WorldWideScience

Sample records for alcaligenes eutrophus ch34

  1. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134.

    OpenAIRE

    Harker, A R; Kim, Y

    1990-01-01

    The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent p...

  2. Cybernetic structured modeling of the production of polyhydroxyalkanoates by Alcaligenes Eutrophus

    Directory of Open Access Journals (Sweden)

    L. FERRAZ

    1999-06-01

    Full Text Available This paper presents a cybernetic structured mathematical model developed for the fermentation step of the process of production of the copolymer of polyhydroxyalkanoates by the bacteria Alcaligenes eutrophus. This process is performed in two different fermentation stages. The first emphasizes the growth of the microorganism in a batch operation without substrates limitations, while in the second, the focus is on copolymer production by a fed-batch operation in the absence of the nitrogen source. This paper presents the results of the treatment of experimental data and of preliminary parameter estimation. The fitting of the proposed model to the experimental data of a standard experiment showed a good agreement.

  3. Uranium and selenium resistance in Cupriavidus metallidurans CH34

    International Nuclear Information System (INIS)

    Avoscan, L.; Untereiner, G.; Carriere, M.; Gouget, B.; Degrouard, J.

    2007-01-01

    Cupriavidus metallidurans CH34, a soil bacterium, is known to resist a variety of heavy metals and metalloids. Its capacity to resist, accumulate and transform selenium (Se as selenite or selenate) and uranium (U as uranyl-carbonate and uranyl-citrate) was investigated. C. metallidurans CH34 resists to high U concentrations (up to 10 mM) whatever its speciation. However, no major accumulation could be measured: U-carbonate and U-citrate are not bio-available for the bacteria. The anaerobic response of C. metallidurans CH34 to U will be looked for. C. metallidurans CH34 resists to high Se concentrations (up to 4 mM of selenite and 8 mM of selenate). Bacteria exposed to 2 mM of selenite accumulate 25 times more Se than when they are exposed to same concentration of selenate. Se resistance is characterized by the reduction of oxy-anions in the bacteria. Selenite is reduced to elemental Se by an intracellular process, but the metabolic fate of selenate is unknown. By combining three methods of speciation (X-ray absorption spectroscopy (XANES and EXAFS), HPLC-ICP-MS and SDS-PAGE coupled with particle induced X-ray emission (PIXE)), we both identified and specified the chemical intermediates formed by this bacterium upon exposure to these oxy-anions. Two mechanisms of reduction of Se oxides in C. metallidurans CH34 were highlighted. Assimilation transforms selenite and selenate into organic Se, identified as seleno-methionine and leads to its non-specific incorporation into bacterial proteins (presence of selenious proteins). Detoxication precipitates selenite in nano-particles of elemental Se. (authors)

  4. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34

    Science.gov (United States)

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max

    2012-01-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α2β2γ2 and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  5. Scleral buckle infection with Alcaligenes xylosoxidans

    Directory of Open Access Journals (Sweden)

    Chih-Kang Hsu

    2014-01-01

    Full Text Available We describe a rare case of extraocular inflammation secondary to scleral buckle infection with Alcaligenes xylosoxidans. A 60-year-old female with a history of retinal detachment repair with open-book technique of scleral buckling presented with purulent discharge and irritation in the right eye that had begun 4 weeks earlier and had been treated ineffectively at another hospital. Conjunctival erosion with exposure of the scleral buckle was noted. The scleral buckle was removed and cultured. The explanted material grew gram-negative rod later identified as A. xylosoxidans. On the basis of the susceptibility test results, the patient was treated by subconjunctival injection and fortified topical ceftazidime. After 4 weeks of treatment, the infection resolved.

  6. Uranium interaction with two multi-resistant environmental bacteria: Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris.

    Science.gov (United States)

    Llorens, Isabelle; Untereiner, Guillaume; Jaillard, Danielle; Gouget, Barbara; Chapon, Virginie; Carriere, Marie

    2012-01-01

    Depending on speciation, U environmental contamination may be spread through the environment or inversely restrained to a limited area. Induction of U precipitation via biogenic or non-biogenic processes would reduce the dissemination of U contamination. To this aim U oxidation/reduction processes triggered by bacteria are presently intensively studied. Using X-ray absorption analysis, we describe in the present article the ability of Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris, highly resistant to a variety of metals and metalloids or to organic pollutants, to withstand high concentrations of U and to immobilize it either through biosorption or through reduction to non-uraninite U(IV)-phosphate or U(IV)-carboxylate compounds. These bacterial strains are thus good candidates for U bioremediation strategies, particularly in the context of multi-pollutant or mixed-waste contaminations.

  7. Uranium Interaction with Two Multi-Resistant Environmental Bacteria: Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris

    Science.gov (United States)

    Llorens, Isabelle; Untereiner, Guillaume; Jaillard, Danielle; Gouget, Barbara; Chapon, Virginie; Carriere, Marie

    2012-01-01

    Depending on speciation, U environmental contamination may be spread through the environment or inversely restrained to a limited area. Induction of U precipitation via biogenic or non-biogenic processes would reduce the dissemination of U contamination. To this aim U oxidation/reduction processes triggered by bacteria are presently intensively studied. Using X-ray absorption analysis, we describe in the present article the ability of Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris, highly resistant to a variety of metals and metalloids or to organic pollutants, to withstand high concentrations of U and to immobilize it either through biosorption or through reduction to non-uraninite U(IV)-phosphate or U(IV)-carboxylate compounds. These bacterial strains are thus good candidates for U bioremediation strategies, particularly in the context of multi-pollutant or mixed-waste contaminations. PMID:23251623

  8. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments.

    Directory of Open Access Journals (Sweden)

    Paul J Janssen

    Full Text Available Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.

  9. Swimming, swarming, twitching, and chemotactic responses of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 in the presence of cadmium.

    Science.gov (United States)

    Shamim, Saba; Rehman, Abdul; Qazi, Mahmood Hussain

    2014-04-01

    To use of microorganisms for bioremediation purposes, the study of their motility behavior toward metals is essential. In the present study, Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to evaluate the effects of Cd on their motility behaviors. Potassium morpholinopropane sulfonate (MOPS) buffer was used to observe the motility behavior of both isolates. Movement of mt2 was less in MOPS buffer compared with CH34, likely reflecting the mono-flagellated nature of mt2 and the peritrichous nature of CH34. The swimming, swarming, twitching, and chemotaxis behaviors of mt2 were greater in the presence of glucose than that of Cd. mt2 exhibited negative motility behaviors when exposed to Cd, but the opposite effect was seen in CH34. Cd was found to be a chemorepellent for mt2 but a chemoattractant for CH34, suggesting that CH34 is a potential candidate for metal (Cd) bioremediation.

  10. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain

    NARCIS (Netherlands)

    Gerritse, G; Hommes, R.W J; Quax, Wim

    Pseudomonas alcaligenes M-l secretes an alkaline lipase, which has excellent characteristics for the removal of fatty stains under modern washing conditions. A fed-batch fermentation process based on the secretion of the alkaline lipase from P. alcaligenes was developed. Due to the inability of P.

  11. Electrophoretic analysis of cyanide depletion by Pseudomonas alcaligenes.

    Science.gov (United States)

    Zaugg, S E; Davidson, R A; Walker, J C; Walker, E B

    1997-02-01

    Bacterial-facilitated depletion of cyanide is under development for remediation of heap leach operations in the gold mining industry. Capillary electrophoresis was found to be a powerful tool for quantifying cyanide depletion. Changes in cyanide concentration in aqueous suspensions of Pseudomonas alcaligenes bacteria and cyanide at elevated pH were easily monitored by capillary electrophoresis. The resulting data can be used to study rates of cyanide depletion by this strain of bacteria. Concentrations of these bacteria at 10(5) cells/mL were found to reduce cyanide from 100 ppm to less than 8 ppm in four days. In addition, other ions of interest in cyanide metabolism, such as formate, can be simultaneously analyzed. Direct UV detection of cyanide at 192 nm further simplifies the analytical method for these ions.

  12. Study of interaction of the bacterium cupriavidus metallidurans with strontium

    International Nuclear Information System (INIS)

    Boussiga, Rim

    2010-01-01

    Cupriavidus metallidurans strain Ch 34 (previously known as Ralstonia metallidurans, Ralstonia eutropha, and Alcaligenes eutrophus) is an ideal subject to study heavy metal disturbance of cellular processes. Moreover, the capacity of C. metallidurans Ch 34 for in situ bioremediation was assessed and proved to be feasible on pilot scale. In this work, the molecular and physiological response to strontium cations (Sr 2+ ) by C.metallidurans Ch 34 was studied. Results showed that C. metallidurans Ch 34 resisted to high concentrations of Sr (120 m M) and that this resistance is not linked to the presence of its 2 large plasmid pMOL30 or pMOL28. During this study, a tctCBA-dependent tripartite tricarboxylate transport (TTT) system in strain Ch 34 was discovered. Transmission Electron Microscopy (TEM) observation of C.metallidurans challenged with strontium confirms the precipitation of Sr 2+ ) directly onto the surface of cells, inside and in the microenvironment around the cells. These results highlight the potential of C. metalliduras Ch 34 to endure environmental extremes and suggest that in situ bioremediation of Sr-containing waste with Ch 34 might be feasible.

  13. Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates.

    Science.gov (United States)

    Yu, P H; Chua, H; Huang, A L; Ho, K P

    1999-01-01

    Broader usage of biodegradable plastics in packaging and disposable products as a solution to environmental problems would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. As the first step in our pursuit of eventual usage of industrial food wastewater as nutrients for microorganisms to synthesise environmental-friendly bioplastics, we investigated the usage of soya wastes from a soya milk dairy, and malt wastes from a beer brewery plant as the carbon sources for the production of polyhydroxyalkanoates (PHA) by selected strain of microorganism. Bench experiments showed that Alcaligenes latus DSM 1124 used the nutrients from malt and soya wastes to biosynthesise PHAs. The final dried cell mass and specific polymer production of A. latus DSM 1124 were 32g/L and 70% polymer/cells (g/g), 18.42 g/L and 32.57% polymer/cell (g/g), and 28 g/L and 36% polymer/cells (g/g), from malt waste, soya waste, and from sucrose, respectively. These results suggest that many types of food wastes might be used as the carbon source for the production of PHA.

  14. Attachment of associative diazotroph alcaligenes faecalis to rice roots

    International Nuclear Information System (INIS)

    Lin Min; Fang Xuanjun; You Chongbiao

    1993-01-01

    The process of attachment of diazotroph Alcaligenes faecalis to host plant rice was studied by using 15 N-labelled bacteria and Tn5-induced mutants. A three-step attachment mechanism of A. faecalis to rice root surface is proposed on the basis of experimental data. Adsorption is the first step. The number of adsorbed bacteria reaches maximal level after 3 h of inoculation, it consists 3.7% of the total number of bacteria inoculated. Adsorbed bacteria could be removed from rice root surface quantitatively by shaking in water. Therefore, the adsorption forces are weak. Anchoring is the second step. It begins only after 9h of inoculation and reaches a maximal level (21%) after 16 h. Anchored bacteria could not be removed by shaking. Colonization is the third step. After 20 h of inoculation. part of anchored bacteria colonizes on rice root surface tightly, and it can not be removed by vortex. At this time, the pectolytic activity of bacteria appears. Chemotaxis and exopolysaccharide (EPS) play important roles in the attachment of A. faecalis to rice root surface. EPS mutants (Exo - , Exo ++ ) showed less anchoring-capability in comparison with wild type of bacterium, but they remained the adsorption capability. While chemotaxis (Che - ) mutants are defective in adsorption, but not in anchoring. Che - , Exo - mutant lost both adsorption and anchoring capabilities. A. faecalis absorbed on all part of rice root, but the anchoring and colonization of bacteria were occurred mainly on root hairs, particularly on the joint area of main root and lateral root

  15. Study of the Cupriavidus metallidurans CH34 resistance of selenite and selenate oxy-anions: accumulation, localisation and transformation of selenium

    International Nuclear Information System (INIS)

    Avoscan, L.

    2007-06-01

    Selenium is an essential trace element for the living organisms but it is very toxic at high concentration. Selenite and selenate oxides, soluble forms, highly toxic and bio-assimilable, are the most prevalent forms in the environment. Some soil micro-organisms play a dominant role and contribute to the natural cycle of selenium. Our study model, Cupriavidus (formerly Ralstonia) metallidurans CH34, a telluric bacterium characteristic of metal-contaminated biotopes, is known to resist selenite by reducing it into elemental selenium, an insoluble and less toxic form of selenium. In order to better understand the mechanisms of selenium reduction in the bacteria, three methods of speciation were combined (XAS (XANES and EXAFS), HPLC-ICP-MS and SDS-PAGEPIXE). They were completed by the direct quantification of selenium accumulated in the bacteria. Speciation analyses highlighted the existence of two mechanisms of reduction of selenium oxides in C. metallidurans CH34. Assimilation transforms selenite and selenate into organic selenium, identified as seleno-methionine and leads to its non-specific incorporation into bacterial proteins (presence of selenious proteins). Detoxication precipitates selenite in nano-particles of elemental selenium. This way of detoxication is not set up after an exposure to selenate although it is nevertheless possible to detect elemental selenium but in very small amount compared to the exposure of selenite. Seleno-diglutathion is detected in bacteria stressed by an exposure to selenate in medium limited in sulphate. Bacteria exposed to selenite accumulate 25 times more selenium than when they are exposed to selenate. The study of mutants resistant to selenite, which do not express the membrane protein DedA, showed that the accumulation of selenium after exposure to selenite is decreased compared with the wild strain meaning probable link between the transport of selenite and the DedA protein. Finally, selenate would use the sulphate permease

  16. Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus

    International Nuclear Information System (INIS)

    Fisher, P.R.; Appleton, J.; Pemberton, J.M.

    1978-01-01

    A strain of Alcaligenes paradoxus, unable to degrade phenoxyacetic acid, was shown to degrade two synthetic derivatives of this molecule, the herbicides 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. The ability to degrade these pesticides is encoded by a 58-megadalton conjugal plasmid, pJP1

  17. Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene

    NARCIS (Netherlands)

    Cox, M; Gerritse, G; Dankmeyer, L; Quax, W.J.

    2001-01-01

    Pseudomonas alcaligenes secretes a lipase with a high pH optimum, which has interesting properties for application in detergents. The expression of the lipase is strongly dependent on the presence of lipids in the growth medium such as soybean oil. The promoter of the gene was characterized and

  18. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system

    NARCIS (Netherlands)

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H.; Quax, Wim J.

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set

  19. Engineering Deinococcus radiodurans R1 for bioremediation of non radioactive and radioactive wastes facilitated by comparative genomics with Cupriavidus metallidurans CH34

    International Nuclear Information System (INIS)

    Badri, Hanene; Sghaier, Haitham; Barkallah, Insaf; Ben Salem, Issam; Wafa; Essouiss, Imen; Saied, Nadia; Saidi, M.; Gatri, Faten; Gatri, Maher; Boadabous, Abdellatifs; Leys, Natalie

    2009-01-01

    Deinococcus radiodurans R1 is a poly-extremophile for which a system of genetic transformation and manipulation has been developed and it is being engineered for in situ bioremediation of wastes particularly for cleanup of radioactive waste sites. In this study, additional attempts have been made to evaluate ''bioremediation determinants'' in the genome of D. radiodurans using a comparative-genomic approach with Cupriavidus metallidurans CH34, a multiple metal resistant bacterium. This resulted in the delineation of a set of ORFs that are common or peculiar to C. metallidurans and D. radiodurans. We identified 12 ORFs related to multidrug resistance efflux pumps as a special feature of C. metallidurans compared to D. radiodurans, which is the subject of further experimental work

  20. Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34

    Energy Technology Data Exchange (ETDEWEB)

    Desaunay, Aurélien; Martins, Jean M.F., E-mail: jean.martins@ujf-grenoble.fr

    2014-05-01

    Highlights: • Subcellular distribution of cadmium in Cupriavidus metallidurans CH34 cells. • Comparison of a chemical (EDTA washing) and a physical method (physical disruption). • EDTA washings strongly overestimated membrane-bound Cd concentrations. • The physical method revealed surprisingly over 80% of Cd internalization in the cells. • Metal biosorption by bacteria cannot be considered as a surface complexation process. - Abstract: Bacterial biosorption of heavy metals is often considered as a surface complexation process, without considering other retention compartments than cell walls. Although this approach gives a good description of the global biosorption process, it hardly permits the prediction of the fate of biosorbed metals in the environment. This study examines the subcellular distribution of cadmium (Cd) in the metal-tolerant bacterium Cupriavidus metallidurans CH34 through the comparison of an indirect chemical method (washing cells with EDTA) and a direct physical method (physical disruption of cells). The chemical washing approach presented strong experimental biases leading to the overestimation of washed amount of Cd, supposedly bound to cell membranes. On the contrary, the physical disruption approach gave reproducible and robust results of Cd subcellular distribution. Unexpectedly, these results showed that over 80% of passively biosorbed Cd is internalized in the cytoplasm. In disagreement with the common concept of surface complexation of metals onto bacteria the cell wall was poorly reactive to Cd. Our results indicate that metal sorption onto bacterial surfaces is only a first step in metal management by bacteria and open new perspectives on metal biosorption by bacteria in the environment, with implications for soil bioremediation or facilitated transport of metals by bacteria.

  1. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock

    Directory of Open Access Journals (Sweden)

    Natalie Leys

    2017-04-01

    Full Text Available Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50% and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES, showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

  2. Post-ERCP bacteremia caused by Alcaligenes xylosoxidans in a patient with pancreas cancer

    Directory of Open Access Journals (Sweden)

    Akcay Korhan

    2006-09-01

    Full Text Available Abstract Alcaligenes xylosoxidans is an aerobic, motile, oxidase and catalase positive, nonfermentative Gram negative bacillus. This bacterium has been isolated from intestine of humans and from various hospital or environmental water sources. A.xylosoxidans is both waterborne and results from the poor-hygienic conditions healthcare workers are in. In this case report, the bacteremia which appeared in a patient with pancreas cancer after ERCP was described.

  3. Study of the Cupriavidus metallidurans CH34 resistance of selenite and selenate oxy-anions: accumulation, localisation and transformation of selenium; Etude de la resistance de Cupriavidus metallidurans CH34 aux oxyanions selenite et seleniate: accumulation, localisation et transformation du selenium

    Energy Technology Data Exchange (ETDEWEB)

    Avoscan, L

    2007-06-15

    Selenium is an essential trace element for the living organisms but it is very toxic at high concentration. Selenite and selenate oxides, soluble forms, highly toxic and bio-assimilable, are the most prevalent forms in the environment. Some soil micro-organisms play a dominant role and contribute to the natural cycle of selenium. Our study model, Cupriavidus (formerly Ralstonia) metallidurans CH34, a telluric bacterium characteristic of metal-contaminated biotopes, is known to resist selenite by reducing it into elemental selenium, an insoluble and less toxic form of selenium. In order to better understand the mechanisms of selenium reduction in the bacteria, three methods of speciation were combined (XAS (XANES and EXAFS), HPLC-ICP-MS and SDS-PAGEPIXE). They were completed by the direct quantification of selenium accumulated in the bacteria. Speciation analyses highlighted the existence of two mechanisms of reduction of selenium oxides in C. metallidurans CH34. Assimilation transforms selenite and selenate into organic selenium, identified as seleno-methionine and leads to its non-specific incorporation into bacterial proteins (presence of selenious proteins). Detoxication precipitates selenite in nano-particles of elemental selenium. This way of detoxication is not set up after an exposure to selenate although it is nevertheless possible to detect elemental selenium but in very small amount compared to the exposure of selenite. Seleno-diglutathion is detected in bacteria stressed by an exposure to selenate in medium limited in sulphate. Bacteria exposed to selenite accumulate 25 times more selenium than when they are exposed to selenate. The study of mutants resistant to selenite, which do not express the membrane protein DedA, showed that the accumulation of selenium after exposure to selenite is decreased compared with the wild strain meaning probable link between the transport of selenite and the DedA protein. Finally, selenate would use the sulphate permease

  4. The Effect of Seed Soaking with Rhizobacteria Pseudomonas alcaligenes on the Growth of Swamp Cabbage (Ipomoea reptans Poir)

    Science.gov (United States)

    Widnyana, I. K.; Ngga, M.; Sapanca, P. L. Y.

    2018-01-01

    The research was conducted to determine the effect of seed soaking with suspense of P. alcaligenes isolate KtSl, TrN2, and TmAl to the growth of swamp cabbage. The research has been initially developed on tomatoes. In this research, Randomized Block Design was chosen as its model while the data analysis was performed by using SPSS v.17 for Windows. Three types of treatment were administered towards P. alcaligenes, namely isolating, soaking, and growing the medium. Some observed parameters were germination and growth. The results showed that seed soaking treatments with suspense P. alcaligenes fostered the germination 25% faster, enhanced the crop up to 24.4%, increased the number of leaves up until 23.15%, lengthen stems to 25%, lengthen the roots up to 46.90%, and increase the fresh weight of stems up until 67.07% and oven-dry weight of stem up to 84.21% compared to the control treatment. The best response of treatment for germination speed was soaking seeds with P. alcaligenes TrN2 for 20 minutes on both NB (Natrium Broth) and PDB (Potato Dextrose Broth) media.

  5. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng, E-mail: jchen@zjut.edu.cn

    2016-03-05

    Highlights: • A novel efficient DMS-degrading bacterium Alcaligenes sp. SY1 was identified. • A RSM was applied to optimize incubation condition of Alcaligenes sp. SY1. • SIP was applied as C{sup 13} labelled DMS to trace intermediates during DMS degradation. • Kinetics of DMS degradation via batch experiment was revealed. • Carbon and sulfur balance were analyzed during DMS degradation process. - Abstract: Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03 °C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography–mass spectrometry (GC–MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane–Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h{sup −1} and 0.63 gs gx{sup −1} h{sup −1}. A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions.

  6. Aderência in vitro do Staphylococcus epidermidis e da Pseudomonas alcaligenes em lentes intra-oculares In vitro adherence of Staphylococcus epidermidis and Pseudomonas alcaligenes to intraocular lenses

    Directory of Open Access Journals (Sweden)

    Patrícia Ioschpe Gus

    2006-06-01

    Full Text Available OBJETIVO: Quantificar e comparar a aderência in vitro das bactérias Staphylococcus epidermidis e Pseudomonas alcaligenes em diferentes tipos de lentes intra-oculares (LIOs. MÉTODOS: Quatorze lentes intra-oculares foram usadas no experimento. Quatro de polimetilmetacrilato (PMMA, quatro de silicone, quatro de hidrogel e duas de acrílico. Oito lentes intra-oculares foram colocadas em oito tubos de ensaio contendo 4 ml de suspensão de Pseudomonas alcaligenes, e seis lentes intra-oculares foram colocadas em seis tubos de ensaio contendo 4 ml de suspensão de Staphylococcus epidermidis. A concentração do caldo utilizada para o teste de aderência foi de 10(8 unidades formadoras de colônias por mililitro (CFU/mL que corresponde a 0,5 na escala de McFarland. As lentes foram incubadas a 37° por duas horas. Após, foram removidas dos caldos e enxaguadas em água destilada estéril por duas vezes. As lentes foram cultivadas em placas de ágar-sangue a 35-37° e evaliadas a cada 24h por um período de 72h. Nas amostras que tiveram crescimento bacteriano, foram contadas as colônias utilizando os métodos convencionais de laboratório. Todos os ensaios foram executados em duplicata. RESULTADOS: A aderência do Staphylococcus epidermidis nas lentes de PMMA foi menor se comparada com as de silicone e de hidrogel. A aderência daPseudomonas alcaligenes nas lentes de hidrogel foi menor se comparada com as de silicone, PMMA e acrílico. CONCLUSÃO: Os resultados sugerem que a aderência do Staphylococcus epidermidis e da Pseudomonas alcaligenes nas lentes intra-oculares é influenciada pelo tipo de material da lente e pela espécie do microorganismo. A aderência bacteriana pode ter papel importante na patogenicidade da endoftalmite pós-cirurgia de catarata.PURPOSE: To quantify and compare the in vitro adherence of Staphylococcus epidermidis and Pseudomonas alcaligenes to different intraocular lenses (IOLs. METHODS: Fourteen intraocular lenses were

  7. Association nitrogen fixation of rice inoculated with ammonia resistant engineering strain (alcaligenes faecalis)

    International Nuclear Information System (INIS)

    Chen Ming; Zhang Wei; Lin Min

    1999-01-01

    It showed that Alcaligenes faecalis could produce plant hormone (IAA) in LW medium. The pot experiment results showed that inoculation with A1501 and A1513 could promote the growth and grain yield of rice. Comparison with the non-inoculation, the grain yield of rice treated with A1501 and A1513 increased by 8.5% and 10.3% respectively. And %Ndfa of rice shoot and grain estimated by 15 N-isotope dilution method was 9.00% and 11.5%, respectively, which was consistent with the increment of the total N(8.5% and 11.6%, respectively). The study indicated that ammonia resistant engineering strain A1513 had more stimulative effect on the growth of rice and grain yield than A1501

  8. Biodegradation of 4-chlorophenol by adsorptive immobilized Alcaligenes sp. A 7-2 in soil.

    Science.gov (United States)

    Balfanz, J; Rehm, H J

    1991-08-01

    Alcaligenes sp. A 7-2 immobilized on granular clay has been applied in a percolator to degrade 4-chlorophenol in sandy soil. Good adsorption rates on granular clay were achieved using cell suspensions with high titres and media at pH 8.0. The influence of various parameters such as aeration rate, pH, temperature, concentration of 4-chlorophenol and size of inoculum on the degradation rate were investigated. During fed-batch fermentations under optimal culture conditions, concentrations of 4-chlorophenol up to 160 mg.l-1 could be degraded. Semicontinuous culture experiments demonstrated that the degradation potential in soil could be well established and enhanced by the addition of immobilized bacteria. Continuous fermentation was performed with varying 4-chlorophenol concentrations in the feed and different input levels. The maximum degradation rate was 1.64 g.l-1.day-1.

  9. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.

    Science.gov (United States)

    Jiang, Longfa

    2013-01-01

    This study aims to investigate the effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Curdlan production fell when excess nitrogen source was present, while biomass accumulation increased as the level of nitrogen source raised. Curdlan production and biomass accumulation were greater with urea compared with those with other nitrogen sources. The highest production of curdlan and biomass accumulation by A. faecalis ATCC 31749 was 28.16 g L(-1) and 9.58 g L(-1), respectively, with urea, whereas those with NH(4)Cl were 15.17 g L(-1) and 6.25 g L(-1), respectively. The optimum fermentation time for curdlan production was also affected by the nitrogen source in the medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Structure of the 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, R.; Lebedev, A. [RAL, Harwell Oxford, Didcot OX11 0FA (United Kingdom); Erskine, P.; Guo, J.; Wood, S. P. [UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); Hopper, D. J. [Aberystwyth University, Penglais, Aberystwyth SY23 3DA Wales (United Kingdom); Rigby, S. E. J. [University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); Cooper, J. B., E-mail: jon.cooper@ucl.ac.uk [UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); RAL, Harwell Oxford, Didcot OX11 0FA (United Kingdom)

    2014-09-01

    The first X-ray structure of a 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP at a resolution of 2.2 Å is reported. This structure establishes that the enzyme adopts the cupin-fold, forming compact dimers with a pronounced hydrophobic interface between the monomers. Each monomer possesses a catalytic ferrous iron that is coordinated by three histidines (76, 78 and 114) and an additional ligand which has been putatively assigned as a carbonate, although formate and acetate are possibilities. The enzyme 2, 4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2, 4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in

  11. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    Science.gov (United States)

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Crystallization and X-ray structure analysis of a thermostable penicillin G acylase from Alcaligenes faecalis

    International Nuclear Information System (INIS)

    Varshney, Nishant Kumar; Suresh Kumar, R.; Ignatova, Zoya; Prabhune, Asmita; Pundle, Archana; Dodson, Eleanor; Suresh, C. G.

