chronic liver disease among heavy drinkers.

  17. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  18. Considerable haplotype diversity within the 23kb encompassing the ADH7 gene

    Han, Yi; Oota, Hiroki; Osier, Michael V

    2005-01-01

    Of the seven known human alcohol dehydrogenase (ADH) genes, the non-liver expressed ADH7 gene codes for the enzyme with the highest maximal activity for ethanol. Previous study from our laboratory has suggested that ADH7 has an epistatic role for protection against alcoholism based on a single AD...

  19. Characterization of polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 and relationship to the alcoholism in a Colombian population.

    Méndez, Claudia; Rey, Mauricio

    2015-12-30

    Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2 * 2, CYP2E1 * 1 combined with genotype homozygous ALDH2 * 1 found in this study could be leading to the population to a potential risk to alcoholism.

  20. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-01-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH - ) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH - and hepatic ADH-normal (ADH + ) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼ 1.5-fold greater in ADH - vs. ADH + deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH - deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  1. Immobilization of alcohol dehydrogenase in phospholipid Langmuir-Blodgett films to detect ethanol.

    Caseli, Luciano; Perinotto, Angelo C; Viitala, Tapani; Zucolotto, Valtencir; Oliveira, Osvaldo N

    2009-03-03

    Enzyme immobilization in nanostructured films may be useful for a number of biomimetic systems, particularly if suitable matrixes are identified. Here we show that alcohol dehydrogenase (ADH) has high affinity toward a negatively charged phospholipid, dimyristoylphosphatidic acid (DMPA), which forms a Langmuir monolayer at an air-water interface. Incorporation of ADH into the DMPA monolayer was monitored with surface pressure measurements and polarization-modulation infrared reflection absorption spectroscopy, with the alpha-helices from ADH being mainly oriented parallel to the water surface. ADH remained at the interface even at high surface pressures, thus allowing deposition of Langmuir-Blodgett (LB) films from the DMPA-ADH film. Indeed, interaction with DMPA enhances the transfer of ADH, where the mass transferred onto a solid support increased from 134 ng for ADH on a Gibbs monolayer to 178 ng for an LB film with DMPA. With fluorescence spectroscopy it was possible to confirm that the ADH structure was preserved even after one month of the LB deposition. ADH-containing films deposited onto gold-interdigitated electrodes were employed in a sensor array capable of detecting ethanol at concentrations down to 10 ppb (in volume), using impedance spectroscopy as the method of detection.

  2. Alcohol and aldehyde dehydrogenase gene polymorphisms and oropharyngolaryngeal, esophageal and stomach cancers in Japanese alcoholics.

    Yokoyama, A; Muramatsu, T; Omori, T; Yokoyama, T; Matsushita, S; Higuchi, S; Maruyama, K; Ishii, H

    2001-03-01

    Alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) gene polymorphisms play roles in ethanol metabolism, drinking behavior and esophageal carcinogenesis in Japanese; however, the combined influence of ADH2 and ALDH2 genotypes on other aerodigestive tract cancers have not been investigated. ADH2/ALDH2 genotyping was performed on lymphocyte DNA samples from Japanese alcoholic men (526 cancer-free; 159 with solitary or multiple aerodigestive tract cancers, including 33 oropharyngolaryngeal, 112 esophageal, 38 stomach and 22 multiple primary cancers in two or three organs). After adjustment for age, drinking and smoking habits, and ADH2/ALDH2 genotypes, the presence of either ADH2*1/2*1 or ALDH2*1/2*2 significantly increased the risk for oropharyngolaryngeal cancer [odds ratios (ORs), 6.68 with ADH2*1/2*1 and 18.52 with ALDH2*1/2*2] and esophageal cancer (ORs, 2.64 and 13.50, respectively). For patients with both ADH2*1/2*1 and ALDH2*1/2*2, the risks for oropharyngolaryngeal and esophageal cancers were enhanced in a multiplicative fashion (OR = 121.77 and 40.40, respectively). A positive association with ALDH2*1/2*2 alone was observed for stomach cancer patients who also had oropharyngolaryngeal and/or esophageal cancer (OR = 110.58), but it was not observed for those with stomach cancer alone. Furthermore, in the presence of ALDH2*1/2*2, the risks for multiple intra-esophageal cancers (OR = 3.43) and for esophageal cancer with oropharyngolaryngeal and/or stomach cancer (OR = 3.95) were higher than the risks for solitary intra-esophageal cancer and for esophageal cancer alone, but these tendencies were not observed for ADH2*1/2*1 genotype. Alcoholics' population attributable risks due to ADH2/ALDH2 polymorphisms were estimated to be 82.0% for oropharyngolaryngeal cancer and 63.9% for esophageal cancer.

  3. Trends in gastrectomy and ADH1B and ALDH2 genotypes in Japanese alcoholic men and their gene-gastrectomy, gene-gene and gene-age interactions for risk of alcoholism.

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2013-01-01

    The life-time drinking profiles of Japanese alcoholics have shown that gastrectomy increases susceptibility to alcoholism. We investigated the trends in gastrectomy and alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) genotypes and their interactions in alcoholics. This survey was conducted on 4879 Japanese alcoholic men 40 years of age or older who underwent routine gastrointestinal endoscopic screening during the period 1996-2010. ADH1B/ALDH2 genotyping was performed in 3702 patients. A history of gastrectomy was found in 508 (10.4%) patients. The reason for the gastrectomy was peptic ulcer in 317 patients and gastric cancer in 187 patients. The frequency of gastrectomy had gradually decreased from 13.3% in 1996-2000 to 10.5% in 2001-2005 and to 7.8% in 2006-2010 (P alcoholism-susceptibility genotypes, ADH1B*1/*1 and ALDH2*1/*1, modestly but significantly tended not to occur in the same individual (P = 0.026). The frequency of ADH1B*1/*1 decreased with ascending age groups. The high frequency of history of gastrectomy suggested that gastrectomy is still a risk factor for alcoholism, although the percentage decreased during the period. The alcoholism-susceptibility genotype ADH1B*1/*1 was less frequent in the gastrectomy group, suggesting a competitive gene-gastrectomy interaction for alcoholism. A gene-gene interaction and gene-age interactions regarding the ADH1B genotype were observed.

  4. Alcohol dehydrogenase 3 genotype as a risk factor for upper aerodigestive tract cancers

    Nishimoto, Inês Nobuko; Pinheiro, Nidia A; Rogatto, Silvia R

    2004-01-01

    OBJECTIVE: To assess alcohol dehydrogenase 3 (ADH3) polymorphism at position Ile349Val as indicator of risk factor for upper aerodigestive tract (UADT) cancer to verify its association with UADT cancer in nonalcoholic or nonsmoking individuals. DESIGN: Cross-sectional study. SETTING: Primary care...

  5. Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori

    Nan Wang

    2011-01-01

    Full Text Available Alcohol dehydrogenases (ADH are a class of enzymes that catalyze the reversible oxidation of alcohols to corresponding aldehydes or ketones, by using either nicotinamide adenine dinucleotide (NAD or nicotinamide adenine dinucleotide phosphate (NADP, as coenzymes. In this study, a short-chain ADH gene was identified in Bombyx mori by 5'-RACE PCR. This is the first time the coding region of BmADH has been cloned, expressed, purified and then characterized. The cDNA fragment encoding the BmADH protein was amplified from a pool of silkworm cDNAs by PCR, and then cloned into E. coli expression vector pET-30a(+. The recombinant His-tagged BmADH protein was expressed in E. coli BL21 (DE3, and then purified by metal chelating affinity chromatography. The soluble recombinant BmADH, produced at low-growth temperature, was instrumental in catalyzing the ethanol-dependent reduction of NAD+, thereby indicating ethanol as one of the substrates of BmADH.

  6. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-05

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems

    Fatima Zohra Ibn Majdoub Hassani; Ivan Lavandera; Joseph Kreit

    2016-01-01

    This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was fou...

  8. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2015-01-01

    Elevated serum triglyceride (TG) and high-density-lipoprotein cholesterol (HDL-C) levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype) and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype) modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively) in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics. The population consisted of 1806 Japanese alcoholic men (≥40 years) who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission. High serum levels of TG (≥150 mg/dl), HDL-C (>80 mg/dl), and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl) were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI) affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively), and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively). The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl) and HDL-C (≥100 mg/dl). The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  9. Alcohol Dehydrogenase-1B (rs1229984 and Aldehyde Dehydrogenase-2 (rs671 Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Akira Yokoyama

    Full Text Available Elevated serum triglyceride (TG and high-density-lipoprotein cholesterol (HDL-C levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics.The population consisted of 1806 Japanese alcoholic men (≥40 years who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission.High serum levels of TG (≥150 mg/dl, HDL-C (>80 mg/dl, and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively, and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively. The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]. The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl and HDL-C (≥100 mg/dl.The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  10. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.; Rubach, Jon K.; Brown, Eric N.; Ramaswamy, S. (Iowa)

    2017-07-07

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.

  11. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  12. Cloning and expression analysis of alcohol dehydrogenase (Adh ...

    Samson Edoja

    2016-10-19

    Oct 19, 2016 ... promoter depends upon interaction promoter cis. *Corresponding author. .... fragments I and II selected annealing temperature through gradient PCR ..... Enhancers: Mechanism of action and cell specificity. Ann. Rev. Cell Biol.

  13. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    Sakoda, H; Imanaka, T

    1992-01-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those cata...

  14. Is ADH1C genotype relevant for the cardioprotective effect of alcohol?

    Høiseth, Gudrun; Magnus, Per; Knudsen, Gun Peggy; Jansen, Mona Dverdal; Næss, Oyvind; Tambs, Kristian; Mørland, Jørg

    2013-03-01

    The cardioprotective effect of ethanol has been suggested to be linked to one of the ethanol metabolizing enzymes (ADH1C), which constitutes a high V(max) and a low V(max) variant. This has been demonstrated in some studies, while others have not been able to replicate the findings. The aim of the present study was to investigate the relation between the different ADH1C genotypes, death from coronary heart disease (CHD) and alcohol in a material larger than the previously published studies. Eight hundred CHD deaths as well as 1303 controls were genotyped for the high V(max) (γ1) and the low V(max) (γ2) ADH1C variant. Information of alcohol use was available for all subjects. Multiple logistic regression analyses was used to study if the decreased risk of death from CHD in alcohol consuming subjects was more pronounced in subjects homozygous for the γ2 allele (γ2γ2 subjects) compared to γ1γ1 and γ1γ2 subjects. The odds ratio (OR) for death from CHD in alcohol consumers compared to abstainers was similar in the genotype groups, i.e., 0.62 (95% CI: 0.43-0.88) in γ1γ1 subjects and 0.62 (95% CI: 0.42-0.91) in γ2γ2 subjects. Also when stratifying the results by gender and when dividing alcohol consumers into different alcohol consumption groups, there was no difference in the OR between the different genotype groups. This study, which included the largest study group published so far, failed to find any link between the ADH1C genotype and the cardioprotective effects of alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily

    Machielsen, M.P.; Uria, A.R.; Kengen, S.W.M.; Oost, van der J.

    2006-01-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The gene, referred to as adhD, was functionally expressed in Escherichia coli and subsequently purified to homogeneity. The

  16. Prognostic value of alcohol dehydrogenase mRNA expression in gastric cancer.

    Guo, Erna; Wei, Haotang; Liao, Xiwen; Xu, Yang; Li, Shu; Zeng, Xiaoyun

    2018-04-01

    Previous studies have reported that alcohol dehydrogenase (ADH) isoenzymes possess diagnostic value in gastric cancer (GC). However, the prognostic value of ADH isoenzymes in GC remains unclear. The aim of the present study was to identify the prognostic value of ADH genes in patients with GC. The prognostic value of ADH genes was investigated in patients with GC using the Kaplan-Meier plotter tool. Kaplan-Meier plots were used to assess the difference between groups of patients with GC with different prognoses. Hazard ratios (HR) and 95% confidence intervals (CI) were used to assess the relative risk of GC survival. Overall, 593 patients with GC and 7 ADH genes were included in the survival analysis. High expression of ADH 1A (class 1), α polypeptide ( ADH1A; log-rank P=0.043; HR=0.79; 95% CI: 0.64-0.99), ADH 1B (class 1), β polypeptide ( ADH1B ; log-rank P=1.9×10 -05 ; HR=0.65; 95% CI: 0.53-0.79) and ADH 5 (class III), χ polypeptide ( ADH5 ; log-rank P=0.0011; HR=0.73; 95% CI: 0.6-0.88) resulted in a significantly decreased risk of mortality in all patients with GC compared with patients with low expression of those genes. Furthermore, protective effects may additionally be observed in patients with intestinal-type GC with high expression of ADH1B (log-rank P=0.031; HR=0.64; 95% CI: 0.43-0.96) and patients with diffuse-type GC with high expression of ADH1A (log-rank P=0.014; HR=0.51; 95% CI: 0.3-0.88), ADH1B (log-rank P=0.04; HR=0.53; 95% CI: 0.29-0.98), ADH 4 (class II), π polypeptide (log-rank P=0.033; HR=0.58; 95% CI: 0.35-0.96) and ADH 6 (class V) (log-rank P=0.037; HR=0.59; 95% CI: 0.35-0.97) resulting in a significantly decreased risk of mortality compared with patients with low expression of those genes. In contrast, patients with diffuse-type GC with high expression of ADH5 (log-rank P=0.044; HR=1.66; 95% CI: 1.01-2.74) were significantly correlated with a poor prognosis. The results of the present study suggest that ADH1A and ADH1B may be potential

  17. Analysis of alcohol dehydrogenase inhibitors from Desmodium styracifolium using centrifugal ultrafiltration coupled with HPLC-MS

    Liu Liangliang

    2015-01-01

    Full Text Available Alcohol dehydrogenase (ADH inhibitors play an important role in the treatment of human methanol or ethylene glycol poisoning and the suppression of acetaldehyde accumulation in alcoholics. In this study, centrifugal ultrafiltration coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS was utilized to screen and identify ADH inhibitors from ethyl acetate extract of Desmosium styracifolium (Osb. Merr. The experiment conditions of centrifugal ultrafiltration were optimized. At the optimum conditions (ADH concentration: 37.5 μg mL-1, incubation time: 90 min, pH: 7.0 and temperature: 15°C, formononetin and aromadendrin were successfully screened and identified from ethyl acetate extract of Desmodium styracifolium. The screening result was verified by ADH inhibition assays. The IC50 values of formononetin and aromadendrin were 70.8 and 84.7 μg mL-1, which were accorded with the binding degrees of them. Aromadendrin was first reported to have inhibitory activity on ADH. This method provided an effective way to screen active compounds from natural products.

  18. Molecular analysis of mutant and wild type alcohol dehydrogenase alleles from Drosophila

    Batzer, M.A.

    1988-01-01

    Wild type alcohol dehydrogenase polypeptides (ADH) from Drosophila melanogaster transformants were examined using western blots and polyclonal antiserum specific for Drosophila melanogaster ADH. Mutants induced in Drosophila spermatozoa at the alcohol dehydrogenase (Adh) locus using X-rays, 1-ethyl-1-nitrosourea (ENU) or ethyl methanesulfonate (EMS) were characterized using genetic complementation tests, western blots, Southern blots, northern blots and enzymatic amplification of the Adh locus. Genetic complementation tests showed that 22/30 X-ray-induced mutants, and 3/13 ENU and EMS induced mutants were multi-locus deficiencies. Western blot analysis of the intragenic mutations showed that 4/7 X-ray-induced mutants produced detectable polypeptides, one of which was normal in molecular weight and charge. In contrast 8/10 intragenic ENU and EMS induced mutants produced normal polypeptides. Southern blot analysis showed that 5/7 intragenic X-ray induced mutants and all 10 of the intragenic ENU and EMS induced mutants were normal with respect to the alleles they were derived from

  19. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology.

    Yakushi, Toshiharu; Matsushita, Kazunobu

    2010-05-01

    Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) of acetic acid bacteria is a membrane-bound enzyme involved in the acetic acid fermentation by oxidizing ethanol to acetaldehyde coupling with reduction of membranous ubiquinone (Q), which is, in turn, re-oxidized by ubiquinol oxidase, reducing oxygen to water. PQQ-ADHs seem to have co-evolved with the organisms fitting to their own habitats. The enzyme consists of three subunits and has a pyrroloquinoline quinone, 4 heme c moieties, and a tightly bound Q as the electron transfer mediators. Biochemical, genetic, and electrochemical studies have revealed the unique properties of PQQ-ADH since it was purified in 1978. The enzyme is unique to have ubiquinol oxidation activity in addition to Q reduction. This mini-review focuses on the molecular properties of PQQ-ADH, such as the roles of the subunits and the cofactors, particularly in intramolecular electron transport of the enzyme from ethanol to Q. Also, we summarize biotechnological applications of PQQ-ADH as to enantiospecific oxidations for production of the valuable chemicals and bioelectrocatalysis for sensors and fuel cells using indirect and direct electron transfer technologies and discuss unsolved issues and future prospects related to this elaborate enzyme.

  20. Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases

    Rui Miao

    2017-12-01

    Full Text Available Isobutanol is a flammable compound that can be used as a biofuel due to its high energy density and suitable physical and chemical properties. In this study, we examined the capacity of engineered strains of Synechocystis PCC 6803 containing the α-ketoisovalerate decarboxylase from Lactococcus lactis and different heterologous and endogenous alcohol dehydrogenases (ADH for isobutanol production. A strain expressing an introduced kivd without any additional copy of ADH produced 3 mg L−1 OD750−1 isobutanol in 6 days. After the cultures were supplemented with external addition of isobutyraldehyde, the substrate for ADH, 60.8 mg L−1 isobutanol was produced after 24 h when OD750 was 0.8. The in vivo activities of four different ADHs, two heterologous and two putative endogenous in Synechocystis, were examined and the Synechocystis endogenous ADH encoded by slr1192 showed the highest efficiency for isobutanol production. Furthermore, the strain overexpressing the isobutanol pathway on a self-replicating vector with the strong Ptrc promoter showed significantly higher gene expression and isobutanol production compared to the corresponding strains expressing the same operon introduced on the genome. Hence, this study demonstrates that Synechocystis endogenous AHDs have a high capacity for isobutanol production, and identifies kivd encoded α-ketoisovalerate decarboxylase as one of the likely bottlenecks for further isobutanol production.

  1. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.

    Umasankar, Yogeswaran; Adhikari, Bal-Ram; Chen, Aicheng

    2017-12-01

    An efficient approach for immobilizing alcohol dehydrogenase (ADH) while enhancing its electron transfer ability has been developed using poly(2-(trimethylamino)ethyl methacrylate) (MADQUAT) cationic polymer and carbon nanoscaffolds. The carbon nanoscaffolds were comprised of single-walled carbon nanotubes (SWCNTs) wrapped with reduced graphene oxide (rGO). The ADH entrapped within the MADQUAT that was present on the carbon nanoscaffolds exhibited a high electron exchange capability with the electrode through its cofactor β-nicotinamide adenine dinucleotide hydrate and β-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NAD + /NADH) redox reaction. The advantages of the carbon nanoscaffolds used as the support matrix and the MADQUAT employed for the entrapment of ADH versus physisorption were demonstrated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Our experimental results showed a higher electron transfer, electrocatalytic activity, and rate constant for MADQUAT entrapped ADH on the carbon nanoscaffolds. The immobilization of ADH using both MADQUAT and carbon nanoscaffolds exhibited strong potential for the development of an efficient bio-anode for ethanol powered biofuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Furaldehyde substrate specificity and kinetics of Saccharomyces cerevisiae alcohol dehydrogenase 1 variants.

    Laadan, Boaz; Wallace-Salinas, Valeria; Carlsson, Åsa Janfalk; Almeida, João Rm; Rådström, Peter; Gorwa-Grauslund, Marie F

    2014-08-09

    A previously discovered mutant of Saccharomyces cerevisiae alcohol dehydrogenase 1 (Adh1p) was shown to enable a unique NADH-dependent reduction of 5-hydroxymethylfurfural (HMF), a well-known inhibitor of yeast fermentation. In the present study, site-directed mutagenesis of both native and mutated ADH1 genes was performed in order to identify the key amino acids involved in this substrate shift, resulting in Adh1p-variants with different substrate specificities. In vitro activities of the Adh1p-variants using two furaldehydes, HMF and furfural, revealed that HMF reduction ability could be acquired after a single amino acid substitution (Y295C). The highest activity, however, was reached with the double mutation S110P Y295C. Kinetic characterization with both aldehydes and the in vivo primary substrate acetaldehyde also enabled to correlate the alterations in substrate affinity with the different amino acid substitutions. We demonstrated the key role of Y295C mutation in HMF reduction by Adh1p. We generated and kinetically characterized a group of protein variants using two furaldehyde compounds of industrial relevance. Also, we showed that there is a threshold after which higher in vitro HMF reduction activities do not correlate any more with faster in vivo rates of HMF conversion, indicating other cell limitations in the conversion of HMF.

  3. The natural history of class I primate alcohol dehydrogenases includes gene duplication, gene loss, and gene conversion.

    Matthew A Carrigan

    Full Text Available Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s, where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs and hominoids.To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines. Database mining then identified novel ADH1 paralogs in both macaque (an OWM and marmoset (a NWM. These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding sequences and intronic sequences.We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels. The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs and catarrhines (OWMs and hominoids having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in the ancestor of Catarrhine and Platyrrhine primates

  4. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Rui Guo

    2010-01-01

    Full Text Available Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p. for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways were examined.Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2 (*-. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF.Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  5. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  6. Childhood adversity moderates the effect of ADH1B on risk for alcohol-related phenotypes in Jewish Israeli drinkers.

    Meyers, Jacquelyn L; Shmulewitz, Dvora; Wall, Melanie M; Keyes, Katherine M; Aharonovich, Efrat; Spivak, Baruch; Weizman, Abraham; Frisch, Amos; Edenberg, Howard J; Gelernter, Joel; Grant, Bridget F; Hasin, Deborah

    2015-01-01

    Childhood adversity and genetic variant ADH1B-rs1229984 have each been shown to influence heavy alcohol consumption and disorders. However, little is known about how these factors jointly influence these outcomes. We assessed the main and additive interactive effects of childhood adversity (abuse, neglect and parental divorce) and the ADH1B-rs1229984 on the quantitative phenotypes 'maximum drinks in a day' (Maxdrinks) and DSM-Alcohol Use Disorder (AUD) severity, adjusting for demographic variables, in an Israeli sample of adult household residents (n = 1143) evaluated between 2007 and 2009. Childhood adversity and absence of the protective ADH1B-rs1229984 A allele were associated with greater mean Maxdrinks (mean differences: 1.50; 1.13, respectively) and AUD severity (mean ratios: 0.71; 0.27, respectively). In addition, childhood adversity moderated the ADH1B-rs1229984 effect on Maxdrinks (P < 0.01) and AUD severity (P < 0.05), in that there was a stronger effect of ADH1B-rs1229984 genotype on Maxdrinks and AUD severity among those who had experienced childhood adversity compared with those who had not. ADH1B-rs1229984 impacts alcohol metabolism. Therefore, among those at risk for greater consumption, e.g. those who experienced childhood adversity, ADH1B-rs1229984 appears to have a stronger effect on alcohol consumption and consequently on risk for AUD symptom severity. Evidence for the interaction of genetic vulnerability and early life adversity on alcohol-related phenotypes provides further insight into the complex relationships between genetic and environmental risk factors. © 2013 Society for the Study of Addiction.

  7. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.

    Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A

    2009-09-01

    A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.

  8. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  10. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    Brown, Steven D [ORNL; Guss, Adam M [ORNL; Karpinets, Tatiana V [ORNL; Parks, Jerry M [ORNL; Smolin, Nikolai [ORNL; Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Bhandiwad, Ashwini [Thayer School of Engineering at Dartmouth; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Mielenz, Jonathan R [ORNL; Smith, Jeremy C [ORNL; Keller, Martin [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  11. Identification and experimental characterization of an extremophilic brine pool alcohol dehydrogenase from single amplified genomes

    Grö tzinger, Stefan W.; Karan, Ram; Strillinger, Eva; Bader, Stefan; Frank, Annika; Al Rowaihi, Israa; Akal, Anastassja; Wackerow, Wiebke; Archer, John A.C.; Rueping, Magnus; Weuster-Botz, Dirk; Groll, Michael; Eppinger, Jö rg; Arold, Stefan T.

    2017-01-01

    Because only 0.01% of prokaryotic genospecies can be cultured and in situ observations are often impracticable, culture-independent methods are required to understand microbial life and harness potential applications of microbes. Here, we report a methodology for the production of proteins with desired functions based on single amplified genomes (SAGs) from unculturable species. We use this method to resurrect an alcohol dehydrogenase (ADH/D1) from an uncharacterized halo-thermophilic archaeon collected from a brine pool at the bottom of the Red Sea. Our crystal structure of 5,6-dihydroxy NADPH-bound ADH/D1 combined with biochemical analyses reveal the molecular features of its halo-thermophily, its unique habitat adaptations, and its possible reaction mechanism for atypical oxygen activation. Our strategy offers a general guide for using SAGs as a source for scientific and industrial investigations of ‘microbial dark matter’.

  12. Identification and experimental characterization of an extremophilic brine pool alcohol dehydrogenase from single amplified genomes

    Grötzinger, Stefan W.

    2017-11-30

    Because only 0.01% of prokaryotic genospecies can be cultured and in situ observations are often impracticable, culture-independent methods are required to understand microbial life and harness potential applications of microbes. Here, we report a methodology for the production of proteins with desired functions based on single amplified genomes (SAGs) from unculturable species. We use this method to resurrect an alcohol dehydrogenase (ADH/D1) from an uncharacterized halo-thermophilic archaeon collected from a brine pool at the bottom of the Red Sea. Our crystal structure of 5,6-dihydroxy NADPH-bound ADH/D1 combined with biochemical analyses reveal the molecular features of its halo-thermophily, its unique habitat adaptations, and its possible reaction mechanism for atypical oxygen activation. Our strategy offers a general guide for using SAGs as a source for scientific and industrial investigations of ‘microbial dark matter’.

  13. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.

    Lu Chen

    Full Text Available Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA followed by reduction to 1,3-propandiol (1,3-PDO with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP. The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7 belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and

  14. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  15. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles.

    Nicolau, Eduardo; Méndez, Jessica; Fonseca, José J; Griebenow, Kai; Cabrera, Carlos R

    2012-06-01

    Diamond nanoparticles are considered a biocompatible material mainly due to their non-cytotoxicity and remarkable cellular uptake. Model proteins such as cytochrome c and lysozyme have been physically adsorbed onto diamond nanoparticles, proving it to be a suitable surface for high protein loading. Herein, we explore the non-covalent immobilization of the redox enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (E.C.1.1.1.1) onto oxidized diamond nanoparticles for bioelectrochemical applications. Diamond nanoparticles were first oxidized and physically characterized by X-ray diffraction (XRD), FT-IR and TEM. Langmuir isotherms were constructed to investigate the ADH adsorption onto the diamond nanoparticles as a function of pH. It was found that a higher packing density is achieved at the isoelectric point of the enzyme. Moreover, the relative activity of the immobilized enzyme on diamond nanoparticles was addressed under optimum pH conditions able to retain up to 70% of its initial activity. Thereafter, an ethanol bioelectrochemical cell was constructed by employing the immobilized alcohol dehydrogenase onto diamond nanoparticles, this being able to provide a current increment of 72% when compared to the blank solution. The results of this investigation suggest that this technology may be useful for the construction of alcohol biosensors or biofuel cells in the near future. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Association between alcohol dehydrogenase 1C gene *1/*2 polymorphism and pancreatitis risk: a meta-analysis.

    Fang, F; Pan, J; Su, G H; Xu, L X; Li, G; Li, Z H; Zhao, H; Wang, J

    2015-11-30

    Numerous studies have focused on the relationship be-tween alcohol dehydrogenase 1C gene (ADH1C) *1/*2 polymorphism (Ile350Val, rs698, also known as ADH1C *1/*2) and pancreatitis risk, but the results have been inconsistent. Thus, we conducted a meta-anal-ysis to more precisely estimate this association. Relevant publications were searched in several widely used databases and 9 eligible studies were included in the meta-analysis. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association. Significant associations between ADH1C *1/*2 poly-morphism and pancreatitis risk were observed in both overall meta-analysis for 12 vs 22 (OR = 1.53, 95%CI = 1.12-2.10) and 11 + 12 vs 22 (OR = 1.44, 95%CI = 1.07-1.95), and the chronic alcoholic pancre-atitis subgroup for 12 vs 22 (OR = 1.64, 95%CI = 1.17-2.29) and 11 + 12 vs 22 (OR = 1.53, 95%CI = 1.11-2.11). Significant pancreatitis risk variation was also detected in Caucasians for 11 + 12 vs 22 (OR = 1.45, 95%CI = 1.07-1.98). In conclusion, the ADH1C *1/*2 polymorphism is likely associated with pancreatitis risk, particularly chronic alcoholic pancreatitis risk, with the *1 allele functioning as a risk factor.

  17. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma.

    Yokoyama, Akira; Kato, Hoichi; Yokoyama, Tetsuji; Tsujinaka, Toshimasa; Muto, Manabu; Omori, Tai; Haneda, Tatsumasa; Kumagai, Yoshiya; Igaki, Hiroyasu; Yokoyama, Masako; Watanabe, Hiroshi; Fukuda, Haruhiko; Yoshimizu, Haruko

    2002-11-01

    The genetic polymorphisms of aldehyde dehydrogenase-2 (ALDH2), alcohol dehydrogenase-2 (ADH2), ADH3, and glutathione S-transferase M1 (GSTM1) influence the metabolism of alcohol and other carcinogens. The ALDH2*1/2*2 genotype, which encodes inactive ALDH2, and ADH2*1/2*1, which encodes the low-activity form of ADH2, enhance the risk for esophageal cancer in East Asian alcoholics. This case-control study of whether the enzyme-related vulnerability for esophageal cancer can be extended to a general population involved 234 Japanese men with esophageal squamous cell carcinoma and 634 cancer-free Japanese men who received annual health checkups. The GSTM1 genotype was not associated with the risk for this cancer. Light drinkers (1-8.9 units/week) with ALDH2*1/2*2 had an esophageal cancer risk 5.82 times that of light drinkers with ALDH2*1/2*1 (reference category), and their risk was similar to that of moderate drinkers (9-17.9 units/week) with ALDH2*1/2*1 (odds ratio = 5.58). The risk for moderate drinkers with ALDH2*1/2*2 (OR = 55.84) exceeded that for heavy drinkers (18+ units/week) with ALDH2*1/2*1 (OR = 10.38). Similar increased risks were observed for those with ADH2*1/2*1. A multiple logistic model including ALDH2, ADH2, and ADH3 genotypes showed that the ADH3 genotype does not significantly affect the risk for esophageal cancer. For individuals with both ALDH2*1/2*2 and ADH2*1/2*1, the risk of esophageal cancer was enhanced in a multiplicative fashion (OR = 30.12), whereas for those with either ALDH2*1/2*2 or ADH2*1/2*1 alone the ORs were 7.36 and 4.11. In comparison with the estimated population-attributable risks for preference for strong alcoholic beverages (30.7%), smoking (53.6%) and for lower intake of green and yellow vegetables (25.7%) and fruit (37.6%), an extraordinarily high proportion of the excessive risk for esophageal cancer in the Japanese males can be attributed to drinking (90.9%), particularly drinking by persons with inactive heterozygous ALDH

  18. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells.

    Sanchez, Anamaria C; Li, Chengwen; Andrews, Barbara; Asenjo, Juan A; Samulski, R Jude

    2017-09-01

    Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 10 4 and 1 × 10 5 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.

  19. Three human alcohol dehydrogenase subunits: cDNA structure and molecular and evolutionary divergence

    Ikuta, T.; Szeto, S.; Yoshida, A.

    1986-01-01

    Class I human alcohol dehydrogenase (ADH; alcohol:NAD + oxidoreductase, EC 1.1.1.1) consists of several homo- and heterodimers of α, β, and γ subunits that are governed by the ADH1, ADH2, and ADH3 loci. The authors previously cloned a full length of cDNA for the β subunit, and the complete sequence of 374 amino acid residues was established. cDNAs for the α and γ subunits were cloned and characterized. A human liver cDNA library, constructed in phage λgt11, was screened by using a synthetic oligonucleotide probe that was matched to the γ but not to the β sequence. Clone pUCADHγ21 and clone pUCADHα15L differed from β cDNA with respect to restriction sites and hybridization with the nucleotide probe. Clone pUCADHγ21 contained an insertion of 1.5 kilobase pairs (kbp) and encodes 374 amino acid residues compatible with the reported amino acid sequence of the γ subunit. Clone pUCADHα15L contained an insertion of 2.4 kbp and included nucleotide sequences that encode 374 amino acid residues for another subunit, the γ subunit. In addition, this clone contained the sequences that encode the COOH-terminal part of the β subunit at its extended 5' region. The amino acid sequences and coding regions of the cDNAs of the three subunits are very similar. A high degree of resemblance is observed also in their 3' noncoding regions. However, distinctive differences exist in the vicinity of the Zn-binding cysteine residue at position 46. Based on the cDNA sequences and the deduced amino acid sequences of the three subunits, their structural and evolutionary relationships are discussed

  20. Hypoxia and anoxia effects on alcohol dehydrogenase activity and hemoglobin content in Chironomus riparius Meigen, 1804

    Valentina Grazioli

    2016-02-01

    Full Text Available The metabolic effects of low oxygen content on alcohol-dehydrogenase (ADH activity and hemoglobin (Hb concentration were investigated in IV-instar larvae of Chironomus riparius (Diptera: Chironomidae from an Italian stream. Two series of short-term (48 h experiments were carried out: exposure to (1 progressive hypoxia (95 to 5% of oxygen saturation and (2 anoxia (at <5% of oxygen saturation. In (1, Hb amount increased with increasing oxygen depletion up to a critical value of oxygenation (about 70% of oxygen saturation. Below this percentage, the Hb amount declined to values comparable with those present in the control. The respiration rate (R remained almost constant at oxygen saturation >50% and decreased significantly only after 48 h of treatment (= <5% of oxygen saturation reaching values <100 mmolO2 gAFDW-1 h-1. ADH activity showed two phases of growth, within the first 14 h and over 18 h of exposure. Overall, we inferred that i Hb might function as short-term oxygen storage, enabling animals to delay the on-set of anaerobiosis; and ii alcoholic fermentation co-occurs for a short time with aerobic respiration, becoming the prevalent metabolic pathway below 5% of oxygen saturation (<1 mg L-1. These considerations were supported also by results from anoxia exposure (2. In such condition, larvae were visibly stressed, becoming immobile after few minutes of incubation, and ADH reached higher values than in the hypoxia treatment (2.03±0.15 UADH mg prot-1. Overall, this study showed a shift from aerobic to anaerobic activity in C. riparius larvae exposed to poorly oxygenated water with an associated alteration of ADH activity and the Hb amount. Such metabolites might be valid candidate biomarkers for the environmental monitoring of running waters.

  1. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    Sakoda, H; Imanaka, T

    1992-02-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those catalytic amino acid residues were fairly conserved in ADH-T and other ADHs, ADH-T was inferred to have basically the same proton release system as horse liver ADH. The putative proton release system of ADH-T was elucidated by introducing point mutations at the catalytic amino acid residues, Cys-38 (cysteine at position 38), Thr-40, and His-43, with site-directed mutagenesis. The mutant enzyme Thr-40-Ser (Thr-40 was replaced by serine) showed a little lower level of activity than wild-type ADH-T did. The result indicates that the OH group of serine instead of threonine can also be used for the catalytic activity. To change the pKa value of the putative system, His-43 was replaced by the more basic amino acid arginine. As a result, the optimum pH of the mutant enzyme His-43-Arg was shifted from 7.8 (wild-type enzyme) to 9.0. His-43-Arg exhibited a higher level of activity than wild-type enzyme at the optimum pH.

  2. Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus.

    Pennacchio, Angela; Pucci, Biagio; Secundo, Francesco; La Cara, Francesco; Rossi, Mosè; Raia, Carlo A

    2008-07-01

    The gene encoding a novel alcohol dehydrogenase (ADH) that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily was identified in the extremely thermophilic, halotolerant gram-negative eubacterium Thermus thermophilus HB27. The T. thermophilus ADH gene (adh(Tt)) was heterologously overexpressed in Escherichia coli, and the protein (ADH(Tt)) was purified to homogeneity and characterized. ADH(Tt) is a tetrameric enzyme consisting of identical 26,961-Da subunits composed of 256 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to approximately 73 degrees C and a 30-min half-inactivation temperature of approximately 90 degrees C, as well as good tolerance to common organic solvents. ADH(Tt) has a strict requirement for NAD(H) as the coenzyme, a preference for reduction of aromatic ketones and alpha-keto esters, and poor activity on aromatic alcohols and aldehydes. This thermophilic enzyme catalyzes the following reactions with Prelog specificity: the reduction of acetophenone, 2,2,2-trifluoroacetophenone, alpha-tetralone, and alpha-methyl and alpha-ethyl benzoylformates to (S)-(-)-1-phenylethanol (>99% enantiomeric excess [ee]), (R)-alpha-(trifluoromethyl)benzyl alcohol (93% ee), (S)-alpha-tetralol (>99% ee), methyl (R)-(-)-mandelate (92% ee), and ethyl (R)-(-)-mandelate (95% ee), respectively, by way of an efficient in situ NADH-recycling system involving 2-propanol and a second thermophilic ADH. This study further supports the critical role of the D37 residue in discriminating NAD(H) from NADP(H) in members of the SDR superfamily.

  3. Replication of genome wide association studies of alcohol dependence: support for association with variation in ADH1C.