    2012-01-01

    A thermostable penicillin G acylase from A. faecalis has been crystallized in two space groups: C222 1 and P4 1 2 1 2. X-ray diffraction data were collected to 3.3 and 3.5 Å resolution, respectively. The enzyme penicillin G acylase (EC 3.5.1.11) catalyzes amide-bond cleavage in benzylpenicillin (penicillin G) to yield 6-aminopenicillanic acid, an intermediate chemical used in the production of semisynthetic penicillins. A thermostable penicillin G acylase from Alcaligenes faecalis (AfPGA) has been crystallized using the hanging-drop vapour-diffusion method in two different space groups: C222 1 , with unit-cell parameters a = 72.9, b = 86.0, c = 260.2 Å, and P4 1 2 1 2, with unit-cell parameters a = b = 85.6, c = 298.8 Å. Data were collected at 293 K and the structure was determined using the molecular-replacement method. Like other penicillin acylases, AfPGA belongs to the N-terminal nucleophilic hydrolase superfamily, has undergone post-translational processing and has a serine as the N-terminal residue of the β-chain. A disulfide bridge has been identified in the structure that was not found in the other two known penicillin G acylase structures. The presence of the disulfide bridge is perceived to be one factor that confers higher stability to this enzyme

  13. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    International Nuclear Information System (INIS)

    Rosenberg, R.M.; O'Leary, M.H.

    1985-01-01

    The authors have measured the 13 C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D 2 O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D 2 O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The 13 C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the 13 C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier

  14. Model-Based Nutrient Feeding Strategies for the Increased Production of Polyhydroxybutyrate (PHB) by Alcaligenes latus.

    Science.gov (United States)

    Gahlawat, Geeta; Srivastava, Ashok K

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers which are considered as an effective alternative for conventional plastics due to their mechanical properties similar to the latter. However, the widespread use of these polymers is still hampered due to their higher cost of production as compared to plastics. The production cost could be overcome by obtaining high yields and productivity. The goal of the present research was to enhance the yield of polyhydroxybutyrate (PHB) with the help of two simple fed-batch cultivation strategies. In the present study, average batch kinetic and substrate limitation/inhibition study data of Alcaligenes latus was used for the development of PHB model which was then adopted for designing various off-line nutrient feeding strategies to enhance PHB accumulation. The predictive ability of the model was validated by experimental implementation of two fed-batch strategies. One such dynamic strategy of fed-batch cultivation under pseudo-steady state with respect to nitrogen and simultaneous carbon feeding strategy resulted in significantly high biomass and PHB concentration of 39.17 g/L and 29.64 g/L, respectively. This feeding strategy demonstrated a high PHB productivity and PHB content of 0.6 g/L h and 75%, respectively, which were remarkably high in comparison to batch cultivation. The mathematical model can also be employed for designing various other nutrient feeding strategies.

  15. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    International Nuclear Information System (INIS)

    Lutfi, Zainal; Ahmad, Asmat; Usup, Gires

    2014-01-01

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation

  16. Biosorption characteristic of Alcaligenes sp. BAPb.1 for removal of lead(II) from aqueous solution.

    Science.gov (United States)

    Jin, Yu; Yu, Sumei; Teng, Chunying; Song, Tao; Dong, Liying; Liang, Jinsong; Bai, Xin; Xu, Xiuhong; Qu, Juanjuan

    2017-06-01

    In this study, strain BAPb.1 was isolated from lead mining area and used as an adsorbent to remove lead(II) ions from aqueous solution. The physicochemical characteristics, heavy metal resistance and antibiotic sensitivity of strain BAPb.1 were investigated. Biosorption capacity was evaluated by batch biosorption experiments, and isothermal characteristics were discussed. Atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectrometry (FTIR) were conducted to explore the mechanism for lead(II) adsorption. Based on morphological and physiological characteristics as well as the phylogenetic analysis of 16S rDNA sequences, strain BAPb.1 was identified as a member of the genus Alcaligenes. It exhibited high resistances to multiple heavy metals such as lead(II), copper(II), zinc(II), nickel(II) and chromium(VI), and to antibiotics such as kanamycin, ampicillin, streptomycin, chloramphenicol, and tetracycline. The optimum conditions for maximum biosorption rate of 85.2% and maximum capacity of 56.8 mg g -1 were found at pH of 5, adsorbent dosage of 1.5 g L -1 (dry weight), initial lead(II) concentration of 100 mg L -1 , and contact time of 30 min at 30 °C. Biosorption isotherms were well fitted with Langmuir isotherm model. Mechanism analysis reveals that the lead(II) ions may exchange with sodium and potassium ions, and the hydroxyl, carbonyl and phosphate groups on the cell surface can chelate the lead(II) ions, therefore, surface adsorption play significant role in the biosorption process.

  17. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    Energy Technology Data Exchange (ETDEWEB)

    Lutfi, Zainal; Ahmad, Asmat [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Usup, Gires [School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  18. Studies on the process of attachment of diazotroph alcaligenes faecalis and its Tn5 mutants to rice roots using 15N-labelling technique

    International Nuclear Information System (INIS)

    Fang Xuanjun; Lin Min; You Chongbiao

    1993-09-01

    By using 15 N-labelling technique and Tn5-induced mutants the attachment of associative diazotroph Alcaligenes faecalis to intact rice plants was examined in vitro. Three distinguished modes of attachment of Alcaligenes faecalis: adsorption, anchoring and colonization were proposed by using 15 N-labelling bacterial cells and Tn5-induced mutants. Che - mutants affected on adsorption, but not on anchoring. Exo - Che - mutant is defective in both adsorption and anchoring. Exo - or exo ++ mutants are only defective in anchoring. Effective colonization is benefit for establishment on the associative system. The data also indicated that EPS (exopolysaccharide) play rather important roles in the association between the host plant and bacteria

  19. Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.

    Science.gov (United States)

    Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza

    2013-10-01

    In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg⁻¹). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.

  20. Lipase A gene transcription in Pseudomonas alcaligenes is under control of RNA polymerase s54 and response regulator LipR

    NARCIS (Netherlands)

    Krzeslak, Joanna; Papaioannou, Evelina; van Merkerk, Ronald; Paal, Krisztina A.; Bischoff, Rainer; Cool, Robbert H.; Quax, Wim J.

    Initial analysis has shown that the transcription of the Pseudomonas alcaligenes lipA gene, which encodes an extracellular lipase, is governed by the LipQR two-component system consisting of sensor kinase LipQ and DNA-binding regulator LipR. This study further analyzes lipA gene expression and

  1. Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation.

    Science.gov (United States)

    Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong; Yan, Xiulan

    2017-11-01

    The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Associations of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans

    International Nuclear Information System (INIS)

    Ozaki, Takuo; Ohnuki, Toshihiko; Kimura, Takaumi; Francis, Arokiasamy J.

    2005-01-01

    We studied the association of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans by a batch method and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The kinetics study showed that the Eu(III) adsorption on the bacteria rapidly proceeded. The Eu(III) adsorption on A. faecalis and P. denitrificans at pHs 3, 4, and 5, and that on S.putrefaciens at pHs 4 and 5 reached a maximum within 5 minutes after contact. For P. denitrificans, the percent adsorption of Eu(III) decreased after the maximum percent adsorption was attained, which suggests the existence of exudates with an affinity with Eu(III). TRLFS showed that the coordination of Eu(III) on these bacteria is multidentate through an inner-spherical process. The ligand field of Eu(III) on P. denitrificans was as strong as the ones observed for halophilic microorganisms, while that of A. faecalis and S. putrefaciens was the typical one observed for non-halophilic microorganisms. The coordination environment of Eu(III) on the bacteria differed from each other, though they are categorized as Gram-negative bacteria with the similar cell wall components. (author)

  3. Rapid anaerobic mineralization of pyridine in a subsurface sediment inoculated with a pyridine-degrading Alcaligenes sp

    Energy Technology Data Exchange (ETDEWEB)

    Ronen, Z; Bollag, J M [Pennsylvania State Univ., University Park, PA (United States). Lab. of Soil Biochemistry

    1992-05-01

    A denitrifying bacterium capable of pyridine mineralization under anaerobic conditions was isolated from polluted soil. The bacterium, identified as Alcaligenes sp., was used in inoculation experiments. A subsurface sediment from a polluted site was amended with 10 {mu}g/g {sup 14}C-labeled pyridine, and 250 {mu}g/g nitrate, and then inoculated with the bacterium at an inoculum size of 4.5x10{sup 7} cells/g. After 44 h incubation at 28deg C under anaerobic conditions, 67% of the radioactivity was recovered as {sup 14}CO{sub 2}: 2% was extracted with 50% methanol, and 24% was recovered by combustion of the sediment. Analysis of the methanol extract revealed that no pyridine could be detected in the inoculated sediment. In contrast, mineralization of pyridine by the native microflora in the sediment occurred much more slowly: After 7 days of incubation only 10% of the added radioactivity was recovered as {sup 14}CO{sub 2}. At an inoculum size of 2x10{sup 3} cells/g pyridine mineralization was not as effective as at an inoculum size of 2x10{sup 7} cells/g. It is presumed that suppression of the introduced bacteria by the native microflora of the sediment prevents degradation at a low inoculum size. Amending the sediment with nitrate and phosphate improved pyridine mineralization by the introduced bacterium. These findings demonstrate the feasibility of using soil inoculation anaerobically for the bioremediation of pyridine-polluted soils. (orig.).

  4. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG{sub 5} of Alcaligenes faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Santal, Anita Rani, E-mail: anita.gangotra@gmail.com [Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana (India); Singh, N.P. [Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana (India); Saharan, Baljeet Singh [Department of Microbiology, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2011-10-15

    Highlights: {yields} The Alcaligenes faecalis strain SAG{sub 5} decolorizes 72.6 {+-} 0.56% of melanoidins. {yields} The decolorization was achieved at pH 7.5 and temperature 37 {sup o}C on 5th day. {yields} The distillery effluent after biological treatment is environmentally safe. - Abstract: Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 {+-} 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 {sup o}C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG{sub 5}.

  5. Replacement of Tyrosine 181 by Phenylalanine in Gentisate 1,2-Dioxygenase I from Pseudomonas alcaligenes NCIMB 9867 Enhances Catalytic Activities

    Science.gov (United States)

    Tan, Chew Ling; Yeo, Chew Chieng; Khoo, Hoon Eng; Poh, Chit Laa

    2005-01-01

    xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (kcat/Km) on Y181F towards 3-methylgentisate than that of the wild-type enzyme. PMID:16237038

  6. Isolation, partial purification, biochemical characterization and detergent compatibility of alkaline protease produced by Bacillus subtilis, Alcaligenes faecalis and Pseudomonas aeruginosa obtained from sea water samples

    Directory of Open Access Journals (Sweden)

    Sarika Kedar Marathe

    2018-06-01

    Full Text Available In the current study, bacteria isolated from sea water samples of Murdeshwar, Karnataka, were screened for the production of alkaline protease by culturing them onto skim milk agar media. Of the isolated bacteria, Bacillus subtilis, Pseudomonas aeruginosa and Alcaligenes faecalis showed distinct zones of hydrolysis due to enzyme production. They were each inoculated into enzyme production media under submerged fermentation conditions at 37 °C for 48 h with a constant agitation of 120 rpm. Partial purification of alkaline protease was carried out by isoelectric precipitation. Enzyme activity was determined under varying conditions of pH, incubation temperature, different substrates, carbon and nitrogen sources and salt concentrations using sigma’s universal protease activity assay. Enzyme immobilization was carried out using 2% Sodium alginate and 0.1 M ice cold CaCl2 and its activity under varying pH, temperature conditions and detergent compatibility was assayed. Efficacy of enzyme in stain removal was tested and haemolysis was observed within of 60 s which resulted in removal of the stain. Among the three organisms, enzyme from Bacillus subtilis showed highest activity in all cases indicating that it was the most ideal organism for enzyme production. Keywords: Alkaline protease, Skim milk agar, Bacillus, Alcaligenes, Pseudomonas, Isoelectric precipitation, Protease activity, Enzyme immobilization, Detergent compatibility

  7. Efficacy of polysaccharide from Alcaligenes xylosoxidans MSA3 administration as protection against γ-radiation in female rats

    International Nuclear Information System (INIS)

    Hassan, Amal I.; Ghoneim, Mona A. M.; Mahmoud, Manal G.; Asker, Mohsen M. S.; Mohamed, Saher S.

    2016-01-01

    Damage to normal tissues is a consequence of both therapeutic and accidental exposures to ionizing radiation. A water-soluble heteropolysaccharide called AXEPS, composed of glucose, galactose, rhamnose and glucouronic acid in a molar ratio of nearly 1.0:1.6:0.4:2.3, respectively, was isolated from culture medium of strain Alcaligenes xylosoxidans MSA3 by ethanol precipitation followed by freeze-drying. Chemical analysis, Fourier-transform infrared (FTIR) and chromatographic studies revealed that the molecular weight was 1.6 × 10 4 g mol −1 . This study was designed to investigate the radioprotective and biological effects of AXEPS in alleviating the toxicity of ionizing radiation in female albino rats. A total of 32 female albino rats were divided into four groups. In the control group, rats were administered vehicle by tube for four weeks. The second group was administered AXEPS (100 mg/kg) orally by gavage for four weeks. Animals in the third group were exposed to whole-body γ-rays (5 Gy) and remained for 2 weeks without treatment. The fourth group received AXEPS (100 mg/kg) orally by gavage for two weeks before being exposed to whole-body γ-rays (5 Gy), then 24 h post γ-rays, they received AXEPS (100 mg/kg) in a treatment continuing till the end of the experiment (15 days after the whole–body γ-irradiation). Oral administration of AXEPS (100 mg/kg) significantly reversed the oxidative stress effects of radiation, as evidenced by the decrease in DNA damage in the bone marrow. Assessment of apoptosis and cell proliferation markers revealed that caspase-3 significantly increased in the irradiated group. Moreover, a significant decrease in the hematological constituents of peripheral blood, the chemotactic index and CD8+ T cells were observed in animals in the irradiation-only group, whereas an increase in the lymphocyte index was observed in animals in that group. In contrast, AXEPS treatment prevented these alterations. From our results, we conclude that

  8. Alcaligenes is Commensal Bacteria Habituating in the Gut-Associated Lymphoid Tissue for the Regulation of Intestinal IgA Responses.

    Science.gov (United States)

    Kunisawa, Jun; Kiyono, Hiroshi

    2012-01-01

    Secretory-immunoglobulin A (S-IgA) plays an important role in immunological defense in the intestine. It has been known for a long time that microbial stimulation is required for the development and maintenance of intestinal IgA production. Recent advances in genomic technology have made it possible to detect uncultivable commensal bacteria in the intestine and identify key bacteria in the regulation of innate and acquired mucosal immune responses. In this review, we focus on the immunological function of Peyer's patches (PPs), a major gut-associated lymphoid tissue, in the induction of intestinal IgA responses and the unique immunological interaction of PPs with commensal bacteria, especially Alcaligenes, a unique indigenous bacteria habituating inside PPs.

  9. omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of beta-amino acids and amines.

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-04-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.

  10. ω-Amino Acid:Pyruvate Transaminase from Alcaligenes denitrificans Y2k-2: a New Catalyst for Kinetic Resolution of β-Amino Acids and Amines

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-01-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855

  11. Fermentation characteristics in conversion of organic acids obtained by oxidation of low-rank coals to poly({beta}-hydroxybutyrate) using A. eutrophus cells with some analysis on metabolic flux distribution; Kattan no ekisosanka de erareru yukisan wo suiso saikin wo riyoshite pori {beta}-hidorokishi rakusan (PHB) ni henkansaseru tameno baiyo kogakuteki kento to taisha ryusoku bunpu shisutemu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, Shoko.; Shin, Huidong.; Shimizu, Kazuyuki. [Kyushu Institute of Technology, Fukuoka (Japan). Department of Biochemical engineering and science; Mae, Kazuhiro.; Miura, Koichi. [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

    1999-03-10

    Fermentation characteristics are investigated for the conversion of glycolate, acetate, formate, and malonate obtained by the oxidation of low-rank coals to poly ({beta}-hydrox butyrate) (PHB) using A. eutrophus cells. Based on the cultivation experiments using one of the organic acids as a sole carbon source, it is found that acetate is the most effectively converted to PHB. When mixed organic acids are used, formate is preferentially consumed, followed by acetate, and finally glycolate. Although malate can not be utilized, it is implied that it might change the pathway flux distributions based on the metabolic flux analysis. Namely, it shows competitive inhibition to succinate dehydrogenase so that its addition during fermentation results in flux reduction from succinate to maleic acid as well as glyoxylate flux and gluconeogenesis flux. It is also found that NADPH generated from isocitrate is preferentially utilized for the reaction from {alpha}-ketoglutarate to glutamate when NH{sub 3} concentration is high, while it is eventually used for the PHB production from acetoacetyl CoA as NH{sub 3} concentration decreases. (author)

  12. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001.

    Science.gov (United States)

    Yusuf, Ibrahim; Ahmad, Siti Aqlima; Phang, Lai Yee; Syed, Mohd Arif; Shamaan, Nor Aripin; Abdul Khalil, Khalilah; Dahalan, Farrah Aini; Shukor, Mohd Yunus

    2016-12-01

    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes. Copyright © 2016. Published by

  13. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively.

    Science.gov (United States)

    Xie, Cheng-Hui; Yokota, Akira

    2005-11-01

    The aim of this study was to clarify the taxonomic position of the nitrogen-fixing and hydrogen-oxidizing bacteria Alcaligenes latus strains IAM 12599T, IAM 12664 and IAM 12665 and Pseudomonas saccharophila IAM 14368T. It was found that the type strain of Alcaligenes latus, IAM 12599T, showed 99 x 9 and 96 x 1 % 16S rRNA gene sequence similarity to strains IAM 12665 and IAM 12664, respectively. A comparison using DNA-DNA hybridization suggested that strains IAM 12599T and IAM 12665 belong to a single species (89 x 7 %) and that strain IAM 12664 (35 x 1 %) forms a separate species. The phenotypic characteristics also support the conclusion that these bacteria should be identified as two species of a new genus: Azohydromonas lata gen. nov., comb. nov. (type strain IAM 12599T=DSM 1122T=LMG 3321T=ATCC 29712T; reference strain IAM 12665=DSM 1123=LMG 3325=ATCC 29714) and Azohydromonas australica sp. nov. (type strain IAM 12664T=DSM 1124T=LMG 3324T=ATCC 29713T). Pseudomonas saccharophila IAM 14368T was found to be closely related to the phototrophic bacterium Roseateles depolymerans, with 96 x 8 % 16S rRNA gene sequence similarity, but the two bacteria are quite different with respect to their metabolism and some significant phenotypic characteristics, suggesting that they cannot be included in a single genus. Further studies on their nifH gene sequences, G+C content of the DNA and cellular fatty acid composition confirm that Pseudomonas saccharophila should be reclassified: the name Pelomonas saccharophila gen. nov., comb. nov. is proposed, with the type strain IAM 14368T (=LMG 2256T=ATCC 15946T).

  14. Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

    OpenAIRE

    N. K. Srivastava; M. K. Jha; I. D. Mall; Davinder Singh

    2010-01-01

    The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing indus...

  15. [Biochemical quality assessment of broiler production using a hydrogen bacteria biomass in the diet].

    Science.gov (United States)

    Trubachev, I N; Okladnikov, Iu N; Barashkov, V A; Kalacheva, G S; Tabakov, N A

    1985-01-01

    The authors studied the biochemical composition of the meat of broilers, eggs, liver and muscles of laying hens of 3 generations on a 5, 10, 25, 50 and 100% (broilers), 10 and 20% (laying hens) replacement of the animal protein quota in the diet by protein obtained from the hydrogen bacteria Alcaligenes eutrophus L-1. No deterioration of the quality of the produce was found from the standpoint of the main biochemical parameters.

  16. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Directory of Open Access Journals (Sweden)

    Pradeep Mishra

    Full Text Available Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S-amide to (S-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH. IaaH is known to catalyse conversion of indole-3-acetamide (IAM to indole-3-acetic acid (IAA, which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To

  17. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Science.gov (United States)

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  18. aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp.

    OpenAIRE

    Xu, J; Johnson, R C

    1995-01-01

    Escherichia coli aldB was identified as a gene that is negatively regulated by Fis but positively regulated by RpoS. The complete DNA sequence determined in this study indicates that aldB encodes a 56.3-kDa protein which shares a high degree of homology with an acetaldehyde dehydrogenase encoded by acoD of Alcaligenes eutrophus and an aldehyde dehydrogenase encoded by aldA of Vibrio cholerae and significant homology with a group of other aldehyde dehydrogenases from prokaryotes and eukaryotes...

  19. Biosynthesis and composition of bacterial poly(hydroxyalkanoates).

    Science.gov (United States)

    Anderson, A J; Haywood, G W; Dawes, E A

    1990-04-01

    It is well established that Alcaligenes eutrophus can accumulate a copolymer containing 3-hydroxybutyrate and 3-hydroxyvalerate, but longer 3-hydroxyacid monomers have not been reported to occur in this organism. The properties of the enzymes of poly(hydroxyalkanoate) (PHA) biosynthesis are discussed and it is proposed that the substrate specificity of the polymerizing enzyme restricts the range of monomer units incorporated into PHA. Various other bacteria produce similar copolymers from propionic acid and/or valeric acid. A number of Pseudomonas species accumulate PHAs containing longer-chain monomer units from linear alkanoic acids, alkanes and alcohols.

  20. [Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms].

    Science.gov (United States)

    Volova, T G; Barashkov, V A

    2010-01-01

    The study was conducted to determine the biological value of proteins synthesized by hydrogen-oxidizing microorganisms--the hydrogen bacteria Alcaligenes eutrophus Z1 and Ralstonia eutropha B5786 and the CO-resistant strain of carboxydobacterium Seliberia carboxydohydrogena Z1062. Based on a number of significant parameters characterizing the biological value of a product, the proteins of hydrogen-oxidizing microorganisms have been found to occupy an intermediate position between traditional animal and plant proteins. The high total protein in biomass of these microorganisms, their complete amino acid content, and availability to proteolytic enzymes allow for us to consider these microorganisms as potential protein producers.

  1. Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126.

    Science.gov (United States)

    Haywood, G W; Anderson, A J; Williams, D R; Dawes, E A; Ewing, D F

    1991-04-01

    A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.

  2. Interaction of nanosecond laser pulse with tetramethyl silane (Si(CH34 clusters: Generation of multiply charged silicon and carbon ions

    Directory of Open Access Journals (Sweden)

    Purav M. Badani

    2011-12-01

    Full Text Available Present work reports significantly high levels of ionization, eventually leading to Coulomb explosion of Tetramethyl silane (TMS clusters, on interaction with laser pulses of intensity ∼109 W/cm2. Tetramethyl silane clusters, prepared by supersonic expansion were photoionized at 266, 355 or 532 nm and the resultant ions were detected using time-of-flight mass spectrometer. It is observed that wavelength of irradiation and the size of the cluster are crucial parameters which drastically affect the nature of charge species generated upon photoionization of cluster. The results show that clusters absorb significantly higher energy from the laser field at longer wavelengths (532 nm and generate multiply charged silicon and carbon ions which have large kinetic energies. Further, laser-cluster interaction at different wavelengths has been quantified and charge densities at 266, 355 and 532 nm are found to be 4x 1010, 5x 1010 and 5x 1011 charges/cm3 respectively. These unusual results have been rationalized based on dominance of secondary ionization processes at 532 nm ultimately leading to Coulomb explosion of clusters. In another set of experiments, multiply charged ions of Ar (up to +5 state and Kr (up to +6 state were observed when TMS doped inert gas clusters were photoionized at 532 and 355 nm. The extent of energy absorption at these two wavelengths is clearly manifested from the charge state of the atomic ions generated upon Coulomb disintegration of the doped cluster. These experiments thus demonstrate a novel method for generation of multiply charged atomic ions of inert gases at laser intensity of ∼ 109 W/cm2. The average size of the cluster exhibiting Coulomb explosion phenomena under giga watt intensity conditions has been estimated to be ∼ 6 nm. Experimental results obtained in the present work agree qualitatively with the model proposed earlier [D. Niu, H. Li, F. Liang, L. Wen, X. Luo, B. Wang, and H. Qu, J. Chem. Phys. 122, 151103(2005] and point towards interaction of quasi-free electrons, generated during primary multiphoton ionization step, with a given wavelength in the presence of Coulombic field.

  3. The emulsifying effect of biosurfactants produced by food spoilage organisms in Nigeria

    Directory of Open Access Journals (Sweden)

    Christianah O. Ogunmola

    2016-04-01

    Full Text Available Food spoilage organisms were isolated using standard procedures on Nutrient Agar, Cetrimide Agar and Pseudomonas Agar Base (supplemented with CFC. The samples were categorized as animal products (raw fish, egg, raw chicken, corned beef, pasteurized milk and plant products (vegetable salad, water leaf (Talinium triangulare, boiled rice, tomatoes and pumpkin leaf (Teifairia occidentalis.They were characterised as Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas stutzeri, Burkholderia pseudomallei, Serratia rubidaea, Corynebacterium pilosum, Bacillus subtilis, Bacillus mycoides, Bacillus laterosporus, Bacillus laterosporus, Serratia marcescens, Bacillus cereus, Bacillus macerans, Alcaligenes faecalis and Alcaligenes eutrophus. Preliminary screening for biosurfactant production was done using red blood haemolysis test and confirmed by slide test, drop collapse and oil spreading assay. The biosurfactant produced was purified using acetone and the composition determined initially using Molisch’s test, thin layer chromatography and gas chromatography mass spectrometry. The components were found to be ethanol, amino acids, butoxyacetic acid, hexadecanoic acid, oleic acid, lauryl peroxide, octadecanoic acid and phthalic acid. The producing organisms grew readily on several hydrocarbons such as crude oil, diesel oil and aviation fuel when used as sole carbon sources.  The purified biosurfactants produced were able to cause emulsification of kerosene (19.71-27.14% as well as vegetable oil (16.91-28.12% based on the emulsification index. This result suggests that the isolates can be an asset and further work can exploit their optimal potential in industries.

  4. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    Science.gov (United States)

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus , Alcaligenes latus , Azotobacter vinelandii , Azotobacter chroococcum , Azotobacter beijerincki , methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli , have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas

  5. aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp.

    Science.gov (United States)

    Xu, J; Johnson, R C

    1995-06-01

    Escherichia coli aldB was identified as a gene that is negatively regulated by Fis but positively regulated by RpoS. The complete DNA sequence determined in this study indicates that aldB encodes a 56.3-kDa protein which shares a high degree of homology with an acetaldehyde dehydrogenase encoded by acoD of Alcaligenes eutrophus and an aldehyde dehydrogenase encoded by aldA of Vibrio cholerae and significant homology with a group of other aldehyde dehydrogenases from prokaryotes and eukaryotes. Expression of aldB is maximally induced during the transition from exponential phase to stationary phase. Its message levels are elevated three- to fourfold by a fis mutation and abolished by an rpoS mutation. In addition, the expression of an aldB-lacZ fusion was decreased about 20-fold in the absence of crp. DNase I footprinting analysis showed that five Fis binding sites and one Crp binding site are located within the aldB promoter region, suggesting that Fis and Crp are acting directly to control aldB transcription. AldB expression is induced by ethanol, but in contrast to that of most of the RpoS-dependent genes, the expression of aldB is not altered by an increase in medium osmolarity.

  6. Trends of bio-hydrogen research and development in Europe. Report for the Research Institute of Innovative Technology for the Earth (RITE), Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Huesing, B.

    1997-03-01

    Research into applied aspects of biological hydrogen production is carried out on a much lower level in Europe than basic hydrogenase research. However, the screening for good H{sub 2} producers, their cultivation, and the development of optimised culture and bioreactor systems has never been a strength in Europe. Although there are a few good groups in Europe major contributions in this field traditionally come from countries outside Europe. However, in the nineties a special application-oriented research subfield has begun to evolve in Europe: the use of genetic enginering to rationally optimise H{sub 2} producing organisms. The most important players who focus on green algae, cyanobacteria, and purple bacteria can be found in Germany, France, and Sweden. In European biohydrogen research, a large and diverse variety of organisms is investigated. Among the organisms most thoroughly studied are Alcaligenes eutrophus, Escherichia coli, Rhodobacter capsulatus, sulfate-reducing bacteria, and methanogenic bacteria. Moreover, a leading position has been obtained with respect to molecular genetics of green algae and cyanobacteria, albeit on a low level. The fact that such a broad range of diverse organisms is studied has advantages and disadvantages. A positive aspect is that the multitude of different approaches had led to several unexpected results which had otherwise been overlooked. On the other hand, an obvious link to biohydrogen production is often lacking. Moreover, there are many 'me-too' approaches and results in which previous findings are only reproduced for another organism as well. (orig.)

  7. Culture engineering examination and metabolism flux distribution system analysis for madding to convert into poly {beta}- hydroxybutyric acid (PHB) using the hydrogen bacteria of organic acid got in liquid-phase oxidation of lignite; Kattan no ekiso sanka de erareru yukisan wo suiso saikin wo riyoshite pori {beta}-hidorokishi rakusan(PHB) ni henkan saseru tameno baiyo kogakuteki kento to taisha ryusoku bunpu shisutemu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, Kinko; Seki, Suito; Shimizu, Kazuyuki; Mae, Kazuhiro; Miura, Koichi

    1999-04-05

    The culture engineering examination for madding to convert into poly {beta} - hydroxy Wisteria (PHB) which glycolic acid. Acetic acid, ant acid, malonic acid got in liquid-phase oxidation of lignite are raw material of biodegradable plastic using hydrogen bacteria Alcaligenes eutrophus was carried out. It was proven that acetic acid was the most efficiently converted into the PHB as a result of cultivating these organic acid as a single carbon source. And, it was utilized to the bacterial cell at the order of ant acid, acetic acid, glycolic acid, when it was cultivated in mixing organic acid, and it was proven to convert into the PHB. Though the malonic acid was not utilized for the bacterial cell breeding, it was indicated that as the result which analyzed metabolism flow distribution by calculating using the culture data, the succinate dehydrogenase of the tricarboxylic acid (TCA) circuit received competitive inhibition, when this is added in culture middle point, and that the flux of griot lysyl acid route and gluconeogenesis route lowers. And, it was proven that it was utilized in the route which comes to the PHB synthesis from acetoacetyl CoA with the lowering of the ammonia concentration on NADPH produced from the isocitric acid, though it was prior consumed to the glutamic acid of tricarboxylic acid cycle in the route, if ammonia concentration is high. (translated by NEDO)

  8. Conversion of food industrial wastes into bioplastics.

    Science.gov (United States)

    Yu, P H; Chua, H; Huang, A L; Lo, W; Chen, G Q

    1998-01-01

    The usage of plastics in packaging and disposable products, and the generation of plastic waste, have been increasing drastically. Broader usage of biodegradable plastics in packaging and disposable products as a solution to environmental problems would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. In the authors' laboratories, various carbohydrates in the growth media, including sucrose, lactic acid, butyric acid, valeric acid, and various combinations of butyric and valeric acids, were utilized as the carbon (c) sources for the production of bioplastics by Alcaligenes eutrophus. As the first step in pursuit of eventual usage of industrial food wastewater as nutrients for microorganisms to synthesize bioplastics, the authors investigated the usage of malt wastes from a beer brewery plant as the C sources for the production of bioplastics by microorganisms. Specific polymer production yield by A. Latus DSM 1124 increased to 70% polymer/cell (g/g) and 32 g/L cell dry wt, using malt wastes as the C source. The results of these experiments indicated that, with the use of different types of food wastes as the C source, different polyhydroxyalkanoate copolymers could be produced with distinct polymer properties.

  9. Direct Production of Propene from the Thermolysis of Poly(..beta..-hydroxybutyrate)

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh; Pilath, Heidi M.; Johnson, David K.

    2015-03-22

    To transform biomass components into hydrocarbon fuels it is clear that there are two main transformations that need to occur, i.e., deoxygenation and carbon chain extension. The potential routes for decreasing the oxygen content of biomass intermediates include dehydration, hydrodeoxygenation and decarboxylation. One route that is examined here is the conversion of polyhydroxyalkanoates (PHA) to alkenes that would be intermediates to hydrocarbon fuels.Thermal breakdown of PHA proceeds via an intermediate carboxylic acid, which can then be decarboxylated to an alkene. Oligomerization of alkenes by well-known commercial technologies would permit production of a range of hydrocarbon fuels from a carbohydrate derived intermediate. Moreover, polyhydroxybutyrate (PHB) can be produced in Cupriavidus necator (formerly known as Ralstonia eutropha) and Alcaligenes eutrophus on a variety of carbon sources including glucose, fructose and glycerol with PHB accumulation reaching 75 percent of dry cell mass. We conducted thermal conversion of PHB and pure crotonic acid (CA), the intermediate carboxylic acid produced by thermal depolymerization of PHB, in a flow-through reactor. The results of initial experiments on the thermal conversion of CA showed that up to 75 mole percent yields of propene could be achieved by optimizing the residence time and temperature of the reactor. Further experiments are being investigated to optimize the reactor parameters and enhance propene yields via thermal conversion of PHB.

  10. Development of high-speed and high-efficient L-lactic acid fermentation and P (3HB) fermentative production for realizing Lactate Industry as Post petrochemistry; Posuto petorokemisutori to shiteno Lactate Industry wo jitsugensuru tameno kosoku kokoritsu L-nyusan kakko to P(3HB) kakko seisan no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, Fumiaki; Kobayashi, Genta; Vonktaveesuk, P.; Tsuge, Takeharu; Tanaka, Kenji [Kyushu University, Fukuoka (Japan)

    1999-04-05

    We are streptococci For the purpose of maintaining thing, it is high in the culture of Lactococcus lactis IO-1 in respect of perfect use of the substrate and metabolism activity of bacterial cell, and it pHs pH Substrate feed control method (pH-dependent substrate feed system) as an index was developed. In addition, advanced and integrated continuous culture system which enabled stabilized culture system and high lactic acid production speed was constructed by using furnace concentrator and on-line laser turbidity controller. And, Lactococcus lactis IO-1 By going through the organic acid such as the lactic acid from the xylose, it seems to be possible to carry out bio conversion of which it is efficient, since it is also very much excellent in the utilization-ness of the xylose which is a major component of tree biomass of the glucose otherwise. Then, culture medium supply method which enabled new batch culture system and substrate concentration automatic control for making this lactic bacteria and fermented milk acid liquid produced using culture system and organic acid liquid to be a substrate, and for producing polyhydroxy butyric acid [P (3HB)] which is the biodegradable plastic material by Alcaligenes eutrophus at high speed high-density was developed. (translated by NEDO)

  11. Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Sandvang, Dorthe

    2005-01-01

    The presence of tetracycline resistance (Tc-r) genes and class I integrons (in-1), and their ability to cotransfer were investigated in Tc-r gram-negative (185 strains) and gram-positive (72 strains) bacteria from Danish farmland and pigsties. The isolates belonged to the groups or species...... tet(33). No isolates contained more than one tet gene. The in-l-positive isolates were tested for resistance to selected antimicrobial agents and showed resistance to three to nine drugs. Filter-mating experiments showed cotransfer of Tc-r and class I integrons from soil isolates to Escherichia coli...... and/or Pseudomonas putida. We conclude that soil bacteria in close contact to manure or pigsty environment may thus have an important role in horizontal spread of resistance. Use of tetracyclines in food animal production may increase not only Tc-r but also multidrug resistance (caused by the presence...

  12. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.

    Science.gov (United States)

    Anderson, A J; Dawes, E A

    1990-12-01

    Polyhydroxyalkanoates (PHAs), of which polyhydroxybutyrate (PHB) is the most abundant, are bacterial carbon and energy reserve materials of widespread occurrence. They are composed of 3-hydroxyacid monomer units and exist as a small number of cytoplasmic granules per cell. The properties of the C4 homopolymer PHB as a biodegradable thermoplastic first attracted industrial attention more than 20 years ago. Copolymers of C4 (3-hydroxybutyrate [3HB]) and C5 (3-hydroxyvalerate [3HV]) monomer units have modified physical properties; e.g., the plastic is less brittle than PHB, whereas PHAs containing C8 to C12 monomers behave as elastomers. This family of materials is the centre of considerable commercial interest, and 3HB-co-3HV copolymers have been marketed by ICI plc as Biopol. The known polymers exist as 2(1) helices with the fiber repeat decreasing from 0.596 nm for PHB to about 0.45 nm for C8 to C10 polymers. Novel copolymers with a backbone of 3HB and 4HB have been obtained. The native granules contain noncrystalline polymer, and water may possibly act as a plasticizer. Although the biosynthesis and regulation of PHB are generally well understood, the corresponding information for the synthesis of long-side-chain PHAs from alkanes, alcohols, and organic acids is still incomplete. The precise mechanisms of action of the polymerizing and depolymerizing enzymes also remain to be established. The structural genes for the three key enzymes of PHB synthesis from acetyl coenzyme A in Alcaligenes eutrophus have been cloned, sequenced, and expressed in Escherichia coli. Polymer molecular weights appear to be species specific. The factors influencing the commercial choice of organism, substrate, and isolation process are discussed. The physiological functions of PHB as a reserve material and in symbiotic nitrogen fixation and its presence in bacterial plasma membranes and putative role in transformability and calcium signaling are also considered.

  13. Poly-ß-hydroxybutyrate content and dose of the bacterial carrier for Artemia enrichment determine the performance of giant freshwater prawn larvae.

    Science.gov (United States)

    Thai, Truong Quoc; Wille, Mathieu; Garcia-Gonzalez, Linsey; Sorgeloos, Patrick; Bossier, Peter; De Schryver, Peter

    2014-06-01

    The beneficial effects of poly-β-hydroxybutyrate (PHB) for aquaculture animals have been shown in several studies. The strategy of applying PHB contained in a bacterial carrier has, however, hardly been considered. The effect of administering PHB-accumulated Alcaligenes eutrophus H16 containing 10 or 80 % PHB on dry weight, named A10 and A80, respectively, through the live feed Artemia was investigated on the culture performance of larvae of the giant freshwater prawn (Macrobrachium rosenbergii). Feeding larvae with Artemia nauplii enriched in a medium containing 100 and 1,000 mg L(-1) A80 significantly increased the survival with about 15 % and the development of the larvae with a larval stage index of about 1 as compared to feeding non-enriched Artemia. The survival of the larvae also significantly increased with about 35 % in case of a challenge with Vibrio harveyi. The efficiency of these treatments was equal to a control treatment of Artemia enriched in an 800 mg L(-1) PHB powder suspension, while Artemia enriched in 10 mg L(-1) A80, 100 mg L(-1) A10, and 1,000 mg L(-1) A10 did not bring similar effects. From our results, it can be concluded that PHB supplemented in a bacterial carrier (i.e., amorphous PHB) can increase the larviculture efficiency of giant freshwater prawn similar to supplementation of PHB in powdered form (i.e., crystalline PHB). When the level of PHB in the bacterial carrier is high, similar beneficial effects can be achieved as crystalline PHB, but at a lower live food enrichment concentration expressed on PHB basis.

  14. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  15. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    1997-01-01

    The gene loci vdh, vanA, and vanB, which are involved in the bioconversion of vanillin to protocatechuate by Pseudomonas sp. strain HR199 (DSM 7063), were identified as the structural genes of a novel vanillin dehydrogenase (vdh) and the two subunits of a vanillate demethylase (vanA and vanB), respectively. These genes were localized on an EcoRI fragment (E230), which was cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The vdh gene was identified on a subfragment (HE35) of E230, and the vanA and vanB genes were localized on a different subfragment (H110) of E230. The nucleotide sequences of fragment HE35 and part of fragment H110 were determined, revealing open reading frames of 1062, 951, and 1446 bp, representing vanA, vanB, and vdh, respectively. The vdh gene was organized in one operon together with a fourth open reading frame (ORF2), of 735 bp, which was located upstream of vdh. The deduced amino acid sequences of vanA and vanB exhibited 78.8 and 62.1% amino acid identity, respectively, to the corresponding gene products from Pseudomonas sp. strain ATCC 19151 (F. Brunel and J. Davison, J. Bacteriol. 170:4924-4930, 1988). The deduced amino acid sequence of the vdh gene exhibited up to 35.3% amino acid identity to aldehyde dehydrogenases from different sources. The deduced amino acid sequence of ORF2 exhibited up to 28.4% amino acid identity to those of enoyl coenzyme A hydratases. Escherichia coli strains harboring fragment E230 cloned in pBluescript SK- converted vanillin to protocatechuate via vanillate, indicating the functional expression of vdh, vanA, and vanB in E. coli. High expression of vdh in E. coli was achieved with HE35 cloned in pBluescript SK-. The resulting recombinant strains converted vanillin to vanillate at a rate of up to 0.3 micromol per min per ml of culture. Transfer of vanA, vanB, and vdh to Alcaligenes eutrophus and to different Pseudomonas strains, which were unable to utilize vanillin or vanillate as

  16. OPTIMASI KONSENTRASI INOKULUM, RASIO C:N:P DAN pH PADA PROSES BIOREMEDIASI LIMBAH PENGILANGAN MINYAK BUMI MENGGUNAKAN KULTUR CAMPURAN

    Directory of Open Access Journals (Sweden)

    Syukria Ikhsan Zam

    2010-03-01

    Full Text Available The purposes of this research were to obtain the best inoculum concentration, C:N:P ratio, and pH, and also to identify the ability of mixed culture of hydrocarbonoclastic bacteria in oil waste degradation. The isolats were used are Acinetobacter baumanni, Alcaligenes eutrophus, Bacillus sp1., Methylococcus capsulatus, Bacillus sp2., Morococcus sp., Pseudomonas diminuta, Xanthomonas albilineans, Bacillus cereus and Flavobacterium branchiophiia. Variation of inoculum concentrations were 10%, 15%, and 20% (v/v, C:N:P ratios were 100:10:1, 100:10:0,5, 100:5:1, and 100:5:0,5, and pH were 6,5, 7,0, 7,5. Observed parameters in optimization were Total Plate Count (TPC the culture every 24 hours, Total Petroleum Hydrocarbon (TPH and Chemical Oxygen Demand (COD examined at the end of the bioremediation period. Best optimization result then analyzed with GC/MS. Optimization result indicated the best inoculum concentration was 10% with TPH degradation 61,79% and COD slope 61,75%. It is assumed that the low value of TPH degradation and COD slope at 15% and 20% inoculum concentration were caused by competition inside the bacterial population at that high inoculum concentration. The competition result in low growth and degradation. C:N:P ratio was 100:5:1 with TPH degradation 66,55% and COD slope 85,18%. It is assumed that the C:N:P ratio is equal, so it can enhance the bioremediation procces. The best pH was 7,5 with TPH degradation 73,24% and COD slope 86,28%. The process at the optimum conditions using inoculum as a mixed culture enhanced the bioremediation process with the result as follows, TPH degradation 93,06%, COD 90,73% for treatment. The chromatogram indicated that total hydrocarbon compound from nC9 – nC32 have been degraded by 43,413% – 63,117%. A good result of bioremediation was obtained from mixed culture inoculum at 10% concentration, C:N:P ratio of 100:5:1, and pH 7,5.

  17. Detection of Staphylococcus Aureus Enterotoxin A and B Genes with PCR-EIA and a Hand-Held Electrochemical Sensor

    National Research Council Canada - National Science Library

    Aitichou, Mohamed; Henkins, Robert; Sultana, Afroz M; Ulrich, Robert G; Ibrahim, M. S

    2004-01-01

    ... S. aureus DNA, and genomic DNA from Alcaligens, Bacillus, Bacteroides, Bordetella, Burkholderia, Clostridium, Comanonas, Enterobacter, Enterococcus, Escherichia, Francisella, Haemophilus, Klebsiella...

  18. Antibacterial activity of garlic and lime on isolates of extracted ...

    African Journals Online (AJOL)

    ) on seven bacterial species (Streptococcus mutans, Lactobacillus acidophilus, Norcadia asteroides, Pseudomonas aeruginosa, Actinomyces viscosus, Staphylococcus aureus and Veillonella alcaligens) isolated from 240 extracted, carious ...

  19. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the

  20. 21 CFR 172.809 - Curdlan.

    Science.gov (United States)

    2010-04-01

    ...) produced by pure culture fermentation from the nonpathogenic and nontoxicogenic bacterium Alcaligenes... Curdlan,” by Takeda Chemical Industries, Ltd., 12-10 Nihonbashi, 2-Chome, Chuo-ku, Tokyo, 103, Japan, 1996...

  1. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis.

    Science.gov (United States)

    Obata, Takashi; Goto, Yoshiyuki; Kunisawa, Jun; Sato, Shintaro; Sakamoto, Mitsuo; Setoyama, Hiromi; Matsuki, Takahiro; Nonaka, Kazuhiko; Shibata, Naoko; Gohda, Masashi; Kagiyama, Yuki; Nochi, Tomonori; Yuki, Yoshikazu; Fukuyama, Yoshiko; Mukai, Akira; Shinzaki, Shinichiro; Fujihashi, Kohtaro; Sasakawa, Chihiro; Iijima, Hideki; Goto, Masatoshi; Umesaki, Yoshinori; Benno, Yoshimi; Kiyono, Hiroshi

    2010-04-20

    The indigenous bacteria create natural cohabitation niches together with mucosal Abs in the gastrointestinal (GI) tract. Here we report that opportunistic bacteria, largely Alcaligenes species, specifically inhabit host Peyer's patches (PPs) and isolated lymphoid follicles, with the associated preferential induction of antigen-specific mucosal IgA Abs in the GI tract. Alcaligenes were identified as the dominant bacteria on the interior of PPs from naïve, specific-pathogen-free but not from germ-free mice. Oral transfer of intratissue uncultured Alcaligenes into germ-free mice resulted in the presence of Alcaligenes inside the PPs of recipients. This result was further supported by the induction of antigen-specific Ab-producing cells in the mucosal (e.g., PPs) but not systemic compartment (e.g., spleen). The preferential presence of Alcaligenes inside PPs and the associated induction of intestinal secretory IgA Abs were also observed in both monkeys and humans. Localized mucosal Ab-mediated symbiotic immune responses were supported by Alcaligenes-stimulated CD11c(+) dendritic cells (DCs) producing the Ab-enhancing cytokines TGF-beta, B-cell-activating factor belonging to the TNF family, and IL-6 in PPs. These CD11c(+) DCs did not migrate beyond the draining mesenteric lymph nodes. In the absence of antigen-specific mucosal Abs, the presence of Alcaligenes in PPs was greatly diminished. Thus, indigenous opportunistic bacteria uniquely inhabit PPs, leading to PP-DCs-initiated, local antigen-specific Ab production; this may involve the creation of an optimal symbiotic environment on the interior of the PPs.

  2. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  3. Method for preventing and/or treating insulin resistance

    NARCIS (Netherlands)

    Nieuwdorp, M.; Vos, de W.M.

    2013-01-01

    The present invention describes use of Eubacterium hallii et rel. and/or Alcaligenes faecalis et rel., as well as pharmaceutical, food, or feed compositions comprising these bacteria, as a medicament, in particular for preventing and/or treating insulin resistance and/or insulin resistance-related

  4. A five year study on the susceptibility of isolates from various parts of ...

    African Journals Online (AJOL)

    tests. The various isolates for the five-year period were Staphylococcus aureus 1000, Klebsiella pneumoniae 340, Proteus mirabilis 38 Escherichia coli 295, Pseudomonas aeroginosa 240, Alcaligenes faecalis 200, Enterobacter aerogenes 175, Acinetobacter baumannii 150, Proteus vulgaris 110, Providencia stuartii 101, ...

  5. Development of eco-friendly bioplastic like PHB by distillery effluent microorganisms.

    Science.gov (United States)

    Gangurde, Nilesh S; Sayyed, Riyaz Z; Kiran, Shashi; Gulati, Arvind

    2013-01-01

    During screening for poly-β-hydroxybutyrate (PHB) producing bacteria from distillery effluent sample, six out of 30 isolates comprising of three strains of Alcaligenes sp., two strains of Bacillus sp., and one strain of Pseudomonas sp. were found to accumulate varying levels of intracellular PHB. Amongst the various isolates, Alcaligenes sp. RZS4 was found as the potent PHB-producing organism, accumulating higher amounts of PHB. PHB productivity was further enhanced in the presence of oxygen, nitrogen-limiting conditions, and cloning of PHB synthesizing genes of Alcaligenes sp. RZS 4 into Escherichia coli. A twofold increase in PHB yield was obtained from recombinant E. coli vis-à-vis Alcaligenes sp.; the recombinant E. coli accumulated more PHB in NDMM, produced good amount of PHB in a single-stage cultivation process under both nutrient-rich and nutrient-deficient conditions. Extraction of PHB with acetone-alcohol (1:1) was found as suitable method for optimum extraction of PHB as this mixture selectively extracted PHB without affecting the non-PHB cell mass. PHB extract from recombinant E. coli showed the presence of C-H, =O stretching, =C-H deformation, =C-H, =CH, and =C-O functional groups characteristic of PHB.

  6. Bacterial spoilage of fresh meat in some selected Lagos markets ...

    African Journals Online (AJOL)

    A study of the bacteria associated with spoilage of fresh meat was carried out. The flora causing spoilage of meat include Alcaligenes liquefaciens, Bacillus subtilis, Clostridium perfringes, Escherichia coli, Klebsiella pneumoniae, Lactobacillus sp., Micrococcus varians, Pseudomonas aeruginosa, Sarcina sp. Serratia ...

  7. Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2018-02-01

    Full Text Available Three host-associated probiotics (Bacillus sp. AHG22, Alcaligenes sp. AFG22, and Shewanella sp. AFG21 were isolated from the gastrointestinal tract of Tor tambroides, and their effects were evaluated on gut morphology, microbiota composition and volatile short chain fatty acids (VSCFAs production of the same species. A control diet (40% crude protein and 10% lipid was formulated, and three different probiotic supplemented diets were prepared by immersing the control diet in each host-derived isolated probiotic, suspended in sterile phosphate buffered saline (PBS, to achieve concentration at 1.0 × 108 CFU g−1 feed. Triplicate groups of T. tambroides juveniles (1.39 ± 0.06 g were stocked in twelve glass aquaria (100 L capacity with stocking density of 20 individuals per aquarium. The feed was applied twice daily at 3.0% of the body weight per day for 90 days. The intake of probiotics drastically modified the gut microbiota composition. The average number of OTUs, Shannon index and Margalef species richness were significantly higher in host-associated probiotic treatments compared to the control. A significant increase of lipolytic, proteolytic and cellulolytic bacterial number were observed in the gastrointestinal tracts of T. tambroides fed the diets supplemented with Alcaligenes sp. AFG22 compared to the control. Villus length, villus width and villus area were significantly higher in T. tambroides juveniles fed the diet supplemented with Alcaligenes sp. AFG22. Acetate and butyrate were detected as main VSCFA production in the gastrointestinal tract of T. tambroides. Acetate and total VSCFAs production in Alcaligenes sp. AFG22 supplemented treatment was significantly higher than control. These results indicate that host-derived probiotics, especially Alcaligenes sp. has a significant potential as an important probiotic to enhance the nutrients utilization and metabolism through increasing gut surface area and VSCFAs

  8. [Antimicrobial sensitivity of the environmental microbiota in the intensive care units of a peruvian hospital].

    Science.gov (United States)

    Díaz-Tello, José; Rojas-Jaimes, Jesús; Ibarra-Trujillo, Jimmy; Tárraga-Gonzales, Delza

    2017-01-01

    The objective was to detect Gram-negative bacilli and Gram-positive cocci isolated from the environmental microbiota of the Intensive Care Unit (ICU) departments of Neonatology, Pediatrics, and Transplants (kidney, liver, and general) in a Lima hospital and determine their antimicrobial sensitivity. Eighty samples were obtained from inanimate surfaces using a wet swab. A total of 61 bacterial strains were identified, including Staphylococcus epidermis (46.0%), Alcaligenes sp. (21.3%), Pseudomonas aeruginosa (16.4%), Acinetobacter sp. (13.1%), Staphylococcus aureus (1.6%), and Staphylococcus haemolyticus (1.6%). Acinetobacter sp. and P. aeruginosa showed a heightened sensitivity to the antibiotics assessed, while Alcaligenes sp. and S. epidermidis presented the highest antimicrobial resistance. It is recommended that sustained asepsis and monitoring methods be used in ICUs.

  9. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  10. PCR cloning of Polyhydroxybutyrate Synthase Gene (phbC) from Aeromonashydrophila

    International Nuclear Information System (INIS)

    Enan, M. R.; Bashandy, S.A.

    2006-01-01

    Plastic wastes are considered to be severe environmental contaminantscausing waste disposal problems. Widespread use of biodegradable plastics isone of the solutions, but it is limited by high production cost. A polymerasechain reaction (PCR) protocol was developed for the specific for the specificdetection and isolation of full-length gene coding for polyhydroxybutyrate(PBH). (PCR) strategy using (PHB) primers resulted in the amplification of(DNA) fragments with the expected size from all isolated bacteria (PBH)synthase gene was cloned directly from Aeromonas hydrophila genome for thefirst time. The clonec fragment was named (phbCAh) gene exhibits similarly to(PHB) synthase genes of Alcaligenes latus and Pseudomonas oleovorans (97%),Alcaligenes sp. (81%) and Comamonas acidovorans (84%). (author)

  11. Microbiological activities in a shallow-ground repository with cementitious wasteform

    International Nuclear Information System (INIS)

    Varlakova, G.A.; Dyakonova, A.T.; Netrusov, A.I.; Ojovan, M.I.

    2012-01-01

    Cementitious wasteform with immobilised nuclear power plant operational radioactive waste disposed in a near surface testing repository for about 20 years have been analysed for microbiological activities. Clean cultures were selected from the main metabolic groups expected within repository environment e.g. anaerobic de-nitrifying, fermenting, sulphur-reducing, iron-reducing, and oxidizing, thio-bacterium and mushrooms. Microbiological species were identified within cementitious wasteform, in the clayey soil near the wasteform and in the contacting water. The most populated medium was the soil with microbial populations Bacillus, Pseudomonas and Micrococcus, and densities of populations up to 3.6*10 5 colony/g. Microbial populations of generic type Bacillus, Pseudomonas, Rhodococcus, Alcaligenes, Micrococcus, Mycobacterium, and Arthrobacter were identified within cementitious wasteform. Populations of Arthrobacter, Pseudomonas, Alcaligenes, Rhodococcus, Bacillus and Flavobacterium were identified in the water samples contacting the cementitious wasteform. Microbiological species identified are potential destructors of cementitious wasteform and containers. (authors)

  12. Biopolymers production with carbon source from the wastes of a beer brewery industry

    Science.gov (United States)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  13. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    OpenAIRE

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a g...

  14. Long-range intramolecular electron transfer in azurins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1989-01-01

    . aeruginosa) and (6.0 +/- 1.0) x 10(8) M-1.s-1 (Alcaligenes); (ii) a slow unimolecular phase with specific rates of 44 +/- 7 s-1 in the former and 8.5 +/- 1.5 s-1 for the latter (all at 298 K, 0.1 M ionic strength). Concomitant with the fast reduction of Cu(II), the single disulfide bridge linking cysteine-3...

  15. Growth of non-Campylobacter, oxidase-positive bacteria on selective Campylobacter agar.

    OpenAIRE

    Moskowitz, L B; Chester, B

    1982-01-01

    A total of 67 oxidase-positive, gram-negative bacteria were tested for growth on selective Campylobacter agar (Blaser formulation, BBL Microbiology Systems, Cockeysville, Md.) at 42 degrees C under microaerophilic conditions. Although the growth of most of these bacteria was prevented, all strains of Achromobacter xylosoxidans, Pseudomonas aeruginosa, Pseudomonas putrefaciens, Pseudomonas alcaligenes, and Pseudomonas pseudoalcaligenes grew as well as Campylobacter fetus subsp. jejuni.

  16. Bacterial genomic adaptation and response to metals

    International Nuclear Information System (INIS)

    Van Houdt, R.