    Joanna M Biernacka

    Full Text Available Genome-wide association studies (GWAS have revealed many single nucleotide polymorphisms (SNPs associated with complex traits. Although these studies frequently fail to identify statistically significant associations, the top association signals from GWAS may be enriched for true associations. We therefore investigated the association of alcohol dependence with 43 SNPs selected from association signals in the first two published GWAS of alcoholism. Our analysis of 808 alcohol-dependent cases and 1,248 controls provided evidence of association of alcohol dependence with SNP rs1614972 in the ADH1C gene (unadjusted p = 0.0017. Because the GWAS study that originally reported association of alcohol dependence with this SNP [1] included only men, we also performed analyses in sex-specific strata. The results suggest that this SNP has a similar effect in both sexes (men: OR (95%CI = 0.80 (0.66, 0.95; women: OR (95%CI = 0.83 (0.66, 1.03. We also observed marginal evidence of association of the rs1614972 minor allele with lower alcohol consumption in the non-alcoholic controls (p = 0.081, and independently in the alcohol-dependent cases (p = 0.046. Despite a number of potential differences between the samples investigated by the prior GWAS and the current study, data presented here provide additional support for the association of SNP rs1614972 in ADH1C with alcohol dependence and extend this finding by demonstrating association with consumption levels in both non-alcoholic and alcohol-dependent populations. Further studies should investigate the association of other polymorphisms in this gene with alcohol dependence and related alcohol-use phenotypes.

  4. Ethnic Related Selection for an ADH Class I Variant within East Asia

    Li, Hui; Gu, Sheng; Cai, Xiaoyun; Speed, William C.; Pakstis, Andrew J.; Golub, Efim I.; Kidd, Judith R.; Kidd, Kenneth K.

    2008-01-01

    Background The alcohol dehydrogenases (ADH) are widely studied enzymes and the evolution of the mammalian gene cluster encoding these enzymes is also well studied. Previous studies have shown that the ADH1B*47His allele at one of the seven genes in humans is associated with a decrease in the risk of alcoholism and the core molecular region with this allele has been selected for in some East Asian populations. As the frequency of ADH1B*47His is highest in East Asia, and very low in most of the...

  5. ADH1B, ALDH2, GSTM1 and GSTT1 Gene Polymorphic Frequencies among Alcoholics and Controls in the Arcadian

    Mansoori, Abdul Anvesh; Jain, Subodh Kumar

    2018-03-27

    Background: Epidemiological research has highlighted the global burden of primary liver cancer cases due to alcohol consumption, even in a low consumption country like India. Alcohol detoxification is governed by ADH1B, ALDH2, GSTM1 and GSTT1 genes that encode functional enzymes which are coordinated with each other to remove highly toxic metabolites i.e. acetaldehyde as well as reactive oxygen species generated through detoxification processes. Some communities in the population appears to be at greater risk for development of the liver cancer due to genetic predispositions. Methods: The aim of this study was to screen the arcadian population of central India in order to investigate and compare the genotype distribution and allele frequencies of alcohol metabolizing genes (ADH1B, ALDH2, GSTM1 and GSTT1) in both alcoholic (N=121) and control (N=145) healthy subjects. The gene polymorphism analysis was conducted using PCR and RFLP methods. Results: The allele frequency of ALDH2 *1 was 0.79 and of ALDH2*2 was 0.21 (OR:1.12; CI (95%): 0.74-1.71). The null allele frequency for GSTM1 was 0.28 (OR:0.85; CI (95%): 0.50-1.46) and for GSTT1 was 0.20 (OR:1.93; CI (95%): 1.05-3.55). No gene polymorphism for ADH1B was not observed. The total prevalence of polymorphisms was 3.38% for ALDH2, GSTM1 and GSTT1. Conclusion: The results of this study suggested that individuals of the Central India population under study are at risk for liver disorders due to ALDH2, GSTM1 and GSTT1 gene polymorphisms. This results may have significance for prevention of alcohol dependence, alcoholic liver disorders and the likelihood of liver cancer. Creative Commons Attribution License

  6. In silico characterization and evolution studies of alcohol ...

    The aim of our study was to isolate the alcohol dehydrogenase (ADH) mRNA from Phoenix dactifera, and examine the molecular evolutionary history of this nuclear gene with others ADH genes from palms and other plants species. The DnADH gene has been isolated in silico by BLAST2GO from a cDNA library of date palm ...

  7. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco

    So Young Yi

    2017-11-01

    Full Text Available Synechocystis salt-responsive gene 1 (sysr1 was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1–2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.

  8. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.

    Jiaojiao Pang

    Full Text Available The endoplasmic reticulum (ER plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs. Myocardial mechanical and intracellular Ca(2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated.ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+ homeostasis, oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62, along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene.Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.

  9. Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a caucasian population

    Parlesak, Alexandr; Billinger, M. H.; Bode, C.

    2002-01-01

    potentially confounding factors (alcohol consumption, smoking, drug intake) on its activity in a Caucasian population. METHODS: ADH activity was assessed in endoscopic gastric biopsy specimens from 111 Caucasian subjects aged 20-80 years, of whom 51 were females. RESULTS: Highest ADH activity was measured...... at ethanol concentrations between 150 and 500 mM. Mean ADH activity was higher in antral specimens than in those from the gastric corpus of the same subjects. ADH activity decreased with increasing age in males, while the values in females aged 41-60 years were higher than those in women aged 20-40 or 61...... is negatively associated with consumption of larger quantities of alcohol. The question of whether ADH activity is higher in males or females can only be answered with respect to age. The gastric ADH activity in young men is distinctly higher compared to young women, but the opposite holds true in middle...

  10. High-temperature crystallization of the secondary alcohol dehydrogenase from the extreme thermophilic bacteria Thermoanaerobacter ethanolicus, a bifunctional alcohol dehydrogenase-acetyl-CoA thio esterase

    Watanabe, L.; Arni, R.K.

    1996-01-01

    Full text. Ethanol fermentations from Saccharomyces sp. are used in industrial ethanol production and are performed at mesophilic temperatures where final ethanol concentrations must exceed 4% (v/v) to make the process industrially economic. In addition, distillation is required to recover ethanol. Thermophilic fermentations are very attractive since they enable separation of ethanol from continuous cultures at process temperature and reduced pressure. Two different ethanol-production pathways have been identified for thermophilic bacteria; type I from Clostridium thermocellum, which contains only NADH-linked primary-alcohol dehydrogeneases, and type II from Thermoanaerobacter brockii which in addition include NADPH-linked secondary-alcohol dehydrogenases. The thermophilic anaerobic bacterium T ethanolicus 39E produces ethanol as the major end product from starch, pentose and herose substrates. The 2 Adh has a lower catalytic efficiency for the oxidation of 1 alcohols, including ethanol, than for the oxidation of secondary (2) alcohols or the reduction of ketones or aldehydes and possesses a significant acetyl-CoA reductive thioesterase activity. Large single crystals (0.7 x 0.3 x 0.3 mn) of this enzyme have been obtained at 40 0 C and diffraction data to 2.7 A resolution has been collected (R merge = 10.44%). Attempts are currently underway to obtain higher resolution data and a search for heavy atom derivatives is currently underway. The crystals belong to the space group P2 1 2 1 2 with cell constants of a a= 170.0 A, b=125.7 A and c=80.5 A. The asymmetric unit contains a tetramer as in the case of the crystals of the secondary alcohol dehydrogenase from Thermoanaerobacter brockii with a V M of 2.85 A 3 /Da. (author)

  11. Proteomic comparison of Entamoeba histolytica and Entamoeba dispar and the role of E. histolytica alcohol dehydrogenase 3 in virulence.

    Paul H Davis

    Full Text Available The protozoan intestinal parasite Entamoeba histolytica infects millions of people worldwide and is capable of causing amebic dysentery and amebic liver abscess. The closely related species Entamoeba dispar colonizes many more individuals, but this organism does not induce disease. To identify molecular differences between these two organisms that may account for their differential ability to cause disease in humans, we used two-dimensional gel-based (DIGE proteomic analysis to compare whole cell lysates of E. histolytica and E. dispar. We observed 141 spots expressed at a substantially (>5-fold higher level in E. histolytica HM-1:IMSS than E. dispar and 189 spots showing the opposite pattern. Strikingly, 3 of 4 proteins consistently identified as different at a greater than 5-fold level between E. histolytica HM-1:IMSS and E. dispar were identical to proteins recently identified as differentially expressed between E. histolytica HM-1:IMSS and the reduced virulence strain E. histolytica Rahman. One of these was E. histolytica alcohol dehydrogenase 3 (EhADH3. We found that E. histolytica possesses a higher level of NADP-dependent alcohol dehydrogenase activity than E. dispar and that some EhADH3 can be localized to the surface of E. histolytica. Episomal overexpression of EhADH3 in E. histolytica trophozoites resulted in only subtle phenotypic differences in E. histolytica virulence in animal models of amebic colitis and amebic liver abscess, making it difficult to directly link EhADH3 levels to virulence differences between E. histolytica and less-pathogenic Entamoeba.

  12. Genetic Polymorphisms of Alcohol Dehydrogenase and Aldehyde Dehydrogenase: Alcohol Use and Type 2 Diabetes in Japanese Men

    Yin, Guang; Ohnaka, Keizo; Morita, Makiko; Tabata, Shinji; Tajima, Osamu; Kono, Suminori

    2011-01-01

    This study investigated the association of ADH1B (rs1229984) and ALDH2 (rs671) polymorphisms with glucose tolerance status, as determined by a 75-g oral glucose tolerance test, and effect modification of these polymorphisms on the association between alcohol consumption and glucose intolerance in male officials of the Self-Defense Forces. The study subjects included 1520 men with normal glucose tolerance, 553 with prediabetic condition (impaired fasting glucose and impaired glucose tolerance)...

  13. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  14. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Milanovic Vesna

    2012-02-01

    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  15. Genetic polymorphisms of alcohol dehydrogense-1B and aldehyde dehydrogenase-2, alcohol flushing, mean corpuscular volume, and aerodigestive tract neoplasia in Japanese drinkers.

    Yokoyama, Akira; Mizukami, Takeshi; Yokoyama, Tetsuji

    2015-01-01

    Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) modulate exposure levels to ethanol/acetaldehyde. Endoscopic screening of 6,014 Japanese alcoholics yielded high detection rates of esophageal squamous cell carcinoma (SCC; 4.1%) and head and neck SCC (1.0%). The risks of upper aerodigestive tract SCC/dysplasia, especially of multiple SCC/dysplasia, were increased in a multiplicative fashion by the presence of a combination of slow-metabolizing ADH1B*1/*1 and inactive heterozygous ALDH2*1/*2 because of prolonged exposure to higher concentrations of ethanol/acetaldehyde. A questionnaire asking about current and past facial flushing after drinking a glass (≈180 mL) of beer is a reliable tool for detecting the presence of inactive ALDH2. We invented a health-risk appraisal (HRA) model including the flushing questionnaire and drinking, smoking, and dietary habits. Esophageal SCC was detected at a high rate by endoscopic mass-screening in high HRA score persons. A total of 5.0% of 4,879 alcoholics had a history of (4.0%) or newly diagnosed (1.0%) gastric cancer. Their high frequency of a history of gastric cancer is partly explained by gastrectomy being a risk factor for alcoholism because of altered ethanol metabolism, e.g., by blood ethanol level overshooting. The combination of H. pylori-associated atrophic gastritis and ALDH2*1/*2 showed the greatest risk of gastric cancer in alcoholics. High detection rates of advanced colorectal adenoma/carcinoma were found in alcoholics, 15.7% of 744 immunochemical fecal occult blood test (IFOBT)-negative alcoholics and 31.5% of the 393 IFOBT-positive alcoholics. Macrocytosis with an MCV≥106 fl increased the risk of neoplasia in the entire aerodigestive tract of alcoholics, suggesting that poor nutrition as well as ethanol/acetaldehyde exposure plays an important role in neoplasia.

  16. Pre-steady state transients in the Drosophila alcohol dehydrogenase catalyzed reaction: isotope effects and stereospecificity

    Place, A.R.; Eccleston, J.F.

    1987-01-01

    The alcohol dehydrogenase (ADH) isolated from Drosophila is unique among alcohol metabolizing enzymes by not requiring metals for catalysis, by showing 4-pro-S (B-sided) hydride transfer stereospecificity, and by possessing a greater catalytic turnover rate for secondary alcohols than for primary alcohols. They have extended their studies on the kinetic mechanism for this enzyme by examining the pre-steady state transients of ternary complex interconversion using stopped-flow fluorescence methods. When enzyme and a 30-fold molar excess of NADH is mixed with excess acetadehyde, methyl ethyl ketone (MEK), or cyclohexanone a rapid (> 100 s -1 ) transient is observe before the steady-state. The rates are insensitive to isotope substitution. With the substrate MEK, the rate and amplitude suggests a single turnover of the enzyme. Similar pre-steady state transients are observed when enzyme and a 50-fold molar excess of NAD + is mixed with ethanol, 2-propanol, and cyclohexanol. The rates show a hyperbolic concentration dependence and a deuterium isotope effect. With d 6 -deuteroethanol the transient no longer occurs in the pre-steady state. When the optical isomers of secondary alcohols are used as substrates, transients are observed only in the R-(-) isomers for all chain lengths. With 2-S(+)-heptanol and 2-S(+)-octanol no transients occur

  17. Inversion of substrate stereoselectivity of horse liver alcohol dehydrogenase by substitutions of Ser-48 and Phe-93

    Kim, Keehyuk; Plapp, Bryce V. (Iowa)

    2017-10-01

    The substrate specificities of alcohol dehydrogenases (ADH) are of continuing interest for understanding the physiological functions of these enzymes. Ser-48 and Phe-93 have been identified as important residues in the substrate binding sites of ADHs, but more comprehensive structural and kinetic studies are required. The S48T substitution in horse ADH1E has small effects on kinetic constants and catalytic efficiency (V/Km) with ethanol, but decreases activity with benzyl alcohol and affinity for 2,2,2-trifluoroethanol (TFE) and 2,3,4,5,6-pentafluorobenzyl alcohol (PFB). Nevertheless, atomic resolution crystal structures of the S48T enzyme complexed with NAD+ and TFE or PFB are very similar to the structures for the wild-type enzyme. (The S48A substitution greatly diminishes catalytic activity.) The F93A substitution significantly decreases catalytic efficiency (V/Km) for ethanol and acetaldehyde while increasing activity for larger secondary alcohols and the enantioselectivity for the R-isomer relative to the S-isomer of 2-alcohols. The doubly substituted S48T/F93A enzyme has kinetic constants for primary and secondary alcohols similar to those for the F93A enzyme, but the effect of the S48T substitution is to decrease V/Km for (S)-2-alcohols without changing V/Km for (R)-2-alcohols. Thus, the S48T/F93A substitutions invert the enantioselectivity for alcohol oxidation, increasing the R/S ratio by 10, 590, and 200-fold for 2-butanol, 2-octanol, and sec-phenethyl alcohol, respectively. Transient kinetic studies and simulations of the ordered bi bi mechanism for the oxidation of the 2-butanols by the S48T/F93A ADH show that the rate of hydride transfer is increased about 7-fold for both isomers (relative to wild-type enzyme) and that the inversion of enantioselectivity is due to more productive binding for (R)-2-butanol than for (S)-2-butanol in the ternary complex. Molecular modeling suggests that both of the sec-phenethyl alcohols could bind to the enzyme and that

  18. Inversion of substrate stereoselectivity of horse liver alcohol dehydrogenase by substitutions of Ser-48 and Phe-93.

    Kim, Keehyuk; Plapp, Bryce V

    2017-10-01

    The substrate specificities of alcohol dehydrogenases (ADH) are of continuing interest for understanding the physiological functions of these enzymes. Ser-48 and Phe-93 have been identified as important residues in the substrate binding sites of ADHs, but more comprehensive structural and kinetic studies are required. The S48T substitution in horse ADH1E has small effects on kinetic constants and catalytic efficiency (V/K m ) with ethanol, but decreases activity with benzyl alcohol and affinity for 2,2,2-trifluoroethanol (TFE) and 2,3,4,5,6-pentafluorobenzyl alcohol (PFB). Nevertheless, atomic resolution crystal structures of the S48T enzyme complexed with NAD + and TFE or PFB are very similar to the structures for the wild-type enzyme. (The S48A substitution greatly diminishes catalytic activity.) The F93A substitution significantly decreases catalytic efficiency (V/K m ) for ethanol and acetaldehyde while increasing activity for larger secondary alcohols and the enantioselectivity for the R-isomer relative to the S-isomer of 2-alcohols. The doubly substituted S48T/F93A enzyme has kinetic constants for primary and secondary alcohols similar to those for the F93A enzyme, but the effect of the S48T substitution is to decrease V/K m for (S)-2-alcohols without changing V/K m for (R)-2-alcohols. Thus, the S48T/F93A substitutions invert the enantioselectivity for alcohol oxidation, increasing the R/S ratio by 10, 590, and 200-fold for 2-butanol, 2-octanol, and sec-phenethyl alcohol, respectively. Transient kinetic studies and simulations of the ordered bi bi mechanism for the oxidation of the 2-butanols by the S48T/F93A ADH show that the rate of hydride transfer is increased about 7-fold for both isomers (relative to wild-type enzyme) and that the inversion of enantioselectivity is due to more productive binding for (R)-2-butanol than for (S)-2-butanol in the ternary complex. Molecular modeling suggests that both of the sec-phenethyl alcohols could bind to the enzyme

  19. The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer.

    Tsai, Sen-Tien; Wong, Tung-Yiu; Ou, Chun-Yen; Fang, Sheen-Yie; Chen, Ken-Chung; Hsiao, Jenn-Ren; Huang, Cheng-Chih; Lee, Wei-Ting; Lo, Hung-I; Huang, Jehn-Shyun; Wu, Jiunn-Liang; Yen, Chia-Jui; Hsueh, Wei-Ting; Wu, Yuan-Hua; Yang, Ming-Wei; Lin, Forn-Chia; Chang, Jang-Yang; Chang, Kwang-Yu; Wu, Shang-Yin; Liao, Hsiao-Chen; Lin, Chen-Lin; Wang, Yi-Hui; Weng, Ya-Ling; Yang, Han-Chien; Chang, Jeffrey S

    2014-11-15

    Alcohol consumption is an established risk factor for head and neck cancer (HNC). The major carcinogen from alcohol is acetaldehyde, which may be produced by humans or by oral microorganisms through the metabolism of ethanol. To account for the different sources of acetaldehyde production, the current study examined the interplay between alcohol consumption, oral hygiene (as a proxy measure for the growth of oral microorganisms), and alcohol-metabolizing genes (ADH1B and ALDH2) in the risk of HNC. We found that both the fast (*2/*2) and the slow (*1/*1+ *1/*2) ADH1B genotypes increased the risk of HNC due to alcohol consumption, and this association differed according to the slow/non-functional ALDH2 genotypes (*1/*2+ *2/*2) or poor oral hygiene. In persons with the fast ADH1B genotype, the HNC risk associated with alcohol drinking was increased for those with the slow/non-functional ALDH2 genotypes. For those with the slow ADH1B genotypes, oral hygiene appeared to play an important role; the highest magnitude of an increased HNC risk in alcohol drinkers occurred among those with the worst oral hygiene. This is the first study to show that the association between alcohol drinking and HNC risk may be modified by the interplay between genetic polymorphisms of ADH1B and ALDH2 and oral hygiene. Although it is important to promote abstinence from or reduction of alcohol drinking to decrease the occurrence of HNC, improving oral hygiene practices may provide additional benefit. © 2014 UICC.

  20. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134

    Kang, ChulHee; Hayes, Robert; Sanchez, Emiliano J.; Webb, Brian N.; Li, Qunrui; Hooper, Travis; Nissen, Mark S.; Xun, Luying

    2012-01-01

    Summary FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn2+ coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn2+ coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD+ dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD+ to NADH that is subsequently used for furfural reduction. PMID:22081946

  1. Interaction between alcohol dehydrogenase II gene, alcohol consumption, and risk for breast cancer

    St?rmer, T; Wang-Gohrke, S; Arndt, V; Boeing, H; Kong, X; Kreienberg, R; Brenner, H

    2002-01-01

    MaeIII Restriction Fragment Length Polymorphism in exon 3 of the alcohol dehydrogenase II was assessed in serum from 467 randomly selected German women and 278 women with invasive breast cancer to evaluate the interaction between a polymorphism of the alcohol dehydrogenase II gene, alcohol consumption and risk for breast cancer. In both groups, usual consumption of different alcoholic beverages was asked for using semiquantitative food frequency questionnaires. We used multivariable logistic ...

  2. The ADH7 Promoter of Saccharomyces cerevisiae is Vanillin-Inducible and Enables mRNA Translation Under Severe Vanillin Stress.

    Nguyen, Trinh T M; Iwaki, Aya; Izawa, Shingo

    2015-01-01

    Vanillin is one of the major phenolic aldehyde compounds derived from lignocellulosic biomass and acts as a potent fermentation inhibitor to repress the growth and fermentative ability of yeast. Vanillin can be reduced to its less toxic form, vanillyl alcohol, by the yeast NADPH-dependent medium chain alcohol dehydrogenases, Adh6 and Adh7. However, there is little information available regarding the regulation of their gene expression upon severe vanillin stress, which has been shown to repress the bulk translation activity in yeast cells. Therefore, in this study, we investigated expression patterns of the ADH6 and ADH7 genes in the presence of high concentrations of vanillin. We found that although both genes were transcriptionally upregulated by vanillin stress, they showed different protein expression patterns in response to vanillin. Expression of Adh6 was constitutive and gradually decreased under vanillin stress, whereas expression of Adh7 was inducible, and, importantly, occurred under severe vanillin stress. The null mutants of ADH6 or ADH7 genes were hypersensitive to vanillin and reduced vanillin less efficiently than the wild type, confirming the importance of Adh6 and Adh7 in vanillin detoxification. Additionally, we demonstrate that the ADH7 promoter is vanillin-inducible and enables effective protein synthesis even under severe vanillin stress, and it may be useful for the improvement of vanillin-tolerance and biofuel production efficiency via modification of yeast gene expression in the presence of high concentrations of vanillin.

  3. The ADH7 promoter of Saccharomyces cerevisiae is vanillin-inducible and enables mRNA translation under severe vanillin stress

    Trinh Thi My Nguyen

    2015-12-01

    Full Text Available Vanillin is one of the major phenolic aldehyde compounds derived from lignocellulosic biomass and acts as a potent fermentation inhibitor to repress the growth and fermentative ability of yeast. Vanillin can be reduced to its less toxic form, vanillyl alcohol, by the yeast NADPH-dependent medium chain alcohol dehydrogenases, Adh6 and Adh7. However, there is little information available regarding the regulation of their gene expression upon severe vanillin stress, which has been shown to repress the bulk translation activity in yeast cells. Therefore, in this study, we investigated expression patterns of the ADH6 and ADH7 genes in the presence of high concentrations of vanillin. We found that although both genes were transcriptionally upregulated by vanillin stress, they showed different protein expression patterns in response to vanillin. Expression of Adh6 was constitutive and gradually decreased under vanillin stress, whereas expression of Adh7 was inducible, and, importantly, occurred under severe vanillin stress. The null mutants of ADH6 or ADH7 genes were hypersensitive to vanillin and reduced vanillin less efficiently than the wild type, confirming the importance of Adh6 and Adh7 in vanillin detoxification. Additionally, we demonstrate that the ADH7 promoter is vanillin-inducible and enables effective protein synthesis even under severe vanillin stress, and it may be useful for the improvement of vanillin-tolerance and biofuel production efficiency via modification of yeast gene expression in the presence of high concentrations of vanillin.

  4. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB.

    Lu, Congcong; Yu, Le; Varghese, Saju; Yu, Mingrui; Yang, Shang-Tian

    2017-11-01

    Clostridium beijerinckii CC101 was engineered to overexpress aldehyde/alcohol dehydrogenase (adhE2) and CoA-transferase (ctfAB). Solvent production and acid assimilation were compared between the parental and engineered strains expressing only adhE2 (CC101-SV4) and expressing adhE2, ald and ctfAB (CC101-SV6). CC101-SV4 showed an early butanol production from glucose but stopped pre-maturely at a low butanol concentration of ∼6g/L. Compared to CC101, CC101-SV6 produced more butanol (∼12g/L) from glucose and was able to re-assimilate more acids, which prevented "acid crash" and increased butanol production, under all conditions studied. CC101-SV6 also showed better ability in using glucose and xylose present in sugarcane bagasse hydrolysate, and produced 9.4g/L solvents (acetone, butanol and ethanol) compared to only 2.6g/L by CC101, confirming its robustness and better tolerance to hydrolysate inhibitors. The engineered strain of C. beijerinckii overexpressing adhE2 and ctfAB should have good potential for producing butanol from lignocellulosic biomass hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bioelectrochemical fuel cell and sensor based on quinoprotein alcohol dehydrogenase

    Davis, G; Hill, H A.O.; Aston, W J; Higgins, I J; Turner, A P.F.

    1983-09-01

    A biofuel cell, yielding a stable and continuous low-power output, based on the enzymatic oxidation of methanol to formic acid has been designed and investigated. The homogeneous kinetics of the electrochemically-coupled enzymatic oxidation reaction were investigated and optimized. The biofuel cell also functioned as a sensitive method for the detection of primary alcohols. A method for medium-scale preparation of the enzyme alcohol dehydrogenase (alcohol: (acceptor) oxidoreductase, EC 1.1.99.8) is described. (Refs. 14).

  6. Isolation of two independent allyl alcohol resistant Adh-1 null mutants following selection of pollen and seeds.

    Wisman, E.; Ramanna, M.S.; Zabel, P.

    1993-01-01

    The Adh-1 null mutant (B15-1-8) isolated previously was used to establish conditions that allow the selection of ADH-deficient pollen grains and seeds of tomato. New Adh-1 null mutants were then selected among the progenies derived from crosses between the genetically unstable tomato lines Yvms,

  7. The ADH7 Promoter of Saccharomyces cerevisiae is Vanillin-Inducible and Enables mRNA Translation Under Severe Vanillin Stress

    Nguyen, Trinh T. M.; Iwaki, Aya; Izawa, Shingo

    2015-01-01

    Vanillin is one of the major phenolic aldehyde compounds derived from lignocellulosic biomass and acts as a potent fermentation inhibitor to repress the growth and fermentative ability of yeast. Vanillin can be reduced to its less toxic form, vanillyl alcohol, by the yeast NADPH-dependent medium chain alcohol dehydrogenases, Adh6 and Adh7. However, there is little information available regarding the regulation of their gene expression upon severe vanillin stress, which has been shown to repre...

  8. Bioinspired Design of Alcohol Dehydrogenase@nano TiO2 Microreactors for Sustainable Cycling of NAD+/NADH Coenzyme

    Sen Lin

    2018-02-01

    Full Text Available The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO2 nanoparticles (NPs as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO2 NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD coenzyme between NADH and NAD+ was realized by enzymatic regeneration of NADH from NAD+ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD+ under visible light. This bioinspired ADH@TiO2 NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD+/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.

  9. Fiber-Optic Bio-sniffer (Biochemical Gas Sensor) Using Reverse Reaction of Alcohol Dehydrogenase for Exhaled Acetaldehyde.

    Iitani, Kenta; Chien, Po-Jen; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2018-02-23

    Volatile organic compounds (VOCs) exhaled in breath have huge potential as indicators of diseases and metabolisms. Application of breath analysis for disease screening and metabolism assessment is expected since breath samples can be noninvasively collected and measured. In this research, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for gaseous acetaldehyde (AcH) was developed. In the AcH bio-sniffer, a reverse reaction of alcohol dehydrogenase (ADH) was employed for reducing AcH to ethanol and simultaneously consuming a coenzyme, reduced form of nicotinamide adenine dinucleotide (NADH). The concentration of AcH can be quantified by fluorescence detection of NADH that was consumed by reverse reaction of ADH. The AcH bio-sniffer was composed of an ultraviolet light-emitting diode (UV-LED) as an excitation light source, a photomultiplier tube (PMT) as a fluorescence detector, and an optical fiber probe, and these three components were connected with a bifurcated optical fiber. A gas-sensing region of the fiber probe was developed with a flow-cell and an ADH-immobilized membrane. In the experiment, after optimization of the enzyme reaction conditions, the selectivity and dynamic range of the AcH bio-sniffer were investigated. The AcH bio-sniffer showed a short measurement time (within 2 min) and a broad dynamic range for determination of gaseous AcH, 0.02-10 ppm, which encompassed a typical AcH concentration in exhaled breath (1.2-6.0 ppm). Also, the AcH bio-sniffer exhibited a high selectivity to gaseous AcH based on the specificity of ADH. The sensor outputs were observed only from AcH-contained standard gaseous samples. Finally, the AcH bio-sniffer was applied to measure the concentration of AcH in exhaled breath from healthy subjects after ingestion of alcohol. As a result, a significant difference of AcH concentration between subjects with different aldehyde dehydrogenase type 2 (ALDH2) phenotypes was observed. The AcH bio-sniffer can be

  10. Interaction between ADH1C Arg272Gln and alcohol intake in relation to breast cancer risk suggests that ethanol is the causal factor in alcohol related breast cancer

    Benzon Larsen, Signe; Vogel, Ulla Birgitte; Christensen, Jane

    2010-01-01

    Alcohol is a risk factor for breast cancer. We wanted to determine if ADH polymorphisms which modify the rate of ethanol oxidation to acetaldehyde, were associated with breast cancer risk. We matched 809 postmenopausal breast cancer cases with 809 controls, nested within the prospective Diet......, Cancer and Health study. Among variant allele carriers of ADH1C Arg(272)Gln, alcohol intake increased the risk of breast cancer with 14% (95% CI: 1.04-1.24) per 10g alcohol/day, but not among homozygous wild type carriers (p for interaction=0.06). Thus, slow oxidation of ethanol seemed to be associated...

  11. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes and Alcoholic Ketosis Are Associated with the Serum Uric Acid Level in Japanese Alcoholic Men.

    Yokoyama, Akira; Yokoyama, Tetsuji; Mizukami, Takeshi; Matsui, Toshifumi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2016-05-01

    To identify determinants of hyperuricemia in alcoholics. The serum uric acid (UA) levels of 1759 Japanese alcoholic men (≥40 years) were measured on their first visit or within 3 days after admission; ADH1B and ALDH2 genotyping on blood DNA samples were performed. Dipstick urinalyses for ketonuria and serum UA measurements were simultaneously performed for 621 men on their first visit. Serum UA levels of >416 μmol/l (7.0 mg/dl) and ≥535 μmol/l (9.0 mg/dl) were observed in 30.4 and 7.8% of the subjects, respectively. Ketonuria was positive in 35.9% of the subjects, and a multivariate analysis revealed that the ketosis level was positively associated with the UA level. The presence of the ADH1B*2 allele and the ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) among subjects with a high UA level of >416 μmol/l (vs. ≤416 μmol/l; 2.04 [1.58-2.65] and 1.48 [1.09-2.01], respectively) and those with a high UA level of ≥535 μmol/l (vs. ≤416 μmol/l; 2.29 [1.42-3.71] and 3.03 [1.51-6.08], respectively). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs (2.86 [1.61-5.10] and 6.21 [1.49-25.88] for a UA level of >416 μmol/l and ≥535 μmol/l, respectively), compared with the ADH1B*1/*1 plus ALDH2*1/*2 combination. The presence of diabetes and the consumption of Japanese sake rather than beer were negatively associated with the UA levels. The faster metabolism of ethanol and acetaldehyde by the ADH1B*2 allele and ALDH2*1/*1 genotype and higher ketosis levels were associated with higher UA levels in alcoholics, while diabetes and the consumption of sake were negative determinants. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  12. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  13. Ethnic related selection for an ADH Class I variant within East Asia.

    Li, Hui; Gu, Sheng; Cai, Xiaoyun; Speed, William C; Pakstis, Andrew J; Golub, Efim I; Kidd, Judith R; Kidd, Kenneth K

    2008-04-02

    The alcohol dehydrogenases (ADH) are widely studied enzymes and the evolution of the mammalian gene cluster encoding these enzymes is also well studied. Previous studies have shown that the ADH1B*47His allele at one of the seven genes in humans is associated with a decrease in the risk of alcoholism and the core molecular region with this allele has been selected for in some East Asian populations. As the frequency of ADH1B*47His is highest in East Asia, and very low in most of the rest of the world, we have undertaken more detailed investigation in this geographic region. Here we report new data on 30 SNPs in the ADH7 and Class I ADH region in samples of 24 populations from China and Laos. These populations cover a wide geographic region and diverse ethnicities. Combined with our previously published East Asian data for these SNPs in 8 populations, we have typed populations from all of the 6 major linguistic phyla (Altaic including Korean-Japanese and inland Altaic, Sino-Tibetan, Hmong-Mien, Austro-Asiatic, Daic, and Austronesian). The ADH1B genotyping data are strongly related to ethnicity. Only some eastern ethnic phyla or subphyla (Korean-Japanese, Han Chinese, Hmong-Mien, Daic, and Austronesian) have a high frequency of ADH1B*47His. ADH1B haplotype data clustered the populations into linguistic subphyla, and divided the subphyla into eastern and western parts. In the Hmong-Mien and Altaic populations, the extended haplotype homozygosity (EHH) and relative EHH (REHH) tests for the ADH1B core were consistent with selection for the haplotype with derived SNP alleles. In the other ethnic phyla, the core showed only a weak signal of selection at best. The selection distribution is more significantly correlated with the frequency of the derived ADH1B regulatory region polymorphism than the derived amino-acid altering allele ADH1B*47His. Thus, the real focus of selection may be the regulatory region. The obvious ethnicity-related distributions of ADH1B diversities

  14. Ethnic related selection for an ADH Class I variant within East Asia.

    Hui Li

    2008-04-01

    Full Text Available The alcohol dehydrogenases (ADH are widely studied enzymes and the evolution of the mammalian gene cluster encoding these enzymes is also well studied. Previous studies have shown that the ADH1B*47His allele at one of the seven genes in humans is associated with a decrease in the risk of alcoholism and the core molecular region with this allele has been selected for in some East Asian populations. As the frequency of ADH1B*47His is highest in East Asia, and very low in most of the rest of the world, we have undertaken more detailed investigation in this geographic region.Here we report new data on 30 SNPs in the ADH7 and Class I ADH region in samples of 24 populations from China and Laos. These populations cover a wide geographic region and diverse ethnicities. Combined with our previously published East Asian data for these SNPs in 8 populations, we have typed populations from all of the 6 major linguistic phyla (Altaic including Korean-Japanese and inland Altaic, Sino-Tibetan, Hmong-Mien, Austro-Asiatic, Daic, and Austronesian. The ADH1B genotyping data are strongly related to ethnicity. Only some eastern ethnic phyla or subphyla (Korean-Japanese, Han Chinese, Hmong-Mien, Daic, and Austronesian have a high frequency of ADH1B*47His. ADH1B haplotype data clustered the populations into linguistic subphyla, and divided the subphyla into eastern and western parts. In the Hmong-Mien and Altaic populations, the extended haplotype homozygosity (EHH and relative EHH (REHH tests for the ADH1B core were consistent with selection for the haplotype with derived SNP alleles. In the other ethnic phyla, the core showed only a weak signal of selection at best.The selection distribution is more significantly correlated with the frequency of the derived ADH1B regulatory region polymorphism than the derived amino-acid altering allele ADH1B*47His. Thus, the real focus of selection may be the regulatory region. The obvious ethnicity-related distributions of ADH1B

  15. Ethnic Related Selection for an ADH Class I Variant within East Asia

    Li, Hui; Gu, Sheng; Cai, Xiaoyun; Speed, William C.; Pakstis, Andrew J.; Golub, Efim I.; Kidd, Judith R.; Kidd, Kenneth K.

    2008-01-01

    Background The alcohol dehydrogenases (ADH) are widely studied enzymes and the evolution of the mammalian gene cluster encoding these enzymes is also well studied. Previous studies have shown that the ADH1B*47His allele at one of the seven genes in humans is associated with a decrease in the risk of alcoholism and the core molecular region with this allele has been selected for in some East Asian populations. As the frequency of ADH1B*47His is highest in East Asia, and very low in most of the rest of the world, we have undertaken more detailed investigation in this geographic region. Methodology/Principal Findings Here we report new data on 30 SNPs in the ADH7 and Class I ADH region in samples of 24 populations from China and Laos. These populations cover a wide geographic region and diverse ethnicities. Combined with our previously published East Asian data for these SNPs in 8 populations, we have typed populations from all of the 6 major linguistic phyla (Altaic including Korean-Japanese and inland Altaic, Sino-Tibetan, Hmong-Mien, Austro-Asiatic, Daic, and Austronesian). The ADH1B genotyping data are strongly related to ethnicity. Only some eastern ethnic phyla or subphyla (Korean-Japanese, Han Chinese, Hmong-Mien, Daic, and Austronesian) have a high frequency of ADH1B*47His. ADH1B haplotype data clustered the populations into linguistic subphyla, and divided the subphyla into eastern and western parts. In the Hmong-Mien and Altaic populations, the extended haplotype homozygosity (EHH) and relative EHH (REHH) tests for the ADH1B core were consistent with selection for the haplotype with derived SNP alleles. In the other ethnic phyla, the core showed only a weak signal of selection at best. Conclusions/Significance The selection distribution is more significantly correlated with the frequency of the derived ADH1B regulatory region polymorphism than the derived amino-acid altering allele ADH1B*47His. Thus, the real focus of selection may be the regulatory region

  16. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity).

  17. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  18. The cinnamyl alcohol dehydrogenase (CAD gene family in flax (Linum usitatissimum L.: Insight from expression profiling of cads induced by elicitors in cultured flax cells

    Eom Hee Seung

    2016-01-01

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD is a key enzyme in the biosynthesis of lignin and lignans as it catalyzes the final step of monolignol biosynthesis, using NADPH as a cofactor. In higher plants, CAD is encoded by a multigene family consisting of three major classes. Based on the recently released flax (Linum usitatissimum L. whole-genome sequences, in this study we identified six CAD family genes that contain an ADH_N domain and an ADH_zinc_N domain, which suggests that the putative flax CADs (LuCADs are zinc-dependent alcohol dehydrogenases and members of the plant CAD family. In addition, expression analysis using quantitative real-time PCR revealed spatial variations in the expression of LuCADs in different organs. Comparative analysis between LuCAD enzymatic activity and LuCAD transcripts indicates that the variation of LuCAD enzymatic activities by elicitors is reflected by transcription of LuCADs in flax suspension-cultured cells. Taken together, our genome-wide analysis of CAD genes and the expression profiling of these genes provide valuable information for understanding the function of CADs, and will assist future studies on the physiological role of monolignols associated with plant defense.