    2009-01-01

    The beta-proteobacterium Cupriavidus metallidurans CH34 (formerly Ralstonia metallidurans) has been intensively studied since 1976 in SCK-CEN and VITO, for its adaptation capacity to survive in harsh (mostly industrial) environments, to overcome acute environmental stresses, for its resistance to a variety of heavy metals and for applications in environmental biotechnology. Recently, CH34 has become a model bacterium to study the effect of spaceflight conditions in several space flight experiments conducted by SCK-CEN (e.g. MESSAGE, BASE). Furthermore, Cupriavidus and Ralstonia species are isolated from the floor, air and surfaces of spacecraft assembly rooms; were found prior-to-flight on surfaces of space robots such as the Mars Odyssey Orbiter and even in-flight in ISS cooling water and Shuttle drinking water, vindicating its role as model bacterium in space research. In addition, Ralstonia species are also the causative agent of nosocomial infections and are among the unusual species recovered from cystic fibrosis (CF) patients. The genomic organization of Cuprivavidus metallidurans CH34 was studied in-depth to identify the genetic and regulatory structures involved in the resistance to heavy metals

  17. Sensibilidad antimicrobiana de la microbiota ambiental de las unidades de cuidados intensivos de un hospital peruano

    Directory of Open Access Journals (Sweden)

    José Díaz-Tello

    Full Text Available Con el objetivo de detectar y determinar la sensibilidad antimicrobiana de bacilos Gram negativos y cocos Gram positivos aislados de la microbiota ambiental de los servicios de la Unidad de Cuidados Intensivos (UCI de Neonatología, de Pediatría y de la Unidad de trasplantes (renal, hepático y general en un hospital de Lima; se tomaron 80 muestras de superficies inanimadas usando hisopado húmedo. Se identificaron 61 cepas bacterianas que correspondieron a Staphylococcus epidermidis (46,0%, Alcaligenes sp. (21,3%, Pseudomonas aeruginosa (16,4%, Acinetobacter sp. (13,1% Staphylococcus aureus (1,6% y Staphylococcus haemolyticcus (1,6%. Acinetobacter y Pseudomonas aeruginosa mostraron una elevada sensibilidad a los antibióticos evaluados, en contraste Alcaligenes sp. y Staphylococcus epidermidis presentaron la mayor resistencia antimicrobiana. Staphylococcus epidermidis y Alcaligenes sp. fueron las bacterias que presentaron mayor resistencia a los antibióticos y las que mayormente se aislaron. Se recomienda recurrir a métodos de asepsia y monitoreo sostenidos en las UCI.

  18. Effects of waste drilling fluid on bacterial isolates from a mangrove swamp oilfield location in the Niger delta of Nigeria

    International Nuclear Information System (INIS)

    Benka-Coker, M.O.; Olumagin, A.

    1996-01-01

    Four bacteria strains isolated from a mangrove swamp oilfield location in the Niger Delta of Nigeria were cultured aerobically in the presence of 1.0% waste drilling fluid, to determine the effect of the waste on their growth. A 2-h lag phase of growth was produced by the waste in cultures of Micrococcus and Pseudomonas species, while the waste increased the lag phases of Alcaligenes and Staphylococcus species to 4 h. The exponential phase of growth of Pseudomonas sp. was depressed by the waste drilling fluid but fluid stimulated the exponential phases of Micrococcus and Alcaligenes spp. There was enhancement of the growth rate of Alcaligenes and Micrococcus spp. while those of Staphylococcus and Pseudonomas spp. were decreased. The depressed growth rates of Staphylococcus and Pseudonomas spp. in the presence of the waste drilling fluid might lead to a decrease in their contribution to the removal of the waste from the environment during spillage or disposal and, therefore, may result in an accumulation of the waste in the environment. (author)

  19. Effects of waste drilling fluid on bacterial isolates from a mangrove swamp oilfield location in the Niger delta of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Benka-Coker, M.O.; Olumagin, A. [Benin Univ. (Nigeria). Dept. of Microbiology

    1996-03-01

    Four bacteria strains isolated from a mangrove swamp oilfield location in the Niger Delta of Nigeria were cultured aerobically in the presence of 1.0% waste drilling fluid, to determine the effect of the waste on their growth. A 2-h lag phase of growth was produced by the waste in cultures of Micrococcus and Pseudomonas species, while the waste increased the lag phases of Alcaligenes and Staphylococcus species to 4 h. The exponential phase of growth of Pseudomonas sp. was depressed by the waste drilling fluid but fluid stimulated the exponential phases of Micrococcus and Alcaligenes spp. There was enhancement of the growth rate of Alcaligenes and Micrococcus spp. while those of Staphylococcus and Pseudonomas spp. were decreased. The depressed growth rates of Staphylococcus and Pseudonomas spp. in the presence of the waste drilling fluid might lead to a decrease in their contribution to the removal of the waste from the environment during spillage or disposal and, therefore, may result in an accumulation of the waste in the environment. (author)

  20. Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation

    Science.gov (United States)

    Rojas, Luis A.; Yáñez, Carolina; González, Myriam; Lobos, Soledad; Smalla, Kornelia; Seeger, Michael

    2011-01-01

    Background Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. Methodology/Principal Findings To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg2+. The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg2+, 0.12 and CH3Hg+, 0.08. The addition of Hg2+ (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg2+ (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. Conclusions/Significance A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain

  1. Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation.

    Directory of Open Access Journals (Sweden)

    Luis A Rojas

    Full Text Available BACKGROUND: Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. METHODOLOGY/PRINCIPAL FINDINGS: To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg(2+. The minimum inhibitory concentrations (mM for strain MSR33 were: Hg(2+, 0.12 and CH(3Hg(+, 0.08. The addition of Hg(2+ (0.04 mM at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg(2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg(2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg(2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg(2+ (0.10 and 0.15 mM was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM after 2 h. CONCLUSIONS/SIGNIFICANCE: A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel

  2. Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides

    Directory of Open Access Journals (Sweden)

    Md Asaduzzaman

    2018-02-01

    Full Text Available In modern aquaculture, dietary supplementation of probiotics is a novel approach for enhancing growth performance of slow-growing fish. However, the actual role of probiotics in regulating muscle growth at cellular and molecular levels in fish still needs to be clarified. In this study, we hypothesized that host gut derived probiotic bacteria would enhance cellular muscle growth, and upregulate growth-related gene expression in slow-growing Malaysian mahseer Tor tambroides. Therefore, three host-associated probiotics (Bacillus sp. AHG22, Alcaligenes sp. AFG22, and Shewanella sp. AFG21 were isolated from the gastro-intestinal tract of T. tambroides and screened based on their digestive enzyme activity. A fishmeal and casein based control diet (40% crude protein and 10% lipid was formulated, and three different probiotic supplemented diets were prepared by immersing the control diet in each isolated host-derived bacteria, suspended in sterile phosphate buffered saline (PBS, to achieve a final concentration of approximately 1.0 × 108 CFU g−1 feed. Triplicate groups of T. tambroides juveniles (initial weight 1.39 ± 0.06 g were stocked in twelve glass aquaria (100 L capacity with stocking density of 20 individuals per aquarium. The feed was applied twice daily at 3.0% of the fish body weight per day for 90 days. Growth performance (weight gain and specific growth rate of T. tambroides juveniles were significantly higher in Alcaligenes sp. AFG22 and Bacillus sp. AHG22 supplemented diet treatments. Muscle morphometric analysis revealed that dietary supplementation of host-associated probiotic bacteria did not influence the frequency distribution of hyperplastic (class 10 small diameter fibers (≤10 μm. However, hypertrophic (Class 50, Class 60 and Class 70 large diameter fibers (>50 μm were significantly higher in Alcaligenes sp. AFG22 and Bacillus sp. AHG22 supplemented treatments, indicating that increased growth rate of T

  3. Mobile genetic elements, a key to microbial adaptation in extreme environments

    Science.gov (United States)

    van Houdt, Rob; Mijnendonckx, Kristel; Provoost, Ann; Monsieurs, Pieter; Mergeay, Max; Leys, Natalie

    To ensure well-being of the crew during manned spaceflight, continuous monitoring of different microbial contaminants in air, in water and on surfaces in the spacecraft is vital. Next to microorganisms originating mainly from human activity, strains from the closely related gen-era Cupriavidus and Ralstonia have been identified and isolated during numerous monitoring campaigns from different space-related environments. These strains have been found in the air of the Mars Exploration Rover assembly room, on the surface of the Mars Odyssey Orbiter and in different water sources from the International Space Station, Shuttle and Mir space station. In previous studies, we investigated the response of the model bacterium Cupriavidus metallidurans CH34 when cultured in the international space station (ISS) and space gravity and radiation simulation facilities, to understand it's ways to adapt to space flight conditions. It was also demonstrated that genetic rearrangements due to the movement of IS (insertion sequence) elements, enabled CH34 to adapt to toxic zinc concentrations, in space flight and on ground. In this study, we screened the full genome sequence of C. metallidurans CH34 for the presence of mobile genetic elements (MGEs), with the purpose to identified their putative role in adaptation to the new environments. Eleven genomic islands (GI) were identified in chro-mosome 1, three on the native plasmid pMOL28 and two on the native plasmid pMOL30. On the plasmids pMOL28 and pMOL30, all genes involved in the response to metals were located within GIs. Three of the GIs on chromosome 1 contained genes involved in the response to metals. Three GIs (CMGI-2, -3 and -4) on chromosome 1 belonged to the Tn4371 family, with CMGI-2 containing at least 25 genes involved in the degradation of toluene corresponding to CH34's ability to grow at expense of toluene, benzene or xylene as sole carbon source. CMGI-3 sheltered accessory genes involved in CO2 fixation and

  4. Study of the role of microbes as source and sink of Dimethyl Sulphide in Dona Paula bay

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.S.

    , Rassoulzadegan F, Krajka B, Nguyen BC, Mihalopoulos N, Buat- Menard P (1990) Production of dimethylsulfonium propionate (DMSP) and Dimethylsulfide (DMS) by a microbial food web. Limnology and Oceanography 35:1810 - 1821 Belviso S, Moulin C. Bopp L, Stefels J...-like dimethyl sulfide- producing marine isolate. Applied and Environmental Microbiology 61: 21 - 26 de Souza M P &Yoch D C (1996) N-terminal amino acid sequences and comparison of DMSP lyases from Pseudomonas doudoroffii and Alcaligenes strain M3A,. In R P...

  5. Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, H; Komagata, K

    1964-01-01

    Hydrocarbon-utilizing bacteria were isolated from oil-brine, soils etc. sampled in oil fields in Japan during 1956, and the following species were identified: Corynebacterium hydrocarboclastus nov. sp., 11 strains; Pseudomonas nitroreducens nov. sp., 1 strain; Pseudomonas maltophila Hugh and Ryschenkow, 5 strains: Brevibacterium lipolyticum (Huss) Breed, 2 strains; Pseudomonas desmolytica Gray and Thornton, 5 strains; Flavobacterium ferrugineum Sickles and Shaw, 1 strain; and Alcaligenes faecalis Chastellani and Chalmers, 1 strain. One difference between Gram-negative bacteria and Gram-positive bacteria was described on the basis of the ability of assimilating hydrocarbons.

  6. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  7. Phytoremediation of Pb and Hg by using Scirpus mucronatus with addition of bacterial inoculums

    International Nuclear Information System (INIS)

    Hamzah, A.; Yatim, N.I.; Sarmani, S.B.

    2015-01-01

    Two heavy metal-resistant rhizobacteria bacteria (Brevundimonas diminuta SF-S1-5 and Alcaligenes faecalis SF-S1-60) were bioaugmented in sand and also spiked with 100 ppm Pb and 1 ppm Hg and the removal of these metals was monitored using plant, Scirpus mucronatus. The highest accumulation of Pb and Hg were obtained in the root of S. mucronatus inoculated with A. faecalis at day 42 and 28, respectively. Plant inoculated with A. faecalis also showed the highest bioaccumulation coefficient and bioconcentration factor values > 1 compared to plant inoculated with B. diminuta and control. (author)

  8. KARAKTERISASI BAKTERI POTENSIAL PENDEGRADASI OLI BEKAS PADA TANAH BENGKEL DI KOTA PADANG

    Directory of Open Access Journals (Sweden)

    Yuni Ahda

    2017-03-01

    Full Text Available The research objective is to locate and determine the morphological and biochemical characteristics of the bacteria that could potentially degrade the used lubricant oil in the workshops in Padang. The research was conducted March to October 2016. The bacteria obtained from the workshop is cultured on selective media MSM and transferred to LB medium to obtain pure isolates. Morphological and biochemical characterization indicate three types of bacteria that live in workshop’s soil contaminated used lubricant oil, namely Bacillus sp1, sp2 and Alcaligenes Bacillus sp

  9. Antimicrobial activity of essential oil from Schinus molle Linn.

    Science.gov (United States)

    Gundidza, M

    1993-11-01

    The essential oil from the fresh leaves of Schinus molle isolated by hydrodistillation was tested for antibacterial activity using the hole plate diffusion method and for antifungal activity using the mycelium or single cell growth inhibition method. Results obtained showed that the volatile oil exhibited significant activity against the following bacterial species: Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas aeruginosa, Leuconostoc cremoris, Enterobacter aerogenes, Proteus vulgaris, Clostridium sporogenes, Acinetobacter calcoacetica, Escherichia coli, Beneckea natriegens, Citrobacter freundii, Serratia marcescens, Bacillus subtilis and Brochothrix thermosphacata. The fungal species Aspergillus ochraceus, Aspergillus parasiticus, Fusarium culmorum and Alternaria alternata exhibited significant sensitivity to the volatile oil.

  10. Physico-chemical and bacteriological parameters in a hypereutrophic lagoon (Albufera Lake, Valencia, Spain).

    Science.gov (United States)

    Aznar, R; Amaro, C; Garay, E; Alcaide, E

    1991-01-01

    Several physico-chemical parameters related to water quality, as well as saprophytic and public health-related heterotrophic bacterial groups were studied in a hypereutrophic lake (Albufera, Valencia) at different seasons. Total microscopic and viable counts were compared, and, together with faecal indicators, were determined in water samples from different sites. Heterotrophic bacteria grown on nonselective medium were identified to genus level and a diversity index was calculated. Pseudomonas-Alcaligenes was the most frequently isolated group from all sampling sites along the study, following by Moraxella, Acinetobacter, Vibrio and Aeromonas. The relationships between all parameters were searched by Principal Components Analysis (PCA).

  11. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    International Nuclear Information System (INIS)

    Benka-Coker, M.O.; Olumagin, A.

    1995-01-01

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  12. Evaluation of pyrrolidonyl arylamidase for the identification of nonfermenting Gram-negative rods.

    Science.gov (United States)

    Bombicino, Karina A; Almuzara, Marisa N; Famiglietti, Angela M R; Vay, Carlos

    2007-01-01

    To evaluate the activity of pyrrolidonyl arylamidase (PYR) for the differentiation and identification of nonfermenting gram negative rods (NFGNR), 293 isolates were tested. A 24 h culture of each test organism was prepared. From this a 108-109 cfu/mL suspension was added to 0.25 mL of sterile physiologic solution. A PYR disk was then added and the test was incubated for 30 minutes at 35-37 degrees C, at environmental atmosphere. Reading was done by adding 1 drop of cinnamaldehyde reagent. Strains of Acinetobacter baumannii, Acinetobacter haemolyticus, Alcaligenes faecalis, Bergeyella zoohelcum, Bordetella bronchiseptica, Bordetella hinzii, Brevundimonas diminuta, Brevundimonas vesicularis, Brucella ovis, Brucella spp., Brucella suis, Burkholderia cepacia complex, Moraxella catarrhalis, Moraxella lacunata, Moraxella nonliquefaciens, Moraxella osloensis, Oligella ureolytica, Pseudomonas alcaligenes, Pseudomonas mendocina, Pseudomonas pseudoalcaligenes, Pseudomonas putida, Pseudomonas stutzeri, Pseudomonas Vb3, Psychrobacter phenylpyruvicus, and Stenotrophomonas maltophilia were PYR negative. On the other hand Achromobacter piechaudii, Achromobacter denitrificans, Achromobacter xylosoxidans, Burkholderia gladioli, Chryseobacterium gleum-indologenes, Comamonas testosroni, Cupriavidus pauculus, Delftia acidovorans, Elizabethkingia meningoseptica, Myroides spp., Ochrobactrum anthropi, Pseudomonas oryzihabitans, Ralstonia pickettii, Rhizobium radiobacter, Shewanella spp., Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Weeksella virosa were PYR positive. Finally, Acinetobacter lwoffii, Pseudomonas aeruginosa, Pseudomonas fluorescens, Roseomonas spp., and Sphingomonas paucimobilis-parapaucimobilis were PYR variable. PYR testing should be considered as a useful tool to facilitate the identification of NFGNR.

  13. Rhizosphere bacterial diversity and heavy metal accumulation in Nymphaea pubescens in aid of phytoremediation potential

    Directory of Open Access Journals (Sweden)

    RAISA KABEER

    2014-04-01

    Full Text Available The present work aims to characterize the bacterial diversity of the rhizosphere system of Nymphaea pubescens and the sediment system where it grows naturally. Heavy metal content in the sediment and Nymphea plant from the selected wetland system were also studied. Results of the current study showed that the concentration of copper, zinc and lead in the sediment ranged from 43 to 182 mg/Kg, from 331 to 1382 mg/Kg and from 121 to 1253 mg/Kg, respectively. Cadmium concentration in sediment samples was found to be zero and the order of abundance of heavy metals in the sediment samples was Zn>Pb>Cu>Cd. The abundance patterns of heavy metals in leaf, petiole and root were Cd>Cu>Pb>Zn. Microbial load in rhizosphere of Nymphea pubescens ranged from 93×102 to 69×103 and that of sediment was 62×102 to 125×103. Bacterial load in rhizosphere was higher than that of growing sediment. Four bacterial genera were identified from the rhizosphere of Nymphaea pubescens which include Acinetobacter, Alcaligens, Listeria and Staphylococcus. Acinetobacter, Alcaligens and Listeria are the three bacterial genera isolated from sediment samples. Copper resistance studies of the 14 bacterial isolates from rhizosphere and 7 strains from sediment samples revealed that most of them showed low resistance (<100 μg/ml and very few isolates showed high resistance of 400-500 μg/ml.

  14. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    Energy Technology Data Exchange (ETDEWEB)

    Benka-Coker, M.O.; Olumagin, A. [Benin Univ. (Nigeria). Dept. of Microbiology

    1995-12-31

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  15. Microbial evaluation and occurrence of antidrug multi-resistant organisms among the indigenous Clarias species in River Oluwa, Nigeria

    Directory of Open Access Journals (Sweden)

    T.A. Ayandiran

    2017-01-01

    Full Text Available Fish may harbor pathogens on or inside its body when in contaminated environment. Clarias gariepinus and Clarias buthopogon were analyzed to evaluate the likely impact of pollution on the antidrug resistance pattern of their microbial isolates. Different bacterial and fungal counts were observed on the fish organs (skin, muscles and gills. The highest bacterial count was 1,040,000 Cfu/mL while the lowest was 101 Cfu/mL. The highest fungal count obtained was 344,000 Cfu/mL while the lowest was 65 Cfu/mL. Bacterial isolates belonging to genera Bacillus, Clostridium, Alcaligenes, Flavobacterium, Enterobacter and Corynebacterium were obtained from the organs. Also, fungal isolates belonging to the genera Penicillium, Aspergillus, Rhizopus, Monila and Fusarium were isolated. The resistance of isolates from C. gariepinus to drugs was between 50% and 90% with Bacillus species showing the highest resistance. For isolates from C. buthopogon, 40–90% resistance was observed with Alcaligenes faecalis showing highest resistance. Five patterns of multiple drug resistance were observed among the bacterial isolates with antibiotics ranging from 4 to 9. Also, result of fungal isolates showed susceptibility to ketoconazole and resistant to fluconazole and griseofulvin. The public health implications of consuming these fishes are discussed.

  16. Microbial dehalogenation of polychlorinated biphenyls in aerobic conditions Dehalogenación microbiana de bifenilos policlorados en condiciones aeróbicas

    Directory of Open Access Journals (Sweden)

    B. Aráoz

    2004-03-01

    Full Text Available From soils contaminated with polychlorinated biphenils (PCBs a strain of Alcaligenes sp. able to grow in a mineral medium with a commercial mixture of PCBs as carbon source was isolated. This strain consumed up to 200 ppm in seven days in laboratory conditions. After 24 h of incubation, some new congeners of PCBs could be recognized by mass spectrometry. Through the identification of these compounds it was possible to postulate examples of possible transformations by dechlorinations of penta- and tetra-chlorinated congeners into tri-chlorinated ones. The properties of the isolated strain are appropriate for bioremediation of contaminated areas and also for using in bioreactors in order to remove the xenobiotic chemical.A partir de suelos contaminados con bifenilos policlorados (PCBs se aisló una cepa de Alcaligenes sp. capaz de crecer en medio mineral con una mezcla comercial de PCBs como fuente de carbono. Esta cepa consumió hasta 200 ppm de PCBs en siete días de incubación en condiciones de laboratorio. En 24 horas de incubación se han podido detectar nuevos congéneres de PCBs mediante espectrometria de masa. La identificación de estos compuestos ha permitido postular transformaciones de congéneres penta- y tetra-clorados que originarían derivados triclorados. Las propiedades de la cepa aislada son apropiadas para biorremediación y para su uso en biorreactores para eliminar estos compuestos xenobióticos.

  17. Plasmid-mediated mineralization of 4-chlorobiphenyl

    International Nuclear Information System (INIS)

    Shields, M.S.; Hooper, S.W.; Sayler, G.S.

    1985-01-01

    Strains of Alcaligenes and Acinetobacter spp. were isolated from a mixed culture already proven to be proficient at complete mineralization of monohalogenated biphenyls. These strains were shown to harbor a 35 x 10(6)-dalton plasmid mediating a complete pathway for 4-chlorobiphenyl (4CB) oxidation. Subsequent plasmid curing of these bacteria resulted in the abolishment of the 4CB mineralization phenotype and loss of even early 4CB metabolism by Acinetobacter spp. Reestablishment of the Alcaligenes plasmid, denoted pSS50, in the cured Acinetobacter spp. via filter surface mating resulted in the restoration of 4CB mineralization abilities. 4CB mineralization, however, proved to be an unstable characteristic in some subcultured strains. Such loss was not found to coincide with any detectable alteration in plasmid size. Cultures capable of complete mineralization, as well as those limited to partial metabolism of 4CB, produced 4-chlorobenzoate as a metabolite. Demonstration of mineralization of a purified 14 C-labeled chlorobenzoate showed it to be a true intermediate in 4CB mineralization. Unlike the mineralization capability, the ability to produce a metabolite has proven to be stable on subculture. These results indicate the occurrence of a novel plasmid, or evolved catabolic plasmid, that mediates the complete mineralization of 4CB

  18. Survival of added bacterial species and metabolism of toxic compounds in natural environments

    International Nuclear Information System (INIS)

    King, V.M.

    1987-01-01

    Bacteria able to degrade either 2,4-dichlorophenol (DCP) or phenanthrene (PHEN) were isolated from polluted freshwater environments. Two isolates able to degrade each compound were tested for mineralization with a sensitive 14 C assay and for survival in lake water and sewage using a selective medium. One DCP isolate was identified as Alcaligenes paradoxus and the other as Alcaligenes sp. One PHEN isolate was identified as Pseudomonas fluorescens and the other as Pseudomonas sp. All four isolates survived and grew in sterile environments which indicated that starvation would not be a factor in survival of these strains. The number of organisms declined immediately in number in nonsterile lake water. However, they did survive or even grow in nonsterile sewage for a short period before declining in number. Biotic factors appeared to be influential for survival and mineralization of target compounds in many environments. The removal of protozoa, which prey on bacteria, improved survival of the added cells, but had no influence on the mineralization of 10 μg DCP/L. In comparison, degradation of 10 and 25 mg DCP/L stopped after a few days. Yeast nitrogen base appeared to overcome the lack of nutrient regeneration, a function attributed to protozoa. The additional nutrients increased toxicant mineralization, especially when seeded with appropriate species. Thus, protozoa may limit growth of added cells but appear to be needed for mineralization of higher concentrations of DCP

  19. Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units.

    Science.gov (United States)

    Zhila, Natalia; Shishatskaya, Ekaterina

    2018-05-01

    The present study investigates physicochemical, mechanical, and biological properties of polyhydroxyalkanoate (PHA) copolymers containing 4-hydroxybutyrate (4HB) synthesized in Cupriavidus eutrophus B10646 culture. In poly(3-hydroxybutyrate/4-hydroxybutyrate) [P(3HB/4HB)] bipolymers, 4HB varied between 10.4 and 75.0 mol%; in poly(3-hydroxybutyrate/3-hydroxyvalerate/4-hydroxybutyrate) terpolymers, 4HB constituted 28.7-55.6 mol%; and in poly(3-hydroxybutyrate/3-hydroxyvalerate/4-hydroxybutyrate/3-hydroxyhexanoate) quaterpolymers, 4HB varied between 9.3 and 13.3 mol%. The degree of crystallinity of P(3HB/4HB) copolymers decreased consistently with an increase in 4HB content, reaching 38%. The incorporation of 3-hydroxyvalerate and 3-hydroxyhexanoate into copolymers enhanced that effect. The effect of 4HB monomer units on temperature properties of copolymers was exhibited as lowering of the melting temperature and crystallization temperature, which improved the processing-related properties of the copolymers. All copolymers containing 4HB showed enhanced elongation at break compared to poly(3-hydroxybutyrate). Polymer films prepared from PHAs with different chemical composition had similar microstructure and porosity and had no toxic effect on mouse fibroblast NIH 3 T3 cells, proving their high biocompatibility. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    Directory of Open Access Journals (Sweden)

    Penna Thereza CV

    2006-08-01

    Full Text Available Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value necessary to inactivate 90% of the initial bioburden (decimal reduction time was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2 and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10 population (n cycles. To kill 90% of the initial population (or one log10 cycle, the necessary time (D-value was for P. aeruginosa into: (i 0.5% citric acid, D = 3.8 min; (ii 0.5% hydrochloric acid, D = 6.9 min; (iii 70% ethanol, D = 9.7 min; (iv 0.5% sodium bisulfite, D = 5.3 min; (v 0.4% sodium hydroxide, D = 14.2 min; (vi 0.5% sodium

  1. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    Energy Technology Data Exchange (ETDEWEB)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B. [Lab. Pierre Sue, CEA-CNRS UMR 9956, CEA/Saclay, Gif-sur-Yvette (France); Coves, J. [Inst. de Biologie Structurale - J.-P. Ebel, Lab. des Proteines Membranaires, Grenoble (France); Hazemann, J.L. [Lab. de Geophysique Interne et Tectonopbysique, UMR CNRS/Univ. Joseph Fourier, Saint-Martin-D' Heres (France)

    2009-07-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  2. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    International Nuclear Information System (INIS)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B.; Coves, J.; Hazemann, J.L.

    2009-01-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  3. The synthesis, characterization and theoretical study of nano tetrabuthylammonium trichloroiodoaluminate (III

    Directory of Open Access Journals (Sweden)

    shahriar Ghammamy

    2012-10-01

    Full Text Available There is provided a nano aluminate complex that has a quaternary ammonium cation. This nano system has an equal molar ratio of Al to N that has been prepared by reaction of an organic salt R+X- such as [(CH34NBr], and a Lewis acid such as AlCl3, compounds. The synthesized compound was characterized by IR, Mass, X-Ray diffraction measurements. In addition, the structure of synthesized compound was optimized at the theoretical level of the Moller-Plesser perturbations of the second order (MP2, with LanL2DZ basis set and molecular specifications such as band length and angle were extracted using Gaussian 98 program. Theoretical data show good agreement with the experimental result.

  4. Isolation, characterization and development of bacteria in the Mine Gafsa for applications in bioremediation

    International Nuclear Information System (INIS)

    Heni, Sana

    2010-01-01

    Today pollution represents an important environmental problem. Bacterial ability to bioremediate many types of pollutants in different matrixes (soil, water, and air) have been widely acknowledged. The goal of the present work is to isolate from contaminated soil of Gafsa, in Tunisia, bacterial strains to evaluate their potential for bioremediation. Soil from the mining area of Gafsa was collected. Initially, many bacterial strains were isolated in TGY agar (Tryptone/Glucose/Yeast extract agar) based on the presence of pigments. The primary bacterial selection was performed using heavy metals and the minimal inhibitory concentrations (MICs) of a metal-resistant bacterium, Cupriavidus metallidurans CH34. Isolated metal-resistant bacterium was checked for its potential to resistant to gamma radiation. Selected strain, Micrococcus luteus S7, was assessed for its bioremediation potential of matrixes artificially contaminated under laboratory conditions for its future use in developing a bio product for contaminated soil inoculation.