  19. Dual enzymatic dynamic kinetic resolution by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase and Candida antarctica lipase B

    Karume, Ibrahim; Musa, Musa M.; Bsharat, Odey; Takahashi, Masateru; Hamdan, Samir; El Ali, Bassam

    2016-01-01

    The immobilization of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (TeSADH) using sol–gel method enables its use to racemize enantiopure alcohols in organic media. Here, we report the racemization of enantiopure phenyl

  20. Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins.

    Lapierre, Catherine; Pilate, Gilles; Pollet, Brigitte; Mila, Isabelle; Leplé, Jean-Charles; Jouanin, Lise; Kim, Hoon; Ralph, John

    2004-02-01

    A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.

  1. Cellulase and alcohol dehydrogenase immobilized in Langmuir and Langmuir-Blodgett films and their molecular-level effects upon contact with cellulose and ethanol.

    Rodrigues, Dilmer; Camilo, Fernanda Ferraz; Caseli, Luciano

    2014-02-25

    The key challenges for producing devices based on nanostructured films with control over the molecular architecture are to preserve the catalytic activity of the immobilized biomolecules and to provide a reliable method for determining the intermolecular interactions and the accommodation of molecules at very small scales. In this work, the enzymes cellulase and alcohol dehydrogenase (ADH) were coimmobilized with dipalmitoylphosphatidylcholine (DPPC) as Langmuir-Blodgett (LB) films, and their biological activities were assayed by accommodating the structure formed in contact with cellulose. For this purpose, the polysaccharide was dissolved in an ionic liquid, 1-buthyl-3-methylimidazolium chloride (BMImCl), and dropped on the top of the hybrid cellulase-ADH-DPPC LB film. The interactions between cellulose and ethanol, which are the catalytic substrates of the enzymes as well as important elements in the production of second-generation fuels, were then investigated using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Investigation of the secondary structures of the enzymes was performed using PM-IRRAS, through which the presence of ethanol and cellulose was observed to highly affect the structures of ADH and cellulase, respectively. The detection of products formed from the catalyzed reactions as well as the changes of secondary structure of the enzymes immobilization could be carried out, which opens the possibility to produce a means for producing second-generation ethanol using nanoscale arrangements.

  2. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  3. Novel approaches for using dehydrogenases and ene-reductases for organic synthesis

    Gargiulo, S.

    2015-01-01

    Oxidation of alcohols is a reaction of major interest for organic chemistry. However, the most common chemical routes developed so far involve the use of toxic or hazardous reagents or catalysts that often lack good chemoselectivity. In this respect, alcohol dehydrogenases (ADHs) represent a very

  4. Effect of alcohol dehydrogenase-1B and -7 polymorphisms on blood ethanol and acetaldehyde concentrations in healthy subjects with a history of moderate alcohol consumption.

    Pastorino, Roberta; Iuliano, Luigi; Vecchioni, Alessia; Arzani, Dario; Milic, Mirta; Annunziata, Francesca; Zerbinati, Chiara; Capoluongo, Ettore; Bonassi, Stefano; McKay, James D; Boccia, Stefania

    2018-03-01

    This study aims to evaluate the effect of ADH1B and ADH7 genotypes on blood acetaldehyde and ethanol levels after alcohol ingestion, and to measure the genotoxic effect of smoking and ethanol on the buccal cells, also controlling for ADH variants. We recruited healthy Italian subjects with at least a moderate history of alcohol consumption. All subjects were given an alcoholic drink of 0.4 g ethanol /kg of body weight. Blood venous samples were collected at baseline, and 30, 60, 90, and 120 minutes after ingestion. Buccal cells were collected before ethanol ingestion. Sixty subjects were enrolled in the study. Individuals with the ADH1B GG genotype had median ethanol levels of 5.0mM (IQR 3.4-7.2), and those with the ADH1B GT/TT genotype had 4.7mM (IQR 4.2-4.8). Corresponding acetaldehyde levels were 1.5μM (IQR 0.7-2.6) for ADH1B GG genotype and 1.6μM (IQR 1.5-1.7) for ADH1B CG/GG genotype. Individuals with the ADH7 CC genotype had median ethanol levels of 5.0mM (IQR 3.3-7.2), while 5.0mM (IQR 4.7-5.6) was in those with the ADH7 CG/GG genotype. Corresponding acetaldehyde levels were 1.5 μM (IQR 0.7-2.6) for ADH7 CC genotype and 1.5 μM (IQR 1.4-1.6) for ADH7 CG/GG genotypes. A non-significant increase in the frequency of karyolitic and pyknotic cells was found in the group of heavy drinkers and current smokers, when compared to the moderate drinkers and the non-smokers. Our study does not support the hypothesis that ADH1B and ADH7 genotypes affect blood ethanol and acetaldehyde concentration. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.

    Bekers, K M; Heijnen, J J; van Gulik, W M

    2015-08-01

    With the current quantitative metabolomics techniques, only whole-cell concentrations of NAD and NADH can be quantified. These measurements cannot provide information on the in vivo redox state of the cells, which is determined by the ratio of the free forms only. In this work we quantified free NAD:NADH ratios in yeast under anaerobic conditions, using alcohol dehydrogenase (ADH) and the lumped reaction of glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase as sensor reactions. We showed that, with an alternative accurate acetaldehyde determination method, based on rapid sampling, instantaneous derivatization with 2,4 diaminophenol hydrazine (DNPH) and quantification with HPLC, the ADH-catalysed oxidation of ethanol to acetaldehyde can be applied as a relatively fast and simple sensor reaction to quantify the free NAD:NADH ratio under anaerobic conditions. We evaluated the applicability of ADH as a sensor reaction in the yeast Saccharomyces cerevisiae, grown in anaerobic glucose-limited chemostats under steady-state and dynamic conditions. The results found in this study showed that the cytosolic redox status (NAD:NADH ratio) of yeast is at least one order of magnitude lower, and is thus much more reduced, under anaerobic conditions compared to aerobic glucose-limited steady-state conditions. The more reduced state of the cytosol under anaerobic conditions has major implications for (central) metabolism. Accurate determination of the free NAD:NADH ratio is therefore of importance for the unravelling of in vivo enzyme kinetics and to judge accurately the thermodynamic reversibility of each redox reaction. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  7. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  8. Gene ercA, encoding a putative iron-containing alcohol dehydrogenase, is involved in regulation of ethanol utilization in Pseudomonas aeruginosa.

    Hempel, Niels; Görisch, Helmut; Mern, Demissew S

    2013-09-01

    Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported.

  9. Association between alcohol and cardiovascular disease

    Holmes, Michael V; Dale, Caroline E; Zuccolo, Luisa

    2014-01-01

    OBJECTIVE: To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. DESIGN: Mendelian randomisation meta-analysis of 56 epidemiological studies. PARTICIPANTS: 261 991 individuals of European des...

  10. Racemization of enantiopure secondary alcohols by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase

    Musa, Musa M.

    2013-01-01

    Controlled racemization of enantiopure phenyl-ring-containing secondary alcohols is achieved in this study using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus (W110A TeSADH) and in the presence of the reduced and oxidized forms of its cofactor nicotinamide-adenine dinucleotide. Racemization of both enantiomers of alcohols accepted by W110A TeSADH, not only with low, but also with reasonably high, enantiomeric discrimination is achieved by this method. Furthermore, the high tolerance of TeSADH to organic solvents allows TeSADH-catalyzed racemization to be conducted in media containing up to 50% (v/v) of organic solvents. © 2013 The Royal Society of Chemistry.

  11. Dose-Dependent Change in Elimination Kinetics of Ethanol due to Shift of Dominant Metabolizing Enzyme from ADH 1 (Class I to ADH 3 (Class III in Mouse

    Takeshi Haseba

    2012-01-01

    Full Text Available ADH 1 and ADH 3 are major two ADH isozymes in the liver, which participate in systemic alcohol metabolism, mainly distributing in parenchymal and in sinusoidal endothelial cells of the liver, respectively. We investigated how these two ADHs contribute to the elimination kinetics of blood ethanol by administering ethanol to mice at various doses, and by measuring liver ADH activity and liver contents of both ADHs. The normalized AUC (AUC/dose showed a concave increase with an increase in ethanol dose, inversely correlating with β. CLT (dose/AUC linearly correlated with liver ADH activity and also with both the ADH-1 and -3 contents (mg/kg B.W.. When ADH-1 activity was calculated by multiplying ADH-1 content by its Vmax⁡/mg (4.0 and normalized by the ratio of liver ADH activity of each ethanol dose to that of the control, the theoretical ADH-1 activity decreased dose-dependently, correlating with β. On the other hand, the theoretical ADH-3 activity, which was calculated by subtracting ADH-1 activity from liver ADH activity and normalized, increased dose-dependently, correlating with the normalized AUC. These results suggested that the elimination kinetics of blood ethanol in mice was dose-dependently changed, accompanied by a shift of the dominant metabolizing enzyme from ADH 1 to ADH 3.

  12. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from thes...

  13. Leucaena sp. recombinant cinnamyl alcohol dehydrogenase: purification and physicochemical characterization.

    Patel, Parth; Gupta, Neha; Gaikwad, Sushama; Agrawal, Dinesh C; Khan, Bashir M

    2014-02-01

    Cinnamyl alcohol dehydrogenase is a broad substrate specificity enzyme catalyzing the final step in monolignol biosynthesis, leading to lignin formation in plants. Here, we report characterization of a recombinant CAD homologue (LlCAD2) isolated from Leucaena leucocephala. LlCAD2 is 80 kDa homo-dimer associated with non-covalent interactions, having substrate preference toward sinapaldehyde with Kcat/Km of 11.6×10(6) (M(-1) s(-1)), and a possible involvement of histidine at the active site. The enzyme remains stable up to 40 °C, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 0.002 and 5h, respectively. LlCAD2 showed optimal activity at pH 6.5 and 9 for reduction and oxidation reactions, respectively, and was stable between pH 7 and 9, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 7.5×10(-4) and 15 h, respectively. It is a Zn-metalloenzyme with 4 Zn(2+) per dimer, however, was inhibited in presence of externally supplemented Zn(2+) ions. The enzyme was resistant to osmolytes, reducing agents and non-ionic detergents. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir.

    He, Xiu-Juan; Chen, Shao-Yun; Wu, Jian-Ping; Yang, Li-Rong; Xu, Gang

    2015-11-01

    tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP(+) concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space-time yield and turnover number of NADP(+) in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.

  15. Transgenic Mouse Models for Alcohol Metabolism, Toxicity and Cancer

    Heit, Claire; Dong, Hongbin; Chen, Ying; Shah, Yatrik M.; Thompson, David C.; Vasiliou, Vasilis

    2015-01-01

    Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remains to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in...

  16. Direct electron transfer-based bioanodes for ethanol biofuel cells using PQQ-dependent alcohol and aldehyde dehydrogenases

    Aquino Neto, Sidney; Suda, Emily L.; Xu, Shuai; Meredith, Matthew T.; De Andrade, Adalgisa R.; Minteer, Shelley D.

    2013-01-01

    This paper compares the performance of a DET (direct electron transfer) bioanode containing both PQQ-ADH (pyrroloquinoline quinone-dependent alcohol dehydrogenase) and PQQ-AldDH (PQQ-dependent aldehyde dehydrogenase) immobilized onto different modified electrode surfaces employing either a tetrabutylammonium (TBAB)-modified Nafion ® membrane polymer or polyamidoamine (PAMAM) dendrimers for the enzyme immobilization. The electrochemical characterization showed that the prepared bioelectrodes were able to undergo DET onto glassy carbon surface in the presence as well as the absence of multi-walled carbon nanotubes (MWCNTs); also, in the latter case a relevant shift in the oxidation peak of about 180 mV vs. saturated calomel electrode (SCE) was observed. A very similar redox potential was achieved with the self-assembled bioelectrode prepared onto modified-gold surfaces with dendrimers, indicating that both methodologies provide an environment that enables the PQQ-enzymes to undergo DET. The biofuel cell tests confirmed the ease of the DET process and the enhanced performance in the presence of the carbon nanotubes. Considering the bioanodes prepared with PAMAM dendrimers, the power density values vary from 19.4 μW cm −2 without MWCNTs to 25.7 μW cm −2 in the presence of MWCNTs. Similarly, with the bioanodes prepared with the TBAB-modified-Nafion ® polymer, the results indicate power densities of 27.9 and 38.4 μW cm −2 respectively. These electrode modifications represent effective methods for immobilization and direct electrical connection of quinohemoproteins to electrode surfaces.

  17. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode.

    Alpat, Senol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10(-5) M and 4 × 10(-4) M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10(-6) M. At the end of the 20(th) day, the biosensor still retained 50% of its initial activity.

  18. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    Azmi Telefoncu

    2010-01-01

    Full Text Available In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH. Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA bonded to toluidine blue O (TBO. Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity.

  19. Modeling of NAD+ analogues in horse liver alcohol dehydrogenase

    Beijer, N.A.; Buck, H.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1990-01-01

    So far, the interactions of nicotinamide adenine dinucleotide (NAD+) derivatives with dehydrogenases are not very well understood. This hampers the introduction of NAD+ analogues with improved characteristics concerning industrial application. We have developed an AMBER molecular mechanics model in

  20. ADH (Antidiuretic Hormone) Test

    ... person is standing, at night, and with pain, stress and exercise. Secretion decreases with hypertension and when someone is lying down. Many drugs can affect ADH levels. They include: Drugs that stimulate ADH release, such as: barbiturates, desipramine, morphine, nicotine , amitriptyline and ...

  1. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.

    Mountfort, D O

    1990-01-01

    Methanol dehydrogenase was found to be present in subcellular preparations of methanol-grown Methylosinus trichosporium and occurred almost wholly in the soluble fraction of the cell. The enzyme, purified by DEAE-Sephadex and Sephadex G-100 chromatography, showed broad specificity toward different substrates and oxidized the aromatic alcohols benzyl, vanillyl, and veratryl alcohols in addition to a range of aliphatic primary alcohols. No enzyme activity was found toward the corresponding alde...

  2. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired.

  3. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

    Bomati, Erin K; Noel, Joseph P

    2005-05-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.

  4. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N.; Marshall, David; Hancock, Robert D.; Lapierre, Catherine; Morreele, Kris; Boerjane, Wout

    2011-01-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was cha...

  5. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia.

    Santiago, Rocío; Alarcón, Borja; de Armas, Roberto; Vicente, Carlos; Legaz, María Estrella

    2012-06-01

    This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD. Copyright © Physiologia Plantarum 2012.

  6. The Alcohol Dehydrogenase Kinetics Laboratory: Enhanced Data Analysis and Student-Designed Mini-Projects

    Silverstein, Todd P.

    2016-01-01

    A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…

  7. Struktuur en interaktie analyse van NAD+ en NAD+ analoga in horse liver alcohol dehydrogenase

    Beijer, N.A.

    1988-01-01

    Dit verslag beschrijft een studie naar de relatie tussen struktuur en funktie voor het co-enzym NAn+ en zijn analoga in de aktieve holte van het enzym Horse Liver Alcohol Dehydrogenase (LADH). De rol van NAD+ in enzymgekatalyseerde oxidatie-reduktie reakties is die van het bewerkstelligen van een

  8. Electron transfer between a quinohemoprotein alcohol dehydrogenase and an electrode via a redox polymer network

    Stigter, E.C.A.; Jong, G.A.H. de; Jongejan, J.A.; Duine, J.A.; Lugt, J.P. van der; Somers, W.A.C.

    1996-01-01

    A quinohemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni was immobilized on an electrode in a redox polymer network consisting of a polyvinylpyridine partially N-complexed with osmiumbis-(bipyridine)chloride. The enzyme effectively transfers electrons to the electrode via the

  9. Alcohol Metabolizing Gene Polymorphisms as Genetic Biomarkers of Alcoholic Liver Disease Susceptibility and Severity: A Northeast India Patient Based Study

    Tarun K. Basumatary

    2017-07-01

    Full Text Available Background: Excessive alcohol consumption is associated with genetic predisposition to Alcoholic Liver Disease (ALD, but there is very limited data on both molecular and genetic aspects of ALD among the Northeast Indian (NEI population. Aim and Objectives: Screening the role of genetic alterations in alcohol metabolizing pathway genes in the pathogenesis of ALD which is prevalent in the ethnically NEI population. Material and Methods: Whole blood was collected from ALD patients (n=150 [alcoholic chronic liver disease (CLD, n=110 and alcoholic cirrhosis (Cirr/cirrhosis, n=40], Alcoholic Without Liver Disease (AWLD, n=93 and healthy controls (HC/controls, n=274 with informed consents along with Fibroscan based liver stiffness measurement (LSM score and clinical data. Alcohol Dehydrogenase 2 (ADH2 and Aldehyde Dehydrogenase 2 (ALDH2 genotyping was studied by Polymerase Chain Reaction with Confronting Two Pair Primers (PCR-CTPP; and Alcohol Dehydrogenase 3 (ADH3 by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP method. Results:ADH2*2 genotype was predominant and associated with increased risk of cirrhosis compared to healthy controls, AWLD and CLD cases; and CLD compared to AWLD cases. ADH3*1 genotype was associated with significantly increased risk of cirrhosis compared to healthy controls, AWLD and CLD cases (p<0.001. Variant ALDH2 genotype was rare and analysis of the joint effects of genotypes showed that higher variant genotype resulted increased risk of CLD and cirrhosis compared to AWLD, and cirrhosis compared to CLD; thereby confirming the association of the polymorphisms in key alcohol metabolizing genes in the predisposition to ALD susceptibility and severity. Presence of variant ADH2, ADH3 and ALDH2 genotypes correlated with higher LSM scores in ALD. Conclusion: Alterations in the alcohol metabolizing genes are critically associated with ALD susceptibility and severity.

  10. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production.

    Liew, Fungmin; Henstra, Anne M; Kӧpke, Michael; Winzer, Klaus; Simpson, Sean D; Minton, Nigel P

    2017-03-01

    Gas fermentation using acetogenic bacteria such as Clostridium autoethanogenum offers an attractive route for production of fuel ethanol from industrial waste gases. Acetate reduction to acetaldehyde and further to ethanol via an aldehyde: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase has been postulated alongside the classic pathway of ethanol formation via a bi-functional aldehyde/alcohol dehydrogenase (AdhE). Here we demonstrate that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%). Using ClosTron and allelic exchange mutagenesis, which was demonstrated for the first time in an acetogen, we generated single mutants as well as double mutants for both aor and adhE isoforms to confirm the role of each gene. The aor1+2 double knockout strain lost the ability to convert exogenous acetate, propionate and butyrate into the corresponding alcohols, further highlighting the role of these enzymes in catalyzing the thermodynamically unfavourable reduction of carboxylic acids into alcohols. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Association between alcohol and cardiovascular disease : Mendelian randomisation analysis based on individual participant data

    Holmes, Michael V.; Dale, Caroline E.; Zuccolo, Luisa; Silverwood, Richard J.; Guo, Yiran; Ye, Zheng; Prieto-Merino, David; Dehghan, Abbas; Trompet, Stella; Wong, Andrew; Cavadino, Alana; Drogan, Dagmar; Padmanabhan, Sandosh; Li, Shanshan; Yesupriya, Ajay; Leusink, Maarten|info:eu-repo/dai/nl/357581164; Sundstrom, Johan; Hubacek, Jaroslav A.; Pikhart, Hynek; Swerdlow, Daniel I.; Panayiotou, Andrie G.; Borinskaya, Svetlana A.; Finan, Chris; Shah, Sonia; Kuchenbaecker, Karoline B.; Shah, Tina; Engmann, Jorgen; Folkersen, Lasse; Eriksson, Per; Ricceri, Fulvio; Melander, Olle; Sacerdote, Carlotta; Gamble, Dale M.; Rayaprolu, Sruti; Ross, Owen A.; McLachlan, Stela; Vikhireva, Olga; Sluijs, Ivonne; Scott, Robert A.; Adamkova, Vera; Flicker, Leon; Van Bockxmeer, Frank M.; Power, Christine; Marques-Vidal, Pedro; Meade, Tom; Marmot, Michael G.; Ferro, Jose M.; Paulos-Pinheiro, Sofia; Humphries, Steve E.; Talmud, Philippa J.; Leach, Irene Mateo; Verweij, Niek; Linneberg, Allan; Skaaby, Tea; Doevendans, Pieter A.; Cramer, Maarten J.; Van Der Harst, Pim; Klungel, Olaf H.|info:eu-repo/dai/nl/181447649; Dowling, Nicole F.; Dominiczak, Anna F.; Kumari, Meena; Nicolaides, Andrew N.; Weikert, Cornelia; Boeing, Heiner; Ebrahim, Shah; Gaunt, Tom R.; Price, Jackie F.; Lannfelt, Lars; Peasey, Anne; Kubinova, Ruzena; Pajak, Andrzej; Malyutina, Sofia; Voevoda, Mikhail I.; Tamosiunas, Abdonas; Maitland-van Der Zee, Anke H.|info:eu-repo/dai/nl/255164688; Norman, Paul E.; Hankey, Graeme J.; Bergmann, Manuela M.; Hofman, Albert; Franco, Oscar H.; Cooper, Jackie; Palmen, Jutta; Spiering, Wilko; De Jong, Pim A.; Kuh, Diana; Hardy, Rebecca; Uitterlinden, Andre G.; Ikram, M. Arfan; Ford, Ian; Hyppönen, Elina; Almeida, Osvaldo P.; Wareham, Nicholas J.; Khaw, Kay Tee; Hamsten, Anders; Husemoen, Lise Lotte N; Tjønneland, Anne; Tolstrup, Janne S.; Rimm, Eric; Beulens, Joline W J; Verschuren, W. M Monique; Onland-Moret, N. Charlotte; Hofker, Marten H.; Wannamethee, S. Goya; Whincup, Peter H.; Morris, Richard; Vicente, Astrid M.; Watkins, Hugh; Farrall, Martin; Jukema, J. Wouter; Meschia, James; Cupples, L. Adrienne; Sharp, Stephen J.; Fornage, Myriam; Kooperberg, Charles; LaCroix, Andrea Z.; Dai, James Y.; Lanktree, Matthew B.; Siscovick, David S.; Jorgenson, Eric; Spring, Bonnie; Coresh, Josef; Li, Yun R.; Buxbaum, Sarah G.; Schreiner, Pamela J.; Ellison, R. Curtis; Tsai, Michael Y.; Patel, Sanjay R.; Redline, Susan; Johnson, Andrew D.; Hoogeveen, Ron C.; Hakonarson, Hakon; Rotter, Jerome I.; Boerwinkle, Eric; De Bakker, Paul I W; Kivimaki, Mika; Asselbergs, Folkert W.; Sattar, Naveed; Lawlor, Debbie A.; Whittaker, John; Smith, George Davey; Mukamal, Kenneth; Psaty, Bruce M.; Wilson, James G.; Lange, Leslie A.; Hamidovic, Ajna; Nordestgaard, Børge G.; Bobak, Martin; Leon, David A.; Langenberg, Claudia; Palmer, Tom M.; Reiner, Alex P.; Keating, Brendan J.; Dudbridge, Frank; Casas, Juan P.

    2014-01-01

    Objective: To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. Design: Mendelian randomisation meta-analysis of 56 epidemiological studies. Participants: 261 991 individuals of European

  12. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural.

    Ishida, Yoko; Nguyen, Trinh Thi My; Izawa, Shingo

    2017-06-20

    Lignocellulosic biomass conversion inhibitors such as vanillin, furfural, and 5-hydroxymethylfurfural (HMF) inhibit the growth of and fermentation by Saccharomyces cerevisiae. A high concentration of each fermentation inhibitor represses translation and increases non-translated mRNAs. We previously reported that the mRNAs of ADH7 and BDH2, which encode putative NADPH- and NADH-dependent alcohol dehydrogenases, respectively, were efficiently translated even with translation repression in response to severe vanillin stress. However, the combined effects of these fermentation inhibitors on the expression of ADH7 and BDH2 remain unclear. We herein demonstrated that exposure to a combined stress of vanillin, furfural, and HMF repressed translation. The protein synthesis of Adh7, but not Bdh2 was significantly induced under combined stress conditions, even though the mRNA levels of ADH7 and BDH2 were up-regulated. Additionally, adh7Δ cells were more sensitive to the combined stress than wild-type and bdh2Δ cells. These results suggest that induction of the ADH7 expression plays a role in the tolerance to the combined stress of vanillin, furfural, and HMF. Furthermore, we succeeded in improving yeast tolerance to the combined stress by controlling the expression of ALD6 with the ADH7 promoter. Our results demonstrate that the ADH7 promoter can overcome the pronounced translation repression caused by the combined stress of vanillin, furfural, and HMF, and also suggest a new gene engineering strategy to breed robust and optimized yeasts for bioethanol production from a lignocellulosic biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  15. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  16. Association between alcohol and cardiovascular disease

    Holmes, Michael V; Dale, Caroline E; Zuccolo, Luisa

    2014-01-01

    OBJECTIVE: To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. DESIGN: Mendelian randomisation meta-analysis of 56 epidemiological studies. PARTICIPANTS: 261 991 individuals of European...... descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers. MAIN OUTCOME MEASURES: Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals...... disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for cardiovascular health....

  17. Dual enzymatic dynamic kinetic resolution by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase and Candida antarctica lipase B

    Karume, Ibrahim

    2016-10-04

    The immobilization of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (TeSADH) using sol–gel method enables its use to racemize enantiopure alcohols in organic media. Here, we report the racemization of enantiopure phenyl-ring-containing secondary alcohols using xerogel-immobilized W110A TeSADH in hexane rather than the aqueous medium required by the enzyme. We further showed that this racemization approach in organic solvent was compatible with Candida antarctica lipase B (CALB)-catalyzed kinetic resolution. This compatibility, therefore, allowed a dual enzymatic dynamic kinetic resolution of racemic alcohols using CALB-catalyzed kinetic resolution and W110A TeSADH-catalyzed racemization of phenyl-ring-containing alcohols.

  18. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice.

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-03-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis.

  19. GOLD HULL AND INTERNODE2 Encodes a Primarily Multifunctional Cinnamyl-Alcohol Dehydrogenase in Rice1

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-01-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis. PMID:16443696

  20. Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1

    Jayakody, Lahiru N.; Horie, Kenta; Kitagaki, Hiroshi [Saga Univ. (Japan). Dept. of Environmental Sciences; Hayashi, Nobuyuki [Saga Univ. (Japan). Dept. of Applied Biochemistry and Food Science

    2012-04-15

    Hot-compressed water treatment of cellulose and hemicellulose for subsequent bioethanol production is a novel, economically feasible, and nonhazardous method for recovering sugars. However, the hot-compressed water-treated cellulose and hemicellulose inhibit subsequent ethanol fermentation by the yeast Saccharomyces cerevisiae. To overcome this problem, we engineered a yeast strain with improved tolerance to hot-compressed water-treated cellulose. We first determined that glycolaldehyde has a greater inhibitory effect than 5-HMF and furfural and a combinational effect with them. On the basis of the hypothesis that the reduction of glycolaldehyde to ethylene glycol should detoxify glycolaldehyde, we developed a strain overexpressing the alcohol dehydrogenase gene ADH1. The ADH1-overexpressing strain exhibits an improved fermentation profile in a glycolaldehyde-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 30 {+-} 1.9% when the control strain is used; this ratio increases to 77 {+-} 3.6% in the case of the ADH1-overexpressing strain. A glycolaldehyde treatment and the overexpression of ADH1 cause changes in the fermentation products so as to balance the metabolic carbon flux and the redox status. Finally, the ADH1-overexpressing strain shows a statistically significantly improved fermentation profile in a hot-compressed water-treated cellulose-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 33 {+-} 0.85% when the control strain is used but increases to 72 {+-} 1.7% in the case of the ADH1-overexpressing strain. These results show that the reduction of glycolaldehyde to ethylene glycol is a promising strategy to decrease the toxicity of hot-compressed water-treated cellulose. This is the first report on the improvement of yeast tolerance to hot-compressed water-treated cellulose and glycolaldehyde.

  1. Screening of allyl alcohol resistant mutant of Rhizopus oryzae and ...

    Ethanol is a main by-product in the fermentation broth of Rhizopus oryzae during the production of high-optical purity L-lactic acid. By screening the lower activity of alcohol dehydrogenase (ADH) mutant, thus decreasing the flux of pyruvic acid to ethanol may be a virtual method for increasing the conversion rate of glucose ...

  2. Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase

    Vanhommerig, S.A.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1996-01-01

    Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase

  3. Molecular analysis of UAS(E), a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis.

    Mazzoni, C; Santori, F; Saliola, M; Falcone, C

    2000-01-01

    KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity, which is specifically induced by ethanol and insensitive to glucose repression. In this work, we report the molecular analysis of UAS(E), an element of the KlADH4 promoter which is essential for the induction of KlADH4 in the presence of ethanol. UAS(E) contains five stress response elements (STREs), which have been found in many genes of Saccharomyces cerevisiae involved in the response of cells to conditions of stress. Whereas KlADH4 is not responsive to stress conditions, the STREs present in UAS(E) seem to play a key role in the induction of the gene by ethanol, a situation that has not been observed in the related yeast S. cerevisiae. Gel retardation experiments showed that STREs in the KlADH4 promoter can bind factor(s) under non-inducing conditions. Moreover, we observed that the RAP1 binding site present in UAS(E) binds KlRap1p.

  4. Heat-stable, FE-dependent alcohol dehydrogenase for aldehyde detoxification

    Elkins, James G.; Clarkson, Sonya

    2018-04-24

    The present invention relates to microorganisms and polypeptides for detoxifying aldehydes associated with industrial fermentations. In particular, a heat-stable, NADPH- and iron-dependent alcohol dehydrogenase was cloned from Thermoanaerobacter pseudethanolicus 39E and displayed activity against a number of aldehydes including inhibitory compounds that are produced during the dilute-acid pretreatment process of lignocellulosic biomass before fermentation to biofuels. Methods to use the microorganisms and polypeptides of the invention for improved conversion of bio mass to biofuel are provided as well as use of the enzyme in metabolic engineering strategies for producing longer-chain alcohols from sugars using thermophilic, fermentative microorganisms.

  5. A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase.

    Logemann, E; Reinold, S; Somssich, I E; Hahlbrock, K

    1997-08-01

    We describe an aromatic alcohol dehydrogenase with properties indicating a novel type of function in the defense response of plants to pathogens. To obtain the enzyme free of contamination with possible isoforms, a parsley (Petroselinum crispum) cDNA comprising the entire coding region of the elicitor-responsive gene, ELI3, was expressed in Escherichia coli. In accord with large amino acid sequence similarities with established cinnamyl and benzyl alcohol dehydrogenases from other plants, the enzyme efficiently reduced various cinnamyl and benzyl aldehydes using NADPH as a co-substrate. Highest substrate affinities were observed for cinnamaldehyde, 4-coumaraldehyde and coniferaldehyde, whereas sinapaldehyde, one of the most efficient substrates of several previously analyzed cinnamyl alcohol dehydrogenases and a characteristic precursor molecule of angiosperm lignin, was not converted. A single form of ELI3 mRNA was strongly and rapidly induced in fungal elicitor-treated parsley cells. These results, together with earlier findings that the ELI3 gene is strongly activated both in elicitor-treated parsley cells and at fungal infection sites in parsley leaves, but not in lignifying tissue, suggest a specific role of this enzyme in pathogen defense-related phenylpropanoid metabolism.

  6. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The "furfural reductase" (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD(+) as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power.

  7. Alcohol drinking, mean corpuscular volume of erythrocytes, and alcohol metabolic genotypes in drunk drivers.

    Pavanello, Sofia; Snenghi, Rossella; Nalesso, Alessandro; Sartore, Daniela; Ferrara, Santo Davide; Montisci, Massimo

    2012-02-01

    Regular and irregular abuse of alcohol are global health priorities associated with diseases at multiple sites, including cancer. Mechanisms of diseases induced by alcohol are closely related to its metabolism. Among conventional markers of alcohol abuse, the mean corpuscular volume (MCV) of erythrocytes is prognostic of alcohol-related cancer and its predictivity increases when combined with functional polymorphisms of alcohol dehydrogenase (ADH1B [rs1229984] and ADH1C [rs698]) and the mitochondrial aldehyde dehydrogenase (ALDH2 [rs671]). Whether these genetic variants can influence abuse in alcohol drinking and MCV has never been examined in drunk-driving traffic offenders. We examined 149 drunk drivers, diagnosed as alcohol abusers according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth edition Text Revision (DSM-IV-TR) and enrolled in a probation program, and 257 social drinkers (controls), all Caucasian males. Alcohol intake was assessed according to self-reported drink-units/d and MCV unadjusted and adjusted for age, smoking, and body mass index. Multivariable models were used to compute MCV adjusted means. Genotype analyses were performed by PCR on DNA from blood. The adjusted MCV mean was higher in drunk-driving abusers than in controls (92 vs. 91fL; Pdrunk-driving abusers (P=.008), reported higher drink-units/d (P=.0126), and had larger MCV (P=.035). The rs698 ADH1C and rs671 ALDH2 polymorphisms were not associated with MCV. ADH1B*1/*1 polymorphism is significantly associated with being a drunk-driving abuser, higher alcohol drinking, and MCV enlargement. This suggests that drunk drivers with augmented MCV modulated by the alcohol metabolic ADH1B*1/*1 genotype may be at higher risk of driving incapability and of alcohol-related cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Myocardial Insulin Resistance and Endoplasmic Reticulum Stress

    Li, Shi-Yan; Gilbert, Sara A.B.; Li, Qun; Ren, Jun

    2009-01-01

    Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken β-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 wks. Cell shorteni...

  9. The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of Salmonella enterica.

    Shouqiang Cheng

    Full Text Available Salmonella enterica uses a bacterial microcompartment (MCP for coenzyme B(12-dependent 1,2-propanediol (1,2-PD utilization (Pdu. The Pdu MCP consists of a protein shell that encapsulates enzymes and cofactors required for metabolizing 1,2-PD as a carbon and energy source. Here we show that the PduQ protein of S. enterica is an iron-dependent alcohol dehydrogenase used for 1,2-PD catabolism. PduQ is also demonstrated to be a new component of the Pdu MCP. In addition, a series of in vivo and in vitro studies show that a primary function of PduQ is to recycle NADH to NAD(+ internally within the Pdu MCP in order to supply propionaldehyde dehydrogenase (PduP with its required cofactor (NAD(+. Genetic tests determined that a pduQ deletion mutant grew slower than wild-type Salmonella on 1,2-PD and that this phenotype was not complemented by a non-MCP associated Adh2 from Zymomonas that catalyzes the same reaction. This suggests that PduQ has a MCP-specific function. We also found that a pduQ deletion mutant had no growth defect in a genetic background having a second mutation that prevents MCP formation which further supports a MCP-specific role for PduQ. Moreover, studies with purified Pdu MCPs demonstrated that the PduQ enzyme can convert NADH to NAD(+ to supply the PduP reaction in vitro. Cumulatively, these studies show that the PduQ enzyme is used to recycle NADH to NAD(+ internally within the Pdu MCP. To our knowledge, this is the first report of internal recycling as a mechanism for cofactor homeostasis within a bacterial MCP.

  10. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae).

    Zheng, Xiaoyan; Hu, Chunyun; Spooner, David; Liu, Jing; Cao, Jiashu; Teng, Yuanwen

    2011-09-14

    The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh) were selected to investigate their molecular evolution and phylogenetic utility. DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Our study represents the first phylogenetic analyses based on LCNGs in Pyrus. Ancient and recent duplications lead

  11. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae

    Cao Jiashu

    2011-09-01

    Full Text Available Abstract Background The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh were selected to investigate their molecular evolution and phylogenetic utility. Results DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Conclusions Our study represents the first phylogenetic analyses based

  12. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco.

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N; Marshall, David; Hancock, Robert D; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-12-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.

  13. Syringyl Lignin Is Unaltered by Severe Sinapyl Alcohol Dehydrogenase Suppression in Tobacco[W

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N.; Marshall, David; Hancock, Robert D.; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-01-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference–inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem. PMID:22158465

  14. Asymmetric Reduction of Substituted 2-Tetralones by Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase

    Bsharat, Odey

    2017-01-30

    Ketones bearing two bulky substituents, named bulky-bulky ketones, were successfully reduced to their corresponding optically enriched alcohols by using various mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). Substituted 2-tetralones, in particular, were reduced to 2-tetralols with high conversion and high enantioselectivity. The pharmacological importance of substituted 2-tetralols as key drug-building blocks makes our biocatalytic reduction method a highly essential tool. We showed that changing the position of the substituent on the aromatic ring of 2-tetralones impacts their binding affinity and the reaction maximum catalytic rate. Docking studies with several TeSADH mutants explain how the position of the substituent on the tetralone influences the binding orientation of substituted 2-tetralones and their reaction stereoselectivity.

  15. [Enzymatic conversion of tetradecanol in heterogenous phase by yeast-alcohol dehydrogenase].

    Rothe, U; Schöpp, W; Aurich, H

    1976-01-01

    Alcohol dehydrogenase from yeast converts long-chain primary alcohols not only in the dissolved state, but also at the surface of undissolved particles. Tetradecanol beads with a defined surface can be produced and employed as model substrate. The reaction rate was determined by the proton release accomplished in the reaction. The initial reaction rate depends on the enzyme concentration. The relation is nonlinear (vi = k-[e]0,4); the numerical value of the exponent (n = 0.4) argues in favour of a reaction occurring at the interface. The Lineweaver-Burk plots become linear if the substrate concentrations are based on the molar surface concentrations of the particles. The pH optimum for the reaction at the surface is displaced by 0.25 pH units towards the alkaline region (compared with ethanol as substrate). The activation energy of the reaction with tetradecanol beads as substrate is 30% lower than that for the ethanol oxydation.

  16. Asymmetric Reduction of Substituted 2-Tetralones by Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase

    Bsharat, Odey; Musa, Musa M.; Vieille, Claire; Oladepo, Sulayman; Takahashi, Masateru; Hamdan, Samir

    2017-01-01

    Ketones bearing two bulky substituents, named bulky-bulky ketones, were successfully reduced to their corresponding optically enriched alcohols by using various mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). Substituted 2-tetralones, in particular, were reduced to 2-tetralols with high conversion and high enantioselectivity. The pharmacological importance of substituted 2-tetralols as key drug-building blocks makes our biocatalytic reduction method a highly essential tool. We showed that changing the position of the substituent on the aromatic ring of 2-tetralones impacts their binding affinity and the reaction maximum catalytic rate. Docking studies with several TeSADH mutants explain how the position of the substituent on the tetralone influences the binding orientation of substituted 2-tetralones and their reaction stereoselectivity.

  17. Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases.

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD(+) to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K ( d ) of 0.043 μM for the FurX-NADH complex) and relatively low affinities for NAD(+) (e.g., K ( d ) of 87 μM for FurX-NAD(+)). The kinetic data suggest that the four enzymes are efficient "furfural reductases" with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°') for ethanol-dependent reduction of furfural was determined to be -1.1 kJ mol(-1). The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.

  18. A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression.

    Goffner, D; Van Doorsselaere, J; Yahiaoui, N; Samaj, J; Grima-Pettenati, J; Boudet, A M

    1998-03-01

    Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.195) catalyses the conversion of p-hydroxy-cinnamaldehydes to the corresponding alcohols and is considered a key enzyme in lignin biosynthesis. In a previous study, an atypical form of CAD (CAD 1) was identified in Eucalyptus gunnii [12]. We report here the molecular cloning and characterization of the corresponding cDNA, CAD 1-5, which encodes this novel aromatic alcohol dehydrogenase. The identity of CAD 1-5 was unambiguously confirmed by sequence comparison of the cDNA with peptide sequences derived from purified CAD 1 protein and by functional expression of CAD 1 recombinant protein in Escherichia coli. Both native and recombinant CAD 1 exhibit high affinity towards lignin precursors including 4-coumaraldehyde and coniferaldehyde, but they do not accept sinapaldehyde. Moreover, recombinant CAD 1 can also utilize a wide range of aromatic substrates including unsubstituted and substituted benzaldehydes. The open reading frame of CAD 1-5 encodes a protein with a calculated molecular mass of 35,790 Da and an isoelectric point of 8.1. Although sequence comparisons with proteins in databases revealed significant similarities with dihydroflavonol-4-reductases (DFR; EC 1.1.1.219) from a wide range of plant species, the most striking similarity was found with cinnamoyl-CoA reductase (CCR; EC 1.2.1.44), the enzyme which directly precedes CAD in the lignin biosynthetic pathway. RNA blot analysis and immunolocalization experiments indicated that CAD 1 is expressed in both lignified and unlignified tissues/cells. Based on the catalytic activity of CAD 1 in vitro and its localization in planta, CAD 1 may function as an 'alternative' enzyme in the lignin biosynthetic pathway. However, additional roles in phenolic metabolism are not excluded.

  19. ADH1B

    Jane

    2011-09-28

    Sep 28, 2011 ... Alcohol dependence (AD) is a complex disease resulting from the inheritance of several susceptible genes and multiple environmental determinants. The aim of this study was to identify the genetic risk factors which include alcohol metabolizing genes and neurotransmitter related genes for alcoholism in.

  20. Alcohol intake, alcohol dehydrogenase genotypes, and liver damage and disease in the Danish general population

    Tolstrup, J.S.; Gronbaek, M.; Tybjaerg-Hansen, A.

    2009-01-01

    the Copenhagen City Heart Study. Biochemical tests for the detection of liver damage were specific for alanine aminotransferase (ALT), aspartate aminotransferase (AST)-to-ALT ratio (AST/ALT), gamma-glutamyl transpeptidase (gamma-GT), albumin, bilirubin, alkaline phosphatase, coagulation factors, and erythrocyte...... volume. RESULTS: Increasing alcohol intake was associated with increasing erythrocyte volume, AST/ALT, and levels of ALT, gamma-GT, albumin, bilirubin, coagulation factors, and with decreasing levels of alkaline phosphatase. Multifactorially adjusted hazard ratios for alcoholic liver disease overall were...

  1. Natural spectroscopic hydrogen isotope transfer in alcohol dehydrogenase-catalysed reduction

    Ben-Li Zhang; Pionnier, S.

    2002-01-01

    The enantiomeric purity of natural α-mono deuterated enantiomers, (R) and (S)ethanol-1-d 1 , in the alcohol produced by sugar fermentation with yeast was studied by 2 H NMR using their esters derived from optical mandelic acid. The results of isotope tracing experiments show that the transfer pathways of the two eantiotopic hydrogens of the methylene group are different. It was observed that (S)-deuterium comes only from the medium water. The (R)-deuterium transferred by NADH in alcohol dehydrogenase reduction of the acetaldehyde is complex origin. Some of them originates from carbon bound hydrogen of the sugar, especially from C(4) position of glucose and most of them comes from water. Only a small portion of the NADH deuterium is incorporated indirectly from water through enzyme catalysed exchange between the pro-S site of NADH and flavin. When a carbonyl compound (ethyl acetoacetate) was reduced under the same conditions during the alcoholic fermentation, among the NADH-transferred deuterium, only a small portion comes from water while most comes from the unexchangeable positions of the glucose. (author)

  2. DOWNREGULATION OF CINNAMYL-ALCOHOL DEHYDROGENASE IN SWITCHGRASS BY RNA SILENCING RESULTS IN ENHANCED GLUCOSE RELEASE AFTER CELLULASE TREATMENT

    Cinnamyl alcohol dehydrogenase (CAD), catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switch...

  3. DFT-based prediction of reactivity of short-chain alcohol dehydrogenase

    Stawoska, I.; Dudzik, A.; Wasylewski, M.; Jemioła-Rzemińska, M.; Skoczowski, A.; Strzałka, K.; Szaleniec, M.

    2017-06-01

    The reaction mechanism of ketone reduction by short chain dehydrogenase/reductase, ( S)-1-phenylethanol dehydrogenase from Aromatoleum aromaticum, was studied with DFT methods using cluster model approach. The characteristics of the hydride transfer process were investigated based on reaction of acetophenone and its eight structural analogues. The results confirmed previously suggested concomitant transfer of hydride from NADH to carbonyl C atom of the substrate with proton transfer from Tyr to carbonyl O atom. However, additional coupled motion of the next proton in the proton-relay system, between O2' ribose hydroxyl and Tyr154 was observed. The protonation of Lys158 seems not to affect the pKa of Tyr154, as the stable tyrosyl anion was observed only for a neutral Lys158 in the high pH model. The calculated reaction energies and reaction barriers were calibrated by calorimetric and kinetic methods. This allowed an excellent prediction of the reaction enthalpies (R2 = 0.93) and a good prediction of the reaction kinetics (R2 = 0.89). The observed relations were validated in prediction of log K eq obtained for real whole-cell reactor systems that modelled industrial synthesis of S-alcohols.

  4. Expanding the Substrate Specificity of Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase by a Dual Site Mutation

    Musa, Musa M.; Bsharat, Odey; Karume, Ibrahim; Vieille, Claire; Takahashi, Masateru; Hamdan, Samir

    2017-01-01

    Here, we report the asymmetric reduction of selected phenyl-ring-containing ketones by various single and dual site mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). Further expanding the size of the substrate binding pocket in the mutant W110A/I86A not only allowed substrates of the single mutants W110A and I86A to be accommodated within the expanded active site, but also expanded the enzyme's substrate range to ketones bearing two sterically demanding groups (bulky-bulky ketones), which are not substrates for TeSADH single mutants. We also report the regio- and enantioselective reduction of diketones using W110A/I86A TeSADH and single TeSADH mutants. The double mutant exhibited dual stereopreference generating the Prelog products most of the time and the anti-Prelog products in a few cases.

  5. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots.

    dos Santos, W D; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, O

    2006-01-01

    This study proposes a simple, quick and reliable method for determining the cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) activity in soybean (Glycine max L. Merr.) roots using reversed-phase high performance liquid chromatography (RP-HPLC). The method includes a single extraction of the tissue and conduction of the enzymatic reaction at 30 degrees C with cinnamaldehydes (coniferyl or sinapyl), substrates of CAD. Disappearance of the substrates in the reaction mixture is monitored at 340 nm (for coniferaldehyde) or 345 nm (for sinapaldehyde) by isocratic elution with methanol/acetic acid through a GLC-ODS (M) column. This HPLC technique furnishes a rapid and reliable measure of cinnamaldehyde substrates, and may be used as an alternative tool to analyze CAD activity in enzyme preparation without previous purification.

  6. Expanding the Substrate Specificity of Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase by a Dual Site Mutation

    Musa, Musa M.

    2017-12-14

    Here, we report the asymmetric reduction of selected phenyl-ring-containing ketones by various single and dual site mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). Further expanding the size of the substrate binding pocket in the mutant W110A/I86A not only allowed substrates of the single mutants W110A and I86A to be accommodated within the expanded active site, but also expanded the enzyme\\'s substrate range to ketones bearing two sterically demanding groups (bulky-bulky ketones), which are not substrates for TeSADH single mutants. We also report the regio- and enantioselective reduction of diketones using W110A/I86A TeSADH and single TeSADH mutants. The double mutant exhibited dual stereopreference generating the Prelog products most of the time and the anti-Prelog products in a few cases.

  7. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  8. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  9. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  10. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

    Hasunuma, Tomohisa; Ismail, Ku Syahidah Ku; Nambu, Yumiko; Kondo, Akihiko

    2014-02-01

    Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Adaptive aspects of the polymorphisms at the Adh and αGpdh loci in Drosophila melanogaster

    Oudman, Leendert

    1993-01-01

    Dit proefschrift beschrijft een onderzoek naar het optreden van interacties tussen de effecten van de Adh en aGpdh loci in omstandigheden zonder alcohol en de gevolgen hiervan voor het optreden van natuurlijke selectie. ... Zie: Samenvatting

  12. Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa.

    Chao, Nan; Liu, Shu-Xin; Liu, Bing-Mei; Li, Ning; Jiang, Xiang-Ning; Gai, Ying

    2014-11-01

    Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD. Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.

  13. PURIFICATION AND CHARACTERIZATION OF AN OXYGEN-LABILE, NAD-DEPENDENT ALCOHOL-DEHYDROGENASE FROM DESULFOVIBRIO-GIGAS

    HENSGENS, CMH; VONCK, J; VANBEEUMEN, J; VANBRUGGEN, EFJ; HANSEN, TA

    A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (K(m), 0.15 mM) and 1-propanol (K(m), 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the

  14. The role of aldehyde dehydrogenase-1 (ALDH1A1 polymorphisms in harmful alcohol consumption in a Finnish population

    Lind Penelope A

    2008-09-01

    Full Text Available Abstract Liver cystolic aldehyde dehydrogenase 1 (ALDH1A1 has been previously associated with both alcohol dependence and alcohol consumption behaviour, and has been implicated in alcohol-induced flushing and alcohol sensitivity in Caucasians. The present study tested for association between ALDH1A1 and alcohol consumption behaviour and susceptibility to problem drinking or alcohol dependence in Finnish cohorts of unrelated male subjects recruited from alcoholism clinical treatment facilities (n = 104 and from the general population (n = 201. All participants completed the Alcohol Use Disorder Identification Test (AUDIT and were genotyped for eight single nucleotide polymorphisms (SNPs within or flanking ALDH1A1. To test for association between alcohol consumption behaviour and these polymorphisms, we used generalised linear models and haplotypic analysis. Three SNPs were nominally associated (rs348449, p = 0.043; rs610529, p = 0.013; rs348479, p = 0.025 with the quantitative AUDIT score, which evaluates alcohol consumption behaviour. Two-locus (rs6I0529-rs2288087 haplotype analysis increased the strength of association with AUDIT score (p = 0.00I5. Additionally, rs348449 is highly associated with problem drinking (allelic odds ratio [OR] 7.87, 95 per cent confidence interval [CI] 1.67-37.01 but due to the low minor allele frequency (0.01 and 0.07 in controls and problem drinkers, respectively, more samples are required to validate this observation. Conversely, rs348479 (p = 0.019 and rs6I0529 (allelic OR 0.65, 95 per cent CI 0.43-0.98; genotypic OR 0.32, 95 per cent CI 0.12-0.84 are implicated in alcohol dependence status. This study provides further evidence for a role for ALDH1A1 in alcohol consumption behaviour, including problem drinking and possibly alcohol dependence, in our Finnish population.

  15. Substitution of arginine for histidine-47 in the coenzyme binding site of yeast alcohol dehydrogenase I

    Gould, R.M.; Plapp, B.V.

    1990-01-01

    Molecular modeling of alcohol dehydrogenases suggests that His-47 in the yeast enzyme (His-44 in the protein sequence, corresponding to Arg-47 in the horse liver enzyme) binds the pyrophosphate of the NAD coenzyme. His-47 in the Saccharomyces cerevisiae isoenzyme I was substituted with an arginine by a directed mutation. Steady-state kinetic results at pH 7.3 and 30 degree C of the mutant and wild-type enzymes were consistent with an ordered Bi-Bi mechanism. The substitution decreased dissociation constants by 4-fold for NAD + and 2-fold for NADH while turnover numbers were decreased by 4-fold for ethanol oxidation and 6-fold for acetaldehyde reduction. The magnitudes of these effects are smaller than those found for the same mutation in the human liver β enzyme, suggesting that other amino acid residues in the active site modulate the effects of the substitution. The pH dependencies of dissociation constants and other kinetic constants were similar in the two yeast enzymes. Thus, it appears that His-47 is not solely responsible for a pK value near 7 that controls activity and coenzyme binding rates in the wild-type enzyme. The small substrate deuterium isotope effect above pH 7 and the single exponential phase of NADH production during the transient oxidation of ethanol by the Arg-47 enzyme suggest that the mutation makes an isomerization of the enzyme-NAD + complex limiting for turnover with ethanol

  16. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi.

    González, Laura; García-Huertas, Paola; Triana-Chávez, Omar; García, Gabriela Andrea; Murta, Silvane Maria Fonseca; Mejía-Jaramillo, Ana M

    2017-12-01

    The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole. © 2017 John Wiley & Sons Ltd.

  17. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production.

    Tataruch, M; Heider, J; Bryjak, J; Nowak, P; Knack, D; Czerniak, A; Liesiene, J; Szaleniec, M

    2014-12-20

    The molybdenum/iron-sulfur/heme protein ethylbenzene dehydrogenase (EbDH) was successfully applied to catalyze enantiospecific hydroxylation of alkylaromatic and alkylheterocyclic compounds. The optimization of the synthetic procedure involves use of the enzyme in a crude purification state that saves significant preparation effort and is more stable than purified EbDH without exhibiting unwanted side reactions. Moreover, immobilization of the enzyme on a crystalline cellulose support and changes in reaction conditions were introduced in order to increase the amounts of product formed (anaerobic atmosphere, electrochemical electron acceptor recycling or utilization of ferricyanide as alternative electron acceptor in high concentrations). We report here on an extension of effective enzyme activity from 4h to more than 10 days and final product yields of up to 0.4-0.5g/l, which represent a decent starting point for further optimization. Therefore, we expect that the hydrocarbon-hydroxylation capabilities of EbDH may be developed into a new process of industrial production of chiral alcohols. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.).

    O'malley, D M; Porter, S; Sederoff, R R

    1992-04-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1. 195) has been purified to homogeneity from differentiating xylem tissue and developing seeds of loblolly pine (Pinus taeda L.). The enzyme is a dimer with a native molecular weight of 82,000 and a subunit molecular weight of 44,000, and is the only form of CAD involved in lignification in differentiating xylem. High levels of loblolly pine CAD enzyme were found in nonlignifying seed tissue. Characterization of the enzyme from both seeds and xylem demonstrated that the enzyme is the same in both tissues. The enzyme has a high affinity for coniferaldehyde (K(m) = 1.7 micromolar) compared with sinapaldehyde (K(m) in excess of 100 micromolar). Kinetic data strongly suggest that coniferin is a noncompetitive inhibitor of CAD enzyme activity. Protein sequences were obtained for the N-terminus (28 amino acids) and for two other peptides. Degenerate oligonucleotide primers based on the protein sequences were used to amplify by polymerase chain reaction a 1050 base pair DNA fragment from xylem cDNA. Nucleotide sequence from the cloned DNA fragment coded for the N-terminal protein sequence and an internal peptide of CAD. The N-terminal protein sequence has little similarity with the lambdaCAD4 clone isolated from bean (MH Walter, J Grima-Pettenati, C Grand, AM Boudet, CJ Lamb [1988] Proc Natl Acad Sci USA 86:5546-5550), which has homology with malic enzyme.

  19. Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.) 1

    O'Malley, David M.; Porter, Stephanie; Sederoff, Ronald R.

    1992-01-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1. 195) has been purified to homogeneity from differentiating xylem tissue and developing seeds of loblolly pine (Pinus taeda L.). The enzyme is a dimer with a native molecular weight of 82,000 and a subunit molecular weight of 44,000, and is the only form of CAD involved in lignification in differentiating xylem. High levels of loblolly pine CAD enzyme were found in nonlignifying seed tissue. Characterization of the enzyme from both seeds and xylem demonstrated that the enzyme is the same in both tissues. The enzyme has a high affinity for coniferaldehyde (Km = 1.7 micromolar) compared with sinapaldehyde (Km in excess of 100 micromolar). Kinetic data strongly suggest that coniferin is a noncompetitive inhibitor of CAD enzyme activity. Protein sequences were obtained for the N-terminus (28 amino acids) and for two other peptides. Degenerate oligonucleotide primers based on the protein sequences were used to amplify by polymerase chain reaction a 1050 base pair DNA fragment from xylem cDNA. Nucleotide sequence from the cloned DNA fragment coded for the N-terminal protein sequence and an internal peptide of CAD. The N-terminal protein sequence has little similarity with the λCAD4 clone isolated from bean (MH Walter, J Grima-Pettenati, C Grand, AM Boudet, CJ Lamb [1988] Proc Natl Acad Sci USA 86:5546-5550), which has homology with malic enzyme. ImagesFigure 2Figure 3 PMID:16668801

  20. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

  1. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius.

    Pennacchio, Angela; Giordano, Assunta; Pucci, Biagio; Rossi, Mosè; Raia, Carlo A

    2010-03-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75 degrees C and a 30-min half-inactivation temperature of ~90 degrees C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and alpha-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of alpha-methyl and alpha-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.

  2. A multiple mediator analysis approach to quantify the effects of the ADH1B and ALDH2 genes on hepatocellular carcinoma risk.

    Shih, Stephannie; Huang, Yen-Tsung; Yang, Hwai-I

    2018-06-01

    Previous work suggested a genetic component affecting the risk of hepatocellular carcinoma (HCC) and mediation analyses have elucidated potential indirect pathways of these genetic effects. Specifically, the effects of alcohol dehydrogenase (ADH1B) and aldehyde dehydrogenase (ALDH2) genes on HCC risk vary based on alcohol consumption habits. However, alcohol consumption may not be the only mediator in the identified pathway: factors related to alcohol consumption may contribute to the same indirect pathway. Thus, we developed a multimediator model to quantify the genetic effects on HCC risk through sequential dichotomous mediators under the counterfactual framework. Our method provided a closed form formula for the mediation effects through different indirect paths, which requires no assumption for the rarity of outcome. In simulation studies of a finite sample, we presented the utility of the method with the variance of the effects estimated using the delta method and bootstrapping. We applied our method to data from participants in Taiwan (580 cases and 3,207 controls) and quantified the mediation effects of single nucleotide polymorphisms (SNPs) in the ADH1B and ALDH2 genes on HCC through alcohol consumption (yes/no) and high alanine transaminase (ALT) levels (greater than or equal to 45 U/L or below 45 U/L). Assuming a dominant risk model, we identified that the SNPs' effects through alcohol consumption is more significant than through ALT levels on HCC risk. This new method provides insight to the magnitude of various casual mechanisms as a closed form solution and can be readily applied in other genomic studies. © 2018 WILEY PERIODICALS, INC.

  3. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes.

    Loder, Andrew J; Zeldes, Benjamin M; Garrison, G Dale; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-10-01

    n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. Copyright © 2015, American Society for

  4. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. [ADH/D and impulsiveness: Prevalence of impulse control disorders and other comorbidities, in 81 adults with attention deficit/hyperactivity disorder (ADH/D)].

    Porteret, R; Bouchez, J; Baylé, F J; Varescon, I

    2016-04-01

    3 symptoms at least of one and/or the other category). Regarding the ICDs, we found a proportion of 66 % of patients manifesting at least one, the most frequent ICD being the Intermittent Explosive Disorder (IED): 29.6 %, followed by Compulsive Buying (CB): 23.4 %, Pathological Gambling (PG): 7.4 %, Kleptomania and Compulsive Sexual Behaviour: 2.4 %, and Trichotillomania: 1.2 %. Among the psychiatric comorbidities evaluated, generalized anxiety disorder: 61.7 %, followed by dysthymia: 44.4 %, major depressive episode: 28.3 %, Agoraphobia: 22.2 %, panic disorder: 17.2 %, hypomanic episode: 16 %, social phobia: 11.1 %, bulimia nervosa: 8.6 %, and antisocial personality disorder and obsessive-compulsive disorder: 3.7 %. Regarding the addictive comorbidities, we found a prevalence of 14.8 % of substance abuse (non-alcohol), followed by 7.4 % of alcohol abuse, 6.1 % of substance dependence (non-alcohol), and 3.7 % of alcohol dependence. ADH/D in adults continues to be unrecognized in France. The aim of this study was to evaluate the prevalence of impulse control disorders, psychiatric and addictive comorbidities in adults with ADH/D. The results enable us to appreciate quantitative and qualitative data for 81 French adults with ADH/D. This disorder rarely remains isolated and is often associated with many others, especially anxiety and mood disorders. We also observed that impulsivity stays at the heart of the ADH/D, either through impulsive behaviours or addictive disorders. Considering the lack of studies with ADH/D adults, it is difficult to compare our data. The diagnosis of ADH/D is complex and stays controversial, moreover the strong prevalence of comorbidities points out the importance of differential diagnosis. Copyright © 2015 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  6. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  7. The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars.

    Özparpucu, Merve; Gierlinger, Notburga; Burgert, Ingo; Van Acker, Rebecca; Vanholme, Ruben; Boerjan, Wout; Pilate, Gilles; Déjardin, Annabelle; Rüggeberg, Markus

    2018-04-01

    CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.

  8. Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants1

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-01-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cβ. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units. PMID:12805615

  9. Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants.

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-06-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cbeta. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units.

  10. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  11. Preventive effects of Flos Perariae (Gehua water extract and its active ingredient puerarin in rodent alcoholism models

    Wang Yuqiang

    2010-10-01

    Full Text Available Abstract Background Radix Puerariae is used in Chinese medicine to treat alcohol addiction and intoxication. The present study investigates the effects of Flos puerariae lobatae water extract (FPE and its active ingredient puerarin on alcoholism using rodent models. Methods Alcoholic animals were given FPE or puerarin by oral intubation prior or after alcohol treatment. The loss of righting reflex (LORR assay was used to evaluate sedative/hypnotic effects. Changes of gama-aminobutyric acid type A receptor (GABAAR subunits induced by alcohol treatment in hippocampus were measured with western blot. In alcoholic mice, body weight gain was monitored throughout the experiments. Alcohol dehydrogenase (ADH levels in liver were measured. Results FPE and puerarin pretreatment significantly prolonged the time of LORR induced by diazepam in acute alcoholic rat. Puerarin increased expression of gama-aminobutyric acid type A receptor alpha1 subunit and decreased expression of alpha4 subunit. In chronic alcoholic mice, puerarin pretreatment significantly increased body weight and liver ADH activity in a dose-dependent manner. Puerarin pretreatment, but not post-treatment, can reverse the changes of gama-aminobutyric acid type A receptor subunit expression and increase ADH activity in alcoholism models. Conclusion The present study demonstrates that FPE and its active ingredient puerarin have preventive effects on alcoholism related disorders.

  12. Quantitative comparison between the gel-film and polyvinyl alcohol methods for dehydrogenase histochemistry reveals different intercellular distribution patterns of glucose-6-phosphate and lactate dehydrogenases in mouse liver

    Griffini, P.; Vigorelli, E.; Bertone, V.; Freitas, I.; van Noorden, C. J.

    1994-01-01

    The precise histochemical localization and quantification of the activity of soluble dehydrogenases in unfixed cryostat sections requires the use of tissue protectants. In this study, two protectants, polyvinyl alcohol (PVA) and agarose gel, were compared for assaying the activity of lactate

  13. Alcohols as discriminating agents for genetic sexing in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    Riva Francos, M.E.

    1990-01-01

    The locus of the alcohol dehydrogenase (ADH) has been used to develop a genetic sexing mechanism in the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Previous work (1982-1984) has led to the isolation of a translocation linking a null mutant of this locus to the Y chromosome of the males. This strain, T-128, together with others showing different ADH electrophoretic patterns, have been assayed for their resistance to alcohols, such as allyl-alcohol, pentynol, ethanol and 2-propanol. The strains carrying the T-128 translocation show a differential, sex dependent survival to some of these alcohols. Part of this work is still in progress. The mutagenic ethyl methanesulphate (EMS) is being used to induce new ADH null mutants using the strain T-128 as a marker. Several hundred females have been treated with 0.04% EMS and then outcrossed to T-128 males. Their progeny is put through selective larval medium (0.08% allyl-alcohol) and the surviving F 1 individuals and subsequent F 2 are being analysed. Population studies have shown that the genetic sexing strain, T-128, is a double translocation with complete linkage between the Adh N allele (chromosome 2), and the Y chromosome, and incomplete linkage of the Y with the wild type allele of the apricot eye locus (ap + ) of chromosome 4. (author). 40 refs, 4 figs, 12 tabs

  14. A genetic analysis of Adh1 regulation

    Freeling, M.

    1992-01-01

    The overall goal of our research proposal is to understand the meaning of the various cis-acting sites responsible for AdH1 expression in the entire maize plant. Progress is reported in the following areas: Studies on the TATA box and analysis of revertants of the Adh1-3F1124 allele; screening for more different mutants that affect Adh1 expression differentially; studies on cis-acting sequences required for root-specific Adh1 expression; refinement of the use of the particle gun; and functional analysis of a non- glycolytic anaerobic protein.

  15. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase.

    Li, L; Cheng, X F; Leshkevich, J; Umezawa, T; Harding, S A; Chiang, V L

    2001-07-01

    Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) has been thought to mediate the reduction of both coniferaldehyde and sinapaldehyde into guaiacyl and syringyl monolignols in angiosperms. Here, we report the isolation of a novel aspen gene (PtSAD) encoding sinapyl alcohol dehydrogenase (SAD), which is phylogenetically distinct from aspen CAD (PtCAD). Liquid chromatography-mass spectrometry-based enzyme functional analysis and substrate level-controlled enzyme kinetics consistently demonstrated that PtSAD is sinapaldehyde specific and that PtCAD is coniferaldehyde specific. The enzymatic efficiency of PtSAD for sinapaldehyde was approximately 60 times greater than that of PtCAD. These data suggest that in addition to CAD, discrete SAD function is essential to the biosynthesis of syringyl monolignol in angiosperms. In aspen stem primary tissues, PtCAD was immunolocalized exclusively to xylem elements in which only guaiacyl lignin was deposited, whereas PtSAD was abundant in syringyl lignin-enriched phloem fiber cells. In the developing secondary stem xylem, PtCAD was most conspicuous in guaiacyl lignin-enriched vessels, but PtSAD was nearly absent from these elements and was conspicuous in fiber cells. In the context of additional protein immunolocalization and lignin histochemistry, these results suggest that the distinct CAD and SAD functions are linked spatiotemporally to the differential biosynthesis of guaiacyl and syringyl lignins in different cell types. SAD is required for the biosynthesis of syringyl lignin in angiosperms.

  16. Insight into the stereospecificity of short-chain thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity.

    Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A

    2010-04-01

    The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.

  17. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis.

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V; Mühlemann, Joëlle K; Bomati, Erin K; Bowman, Marianne E; Dudareva, Natalia; Dixon, Richard A; Noel, Joseph P; Wang, Xiaoqiang

    2014-09-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. © 2014 American Society of Plant Biologists. All rights reserved.

  18. Purification and characterization of cinnamyl alcohol-NADPH-dehydrogenase from the leaf tissues of a basin mangrove Lumnitzera racemosa Willd.

    Murugan, K; Arunkumar, N S; Mohankumar, C

    2004-01-01

    Cinnamyl alcohol-NADPH-dehydrogenase (CAD), the marker enzyme of lignin biosynthesis was purified from the leaf tissues of a basin mangrove Lumnitzera racemosa by ammonium sulphate precipitation, followed by anion-exchange, gel filtration and affinity chromatography. The molecular mass of the CAD enzyme was determined as 89 kDa, by size elution chromatography. SDS-PAGE of CAD revealed two closely associated bands of 45 kDa and 42 kDa as heterogenous subunits. The optimum pH of CAD was found to be 4.0. Km for the substrates cinnamaldehyde, coniferaldehyde and sinapaldehyde was determined. Cinnamaldehyde showed higher Km value than sinapaldehyde and coniferaldehyde. The correlation of activity of CAD with the amount of lignin was found less significant in L. racemosa, compared to plant species of other habitats viz., mesophytes, xerophytes and hydrophytes, suggesting that CAD possibly exhibits physiological suppression due to the saline habitat of the plant.

  19. Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient Nicotiana attenuata plants to compensate for their structural deficiencies.

    Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T

    2012-08-01

    The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.

  20. Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem.

    Damiani, Isabelle; Morreel, Kris; Danoun, Saïda; Goeminne, Geert; Yahiaoui, Nabila; Marque, Christiane; Kopka, Joachim; Messens, Eric; Goffner, Deborah; Boerjan, Wout; Boudet, Alain-Michel; Rochange, Soizic

    2005-11-01

    In angiosperms, lignin is built from two main monomers, coniferyl and sinapyl alcohol, which are incorporated respectively as G and S units in the polymer. The last step of their synthesis has so far been considered to be performed by a family of dimeric cinnamyl alcohol dehydrogenases (CAD2). However, previous studies on Eucalyptus gunnii xylem showed the presence of an additional, structurally unrelated, monomeric CAD form named CAD1. This form reduces coniferaldehyde to coniferyl alcohol, but is inactive on sinapaldehyde. In this paper, we report the functional characterization of CAD1 in tobacco (Nicotiana tabacum L.). Transgenic tobacco plants with reduced CAD1 expression were obtained through an RNAi strategy. These plants displayed normal growth and development, and detailed biochemical studies were needed to reveal a role for CAD1. Lignin analyses showed that CAD1 down-regulation does not affect Klason lignin content, and has a moderate impact on G unit content of the non-condensed lignin fraction. However, comparative metabolic profiling of the methanol-soluble phenolic fraction from basal xylem revealed significant differences between CAD1 down-regulated and wild-type plants. Eight compounds were less abundant in CAD1 down-regulated lines, five of which were identified as dimers or trimers of monolignols, each containing at least one moiety derived from coniferyl alcohol. In addition, 3-trans-caffeoyl quinic acid accumulated in the transgenic plants. Together, our results support a significant contribution of CAD1 to the synthesis of coniferyl alcohol in planta, along with the previously characterized CAD2 enzymes.

  1. Synthesis of cinnamyl alcohol from cinnamaldehyde with Bacillus stearothermophilus alcohol dehydrogenase as the isolated enzyme and in recombinant E. coli cells.

    Pennacchio, Angela; Rossi, Mosè; Raia, Carlo A

    2013-07-01

    The synthesis of the aroma chemical cinnamyl alcohol (CMO) by means of enzymatic reduction of cinnamaldehyde (CMA) was investigated using NADH-dependent alcohol dehydrogenase from Bacillus stearothermophilus both as an isolated enzyme, and in recombinant Escherichia coli whole cells. The influence of parameters such as reaction time and cofactor, substrate, co-substrate 2-propanol and biocatalyst concentrations on the bioreduction reaction was investigated and an efficient and sustainable one-phase system developed. The reduction of CMA (0.5 g/L, 3.8 mmol/L) by the isolated enzyme occurred in 3 h at 50 °C with 97% conversion, and yielded high purity CMO (≥98%) with a yield of 88% and a productivity of 50 g/genzyme. The reduction of 12.5 g/L (94 mmol/L) CMA by whole cells in 6 h, at 37 °C and no requirement of external cofactor occurred with 97% conversion, 82% yield of 98% pure alcohol and a productivity of 34 mg/gwet cell weight. The results demonstrate the microbial system as a practical and efficient method for larger-scale synthesis of CMO.

  2. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations?

    Kim, Sung-Jin; Kim, Kye-Won; Cho, Man-Ho; Franceschi, Vincent R; Davin, Laurence B; Lewis, Norman G

    2007-07-01

    A major goal currently in Arabidopsis research is determination of the (biochemical) function of each of its approximately 27,000 genes. To date, however, 12% of its genes actually have known biochemical roles. In this study, we considered it instructive to identify the gene expression patterns of nine (so-called AtCAD1-9) of 17 genes originally annotated by The Arabidopsis Information Resource (TAIR) as cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) homologues [see Costa, M.A., Collins, R.E., Anterola, A.M., Cochrane, F.C., Davin, L.B., Lewis N.G., 2003. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64, 1097-1112.]. In agreement with our biochemical studies in vitro [Kim, S.-J., Kim, M.-R., Bedgar, D.L., Moinuddin, S.G.A., Cardenas, C.L., Davin, L.B., Kang, C.-H., Lewis, N.G., 2004. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1455-1460.], and analysis of a double mutant [Sibout, R., Eudes, A., Mouille, G., Pollet, B., Lapierre, C., Jouanin, L., Séguin A., 2005. Cinnamyl Alcohol Dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 2059-2076.], both AtCAD5 (At4g34230) and AtCAD4 (At3g19450) were found to have expression patterns consistent with development/formation of different forms of the lignified vascular apparatus, e.g. lignifying stem tissues, bases of trichomes, hydathodes, abscission zones of siliques, etc. Expression was also observed in various non-lignifying zones (e.g. root caps) indicative of, perhaps, a role in plant defense. In addition, expression patterns of the four CAD-like homologues were investigated, i.e. AtCAD2 (At2g21730), AtCAD3 (At2g21890), AtCAD7 (At4g37980) and AtCAD8 (At4g37990), each of which previously had been demonstrated to have low CAD

  3. Genetic association of HCRTR2, ADH4 and CLOCK genes with cluster headache: a Chinese population-based case-control study.

    Fan, Zhiliang; Hou, Lei; Wan, Dongjun; Ao, Ran; Zhao, Dengfa; Yu, Shengyuan

    2018-01-09

    Cluster headache (CH), a rare primary headache disorder, is currently thought to be a genetic susceptibility which play a role in CH susceptibility. A large numbers of genetic association studies have confirmed that the HCRTR2 (Hypocretin Receptor 2) SNP rs2653349, and the ADH4 (Alcohol Dehydrogenase 4) SNP rs1126671 and rs1800759 polymorphisms are linked to CH. In addition, the CLOCK (Circadian Locomotor Output Cycles Kaput) gene is becoming a research hotspot for CH due to encoding a transcription factor that serves as a basic driving force for circadian rhythm in humans. The purpose of this study was to evaluate the association between CH and the HCRTR2, ADH4 and CLOCK genes in a Chinese CH case-control sample. We genotyped polymorphisms of nine single nucleotide polymorphisms (SNPs) in the HCRTR2, ADH4 and CLOCK genes to perform an association study on a Chinese Han CH case-control sample (112 patients and 192 controls),using Sequenom MALDI-TOF mass spectrometry iPLEX platform. The frequencies and distributions of genotypes and haplotypes were statistically compared between the case and control groups to identify associations with CH. The effects of SNPs on CH were further investigated by multiple logistic regression. The frequency of the HCRTR2 SNP rs3800539 GA genotype was significantly higher in cases than in controls (48.2% vs.37.0%). The GA genotypes was associated with a higher CH risk (OR = 1.483, 95% CI: 0.564-3.387, p = 0.038), however, after Bonferroni correction, the association lost statistical significance. Haplotype analysis of the HCRTR2 SNPs showed that among eight haplotypes, only H1-GTGGGG was linked to a reduced CH risk (44.7% vs. 53.1%, OR = 0.689, 95% CI =0.491~0.966, p = 0.030). No significant association of ADH4, CLOCK SNPs with CH was statistically detected in the present study. Association between HCRTR2, ADH4,CLOCK gene polymorphisms and CH was not significant in the present study, however, haplotype analysis indicated

  4. An ADH1B variant and peer drinking in progression to adolescent drinking milestones: evidence of a gene-by-environment interaction.