  5. Storage Reliability of Missile Materiel Program. Storage Reliability Analysis Summary Report. Volume 1. Electrical and Electronic Devices

    Science.gov (United States)

    1976-05-01

    HDBK- 217B. 6.3-1 0 0 L 0 E-’ Ci~ E- 4:. 00 HE-IH 04 El4 P44 Hz i H I ’CJ 000 0 L CE-f 0 N 0N 0 ’.0 ~ ~ 4 C~)H " 0O 00 zr 4E- 1 r-4 I 00 00 H 0U xUdU 00...plates prior to assembly. Have resident inspector examine plates for conformity just prior to cell assembly. These actions will reduce the prob- ability of...each plate to be certain weights are within +3 1/2% of mean. Also, perform actual capacitance measurements to check plate matching. Mismatched cells can

  6. Identification and analysis of hydrogen uptake (HUP) genes of several associative nitrogen fixing bacteria with rice plant

    International Nuclear Information System (INIS)

    Yuan Hongli; Wang Huixian; You Chongbiao

    1990-01-01

    All of the tested species (strains) in this work can reduce TTC, suggesting that they contain hydrogen uptake hydrogenase. Hybridization with Rhizobium japonicum hup gene indicated that there was homology between restricted DNA and the probe for Alcaligenes faecalis A15, Enterobacter cloacae EnSs, Klebsiella planticola DWUL2 and Pseudomonas saccharophila. Negative results were obtained for E. cloacae E26 and K. oxytoca NG13. Hup genes of A. faecalis A15 were located on chromosomal DNA, however, it was located on the larger plasmid for E. cloacae EnSs. Nif gene and hup gene are located on the same replicon. Hup gene from different hup + microorganisms was not homology inevitably

  7. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.

    Science.gov (United States)

    Płaza, Grazyna A; Jangid, Kamlesh; Lukasik, Krystyna; Nałecz-Jawecki, Grzegorz; Berry, Christopher J; Brigmon, Robin L

    2008-10-01

    The aim of the study was to investigate petroleum waste remediation and toxicity reduction by five bacterial strains: Ralstonia picketti SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (I'-1a), Bacillus sp. (T-1), and Bacillus sp. (T'-1), previously isolated from petroleum-contaminated soils. Petroleum hydrocarbons were significantly degraded (91%) by the mixed bacterial cultures in 30 days (reaching up to 29% in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3-fold after 30 days. This work shows the influence of bacteria on hydrocarbon degradation and associated toxicity, and its dependence on the specific microorganisms present. The ability of these mixed cultures to degrade hydrocarbons and reduce toxicity makes them candidates for environmental restoration applications at other hydrocarbon-contaminated environments.

  8. Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells.

    Science.gov (United States)

    Yamada, Mamoru; Okada, Yukiyoshi; Yoshida, Toyokazu; Nagasawa, Toru

    2007-01-01

    The ability to produce vanillin and/or vanillic acid from isoeugenol was screened using resting cells of various bacteria. The vanillin- and/or vanillic-acid-producing activities were observed in strains belonging to the genera Achromobacter, Aeromonas, Agrobacerium, Alcaligenes, Arthrobacter, Bacillus, Micrococcus, Pseudomonas, Rhodobacter, and Rhodococcus. Strain IE27, a soil isolate showing the highest vanillin-producing activity, was identified as Pseudomonas putida. We optimized the culture and reaction conditions for vanillin production from isoeugenol using P. putida IE27 cells. The vanillin-producing activity was induced by adding isoeugenol to the culture medium but not vanillin or eugenol. Under the optimized reaction conditions, P. putida IE27 cells produced 16.1 g/l vanillin from 150 mM isoeugenol, with a molar conversion yield of 71% at 20 degrees C after a 24-h incubation in the presence of 10% (v/v) dimethyl sulfoxide.

  9. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    Science.gov (United States)

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong

    2015-07-01

    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.

  10. Herramientas moleculares aplicadas al estudio de aguas para el consumo humano, comunidad El Cacao, Nicaragua

    Directory of Open Access Journals (Sweden)

    Leandro A. Paramo

    2017-03-01

    Full Text Available Se determinó la presencia de contaminantes microbianos en aguas de consumo humano de la comunidad El Cacao, Mosonte, Nueva Segovia. El análisis se realizó tanto por métodos microbiológicos como por vía molecular analizando su interrelación con las enfermedades que se observan en la comunidad. Se obtuvo la presencia de coliformes fecales, totales y Escherichia coli desde la captación hasta el tanque de almacenamiento. Los aislados identificados pertenecen a las bacterias del tipo Alcaligenes y Paenalcaligenes, además de Stenotrophomonas y Serratia. Las cuales son bacterias acuáticas y están asociadas a diversas enfermedades. Además se identificó lapresencia de Aspergillus que han sido bien reportados en diversas enfermedades humanas.

  11. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry.

    Science.gov (United States)

    He, Yu-Cai; Ma, Cui-Luan; Xu, Jian-He; Zhou, Li

    2011-02-01

    Nitrile-hydrolyzing enzymes (nitrilase or nitrile hydratase/amidase) have been widely used in the pharmaceutical industry for the production of carboxylic acids and their derivatives, and it is important to build a method for screening for nitrile-hydrolyzing enzymes. In this paper, a simple, rapid, and high-throughput screening method based on the ferric hydroxamate spectrophotometry has been proposed. To validate the accuracy of this screening strategy, the nitrilases from Rhodococcus erythropolis CGMCC 1.2362 and Alcaligenes sp. ECU0401 were used for evaluating the method. As a result, the accuracy for assaying aliphatic and aromatic carboxylic acids was as high as the HPLC-based method. Therefore, the method may be potentially used in the selection of microorganisms or engineered proteins with nitrile-hydrolyzing enzymes.

  12. Microbial growth associated with granular activated carbon in a pilot water treatment facility.

    Science.gov (United States)

    Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R

    1983-01-01

    The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567

  13. [Biooxidation of gold-bearing sulfide ore and subsequent biological treatment of cyanidation residues].

    Science.gov (United States)

    Kanaev, A T; Bulaev, A G; Semenchenko, G V; Kanaeva, Z K; Shilmanova, A A

    2016-01-01

    The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.

  14. Biodegradation Capability of Some Bacteria Isolates to Use Lubricant Oil in Vitro

    Science.gov (United States)

    Ahda, Y.; Azhar, M.; Fitri, L.; Afnida, A.; Adha, G. S.; Alifa, W. N.; Handayani, D.; Putri, D. H.; Irdawati, I.; Chatri, M.

    2018-04-01

    Our previous study identified three species of bacteria, i.e. Alcaligenes sp., Bacillus spl, and Bacillus sp2 isolated from using lubricant oil-contaminated soil in a Padang’s workshop. However, its ability to degrade hydrocarbon were not known yet. In this extension study, we explore a wider area to find more hydrocarbonoclastic bacteria and examined its capability to degrade hydrocarbon in vitro. Seventeen isolates were characterized its capability using NA + used lubricant oil + tween + neutral red medium. Isolates A1, B2, D1 and D4 shows the high degradation index, whereas isolates A2, A3, A5, D2, B1, B3 and isolates A4, B4, D3 have medium and low degradation index, respectively. These potential hydrocarbonoclastic bacteria need in situ characterization to know their actual activities for bioremediation.

  15. Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity.

    Science.gov (United States)

    Bajaj, Bijender Kumar; Raina, Sandeepu; Singh, Satbir

    2013-08-01

    The killer phenomenon of yeast may have technological implications in many areas like beverage fermentation, food technology, biological control in agriculture, and in medicine. In the present study the killer phenomenon in Pichia kudriavzevii (P. kudriavzevii RY55) is being reported for the first time. The P. kudriavzevii RY55 toxin exhibited excellent antibacterial activity against several pathogens of human health significance such as Escherichia coli, Enterococcus faecalis, Klebsiella sp., Staphylococcus aureus, Pseudomonas aeruginosa and Pseudomonas alcaligenes. Killer toxin was purified to homogeneity by using ammonium sulphate precipitation and ion exchange chromatography and characterized for few properties. P. kudriavzevii RY55 killer toxin may be of vast significance in the development of novel antimicrobial chemotherapeutic agents, new bio-based safer candidates for food preservation and biocontrol, and starter cultures for fermentation industries. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bacterial community structure and diversity in the gut of Muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae) from India.

    Science.gov (United States)

    Gandotra, Sakshi; Kumar, Archna; Naga, Kailash; Bhuyan, Pinky Moni; Gogoi, Dip K; Sharma, Kirti; Subramanian, Sabtharishi

    2018-04-17

    Muga silkworm, Antheraea assamensis is exclusively present in the North Eastern regions of India and rearing of this silkworm is a vocation unique to this region in the world. Through culture dependent techniques, generic identification using 16s rRNA probes, diversity analysis and qualitative screening for enzyme activities, our studies have identified a number of bacterial isolates viz., Bacillus spp, Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas stutzeri, Acinetobacter sp. and Alcaligens sp. inhabiting the gut of muga silkworm. Analysis of culturable bacterial community from the gut of A. assamensis revealed that Bacillus (54%) was the predominant bacterial genera followed by Serratia (24%), Pseudomonas (10%) and Alcaligens (6%). Significant differences in Shannon and the Simpson diversity indices of gut bacteria were recorded for A. assamensis collected from different regions. Shannon (H) and Simpson (D) diversity indices were found to be the highest for A. assamensis from Titabar region (H= 4.73 ± 0.43), (D= 10.00 ± 0.11) and the lowest for Mendipathar region (H= 2.1 ± 0.05), (D= 0.04 ± 0.00) respectively of North Eastern India. Qualitative screening for enzymatic activities identified a number of gut bacterial isolates having significantly higher cellulose, amylase, lipase activities which may probably be contributing to the digestion and nutrition of their host insect, A. assamensis. This article is protected by copyright. All rights reserved. © 2018 The Royal Entomological Society.

  17. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.

    Science.gov (United States)

    Brightwell, Gale; Boerema, Jackie; Mills, John; Mowat, Eilidh; Pulford, David

    2006-05-25

    We examined the bacterial community present on an Intralox conveyor belt system in an operating lamb boning room by sequencing the 16S ribosomal DNA (rDNA) of bacteria extracted in the presence or absence of cultivation. RFLP patterns for 16S rDNA clone library and cultures were generated using HaeIII and MspI restriction endonucleases. 16S rDNA amplicons produced 8 distinct RFLP pattern groups. RFLP groups I-IV were represented in the clone library and RFLP groups I and V-VIII were represented amongst the cultured isolates. Partial DNA sequences from each RFLP group revealed that all group I, II and VIII representatives were Pseudomonas spp., group III were Sphingomonas spp., group IV clones were most similar to an uncultured alpha proteobacterium, group V was similar to a Serratia spp., group VI with an Alcaligenes spp., and group VII with Microbacterium spp. Sphingomonads were numerically dominant in the culture-independent clone library and along with the group IV alpha proteobacterium were not represented amongst the cultured isolates. Serratia, Alcaligenes and Microbacterium spp. were only represented with cultured isolates. Pseudomonads were detected by both culture-dependent (84% of isolates) and culture-independent (12.5% of clones) methods and their presence at high frequency does pose the risk of product spoilage if transferred onto meat stored under aerobic conditions. The detection of sphingomonads in large numbers by the culture-independent method demands further analysis because sphingomonads may represent a new source of meat spoilage that has not been previously recognised in the meat processing environment. The 16S rDNA collections generated by both methods were important at representing the diversity of the bacterial population associated with an Intralox conveyor belt system.

  18. Crystal structures of tetramethylammonium (2,2′-bipyridinetetracyanidoferrate(III trihydrate and poly[[(2,2′-bipyridine-κ2N,N′di-μ2-cyanido-dicyanido(μ-ethylenediamine(ethylenediamine-κ2N,N′cadmium(IIiron(II] monohydrate

    Directory of Open Access Journals (Sweden)

    Songwuit Chanthee

    2016-05-01

    Full Text Available The crystal structures of the building block tetramethylammonium (2,2′-bipyridine-κ2N,N′tetracyanidoferrate(III trihydrate, [N(CH34][Fe(CN4(C10H8N2]·3H2O, (I, and a new two-dimensional cyanide-bridged bimetallic coordination polymer, poly[[(2,2′-bipyridine-κ2N,N′di-μ2-cyanido-dicyanido(μ-ethylenediamine-κ2N:N′(ethylenediamine-κ2N,N′cadmium(IIiron(II] monohydrate], [CdFe(CN4(C10H8N2(C2H8N22]·H2O, (II, are reported. In the crystal of (I, pairs of [Fe(2,2′-bipy(CN4]− units (2,2′-bipy is 2,2′-bipyridine are linked together through π–π stacking between the pyridyl rings of the 2,2′-bipy ligands to form a graphite-like structure parallel to the ab plane. The three independent water molecules are hydrogen-bonded alternately with each other, forming a ladder chain structure with R44(8 and R66(12 graph-set ring motifs, while the disordered [N(CH34]+ cations lie above and below the water chains, and the packing is stabilized by weak C—H...O hydrogen bonds. The water chains are further linked with adjacent sheets into a three-dimensional network via O—H...O hydrogen bonds involving the lattice water molecules and the N atoms of terminal cyanide groups of the [Fe(2,2′-bipy(CN4]− building blocks, forming an R44(12 ring motif. Compound (II features a two-dimensional {[Fe(2,2′-bipy(CN4Cd(en2]}n layer structure (en is ethylenediamine extending parallel to (010 and constructed from {[Fe(2,2′-bipy(CN4Cd(en]}n chains interlinked by bridging en ligands at the Cd atoms. Classical O—H...N and N—H...O hydrogen bonds involving the lattice water molecule and N atoms of terminal cyanide groups and the N—H groups of the en ligands are observed within the layers. The layers are further connected via π–π stacking interactions between adjacent pyridine rings of the 2,2′-bipy ligands, completing a three-dimensional supramolecular structure.

  19. Microbiology of airway disease in a cohort of patients with Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Carnovale Vincenzo

    2006-01-01

    Full Text Available Abstract Background Recent reports document an increasing incidence of new Gram-negative pathogens such as Stenotrophomonas maltophilia and Alcaligenes xylosoxidans isolated from patients with Cystic Fibrosis, along with an increase in common Gram-negative pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex. Furthermore, the increase in multidrug-resistance of such organisms makes the therapeutic management of these patients more problematic. Therefore, careful isolation and identification, and accurate studies of susceptibility to antibiotics are critical for predicting the spread of strains, improving therapeutic measures and facilitating our understanding of the epidemiology of emerging pathogens. The first aim of this study was to determine the incidence and the prevalence of colonization by Gram-negative organisms isolated from respiratory samples of Cystic Fibrosis patients in the Regional Referral Cystic Fibrosis Centre of Naples; the second was to evaluate the spectrum of multidrug-resistance of these organisms. Methods Patients (n = 300 attending the Regional Cystic Fibrosis Unit were enrolled in this study over 3 years. Sputum was processed for microscopic tests and culture. An automated system, Phoenix (Becton Dickinson, Sparks, Maryland, USA, was used for phenotypic identification of all strains; the API 20 NE identification system (bioMérieux, Marcy l'Etoile, France was used when the identification with the Phoenix system was inaccurate. A PCR-RFLP method was used to characterize the organisms in the Burkholderia cepacia complex. A chemosusceptibility test on microbroth dilutions (Phoenix was used. Primary outcomes such as FEV1 were correlate with different pathogens. Results During the period of study, 40% of patients was infected by Pseudomonas aeruginosa, 7% by Burkholderia cepacia complex, 11% by Stenotrophomonas maltophilia and 7% by Alcaligenes xylosoxidans. Of the strains isolated, 460 were multidrug

  20. Paenalcaligenes suwonensis sp. nov., isolated from spent mushroom compost.

    Science.gov (United States)

    Moon, Ji-Young; Lim, Jun-Muk; Ahn, Jae-Hyung; Weon, Hang-Yeon; Kwon, Soon-Wo; Kim, Soo-Jin

    2014-03-01

    A bacterial strain, ABC02-12(T), was isolated from spent mushroom compost, a waste product of button mushroom cultivation. Cells of the strain were Gram-stain-negative, catalase- and oxidase-positive, non-spore-forming, aerobic flagellated rods. Optimum growth occurred at 28 °C and pH 7.0. 16S rRNA gene sequence analysis showed that strain ABC02-12(T) shared the highest sequence similarities with Paenalcaligenes hominis CCUG 53761A(T) (96.0 %), Alcaligenes faecalis subsp. parafaecalis G(T) (95.7 %), Alcaligenes faecalis subsp. faecalis IAM 12369(T) (95.4 %) and Pusillimonas noertemannii BN9(T) (95.3 %). According to the phylogenetic tree, strain ABC02-12(T) formed a robust cluster with Paenalcaligenes hominis CCUG 53761A(T) and Paenalcaligenes hermetiae KBL009(T). The quinone system was ubiquinone Q-8 with minor amounts of Q-7. The major fatty acids (>5 % of total fatty acids) were C16 : 0, C16 : 1ω6c and/or C16 : 1ω7c (summed feature 3), C18 : 1ω7c and/or C18 : 1ω6c (summed feature 8), C17 : 0 cyclo, and iso-C16 : 1 I, C14 : 0 3-OH and/or an unknown fatty acid (summed feature 2). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unknown aminolipid. Putrescine was the principal polyamine, with small amounts of 2-hydroxyputrescine and cadaverine. On the basis of the evidence presented in this study, strain ABC02-12(T) is a representative of a novel species within the genus Paenalcaligenes, for which the name Paenalcaligenes suwonensis sp. nov. is proposed. The type strain is ABC02-12(T) ( = KACC 16537(T) = NBRC 108927(T)).

  1. Molecular characterization and susceptibility to antimicrobial drugs of isolated bacterials from shrimps (“Litopenaeus vannamei” Caracterização molecular e susceptibilidade aos antimicrobianos de isolados bacterianos de camarões

    Directory of Open Access Journals (Sweden)

    Ricardo Castelo Branco Albinati

    2010-06-01

    Full Text Available The objective was to isolate bacteria from gut of shrimps from Litopenaeus vannamei, by biochemical characterization and molecular identification, inhibition activity in vitro of Bacillus cereus and sensitivity pattern determination. The bacterial species isolated were: Aeromonas caviae (n = 7, Alcaligenes denitrificans (n = 1, Bacillus cereus (n = 1 and Enterobacter spp. (n = 3. Bacillus cereus isolated in this study did not have inhibitory activity to other shrimps isolated bacteria evaluated. In the susceptibility to antimicrobial drug test, it were observed 68,7% to erythromycin, 50% to tetracycline, 81,2% to trimethoprim:sulfamethoxazole, neomycin and estreptomycin, 12,5% to lincomycin and ampicillin, 87,5% to enrofloxacin and nitrofurantoin, 93,7% to ceftriaxone, 100% to norfloxacin and nalidix acid. The characterization molecular is important on identifying the microrganisms studied. The nalidixic acid and norfloxacin are antimicrobial drugs with high sensitivity for bacteria isolated from shrimps.Objetivou-se isolar bactérias provenientes do trato intestinal de camarões da espécie Litopenaeus vannamei, por meio da caracterização bioquímica e molecular, atividade de inibição in vitro do Bacillus cereus e perfil de sensibilidade aos antimicrobianos. As espécies bacterianas identificadas foram Aeromonas caviae (n = 7, Alcaligenes denitrificans (n = 1, Bacillus cereus (n = 1 e Enterobacter spp. (n = 3. Bacillus cereus obtido neste estudo não apresentou atividade de inibição frente às demais bactérias isoladas de camarões. Quanto ao perfil de sensibilidade aos antimicrobianos, foram observados 68,7% de eritromicina, 50% de tetraciclina, 81,2% de sulfametoxazol/trimetoprina, neomicina e estreptomicina, 12,5% de lincomicina e ampicilina, 87,5% de enrofloxacina e nitrofurantoína, 93,7% de ceftriaxona, 100% de norfloxacina e ácido nalidíxico. A caracterização molecular é útil para identificação dos microrganismos estudados

  2. Far from superficial: microbial diversity associated with the skin and mucus of fish

    Science.gov (United States)

    Cipriano, Rocco C.; Dove, Alistair; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    During horizontal or water-borne infection involving an obligate pathogen (e.g. – Aeromonas salmonicida, cause of furunculosis), the pathogen interacted with and influenced the microbial diversity of the dermal mucus of fish. Prior to infection, the prevalent bacterial flora cultured from juvenile Atlantic salmon (Salmo salar) included Pseudomonas fluorescens, Comomonas terrigenia, Acinetobacter sp., Moraxella sp., Pseudomonas dimunita, Alcaligenes denitrificans, Pseudomonas pseudoalcaligenes, and Pseudomonas alcaligenes, Serratia liquefaciens, Aeromonas hydrophila, other motile Aeromonas spp., and Corynebacterium aquaticum. After A. salmonicida was initially detected in this population as an external mucus infection, Acinetobacter sp., Moraxella sp., C. terrigenia, P. fluorescens, and P. dimunita, Staphylococcus sp., and A. hydrophila, were also present in appreciable numbers. Within several weeks, however, the A. salmonicida infection amplified and composed 78% of the total flora in the mucus. Only P. dimunita (4%). P. fluorescens (2%), and C. terrigenia (1%) were cultured at that time and more than a third of these fish showed evidence of a systemic A. salmonicida infection within their kidneys. Eight weeks after oral oxytetracycline treatments, A. salmonicida was no longer isolated from the mucus or kidneys of any fish and glucose inert or other oxidative microbes (e.g., P. fluorescens, C. terrigenia, Acinetobacter sp., Moraxella sp.) were beginning to repopulate the external surface of the salmon in increasing frequency. Still present and composing fairly large percentages of the total flora were A. hydrophila, as well as Enterobacter sp., and P. putrefaciens. A normal microbial diversity was re-established as the fish recovered. In another investigation, reduced biological diversity was noted in the dermal mucus among smallmouth bass that were sampled from the Jackson River (Covington, VA). In these fish, A. hydrophila and P. putrefaciens were the two

  3. Application of a constructed wetland system for polluted stream remediation

    Science.gov (United States)

    Tu, Y. T.; Chiang, P. C.; Yang, J.; Chen, S. H.; Kao, C. M.

    2014-03-01

    In 2010, the multi-function Kaoping River Rail Bridge Constructed Wetland (KRRBW) was constructed to improve the stream water quality and rehabilitate the ecosystem of the surrounding environment of Dashu Region, Kaohsiung, Taiwan. The KRRBW consists of five wetland basins with a total water surface area of 15 ha, a total hydraulic retention time (HRT) of 10.1 days at a averaged flow rate of 14 740 m3/day, and an averaged water depth of 1.1 m. The influent of KRRBW coming from the local drainage systems containing untreated domestic, agricultural, and industrial wastewaters. Based on the quarterly investigation results of water samples taken in 2011-2012, the overall removal efficiencies were 91% for biochemical oxygen demand (BOD), 75% for total nitrogen (TN), 96% for total phosphorus (TP), and 99% for total coliforms (TC). The calculated first-order decay rates for BOD, TN, TP, NH3-N, and TC ranged from 0.14 (TN) to 0.42 (TC) 1/day. This indicates that the KRRBW was able to remove organics, TC, and nutrients effectively. The high ammonia/nitrate removal efficiency indicates that nitrification and denitrification processes occurred simultaneously in the wetland system, and the detected nitrite concentration confirmed the occurrence of denitrification/nitrification. Results from sediment analyses reveal that the sediment contained high concentrations of organics (sediment oxygen demand = 1.9-5.2 g O2/m2 day), nutrients (up to 15.8 g total nitrogen/kg of sediment and 1.48 g total phosphorus/kg of sediment), and metals (up to 547 mg/kg of Zn and 97 mg/kg of Cu). Appropriate wetland management strategies need to be developed to prevent the release of contaminants into the wetland system. The wetland system caused the variations in the microbial diversities and dominant microbial bacteria. Results show the dominant nitrogen utilization bacteria including Denitratisoma oestradiolicum, Nitrosospira sp., Nitrosovibrio sp., D. oestradiolicum, Alcaligenes sp

  4. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut

    Energy Technology Data Exchange (ETDEWEB)

    Lapanje, Ales, E-mail: ales@ifb.s [Institute of Physical Biology, Ljubljana (Slovenia); Zrimec, Alexis [Institute of Physical Biology, Ljubljana (Slovenia); Drobne, Damjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana (Slovenia); Rupnik, Maja [Institute of Public Health Maribor, Maribor (Slovenia)

    2010-10-15

    In previous studies we detected lower species richness and lower Hg sensitivity of the bacteria present in egested guts of Porcellio scaber (Crustacea, Isopoda) from chronically Hg polluted than from unpolluted environment. Basis for such results were further investigated by sequencing of 16S rRNA genes of mercury-resistant (Hg{sup r}) isolates and clone libraries. We observed up to 385 times higher numbers of Hg{sup r} bacteria in guts of animals from polluted than from unpolluted environment. The majority of Hg{sup r} strains contained merA genes. Sequencing of 16S rRNA clones from egested guts of animals from Hg-polluted environments showed elevated number of bacteria from Pseudomonas, Listeria and Bacteroidetes relatives groups. In animals from pristine environment number of bacteria from Achromobacter relatives, Alcaligenes, Paracoccus, Ochrobactrum relatives, Rhizobium/Agrobacterium, Bacillus and Microbacterium groups were elevated. Such bacterial community shifts in guts of animals from Hg-polluted environment could significantly contribute to P. scaber Hg tolerance. - Chronic environmental mercury pollution induces bacterial community shifts and presence of elevated number as well as increased diversity of Hg-resistant bacteria in guts of isopods.

  5. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature.

    Science.gov (United States)

    Yuan, Yue; Liu, Ye; Li, Baikun; Wang, Bo; Wang, Shuying; Peng, Yongzhen

    2016-07-01

    Sludge alkaline fermentation has been reported to achieve efficient short-chain fatty acids (SCFAs) production. Temperature played important role in further improved SCFAs production. Long-term SCFAs production from sludge alkaline fermentation was compared between mesotherm (30±2°C) and microtherm (15±2°C). The study of 90days showed that mesotherm led to 2.2-folds production of SCFAs as microtherm and enhanced the production of acetic acid as major component of SCFAs. Soluble protein and carbohydrate at mesotherm was 2.63-folds as that at microtherm due to higher activities of protease and α-glucosidase, guaranteeing efficient substrates to produce SCFAs. Illumina MiSeq sequencing revealed that microtherm increased the abundance of Corynebacterium, Alkaliflexus, Pseudomonas and Guggenheimella, capable of enhancing hydrolysis. Hydrolytic bacteria, i.e. Alcaligenes, Anaerolinea and Ottowia, were enriched at mesotherm. Meanwhile, acidogenic bacteria showed higher abundance at mesotherm than microtherm. Therefore, enrichment of functional bacteria and higher microbial activities resulted in the improved SCFAs at mesotherm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Isolation, molecular and biochemical characterization of oil degrading bacteria from contaminated soil at an oil refinery

    International Nuclear Information System (INIS)

    AL-Deeb, T.M.; Malkawi, H.I.

    2009-01-01

    Biodegradation using microorganisms is considered to be cost-effective and environmentally friendly treatment of oil-contaminated sites. Oil-biodegrading bacterial strains were isolated, identified and characterized from oil contaminated soil samples at oil refinery in Zarqa (Jordan). Thirty four bacterial isolates were grown on mineral salt media supplemented with crude oil, but 16 showed positive biodegradation of diesel. All the 34 bacterial isolates were characterized at the molecular and bio-chemical levels, and showed positive polymerase chain reaction (PCR) amplification product size of 1500 bp when 16s rDNA bacterial universal primers were used. Eighteen bacterial isolates showed positive PCR amplification product size of 150 bp specific for the genus Pseudomonas and 3 bacterial isolates showed positive amplification product size of 1500 bp specific for the genus Acinetobacter. Biochemical and physiological characterization performed on the 34 bacterial isolates revealed the presence of oil biodegrading bacterial genera and species of Pseudomonas Acidovorans, P. aeruginosa, P. vesicularis, Acinetobacter calcoaceticus, Ac. lowffii, Micro-ococcus luteus, M. varians, M. lylae, M. roseus, Alcaligenes denitrificians, Bacillus megaterium, Comamonas sp., Moralxella sp., Bordetella sp., P. putida, P. stutzeri and P. mallei. (au)

  7. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Felfoldi, T.; Szekely, A.J.; Goral, R.; Barkacs, K.; Scheirich, G.; Andras, J.; Racz, A.; Marialigeti, K. [Eotvos Lorand University, Budapest (Hungary). Dept. of Microbiology

    2010-05-15

    Biological purification processes are effective tools in the treatment of hazardous wastes such as toxic compounds produced in coal coking. In this study, the microbial community of a lab-scale activated sludge system treating coking effluent was assessed by cultivation-based (strain isolation and identification, biodegradation tests) and culture-independent techniques (sequence-aided T-RFLP, taxon-specific PCR). The results of the applied polyphasic approach showed a simple microbial community dominated by easily culturable heterotrophic bacteria. Comamonas badia was identified as the key microbe of the system, since it was the predominant member of the bacterial community, and its phenol degradation capacity was also proved. Metabolism of phenol, even at elevated concentrations (up to 1500 mg/L), was also presented for many other dominant (Pseudomonas, Rhodanobacter, Oligella) and minor (Alcaligenes, Castellaniella, Microbacterium) groups, while some activated sludge bacteria (Sphingomonas, Rhodopseudomonas) did not tolerate it even in lower concentrations (250 mg/L). In some cases, closely related strains showed different tolerance and degradation properties. Members of the genus Thiobacillus were detected in the activated sludge, and were supposedly responsible for the intensive thiocyanate biodegradation observed in the system. Additionally, some identified bacteria (e.g. C. badia and the Ottowia-related strains) might also have had a significant impact on the structure of the activated sludge due to their floc-forming abilities.