    Olfson, Emily; Edenberg, Howard J; Nurnberger, John; Agrawal, Arpana; Bucholz, Kathleen K; Almasy, Laura A; Chorlian, David; Dick, Danielle M; Hesselbrock, Victor M; Kramer, John R; Kuperman, Samuel; Porjesz, Bernice; Schuckit, Marc A; Tischfield, Jay A; Wang, Jen-Chyong; Wetherill, Leah; Foroud, Tatiana M; Rice, John; Goate, Alison; Bierut, Laura J

    2014-10-01

    Adolescent drinking is an important public health concern, one that is influenced by both genetic and environmental factors. The functional variant rs1229984 in alcohol dehydrogenase 1B (ADH1B) has been associated at a genome-wide level with alcohol use disorders in diverse adult populations. However, few data are available regarding whether this variant influences early drinking behaviors and whether social context moderates this effect. This study examines the interplay between rs1229984 and peer drinking in the development of adolescent drinking milestones. One thousand five hundred and fifty European and African American individuals who had a full drink of alcohol before age 18 were selected from a longitudinal study of youth as part of the Collaborative Study on the Genetics of Alcoholism (COGA). Cox proportional hazards regression, with G × E product terms in the final models, was used to study 2 primary outcomes during adolescence: age of first intoxication and age of first DSM-5 alcohol use disorder symptom. The minor A allele of rs1229984 was associated with a protective effect for first intoxication (HR = 0.56, 95% CI 0.41 to 0.76) and first DSM-5 symptom (HR = 0.45, 95% CI 0.26 to 0.77) in the final models. Reporting that most or all best friends drink was associated with a hazardous effect for first intoxication (HR = 1.81, 95% CI 1.62 to 2.01) and first DSM-5 symptom (HR = 2.17, 95% 1.88 to 2.50) in the final models. Furthermore, there was a significant G × E interaction for first intoxication (p = 0.002) and first DSM-5 symptom (p = 0.01). Among individuals reporting none or few best friends drinking, the ADH1B variant had a protective effect for adolescent drinking milestones, but for those reporting most or all best friends drinking, this effect was greatly reduced. Our results suggest that the risk factor of best friends drinking attenuates the protective effect of a well-established ADH1B variant for 2 adolescent drinking

  5. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP+-dependent alcohol dehydrogenase from Saccharomyces cerevisiae

    Breicha, Klaus; Müller, Marion; Hummel, Werner; Niefind, Karsten

    2010-01-01

    The alcohol dehydrogenase Gre2p from S. cerevisiae catalyses the stereospecific reduction of a variety of different keto compounds and can therefore be applied as a valuable biocatalyst. The crystallization of the complex of Gre2p with NADP + and its preliminary X-ray analysis are described. Gre2p [Genes de respuesta a estres (stress-response gene)] from Saccharomyces cerevisiae is a monomeric enzyme of 342 amino acids with a molecular weight of 38.1 kDa. The enzyme catalyses both the stereospecific reduction of keto compounds and the oxidation of various hydroxy compounds and alcohols by the simultaneous consumption of the cofactor NADPH and formation of NADP + . Crystals of a Gre2p complex with NADP + were grown using PEG 8000 as a precipitant. They belong to the monoclinic space group P2 1 . The current diffraction resolution is 3.2 Å. In spite of the monomeric nature of Gre2p in solution, packing and self-rotation calculations revealed the existence of two Gre2p protomers per asymmetric unit related by a twofold noncrystallographic axis

  6. Partial Purification and Characterisation of Alcohol Dehydrogenase from Acetobacter aceti Isolated from Palm Wine

    Donatus Chimaobi ONAH

    2016-06-01

    Full Text Available Palm wine is a very important alcoholic beverage whose consumption is limited because it spoils easily. The study was designed to isolate Acetobacter aceti from palm wine, then extract, purify and characterize alcohol dehydrogenase (AD from the A. aceti. Muller Hilton agar was used as medium for the growth of A. aceti for 48 h. The cells were harvested and subjected to ultrasonication using 500 watt ultrasonicator. Enzyme assay was carried out in both the supernatant and pellet. The enzyme was precipitated by polyethelene glycol 6000 while gel filtration was used for purifying the enzyme. The effects of pH, temperature and substrate concentration on AD were evaluated. The isolated A. aceti was gram negative, rod shaped, catalase positive, oxidase negative and was able to oxidize acetic acid to CO2 and H2O. Triton X-100 (0.3% was the most effective concentration in solubilizing the protein (AD, while 15% polyethelene glycol 6000 was the most effective concentration for the precipitation of AD. An optimal pH of 5 was obtained with an optimal temperature of 50 °C. The most appropriate to solubilize and precipitate AD were 0.3% triton X-100 and 15% polyethelene glycol 6000 respectively, while AD activity was reduced under acidic pH, as well as for low and high temperatures.

  7. Purification and characterization of an anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol.

    Meng, Fantao; Xu, Yan

    2010-04-01

    An anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol was purified by 26-fold to homogeneity. The enzyme had a homodimeric structure consisting of 49 kDa subunits, required NADPH, but not NADH, as a cofactor and was a Zn-independent short-chain dehydrogenase. Aliphatic methyl ketones (chain length > or =6 carbon atoms) and aromatic methyl ketones were the preferred substrates for the enzyme, the best being 2-octanone. Maximum enzyme activity with 2-octanone was at 45 degrees C and at pH 8.0.

  8. Alcoholic Ketosis: Prevalence, Determinants, and Ketohepatitis in Japanese Alcoholic Men.

    Yokoyama, Akira; Yokoyama, Tetsuji; Mizukami, Takeshi; Matsui, Toshifumi; Shiraishi, Koichi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2014-11-01

    Alcoholic ketosis and ketoacidosis are metabolic abnormalities often diagnosed in alcoholics in emergency departments. We attempted to identify determinants or factors associated with alcoholic ketosis. The subjects of this cross-sectional survey were 1588 Japanese alcoholic men (≥40 years) who came to an addiction center within 14 days of their last drink. The results of the dipstick urinalyses revealed a prevalence of ketosis of 34.0% (±, 21.5%; +, 8.9%; and 2+/3+; 3.6%) in the alcoholics. Higher urine ketone levels were associated with higher serum total bilirubin, aspartate transaminase (AST), alanine transaminase and gamma-glutamyl transpeptidase levels. A multivariate analysis by the proportional odds model showed that the odds ratio (95% confidence interval) for an increase in ketosis by one category was 0.94 (0.84-1.06) per 10-year increase in age, 0.93 (0.89-0.97) per 1-day increase in interval since the last drink, 1.78 (1.41-2.26) in the presence of slow-metabolizing alcohol dehydrogenase-1B (ADH1B*1/*1), 1.61 (1.10-2.36) and 1.30 (1.03-1.65) when the beverage of choice was whiskey and shochu, respectively (distilled no-carbohydrate beverages vs. the other beverages), 2.05 (1.27-3.32) in the presence of hypoglycemia Ketosis was a very common complication and frequently accompanied by alcoholic liver injury in our Japanese male alcoholic population, in which ADH1B*1/*1 genotype, consumption of whiskey or shochu, hypoglycemia, lower BMI and smoking were significant determinants of the development of ketosis. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  9. Rate constants for a mechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase

    Sekhar, V.C.; Plapp, B.V.

    1990-01-01

    Transient kinetic data for partial reactions of alcohol dehydrogenase and simulations of progress curves have led to estimates of rate constants for the following mechanism, at pH 8.0 and 25 degrees C: E in equilibrium E-NAD+ in equilibrium *E-NAD+ in equilibrium E-NAD(+)-RCH2OH in equilibrium E-NAD+-RCH2O- in equilibrium *E-NADH-RCHO in equilibrium E-NADH-RCHO in equilibrium E-NADH in equilibrium E. Previous results show that the E-NAD+ complex isomerizes with a forward rate constant of 620 s-1. The enzyme-NAD(+)-alcohol complex has a pK value of 7.2 and loses a proton rapidly (greater than 1000 s-1). The transient oxidation of ethanol is 2-fold faster in D 2 O, and proton inventory results suggest that the transition state has a charge of -0.3 on the substrate oxygen. Rate constants for hydride ion transfer in the forward or reverse reactions were similar for short-chain aliphatic substrates (400-600 s-1). A small deuterium isotope effect for transient oxidation of longer chain alcohols is apparently due to the isomerization of the E-NAD+ complex. The transient reduction of aliphatic aldehydes showed no primary deuterium isotope effect; thus, an isomerization of the E-NADH-aldehyde complex is postulated, as isomerization of the E-NADH complex was too fast to be detected. The estimated microscopic rate constants show that the observed transient reactions are controlled by multiple steps

  10. Increased alcohol consumption as a cause of alcoholism, without similar evidence for depression: a Mendelian randomization study.

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne

    2015-04-01

    Increased alcohol consumption has been associated with depression and alcoholism, but whether these associations are causal remains unclear. We tested whether alcohol consumption is causally associated with depression and alcoholism. We included 78,154 men and women aged 20-100 years randomly selected in 1991-2010 from the general population of Copenhagen, Denmark, and genotyped 68,486 participants for two genetic variants in two alcohol dehydrogenase (ADH) genes, ADH-1B (rs1229984) and ADH-1C (rs698). We performed observational and causal analyses using a Mendelian randomization design with antidepressant medication use and hospitalization/death, with depression and alcoholism as outcomes. In prospective analyses, the multifactorially adjusted hazard ratio for participants reporting >6 drinks/day vs participants reporting 0.1-1 drinks/day was 1.28 (95% confidence interval, 1.00-1.65) for prescription antidepressant use, with a corresponding hazard ratio of 0.80 (0.45-1.45) for hospitalization/death with depression and of 11.7 (8.77-15.6) for hospitalization/death with alcoholism. For hospitalization/death with alcoholism, instrumental variable analysis yielded a causal odds ratio of 28.6 (95 % confidence interval 6.47-126) for an increase of 1 drink/day estimated from the combined genotype combination, whereas the corresponding multifactorially adjusted observational odds ratio was 1.28 (1.25-1.31). Corresponding odds ratios were 1.11 (0.67-1.83) causal and 1.04 (1.03-1.06) observational for prescription antidepressant use, and 4.52 (0.99-20.5) causal and 0.98 (0.94-1.03) observational for hospitalization/death with depression. These data indicate that the association between increased alcohol consumption and alcoholism is causal, without similar strong evidence for depression. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  11. Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the cra gene or in the Cra-box of the adhE promoter.

    Kaga, Naoko; Umitsuki, Genryou; Clark, David P; Nagai, Kazuo; Wachi, Masaaki

    2002-07-05

    Escherichia coli RNase G encoded by the rng gene is involved in degradation of adhE mRNA. Overproduction of the AdhE protein by rng mutants was found to depend on the genetic background of strains derived from DC272 (adhC81) or MC1061. We found that DC272 carried a point mutation in the Cra-binding site of the adhE promoter. The Cra protein encoded by the cra gene is known to act as a repressor of adhE. P1-phage-mediated transduction and lacZ fusion analysis with the mutant adhE promoter confirmed that this mutation is responsible for overproduction. On the other hand, Southern hybridization revealed that MC1061 had a 0.85-kb deletion of the cra gene. Overproduction of AdhE in the MC1061 background was reversed to the wild-type levels by introduction of a plasmid carrying the cra(+) gene. These results indicated that expression of the adhE gene was regulated transcriptionally by Cra and posttranscriptionally by RNase G. (c) 2002 Elsevier Science (USA).

  12. [Alcohol].

    Zima, T

    1996-07-14

    Alcohol is one of the most widely used addictive substances. It can be assumed that everybody encounters alcohol--ethanol in various forms and concentrations in the course of their lives. A global and social problem of our civilization is alcohol consumption which has a rising trend. Since 1989 the consumption of alcoholic beverages is rising and the mean annual consumption of concentrated ethanol per head is cea 10 litres. In ethanol abuse the organism is damaged not only by ethanol alone but in particular by substances formed during its metabolism. Its detailed knowledge is essential for the knowledge and investigations of the metabolic and toxic effect of ethanol on the organism. Ingested alcohol is in 90-98% eliminated from the organism by three known metabolic pathways: 1-alcohol dehydrogenase, 2-the microsomal ethanol oxidizing system and 3-catalase. Alcohol is a frequent important risk factor of serious "diseases of civilization" such as IHD, hypertension, osteoporosis, neoplastic diseases. Cirrhosis of the liver and chronic pancreatitis are the well known diseases associated with alcohol ingestion and also their most frequent cause. It is impossible to list all organs and diseases which develop as a result of alcohol consumption. It is important to realize that regular and "relatively" small amounts in the long run damage the organism and may be even fatal.

  13. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A.; Hahn, Michael G.; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A.

    2013-01-01

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis in...

  14. Distribution of Silicified Microstructures, Regulation of Cinnamyl Alcohol Dehydrogenase and Lodging Resistance in Silicon and Paclobutrazol Mediated Oryza sativa

    Deivaseeno Dorairaj

    2017-07-01

    Full Text Available Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si, a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense. The aim of this study is to resolve effects of Si on formation of microstructure and regulation of cinnamyl alcohol dehydrogenase (CAD, a key gene responsible for lignin biosynthesis. Besides evaluating silicon, paclobutrazol (PBZ a plant growth retartdant that reduces internode elongation is also incorporated in this study. Hardness, brittleness and stiffness were improved in presence of silicon thus reducing lodging. Scanning electron micrographs with the aid of energy dispersive x-ray (EDX was used to map silicon distribution. Presence of trichomes, silica cells, and silica bodies were detected in silicon treated plants. Transcripts of CAD gene was also upregulated in these plants. Besides, phloroglucinol staining showed presence of lignified vascular bundles and sclerenchyma band. In conclusion, silicon treated rice plants showed an increase in lignin content, silicon content, and formation of silicified microstructures.

  15. A novel cinnamyl alcohol dehydrogenase (CAD)-like reductase contributes to the structural diversity of monoterpenoid indole alkaloids in Rauvolfia.

    Geissler, Marcus; Burghard, Marie; Volk, Jascha; Staniek, Agata; Warzecha, Heribert

    2016-03-01

    Based on findings described herein, we contend that the reduction of vomilenine en route to antiarrhythmic ajmaline in planta might proceed via an alternative, novel sequence of biosynthetic steps. In the genus Rauvolfia, monoterpenoid indole alkaloids (MIAs) are formed via complex biosynthetic sequences. Despite the wealth of information about the biochemistry and molecular genetics underlying these processes, many reaction steps involving oxygenases and oxidoreductases are still elusive. Here, we describe molecular cloning and characterization of three cinnamyl alcohol dehydrogenase (CAD)-like reductases from Rauvolfia serpentina cell culture and R. tetraphylla roots. Functional analysis of the recombinant proteins, with a set of MIAs as potential substrates, led to identification of one of the enzymes as a CAD, putatively involved in lignin formation. The two remaining reductases comprise isoenzymes derived from orthologous genes of the investigated alternative Rauvolfia species. Their catalytic activity consists of specific conversion of vomilenine to 19,20-dihydrovomilenine, thus proving their exclusive involvement in MIA biosynthesis. The obtained data suggest the existence of a previously unknown bypass in the biosynthetic route to ajmaline further expanding structural diversity within the MIA family of specialized plant metabolites.

  16. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  17. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment.

    Aaron J Saathoff

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. "Alamo" with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin.

  18. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.

    Chen, Lei; Auh, Chung-Kyoon; Dowling, Paul; Bell, Jeremey; Chen, Fang; Hopkins, Andrew; Dixon, Richard A; Wang, Zeng-Yu

    2003-11-01

    Lignification of cell walls during plant development has been identified as the major factor limiting forage digestibility and concomitantly animal productivity. cDNA sequences encoding a key lignin biosynthetic enzyme, cinnamyl alcohol dehydrogenase (CAD), were cloned from the widely grown monocotyledonous forage species tall fescue (Festuca arundinacea Schreb.). Recombinant tall fescue CAD expressed in E. coli exhibited the highest V(max)/K(m) values when coniferaldehyde and sinapaldehyde were used as substrates. Transgenic tall fescue plants carrying either sense or antisense CAD gene constructs were obtained by microprojectile bombardment of single genotype-derived embryogenic suspension cells. Severely reduced levels of mRNA transcripts and significantly reduced CAD enzymatic activities were found in two transgenic plants carrying sense and antisense CAD transgenes, respectively. These CAD down-regulated transgenic lines had significantly decreased lignin content and altered ratios of syringyl (S) to guaiacyl (G), G to p-hydroxyphenyl (H) and S to H units. No significant changes in cellulose, hemicellulose, neutral sugar composition, p-coumaric acid and ferulic acid levels were observed in the transgenic plants. Increases of in vitro dry matter digestibility of 7.2-9.5% were achieved in the CAD down-regulated lines, thus providing a novel germplasm to be used for the development of grass cultivars with improved forage quality.

  19. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment.

    Saathoff, Aaron J; Sarath, Gautam; Chow, Elaine K; Dien, Bruce S; Tobias, Christian M

    2011-01-27

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. "Alamo" with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin.

  20. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biochemical studies of effects of alcohol consumption on fat and carbohydrate metabolism in rats fed different levels of proteins

    Shalan, M.G.M.

    1996-01-01

    Alcohol, ethanol and ethyl alcohol are synonymously used during the present dissertation. Alcohol probably was among the first psychoactive substances to be used by man (Winger et al., 1992). Ethanol is mainly oxidized to acetaldehyde in the liver (Ugarte and Peresa, 1978) by alcohol dehydrogenase (ADH). Alcohol is associated with many metabolic disorders inside the body (Thayer and Rubin, 1979; Forsander and Poso, 1988; Poso and Hirsimaki, 1991; Bernal, et al., 1992). The nutritional factors which received little attention have an important role in alcoholic metabolizing alterations. Morphologically and biochemically, an increase in hepatic lipid was demonstrated when ethanol was given either as a supplement or as an iso caloric substitute for carbohydrate together with an otherwise nutritionally adequate diet. Low-protein diets have been shown to diminish hepatic alcohol dehydrogenase (ADH) levels in rats and to slow down the metabolism of ethanol considerably (Wilson et al., 1986). Hepatic steatosis was produced, even with a high-protein, vitamin-supplemented diet and was accompanied by major ultrastructural liver changes and by elevations of hepatic transaminases in blood (Lieber et al., 1963 and 1965 and Lane and Lieber, 1966). If dietary fat was reduced from 35 to 25% of total calories, hepatic triglyceride accumulation greatly decreased (Lieber and DeCarli, 970)

  2. Theoretical investigation of interaction of sorbitol molecules with alcohol dehydrogenase in aqueous solution using molecular dynamics simulation.

    Bahrami, Homayoon; Zahedi, Mansour; Moosavi-Movahedi, Ali Akbar; Azizian, Homa; Amanlou, Massoud

    2011-03-01

    The nature of protein-sorbitol-water interaction in solution at the molecular level, has been investigated using molecular dynamics simulations. In order to do this task, two molecular dynamics simulations of the protein ADH in solution at room temperature have been carried out, one in the presence (about 0.9 M) and another in the absence of sorbitol. The results show that the sorbitol molecules cluster and move toward the protein, and form hydrogen bonds with protein. Also, coating by sorbitol reduces the conformational fluctuations of the protein compared to the sorbitol-free system. Thus, it is concluded that at moderate concentration of sorbitol solution, sorbitol molecules interact with ADH via many H-bonds that prevent the protein folding. In fact, at more concentrated sorbitol solution, water and sorbitol molecules accumulate around the protein surface and form a continuous space-filling network to reduce the protein flexibility. Namely, in such solution, sorbitol molecules can stabilize a misfolded state of ADH, and prevent the protein from folding to its native structure.

  3. Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts

    Fang Wang

    2016-03-01

    Full Text Available Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH and aldehyde dehydrogenase (ALDH in liver were assessed to indicate alcohol metabolism. The levels of aspartate aminotransferase (AST and alanine transaminase (ALT in serum as well as the levels of malonaldehyde (MDA and superoxide dismutase (SOD in liver were measured to reflect the alcohol-induced liver injury. The results showed that the treatment of soda water, green tea and honey chrysanthemum tea could accelerate ethanol metabolism and prevent liver injuries caused by alcohol when companied with excessive alcohol drinking. They might be potential dietary supplements for the alleviation of harmful effects from excessive alcohol consumption. On the contrary, some beverages such as fresh orange juice and red bull are not advised to drink when companied with alcohol consumption due to their adverse effects on ethanol induced liver injury.

  4. A wheat cinnamyl alcohol dehydrogenase TaCAD12 contributes to host resistance to the sharp eyespot disease

    Wei Rong

    2016-11-01

    Full Text Available Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.. In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies towards both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1 and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1 were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.

  5. Methods for transfer a saliva based alcohol content test to a dermal patch

    Silks, III, Louis A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-03

    Detection and quantitation of ethanol which is highly sensitive, specific, and efficient has been a commercial target for sometime. Clearly analytical methods are useful such as gas and liquid chromatography, mass spectrometry, and NMR spectroscopy. However, those methods are best used in the laboratory and a less useful for detection and quantitation of ethanol in the field. Enzymes have been employed for the detection and quantitation of EtOH. Enzymes are proteins that perform a particular task in a bio-catalytic way. Most of the chemistry that these enzymes do are frequently exquisitely specific in that only one alcohol reacts and only one product is produced. One enzyme molecule can catalyze the reaction of numerous substrate molecules which in itself is an amplification of the recognition signal. Alcohol dehydrogenase (ADH) and alcohol oxidase (AO) are two possible enzymatic targets for EtOH sensor development.1 The ADH oxidizes the alcohol using a co-factor nicotinamide adenine dinucleotide. This co-factor needs to be within close proximity of the ADH. AO also oxidizes the ethanol using molecular oxygen giving rise to the production of the aldehyde and hydrogen peroxide.

  6. Causal Role of Alcohol Consumption in an Improved Lipid Profile: The Atherosclerosis Risk in Communities (ARIC) Study.

    Vu, Khanh N; Ballantyne, Christie M; Hoogeveen, Ron C; Nambi, Vijay; Volcik, Kelly A; Boerwinkle, Eric; Morrison, Alanna C

    2016-01-01

    Health benefits of low-to-moderate alcohol consumption may operate through an improved lipid profile. A Mendelian randomization (MR) approach was used to examine whether alcohol consumption causally affects lipid levels. This analysis involved 10,893 European Americans (EA) from the Atherosclerosis Risk in Communities (ARIC) study. Common and rare variants in alcohol dehydrogenase and acetaldehyde dehydrogenase genes were evaluated for MR assumptions. Five variants, residing in the ADH1B, ADH1C, and ADH4 genes, were selected as genetic instruments and were combined into an unweighted genetic score. Triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-c) and its subfractions (HDL2-c and HDL3-c), low-density lipoprotein cholesterol (LDL-c), small dense LDL-c (sdLDL-c), apolipoprotein B (apoB), and lipoprotein (a) (Lp(a)) levels were analyzed. Alcohol consumption significantly increased HDL2-c and reduced TG, total cholesterol, LDL-c, sdLDL-c, and apoB levels. For each of these lipids a non-linear trend was observed. Compared to the first quartile of alcohol consumption, the third quartile had a 12.3% lower level of TG (p consumption in increasing HDL2-c, reducing TG, total cholesterol, and LDL-c, and provides evidence for the novel finding that low-to-moderate consumption of alcohol reduces apoB and sdLDL-c levels among EA. However, given the nonlinearity of the effect of alcohol consumption, even within the range of low-to-moderate drinking, increased consumption does not always result in a larger benefit.

  7. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice.

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-08-01

    To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1-3, respectively, and 18% in week 4-7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.

  8. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES.

    Deidre A Winnier

    Full Text Available Type 2 diabetes (T2D is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES. Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05. The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10(-4 gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B that was significantly enriched (P < 10(-60 as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10(-9, BMI (5.4 x 10(-6, and fasting plasma insulin (P < 0.001. These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

  9. Molecular Basis of Alcohol-Related Gastric and Colon Cancer.

    Na, Hye-Kyung; Lee, Ja Young

    2017-05-24

    Many meta-analysis, large cohort studies, and experimental studies suggest that chronic alcohol consumption increases the risk of gastric and colon cancer. Ethanol is metabolized by alcohol dehydrogenases (ADH), catalase or cytochrome P450 2E1 (CYP2E1) to acetaldehyde, which is then further oxidized to acetate by aldehyde dehydrogenase (ALDH). Acetaldehyde has been classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen to humans. The acetaldehyde level in the stomach and colon is locally influenced by gastric colonization by Helicobacter pylori or colonic microbes, as well as polymorphisms in the genes encoding tissue alcohol metabolizing enzymes, especially ALDH2. Alcohol stimulates the uptake of carcinogens and their metabolism and also changes the composition of enteric microbes in a way to enhance the aldehyde level. Alcohol also undergoes chemical coupling to membrane phospholipids and disrupts organization of tight junctions, leading to nuclear translocation of β-catenin and ZONAB, which may contributes to regulation of genes involved in proliferation, invasion and metastasis. Alcohol also generates reactive oxygen species (ROS) by suppressing the expression of antioxidant and cytoprotective enzymes and inducing expression of CYP2E1 which contribute to the metabolic activation of chemical carcinogens. Besides exerting genotoxic effects by directly damaging DNA, ROS can activates signaling molecules involved in inflammation, metastasis and angiogenesis. In addition, alcohol consumption induces folate deficiency, which may result in aberrant DNA methylation profiles, thereby influencing cancer-related gene expression.

  10. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects

    Welsh, K.M.; Creighton, D.J.; Klinman, J.P.

    1980-01-01

    Solvent and alpha-secondary isotope effects have been measured in the yeast alcohol dehydrogenase reaction, under conditions of a rate-limiting transfer of hydrogen between coenzyme and substrate. Determination of catalytic constants in H20 and D20 as a function of pH(D) has allowed the separation of solvent effects on pKa from kcat. The small effect of D20 on pKa is tentatively assigned to ionization of an active-site ZnOH 2 . The near absence of an isotope effect on kcat in the direction of alcohol oxidation rules out a mechanism involving concerted catalysis by an active-site base of hydride transfer. The near identity of kinetic and equilibrium alpha-secondary isotope effects in the direction of alcohol oxidation implicates a transition-state structure which resembles aldehyde with regard to bond hybridization properties. The result contrasts sharply with previously reported structure - reactivity correlations, which implicate a transition-state structure resembling alcohol with regard to charge properties. The significance of these findings to the mechanism of NAD(P)H-dependent redox reactions is discussed

  11. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  12. The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (Sorghum bicolor), SbCAD2 and SbCAD4.

    Jun, Se-Young; Walker, Alexander M; Kim, Hoon; Ralph, John; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-08-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in monolignol biosynthesis, reducing sinapaldehyde, coniferaldehyde, and p -coumaraldehyde to their corresponding alcohols in an NADPH-dependent manner. Because of its terminal location in monolignol biosynthesis, the variation in substrate specificity and activity of CAD can result in significant changes in overall composition and amount of lignin. Our in-depth characterization of two major CAD isoforms, SbCAD2 (Brown midrib 6 [bmr6]) and SbCAD4, in lignifying tissues of sorghum ( Sorghum bicolor ), a strategic plant for generating renewable chemicals and fuels, indicates their similarity in both structure and activity to Arabidopsis ( Arabidopsis thaliana ) CAD5 and Populus tremuloides sinapyl alcohol dehydrogenase, respectively. This first crystal structure of a monocot CAD combined with enzyme kinetic data and a catalytic model supported by site-directed mutagenesis allows full comparison with dicot CADs and elucidates the potential signature sequence for their substrate specificity and activity. The L119W/G301F-SbCAD4 double mutant displayed its substrate preference in the order coniferaldehyde > p -coumaraldehyde > sinapaldehyde, with higher catalytic efficiency than that of both wild-type SbCAD4 and SbCAD2. As SbCAD4 is the only major CAD isoform in bmr6 mutants, replacing SbCAD4 with L119W/G301F-SbCAD4 in bmr6 plants could produce a phenotype that is more amenable to biomass processing. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor

    Bihar, Eloїse; Deng, Yingxin; Miyake, Takeo; Saadaoui, Mohamed; Malliaras, George G.; Rolandi, Marco

    2016-06-01

    Breathalyzers estimate Blood Alcohol Content (BAC) from the concentration of ethanol in the breath. Breathalyzers are easy to use but are limited either by their high price and by environmental concerns, or by a short lifetime and the need for continuous recalibration. Here, we demonstrate a proof-of-concept disposable breathalyzer using an organic electrochemical transistor (OECT) modified with alcohol dehydrogenase (ADH) as the sensor. The OECT is made with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and is printed on paper. ADH and its cofactor nicotinamide adenine dinucleotide (NAD+) are immobilized onto the OECT with an electrolyte gel. When the OECT-breathalyzer is exposed to ethanol vapor, the enzymatic reaction of ADH and ethanol transforms NAD+ into NADH, which causes a decrease in the OECT source drain current. In this fashion, the OECT-breathalyzer easily detects ethanol in the breath equivalent to BAC from 0.01% to 0.2%. The use of a printed OECT may contribute to the development of breathalyzers that are disposable, ecofriendly, and integrated with wearable devices for real-time BAC monitoring.

  14. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  15. Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.

    Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan

    2013-01-01

    The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in

  16. Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies1[C][W][OA

    Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T.

    2012-01-01

    The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants. PMID:22645069

  17. Toxicity of benzyl alcohol in adult and neonatal mice

    McCloskey, S.E.

    1987-01-01

    Benzyl alcohol (BA) is an aromatic alcohol, which is used as a bacteriostat in a variety of parenteral preparations. In 1982, it was implicated as the agent responsible for precipitating The Gasping Syndrome in premature neonates. The investigate further this toxicity, BA was administered, intraperiotoneally, to adult and neonatal CD-1 male mice. Gross behavioral changes were monitored. Low doses produced minimal toxic effects within an initial 4 hour observation period. At the end of this time, the LD 50 was determined to be 1000 mg/kg for both age groups. Death was due to respiratory arrest in all cases. Rapid absorption and conversion of BA to its primary metabolite, benzaldehyde, was demonstrated by gas chromatographic analysis of plasma from both experimental groups. The conversion of BA to benzaldehyde was confirmed in in vitro by using both horse-liver and mouse liver ADH. The inhibition of alcohol dehydrogenase (ADH) by pyrazole was similarly demonstrated in both enzyme systems. 14 C-labelled BA was utilized to determine the distribution of BA and its metabolites in the body, and to possibly pinpoint a target organ of toxicity

  18. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.

    Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2016-08-01

    Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula.

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A; Hahn, Michael G; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A

    2013-08-13

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure.

  20. Regulation of a Glycerol-Induced Quinoprotein Alcohol Dehydrogenase by σ54 and a LuxR-Type Regulator in Azospirillum brasilense Sp7.

    Singh, Vijay Shankar; Dubey, Ashutosh Prakash; Gupta, Ankush; Singh, Sudhir; Singh, Bhupendra Narain; Tripathi, Anil Kumar

    2017-07-01

    Azospirillum brasilense Sp7 uses glycerol as a carbon source for growth and nitrogen fixation. When grown in medium containing glycerol as a source of carbon, it upregulates the expression of a protein which was identified as quinoprotein alcohol dehydrogenase (ExaA). Inactivation of exaA adversely affects the growth of A. brasilense on glycerol. A determination of the transcription start site of exaA revealed an RpoN-dependent -12/-24 promoter consensus. The expression of an exaA :: lacZ fusion was induced maximally by glycerol and was dependent on σ 54 Bioinformatic analysis of the sequence flanking the -12/-24 promoter revealed a 17-bp sequence motif with a dyad symmetry of 6 nucleotides upstream of the promoter, the disruption of which caused a drastic reduction in promoter activity. The electrophoretic mobility of a DNA fragment containing the 17-bp sequence motif was retarded by purified EraR, a LuxR-type transcription regulator that is transcribed divergently from exaA EraR also showed a positive interaction with RpoN in two-hybrid and pulldown assays. IMPORTANCE Quinoprotein alcohol dehydrogenase (ExaA) plays an important role in the catabolism of alcohols in bacteria. Although exaA expression is thought to be regulated by a two-component system consisting of EraS and EraR, the mechanism of regulation was not known. This study shows the details of the regulation of expression of the exaA gene in A. brasilense We have shown here that exaA of A. brasilense is maximally induced by glycerol and harbors a σ 54 -dependent promoter. The response regulator EraR binds to an inverted repeat located upstream of the exaA promoter. This study shows that a LuxR-type response regulator (EraR) binds upstream of the exaA gene and physically interacts with σ 54 The unique feature of this regulation is that EraR is a LuxR-type transcription regulator that lacks the GAFTGA motif, a characteristic feature of the enhancer binding proteins that are known to interact with σ 54

  1. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    Background: In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion...... of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant...... faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...

  2. Xenoestrogenic short ethoxy chain nonylphenol is oxidized by a flavoprotein alcohol dehydrogenase from Ensifer sp. strain AS08.

    Liu, Xin; Tani, Akio; Kimbara, Kazuhide; Kawai, Fusako

    2007-01-01

    The ethoxy chains of short ethoxy chain nonylphenol (NPEO(av2.0), containing average 2.0 ethoxy units) were dehydrogenated by cell-free extracts from Ensifer sp. strain AS08 grown on a basal medium supplemented with NPEO(av2.0). The reaction was coupled with the reduction in 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and phenazine methosulfate. The enzyme (NPEO(av2.0) dehydrogenase; NPEO-DH) was purified to homogeneity with a yield of 20% and a 56-fold increase in specific activity. The molecular mass of the native enzyme was 120 kDa, consisting of two identical monomer units (60 kDa). The gene encoding NPEO-DH was cloned, which consisted of 1,659 bp, corresponding to a protein of 553 amino acid residues. The deduced amino acid sequence agreed with the N-terminal amino acid sequence of the purified NPEO-DH. The presence of a flavin adenine dinucleotide (FAD)-binding motif and glucose-methanol-choline (GMC) oxidoreductase signature motifs strongly suggested that the enzyme belongs to the GMC oxidoreductase family. The protein exhibited homology (40-45% identity) with several polyethylene glycol dehydrogenases (PEG-DHs) of this family, but the identity was lower than those (approximately 58%) among known PEG-DHs. The substrate-binding domain was more hydrophobic compared with those of glucose oxidase and PEG-DHs. The recombinant protein had the same molecular mass as the purified NPEO-DH and dehydrogenated PEG400-2000, NPEO(av2.0) and its components, and NPEOav10, but only slight or no activity was found using diethylene glycol, triethylene glycol, and PEG200.

  3. Interdependence of coenzyme-induced conformational work and binding potential in yeast alcohol and porcine heart lactate dehydrogenases: a hydrogen-deuterium exchange study

    De Weck, Z.; Pande, J.; Kaegi, J.H.R.

    1987-01-01

    Binding of NAD coenzymes to yeast alcohol dehydrogenase (YADH) and porcine heart lactate dehydrogenase (PHLDH) was studied by hydrogen-deuterium exchange with the infrared technique. Conformational changes in the enzymes specific to the coenzymes and their fragments were observed, and the pH dependence of the exchange reaction shows that it conforms to the EX-2 scheme. In both YADH and PHLDH the magnitude of the conformational change as measured by exchange retardation is considerably larger for the NAD + than for NADH. Studies with coenzyme fragments like ADP-ribose, ADP, and AMP also highlight the lack of rigorous correlation between structural features such as charge and size and their influence on exchange behavior. Ternary complexes such as YADH-NAD + -pyrazole, PHLDH-NAD + -oxalate, and PHLDH-NADH-oxamate, which mimic the transition state, have a significantly more pronounced effect on exchange rates than the corresponding binary complexes. The outstanding feature of this study is the demonstration that in the binary enzyme-coenzyme complexes the more loosely bound NAD + is more effective in retarding exchange than the more firmly bound NADH. These differences are attributed to the unequal structural constraints exerted by the two coenzymes upon the enzymes, which translate to unequal expenditure of transconformational work in the formation of the two complexes. The opposing variation in the free energy of binding and the transconformational work expended can be viewed as an unequal partitioning of the net free energy gain resulting from the protein-ligand interaction into a binding term and that required for conformational change

  4. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae.

    Yang, Dong-Dong; de Billerbeck, Gustavo M; Zhang, Jin-Jing; Rosenzweig, Frank; Francois, Jean-Marie

    2018-01-01

    Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14 , encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5' sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr 73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two

  5. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  6. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure

    Anderson, Nickolas A.; Tobimatsu, Yuki; Ciesielski, Peter N.; Ximenes, Eduardo; Ralph, John; Donohoe, Bryon S.; Ladisch, Michael; Chapple, Clint

    2015-08-01

    Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content.

  7. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure.

    Anderson, Nickolas A; Tobimatsu, Yuki; Ciesielski, Peter N; Ximenes, Eduardo; Ralph, John; Donohoe, Bryon S; Ladisch, Michael; Chapple, Clint

    2015-08-01

    Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content. © 2015 American Society of Plant Biologists. All rights reserved.

  8. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry.

    Yasuhiro Idewaki

    Full Text Available Aldehyde dehydrogenase 2 (ALDH2 detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671 was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity and drinking habits (lifetime abstainers vs. former or current drinkers was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2. The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI]: *1/*1 abstainers as the referent, 0.94 [0.76-1.16] in abstainers with *2, 1.00 [0.80-1.26] in *1/*1 drinkers, 0.71 [0.54-0.93] in drinkers with *2. Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28-6.13] in abstainers with *2, 1.89 [0.89-4.51] in *1/*1 drinkers, 2.35 [1.06-5.79] in drinkers with *2. In summary, patients with type 2 diabetes and ALDH2 *2

  9. Role of L-alanine for redox self-sufficient amination of alcohols.

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-23

    In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578-5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed. The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-ta Cv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily

  10. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  11. Aetiology and pathogenesis of alcoholic liver disease.