  8. Pyruvic oxime nitrification and copper and nickel resistance by a Cupriavidus pauculus, an active heterotrophic nitrifier-denitrifier.

    Science.gov (United States)

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3-C(NOH)-COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu(2+) and Ni(2+) and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu(2+) or 0.5 mM Ni(2+) was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu(2+) or 0.5 mM Ni(2+). The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  9. The Impact of Alkaliphilic Biofilm Formation on the Release and Retention of Carbon Isotopes from Nuclear Reactor Graphite.

    Science.gov (United States)

    Rout, S P; Payne, L; Walker, S; Scott, T; Heard, P; Eccles, H; Bond, G; Shah, P; Bills, P; Jackson, B R; Boxall, S A; Laws, A P; Charles, C; Williams, S J; Humphreys, P N

    2018-03-13

    14 C is an important consideration within safety assessments for proposed geological disposal facilities for radioactive wastes, since it is capable of re-entering the biosphere through the generation of 14 C bearing gases. The irradiation of graphite moderators in the UK gas-cooled nuclear power stations has led to the generation of a significant volume of 14 C-containing intermediate level wastes. Some of this 14 C is present as a carbonaceous deposit on channel wall surfaces. Within this study, the potential of biofilm growth upon irradiated and 13 C doped graphite at alkaline pH was investigated. Complex biofilms were established on both active and simulant samples. High throughput sequencing showed the biofilms to be dominated by Alcaligenes sp at pH 9.5 and Dietzia sp at pH 11.0. Surface characterisation revealed that the biofilms were limited to growth upon the graphite surface with no penetration of the deeper porosity. Biofilm formation resulted in the generation of a low porosity surface layer without the removal or modification of the surface deposits or the release of the associated 14 C/ 13 C. Our results indicated that biofilm formation upon irradiated graphite is likely to occur at the pH values studied, without any additional release of the associated 14 C.

  10. Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa.

    Science.gov (United States)

    Iqbal, Aneela; Arshad, Muhammad; Hashmi, Imran; Karthikeyan, Raghupathy; Gentry, Terry J; Schwab, Arthur Paul

    2017-06-13

    The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L -1 ; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L -1 . Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L -1 . However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L -1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10 -2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10 -2  h -1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.

  11. Detection and isolation of novel rhizopine-catabolizing bacteria from the environment

    Science.gov (United States)

    Gardener; de Bruijn FJ

    1998-12-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 10(6) and 10(7) catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the known mocA, mocB, and mocC genes of Sinorhizobium meliloti L5-30. Twenty-one of the isolates could utilize an SI preparation as the sole carbon and nitrogen source for growth. Partial sequencing of 16S ribosomal DNAs (rDNAs) amplified from these strains indicated that five distinct bacterial genera (Arthrobacter, Sinorhizobium, Pseudomonas, Aeromonas, and Alcaligenes) were represented in this set. Only 6 of these 21 isolates could catabolize 3-O-methyl-scyllo-inosamine under standard assay conditions. Two of these, strains D1 and R3, were found to have 16S rDNA sequences very similar to those of Sinorhizobium meliloti. However, these strains are not symbiotically effective on Medicago sativa, and DNA sequences homologous to the nodB and nodC genes were not detected in strains D1 and R3 by Southern hybridization analysis.

  12. Pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes.

    Science.gov (United States)

    Horn, Suranie; Pieters, Rialet; Bezuidenhout, Carlos

    2016-12-01

    Evidence suggests that heterotrophic plate count (HPC) bacteria may be hazardous to humans with weakened health. We investigated the pathogenic potential of HPC bacteria from untreated borehole water, consumed by humans, for: their haemolytic properties, the production of extracellular enzymes such as DNase, proteinase, lipase, lecithinase, hyaluronidase and chondroitinase, the effect simulated gastric fluid has on their survival, as well as the bacteria's antibiotic-susceptible profile. HuTu-80 cells acted as model for the human intestine and were exposed to the HPC isolates to determine their effects on the viability of the cells. Several HPC isolates were α- or β-haemolytic, produced two or more extracellular enzymes, survived the SGF treatment, and showed resistance against selected antibiotics. The isolates were also harmful to the human intestinal cells to varying degrees. A novel pathogen score was calculated for each isolate. Bacillus cereus had the highest pathogen index: the pathogenicity of the other bacteria declined as follows: Aeromonas taiwanensis > Aeromonas hydrophila > Bacillus thuringiensis > Alcaligenes faecalis > Pseudomonas sp. > Bacillus pumilus > Brevibacillus sp. > Bacillus subtilis > Bacillus sp. These results demonstrated that the prevailing standards for HPCs in drinking water may expose humans with compromised immune systems to undue risk.

  13. IDENTIFICATION AND BIOLOGICAL ACTIVITY OF POTENTIAL PROBIOTIC BACTERIA ISOLATED FROM POECILIA RETICULATA (GUPPY

    Directory of Open Access Journals (Sweden)

    Aparna Balakrishna

    2014-08-01

    Full Text Available Antagonistic activities against candidate indicator strains, adhesion to mucus and biofilm formation of potential probiotic strains isolated from Poecilia reticulata were evaluated. Four isolated strains (MBTU_PB1, MBTU_PB2, MBTU_PB3 and MBTU_PB4 showed moderate to strong antagonistic activities against the tested five indicator strains (Aeromonas hydrophila1739, Vibrio cholera 3906, Flavobacterium 2495, Acinetobacter 1271 and Alcaligenes 1424 and these isolates were further identified using biochemical tests and 16S rDNA gene sequence analysis. Except the whole cell product, the other three cellular components, namely, heat-killed whole cell product, intracellular product and extracellular product of all the four selected isolates were equally effective, as revealed by the zone of inhibitions to the tested indicator strains. The in vitro adhesion property or the ability of colonization is often considered as a selection criteria for probiotics. All the selected four strains had higher adhesion abilities than the indicator strains. Further, these four strains had the ability to form biofilms on polystyrene surfaces. The in vitro characterization of these four strains suggests possibility of using the isolates, as individual strain or in combination, for probiotic therapy in aquaculture.

  14. Permanent burying method for product

    International Nuclear Information System (INIS)

    Sakai, Goro; Sakata, Noboru; Hironaka, Yoshikazu; Shigematsu, Kazuo; Yurugi, Masahiro; Minami, Masayoshi; Yoshisaki, Masato.

    1995-01-01

    In a method of permanently burying an object by filling and solidifying a cement mortar in gaps between each of objects to be buried underground, cement mortar is filled into gaps, which comprises water at a unit amount determined as from 200 to 250kg/m 3 , a cement at low water/cement ratio (%) of from 70 to 400%, and contains fine powder having an average grain size of not greater than 100μm (not containing cement) of 50 to 800kg/m 3 , fine aggregates of 800 to 1200kg/m 3 , UERAN gum (a bio-gum powder produced by aerobic fermentation of alcaligenes-bacteria) of 20g/m 3 to 1.3kg/m 3 , a dispersing agent of 0 to 40kg/m 3 , a swelling agent of 0 to 40kg/m 3 . Then if the mortar blended with the UERAN gum is injected, any gaps can be filled tightly, no breeding is caused and since the amount of cement is small, it does not suffer from temperature cracking. Therefore, the state of filling is kept permanently, and environmental pollution caused by radioactive wastes can be prevented. (N.H.)

  15. Proteasas extracelulares producidas por bacterias marinas aisladas de aguas contaminadas con efluentes pesqueros

    Directory of Open Access Journals (Sweden)

    Tito Sánchez

    2013-06-01

    Full Text Available Un total de 26 cepas de bacterias marinas con actividad proteolítica fueron aisladas de agua de mar contaminadas con efluentes pesqueros; las mismas que se evaluaron en base al crecimiento y formación de halos de actividad en Agar Marino suplementados con caseína al 1%, pH 8,0 e incubados a 25 ºC por 72 h. Cinco cepas, seleccionadas por presentar los mejores halos de actividad fueron evaluadas a su vez por su crecimiento y producción de proteasas a diferentes concentraciones de NaCl, rangos de temperatura y pH; siendo consideradas finalmente como bacterias halotolerantes, psicrotróficas y alcalófilas moderadas. Estas cepas también fueron evaluadas por su actividad proteolítica específica sobre la caseína, siendo la cepa CM48 (Pseudomonas sp. la que presentó la mejor actividad específica (17,38 U/mg a las 72 horas, y seguidas por las cepas CM45 (Alcaligenes sp. (12,09 U/mg y tres cepas de Aeromonas sp. (CM43, CM44 y CM46 con valores de 12,02; 10,07 y 10,10 U/mg respectivamente.

  16. Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens?

    Directory of Open Access Journals (Sweden)

    Luis A. Ramírez-Camejo

    2017-01-01

    Full Text Available Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health.

  17. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae

    Directory of Open Access Journals (Sweden)

    Schneiker-Bekel Susanne

    2008-09-01

    Full Text Available Abstract Background Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. Results In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. Conclusion The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.

  18. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing.

    Science.gov (United States)

    Uhlik, Ondrej; Jecna, Katerina; Mackova, Martina; Vlcek, Cestmir; Hroudova, Miluse; Demnerova, Katerina; Paces, Vaclav; Macek, Tomas

    2009-10-01

    DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.

  19. Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and black shale samples

    International Nuclear Information System (INIS)

    Sajjad, W.; Bhatti, T. M.; Hasan, F.; Khan, S.; Badshah, M.

    2016-01-01

    Acid mine drainage (AMD) and black shale (BS) are the main habitats of sulfur-oxidizing bacteria. The aim of this study was to isolate and characterize sulfur-oxidizing bacteria from extreme acidic habitats (AMD and BS). Concentration of metals in samples from AMD and BS varied significantly from the reference samples and exceeded the acceptable limits set by the Environmental Protection Agency (EPA) and the World Health Organization (WHO). A total of 24 bacteria were isolated from these samples that were characterized both morphologically as well as through biochemical tests. All the bacteria were gram-negative rods that could efficiently oxidize sulfur into sulfate ions (SO/sub 4/-2), resulted into decrease in pH up to 1.0 when grown in thiosulfate medium with initial pH 4.0. Out of 24, only 06 isolates were selected for phylogenetic analysis through 16S rRNA sequencing, on the basis of maximum sulfur-oxidizing efficiency. The isolates were identified as the species from different genera such as Alcaligenes, Pseudomonas, Bordetella, and Stenotrophomonas on the basis of maximum similarity index. The concentration of sulfate ions produced was estimated in the range of 179-272 mg/L. These acidophiles might have various potential applications such as biological leaching of metals from low-grade ores, alkali soil reclamation and to minimize the use of chemical S-fertilizers and minimize environmental pollution. (author)

  20. Development of microbial consortium for the biodegradation and biodecolorization of textile effluents

    Directory of Open Access Journals (Sweden)

    Rajendra Ramasany

    2012-06-01

    Full Text Available In the current study three bacterial species (Bacillus sp., Pseudomonas sp., and Alcaligenes sp. and two fungal species (Aspergillus sp., and Penicillium sp. screened from 265 bacterial isolates and 35 fungal isolates respectively, were used in 23 different combinations for the biotreatment of textile waste water collected from Karur, Tiruppur and Coimbatore districts under aerated conditions. The chemical oxygen demand (COD, total solids (TS total dissolved solids (TDS & total suspended solids (TSS, hardness, and color intensity of the textile effluent was found to be very high than the permissible limits before treatment. After treatment one particular combination was capable of reducing the COD of the effluent sample by 75%. About five combinations of microbes efficiently reduced the color of the effluent by more than 50%. Another combination was found to be the most effective in the reduction of TS and TDS by 90% and 69%, respectively. Though there was no drastic change in the pH of the sample, it was not of great concern as the pH of the sample was well within the permissible limits for the discharge of the wastewater in to natural sources after treatment.

  1. DEVELOPMENT OF MICROBIAL CONSORTIUM FOR THE BIODEGRADATION AND BIODECOLORIZATION OF TEXTILE EFFLUENTS

    Directory of Open Access Journals (Sweden)

    Rajendra Ramasany

    2012-01-01

    Full Text Available In the current study three bacterial species (Bacillus sp., Pseudomonas sp., and Alcaligenes sp. and two fungal species (Aspergillus sp., and Penicillium sp. screened from 265 bacterial isolates and 35 fungal isolates respectively, were used in 23 different combinations for the biotreatment of textile waste water collected from Karur, Tiruppur and Coimbatore districts under aerated conditions. The chemical oxygen demand (COD, total solids (TS total dissolved solids (TDS & total suspended solids (TSS, hardness, and color intensity of the textile effluent was found to be very high than the permissible limits before treatment. After treatment one particular combination was capable of reducing the COD of the effluent sample by 75%. About five combinations of microbes efficiently reduced the color of the effluent by more than 50%. Another combination was found to be the most effective in the reduction of TS and TDS by 90% and 69%, respectively. Though there was no drastic change in the pH of the sample, it was not of great concern as the pH of the sample was well within the permissible limits for the discharge of the wastewater in to natural sources after treatment.

  2. Characterization and biodegradation of polycyclic aromatic hydrocarbons in radioactive wastewater

    International Nuclear Information System (INIS)

    Tikilili, Phumza V.; Nkhalambayausi-Chirwa, Evans M.

    2011-01-01

    Highlights: → Biodegradation of recalcitrant toxic organics under radioactive conditions. → Biodegradation of PAHs of varying size and complexity in mixed waste streams. → Validation of radiation-tolerance and performance of the isolated organisms. - Abstract: PAH degrading Pseudomonad and Alcaligenes species were isolated from landfill soil and mine drainage in South Africa. The isolated organisms were mildly radiation tolerant and were able to degrade PAHs in simulated nuclear wastewater. The radiation in the simulated wastewater, at 0.677 Bq/μL, was compatible to measured values in wastewater from a local radioisotope manufacturing facility, and was enough to inhibit metabolic activity of known PAH degraders from soil such as Pseudomonas putida GMP-1. The organic constituents in the original radioactive waste stream consisted of the full range of PAHs except fluoranthene. Among the observed PAHs in the nuclear wastewater from the radioisotope manufacturing facility, acenaphthene and chrysene predominated-measured at 25.1 and 14.2 mg/L, respectively. Up to sixteen U.S.EPA priority PAHs were detected at levels higher than allowable limits in drinking water. The biodegradation of the PAHs was limited by the solubility of the compounds. This contributed to the observed faster degradation rates in low molecular weight (LMW) compounds than in high molecular weight compounds.

  3. Nonspecific Bacterial Flora Isolated from the Body Surface and Inside Ixodes ricinus Ticks.

    Science.gov (United States)

    Okła, Hubert; Sosnowska, Malwina; Jasik, Krzysztof P; Słodki, Jan; Wojtyczka, Robert D

    2012-09-28

    Ixodes ricinus and other representatives of the order Ixodida are vectors of typical pathogens: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilium, Babesia spp., a tick-borne encephalitis virus, and other microorganisms which are important from a medical and veterinary point of view. The presented study focuses on the verification of nonspecific bacterial flora of I. ricinus. We analyzed ticks collected in a forest region in Silesia, an industrial district in Poland. Methods of classical microbiology and biochemical assays (API 20 NE test, API Staph test and MICRONAUT System) were used for isolation and identification of microorganisms living on the body surface of I. ricinus and inside ticks. The results show the presence of various bacteria on the surface and inside ticks' bodies. During the study, we isolated Acinetobacter lwoffi, Pseudomonas fluorescens, Aeromonas hydrophila, Achromobacter denitrificans, Alcaligenes faecalis, Stenotrophomonas maltophilia, Pseudomonas oryzihabitans, Micrococcus spp., Kocuria varians, Staphylococcus lentus, Kocuria kristinae, Streptococcus pneumoniae, Rhizobium radiobacter, Staphylococcus xylosus. Majority of the isolated species are non-pathogenic environmental microorganisms, but some of the isolated bacterial strains could cause severe infections.

  4. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis.

    Science.gov (United States)

    Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang

    2011-06-01

    Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.

  5. Effects of associated bacteria on the pathogenicity and reproduction of the insect-parasitic nematode Rhabditis blumi (Nematoda: Rhabditida).

    Science.gov (United States)

    Park, Hae Woong; Kim, Yong Ook; Ha, Jae-Seok; Youn, Sung Hun; Kim, Hyeong Hwan; Bilgrami, Anwar L; Shin, Chul Soo

    2011-09-01

    Three bacteria, Alcaligenes faecalis , Flavobacterium sp., and Providencia vermicola , were isolated from dauer juveniles of Rhabditis blumi . The pathogenic effects of the bacteria against 4th instar larvae of Galleria mellonella were investigated. Providencia vermicola and Flavobacterium sp. showed 100% mortality at 48 h after haemocoelic injection, whereas A. faecalis showed less than 30% mortality. Dauer juveniles showed 100% mortality against G. mellonella larvae, whereas axenic juveniles, which do not harbor associated bacteria, exhibited little mortality. All of the associated bacteria were used as a food source for nematode growth, and nematode yield differed with bacterial species. Among the bacterial species, P. vermicola was most valued for nematode yield, showing the highest yield of 5.2 × 10(4) nematodes/mL in the plate. In bacterial cocultures using two of the three associated bacteria, one kind stimulated the other. The highest total bacterial yield of 12.6 g/L was obtained when the inoculum ratio of P. vermicola to A. faecalis was 10:1. In air-lift bioreactors, the nematode growth rate increased with an increasing level of dissolved oxygen. The maximum nematode yield of 1.75 × 10(5) nematodes/mL was obtained at 192 h with an aeration rate of 6 vvm.

  6. Synthesis of Symmetrical and Asymmetrical Azines Encompassing Naphtho[2,1-b]furan by a Novel Approach

    Directory of Open Access Journals (Sweden)

    K. Veena

    2011-01-01

    Full Text Available The starting material 3-nitro-2-acetylnaphtho[2,1-b]furan (2 was obtained by nitration of 2-acetylnaphtho[2,1-b] furan (1, under mild condition. The compound 1 was synthesized by the reaction of 2-hydroxy-1-naphthaldehyde with chloroacetone, where in both condensation and cyclization took place in single step. The reaction of 3-nitro-2-acetylnaphtho[2,1-b]furan (2 with hydrazine hydrate produced corresponding hydrazone (3 in excellent yield, which on treatment with various aromatic aldehydes under different reaction conditions resulted in the formation of symmetrical azines (4a-e and unsymmetrical azines (5a-e. All the newly synthesized compounds have been characterized by analytical and spectral studies and were screened for antibacterial antibacterial activity against Bacillus subtilus and Alcaligenes fecalies and antifungal activity against Aspergillus nidulans, Aspergillus parasiticus and Aspergillus terrus. The Second Harmonic Generation (SHG efficiency of some of the synthesized compounds was measured by powder technique using Nd:YAG laser.

  7. Diuron degradation by bacteria from soil of sugarcane crops

    Directory of Open Access Journals (Sweden)

    Tassia C. Egea

    2017-12-01

    Full Text Available The isolation of microorganisms from soil impacted by xenobiotic chemicals and exposing them in the laboratory to the contaminant can provide important information about their response to the contaminants. The purpose of this study was to isolate bacteria from soil with historical application of herbicides and to evaluate their potential to degrade diuron. The isolation media contained either glucose or diuron as carbon source. A total of 400 bacteria were isolated, with 68% being Gram-positive and 32% Gram-negative. Most isolates showed potential to degrade between 10 and 30% diuron after five days of cultivation; however Stenotrophomonas acidophila TD4.7 and Bacillus cereus TD4.31 were able to degrade 87% and 68%, respectively. The degradation of diuron resulted in the formation of the metabolites DCPMU, DCPU, DCA, 3,4-CAC, 4-CA, 4-CAC and aniline. Based on these results it was proposed that Pseudomonas aeruginosa TD2.3, Stenotrophomonas acidaminiphila TD4.7, B. cereus TD4.31 and Alcaligenes faecalis TG 4.48, act on 3,4-DCA and 4-CA by alkylation and dealkylation while Micrococcus luteus and Achromobacter sp follow dehalogenation directly to aniline. Growth on aniline as sole carbon source demonstrates the capacity of strains to open the aromatic ring. In conclusion, the results show that the role of microorganisms in the degradation of xenobiotics in the environment depends on their own metabolism and also on their synergistic interactions.

  8. Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment.

    Science.gov (United States)

    Qiu, Guanglei; Song, Yong-Hui; Zeng, Ping; Duan, Liang; Xiao, Shuhu

    2013-08-01

    Biodegradation of berberine antibiotic was investigated in upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process. After 118days of operation, 99.0%, 98.0% and 98.0% overall removals of berberine, COD and NH4(+)-N were achieved, respectively. The detailed composition of the established bacterial communities was studied by using 16S rDNA clone library. Totally, 400 clones were retrieved and grouped into 186 operational taxonomic units (OTUs). UASB was dominated by Firmicutes and Bacteroidetes, while Proteobacteria, especially Alpha- and Beta-proteobacteria were prevalent in the MBRs. Clostridium, Eubacterium and Synergistes in the UASB, as well as Hydrogenophaga, Azoarcus, Sphingomonas, Stenotrophomonas, Shinella and Alcaligenes in the MBRs were identified as potential functional species in biodegradation of berberine and/or its metabolites. The bacterial community compositions in two MBRs were significantly discrepant. However, the identical functions of the functional species ensured the comparable pollutant removal performances in two bioreactors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  10. Assessment of the bacterial contamination of hand air dryer in washrooms.

    Science.gov (United States)

    Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Chinnathambi, Arunachalam; Alharbi, Naiyf S; Zayed, M E; Al-Johny, Bassam O; Wainwright, Milton

    2016-03-01

    The present study was carried out, using standard techniques, to identify and count the bacterial contamination of hand air dryers, used in washrooms. Bacteria were isolated from the air flow, outlet nozzle of warm air dryers in fifteen air dryers used in these washrooms. Bacteria were found to be relatively numerous in the air flows. Bacterially contaminated air was found to be emitted whenever a warm air dryer was running, even when not being used for hand drying. Our investigation shows that Staphylococcus haemolyticus, Micrococcus luteus, Pseudomonas alcaligenes, Bacillus cereus and Brevundimonad diminuta/vesicularis were emitted from all of the dryers sampled, with 95% showing evidence of the presence of the potential pathogen S. haemolyticus. It is concluded that hot air dryers can deposit pathogenic bacteria onto the hands and body of users. Bacteria are distributed into the general environment whenever dryers are running and could be inhaled by users and none-users alike. The results provide an evidence base for the development and enhancement of hygienic hand drying practices.

  11. Assessment of Rice Associated Bacterial Ability to Enhance Rice Seed Germination and Rice Growth Promotion

    Directory of Open Access Journals (Sweden)

    R. Gholamalizadeh

    2017-08-01

    Full Text Available ABSTRACT The application of beneficial bacteria has recently been used for sustainable agriculture. In current research, 71 bacterial isolates were obtained from rice plant and the rhizosphere soil of different paddy fields in Guilan province, Iran. After primitive investigation, 40 bacteria with typical predominant characteristics were selected. By PCR-RFLP of their 16S r-DNA gene, 8 Operational Taxonomic Units (OTUs totally consisted of 33 isolates were obtained. From all of them, 8 isolates were selected for rice seed germination experiment, then, effective isolates were used for pot experiment to evaluate their ability for promoting rice growth. All of them were able to increase rice growth and yield, but in different potential. These tested isolates were identified as Alcaligenes faecalis (DEp8, O1R4, Pantoea ananatis (AEn1, Bacillus vietnamensis (MR5, Bacillus idriensis (MR2 and Stenotrophomonas maltophilia by partial sequencing of their 16S r-DNA gene. Among them, AEn1 and MR5 produced indole-3- acetic acid (IAA in larger amounts than the other isolates and the isolates AEn1 and O1R4 were able to solubilize phosphate in higher amounts. According to the results obtained, it can be concluded that AEn1, O1R4 and MR5 can be considered as bacterial inoculants to use as alternatives for chemical fertilizers.

  12. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies.

    Science.gov (United States)

    Szulc, Alicja; Ambrożewicz, Damian; Sydow, Mateusz; Ławniczak, Łukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, Łukasz

    2014-01-01

    The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Insight into the bacterial diversity of fermentation woad dye vats as revealed by PCR-DGGE and pyrosequencing.

    Science.gov (United States)

    Milanović, Vesna; Osimani, Andrea; Taccari, Manuela; Garofalo, Cristiana; Butta, Alessandro; Clementi, Francesca; Aquilanti, Lucia

    2017-07-01

    The bacterial diversity in fermenting dye vats with woad (Isatis tinctoria L.) prepared and maintained in a functional state for approximately 12 months was examined using a combination of culture-dependent and -independent PCR-DGGE analyses and next-generation sequencing of 16S rRNA amplicons. An extremely complex ecosystem including taxa potentially contributing to both indigo reduction and formation, as well as indigo degradation was found. PCR-DGGE analyses revealed the presence of Paenibacillus lactis, Sporosarcina koreensis, Bacillus licheniformis, and Bacillus thermoamylovorans, while Bacillus thermolactis, Bacillus pumilus and Bacillus megaterium were also identified but with sequence identities lower than 97%. Dominant operational taxonomic units (OTUs) identified by pyrosequencing included Clostridium ultunense, Tissierella spp., Alcaligenes faecalis, Erysipelothrix spp., Enterococcus spp., Virgibacillus spp. and Virgibacillus panthothenicus, while sub-dominant OTUs included clostridia, alkaliphiles, halophiles, bacilli, moderately thermophilic bacteria, lactic acid bacteria, Enterobacteriaceae, aerobes, and even photosynthetic bacteria. Based on the current knowledge of indigo-reducing bacteria, it is considered that indigo-reducing bacteria constituted only a small fraction in the unique microcosm detected in the natural indigo dye vats.

  14. Polymicrobial Infection of the Cornea Due to Contact Lens Wear

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2016-04-01

    Full Text Available A 38-year-old male presented with pain and redness in his left eye. He had a history of wearing contact lenses. His ophthalmic examination revealed a large corneal ulcer with surrounding infiltrate. Cultures were isolated from the contact lenses, lens solutions, storage cases, and conjunctivae of both eyes and also corneal scrapings of the left eye. Fortified vancomycin and amikacin drops were started hourly. Culture results of conjunctivae of each eye and left cornea were positive for Pseudomonas aeruginosa; cultures from the contact lenses, lens solution and storage case of both eyes revealed Pseudomonas aeruginosa and Alcaligenes xylosoxidans. Polymerase chain reaction of the corneal scraping was positive for Acanthameoba. The topical antibiotics were changed with ones that both bacteria were sensitive to and anti-amoebic therapy was added. The patient had two recurrences following initial presentation despite intensive therapy. Keratitis occurred due to multiple pathogens; the relapsing course despite adequate therapy is potentially associated with this polymicrobial etiology.

  15. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam.

    Science.gov (United States)

    Goswami, Gunajit; Deka, Priyadarshini; Das, Pompi; Bora, Sudipta Sankar; Samanta, Ramkrishna; Boro, Robin Chandra; Barooah, Madhumita

    2017-07-01

    In this study, we report on the bacterial diversity and their functional properties prevalent in tea garden soils of Assam that have low pH (3.8-5.5). Culture-dependent studies and phospholipid fatty acid analysis revealed a high abundance of Gram-positive bacteria. Further, 70 acid-tolerant bacterial isolates characterized using a polyphasic taxonomy approach could be grouped to the genus Bacillus, Lysinibacillus, Staphylococcus, Brevundimonas, Alcaligenes, Enterobacter, Klebsiella, Escherichia, and Aeromonas. Among the 70 isolates, 47 most promising isolates were tested for their plant growth promoting activity based on the production of Indole Acetic Acid (IAA), siderophore, and HCN as well as solubilization of phosphate, zinc, and potassium. Out of the 47 isolates, 10 isolates tested positive for the entire aforesaid plant growth promoting tests and further tested for quantitative analyses for production of IAA, siderophore, and phosphate solubilization at the acidic and neutral condition. Results indicated that IAA and siderophore production, as well as phosphate solubilization efficiency of the isolates decreased significantly (P ≤ 0.05) in the acidic environment. This study revealed that low soil pH influences bacterial community structure and their functional properties.

  16. Structure of d-3-hydroxybutyrate dehydrogenase prepared in the presence of the substrate d-3-hydroxybutyrate and NAD+

    International Nuclear Information System (INIS)

    Hoque, Md Mominul; Shimizu, Satoru; Juan, Ella Czarina Magat; Sato, Yoshiteru; Hossain, Md Tofazzal; Yamamoto, Tamotsu; Imamura, Shigeyuki; Suzuki, Kaoru; Amano, Hitoshi; Sekiguchi, Takeshi; Tsunoda, Masaru; Takénaka, Akio

    2009-01-01

    The crystal structure of A. faecalisd-3-hydroxybutyrate dehydrogenase prepared in the presence of d-3-hydroxybutyrate and NAD + reveals the substrate/product-binding geometry as the first example which suggests that the catalytic reaction occurs by shuttle movements of a hydrogen negative ion from the substrate to NAD + and from NADH to the product. d-3-Hydroxybutyrate dehydrogenase from Alcaligenes faecalis catalyzes the reversible conversion between d-3-hydroxybutyrate and acetoacetate. The enzyme was crystallized in the presence of the substrate d-3-hydroxybutyrate and the cofactor NAD + at the optimum pH for the catalytic reaction. The structure, which was solved by X-ray crystallography, is isomorphous to that of the complex with the substrate analogue acetate. The product as well as the substrate molecule are accommodated well in the catalytic site. Their binding geometries suggest that the reversible reactions occur by shuttle movements of a hydrogen negative ion from the C3 atom of the substrate to the C4 atom of NAD + and from the C4 atom of NADH to the C3 atom of the product. The reaction might be further coupled to the withdrawal of a proton from the hydroxyl group of the substrate by the ionized Tyr155 residue. These structural features strongly support the previously proposed reaction mechanism of d-3-hydroxybutyrate dehydrogenase, which was based on the acetate-bound complex structure

  17. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Javadi Nobandegani

    2015-01-01

    Full Text Available Phosphate solubilizing bacteria (PSB can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang oil palm field (University Putra Malaysia. Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer in an oil palm field.

  18. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    Science.gov (United States)

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SHORT COMMUNICATION: Non-Fermenters in Human Infections with Special Reference to Acinetobacter Species in a Tertiary Care Hospital from North Karnataka, India

    Directory of Open Access Journals (Sweden)

    Prashant K. Parandekar

    2012-01-01

    Full Text Available Background: Non-fermenters are a group of aerobic non-spore forming gram negative bacilli that are either incapable of utilizingcarbohydrates as a source of energy or degrade them via oxidative rather than fermentative pathway. These are increasingly been reported from the cases of nosocomial infections. Aims and Objectives: This study was undertaken aiming to identify, characterize all nonfermenters and further study of Acinetobacterisolates. Materials and Methods: A total 116 non-fermenters isolated from various specimens obtained from the patients in tertiarycare hospital. Gram negative bacilli which failed to produce acid on Triple Sugar Iron Agar (TSI were identified by employing battery oftests. The Acinetobacter isolates were further speciated and antimicrobial susceptibility testing done by Kirby Bauer disc diffusion technique. Results: Non-fermenters isolated were Pseudomonas aerugionsa (69.8%, Acinetobacter species (18.9%,Stenotrophomonas maltophilia (4.3%, Burkholderia cepacia (3.4%, Alcaligenes fecalis (1.7% and Pseudomonas fluorescens (1.7%. Most of the isolates showed susceptibility to imipenem (86.3% whereasnone of the isolates were sensitive to cephalexin and co-trimoxazole. Conclusion: This study highlights that, after Pseudomonas aeruginosa, Acinetobacter species is the most common non-fermenter. Majority of the isolates of Acinetobacter Species were ofnosocomial origin and were multidrug resistant, which underlines the importance of proper vigilance of these infections in hospital setting.

  20. Coupling of bioaugmentation and phytoremediation to improve PCBs removal from a transformer oil-contaminated soil.

    Science.gov (United States)

    Salimizadeh, Maryam; Shirvani, Mehran; Shariatmadari, Hossein; Nikaeen, Mahnaz; Leili Mohebi Nozar, Seyedeh

    2018-06-07

    This study was carried out to assess the dissipation of 17 selected polychlorinated biphenyl (PCB i ) congeners in a transformer oil-contaminated soil using bioaugmentation with 2 PCB-degrading bacterial strains, i.e., Pseudomonas spp. S5 and Alcaligenes faecalis, assisted or not by the maize (Zea mays L.) plantation. After 5 and 10 weeks of treatment, the remaining concentrations of the target PCB i congeners in the soil were extracted and measured using GC-MS. Results showed that the bacterial augmentation treatments with Pseudomonas spp. S5 and A. faecalis led to 21.4% and 20.4% reduction in the total concentration of the target PCBs (ΣPCB i ), respectively, compared to non-bioaugmented unplanted control soil. The ΣPCB i decreased by 35.8% in the non-bioaugmented planted soil compared with the control. The greatest degradation of the PCB congeners was observed over a 10-week period in the soil inoculated with Pseudomonas spp. S5 and cultivated with maize. Under this treatment, the ΣPCB i decreased from 357 to 119 ng g -1 (66.7% lower) and from 1091 to 520 ng g -1 (52.3% lower). Overall, the results suggested that the combined application of phytoremediation and bioaugmentation was an effective technique to remove PCBs and remediate transformer oil-contaminated soils.

  1. Removal of Copper by Eichhornia crassipes and the Characterization of Associated Bacteria of the Rhizosphere System

    Directory of Open Access Journals (Sweden)

    Raisa Kabeer

    2014-06-01

    Full Text Available Excess doses of trace element contamination make conventional water treatment methods less effective and more expensive, where in alternative biotechnological applications open up new opportunities with their reduced cost and lesser impacts to the environment. In the present investigation, effectiveness of aquatic macrophyte Eichhornia crassipes was tested for the removal of copper in laboratory conditions. Water samples were collected from macrophytes natural habitat and water tubs used for growing E. crassipes and analysed along with plant tissues for Cu content. The work also characterized the associated microbiota of the rhizosphere system of the E. crassipes as well as the wetland system of its occurrence. Copper concentration of the wetland water samples ranged from 0.009 to 0.03ppm. Six bacterial genera (Acinetobacter, Alcaligenes, Bacillus, Kurthia, Listeria and Chromobacterium were represented in rhizosphere of E.crassipes and 4 bacterial genera (Acinetobacter, Bacillus, Listeria and Chromobacterium were recorded in wetland water samples. Copper resistance studies of the bacterial isolates showed that out of 26 isolates from rhizosphere and 19 strains from water samples,12 of them showed low resistance (80% of copper during 15 days experiment. Copper accumulation was found to be high in the root followed by leaf and petiole. Results of the present study concluded that E. crassipes is an efficient plant for the removal of copper.

  2. Magnesium and iron nanoparticles production using microorganisms and various salts

    Science.gov (United States)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  3. Survey of bacterial contamination of environment of swimming pools in Yazd city, in 2013

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2015-09-01

    Full Text Available Background: Infections are readily transmitted as a result of bacterial contamination of swimming pools. Therefore, hygiene and preventing the contamination of swimming pools is of particular importance. The objective of this study was to determine the amount of bacterial contamination in indoor pools of Yazd in 2013. Methods: In this descriptive and analytical study, all indoor swimming pools of Yazd (12 pools were evaluated during the spring and summer of 2013, in terms of bacterial contamination. In order to determine contamination, a sterile cotton swab was used for sampling. On average, 45 samples were taken from different surfaces in each pool (shower, dressing room, sitting places in sauna, platforms and around the pool. In total, about 540 samples from all pools were tested for bacterial contamination. Results: The results show that from 540 samples, bacterial contamination was observed in about 93 samples (17.22%; and was seen more in showers, edges of the pool and jacuzzis, and the slippers used in swimming pools. The most important isolated bacteria types were E. coli, Actinobacteria, Pseudomonas alcaligenes, Pseudomonas aeruginosa and Klebsiella pneumonia. Conclusion: The results indicate the presence of bacterial contamination on the surface of these places. It is recommended that health authorities should pay more attention to cleaning and disinfecting surfaces around the pool, showers, dressing rooms etc, to prevent infectious disease transfer as a result of contact with contaminated swimming pool surfaces.

  4. Kinetic modeling and half life study on bioremediation of crude oil dispersed by Corexit 9500

    International Nuclear Information System (INIS)

    Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Mohajeri, Leila; Mohajeri, Soraya; Kutty, Shamsul Rahman Mohamed

    2011-01-01

    Hydrocarbon pollution in marine ecosystems occurs mainly by accidental oil spills, deliberate discharge of ballast waters from oil tankers and bilge waste discharges; causing site pollution and serious adverse effects on aquatic environments as well as human health. A large number of petroleum hydrocarbons are biodegradable, thus bioremediation has become an important method for the restoration of oil polluted areas. In this research, a series of natural attenuation, crude oil (CO) and dispersed crude oil (DCO) bioremediation experiments of artificially crude oil contaminated seawater was carried out. Bacterial consortiums were identified as Acinetobacter, Alcaligenes, Bacillus, Pseudomonas and Vibrio. First order kinetics described the biodegradation of crude oil. Under abiotic conditions, oil removal was 19.9% while a maximum of 31.8% total petroleum hydrocarbons (TPH) removal was obtained in natural attenuation experiment. All DCO bioreactors demonstrated higher and faster removal than CO bioreactors. Half life times were 28, 32, 38 and 58 days for DCO and 31, 40, 50 and 75 days for CO with oil concentrations of 100, 500, 1000 and 2000 mg/L, respectively. The effectiveness of Corexit 9500 dispersant was monitored in the 45 day study; the results indicated that it improved the crude oil biodegradation rate.

  5. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut

    International Nuclear Information System (INIS)

    Lapanje, Ales; Zrimec, Alexis; Drobne, Damjana; Rupnik, Maja

    2010-01-01

    In previous studies we detected lower species richness and lower Hg sensitivity of the bacteria present in egested guts of Porcellio scaber (Crustacea, Isopoda) from chronically Hg polluted than from unpolluted environment. Basis for such results were further investigated by sequencing of 16S rRNA genes of mercury-resistant (Hg r ) isolates and clone libraries. We observed up to 385 times higher numbers of Hg r bacteria in guts of animals from polluted than from unpolluted environment. The majority of Hg r strains contained merA genes. Sequencing of 16S rRNA clones from egested guts of animals from Hg-polluted environments showed elevated number of bacteria from Pseudomonas, Listeria and Bacteroidetes relatives groups. In animals from pristine environment number of bacteria from Achromobacter relatives, Alcaligenes, Paracoccus, Ochrobactrum relatives, Rhizobium/Agrobacterium, Bacillus and Microbacterium groups were elevated. Such bacterial community shifts in guts of animals from Hg-polluted environment could significantly contribute to P. scaber Hg tolerance. - Chronic environmental mercury pollution induces bacterial community shifts and presence of elevated number as well as increased diversity of Hg-resistant bacteria in guts of isopods.

  6. Bacterial community composition characterization of a lead-contaminated Microcoleus sp. consortium.

    Science.gov (United States)

    Giloteaux, Ludovic; Solé, Antoni; Esteve, Isabel; Duran, Robert

    2011-08-01

    A Microcoleus sp. consortium, obtained from the Ebro delta microbial mat, was maintained under different conditions including uncontaminated, lead-contaminated, and acidic conditions. Terminal restriction fragment length polymorphism and 16S rRNA gene library analyses were performed in order to determine the effect of lead and culture conditions on the Microcoleus sp. consortium. The bacterial composition inside the consortium revealed low diversity and the presence of specific terminal-restriction fragments under lead conditions. 16S rRNA gene library analyses showed that members of the consortium were affiliated to the Alpha, Beta, and Gammaproteobacteria and Cyanobacteria. Sequences closely related to Achromobacter spp., Alcaligenes faecalis, and Thiobacillus species were exclusively found under lead conditions while sequences related to Geitlerinema sp., a cyanobacterium belonging to the Oscillatoriales, were not found in presence of lead. This result showed a strong lead selection of the bacterial members present in the Microcoleus sp. consortium. Several of the 16S rRNA sequences were affiliated to nitrogen-fixing microorganisms including members of the Rhizobiaceae and the Sphingomonadaceae. Additionally, confocal laser scanning microscopy and scanning and transmission electron microscopy showed that under lead-contaminated condition Microcoleus sp. cells were grouped and the number of electrodense intracytoplasmic inclusions was increased.

  7. Isolation and characterization of bacteria from wasted ionic exchange resins kept at Area de Gestion Ezeiza belonging to RA-3 Reactor

    International Nuclear Information System (INIS)

    Mosquera Rodriguez, Leon; Pizarro, Ramon A.

    2009-01-01

    A spent ionic exchange resin kept at Area de Gannet's Ezeiza (Age), belonging to RA-3 Reactor, was treated with sterile water. Microorganisms suspended in the aqueous sample were isolated by several methods, broadening as much as possible cell recovery conditions. Bacteria were subject to purity controls and re-isolation when necessary. Characterization of the strains found in the sample included morphological, physiological and biochemical tests as well as stains. Being the spent resins volume reduction at Age the main purpose, a screening experiment is proposed based on bacteria capability to take carbon from the sediment present in the liquid sample. Recovered bacteria are at least the following: Method I: Bacillus cereus, Bacillus circulans, Bacillus sp., Pseudomonas pseudoalcaligenes, Pseudomonas acidovorans, Pseudomonas sp. Method II: Bacillus cereus, Pseudomonas alcaligenes, Flavimonas sp., Agrobacterium sp. Method III: Bacillus circulans, Bacillus sphaericus, Kocuria rosea, Kytococcus sedentarius, Pseudomonas acidovorans. Microorganisms present in the sample are characteristic of those having low microbiological-contamination levels. Way III is an isolation method whose design would lead to find bacteria having the desired properties in order to diminish the volume of RA-3 Reactor spent resins. (author)

  8. Conformational exchange in pseudoazurin: different kinds of microsecond to millisecond dynamics characterized by their pH and buffer dependence using 15N NMR relaxation.

    Science.gov (United States)

    Hass, Mathias A S; Vlasie, Monica D; Ubbink, Marcellus; Led, Jens J

    2009-01-13

    The dynamics of the reduced form of the blue copper protein pseudoazurin from Alcaligenes faecalis S-6 was investigated using (15)N relaxation measurements with a focus on the dynamics of the micro- to millisecond time scale. Different types of conformational exchange processes are observed in the protein on this time scale. At low pH, the protonation of the C-terminal copper-ligated histidine, His81, is observed. A comparison of the exchange rates in the presence and absence of added buffers shows that the protonation is the rate-limiting step at low buffer concentrations. This finding agrees with previous observations for other blue copper proteins, e.g., amicyanin and plastocyanin. However, in contrast to plastocyanin but similar to amicyanin, a second conformational exchange between different conformations of the protonated copper site is observed at low pH, most likely triggered by the protonation of His81. This process has been further characterized using CPMG dispersion methods and is found to occur with a rate of a few thousands per second. Finally, micro- to millisecond motions are observed in one of the loop regions and in the alpha-helical regions. These motions are unaffected by pH and are unrelated to the conformational changes in the active site of pseudoazurin.

  9. Potential probiotic attributes and antagonistic activity of an indigenous isolate Lactobacillus plantarum DM5 from an ethnic fermented beverage "Marcha" of north eastern Himalayas.

    Science.gov (United States)

    Das, Deeplina; Goyal, Arun

    2014-05-01

    A novel isolate DM5 identified as Lactobacillus plantarum displayed in vitro probiotic properties as well as antimicrobial activity. It showed adequate level of survival to the harsh conditions of the gastrointestinal tract and survived low acidic pH 2.5 for 5 h. Artificial gastric juice and intestinal fluidic environment decreased the initial viable cell population of isolate DM5 only by 7% and 13%, respectively, while lysozyme (200 µg/ml) and bile salt (0.5%) enhanced its growth. It was found to deconjugate taurodeoxycholic acid, indicating its potential to reduce hypercholesterolemia. Isolate DM5 demonstrated cell surface hydrophobicity of 53% and autoaggregation of 54% which are the prerequisite for adhesion to epithelial cells and colonization to host. Bacteriocin activity of isolate was found to be 6400 AU/ml as it inhibited the growth of food borne pathogens Escherichia coli, Staphylococcus aureus, and Alcaligenes faecalis. The bactericidal action of bacteriocin from isolate was analyzed by flow cytometry, rendering its use as prospective probiotic and starter culture in food industry.

  10. Potential of wheat bran to promote indigenous microbial enhanced oil recovery.

    Science.gov (United States)

    Zhan, Yali; Wang, Qinghong; Chen, Chunmao; Kim, Jung Bong; Zhang, Hongdan; Yoza, Brandon A; Li, Qing X

    2017-06-01

    Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO 3 and NH 4 H 2 PO 4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (A n -) and anaerobic (A 0 -) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, A n - and early A 0 -stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A 0 -stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.

  11. Modulation of the immune response of porcine neutrophils by different β-glucan preparations

    DEFF Research Database (Denmark)

    Juul-Madsen, Helle Risdahl; Norup, Liselotte Rothmann; Lærke, Helle Nygaard

    2010-01-01

    β-glucans of bacterial and fungal origin are known immuno-modulators, but data in the literature also indicate that lichen and cereal-derived β-glucans may have immuno-modulatory functions. The aim of the current study was to test the effect of different sources of β-glucans on neutrophils in an ex......-vivo whole blood stimulation assay. Whole blood samples were either treated with curdlan, a linear β-(1 → 3)-D-glucan from the non-pathogenic Alcaligenes faecalis, lichenan, a mixed linked β-(1 → 3),(1 → 4)-D-glucan from Islandic moss (Cetraria islandica) or zymosan, prepared from yeast cell walls and being...... expression of Toll-like Receptor (TLR) 2 and 4, but not significantly on the signal regulatory protein SIRPα after a stimulation either alone or in combination with LPS. Thus, branching may appear to be important for the different effect, but an effect of impurities in the Zymosan preparation cannot be ruled...

  12. Impact of fertilizer plant effluent on water quality

    International Nuclear Information System (INIS)

    Obire, O.; Ogan, A.; Okigbo, R. N.

    2008-01-01

    The impact of National Fertilizer Company of Nigeria out fall effluent on the physico chemistry and bacteriology of Okrika creek was investigated during the sampling period from May to December, 1998. The National Fertilizer Company of Nigeria out fall effluent, the Okrika creek water and the lkpukulubie creek (control) water samples were collected. The physico-chemical parameters analyzed for all the samples included temperature, p H, total chloride, total dissolved solids, dissolved oxygen, conductivity, free ammonia, total phosphate, urea, zinc and iron, while the bacteriological determinations were total culturable aerobic heterotrophic bacteria count and identification of representative isolates. The Okrika creek recorded higher concentrations for all the physicochemical parameters and bacteria load than the control creek. The higher values of p H, Free NH 3 , urea, TDS and the conductivity of the National Fertilizer Company of Nigeria out fall effluent above the FEPA standards reflect the poor effluent quality generated by National Fertilizer Company of Nigeria. The bacteria species isolated from the samples include Aerococcus viridans, Alcaligenes faecalis, Bacillus cereus, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens and Staphylococcus aureus. In general, the investigation revealed that there was an extremely adverse impact on the physico-chemical and bacteriological water quality characteristics of the Okrika creek as a result of the discharge of poor quality effluent from National Fertilizer Company of Nigeria operations

  13. Implication of human handling on packaged sausage rolls during sale

    Directory of Open Access Journals (Sweden)

    Coolborn AKHARAIYI FRED

    2016-08-01

    Full Text Available In other to identify the implication of human handling of packaged sausage rolls after production, a microbiological safety evaluation was carried out on sausage rolls sold on street and in shops. Among the sausage rolls, gala purchased from street vendors has the highest bacterial load of 2.82 × 104 CFU/g and 4.3 × 106 spore/g of fungal load, followed by meaty with bacterial load of 1.71 × 104 CFU/g and fungal load of 1.6 × 105 spore/g and was least in rite sausage roll with 1.46 × 104 CFU/g and 1 × 105 spore/g bacterial and fungal loads respectively. Seventeen bacteria species were isolated from both street vended and shop sold sausage rolls, the isolates identified including: Bacillus cereus, Acinetobacter calcoaceticus, Alcaligenes faecalis, Citrobacter freundii, Klebsiella ozaenae, Staphylococcus epidermidis, Enterobacter aerogenes, Staphylococcus aureus, Aeromonas hydrophila, Plesiomonas shigelloides, Moraxella catarhalis, Bacillus substilis, Escherichia coli, Salmonella typhi, Aeromonas anaerogenes, Aerococcus viridans and Azomonas agilis. Five fungi species were isolated from street vended sausage rolls only. The fungal species are Penicillium notatum, Aspergillus parasiticus, Aspergillus flavus, Penicillium italicum and Gliocephalis spp. From this study, street vended samples have higher microbial contamination than shop sold sausage rolls due to improper handling during sales.

  14. Pathogens associated with bovine mastitis in dairy herds in the south region of Brazil

    Directory of Open Access Journals (Sweden)

    Marta Bañolas Jobim

    2010-02-01

    Full Text Available In this work, through microbiological examinations, the etiology of bovine mastitis in 628 milk samples coming from dairy farms from Paraná, Santa Catarina and Rio Grande do Sul along the year of 2007 were evaluated. Out of this total 1,382 microorganisms were isolated. By taking into account the total of isolations, the following microorganisms and their percentage, respectively were found: Staphylococcus spp. (30.53%, Escherichia coli (21.64%, Streptococcus bovis (17.08%, Streptococcus agalactiae (11.07%, Enterobacter spp. (7.53%, Pseudomonas spp. (4.12% and others (8.03%. The microorganisms grouped into the others are: Streptococcus spp., Proteus spp., gram negative rods, Shigella spp., Alcaligenes spp., Klebsiella spp., Edwarsiella spp., Citrobacter spp., Serratia spp., Salmonella spp. e Corynebacterium spp. The environmental pathogens predominated among the isolated microorganisms; 33.13% of the cultures presented more than three pathogens, suggesting contamination of the samples; in the mounts of November and December, there was an increase of the samples sent.

  15. Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard.

    Science.gov (United States)

    Patel, Vilas; Patel, Janki; Madamwar, Datta

    2013-09-15

    A phenanthrene-degrading bacterial consortium (ASP) was developed using sediment from the Alang-Sosiya shipbreaking yard at Gujarat, India. 16S rRNA gene-based molecular analyses revealed that the bacterial consortium consisted of six bacterial strains: Bacillus sp. ASP1, Pseudomonas sp. ASP2, Stenotrophomonas maltophilia strain ASP3, Staphylococcus sp. ASP4, Geobacillus sp. ASP5 and Alcaligenes sp. ASP6. The consortium was able to degrade 300 ppm of phenanthrene and 1000 ppm of naphthalene within 120 h and 48 h, respectively. Tween 80 showed a positive effect on phenanthrene degradation. The consortium was able to consume maximum phenanthrene at the rate of 46 mg/h/l and degrade phenanthrene in the presence of other petroleum hydrocarbons. A microcosm study was conducted to test the consortium's bioremediation potential. Phenanthrene degradation increased from 61% to 94% in sediment bioaugmented with the consortium. Simultaneously, bacterial counts and dehydrogenase activities also increased in the bioaugmented sediment. These results suggest that microbial consortium bioaugmentation may be a promising technology for bioremediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. [Physicochemical and microbiological factors influencing the bioavailability of organic contaminants in subsoils

    International Nuclear Information System (INIS)

    1992-01-01

    We report progress in elucidating the microbiological variables important in determining the relative success of bacteria in utilizing soil-sorbed contaminants. Two bacterial species, Pseudomonas putida (ATCC 17484) and an Alcaligenes sp. isolated from petroleum contaminated soil are known to differ markedly in their ability to utilize soil-sorbed napthalene based on a kinetic comparison of their capability of naphthalene mineralization in soil-containing and soil-free systems. The kinetic analysis led us to conclude that strain 17484 had direct access to naphthalene present in a labile sorbed state which promoted the rapid desorption of naphthalene from the non-labile phase. Conversely, both the rate and extent of naphthalene mineralization by strain NP-Alk suggested that this organism had access only to naphthalene in solution. Desorption was thus limited and the efficiency of total naphthalene removal from these soil slurries was poor. These conclusions were based on the average activities of cells in soil slurries without regard for the disposition of the organisms with respect to the sorbent. Since both organisms degrade naphthalene by apparently identical biochemical pathways, have similar enzyme kinetic properties, and are both motile, gram negative organisms, we undertook a series of investigations to gain a better understanding of what microbiological properties were important in bioavailability

  17. Antibacterial activity of essential oils from Australian native plants.

    Science.gov (United States)

    Wilkinson, Jenny M; Cavanagh, Heather M A

    2005-07-01

    To date, of the Australian essential oils, only tea tree (Melaleuca alternifolia) and Eucalyptus spp. have undergone extensive investigation. In this study a range of Australian essential oils, including those from Anethole anisata, Callistris glaucophyllia, Melaleuca spp. and Thyptomine calycina, were assayed for in vitro antibacterial activity. M. alternifolia was also included for comparison purposes. Activity was determined using standard disc diffusion assays with each oil assayed at 100%, 10% and 1% against five bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Alcaligenes faecalis) and the yeast, Candida albicans. All bacteria, with the exception of Ps. aeruginosa, were susceptible to one or more of the essential oils at 100%, with only Eremophilia mitchelli inhibiting the growth of any bacteria at 1% (inhibition of Sal. typhimurium). Where multiple samples of a single oil variety were tested variability in activity profiles were noted. This suggests that different methods of preparation of essential oils, together with variability in plant chemical profiles has an impact on whether or not the essential oil is of use as an antimicrobial agent. These results show that essential oils from Australian plants may be valuable antimicrobial agents for use alone or incorporated into cosmetics, cleaning agents and pharmaceutical products.

  18. Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure.

    Science.gov (United States)

    Islas-Espinoza, Marina; Reid, Brian J; Wexler, Margaret; Bond, Philip L

    2012-07-01

    Persistence or degradation of synthetic antibiotics in soil is crucial in assessing their environmental risks. Microbial catabolic activity in a sandy loamy soil with pig manure using 12C- and 14C-labelled sulfamethazine (SMZ) respirometry showed that SMZ was not readily degradable. But after 100 days, degradation in sulfadiazine-exposed manure was 9.2%, far greater than soil and organic manure (0.5% and 0.11%, respectively, p library from the treatment with highest degradation showed that most bacteria belonged to α, β and γ classes of Proteobacteria, Firmicutes, Bacteroidetes and Acidobacteria. Proteobacteria (α, β and γ), Firmicutes and Bacteroidetes which were the most abundant classes on day 1 also decreased most following prolonged exposure. From the matrix showing the highest degradation rate, 17 SMZ-resistant isolates biodegraded low levels of 14C-labelled SMZ when each species was incubated separately (0.2-1.5%) but biodegradation was enhanced when the four isolates with the highest biodegradation were incubated in a consortium (Bacillus licheniformis, Pseudomonas putida, Alcaligenes sp. and Aquamicrobium defluvium as per 16S rRNA gene sequencing), removing up to 7.8% of SMZ after 20 days. One of these species (B. licheniformis) was a known livestock and occasional human pathogen. Despite an environmental role of these species in sulfonamide bioremediation, the possibility of horizontal transfer of pathogenicity and resistance genes should caution against an indiscriminate use of these species as sulfonamide degraders.

  19. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    Directory of Open Access Journals (Sweden)

    Miguel Ramirez

    2014-01-01

    Full Text Available Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2 and nitrous oxide (N2O while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1 was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  20. Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine.