    Lieber, C S

    1993-09-01

    Until the 1960s, liver disease of the alcoholic patient was attributed exclusively to dietary deficiencies. Since then, however, our understanding of the impact of alcoholism on nutritional status has undergone a progressive evolution. Alcohol, because of its high energy content, was at first perceived to act exclusively as 'empty calories' displacing other nutrients in the diet, and causing primary malnutrition through decreased intake of essential nutrients. With improvement in the overall nutrition of the population, the role of primary malnutrition waned and secondary malnutrition was emphasized as a result of a better understanding of maldigestion and malabsorption caused by chronic alcohol consumption and various diseases associated with chronic alcoholism. At the same time, the concept of the direct toxicity of alcohol came to the forefront as an explanation for the widespread cellular injury. Some of the hepatotoxicity was found to result from the metabolic disturbances associated with the oxidation of ethanol via the liver alcohol dehydrogenase (ADH) pathway and the redox changes produced by the generated NADH, which in turn affects the metabolism of lipids, carbohydrates, proteins and purines. Exaggeration of the redox change by the relative hypoxia which prevails physiologically in the perivenular zone contributes to the exacerbation of the ethanol-induced lesions in zone 3. In addition to ADH, ethanol can be oxidized by liver microsomes: studies over the last twenty years have culminated in the molecular elucidation of the ethanol-inducible cytochrome P450IIE1 (CYP2E1) which contributes not only to ethanol metabolism and tolerance, but also to the selective hepatic perivenular toxicity of various xenobiotics. Their activation by CYP2E1 now provides an understanding for the increased susceptibility of the heavy drinker to the toxicity of industrial solvents, anaesthetic agents, commonly prescribed drugs, 'over the counter' analgesics, chemical

  12. Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha

    Voronovsky Andriy Y

    2008-07-01

    Full Text Available Abstract Background The thermotolerant methylotrophic yeast Hansenula polymorpha is capable of alcoholic fermentation of xylose at elevated temperatures (45 – 48°C. Such property of this yeast defines it as a good candidate for the development of an efficient process for simultaneous saccharification and fermentation. However, to be economically viable, the main characteristics of xylose fermentation of H. polymorpha have to be improved. Results Site-specific mutagenesis of H. polymorpha XYL1 gene encoding xylose reductase was carried out to decrease affinity of this enzyme toward NADPH. The modified version of XYL1 gene under control of the strong constitutive HpGAP promoter was overexpressed on a Δxyl1 background. This resulted in significant increase in the KM for NADPH in the mutated xylose reductase (K341 → R N343 → D, while KM for NADH remained nearly unchanged. The recombinant H. polymorpha strain overexpressing the mutated enzyme together with native xylitol dehydrogenase and xylulokinase on Δxyl1 background was constructed. Xylose consumption, ethanol and xylitol production by the constructed strain were determined for high-temperature xylose fermentation at 48°C. A significant increase in ethanol productivity (up to 7.3 times was shown in this recombinant strain as compared with the wild type strain. Moreover, the xylitol production by the recombinant strain was reduced considerably to 0.9 mg × (L × h-1 as compared to 4.2 mg × (L × h-1 for the wild type strain. Conclusion Recombinant strains of H. polymorpha engineered for improved xylose utilization are described in the present work. These strains show a significant increase in ethanol productivity with simultaneous reduction in the production of xylitol during high-temperature xylose fermentation.

  13. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon.

    Bouvier d'Yvoire, Madeleine; Bouchabke-Coussa, Oumaya; Voorend, Wannes; Antelme, Sébastien; Cézard, Laurent; Legée, Frédéric; Lebris, Philippe; Legay, Sylvain; Whitehead, Caragh; McQueen-Mason, Simon J; Gomez, Leonardo D; Jouanin, Lise; Lapierre, Catherine; Sibout, Richard

    2013-02-01

    Brachypodium distachyon (Brachypodium) has been proposed as a model for grasses, but there is limited knowledge regarding its lignins and no data on lignin-related mutants. The cinnamyl alcohol dehydrogenase (CAD) genes involved in lignification are promising targets to improve the cellulose-to-ethanol conversion process. Down-regulation of CAD often induces a reddish coloration of lignified tissues. Based on this observation, we screened a chemically induced population of Brachypodium mutants (Bd21-3 background) for red culm coloration. We identified two mutants (Bd4179 and Bd7591), with mutations in the BdCAD1 gene. The mature stems of these mutants displayed reduced CAD activity and lower lignin content. Their lignins were enriched in 8-O-4- and 4-O-5-coupled sinapaldehyde units, as well as resistant inter-unit bonds and free phenolic groups. By contrast, there was no increase in coniferaldehyde end groups. Moreover, the amount of sinapic acid ester-linked to cell walls was measured for the first time in a lignin-related CAD grass mutant. Functional complementation of the Bd4179 mutant with the wild-type BdCAD1 allele restored the wild-type phenotype and lignification. Saccharification assays revealed that Bd4179 and Bd7591 lines were more susceptible to enzymatic hydrolysis than wild-type plants. Here, we have demonstrated that BdCAD1 is involved in lignification of Brachypodium. We have shown that a single nucleotide change in BdCAD1 reduces the lignin level and increases the degree of branching of lignins through incorporation of sinapaldehyde. These changes make saccharification of cells walls pre-treated with alkaline easier without compromising plant growth. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. Alcohol

    ... because that's how many accidents occur. What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  15. Alcohol

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  16. Alcohol

    Navarro Junior, L.

    1988-01-01

    The alcohol production as a secondary energy source, the participation of the alcohol in Brazilian national economic and social aspects are presented. Statistical data of alcohol demand compared with petroleum by-products and electricity are also included. (author)

  17. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  18. ADH1B Arg47His polymorphism is associated with esophageal cancer risk in high-incidence Asian population: evidence from a meta-analysis.

    Guohong Zhang

    Full Text Available BACKGROUND AND OBJECTIVES: Incidence of Esophageal squamous cell carcinoma (ESCC is prevalent in Asian populations, especially in the ones from the "Asian esophageal cancer belt" along the Silk Road and the ones from East Asia (including Japan. Silk Road and Eastern Asia population genetics are relevant to the ancient population migration from central China. The Arg47His (rs1229984 polymorphism of ADH1B is the highest in East Asians, and ancient migrations along the Silk Road were thought to be contributive to a frequent ADH1B*47His allele in Central Asians. This polymorphism was identified as responsible for susceptibility in the first large-scale genome-wide association study of ESCC and that's explained by its modulation of alcohol oxidization capability. To investigate the association of ADH1B Arg47His with ESCC in Asian populations under a common ancestry scenario of the susceptibility loci, we combined all available studies into a meta-analysis. METHODS: A dataset composed of 4,220 cases and 8,946 controls from twelve studies of Asian populations was analyzed for ADH1B Arg47His association with ESCC and its interactions with alcohol drinking and ALDH2 Glu504Lys. Heterogeneity among studies and their publication bias were also tested. RESULTS: The ADH1B*47Arg allele was found to be associated to increased risk of ESCC, with the odds ratios (OR being 1.62 (95% CI: 1.49-1.76 and 3.86 (2.96-5.03 for the His/Arg and the Arg/Arg genotypes, respectively. When compared with the His/His genotype of non-drinkers, the Arg/Arg genotype can interact with alcohol drinking and greatly increase the risk of ESCC (OR = 20.69, 95%CI: 5.09-84.13. Statistical tests also showed gene-gene interaction of ADH1B Arg+ with ALDH2 Lys+ can bring more risk to ESCC (OR  = 13.46, 95% CI: 2.32-78.07. CONCLUSION: Revealed by this meta-analysis, ADH1B*47Arg as a common ancestral allele can significantly increase the risk of ESCC in Asians, especially when coupled

  19. ADH1B Arg47His polymorphism is associated with esophageal cancer risk in high-incidence Asian population: evidence from a meta-analysis.

    Zhang, Guohong; Mai, Ruiqin; Huang, Bo

    2010-10-27

    Incidence of Esophageal squamous cell carcinoma (ESCC) is prevalent in Asian populations, especially in the ones from the "Asian esophageal cancer belt" along the Silk Road and the ones from East Asia (including Japan). Silk Road and Eastern Asia population genetics are relevant to the ancient population migration from central China. The Arg47His (rs1229984) polymorphism of ADH1B is the highest in East Asians, and ancient migrations along the Silk Road were thought to be contributive to a frequent ADH1B*47His allele in Central Asians. This polymorphism was identified as responsible for susceptibility in the first large-scale genome-wide association study of ESCC and that's explained by its modulation of alcohol oxidization capability. To investigate the association of ADH1B Arg47His with ESCC in Asian populations under a common ancestry scenario of the susceptibility loci, we combined all available studies into a meta-analysis. A dataset composed of 4,220 cases and 8,946 controls from twelve studies of Asian populations was analyzed for ADH1B Arg47His association with ESCC and its interactions with alcohol drinking and ALDH2 Glu504Lys. Heterogeneity among studies and their publication bias were also tested. The ADH1B*47Arg allele was found to be associated to increased risk of ESCC, with the odds ratios (OR) being 1.62 (95% CI: 1.49-1.76) and 3.86 (2.96-5.03) for the His/Arg and the Arg/Arg genotypes, respectively. When compared with the His/His genotype of non-drinkers, the Arg/Arg genotype can interact with alcohol drinking and greatly increase the risk of ESCC (OR = 20.69, 95%CI: 5.09-84.13). Statistical tests also showed gene-gene interaction of ADH1B Arg+ with ALDH2 Lys+ can bring more risk to ESCC (OR  = 13.46, 95% CI: 2.32-78.07). Revealed by this meta-analysis, ADH1B*47Arg as a common ancestral allele can significantly increase the risk of ESCC in Asians, especially when coupled with alcohol drinking or the ALDH2*504Lys allele.

  20. Pre-existing liver cirrhosis reduced the toxic effect of diethylene glycol in a rat model due to the impaired hepatic alcohol dehydrogenase.

    Ming Xing Huang; Xiao Mou Peng; Lin Gu; Gui Hua Chen

    2011-09-01

    Hepatic metabolizing enzymes of diethylene glycol (DEG) are impaired in liver diseases. Thus, the purpose of this study was to increase our understandings in metabolism and toxicology of DEG by clarifying the influences of pre-existing liver disease. Forty Sprague-Dawley rats with carbon tetrachloride-induced liver cirrhosis and 20 control rats were intraperitoneally administered a single dose of DEG, and randomly killed 1, 2, 5 or 8 days following exposure. Compared with control rats, the model rats had significantly higher blood CO(2)-combining power, lower blood urine nitrogen, serum creatinine and alanine aminotransferase levels on the second day and a lower mortality rate on the eighth day following DEG exposure. Enlargements of liver and kidneys and degeneration and necrosis of hepatocytes and renal tubules in the model rats was also less serious than in the control rats. Urine DEG levels were significantly higher on the first day in the model rats than the control rats (46.65 ± 8.79 mg vs 18.88 ± 6.18 mg, p activity in the model rats was significantly lower than that in the control rats, which was positively related to renal damage. The toxic effects of DEG in rats with pre-existing liver cirrhosis are significantly reduced, which may be due to the decreased hepatic ADH activity. It suggests that the metabolite of ADH is responsible for DEG poisoning, and this toxic metabolite may mainly originate in the liver.

  1. Nucleotide sequence of Phaseolus vulgaris L. alcohol dehydrogenase encoding cDNA and three-dimensional structure prediction of the deduced protein.

    Amelia, Kassim; Khor, Chin Yin; Shah, Farida Habib; Bhore, Subhash J

    2015-01-01

    Common beans (Phaseolus vulgaris L.) are widely consumed as a source of proteins and natural products. However, its yield needs to be increased. In line with the agenda of Phaseomics (an international consortium), work of expressed sequence tags (ESTs) generation from bean pods was initiated. Altogether, 5972 ESTs have been isolated. Alcohol dehydrogenase (AD) encoding gene cDNA was a noticeable transcript among the generated ESTs. This AD is an important enzyme; therefore, to understand more about it this study was undertaken. The objective of this study was to elucidate P. vulgaris L. AD (PvAD) gene cDNA sequence and to predict the three-dimensional (3D) structure of deduced protein. positive and negative strands of the PvAD cDNA clone were sequenced using M13 forward and M13 reverse primers to elucidate the nucleotide sequence. Deduced PvAD cDNA and protein sequence was analyzed for their basic features using online bioinformatics tools. Sequence comparison was carried out using bl2seq program, and tree-view program was used to construct a phylogenetic tree. The secondary structures and 3D structure of PvAD protein were predicted by using the PHYRE automatic fold recognition server. The sequencing results analysis showed that PvAD cDNA is 1294 bp in length. It's open reading frame encodes for a protein that contains 371 amino acids. Deduced protein sequence analysis showed the presence of putative substrate binding, catalytic Zn binding, and NAD binding sites. Results indicate that the predicted 3D structure of PvAD protein is analogous to the experimentally determined crystal structure of s-nitrosoglutathione reductase from an Arabidopsis species. The 1294 bp long PvAD cDNA encodes for 371 amino acid long protein that contains conserved domains required for biological functions of AD. The predicted deduced PvAD protein's 3D structure reflects the analogy with the crystal structure of Arabidopsis thaliana s-nitrosoglutathione reductase. Further study is required

  2. Der Einfluss unterschiedlicher Prophylaxepulver auf die adhäsive Verbundfestigkeit von Etch&Rinse- und Self-Etch-Adhäsiven

    Schwientek, Kathrin

    2011-01-01

    Das Hauptziel dieser Studie bestand darin zu untersuchen, inwiefern der Einsatz von Prophylaxepulvern die adhäsive Performance von Dentinhaftvermittlern beeinflusst. Zusätzlich wurden unterschiedliche Bondingsysteme bezüglich ihrer adhäsiven Verbundfestigkeit im Mikrozugverfahren miteinander verglichen und bewertet. Zehn unterschiedliche Adhäsivsysteme, die verschiedene Bondingphilosophien repräsentieren, wurden getestet. In diesem Zusammenhang kamen zwei unterschiedliche Prophylaxepulver (Pr...

  3. A genetic analysis of Adh1 regulation. Progress report, June 1991--February 1992

    Freeling, M.

    1992-03-01

    The overall goal of our research proposal is to understand the meaning of the various cis-acting sites responsible for AdH1 expression in the entire maize plant. Progress is reported in the following areas: Studies on the TATA box and analysis of revertants of the Adh1-3F1124 allele; screening for more different mutants that affect Adh1 expression differentially; studies on cis-acting sequences required for root-specific Adh1 expression; refinement of the use of the particle gun; and functional analysis of a non- glycolytic anaerobic protein.

  4. Alcohol

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria to change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  5. Isolation and characterization of the genomic region from Drosophila kuntzei containing the Adh and Adhr genes

    Oppentocht, JE; van Delden, W; van de Zande, L

    The nucleotide sequences of the Adh and Adhr genes of Drosophila kuntzei were derived from combined overlapping sequences of clones isolated from a genomic library and from cloned PCR and inverse-PCR fragments. Only a proximal promoter was detected upstream of the Adh gene, indicating that D.

  6. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  7. Alcohol

    ... to do. Wondering if adding a glass of wine or beer might help lower your blood glucose if it is high? The effects of alcohol can be unpredictable and it is not recommended as a treatment for high blood glucose. The risks likely outweigh any benefit that may be seen in blood glucose alone. ...

  8. Liver proteomics in progressive alcoholic steatosis

    Fernando, Harshica [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Wiktorowicz, John E.; Soman, Kizhake V. [Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Kaphalia, Bhupendra S.; Khan, M. Firoze [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Shakeel Ansari, G.A., E-mail: sansari@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-02-01

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  9. Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping1

    Lapierre, Catherine; Pollet, Brigitte; Petit-Conil, Michel; Toval, Gabriel; Romero, Javier; Pilate, Gilles; Leplé, Jean-Charles; Boerjan, Wout; Ferret, Valérie; De Nadai, Véronique; Jouanin, Lise

    1999-01-01

    We evaluated lignin profiles and pulping performances of 2-year-old transgenic poplar (Populus tremula × Populus alba) lines severely altered in the expression of caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) or cinnamyl alcohol dehydrogenase (CAD). Transgenic poplars with CAD or COMT antisense constructs showed growth similar to control trees. CAD down-regulated poplars displayed a red coloration mainly in the outer xylem. A 90% lower COMT activity did not change lignin content but dramatically increased the frequency of guaiacyl units and resistant biphenyl linkages in lignin. This alteration severely lowered the efficiency of kraft pulping. The Klason lignin level of CAD-transformed poplars was slightly lower than that of the control. Whereas CAD down-regulation did not change the frequency of labile ether bonds or guaiacyl units in lignin, it increased the proportion of syringaldehyde and diarylpropane structures and, more importantly with regard to kraft pulping, of free phenolic groups in lignin. In the most depressed line, ASCAD21, a substantially higher content in free phenolic units facilitated lignin solubilization and fragmentation during kraft pulping. These results point the way to genetic modification of lignin structure to improve wood quality for the pulp industry. PMID:9880356

  10. Reversal of alcohol induced testicular hyperlipidemia by supplementation of ascorbic acid and its comparison with abstention in male guinea pigs.

    Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Madambath, Indira

    2014-02-01

    Chronic ethanol exposure causes hyperlipidemia. The present study was designed to investigate the impact of ascorbic acid supplementation on ethanol induced hyperlipidemia in testis and to compare it with that of abstinence from taking alcohol. Thirty-six male guinea pigs were divided into two groups and were maintained for 90 days as follows (1) control (C) (2) ethanol treated group (E) (4 g/kg body wt/day). Ethanol was administered for 90 days and on 90th day, alanine amino transaminase (ALT), aspartate amino transaminase (AST) and γ-glutamyltransferase (GGT) in serum was assayed. The animals in the ethanol group were further divided into an ascorbic acid supplemented group (25 mg/100 g body wt/day) (E+AA) and an ethanol abstention group (EAG) and those in the control group were divided into a control group and a control+ascorbic acid group (C+AA). There was significant increase in levels of testicular cholesterol, free fatty acid, phospholipids and triglycerides in the ethanol group. There was also a significant increase in the activity of HMG CoA reductase and decrease in activity of testicular glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme in ethanol-ingested animals that further led to decreased levels of serum testosterone. Alcohol administration also enhanced the activity of testicular alcohol dehydrogenase (ADH). Ascorbic acid supplementation and abstention altered all these parameters induced by chronic alcohol administration. Histological studies were also in line with the above results. Ascorbic acid was able to reinstate the cholesterol homeostasis in testis which could have further restored the testicular steroidogenesis. The present study demonstrated that ascorbic acid is effective in reducing the hyperlipidemia induced by chronic alcohol administration and produced a better recovery than abstention.

  11. Paleomagnetic investigations at Mahd adh Dhahab, Kingdom of Saudi Arabia

    Gettings, M.E.

    1985-01-01

    Paleomagnetic studies of 25 oriented bedrock specimens from Jabal Mahd adh Dhahab, located 160 km southeast of Al Madinah, Kingdom of Saudi Arabia, have yielded important structural information relating to the geologic history of this base and precious metal deposit. Samples were collected along one traverse away from the mineralized zones, across the northeast-plunging antiform that constitutes the dominant regional structure of the area, and along another traverse down the axis of the mineralized zones. Lithologies range from andesite flows through andesitic to rhyodacitic tuffs, lapilli tuffs, and volcaniclastic sediments. Measurements of remanent magnetization direction and intensity before and after stepwise alternating-field demagnetization ranging from 25 Oersted (Oe) to 1000 Oe were carried out on all samples. Three classes of demagnetization behavior were observed: A very stable class with little change in direction and intensity of magnetization; a class in which rapid changes were observed at first but which then settled on a high coercivity stable component of magnetization; and a class in which the magnetization was composed of a spectrum of low coervicity components, and continuous variation of direction and intensity of magnetization occurred.

  12. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules

    Schafer, J.A.; Troutman, S.L.

    1986-01-01

    Unidirectional fluxes of 86Rb+ were measured as an indicator of potassium transport in isolated rat cortical collecting tubules perfused and bathed at 38 degrees C with isotonic solutions in which Rb+ replaced K+. Under control conditions the lumen-to-bath flux (Jl----b) was significantly less than the bath-to-lumen flux (Jb----l), indicating net Rb+ secretion. Net secretion increased approximately 180% after addition of 100 microU/ml of arginine vasopressin (ADH) to the bathing solution, due to a rapid and reversible increase in Jb----l from 4.6 +/- 0.8 to 9.0 +/- 1.9 pmol X min-1 X mm-1 with no significant change in Jl----b. The ADH effect was completely inhibited by 2 mM luminal Ba2+. The average transepithelial voltage (Ve) was not significantly different from zero in the control period but became lumen negative (-5 to -10 mV) after ADH. With 10(-5) M amiloride in the lumen Ve was lumen positive (+2 to +4 mV) and was unaltered by ADH or Ba2+, yet ADH produced a significant but attentuated increase in Jb----l with no change in Jl----b. The results indicate that ADH augments net K+ secretion either by an increase in the Ba2+-sensitive conductance of the apical membrane or by an increase in the electrochemical potential driving force for net Rb+ secretion through this pathway

  13. Genetics and alcoholism.

    Edenberg, Howard J; Foroud, Tatiana

    2013-08-01

    Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

  14. Alcohol consumption and risk of atrial fibrillation

    Tolstrup, Janne Schurmann; Wium-Andersen, Marie Kim; Ørsted, David Dynnes

    2016-01-01

    BACKGROUND: The aim of this study was to test the hypothesis that alcohol consumption, both observational (self-reported) and estimated by genetic instruments, is associated with a risk of atrial fibrillation and to determine whether people with high cardiovascular risk are more sensitive towards...... alcohol than people with low risk. METHODS: We used data for a total of 88,782 men and women from the Copenhagen City Heart Study 1991-1994 and 2001-2003 and the Copenhagen General Population Study 2003-2010. Information on incident cases of atrial fibrillation was obtained from a validated nationwide...... register. As a measure of alcohol exposure, both self-reported consumption and genetic variations in alcohol metabolizing genes (ADH1B/ADH1C) were used as instrumental variables. The endpoint was admission to hospital for atrial fibrillation as recorded in a validated hospital register. RESULTS: A total...

  15. [Geographic variability of Adh-F allele frequency in populations of Drosophila melanogaster].

    Bubliĭ, O A; Imasheva, A G

    1997-07-01

    Variation of Adh-F allele frequency in seven regions of North and South America, Eurasia, Africa, and Australia was analyzed on the basis of published data. In six regions, regression of Adh-F frequency on latitude was positive; in four regions, slopes of the regression curves were identical. Regression on the average lowest temperature of the coldest month was negative in six regions. No definite trends in regression on the highest temperature of the hottest month and on rainfall in the most humid month and the driest months were found. Geographic differentiation of populations was independent of climatic parameters. Examination of variation in various climatic zones revealed that tropical populations were distinctly different from those from other climatic zones. No climatic differentiation of fixation index FST was detected. These results indicate that Adh polymorphism is maintained by natural selection.

  16. Plant Formate Dehydrogenase

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  17. Comparative genetics of alcoholism in the Kenyan populations ...

    Hepatic alcohol dehydrogenase and aldehyde dehydrogenase are major enzymes in the metabolism of exogenous ethanol. These enzymes are polymorphic and are involved in alcohol drinking and risk of alcoholism in some world populations. Three hundred and seventy one samples of hair root lyzates from five Kenyan ...

  18. INTERACTION BETWEEN THE ADH AND ALPHA-GPDH LOCI IN DROSOPHILA-MELANOGASTER - ADULT SURVIVAL AT HIGH-TEMPERATURE

    OUDMAN, L; VANDELDEN, W; KAMPING, A; BIJLSMA, R

    The role of high temperature resistance in the world-wide cline of Adh and alpha-Gpdh allele frequencies of Drosophila melanogaster was investigated. Experimental strains were used with different combinations of Adh and alpha-Gpdh alleles but with similar genetic background. The survival time of

  19. Structure and function of yeast alcohol dehydrogenase

    VLADIMIR LESKOVAC

    2000-04-01

    Full Text Available 1. Introduction 2. Isoenzymes of YADH 3. Substrate specificity 4. Kinetic mechanism 5. Primary structure 6. The active site 7. Mutations in the yeast enzyme 8. Chemical mechanism 9. Binding of coenzymes 10. Hydride transfer

  20. Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    Convertino, V. A.; Thompson, C. A.; Benjamin, B. A.; Keil, L. C.; Savin, W. M.; Gordon, E. P.; Haskell, W. L.; Schroeder, J. S.; Sandler, H.

    1990-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.

  1. Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria

    Hektor, Harm J.; Kloosterman, Harm; Dijkhuizen, Lubbert

    2000-01-01

    A novel type of alcohol dehydrogenase enzyme has been characterized from Gram-positive methylotrophic (Bacillus methanolicus, the actinomycetes Amycolatopsis methanolica and Mycobacterium gastri) and non-methylotrophic bacteria (Rhodococcus strains). Its in vivo role is in oxidation of methanol and

  2. Opioid-induced hyponatremia in a patient with central diabetes insipidus: independence from ADH.

    Bhat, Nandini; Balliu, Erjola; Osipoff, Jennifer; Lane, Andrew; Wilson, Thomas

    2017-05-24

    Hyponatremia can be a complication of opioid therapy, which has been postulated to occur secondary to inappropriate antidiuretic hormone secretion (syndrome of inappropriate antidiuretic hormone secretion [SIADH]). We report severe hyponatremia following wisdom teeth extraction with opioid analgesia in a 19-year-old female with diabetes insipidus (DI) and acquired panhypopituitarism that challenges this theory. As this patient has DI, we believe opioid treatment caused severe hyponatremia by the following mechanisms: (1) Opioids have a direct antidiuretic effect independent of changes in ADH, as demonstrated in Brattleboro rats with central DI. (2) Hydrocodone may have stimulated this patient's thirst center contributing to hyponatremia, as demonstrated in animal studies. Opioid use can cause hyponatremia in patients independent of ADH. It is important for clinicians to be aware of this so that patients can be appropriately counseled.

  3. Assessment of a plasma ADH radioimmunoassay in experimental and physiologic or pathologic conditions

    Itzkowitch, D.; Brauman, H.; Gregoire, F.; Staroukine, M.; Abramov, M.

    1980-01-01

    A radioimmunoassay of ADH has been applied to the study of plasma ADH levels in various conditions. The validity of the assay has been evaluated by the usual quality control parameters of RIA and by the measure of plasma levels in 12 upright water deprived normal volunteers (mean 9.5 pg/ml, SEM +- 1.5) in 8 resting and hydrated normal volunteers (1.3 +- 0,4 pg/ml), in a case of diabetes insipidus (1.6 pg/ml), in 8 cases of SIADH Syndrome (range 13 - 77 pg/ml) and in 4 anesthetized dogs before (33.7 +- 9.2 pg/ml) and after acute haemorrhage (66 +- 9.5 pg/ml, p [de

  4. Geology and ore deposits of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    Luce, Robert W.; Bagdady, Abdulaziz; Roberts, Ralph Jackson

    1976-01-01

    Mahd adh Dhahab is the principal gold-silver mine in Saudi Arabia; it was productive during three principal periods, two during ancient times (about 950 B.C. and 750-1258 A.D.) and one in modern times (1939-54). The early production is not known, but the recorded production in 1939-54 is 765,768 fine ounces gold and 1,002,029 ounces silver.

  5. Adhésion à l'OMC : des conditions trop strictes ? | CRDI - Centre de ...

    31 janv. 2011 ... Depuis l'Afghanistan ravagé par la guerre jusqu'au Yémen, 31 pays aspirent à adhérer à l'Organisation mondiale du commerce (OMC). Malgré le désarroi causé par l'impasse des négociations commerciales de l'actuel cycle de Doha et le nombre croissant d'accords commerciaux régionaux et bilatéraux ...

  6. Genetic Contribution to Alcohol Dependence: Investigation of a Heterogeneous German Sample of Individuals with Alcohol Dependence, Chronic Alcoholic Pancreatitis, and Alcohol-Related Cirrhosis

    Jens Treutlein

    2017-07-01

    Full Text Available The present study investigated the genetic contribution to alcohol dependence (AD using genome-wide association data from three German samples. These comprised patients with: (i AD; (ii chronic alcoholic pancreatitis (ACP; and (iii alcohol-related liver cirrhosis (ALC. Single marker, gene-based, and pathway analyses were conducted. A significant association was detected for the ADH1B locus in a gene-based approach (puncorrected = 1.2 × 10−6; pcorrected = 0.020. This was driven by the AD subsample. No association with ADH1B was found in the combined ACP + ALC sample. On first inspection, this seems surprising, since ADH1B is a robustly replicated risk gene for AD and may therefore be expected to be associated also with subgroups of AD patients. The negative finding in the ACP + ALC sample, however, may reflect genetic stratification as well as random fluctuation of allele frequencies in the cases and controls, demonstrating the importance of large samples in which the phenotype is well assessed.

  7. Genetic Contribution to Alcohol Dependence: Investigation of a Heterogeneous German Sample of Individuals with Alcohol Dependence, Chronic Alcoholic Pancreatitis, and Alcohol-Related Cirrhosis

    Treutlein, Jens; Streit, Fabian; Juraeva, Dilafruz; Degenhardt, Franziska; Rietschel, Liz; Forstner, Andreas J.; Ridinger, Monika; Dukal, Helene; Foo, Jerome C.; Soyka, Michael; Maier, Wolfgang; Gaebel, Wolfgang; Dahmen, Norbert; Scherbaum, Norbert; Müller-Myhsok, Bertram; Lucae, Susanne; Ising, Marcus; Stickel, Felix; Berg, Thomas; Roggenbuck, Ulla; Jöckel, Karl-Heinz; Scholz, Henrike; Zimmermann, Ulrich S.; Buch, Stephan; Sommer, Wolfgang H.; Spanagel, Rainer; Brors, Benedikt; Cichon, Sven; Mann, Karl; Kiefer, Falk; Hampe, Jochen; Rosendahl, Jonas; Nöthen, Markus M.; Rietschel, Marcella

    2017-01-01

    The present study investigated the genetic contribution to alcohol dependence (AD) using genome-wide association data from three German samples. These comprised patients with: (i) AD; (ii) chronic alcoholic pancreatitis (ACP); and (iii) alcohol-related liver cirrhosis (ALC). Single marker, gene-based, and pathway analyses were conducted. A significant association was detected for the ADH1B locus in a gene-based approach (puncorrected = 1.2 × 10−6; pcorrected = 0.020). This was driven by the AD subsample. No association with ADH1B was found in the combined ACP + ALC sample. On first inspection, this seems surprising, since ADH1B is a robustly replicated risk gene for AD and may therefore be expected to be associated also with subgroups of AD patients. The negative finding in the ACP + ALC sample, however, may reflect genetic stratification as well as random fluctuation of allele frequencies in the cases and controls, demonstrating the importance of large samples in which the phenotype is well assessed. PMID:28714907

  8. Alcoholism and Alcohol Abuse

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the ...

  9. Las quinoproteínas alcohol deshidrogenasas en los sistemas bacterianos: distribución, clasificación, estructura y función

    Saúl Gómez-Manzo

    2005-01-01

    Full Text Available Existe una gran diversidad de alcohol deshidrogenasas (ADHs microbianas; las cuales son divididas en tres grandes grupos: (a Las que son dependientes de las coenzimas NAD o NADP, (b Las que son independientes de estas coenzimas; sin embargo, utilizan pirroloquinolina quinona (PQQ y hemo tipo C como grupo prostético y (c Las oxidasas dependientes de FAD que catalizan la reacción irreversible de alcoholes. Las ADHs que utilizan el PQQ, se encuentran a su vez divididas en tres tipos. Las ADHs tipo I que contienen sólo PQQ como grupo prostético y se les conoce como quinoproteínas; mientras que las ADHs tipo II y tipo III además del PQQ contienen hemo tipo C y se les conoce como quinohemoproteínas. Las ADHs tipo II son enzimas solubles que se encuentran en el espacio periplásmico y están presentes en proteobacterias como Pseudomonas putida, Ralstonia eutropha y Comamonas testosteroni. Las ADHs tipo III son enzimas que se encuentran ancladas a la membrana y trabajan orientadas hacia el espacio periplásmico. Se les ha identificado y caracterizado únicamente en bacterias ácido acéticas. Las ADH tipo III, por lo general contienen tres subunidades. El transporte intramolecular de electrones en las ADHs tipo II y IIII se propone que es del PQQ al hemo C de la primera subunidad y de ahí, de hemo en hemo en la segunda subunidad hasta llegar a la quinona endógena. Los tres tipos de PQQ-ADHs son discutidas en esta revisión.

  10. Alcohol Exposure In Utero and Child Academic Achievement

    Stephanie von Hinke Kessler Scholder; George L. Wehby; Sarah Lewis; Luisa Zuccolo

    2014-01-01

    We examine the effect of alcohol exposure in utero on child academic achievement. As well as studying the effect of any alcohol exposure, we investigate the effect of the dose, pattern, and duration of exposure. We use a genetic variant in the maternal alcohol-metabolism gene ADH1B as an instrument for alcohol exposure, whilst controlling for the child's genotype on the same variant. We show that the instrument is unrelated to an extensive range of maternal and paternal characteristics and be...

  11. Characterisation of recombinant human fatty aldehyde dehydrogenase: implications for Sjögren-Larsson syndrome

    Lloyd, Matthew D.; Boardman, Kieren D. E.; Smith, Andrew; van den Brink, Daan M.; Wanders, Ronald J. A.; Threadgill, Michael D.

    2007-01-01

    Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in

  12. The diagnosis and management of pre-invasive breast disease: Ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH) – current definitions and classification

    Pinder, Sarah E; Ellis, Ian O

    2003-01-01

    Intraductal epithelial proliferations of the breast are at present classified into three groups; distinction is made histologically and clinically between usual epithelial hyperplasia and atypical ductal hyperplasia (ADH) and between ADH and ductal carcinoma in situ (DCIS). Although evidence indicates that these boundaries are not ideal on a morphological, immunohistochemical, or genetic basis, this three-tier system is accepted and used at present. The current definitions, histological features, and system of classification of ADH and DCIS are described in this manuscript

  13. Role of cardiac volume receptors in the control of ADH release during acute simulated weightlessness in man

    Convertino, V. A.; Benjamin, B. A.; Keil, L. C.; Sandler, H.

    1984-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes, designed to induce central blood volume shifts in ten cardiac and one heart-lung transplant recipients, to assess the contribution of cardiac volume receptors in the control of ADH release during the initial acute phase of exposure to weightlessness. Each subject underwent 15 min of a sitting-control period (C) followed by 30 min of 6 deg headdown tilt (T) and 30 min of resumed sitting (S). Venous blood samples and cardiac dimensions were taken at 0 and 15 min of C; 5, 15, and 30 min of T; and 5, 15, and 30 min of S. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Heart rate and blood pressure were recorded every two min. Plasma osmolality was not altered by posture changes. Mean left ventricular end-diastolic volume increased (P less than 0.05) from 90 ml in C to 106 ml in T and returned to 87 ml in S. Plasma ADH was reduced by 20 percent (P less than 0.05) with T, and returned to control levels with S. These responses were similar in six normal cardiac-innervated control subjects. These data may suggest that cardiac volume receptors are not the primary mechanism for the control of ADH release during acute central volume shifts in man.

  14. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    Pampa, K.J., E-mail: sagarikakj@gmail.com [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Lokanath, N.K. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Girish, T.U. [Department of General Surgery, JSS Medical College and Hospital, JSS University, Mysore 570 015 (India); Kunishima, N. [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Rai, V.R. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India)

    2014-10-24

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.

  15. POLYMORPHISM AT THE ADH AND ALPHA-GPDH LOCI IN DROSOPHILA-MELANOGASTER - EFFECTS OF REARING TEMPERATURE ON DEVELOPMENTAL RATE, BODY-WEIGHT, AND SOME BIOCHEMICAL PARAMETERS

    OUDMAN, L; VANDELDEN, W; KAMPING, A; BIJLSMA, R

    The role of developmental time in the world-wide cline of Adh and alpha-Gpdh allele frequencies of Drosophila melanogaster, and the relationship with weight and some biochemical characters, were investigated. Experimental strains were constructed with different combinations of Adh and alpha-Gpdh

  16. Alcohol Alert

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... 466 KB] No. 81: Exploring Treatment Options for Alcohol Use Disorders [ PDF - 539K] No. 80: Alcohol and HIV/AIDS: ...

  17. DTU’s undersøgelser af lav adhæsion / glatte skinner for Transportministeriet og DSB

    Stockmarr, Anders; Ersbøll, Bjarne Kjær; Kotwa, Ewelina Katarzyna

    Nærværende undersøgelse af forekomsten af lav adhæsion / ”glatte skinner” er en opfølgning på DTU’s undersøgelser af IC4 togenes bremseadfærd ved Marslev den 7. november 2011, som blev gennemført for Transportministeriet og DSB i perioden april - juni 2012, og som konkluderede at den helt...... overvejende årsag til IC4 togets lange standselængde ved Marslev-hændelsen var lav adhæsion, det vil sige ”glathed” mellem hjul og skinner. Afledt af dette resultat er der opstået en interesse og et behov for en bredere analyse af sikkerhedskritiske faktorer i forbindelse med togdrift, som belyser fænomenet...... at gennemføre nedenstående tre udredningsopgaver, som DTU har gennemført i perioden oktober 2012 – oktober 2013: •En erfaringsindsamling med henblik på, hvordan andre lande i Nord- og Mellemeuropa håndterer lav adhæsion / ”glatte skinner”. •En systematisk kortlægning af hyppighed og omfang af lav adhæsion...

  18. STARVATION RESISTANCE IN DROSOPHILA-MELANOGASTER IN RELATION TO THE POLYMORPHISMS AT THE ADH AND ALPHA-GPDH LOCI

    OUDMAN, L; VANDELDEN, W; KAMPING, A; BIJLSMA, R

    In view of the world-wide latitudinal cline of the Adh and alpha Gpdh allozyme frequencies of Drosophila melanogaster and the interactions between these loci, experiments were performed to study the phenotypic effects of these loci. Starvation resistance, oxygen consumption, body weight, protein

  19. Las quinoproteínas alcohol deshidrogenasas en los sistemas bacterianos: distribución, clasificación, estructura y función

    Saúl Gómez-Manzo; Roberto Arreguín-Espinosa; Martha Contreras-Zentella; Edgardo Escamilla-Marván

    2005-01-01

    Existe una gran diversidad de alcohol deshidrogenasas (ADHs) microbianas; las cuales son divididas en tres grandes grupos: (a) Las que son dependientes de las coenzimas NAD o NADP, (b) Las que son independientes de estas coenzimas; sin embargo, utilizan pirroloquinolina quinona (PQQ) y hemo tipo C como grupo prostético y (c) Las oxidasas dependientes de FAD que catalizan la reacción irreversible de alcoholes. Las ADHs que utilizan el PQQ, se encuentran a su vez divididas en tres t...

  20. Single nucleotide polymorphisms of ADH1B, ADH1C and ALDH2 genes and esophageal cancer: A population-based case-control study in China

    Wu, M.; Chang, S.; Kampman, E.; Kok, F.J.

    2013-01-01

    Alcohol drinking is a major risk factor for esophageal cancer (EC) and the metabolism of ethanol has been suggested to play an important role in esophageal carcinogenesis. Epidemiologic studies, including genomewide association studies (GWAS), have identified single nucleotide polymorphisms (SNPs)

  1. Alcohol depletes coenzyme-Q10 associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells

    Vidyashankar, Satyakumar; Nandakumar, Krishna S.; Patki, Pralhad S.

    2012-01-01

    Highlights: ► Ethanol induced cytotoxicity in HepG2 cells in absence of lipogenesis. ► Ethanol inhibited HMG-CoA reductase activity. ► Ethanol induced HMG-CoA reductase inhibition is due to decreased cell viability. ► Incubation with mevalonate could not increase the cholesterol. ► Cytotoxicity brought about by CoQ10 depletion and increased TNF-alpha. -- Abstract: Alcohol consumption has been implicated to cause severe hepatic steatosis which is mediated by alcohol dehydrogenase (ADH) activity and CYP 450 2E1 expression. In this context, the effect of ethanol was studied for its influence on lipogenesis in HepG2 cell which is deficient of ADH and does not express CYP 450 2E1. The results showed that ethanol at 100 mM concentration caused 40% cytotoxicity at 72 h as determined by MTT assay. The incorporation of labeled [2- 14 C] acetate into triacylglycerol and phospholipid was increased by 40% and 26% respectively upon 24 h incubation, whereas incorporation of labeled [2- 14 C] acetate into cholesterol was not significantly increased. Further, ethanol inhibited HMG-CoA reductase which is a rate-limiting enzyme in the cholesterol biosynthesis. It was observed that, HMG-CoA reductase inhibition was brought about by ethanol as a consequence of decreased cell viability, since incubation of HepG2 cells with mevalonate could not increase the cholesterol content and increase the cell viability. Addition of ethanol significantly increased TNF-alpha secretion and depleted mitochondrial coenzyme-Q 10 which is detrimental for cell viability. But vitamin E (10 mM) could partially restore coenzyme-Q 10 and glutathione content with decreased TNF-alpha secretion in ethanol treated cells. Further, lipid peroxidation, glutathione peroxidase and superoxide dismutase enzyme activities remained unaffected. Ethanol decreased glutathione content while, GSH/GSSG ratio was significantly higher compared to other groups showing cellular pro-oxidant and antioxidant balance remained

  2. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  3. Effects of sh-reagents on rat hepatic aldehyde dehydrogenase activity

    Konoplitskaya, K.L.; Kuz' mina, G.I.; Grigor' yeva, M.V.; Poznyakova, T.N.

    The liver serves as the primary organ for the oxidation of ingested ethanol via a pathway involving alcohol- and aldehyde dehydrogenase. In view of the problem of alcoholism, three enzymes are of particular interest in understanding the biochemical mechanism that may be involved in alcohol addiction and in the formulation of therapeutic approaches. While alcohol dehydrogenase has been studied in considerable detail, current attention is centered on aldehyde dehydrogenase. A comparative analysis of the effects of a series of SH-active reagents - tetraethylthiuram disulfide (TETD), 5,5-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (PCMB), and N-ethylmaleimide (NEM) - were tested for their effects on the activity of aldehyde dehydrogenase of the hepatic mitochondrial (isozymes I and II) and microsomal (isozyme II) fractions of outbred albino rats. DTNB was found to be inhibited by 100 and 50% mitochondrial isozymes I and II, respectively, and by 20%, the microsomal enzyme under the conditions employed. DTNB and NEM inhibited by 30 and 50% isozymes I and II of the mitochondria, but had no effect on the microsomal isozyme. 24 references, 3 figures.

  4. Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations

    Rehn, Gustav; Pedersen, Asbjørn Toftgaard; Woodley, John

    2016-01-01

    alcohol dehydrogenases. However, their effective use requires an effective regeneration of the oxidized nicotinamide cofactor (NAD(P)+), which is critical for the economic feasibility of the process. NAD(P)H oxidase is an enzyme class of particular interest for this cofactor regeneration since it enables...

  5. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.

    Gutiérrez-Lomelí, Melesio; Torres-Guzmán, Juan Carlos; González-Hernández, Gloria Angélica; Cira-Chávez, Luis Alberto; Pelayo-Ortiz, Carlos; Ramírez-Córdova, Jose de Jesús

    2008-05-01

    This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.

  6. Biology, Genetics, and Environment

    Wall, Tamara L.; Luczak, Susan E.; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)—particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles—have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person’s alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  7. Genetic variation in alcohol metabolizing enzymes among Inuit and its relation to drinking patterns.

    Bjerregaard, Peter; Mikkelsen, Stine Schou; Becker, Ulrik; Hansen, Torben; Tolstrup, Janne S

    2014-11-01

    Variation in genes involved in alcohol metabolism is associated with drinking patterns worldwide. We compared variation in these genes among the Inuit with published results from the general population of Denmark and, due to the Asian ancestry of the Inuit, with Han Chinese. We analyzed the association between gene variations and drinking patterns among the Inuit. We genotyped 4162 Inuit participants from two population health surveys. Information on drinking patterns was available for 3560. Seven single nucleotide polymorphisms (SNPs) were examined: ADH1B arg48his, ADH1C ile350val, ADH1C arg272gln, ALDH2 glu504lys, ALDH2 5'-UTR A-357G, ALDH1B1 ala86val and ALDH1B1 arg107leu. The allele distribution differed significantly between Inuit and the general population of Denmark. A protective effect on heavy drinking was found for the TT genotype of the ALDH1B1 arg107leu SNP (OR=0.59; 95% CI 0.37-0.92), present in 3% of pure Inuit and 37% of Danes. The ADH1C GG genotype was associated with heavy drinking and a positive CAGE test (OR 1.34; 95% CI 1.05-1.72). It was present in 27% of Inuit and 18% of Danes. The Asian genotype pattern with a high frequency of the ADH1B A allele and an ALDH2 gene coding for an inactive enzyme was not present in Greenland. ADH1C and ALDH1B1 arg107leu SNPs play a role in the shaping of drinking patterns among the Inuit in Greenland. A low frequency of the ALDH1B1 arg107leu TT genotype compared with the general population in Denmark deserves further study. This genotype was protective of heavy drinking among the Inuit. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Cells and methods for producing fatty alcohols

    Pfleger, Brian F.; Youngquist, Tyler J.

    2017-07-18

    Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.

  9. Nurses' perceptions of medication adherence in schizophrenia: results of the ADHES cross-sectional questionnaire survey.

    Emsley, Robin; Alptekin, Koksal; Azorin, Jean-Michel; Cañas, Fernando; Dubois, Vincent; Gorwood, Philip; Haddad, Peter M; Naber, Dieter; Olivares, José Manuel; Papageorgiou, Georgios; Roca, Miguel; Thomas, Pierre; Hargarter, Ludger; Schreiner, Andreas

    2015-12-01

    Poor adherence to antipsychotic treatment is a widespread problem within schizophrenia therapy with serious consequences including increased risks of relapse and rehospitalization. Mounting evidence supports the key roles that nurses play in monitoring patient progress and facilitating long-term treatment adherence. The Adherencia Terapéutica en la Esquizofrenia (ADHES) nurses' survey was designed to assess the opinions of nurses on the causes and management of partial/nonadherence to antipsychotic medication. A questionnaire-based cross-sectional survey of 4120 nurses from Europe, the Middle East and Africa. Interpretation of results was based on a descriptive comparison of responses. Nurses perceived 54% of patients seen in the preceding month to be partially/nonadherent to treatment. Most nurses (90%) reported some level of experience with administration of long-acting injectable (LAI) antipsychotics, with 24% of nurses administering >10 injections per month. The majority (85%) of nurses surveyed believed that improving adherence would improve patient outcomes. Nearly half (49%) reported that most of their patients depend on a family member or other nonprofessional carer to remind them to take their medication as prescribed. A similar proportion of nurses (43%) reported that most of their patients relied on a professional to remind them to take medication. Most nurses (92%) felt that ensuring continuous medication with LAI antipsychotics would yield long-term benefits for patients, but their opinion was that over a third of patients were unaware of LAI antipsychotic treatments. In a series of forced options, the strategy used most often by respondents (89%) to promote medication adherence was to build trusting relationships with patients while listening to and interpreting their needs and concerns. Respondents also rated this as the most effective strategy that they used (48%). Nurses are highly aware of adherence issues faced by their patients; further patient

  10. Nurses’ perceptions of medication adherence in schizophrenia: results of the ADHES cross-sectional questionnaire survey

    Emsley, Robin; Alptekin, Koksal; Azorin, Jean-Michel; Cañas, Fernando; Dubois, Vincent; Gorwood, Philip; Haddad, Peter M.; Naber, Dieter; Olivares, José Manuel; Papageorgiou, Georgios; Roca, Miguel; Thomas, Pierre; Hargarter, Ludger; Schreiner, Andreas

    2015-01-01

    Objectives: Poor adherence to antipsychotic treatment is a widespread problem within schizophrenia therapy with serious consequences including increased risks of relapse and rehospitalization. Mounting evidence supports the key roles that nurses play in monitoring patient progress and facilitating long-term treatment adherence. The Adherencia Terapéutica en la Esquizofrenia (ADHES) nurses’ survey was designed to assess the opinions of nurses on the causes and management of partial/nonadherence to antipsychotic medication. Methods: A questionnaire-based cross-sectional survey of 4120 nurses from Europe, the Middle East and Africa. Interpretation of results was based on a descriptive comparison of responses. Results: Nurses perceived 54% of patients seen in the preceding month to be partially/nonadherent to treatment. Most nurses (90%) reported some level of experience with administration of long-acting injectable (LAI) antipsychotics, with 24% of nurses administering >10 injections per month. The majority (85%) of nurses surveyed believed that improving adherence would improve patient outcomes. Nearly half (49%) reported that most of their patients depend on a family member or other nonprofessional carer to remind them to take their medication as prescribed. A similar proportion of nurses (43%) reported that most of their patients relied on a professional to remind them to take medication. Most nurses (92%) felt that ensuring continuous medication with LAI antipsychotics would yield long-term benefits for patients, but their opinion was that over a third of patients were unaware of LAI antipsychotic treatments. In a series of forced options, the strategy used most often by respondents (89%) to promote medication adherence was to build trusting relationships with patients while listening to and interpreting their needs and concerns. Respondents also rated this as the most effective strategy that they used (48%). Conclusion: Nurses are highly aware of adherence

  11. Participation of Antidiuretic Hormone (ADH) in Asthma Exacerbations Induced by Psychological Stress via PKA/PKC Signal Pathway in Airway-Related Vagal Preganglionic Neurons (AVPNs).

    Hou, Lili; Zhu, Lei; Zhang, Min; Zhang, Xingyi; Zhang, Guoqing; Liu, Zhenwei; Li, Qiang; Zhou, Xin

    2017-01-01

    Present study was performed to examine whether ADH was implicated in psychological stress asthma and to explore the underlying molecular mechanism. We not only examined ADH levels in the cerebrospinal fluid (CSF) via radioimmunoassay, but also measured ADH receptor (ADHR) expression in airway-related vagal preganglionic neurons (AVPNs) through real-time PCR in all experimental mice. Western blotting was performed to evaluate the relationship between ADH and PKA/PKC in psychological stress asthma. Finally, the role of PKA/PKC in psychological stress asthma was analyzed. Marked asthma exacerbations were noted owing to significantly elevated levels of ADH and ADHR after psychological stress induction as compared to OVA alone (asthma group). ADHR antagonists (SR-49095 or SR-121463A) dramatically lowered higher protein levels of PKAα and PKCα induced by psychological stress as compared to OVA alone, suggesting the correlation between ADH and PKA/PKC in psychological stress asthma. KT-5720 (PKA inhibitor) and Go-7874 (PKC inhibitor) further directly revealed the involvement of PKA/PKC in psychological stress asthma. Some notable changes were also noted after employing PKA and PKC inhibitors in psychological stress asthma, including reduced asthmatic inflammation (lower eosinophil peroxidase (EPO) activity, myeloperoxidase (MPO) activity, immunoglobulin E (IgE) level, and histamine release), substantial decrements in inflammatory cell counts (eosinophils and lymphocytes), and decreased cytokine secretion (IL-6, IL-10, and IFN-γ), indicating the involvement of PKA/PKC in asthma exacerbations induced by psychological stress. Our results strongly suggested that ADH participated in psychological stress-induced asthma exacerbations via PKA/PKC signal pathway in AVPNs. © 2017 The Author(s)Published by S. Karger AG, Basel.

  12. Cooperation of Ad-hING4 and 125I seed in tumor-suppression on human pancreatic cancer xenograft in nude mice

    Zhai Hongyan; Fa Yihua; Su Chenghai; Yang Jicheng; Sheng Weihua; Xie Yufeng

    2009-01-01

    This work is to investigate the combined tumor-suppression effect of Adenovirus-mediated human ING4 (Ad-hING4) and 125 I seed on human pancreatic cancer xenograft and the possible mechanisms. Ad-hING4 recombinant adenovirus vector was transected into QBI-293A cells and high titre adenovirus was obtained. Subcutaneous tumor models were established with 25 nude mice with human pancreatic cancer cell line PANC-1. They were randomly divided into 5 groups: PBS control group, Ad carrier group, 125 I seed brachytherapy group, Ad-hING4 gene treatment group, combined 125 I seed and Ad-hING4 group. The tumor volumes were measured every 5 days after treatment, and were sacrificed on the 20th day. The tumors were measured and weighed to determine the ratio of tumor-suppression and Jin-Shi q value. Morphological changes of tumor cells,the tissue injury and apoptotic index AI were examined on pathological sections. MVD, Survivin and Caspase3 were tested in immunohistochemistry. The results show that the tumor-suppressive ratio of the 125 I seed group, Ad-hING4 group, combined treatment group were,respectively, 34.19%(P 0.05). It can be concluded that 125 I seed and Ad-hING4 inhibit the growth of PANC-1 pancreatic cancer on nude mice significantly. These indicate a synergy of the combined treatments in tumor-suppression and Ad-hING4 is a promising novel radiosensitizer. The mechanisms of tumor-suppressive may be multi-pathways such as down-regulation the expression of Survivin and up-regulation the expression of Caspase3 to induce apoptosis and inhibit angiogenesis. (authors)

  13. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  14. Uncompetitive Inhibition of Yeast Alcohol Dehydrogenase by Diacetoxyscirpenol.

    1986-10-01

    PREFACE The work described in this report was authorized under Project No. 1L161102A71A, Research in Chemical & Biological Defense, Biotechnology . This...Epoxytrichothecenes are the major components of the Fusarium myco- toxins identified as the causative agents for the epidemic outbreak of the alimentary ...The quaternary complex may have the structure such as NAD ~A EtOH ADS 14 LITERATURE CITED 1. Joffe, A.Z. Alimentary Toxic Aleukia. In Microbial Toxins

  15. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase ...

    2014-04-16

    Apr 16, 2014 ... RESEARCH ARTICLE. Cloning and in .... enzyme kinetic characterization studies of Panicum virga- .... Total RNA was extracted from stem using Trizol reagent ..... β-sheet (extended strand) were the main elements of PpCAD.

  16. Novel chiral tool, (R)-2-octanol dehydrogenase, from Pichia finlandica: purification, gene cloning, and application for optically active α-haloalcohols.

    Yamamoto, Hiroaki; Kudoh, Masatake

    2013-09-01

    A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD(+)-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.

  17. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were substrates.

  18. A genetic analysis of Adhl regulation

    Freeling, M.

    1992-01-01

    Several separate but related studies are reported on the mechanism of alcohol dehydrogenase (Adh-1) are reported. A study of a deletion mutation in the TATA box region which resulted in an increase from 6--60% of wildtype Adh-1 expression in the revertant has led to a focus on trans-acting protein factors that bind the TATA box. Analysis of another revertant has led to study of cis-acting sequences in Adh-1 expression. Screening efforts aimed at defining different mutants affecting Adh-1 expression are reported.

  19. A genetic analysis of Adhl regulation. Progress report, June 1991--May 1993

    Freeling, M.

    1992-12-01

    Several separate but related studies are reported on the mechanism of alcohol dehydrogenase (Adh-1) are reported. A study of a deletion mutation in the TATA box region which resulted in an increase from 6--60% of wildtype Adh-1 expression in the revertant has led to a focus on trans-acting protein factors that bind the TATA box. Analysis of another revertant has led to study of cis-acting sequences in Adh-1 expression. Screening efforts aimed at defining different mutants affecting Adh-1 expression are reported.

  20. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1

    Van Acker, Rebecca; Dejardin, Annabelle; Desmet, Sandrien; Hoengenaert, Lennart; Vanholme, Ruben; Morreel, Kris; Laurans, Françoise; Kim, Hoon; Santoro, Nicholas; Foster, Cliff; Goeminne, Geert; Legée, Frédéric; Lapierre, Catherine; Pilate, Gilles; Ralph, John

    2017-01-01

    In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula 3 Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which r...

  1. Aldehyde dehydrogenase polymorphism in North American, South American, and Mexican Indian populations.

    Goedde, H W; Agarwal, D P; Harada, S; Rothhammer, F; Whittaker, J O; Lisker, R

    1986-01-01

    While about 40% of the South American Indian populations (Atacameños, Mapuche, Shuara) were found to be deficient in aldehyde dehydrogenase isozyme I (ALDH2 or E2), preliminary investigations showed very low incidence of isozyme deficiency among North American natives (Sioux, Navajo) and Mexican Indians (mestizo). Possible implications of such trait differences on cross-cultural behavioral response to alcohol drinking are discussed. PMID:3953578

  2. Crystal structure of product-bound complex of UDP-N-acetyl-d-mannosamine dehydrogenase from Pyrococcus horikoshii OT3.

    Pampa, K J; Lokanath, N K; Girish, T U; Kunishima, N; Rai, V R

    2014-10-24

    UDP-N-acetyl-d-mannosamine dehydrogenase (UDP-d-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-d-mannosamine (UDP-d-ManNAc) to Uridine-diphospho-N-acetyl-d-mannosaminuronic acid (UDP-d-ManNAcA) through twofold oxidation of NAD(+). In order to reveal the structural features of the Pyrococcus horikoshii UDP-d-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-d-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Exploring causal associations between alcohol and coronary heart disease risk factors

    Lawlor, Debbie A; Nordestgaard, Børge G; Benn, Marianne

    2013-01-01

    association with triglycerides [-14.9% (-25.6, -4.3)] in IV analyses; P = 0.006 and 0.01, respectively, for difference between the two. Alcohol was not associated with non-HDLc or glucose.ConclusionOur results show adverse effects of long-term alcohol consumption on BP and BMI. We also found novel evidence......AimsTo explore the causal effect of long-term alcohol consumption on coronary heart disease risk factors.Methods and resultsWe used variants in ADH1B and ADH1C genes as instrumental variables (IV) to estimate the causal effect of long-term alcohol consumption on body mass index (BMI), blood...... pressure (BP), lipids, fibrinogen, and glucose. Analyses were undertaken in 54 604 Danes (mean age 56 years). Both confounder-adjusted multivariable and IV analyses suggested that a greater alcohol consumption among those who drank any alcohol resulted in a higher BP [mean difference in SBP per doubling...

  4. ALCOHOL I

    Despite the increase in alcohol marketing activities by the transnational alcohol corporations in Nigeria .... were recorded with a digital device with ..... era (i.e., before alcohol industry was es- tablished in ..... university student drinking: A na-.

  5. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  6. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  7. Geology and hydrothermal alteration at the Madh adh Dhahab epithermal precious-metal deposit, Kingdom of Saudi Arabia

    Doebrich, J.L.; LeAnderson, J.P.

    1984-01-01

    Mahd adh Dhahab is a late Precambrian epithermal gold-silver-base metal deposit located in the west-central part of the Arabian Shield. North-trending quartz veins containing base and precious metals cut an east-striking, north-dipping homoclinal sequence of volcanic, volcaniclastic, and epiclastic rocks of intermediate to felsic composition. Ore was localized where the veins cut competent, coarse-grained, fragmental units directly below incompetent and impermeable tuff units. The proximity of an epizonal rhyolite porphyry stock to these contacts also was important in localizing ore. Ore minerals include native gold and silver, gold-silver tellurides, chalcopyrite, sphalerite, and minor galena, and five stages of mineralization have been identified.

  8. Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems

    Marpani, Fauziah Binti; Pinelo, Manuel; Meyer, Anne S.

    2017-01-01

    A designed biocatalytic cascade system based on reverse enzymatic catalysis by formate dehydrogenase (EC 1.2.1.2), formaldehyde dehydrogenase (EC 1.2.1.46), and alcohol dehydrogenase (EC 1.1.1.1) can convert carbon dioxide (CO2) to methanol (CH3OH) via formation of formic acid (CHOOH......) and formaldehyde (CHOH) during equimolar cofactor oxidation of NADH to NAD+. This reaction is appealing because it represents a double gain: (1) reduction of CO2 and (2) an alternative to fossil fuel based production of CH3OH. The present review evaluates the efficiency of different immobilized enzyme systems...

  9. Substrate scope of a dehydrogenase from Sphingomonas species A1 and its potential application in the synthesis of rare sugars and sugar derivatives.

    Beer, Barbara; Pick, André; Döring, Manuel; Lommes, Petra; Sieber, Volker

    2018-04-26

    Rare sugars and sugar derivatives that can be obtained from abundant sugars are of great interest to biochemical and pharmaceutical research. Here, we describe the substrate scope of a short-chain dehydrogenase/reductase from Sphingomonas species A1 (SpsADH) in the oxidation of aldonates and polyols. The resulting products are rare uronic acids and rare sugars respectively. We provide insight into the substrate recognition of SpsADH using kinetic analyses, which show that the configuration of the hydroxyl groups adjacent to the oxidized carbon is crucial for substrate recognition. Furthermore, the specificity is demonstrated by the oxidation of d-sorbitol leading to l-gulose as sole product instead of a mixture of d-glucose and l-gulose. Finally, we applied the enzyme to the synthesis of l-gulose from d-sorbitol in an in vitro system using a NADH oxidase for cofactor recycling. This study shows the usefulness of exploring the substrate scope of enzymes to find new enzymatic reaction pathways from renewable resources to value-added compounds. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  11. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  12. Shikimate dehydrogenase from Pinu sylvestris L. needles

    Osipov, V.I.; Shein, I.V.

    1986-01-01

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP + , but also with NAD + . The values of K/sub m/ for shikimate, when NADP + and NAD + are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed

  13. Antidotes for poisoning by alcohols that form toxic metabolites.

    McMartin, Kenneth; Jacobsen, Dag; Hovda, Knut Erik

    2016-03-01

    The alcohols, methanol, ethylene glycol and diethylene glycol, have many features in common, the most important of which is the fact that the compounds themselves are relatively non-toxic but are metabolized, initially by alcohol dehydrogenase, to various toxic intermediates. These compounds are readily available worldwide in commercial products as well as in homemade alcoholic beverages, both of which lead to most of the poisoning cases, from either unintentional or intentional ingestion. Although relatively infrequent in overall occurrence, poisonings by metabolically-toxic alcohols do unfortunately occur in outbreaks and can result in severe morbidity and mortality. These poisonings have traditionally been treated with ethanol since it competes for the active site of alcohol dehydrogenase and decreases the formation of toxic metabolites. Although ethanol can be effective in these poisonings, there are substantial practical problems with its use and so fomepizole, a potent competitive inhibitor of alcohol dehydrogenase, was developed for a hopefully better treatment for metabolically-toxic alcohol poisonings. Fomepizole has few side effects and is easy to use in practice and it may obviate the need for haemodialysis in some, but not all, patients. Hence, fomepizole has largely replaced ethanol as the toxic alcohol antidote in many countries. Nevertheless, ethanol remains an important alternative because access to fomepizole can be limited, the cost may appear excessive, or the physician may prefer ethanol due to experience. © 2015 The British Pharmacological Society.

  14. Phosphorylation site on yeast pyruvate dehydrogenase complex

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  15. Black Alcoholism.

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  16. Les adhésifs à photopolymérisation radicalaire employés pour le cpllage structural du verre en conservation-restauration: Etude de la résistance au cisaillement de 4 adhésifs optiques polymérisables aux UV

    Gillioz, Sandra,

    2016-01-01

    Les adhésifs photopolymérisables, dont la prise s’effectue en quelques secondes sous rayonnement ultraviolet (UV), représentent une option séduisante pour le collage du verre en conservationrestauration, particulièrement lorsque les fragments ne peuvent être maintenus de manière temporaire. Dans le présent travail, nous avons étudié la compatibilité des adhésifs photopolymérisables avec le collage du verre en conservation-restauration en nous focalisant sur leur résistance mécanique. Quatre a...

  17. Determination of hydride transfer stereospecificity of NADH-dependent alcohol-aldehyde/ketone oxidoreductase from Sulfolobus solfataricus.

    Trincone, A; Lama, L; Rella, R; D'Auria, S; Raia, C A; Nicolaus, B

    1990-10-18

    This paper describes the determination of stereospecificity of hydride transfer reaction of an alcohol dehydrogenase isolated from the archaebacterium Sulfolobus solfataricus. The 1H-NMR and EI-MS data indicate that the enzyme transfers the pro-R hydrogen from coenzyme to substrate and is therefore an A-specific dehydrogenase.

  18. Isoflavonoid compounds extracted from Pueraria lobata suppress alcohol preference in a pharmacogenetic rat model of alcoholism.

    Lin, R C; Guthrie, S; Xie, C Y; Mai, K; Lee, D Y; Lumeng, L; Li, T K

    1996-06-01

    The extract from an edible vine, Pueraria lobata, has long been used in China to lessen alcohol intoxication. We have previously shown that daidzin, one of the major components from this plant extract, is efficacious in lowering blood alcohol levels and shortens sleep time induced by alcohol ingestion. This study was conducted to test the antidipsotropic effect of daidzin and two other major isoflavonoids, daidzein and puerarin, from Pueraria lobata administered by the oral route. An alcohol-preferring rat model, the selectively-bred P line of rats, was used for the study. All three isoflavonoid compounds were effective in suppressing voluntary alcohol consumption by the P rats. When given orally to P rats at a dose of 100 mg/kg/day, daidzein, daidzin, and puerarin decreased ethanol intake by 75%, 50%, and 40%, respectively. The decrease in alcohol consumption was accompanied by an increase in water intake, so that the total fluid volume consumed daily remained unchanged. The effects of these isoflavonoid compounds on alcohol and water intake were reversible. Suppression of alcohol consumption was evident after 1 day of administration and became maximal after 2 days. Similarly, alcohol preference returned to baseline levels 2 days after discontinuation of the isoflavonoids. Rats receiving the herbal extracts ate the same amounts of food as control animals, and they gained weight normally during the experiments. When administered orally, none of these compounds affected the activities of liver alcohol dehydrogenase and aldehyde dehydrogenase. Therefore, the reversal of alcohol preference produced by these compounds may be mediated via the CNS. Data demonstrate that isoflavonoid compounds extracted from Pueraria lobata is effective in suppressing the appetite for alcohol when taken orally, raising the possibility that other constituents of edible plants may exert similar and more potent actions.

  19. Les adhésifs à photopolymérisation radicalaire employés pour le collage structural du verre en conservation-restauration.

    Gillioz, Sandra

    2016-01-01

    Nous avons étudié la compatibilité des adhésifs photopolymérisables avec le collage du verre en conservation-restauration en nous focalisant sur leur résistance mécanique. Quatre adhésifs photopolymérisables à voie radicalaire ont été sélectionnés – Conloc® 665 (EGO®), Loctite® 350 (Henkel®), NOA® 61 (Norland Optical Adhesives®) et Verifix® LV740 (Bohle®) – en employant à titre de comparaison la résine époxyde de référence pour le collage structural du verre – Hxtal® Nyl-1 (Hxtal Adhesive®). ...

  20. Vitality Improvement of the Mediterranean Fruit Fly, Ceratitis capitata Wied 1- Measured by using dehydrogenase Enzyme Activities

    Salama, M.S.; Shoman, A.A.; Elbermawy, S.M.; Abul Yazid, I.

    2000-01-01

    The present study searches for the improvement vitality of the Mediterranean fruit fly, Ceratitis capitata Wied. Through the induction of a specific variance (mutation) in the genetic material. Several types of treatments that were thought to cause this mutation were used, as IGR's, temperature, formaldehyde, colchicine, alcohols, several types of larval rearing media and gamma-rays. Generally, the activities of the energy enzymes alpha-glycerophosphate dehydrogenase (alpha-GPDH) enzyme lactate dehydrogenase (LDH) enzyme and malate dehydrogenase (MDH) enzyme, when used as a direct measure for the fly vitality, increased due to treatments of the egg stage by the previously mentioned treatments specially by the usage of rice hulls in the larval rearing medium alone or followed by irradiation of the pupal stage with 90 Gy

  1. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites.

    Santangelo, G M; Tornow, J

    1990-01-01

    Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity.

  2. Alcohol Advertising

    Trkovská, Jana

    2017-01-01

    The thesis concerns itself with alcohol advertising. Alcohol is the most widespread habit-forming substance, yet its consumption is permitted in most countries all around the world, possibly restricted by the age of consumers only. Drinking alcohol cannot be either regulated or prohibited today. It has become commonplace for the majority of our lives. Being aware of its apparent risks, however, there is an effort to regulate at least alcohol advertising. The main objective of this work was to...

  3. Inducible xylitol dehydrogenases in enteric bacteria.

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  4. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf

    2008-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  5. Rat Strain Differences in Susceptibility to Alcohol-Induced Chronic Liver Injury and Hepatic Insulin Resistance

    Sarah M. DeNucci

    2010-01-01

    Full Text Available The finding of more severe steatohepatitis in alcohol fed Long Evans (LE compared with Sprague Dawley (SD and Fisher 344 (FS rats prompted us to determine whether host factors related to alcohol metabolism, inflammation, and insulin/IGF signaling predict proneness to alcohol-mediated liver injury. Adult FS, SD, and LE rats were fed liquid diets containing 0% or 37% (calories ethanol for 8 weeks. Among controls, LE rats had significantly higher ALT and reduced GAPDH relative to SD and FS rats. Among ethanol-fed rats, despite similar blood alcohol levels, LE rats had more pronounced steatohepatitis and fibrosis, higher levels of ALT, DNA damage, pro-inflammatory cytokines, ADH, ALDH, catalase, GFAP, desmin, and collagen expression, and reduced insulin receptor binding relative to FS rats. Ethanol-exposed SD rats had intermediate degrees of steatohepatitis, increased ALT, ADH and profibrogenesis gene expression, and suppressed insulin receptor binding and GAPDH expression, while pro-inflammatory cytokines were similarly increased as in LE rats. Ethanol feeding in FS rats only reduced IL-6, ALDH1–3, CYP2E1, and GAPDH expression in liver. In conclusion, susceptibility to chronic steatohepatitis may be driven by factors related to efficiency of ethanol metabolism and degree to which ethanol exposure causes hepatic insulin resistance and cytokine activation.

  6. Alcohol Exposure In Utero and Child Academic Achievement.

    von Hinke Kessler Scholder, Stephanie; Wehby, George L; Lewis, Sarah; Zuccolo, Luisa

    2014-05-01

    We examine the effect of alcohol exposure in utero on child academic achievement. As well as studying the effect of any alcohol exposure, we investigate the effect of the dose, pattern , and duration of exposure. We use a genetic variant in the maternal alcohol-metabolism gene ADH1B as an instrument for alcohol exposure, whilst controlling for the child's genotype on the same variant. We show that the instrument is unrelated to an extensive range of maternal and paternal characteristics and behaviours. OLS regressions suggest an ambiguous association between alcohol exposure in utero and children's academic attainment, but there is a strong social gradient in maternal drinking, with mothers in higher socio-economic groups more likely to drink. In stark contrast to the OLS, the IV estimates show negative effects of prenatal alcohol exposure on child educational attainment. These results are very robust to an extensive set of model specifications. In addition, we show that that the effects are solely driven by the maternal genotype, with no impact of the child's genotype.

  7. Metabolism of excised embryos of Lupinus luteus L. VI. An electrophoretic analysis of some dehydrogenases in cultured embryos as compared with the normal seedling axes

    J. Czosnowski

    2015-01-01

    Full Text Available The electrophoretic patterns (disc electrophoresis of the studied dehydrogenases: glucose-6-phosphate - (A, malate - (B, glutamate - (C, alcohol - (D and lactate dehydrogenase (E, in the axial organs of isolated Lupinus luteus embryos and seedlings cultivated over 12 days are characterized by great similarities. With time, after the third day of cultivation the patterns begin to become less deyeloped. Analyses performed during the first 10 hours of imbibition of seed parts indicate that the maximal development of isozyme patterns occurs during the third hour after which the patterns become poorer. The most uniform type of pattern. and the lowest number of isozymes was shown by glutamate dehydrogenase, the richest pattern was shown by malate dehydrogenase. No band common for a 11 the 27 experimental elements was found.

  8. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase

    Ralph, John; Hatfield, Ronald D.; Piquemal, Joël; Yahiaoui, Nabila; Pean, Michel; Lapierre, Catherine; Boudet, Alain M.

    1998-01-01

    Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR....

  9. Racemization of enantiopure secondary alcohols by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase

    Musa, Musa M.; Phillips, Robert S.; Laivenieks, Maris; Vieille, Claire; Takahashi, Masateru; Hamdan, Samir

    2013-01-01

    , the high tolerance of TeSADH to organic solvents allows TeSADH-catalyzed racemization to be conducted in media containing up to 50% (v/v) of organic solvents. © 2013 The Royal Society of Chemistry.

  10. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  11. Alcoholic fermentation

    Colin, P

    1961-01-04

    The addition of C/sub 6-10/ alcohols to the fermenting sugar solutions, increased the yield of alcohol by 1.5 to 5%. The best additives were (additive, % additive in sugar solution, % increased in yield of alcohol): hexanol, 0.03, 2.5; heptanol, 0.05, 3; nonanol, 0.01, 3; 2-ethylbutanol, 0.05, 4; 2-ethylhexanol, 0.05, 5; a mixture of C/sub 7-9/ alcohols from the Oxo synthesis, 0.05, 4.5, and a mixture of C/sub 10/ alcohols 0.05, 3.

  12. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  13. Integrating Horizontal Gene Transfer and Common Descent to Depict Evolution and Contrast It with “Common Design”1

    GUILLERMO PAZ-Y-MIÑO-C; ESPINOSA, AVELINA

    2016-01-01

    Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life’s diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD+ as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking “common design” (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded. PMID:20021546

  14. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development.

  15. Amino alcohol- (NPS-2143 and quinazolinone-derived calcilytics (ATF936 and AXT914 differentially mitigate excessive signalling of calcium-sensing receptor mutants causing Bartter syndrome Type 5 and autosomal dominant hypocalcemia.

    Saskia Letz

    Full Text Available Activating calcium sensing receptor (CaSR mutations cause autosomal dominant hypocalcemia (ADH characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics on activating CaSR mutants.All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o. To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914.All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants.The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations.

  16. Cascade catalysis in membranes with enzyme immobilization for multienzymatic conversion of CO2 to methanol

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina

    2015-01-01

    .e. by directing membrane fouling formation), without any addition of organic solvent. Such coimmobilization and sequential immobilization systems were examined for the production of methanol from CO2 with formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH). Enzyme...... for multi-enzymatic cascade systems, but also reveals the reaction bottleneck and provides possible solutions for the bioconversion of CO2 to methanol....

  17. Alcohol and airways function in health and disease.

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  18. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  19. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  20. Der Einfluss von COMT Val158Met auf neuronale Korrelate von Delay Discounting bei adulten Patienten mit Aufmerksamkeitsdefizit/Hyperaktivitätsstörung (ADHS)

    Gieseke, Heiner Alexander

    2013-01-01

    In dieser Studie führten 37 adulte Patienten mit einer Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) ein Delay Discounting (DD) - Paradigma aus, während gleichzeitig mittels Funktioneller-Nahinfrarotspektroskopie (fNIRS) die Gehirnaktivität der „Regions of Interest“ (ROIs) des Orbitofrontalen-Kortex (OFC) und des Dorsolateralen-Präfrontalen-Kortex (dlPFC) gemessen wurde. Mittels Fragebögen und eines Delay Discounting Tasks (DDT) wurden zusätzlich Verhaltensparameter erhoben und flosse...

  1. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites.

    Santangelo, G M; Tornow, J

    1990-01-01

    Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity. Images PMID:2405258

  2. Isopropanol alcohol poisoning

    Rubbing alcohol poisoning; Isopropyl alcohol poisoning ... Isopropyl alcohol can be harmful if it is swallowed or gets in the eyes. ... These products contain isopropanol: Alcohol swabs Cleaning supplies ... Rubbing alcohol Other products may also contain isopropanol.

  3. Alcohol Energy Drinks

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 33960 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  4. Alcohol and pregnancy

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... lead to lifelong damage. DANGERS OF ALCOHOL DURING PREGNANCY Drinking a lot of alcohol during pregnancy can ...

  5. NIAAA Alcohol Treatment Navigator

    ... What to Know About Alcohol Treatment What Is Alcohol Use Disorder (AUD)? What Types of Alcohol Treatment Are Available? ... What to Know About Alcohol Treatment What is alcohol use disorder (AUD)? A health condition that can improve with ...

  6. [The catalase inhibitor aminotriazole alleviates acute alcoholic liver injury].

    Ai, Qing; Ge, Pu; Dai, Jie; Liang, Tian-Cai; Yang, Qing; Lin, Ling; Zhang, Li

    2015-02-25

    In this study, the effects of catalase (CAT) inhibitor aminotriazole (ATZ) on alcohol-induced acute liver injury were investigated to explore the potential roles of CAT in alcoholic liver injury. Acute liver injury was induced by intraperitoneal injection of alcohol in Sprague Dawley (SD) rats, and various doses of ATZ (100-400 mg/kg) or vehicle were administered intraperitoneally at 30 min before alcohol exposure. After 24 h of alcohol exposure, the levels of aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH) in plasma were determined. The degree of hepatic histopathological abnormality was observed by HE staining. The activity of hepatic CAT, hydrogen peroxide (H₂O₂) level and malondialdehyde (MDA) content in liver tissue were measured by corresponding kits. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in plasma were determined by ELISA method. The results showed that treatment with ATZ dose-dependently suppressed the elevation of ALT, AST and LDH levels induced by alcohol exposure, and that ATZ alleviated alcohol-induced histopathological alterations. Furthermore, ATZ inhibited the activity of CAT, reduced hepatic levels of H₂O₂and MDA in alcohol exposed rats. ATZ also decreased the levels of plasma TNF-α and IL-6 in rats with alcohol exposure. These results indicated that ATZ attenuated alcohol-induced acute liver injury in rats, suggesting that CAT might play important pathological roles in the pathogenesis of alcoholic liver injury.

  7. Alcohol Intolerance

    ... ingredients commonly found in alcoholic beverages, especially in beer or wine, can cause intolerance reactions. These include: Sulfites or other preservatives Chemicals, grains or other ingredients Histamine, a byproduct of fermentation or brewing In some cases, reactions can be ...

  8. Alcohol Poisoning

    ... than eight breaths a minute) Irregular breathing (a gap of more than 10 seconds between breaths) Blue- ... about alcohol by their parents and who report close relationships with their parents are less likely to ...

  9. Alcoholic neuropathy

    ... Frequently inspecting the feet and shoes to reduce injury caused by pressure or objects in the shoes Guarding the extremities to prevent injury from pressure Alcohol must be stopped to prevent ...

  10. Neonatal jaundice and glucose-6-phosphate dehydrogenase

    Leite, Amauri Antiquera [UNESP

    2010-01-01

    A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.Glucose-6-phosphate dehydrogenase...

  11. Acetate causes alcohol hangover headache in rats.

    Christina R Maxwell

    2010-12-01

    Full Text Available The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache.We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats.Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia, followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity.Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction.

  12. Alcohol intake and cardiovascular and gastrointestinal diseases

    Tolstrup, Janne Schurmann

    with increasing HDL cholesterol and non-fasting triglycerides, higher systolic and diastolic blood pressure and decreasing fibrinogen. In contrast, ADH1B and ADH1C genotypes were not associated with risk of CHD or with any of the cardiovascular biomarkers, and there was no indication that associations between...

  13. Alcohol Alert: Genetics of Alcoholism

    ... daily rhythm for various functions (e.g., body temperature or blood pressure) that is controlled by certain “ ... A special section delves more deeply into specific classes of genes and their relationship to alcoholism. The ...

  14. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  15. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  16. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  17. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  18. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Florencia Sainz

    2016-08-01

    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  19. A Genetic System for Clostridium ljungdahlii: a Chassis for Autotrophic Production of Biocommodities and a Model Homoacetogen

    Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2013-02-04

    Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.

  20. Ethanol-metabolizing pathways in deermice. Estimation of flux calculated from isotope effects

    Alderman, J.; Takagi, T.; Lieber, C.S.

    1987-01-01

    The apparent deuterium isotope effects on Vmax/Km (D(V/K] of ethanol oxidation in two deermouse strains (one having and one lacking hepatic alcohol dehydrogenase (ADH] were used to calculate flux through the ADH, microsomal ethanol-oxidizing system (MEOS), and catalase pathways. In vitro, D(V/K) values were 3.22 for ADH, 1.13 for MEOS, and 1.83 for catalase under physiological conditions of pH, temperature, and ionic strength. In vivo, in deermice lacking ADH (ADH-), D(V/K) was 1.20 +/- 0.09 (mean +/- S.E.) at 7.0 +/- 0.5 mM blood ethanol and 1.08 +/- 0.10 at 57.8 +/- 10.2 mM blood ethanol, consistent with ethanol oxidation principally by MEOS. Pretreatment of ADH- animals with the catalase inhibitor 3-amino-1,2,4-triazole did not significantly change D(V/K). ADH+ deermice exhibited D(V/K) values of 1.87 +/- 0.06 (untreated), 1.71 +/- 0.13 (pretreated with 3-amino-1,2,4-triazole), and 1.24 +/- 0.13 (after the ADH inhibitor, 4-methylpyrazole) at 5-7 mM blood ethanol levels. At elevated blood ethanol concentrations (58.1 +/- 2.4 mM), a D(V/K) of 1.37 +/- 0.21 was measured in the ADH+ strain. For measured D(V/K) values to accurately reflect pathway contributions, initial reaction conditions are essential. These were shown to exist by the following criteria: negligible fractional conversion of substrate to product and no measurable back reaction in deermice having a reversible enzyme (ADH). Thus, calculations from D(V/K) indicate that, even when ADH is present, non-ADH pathways (mostly MEOS) participate significantly in ethanol metabolism at all concentrations tested and play a major role at high levels

  1. Effects of moderate alcohol consumption on gene expression related to colonic inflammation and antioxidant enzymes in rats.

    Klarich, DawnKylee S; Penprase, Jerrold; Cintora, Patricia; Medrano, Octavio; Erwin, Danielle; Brasser, Susan M; Hong, Mee Young

    2017-06-01

    Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some studies have reported that moderate alcohol consumption may not contribute additional risk for developing colorectal cancer while others suggest that moderate alcohol consumption provides a protective effect that reduces colorectal cancer risk. The purpose of this study was to determine the effects of moderate voluntary alcohol (20% ethanol) intake on alternate days for 3 months in outbred Wistar rats on risk factors associated with colorectal cancer development. Colonic gene expression of cyclooxygenase-2, RelA, 8-oxoguanine DNA glycosylase 1, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase M1, and aldehyde dehydrogenase 2 were determined. Blood alcohol content, liver function enzyme activities, and 8-oxo-deoxyguanosine DNA adducts were also assessed. Alcohol-treated rats were found to have significantly lower 8-oxo-deoxyguanosine levels in blood, a marker of DNA damage. Alanine aminotransferase and lactate dehydrogenase were both significantly lower in the alcohol group. Moderate alcohol significantly decreased cyclooxygenase-2 gene expression, an inflammatory marker associated with colorectal cancer risk. The alcohol group had significantly increased glutathione-S-transferase M1 expression, an antioxidant enzyme that helps detoxify carcinogens, such as acetaldehyde, and significantly increased aldehyde dehydrogenase 2 expression, which allows for greater acetaldehyde clearance. Increased expression of glutathione-S-transferase M1 and aldehyde dehydrogenase 2 likely contributed to reduce mucosal damage that is caused by acetaldehyde accumulation. These results indicate that moderate alcohol may reduce the risk for colorectal cancer development, which was evidenced by reduced inflammation activity and lower DNA damage after alcohol exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Action of sulphite on plant malate dehydrogenase

    Ziegler, I.

    1974-01-01

    SO/sub 3//sup 2 -/ acts on NAD- and NADP-dependent malate dehydrogenase in several ways. Firstly, SO/sub 3//sup 2 -/ favours the appearance of low MW species (65000 and 39000 daltons) in Sephadex gel chromatography. Secondly, the enzyme from which is obtained by gel chromatography with dithioerythritol plus nucleotide cofactor is changed in the presence of SO/sub 3//sup 2 -/. This is indicated by the appearance of a linear reaction (instead of curvilinear), and by the abolition of the biphasic sigmoidal kinetics on varying substrate and cofactor concentrations. Thus the inhibition of initial velocity at high substrate or cofactor concentrations is even more marked than at lower ones. Thirdly, SO/sub 3//sup 2 -/ strongly reduces the activity in substrate saturating conditions.

  3. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.

    Mutti, Francesco G; Knaus, Tanja; Scrutton, Nigel S; Breuer, Michael; Turner, Nicholas J

    2015-09-25

    α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. Copyright © 2015, American Association for the Advancement of Science.

  4. Mutagenic effect of radionuclides incorporated into DNA of Drosophila melanogaster. Progress report, December 15, 1982-July 15, 1983

    Lee, W.R.

    1983-01-01

    The molecular changes in DNA of mutations induced at the well-defined locus alcohol dehydrogenase (Adh) in Drosophila melanogaster were compared between null mutants induced by x-rays, the alkylating agent N-ethyl-N-nitrosourea (ENU) and decay of tritium incorporated into specific sites of DNA

  5. Genetic engineering of Pichia stipitis for fermentation of xylose

    Thomas W. Jeffries; N. Q. Shi; J. Y. Cho; P. Lu; K. Dahn; J. Hendrick; H. K. Sreenath

    1998-01-01

    A useful genetic system has been developed for the transformation of Pichia stipitis. This includes two selectable markers (URA3 and LEU2), integrating and autonomous replication vectors, a pop-out cassette that enables multiple targeted disruptions, and a genomic X-library for rapid cloning. Using this system we have cloned two genes for alcohol dehydrogenase (PsADH1...

  6. Ethylene glycol or methanol intoxication : Which antidote should be used, fomepizole or ethanol?

    Rietjens, S. J.; de Lange, D. W.; Meulenbelt, J.

    2014-01-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol

  7. Overview of Alcohol Consumption

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... experience alcohol’s longer-term effects, which can include: Alcohol use disorder Health problems Increased risk for certain cancers In ...

  8. Enzyme study of the separate stages in alcohol fermentation

    Mar Monux, D

    1968-01-01

    The precise roles of ATP, DNA, and NADP in interaction with enzymes in certain of the 11 phases of fermentation are outlined. Individual enzymes which take part in the 11 phases are: (1) hexose transferase; (2) phosphohexoseisomerase; (3) fructosinase; (4) aldolase; (5) an SH-enzyme; (6) 3-phosphoglycero-1-phosphotransferase; (7) ghosphoglyceromutosase; (8) 2-phosphoglycerohydrolase; (9) pyruvic transferase; (10) pyruvic decarboxylase; (11) alcohol dehydrogenase.

  9. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  10. Engineering of an Extremely Thermostable Alpha/Beta Barrel Scaffold to Serve as a High Affinity Molecular Recognition Element for Use in Sensor Applications

    2015-12-23

    Molecular Recognition Element For Use in Sensor Applications Report Title The overall goal of the project was to evolve a highly thermostable enzyme ( alcohol ...SECURITY CLASSIFICATION OF: The overall goal of the project was to evolve a highly thermostable enzyme ( alcohol dehydrogenase D (AdhD) from Pyrococcus...furiosus) to bind an explosive molecule, RDX. The enzyme naturally catalyzes the nicotinamide cofactor-dependent oxidation or reduction of alcohols

  11. Histochemical demonstration of creatine kinase activity using polyvinyl alcohol and auxiliary enzymes

    Frederiks, W. M.; Marx, F.; van Noorden, C. J.

    1987-01-01

    Creatine kinase activity (EC 2.7.3.2.) has been demonstrated in myocardium and skeletal muscle from rats by a method based on the incubation of cryostat sections with a polyvinyl alcohol-containing medium and the use of auxiliary enzymes. Hexokinase and glucose-6-phosphate dehydrogenase were spread

  12. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    ... for This Page Lutfallah C, Wang W, Mason JI, Chang YT, Haider A, Rich B, Castro-Magana ... A, Copeland KC, Chang YT, Lutfallah C, Mason JI. Carriers for type II 3beta-hydroxysteroid dehydrogenase (HSD3B2) ...

  14. Properties of glucoside 3-dehydrogenase and its potential applications

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... dehydrogenase has attracted considerable attention in recent years due to broad substrate specificity and excellent ... site-selective oxidation of the C-3 hydroxyl group. .... single peptide with a molecular mass of 67 kDa in.

  15. 21 CFR 862.1500 - Malic dehydrogenase test system.

    2010-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver... marrow) leukemia. (b) Classification. Class I (general controls). The device is exempt from the premarket...

  16. An improved method for the assay of platelet pyruvate dehydrogenase

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  17. Genetics Home Reference: 17-beta hydroxysteroid dehydrogenase 3 deficiency

    ... 000 newborns. It is more common in the Arab population of Gaza, where it affects 1 in ... fetus, resulting in the abnormalities in the external sex organs that occur in 17-beta hydroxysteroid dehydrogenase ...

  18. Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase.

    Pitts, William J; Guo, Junqing; Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Watterson, Scott H; Bednarz, Mark S; Chen, Bang Chi; Barrish, Joel C; Bassolino, Donna; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-08-19

    A series of novel triazine-based small molecule inhibitors (IV) of inosine monophosphate dehydrogenase was prepared. The synthesis and the structure-activity relationships (SAR) derived from in vitro studies are described.

  19. Novel amide-based inhibitors of inosine 5'-monophosphate dehydrogenase.

    Watterson, Scott H; Liu, Chunjian; Dhar, T G Murali; Gu, Henry H; Pitts, William J; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-10-21

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.

  20. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  1. Glucose-6-phosphate dehydrogenase deficiency in Singapore.

    Quak, S H; Saha, N; Tay, J S

    1996-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) in man is an X-linked enzyme. The deficiency of this enzyme is one of the most common inherited metabolic disorders in man. In Singapore, three clinical syndromes associated with G6PD deficiency had been described: severe haemolysis in neonates with kernicterus, haemoglobinuria and "viral hepatitis"-like syndrome. The human G6PD monomer consists of 515 amino acids. Only the tetrameric or dimeric forms composed of a single type subunit are catylitically active. The complete amino acid sequence of G6PD had been elucidated in man and various other animals. The region of high homology among the enzymes of various animals is presumably functionally active. Among the Chinese in Singapore, three common molecular variants had been identified: Canton (nt 1376 G --> T), Kaiping (nt 1388 G --> A) and Mediterranean (nt 563 C --> T) in frequencies of 24%, 21% and 10% respectively. In addition, two common mutants (Gaozhou, nt 95 A --> G and Chinese 5, nt 1024 C --> T) have been detected in Singapore Chinese in low frequencies. In Malays, 6 different deficient variants are known in Singapore (3 new, 1 Mahidol, 1 Indonesian and 1 Mediterranean).

  2. Human liver aldehyde dehydrogenase: coenzyme binding

    Kosley, L.L.; Pietruszko, R.

    1987-01-01

    The binding of [U- 14 C] NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of [U- 14 C] NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction

  3. Radioimmunoassay of lactate dehydrogenase, H forms

    Malvano, R.; Massaglia, A.; Zannino, M.; Palmucci, F.; Cali, V.; Zucchelli, G.C.; Consiglio Nazionale delle Ricerche, Pisa

    1979-01-01

    Antisera to H 4 -lactate dehydrogenase (LDH) were elicited in rabbits, against both human (h) and porcine (p) isoenzymes. 125 I-labelled H 4 -LDH was prepared by electrolytic iodination. A simple and fast procedure (1-h incubation for clinical assays) was set up by using polyethylene glycol for the bound-free separation. The results obtained in the antiserum characterization indicated that the heterologous homotetramer, M 4 was completely discriminated in the porcine system, while a weak cross-reaction with human antisera resulted. In both cases, for the hybrid forms, a cross-reactivity level related to the stoichiometric contents of the H-subunit in the tetramers was observed. The H 4 -LDH from other species was found to be much more effectively distinguished in the procine than in the human system. The assay for human LDH was further validated in terms of analytical suitability and clinical response. For healthy subjects the mean concentration was 0.46 +- 0.19 μg/ml (mean +- SD). Patients with acute myocardial infarction had levels ranging from 1.2 to 5.9 μg/ml. (orig.) [de

  4. Glucose 6 phosphate dehydrogenase deficiency in adults

    Khan, M.

    2004-01-01

    Objective: To determine the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in adults presented with anemia. Subjects and Methods: Eighteen months admission data was reviewed for G6PD deficiency as a cause of anemia. Anemia was defined by world health organization (WHO) criteria as haemoglobin less than 11.3 gm%. G6PD activity was measured by Sigma dye decolorisation method. All patients were screened for complications of hemolysis and its possible cause. Patients with more than 13 years of age were included in the study. Results: Out of 3600 patients admitted, 1440 were found anaemic and 49 as G6PD deficient. So the frequency of G6PD deficiency in anaemic patients was 3.4% and the overall frequency is 1.36%. G6PD deficiency among males and females was three and six percent respectively. Antimalarials and antibiotics containing sulphonamide group were the most common precipitating factors for hemolysis. Anemia and jaundice were the most common presentations while malaria was the most common associated disease. Acute renal failure was the most severe complication occurring in five patients with two deaths. Conclusion: G6PD deficiency is a fairly common cause of anemia with medicine as common precipitating factor for hemolysis. Such complications can be avoided with early recognition of the disease and avoiding indiscriminate use of medicine. (author)

  5. Glucose 6-phosphate dehydrogenase variants in Japan.

    Miwa, S

    1980-01-01

    Fifty-four cases of glucose 6-phosphate dehydrogenase (G6PD) deficiency have so far been reported in Japan. Among them, 21 G6PD variants have been characterized. Nineteen out of the 21 variants were characterized in our laboratory and G6PD Heian and "Kyoto" by others. G6PD Tokyo, Tokushima, Ogikubo, Kurume, Fukushima, Yokohama, Yamaguchi, Wakayama, Akita, Heian and "Kyoto" were classified as Class 1, because all these cases showed chronic hemolytic anemia and severe enzyme deficiency. All these variants showed thermal instability. G6PD Mediterranean-like, Ogori, Gifu and Fukuoka were classified as Class 2, whereas G6PD Hofu, B(-) Chinese, Ube, Konan, Kamiube and Kiwa belonged to Class 3. All the 6 Class 3 variants were found as the results of the screening tests. The incidence of the deficiency in Japanese seems to be 0.1-0.5% but that of the cases which may slow drug-induced hemolysis would be much less. G6PD Ube and Konan appear to be relatively common in Japan.

  6. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  7. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    Ferisman Tindaon; Gero Benckiser; Johannes C. G. Ottow

    2011-01-01

    The objective of this research was to determine the effects of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD) which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA),in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT). The toxicity and dose response curve of...

  8. Alcoholism and Suicide.

    Roy, Alec; Linnoila, Markku

    1986-01-01

    Reviews knowledge about suicide in alcoholism: how commonly suicide among alcoholics occurs; which alcoholics commit suicide and why; suicide among alcoholic women and alcoholic physicians; possible predisposing biological factors; possible linkages with depression, adverse life events, and personality disorder; and future research and directions.…

  9. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  10. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  11. Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii

    Banerjee, A; Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2014-03-25

    The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.

  12. Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii

    Ueki, Toshiyuki; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis. PMID:24509933

  13. Alcoholic Liver Disease

    ... may be increased in women because their digestive system may be less able to process alcohol, thus increasing the amount of alcohol reaching the liver. Genetic makeup Genetic makeup is thought to be involved because alcoholic liver disease often ...

  14. Alcohol Use Screening

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Alcohol Use Screening (AUDIT-C) - Instructions The following questions ... this tool, there is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following ...

  15. Alcohol Use Disorders

    ... alcohol use disorder” or AUD. AUD is a chronic relapsing brain disease characterized by compulsive alcohol use, loss of control over alcohol intake, and a negative emotional state when not using. ...

  16. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  17. Purification and characterization of novel bi-functional GH3 family β-xylosidase/β-glucosidase from Aspergillus niger ADH-11.

    Patel, Harshvadan; Kumar, Adepu Kiran; Shah, Amita

    2018-04-01

    β-Xylosidase plays an important role in xylan degradation by relieving the end product inhibition of endo-xylanase caused by xylo-oligosaccharides. β-Xylosidase has a wide range of applications in food, feed, paper and pulp, pharmaceutical industries and in bioconversion of lignocellulosic biomass. Hence, in the present study focused on purification, biochemical characterization and partial sequencing of purified β-xylosidase from xylanolytic strain Aspergillus niger ADH-11. Acetone precipitation followed by GPC using Sephacryl S-200 yielded 20.59-fold purified β-xylosidase with 58.30% recovery. SDS-PAGE analysis of purified β-xylosidase relieved a monomeric subunit with a molecular weight 120.48kDa. Kinetic parameters of purified β-xylosidase viz Km, Vmax, Kcat and catalytic efficiency were assessed. Purified β-xylosidase was additionally active on p-nitrophenyl-β-d-glucopyranoside substrate also. Moreover, peptide mass fingerprinting analysis support our biochemical studies and showed that the purified protein is a novel β-xylosidase with β-glucosidase activity and belongs to the bi-functional GH3 superfamily. Besides, tolerance of purified β-xylosidase towards glucose and xylose was also assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fetal Alcohol Spectrum Disorders (FASDs): Alcohol Use Quiz

    ... Links to Other Websites About Us More CDC Alcohol Topics CDC Alcohol Portal Excessive Alcohol Use Binge ... of alcohol screening and counseling for all women Alcohol Use Quiz Recommend on Facebook Tweet Share Compartir ...

  19. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana.

    Aguayo, María Francisca; Ampuero, Diego; Mandujano, Patricio; Parada, Roberto; Muñoz, Rodrigo; Gallart, Marta; Altabella, Teresa; Cabrera, Ricardo; Stange, Claudia; Handford, Michael

    2013-05-01

    Sorbitol is converted to fructose in Rosaceae species by SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14), especially in sink organs. SDH has also been found in non-Rosaceae species and here we show that the protein encoded by At5g51970 in Arabidopsis thaliana (L.) Heynh. possesses the molecular characteristics of an SDH. Using a green fluorescent protein-tagged version and anti-SDH antisera, we determined that SDH is cytosolically localized, consistent with bioinformatic predictions. We also show that SDH is widely expressed, and that SDH protein accumulates in both source and sink organs. In the presence of NAD+, recombinant SDH exhibited greatest oxidative activity with sorbitol, ribitol and xylitol as substrates; other sugar alcohols were oxidized to a lesser extent. Under standard growth conditions, three independent sdh- mutants developed as wild-type. Nevertheless, all three exhibited reduced dry weight and primary root length compared to wild-type when grown in the presence of sorbitol. Additionally, under short-day conditions, the mutants were more resistant to dehydration stress, as shown by a reduced loss of leaf water content when watering was withheld, and a greater survival rate on re-watering. This evidence suggests that limitations in the metabolism of sugar alcohols alter the growth of Arabidopsis and its response to drought. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments

    Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.

    2002-01-01

    Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.

  1. No evidence of association between structural polymorphism at the dopamine D3 receptor locus and alcoholism in the Japanese

    Higuchi, Susumu; Muramatsu, Taro; Matsushita, Sachio [National Institute on Alcoholism, Kanagawa (Japan); Murayama, Masanobu [Akagi Kougen Hospital, Gunma (Japan)

    1996-07-26

    Dopaminergic systems mediate reward mechanisms and are involved in reinforcing self-administration of dependence-forming substances, including alcohol. Studies have reported that polymorphisms of the dopamine D2 receptor, whose structure and function are similar to those of the dopamine D3 receptor, increase the susceptibility to alcoholism. The observations led to the examination of the possible association between a structural polymorphism of the D3 receptor gene and alcoholism. Genotyping results, employing a PCR-RFLP method, showed no difference in allele and genotype frequencies of the D3 BalI polymorphism (Ser{sup 9}/Gly{sup 9}) between Japanese alcoholics and controls. Moreover, these frequencies were not altered in alcoholics with inactive aldehyde dehydrogenase-2 (ALDH2), a well-defined negative risk factor for alcoholism. These results strongly suggest that the dopamine D3 receptor is not associated with alcoholism. 19 refs., 1 fig., 1 tab.

  2. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  3. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  4. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  5. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  6. Fetal alcohol syndrome

    ... a baby when a mother drinks alcohol during pregnancy. Causes Using alcohol during pregnancy can cause the same risks as using alcohol in general. But it poses extra risks to the unborn baby. When a pregnant woman drinks ... use during pregnancy. Larger amounts of alcohol appear to increase the ...

  7. Turning to alcohol?

    Reiboro, S.K.

    1998-01-01

    Brazil is examining whether turning to alcohol could solve its problems. The fuel alcohol producers are lobbying hard for the government to increase the use of alcohol to fuel the country's cars. Not only does using alcohol reduce CO 2 , runs the argument, but the Kyoto agreement might just attract international financing for the project. (author)

  8. Clearinghouse: alcohol and poppers.

    1999-03-01

    Ten articles from magazines and journals are referenced on the subjects of alcohol and poppers. Topics include alcohol consumption and HIV/AIDS-related risky sexual behavior, alcohol and drug abuse, and self-esteem, gender, and alcohol use. Contact information is provided.

  9. Children of Alcoholics.

    Krois, Deborah Helen

    Although alcoholism has long been considered a serious problem, the impact of parental alcoholism on children has only recently begun to receive attention from researchers and clinicians. A review of the empirical literature on children of alcoholics was conducted and it was concluded that children raised in an alcoholic family are at increased…

  10. Fetal Alcohol Exposure

    ... categories: 4 » Fetal Alcohol Syndrome (FAS) » Partial FAS (pFAS) » Alcohol-Related Neurodevelopmental Disorder (ARND) » Alcohol-Related Birth ... either prenatally, after birth, or both Partial FAS (pFAS) Partial FAS (pFAS) involves prenatal alcohol exposure, and ...

  11. Internet Alcohol Marketing and Underage Alcohol Use.

    McClure, Auden C; Tanski, Susanne E; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D

    2016-02-01

    Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13-2.78 and odds ratio 2.15; 95% confidence interval, 1.06-4.37 respectively) but not with initiation of ever drinking. Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. Copyright © 2016 by the American Academy of Pediatrics.

  12. Internet Alcohol Marketing and Underage Alcohol Use

    McClure, Auden C.; Tanski, Susanne E.; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D.

    2016-01-01

    BACKGROUND AND OBJECTIVE Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. METHODS A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. RESULTS At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13–2.78 and odds ratio 2.15; 95% confidence interval, 1.06–4.37 respectively) but not with initiation of ever drinking. CONCLUSIONS Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. PMID:26738886

  13. Genetic susceptibility factors for alcohol-induced chronic pancreatitis.

    Aghdassi, Ali A; Weiss, F Ulrich; Mayerle, Julia; Lerch, Markus M; Simon, Peter

    2015-07-01

    Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  14. Reversible inactivation of CO dehydrogenase with thiol compounds

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  15. Alcohol and Breastfeeding

    Haastrup, Maija Bruun; Pottegård, Anton; Damkier, Per

    2014-01-01

    While the harmful effects of alcohol during pregnancy are well-established, the consequences of alcohol intake during lactation have been far less examined. We reviewed available data on the prevalence of alcohol intake during lactation, the influence of alcohol on breastfeeding......, the pharmacokinetics of alcohol in lactating women and nursing infants and the effects of alcohol intake on nursing infants. A systematic search was performed in PubMed from origin to May 2013, and 41 publications were included in the review. Approximately half of all lactating women in Western countries consume...... alcohol while breastfeeding. Alcohol intake inhibits the milk ejection reflex, causing a temporary decrease in milk yield. The alcohol concentrations in breast milk closely resemble those in maternal blood. The amount of alcohol presented to nursing infants through breast milk is approximately 5...

  16. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6.

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-10-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=88.35, b=128.73, c=131.03 Å.

  17. Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase

    Hoffmann, Christian; Silau, Harald; Pinelo, Manuel

    2018-01-01

    activated by lithiation followed by functionalization with acid chlorides at 0 °C, permitting modification of commercial PSf membranes without compromising the mechanical integrity of the membrane. Post-functionalization polymer grafting was illustrated through both, a “grafting from” approach by surface...... initiated atom transfer radical polymerization (SI-ATRP) and by a “grafting to” approach exploiting Cu(I) catalyzed 1,3-cycloadditions of alkynes with azides (CuAAC) introducing hydrophilic polymers onto the membrane surface. Poly(1-vinyl imidazole) (pVim) grafted membranes were exploited as support...

  18. Use of the KlADH3 promoter for the quantitative production of the murine PDE5A isoforms in the yeast Kluyveromyces lactis.

    Cardarelli, Silvia; Giorgi, Mauro; Naro, Fabio; Malatesta, Francesco; Biagioni, Stefano; Saliola, Michele

    2017-09-22

    Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying K m , V max and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.

  19. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.

    Frömmel, Jan; Tarkowski, Petr; Kopečný, David; Šebela, Marek

    2016-09-25

    Plant NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases. They participate in the metabolism of polyamines or osmoprotectants. The enzymes are characterized by their broad substrate specificity covering ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The isoenzyme 1 from tomato (Solanum lycopersicum; SlAMADH1) oxidizes aliphatic aldehydes very efficiently and converts also furfural, its derivatives or benzaldehyde, which are present at low concentrations in alcoholic distillates such as fruit brandy. In this work, SlAMADH1 was examined as a bioanalytical tool for their detection. These aldehydes arise from fermentation processes or thermal degradation of sugars and their presence is related to health complications after consumption including nausea, emesis, sweating, decrease in blood pressure, hangover headache, among others. Sixteen samples of slivovitz (plum brandy) from local producers in Moravia, Czech Republic, were analyzed for their aldehyde content using a spectrophotometric activity assay with SlAMADH1. In all cases, there were oxidative responses observed when monitoring NADH production in the enzymatic reaction. Aldehydes in the distillate samples were also subjected to a standard determination using reversed-phase HPLC with spectrophotometric and tandem mass spectrometric detection after a derivatization with 2,4-dinitrophenylhydrazine. Results obtained by both methods were found to correlate well for a majority of the analyzed samples. The possible applicability of SlAMADH1 for the evaluation of aldehyde content in food and beverages has now been demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    Entamoeba histolytica is an amitochondriate protozoan parasite with numerous bacterium-like fermentation enzymes including the pyruvate:ferredoxin oxidoreductase (POR), ferredoxin (FD), and alcohol dehydrogenase E (ADHE). The goal of this study was to determine whether the genes encoding these cytosolic E. histolytica fermentation enzymes might derive from a bacterium by horizontal transfer, as has previously been suggested for E. histolytica genes encoding heat shock protein 60, nicotinamide nucleotide transhydrogenase, and superoxide dismutase. In this study, the E. histolytica por gene and the adhE gene of a second amitochondriate protozoan parasite, Giardia lamblia, were sequenced, and their phylogenetic positions were estimated in relation to POR, ADHE, and FD cloned from eukaryotic and eubacterial organisms. The E. histolytica por gene encodes a 1,620-amino-acid peptide that contained conserved iron-sulfur- and thiamine pyrophosphate-binding sites. The predicted E. histolytica POR showed fewer positional identities to the POR of G. lamblia (34%) than to the POR of the enterobacterium Klebsiella pneumoniae (49%), the cyanobacterium Anabaena sp. (44%), and the protozoan Trichomonas vaginalis (46%), which targets its POR to anaerobic organelles called hydrogenosomes. Maximum-likelihood, neighbor-joining, and parsimony analyses also suggested as less likely E. histolytica POR sharing more recent common ancestry with G. lamblia POR than with POR of bacteria and the T. vaginalis hydrogenosome. The G. lamblia adhE encodes an 888-amino-acid fusion peptide with an aldehyde dehydrogenase at its amino half and an iron-dependent (class 3) ADH at its carboxy half. The predicted G. lamblia ADHE showed extensive positional identities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43%) and lesser identities to the class 3 ADH of eubacteria and yeast (19 to 36%). Phylogenetic analyses inferred a closer relationship of the E

  1. Glucose-6-phosphate dehydrogenase deficiency; the single most ...

    Introduction: Glucose- 6-phosphate dehydrogenase deficiency is the most common enzymatic disorder of the red cell and an important risk factor for neonatal jaundice. Methodology: The aim of the study was to determine the incidence of G-6-PD deficiency among jaundiced neonates, and describe the associated morbidity ...

  2. Expanding the clinical spectrum of 3-phosphoglycerate dehydrogenase deficiency

    Tabatabaie, L; Klomp, L W J; Rubio-Gozalbo, M E; Spaapen, L J M; Haagen, A A M; Dorland, L; de Koning, T J

    UNLABELLED: 3-Phosphoglycerate dehydrogenase (3-PGDH) deficiency is considered to be a rare cause of congenital microcephaly, infantile onset of intractable seizures and severe psychomotor retardation. Here, we report for the first time a very mild form of genetically confirmed 3-PGDH deficiency in

  3. Identification of glucose 6 phosphate dehydrogenase mutations by ...

    Identification of glucose 6 phosphate dehydrogenase mutations by single strand conformation polymorphism and gene sequencing analysis. ... Subject: Six DNA samples from Turkish males confirmed to have G-6-PD deficiency where available for the study. Results: One subject was found to have an abnormal mobility shift ...

  4. Medium-chain acyl-CoA dehydrogenase deficiency

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  5. New enzymatic assay, parasite lactate dehydrogenase in diagnosis ...

    Background: The unique ability of plasmodial lactate dehydrogenase p(LDH) to utilise 3-acetyl pyridine dinucleotide (APAD) in lieu of NAD as a coenzyme in the conversion of pyruvate to lactate, led to the development of a biochemical assay for the detection of plasmodial parasitaemia. Researchers have reported that ...

  6. Cloning and expression of chicken 20-hydroxysteroid dehydrogenase

    Bryndová, Jana; Klusoňová, Petra; Kučka, Marek; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    2006-01-01

    Roč. 37, č. 3 (2006), s. 453-462 ISSN 0952-5041 R&D Projects: GA AV ČR(CZ) IAA6011201 Grant - others:GA UK(CZ) 216/2004 Institutional research plan: CEZ:AV0Z50110509 Keywords : 20-hydroxysteroid dehydrogenase * SDR family Subject RIV: CE - Biochemistry Impact factor: 2.988, year: 2006

  7. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  8. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein Expression Defines the Proliferative Nature of Cervical Cancer Stem Cells. ... of cervical cancer stem cells and also to validate them in initial and advanced stages of cervical cancer. Keywords: Cervical cancer, ALDH1, BALB/c-nu/nu, HeLa cells, RKIP, Sox2 ...

  9. Assay of partially purified glutamate dehydrogenase isolated from ...

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  10. Crystallization behaviour of glyceraldehyde dehydrogenase from Thermoplasma acidophilum

    Lermark, L.; Degtjarik, Oksana; Steffler, F.; Sieber, V.; Kutá-Smatanová, Ivana

    2015-01-01

    Roč. 71, č. 12 (2015), s. 1475-1480 ISSN 2053-230X Institutional support: RVO:67179843 Keywords : TaAlDH * Thermoplasma acidophilum * bioproduction * cell-free enzyme cascade * glyceraldehyde dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 0.647, year: 2015

  11. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase

    Nisler, Jaroslav; Kopečný, D.; Končitíková, R.; Zatloukal, Marek; Bazgier, Václav; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, Miroslav; Spíchal, Lukáš

    2016-01-01

    Roč. 92, 1-2 (2016), s. 235-248 ISSN 0167-4412 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA15-22322S Institutional support: RVO:61389030 Keywords : Cytokinin oxidase/dehydrogenase * Crystal structure * Molecular docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  12. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.

    2003-01-01

    Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha...

  13. Characterization of the L-lactate dehydrogenase from Aggregatibacter actinomycetemcomitans.

    Stacie A Brown

    Full Text Available Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a K(m of approximately 150 microM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans.

  14. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood

    Lapalme-Remis, S.; Lewis, E.C.; De Meulemeester, C.; Chakraborty, P.; Gibson, K.M.; Torres, C.; Guberman, A.; Salomons, G.; Jakobs, C.; Ali-Ridha, A.; Parviz, M.; Pearl, P.L.

    2015-01-01

    Objective: The natural history of succinic semialdehyde dehydrogenase (SSADH) deficiency in adulthood is unknown; we elucidate the clinical manifestations of the disease later in life. Methods: A 63-year-old man with long-standing intellectual disability was diagnosed with SSADH deficiency following

  15. Assessment of creatine kinase and lactate dehydrogenase activities ...

    Ina bid to investigate the influence of menopausal on coronary heart disease, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) enzymes were analysed on a prospective cohort of 100 women attending Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo state-Nigeria. They were divided into two groups; ...

  16. Serum creatine kinase and lactate dehydrogenase activities in ...

    ... in thyroid function are common endocrine disorders affecting 5-10% of individuals over ... Key words: Hyperthyroidism, hypothyroidism, lactate dehydrogenase, serum creatine kinase ... individuals depends on age, race, lean body mass and physical activity. ... measured by radioimmunoassay on AXSYM System (Abbott.

  17. Novel guanidine-based inhibitors of inosine monophosphate dehydrogenase.

    Iwanowicz, Edwin J; Watterson, Scott H; Liu, Chunjian; Gu, Henry H; Mitt, Toomas; Leftheris, Katerina; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L

    2002-10-21

    A series of novel guanidine-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  18. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects approximately 400 million people worldwide.

  19. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in patients ...

    This is a study of Glucose-6-phosphate dehydrogenase(G6PD) deficiency in sickle cell anaemia patients attending the haematology clinic of the Jos University Teaching Hospital (JUTH), Jos- Nigeria. The prevalence of G6PD deficiency among the 130 sickle cell anaemia patients studied was found to be 18.5%. G6PD ...

  20. Cytophotometry of glucose-6-phosphate dehydrogenase activity in individual cells

    van Noorden, C. J.; Tas, J.; Vogels, I. M.

    1983-01-01

    With the aid of thin films of polyacrylamide gel containing purified glucose-6-phosphate dehydrogenase subjected to cytochemical procedures for the enzyme using tetranitro blue tetrazolium, arbitrary units of integrated absorbance obtained with a Barr & Stroud GN5 cytophotometer were converted into