    Science.gov (United States)

    Zhang, Xin-Hong; Liu, Zhi-Qiang; Xue, Ya-Ping; Wang, Yuan-Shan; Yang, Bo; Zheng, Yu-Guo

    2018-03-01

    Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L -1  day -1 and the space-time productivity of 143.2 mmol L -1  h -1  g -1 . The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.

  1. Bacteriospermia in extended porcine semen.

    Science.gov (United States)

    Althouse, Gary C; Lu, Kristina G

    2005-01-15

    Bacteriospermia is a frequent finding in freshly extended porcine semen and can result in detrimental effects on semen quality and longevity if left uncontrolled. The primary source of bacterial contamination is the boar. Other sources that have been identified include environment, personnel, and the water used for extender preparation. A 1-year retrospective study was performed on submissions of extended porcine semen for routine quality control bacteriological screening at the University of Pennsylvania. Out of 250 sample submissions, 78 (31.2%) tested positive for bacterial contamination. The most popular contaminants included Enterococcus spp. (20.5%), Stenotrophomonas maltophilia (15.4%), Alcaligenes xylosoxidans (10.3%), Serratia marcescens (10.3%), Acinetobacter lwoffi (7.7%), Escherichia coli (6.4%), Pseudomonas spp. (6.4%), and others (23.0%). Prudent individual hygiene, good overall sanitation, and regular monitoring can contribute greatly in controlling bacterial load. Strategies that incorporate temperature-dependent bacterial growth and hyperthermic augmentation of antimicrobial activity are valuable for effective control of susceptible bacterial loads. Aminoglycosides remain the most popular antimicrobial class used in porcine semen extenders, with beta-lactam and lincosamide use increasing. With the advent of more novel antimicrobial selection and semen extender compositions in swine, prudent application and understanding of in vitro pharmacodynamics are becoming paramount to industry success in the use of this breeding modality.

  2. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  3. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    Full Text Available Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66% were Gram negative and 17 (34% Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria and Flavobacteria. The genus Pseudomonas (51.51%, 17 was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12% Alcaligenes and 4 (12.12% Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4 and Arthrobacter (23.52%, 4 were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2 and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11% were more resistant to heavy metals as compared to Gram negative (78.79% and showed maximum tolerance against iron and least tolerance against mercury.

  4. Potency of sponge-associated bacteria producing bioactive compounds as biological control of vibriosis on shrimp

    Directory of Open Access Journals (Sweden)

    Adityawati Fajar Rini

    2017-07-01

    Full Text Available ABSTRACT The aims of this study were to obtain sponge-associated bacteria as biocontrol to inhibit vibriosis in vitro and in vivo, to identify the bacterial isolates based on 16S-rRNA gene, and to detect the presence of nonribosomal peptide synthetase (NRPS, and polyketide synthase (PKS genes to prove its ability of bioactive compounds synthesis. Aaptos sp. and Hyrtios sp. sponges were collected from Pramuka Island, Jakarta. The isolation using sea water complete (SWC and  zobel marine agar (ZMA medium obtained 174 isolates. A total 69 isolates were screened successfully based on their antibacterial activity. 47 isolates showed negative haemolysis through hemolytic assays. The pathogenicity test used twelve selected isolates that have a broad spectrum of antibacterial activity and haemolysis negative. The result of pathogenicity test showed  that 12 isolates were not pathogenic to the shrimp post larvae with no significantly different (P>0.05 between treatment and negative control. Results of challenge test with Vibrio harveyi have a significant difference survival (70±5.0–90±0.0% (P<0.05 compared with positive control (38.3±2.9%. Genetic analysis based on 16S-rRNA revealed the groups of three genera belonged to Pseudomonas, Staphylococcus, and Alcaligenes. Based on amplification of NRPS and PKS genes, four bacterial isolates have been detected to have only NRPS gene, one isolate has only PKS, and one isolate has both genes. The results indicate that the potency of six sponge-associated bacteria as bioactive compounds producers. Keywords: NRPS, PKS, anti-vibriosis, Pacific white shrimp  ABSTRAK Penelitian ini bertujuan untuk memperoleh isolat bakteri asosiasi spons yang mempunyai kemampuan dalam menghambat vibriosis secara in vitro, in vivo dan mendeteksi gen 16S-rRNA, nonribosomal peptide synthase (NRPS serta polyketide synthase (PKS untuk memastikan kemampuan mensintesis senyawa bioaktif. Spons Aaptos sp. dan Hyrtios sp. berhasil

  5. Avaliação da contaminação bacteriana em desinfetantes de uso domiciliar Evaluation of bacterial contamination in disinfectants for domestic use

    Directory of Open Access Journals (Sweden)

    Fumie Miyagi

    2000-10-01

    Full Text Available OBJETIVO: Avaliar desinfetantes de uso domiciliar, identificando a presença de bactérias contaminantes, e conhecer o nível de tolerância dessas bactérias ao cloreto de benzalcônio. MÉTODOS: Foram adquiridas aleatoriamente no comércio da região metropolitana de São Paulo, SP, Brasil, 52 amostras de desinfetantes de uso domiciliar para análise quanto à presença de bactérias contaminantes. O nível de tolerância dessas bactérias ao cloreto de benzalcônio foi determinado pelo método da macrodiluição em caldo. RESULTADOS: De 52 amostras, 16 (30,77% estavam contaminadas por bactérias Gram negativas, com contagens variando entre 10(4 e 10(6 UFC/ml. Esses contaminantes foram identificados como Alcaligenes xylosoxidans, Burkholderia cepacia e Serratia marcescens. As Concentrações Inibitórias Mínimas (CIM: mg/ml do cloreto de benzalcônio para S. marcescens, A. xylosoxidans e B. cepacia foram: 2,48, 1,23 e 0,30, respectivamente. CONCLUSÕES Os desinfetantes de uso domiciliar à base de compostos de amônio quaternário são passíveis de contaminação por bactérias. As CIM do cloreto de benzalcônio para as bactérias contaminantes estavam abaixo das concentrações do princípio ativo presente nos desinfetantes, indicando que a tolerância ao biocida não é estável, podendo ser perdida com o cultivo das bactérias em meios de cultura sem o biocida.OBJECTIVE: To evaluate disinfectants for domestic use for the presence of bacteria, identify them, and determine their tolerance level to benzalkonium chloride. METHODS: Fifty-two samples of commercially available disinfectants for domestic use were acquired at random in the metropolitan area of São Paulo, Brazil, and analyzed to detect the presence of bacterial contaminants. The isolated organisms were identified and their tolerance level to benzalkonium chloride was determined by broth macrodilution method. RESULTS: Sixteen (30.77% of fifty-two disinfectants sampled were

  6. Avaliação da microbiota ocular em pacientes com disfunção do filme lacrimal Evaluation of conjunctival flora in patients with tear film dysfunction

    Directory of Open Access Journals (Sweden)

    Melissa Megumi Tomimatsu

    2009-12-01

    Full Text Available OBJETIVO: Avaliar a microbiota conjuntival em olhos com disfunção do filme lacrimal, e a modificação desta microbiota após a colocação de plug de silicone no canalículo inferior. MÉTODOS: Série de casos intervencionais não comparativos para avaliar 68 olhos de 41 pacientes com disfunção do filme lacrimal, durante o período de 2002 a 2007, na Universidade Federal de São Paulo. Todos os pacientes foram submetidos à colheita de amostras de raspado conjuntival de fundo-de-saco inferior para cultivo em Brain heart infusion broth. Os vinte e dois pacientes submetidos à colocação de plug de silicone repetiram a colheita de raspado conjuntival um mês após o procedimento. RESULTADOS: Dos 68 olhos avaliados, 47 apresentaram crescimento bacteriano nas amostras colhidas. Nove diferentes espécies de bactérias foram identificadas: Staphylococcus coagulase negativa em 66,66%, Staphylococcus aureus em 13,72%, Corynebacterium sp em 5,86%, Enterobacter aerogenes em 3,92%, Streptococcus hemolítico do grupo viridans em 1,96%, Serratia sp em 1,96%, Alcaligenes xylosoxidans spp em 1,96%, Corynebacterium xerosis em 1,96%, e Proteus mirabilis em 1,96%. Staphylococcus coagulase negativa (SCN foi o microrganismo mais frequentemente isolado tanto antes quanto após o plug de silicone. A sensibilidade do SCN à Oxacilina antes da colocação do plug era de 87,50%, e, após, de 73,68%. CONCLUSÃO: A microbiota em olhos com disfunção do filme lacrimal é bastante semelhante à encontrada em olhos normais. A resistência de SCN à Oxacilina foi um pouco maior após o implante do plug de silicone.PURPOSE: To evaluate conjunctival microbiota in eyes with tear film dysfunction and its modification after punctal occlusion with silicone plug. METHODS: Non comparative interventional case series study to evaluate 68 eyes of 41 patients with tear film dysfunction, from 2002 to 2007, followed in Federal University of Sao Paulo. Samples for culture were all

  7. POTENTIAL USE OF ENDOPHYTIC BACTERIA TO CONTROL Pratylenchus brachyurus ON PATCHOULI

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2012-10-01

    Full Text Available Pratylenchus brachyurus is an important parasitic nematode which significantly decreases quality and quantity of patchouli oil. One potential measure for controlling the nematode is by using endophytic bacteria. These bacteria also induce plant growth. This study aimed to evaluate the potential of endo-phytic bacteria to control P. brachyurus. The experiments were carried out in the Bacteriological Laboratory of the Plant Protection Department, Bogor Agricultural University, and the Laboratory and Greenhouse of the Indonesian Spice and Medicinal Crops Research Institute from April to December 2007. Endophytic bacteria were isolated from the roots of patchouli plants sampled from various locations in West Java. Antagonistic activity of the isolates were selected against P. brachyurus and their abilities to induce plant growth of patch-ouli plants. Isolates having ability to control P. brachyurus and promote plant growth were identified by molecular techniques using 16S rRNA universal primers. The results showed that a total of 257 isolates of endophytic bacteria were obtained from patchouli roots and their population density varied from 2.3 x 102 to 6.0 x 105 cfu g-1 fresh root. As many as 60 isolates (23.34% were antagonistic against P. brachyurus causing 70-100% mortality of the namatode, 72 isolates (28.01% stimu-lated plant growth, 32 isolates (12.47% inhibited plant growth, and 93 isolates (36.18% were neutral. Based on their antago-nistic and plant growth enhancer characters, five isolates of the bacteria, namely Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK, and Bacillus subtilis NJ57 suppressed 74.0-81.6% nema-tode population and increased 46.97-86.79% plant growth. The study implies that the endophytic bacteria isolated from patchouly roots are good candidates for controlling P. brachyurus on patchouly plants. Bahasa IndonesiaPratylenchus brachyurus adalah nematoda parasit pada

  8. The Formation of the Solar System: Theories Old and New

    Science.gov (United States)

    Woolfson, Michael

    ch. 1. Theories come and theories go -- ch. 2. Measuring atoms and the universe -- ch. 3. Greek offerings -- ch. 4. The shoulders of giants -- ch. 5. A voyage of discovery to the solar system -- ch. 6. The problem to be solved -- ch. 7. The French connection -- ch. 8. American Catherine-Wheels -- ch. 9. British big tides -- ch. 10. Russian could capture-with British help -- ch. 11. German vortices-with a little French help -- ch. 12. McCrea's floccules -- ch. 13. What earlier theories indicate -- ch. 14. Disks around new stars -- ch. 15. Planets around other stars -- ch. 16. Disks around older stars -- ch. 17. What a theory should explain now -- ch. 18. The new Solar Nebula theory: the angular momentum problem -- ch. 19. Making planets top-down -- ch. 20. A bottom-up alternative -- ch. 21. Making planets faster -- ch. 22. Wandering planets -- ch. 23. Back to top-down -- ch. 24. This is the stuff that stars are made of -- ch. 25. Making dense cool clouds -- ch. 26. A star is born -- ch. 27. Close to the maddening crowd -- ch. 28. Close encounters of the stellar kind -- ch. 29. Ever decreasing circles -- ch. 30. How many planetary systems? -- ch. 31. Starting a family -- ch. 32. Tilting-but not as windmills -- ch. 33. The terrestrial planets raise problems! -- ch. 34. A British Bang theory: the earth and Venus -- ch. 35. Behold the wandering moon -- ch. 36. Fleet Mercury and warlike Mars -- ch. 37. Gods of the sea and the nether regions -- ch. 38. Bits and pieces -- ch. 39. Comets-the harbingers of doom! -- ch. 40. Making atoms with a biggish bang -- ch. 41. Is the capture theory valid?

  9. Biological Recovery of Platinum Complexes from Diluted Aqueous Streams by Axenic Cultures.

    Directory of Open Access Journals (Sweden)

    Synthia Maes

    Full Text Available The widespread use of platinum in high-tech and catalytic applications has led to the production of diverse Pt loaded wastewaters. Effective recovery strategies are needed for the treatment of low concentrated waste streams to prevent pollution and to stimulate recovery of this precious resource. The biological recovery of five common environmental Pt-complexes was studied under acidic conditions; the chloro-complexes PtCl42- and PtCl62-, the amine-complex Pt(NH34Cl2 and the pharmaceutical complexes cisplatin and carboplatin. Five bacterial species were screened on their platinum recovery potential; the Gram-negative species Shewanella oneidensis MR-1, Cupriavidus metallidurans CH34, Geobacter metallireducens, and Pseudomonas stutzeri, and the Gram-positive species Bacillus toyonensis. Overall, PtCl42- and PtCl62- were completely recovered by all bacterial species while only S. oneidensis and C. metallidurans were able to recover cisplatin quantitatively (99%, all in the presence of H2 as electron donor at pH 2. Carboplatin was only partly recovered (max. 25% at pH 7, whereas no recovery was observed in the case of the Pt-tetraamine complex. Transmission electron microscopy (TEM revealed the presence of both intra- and extracellular platinum particles. Flow cytometry based microbial viability assessment demonstrated the decrease in number of intact bacterial cells during platinum reduction and indicated C. metallidurans to be the most resistant species. This study showed the effective and complete biological recovery of three common Pt-complexes, and estimated the fate and transport of the Pt-complexes in wastewater treatment plants and the natural environment.

  10. Planetary protection protecting earth and planets against alien microbes

    International Nuclear Information System (INIS)

    Leys, N.

    2006-01-01

    Protecting Earth and planets against the invasion of 'alien life forms' is not military science fiction, but it is the peaceful daily job of engineers and scientists of space agencies. 'Planetary Protection' is preventing microbial contamination of both the target planet and the Earth when sending robots on interplanetary space mission. It is important to preserve the 'natural' conditions of other planets and to not bring with robots 'earthly microbes' (forward contamination) when looking for 'spores of extra terrestrial life'. The Earth and its biosphere must be protected from potential extraterrestrial biological contamination when returning samples of other planets to the Earth (backward contamination). The NASA-Caltech Laboratory for Planetary Protection of Dr. Kasthuri Venkateswaran at the Jet Propulsion Laboratory (JPL) (California, USA) routinely monitors and characterizes the microbes of NASA spacecraft assembly rooms and space robots prior to flight. They have repeatedly isolated Cupriavidus and Ralstonia strains pre-flight from spacecraft assembly rooms (floor and air) and surfaces of space robots such as the Mars Odyssey Orbiter (La Duc et al., 2003). Cupriavidus and Ralstonia strains have also been found in-flight, in ISS cooling water and Shuttle drinking water (Venkateswaran et al., Pyle et al., Ott et al., all unpublished). The main objective of this study is to characterise the Cupriavidus and Ralstonia strains isolated at JPL and compare them to the Cupriavidus metallidurans CH34T model strain, isolated from a Belgian contaminated soil and studied since 25 years at SCK-CEN and to enhance our knowledge by performing additional tests at JPL and gathering information regarding the environmental conditions and the cleaning and isolation methods used in such spacecraft assembling facilities

  11. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader.

    Directory of Open Access Journals (Sweden)

    Athanasios Lykidis

    Full Text Available BACKGROUND: Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. METHODOLOGY/PRINCIPAL FINDINGS: Its genome consists of four replicons (two chromosomes and two plasmids containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000. Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation seems to be shaped mostly by the acquisition of "specialized" plasmids. CONCLUSIONS/SIGNIFICANCE: The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.

  12. Study of the impact of environmental bacteria ob uranium speciation in order to engage bioremediation process

    International Nuclear Information System (INIS)

    Untereiner, G.

    2008-11-01

    Uranium is both a radiological and a chemical toxic. Its concentration in the environment is low except when human activities have caused pollution. Uranium is a heavy reactive element, and thus it is easily complexed with soil component like minerals or organic molecules. These different complexes can be more or less bioavailable for microorganisms and plants, and then get in the human food chain. The knowledge and the understanding of transfer mechanisms and also the fate of toxic elements in the biosphere are a key issue to estimate health and ecological hazards. The knowledge of the speciation is very important for bioremediation processes. Here, we focused on the microorganisms effects onto uranium speciation in environment. Bacteria can accumulate and/or transform uranium depending on the initial form of the element. Thus, its bioavailability could be changed. The species used in this work are Cupriavidus metallidurans CH34, which is an environmental bacteria with a high resistance to heavy metal, Deinococcus radiodurans R1, which is known for his radiological resistance, and Rhodopseudomonas palustris, which is a purple photo-trophic bacteria capable of degrading aromatic compounds. Two forms of uranium were used with these bacteria, a mineral one, uranyl carbonate, and an organic one, uranyl citrate. In a first step, the growth media were modified in order to stabilize uranium complexes thanks to a simulation program. Then, the capacity of the bacteria to accumulate or transform uranium was studied. We saw a difference between minimal inhibition concentrations of these two speciation which is due to a difference between phosphate bioavailability. No accumulation was observed with environmental pH but uranium precipitation was observed with acidic pH (pH 1). Uranium speciation seemed to be well controlled in the growth media and the precipitates were uranyl phosphate. (author)

  13. Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors.

    Science.gov (United States)

    Fu, H; Zhang, J-J; Xu, Y; Chao, H-J; Zhou, N-Y

    2017-03-01

    The ortho-nitrophenol (ONP)-utilizing Alcaligenes sp. strain NyZ215, meta-nitrophenol (MNP)-utilizing Cupriavidus necator JMP134 and para-nitrophenol (PNP)-utilizing Pseudomonas sp. strain WBC-3 were assembled as a consortium to degrade three nitrophenol isomers in sequential batch reactors. Pilot test was conducted in flasks to demonstrate that a mixture of three mononitrophenols at 0·5 mol l -1 each could be mineralized by this microbial consortium within 84 h. Interestingly, neither ONP nor MNP was degraded until PNP was almost consumed by strain WBC-3. By immobilizing this consortium into polyurethane cubes, all three mononitrophenols were continuously degraded in lab-scale sequential reactors for six batch cycles over 18 days. Total concentrations of ONP, MMP and PNP that were degraded were 2·8, 1·5 and 2·3 mol l -1 during this time course respectively. Quantitative real-time PCR analysis showed that each member in the microbial consortium was relatively stable during the entire degradation process. This study provides a novel approach to treat polluted water, particularly with a mixture of co-existing isomers. Nitroaromatic compounds are readily spread in the environment and pose great potential toxicity concerns. Here, we report the simultaneous degradation of three isomers of mononitrophenol in a single system by employing a consortium of three bacteria, both in flasks and lab-scale sequential batch reactors. The results demonstrate that simultaneous biodegradation of three mononitrophenol isomers can be achieved by a tailor-made microbial consortium immobilized in sequential batch reactors, providing a pilot study for a novel approach for the bioremediation of mixed pollutants, especially isomers present in wastewater. © 2016 The Society for Applied Microbiology.

  14. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide

    International Nuclear Information System (INIS)

    Sekhar, Vini C.; Nampoothiri, K. Madhavan; Mohan, Arya J.; Nair, Nimisha R.; Bhaskar, Thallada; Pandey, Ashok

    2016-01-01

    Highlights: • Biodegradation of a high impact polystyrene e − plastic. • 12.4% (w/w) e plastic film lost using an isolate, Enterobacter sp. • Noted changes in the physico-chemical characteristics of degraded e-plastic film. • Polystyrene intermediates were detected in the degradation medium. • e-plastic degrading microbes displayed extracellular depolymerase activity. - Abstract: Accumulation of electronic waste has increased catastrophically and out of that various plastic resins constitute one of the leading thrown out materials in the electronic machinery. Enrichment medium, containing high impact polystyrene (HIPS) with decabromodiphenyl oxide and antimony trioxide as sole carbon source, was used to isolate microbial cultures. The viability of these cultures in the e-plastic containing mineral medium was further confirmed by triphenyl tetrazolium chloride (TTC) reduction test. Four cultures were identified by 16S rRNA sequencing as Enterobacter sp., Citrobacter sedlakii, Alcaligenes sp. and Brevundimonas diminuta. Biodegradation experiments were carried out in flask level and gelatin supplementation (0.1% w/v) along with HIPS had increased the degradation rate to a maximum of 12.4% (w/w) within 30 days. This is the first report for this kind of material. The comparison of FTIR, NMR, and TGA analysis of original and degraded e-plastic films revealed structural changes under microbial treatment. Polystyrene degradation intermediates in the culture supernatant were also detected using HPLC analysis. The gravity of biodegradation was validated by morphological changes under scanning electron microscope. All isolates displayed depolymerase activity to substantiate enzymatic degradation of e-plastic.

  15. Protein improvement in Gari by the use of pure cultures of microorganisms involved in the natural fermentation process.

    Science.gov (United States)

    Ahaotu, I; Ogueke, C C; Owuamanam, C I; Ahaotu, N N; Nwosu, J N

    2011-10-15

    The ability of microorganisms involved in cassava mash fermentation to produce and improve protein value by these microorganisms during fermentation was studied. Standard microbiological procedures were used to isolate, identify and determine the numbers of the organisms. Alcaligenes faecalis, Lactobacillus plantarum, Bacillus subtilis, Leuconostoc cremoris, Aspergillus niger, A. tamari, Geotrichum candidum and Penicillium expansum were isolated and identified from cassava waste water while standard analytical methods were used to determine the ability of the isolates to produce linamarase and the proximate composition, pH and titrable acidity of the fermenting mash. The linamarase activity of the isolates ranged from 0.0416 to 0.2618 micromol mL(-1) nmol(-1). Bacillus subtilis, A. niger, A. tamari and P. expansum did not express any activity for the enzyme. Protein content of mash fermented with mixed fungal culture had the highest protein value (15.4 mg/g/dry matter) while the raw cassava had the least value (2.37 mg/g/dry matter). The naturally fermented sample had the least value for the fermented samples (3.2 mg/g/dry matter). Carbohydrate and fat contents of naturally fermented sample were higher than values obtained from the other fermented samples. Microbial numbers of the sample fermented with mixed bacterial culture was highest and got to their peak at 48 h (57 x 10(8) cfu g(-1)). pH decreased with increase in fermentation time with the mash fermented by the mixed culture of fungi having the lowest pH of 4.05 at the end of fermentation. Titrable acidity increased with increase in fermentation time with the highest value of 1.32% at 96 h of fermentation produced by the mixed culture of fungi. Thus fermentation with the pure cultures significantly increased the protein content of mash.

  16. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  17. DNA-fingerprinting di stipiti di Chryseobacterium spp isolati da pazienti con Fibrosi Cistica

    Directory of Open Access Journals (Sweden)

    Antonietta Lambiase

    2007-03-01

    Full Text Available Objectives: Pulmonary infections by Gram-negative bacteria, as Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, are the major cause of morbidity in Cystic Fibrosis patients. In the past decade, several pathogens as Alcaligenes spp and no tuberculosis mycobacteria have been recovered in these patients. Bacteria of genus Chryseobacterium are widespread Gram-negative microrganisms and involved in human infections. Aims of this study were to value the isolation frequency of Chryseobacterium strains in a cohort of Cystic Fibrosis patients, to investigate their antimicrobial sensibility and to establish possible clonal likeness between strains. Methods:A retrospective study was undertaken between January 2003 and December 2005 on 300 patients receiving care at the Regional Cystic Fibrosis Centre of Naples University “Federico II”. Sputum samples were checked: for bacterial identification, selective media and commercial identification systems were used.The activity of antimicrobial agents was determined using diffusion and microdiluthion methods. For DNA-fingerprinting, a genomic DNA macrorestriction followed by pulsed-field electrophoresis was carried out. Results:A total of 26 strains from 17 patients were isolated (7 C. meningosepticum, 14 C. indologenes, 5 C. gleum. Strains were resistant to cephalosporins and carbapenems; some were sensitive to ciprofloxacin, levofloxacin and trimethoprim-sulphamethoxazole. Macrorestriction analysis showed substantial heterogeneity among strains. Conclusions: Actually, the prognostic role of Chryseobacterium in Cystic Fibrosis is unclear and although the small number of isolations, it is need to be on the look out regard such microorganisms. The considerable resistance implies difficulties on therapeutic approach. Results of DNA-fingerprinting indicate no evidence of clonal likeness and then of patient-to-patient spread.

  18. EFFICACY OF ENDOPHYTIC BACTERIA IN REDUCING PLANT PARASITIC NEMATODE Pratylenchus brachyurus

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2014-04-01

    Full Text Available Pratylenchus brachyurus is a major parasitic nematode on patchouli that reduces plant production up to 85%. The use of endophytic bacteria is promising for controlling nematode and promoting plant growth through production of phytohormones and enhancing the availability of soil nutrients. The objective of the study was to evaluate the efficacy of endophytic bacteria to control P. brachyurus on patchouli plant and its influence on plant productions (plant fresh weight and patchouli oil. The study was conducted at Cimanggu Experimental Garden and Laboratory of the Indonesian Spice and Medicinal Crops Research Institute (ISMECRI, Bogor, West Java. The experi-ment was designed in a randomized block with seven treatments and eight replications; each replication consisted of 10 plants. The treatments evaluated were five isolates of endophytic bacteria (Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK and Bacillus subtilis NJ57, synthetic nematicide as a reference, and non-treated plant as a control.  Four-week old patchouli plants of cv. Sidikalang were treated by soaking the roots in suspension of endophytic bacteria (109 cfu  ml-1 for one hour before trans-planting to the field. At one month after planting, the plants were drenched with the bacterial suspension as much as 100 ml per plant. The results showed that applications of the endophytic bacteria could suppress the nematode populations (52.8-80% and increased plant weight (23.62-57.48% compared to the control. The isolate of endophytic bacterium Achromobacter xylosoxidans TT2 was the best and comparable with carbofuran.

  19. Optimization of technological conditions for one-pot synthesis of (S)-alpha-cyano-3-phenoxybenzyl acetate in organic media.

    Science.gov (United States)

    Zhang, Ting-Zhou; Yang, Li-Rong; Zhu, Zi-Qiang

    2005-03-01

    Optically active form of alpha-cyano-3-phenoxybenzyl (CPB) alcohol, building block of pyrethroid insecticides, was synthesized as its acetate by the combination of anion-exchange resin (D301)-catalyzed transcyanation between m-phenoxybenzaldehyde (m-PBA) and acetone cyanohydrin (AC), and lipase (from Alcaligenes sp.)-catalyzed enantioselective transesterification of the resulting cyanohydrin with vinyl acetate. Through optimizing technological conditions, the catalyzing efficiency was improved considerably compared to methods previously reported. Concentrations of CPB acetate were determined by gas chromatograph. The enantio excess (e.e.) values of CPB acetate were measured by NMR (nuclear magnetic resonance) method. Effects of solvents and temperatures on this reaction were studied. Cyclohexane was shown to be the best solvent among the three tested solvents. 55 degrees C was the optimal temperature for higher degree of conversion. External diffusion limitation was excluded by raising the rotational speed to 220 r/min. However, internal diffusion could not be ignored, since the catalyst (lipase) was an immobilized enzyme and its particle dimension was not made small enough. The reaction rate was substantially accelerated when the reactant (m-PBA) concentration was as high as 249 mmol/L, but decreased when the initial concentration of m-PBA reached to 277 mmol/L. It was also found that the catalyzing capability of recovered lipase was high enough to use several batches. Study of the mole ratio of AC to m-PBA showed that 2:1 was the best choice. The strategy of adding base catalyst D301 was found to be an important factor in improving the degree of conversion of the reaction from 20% to 80%. The highest degree of conversion of the reaction has reached up to 80%.

  20. Distinguishing Nitro vs Nitrito Coordination in Cytochrome c' Using Vibrational Spectroscopy and Density Functional Theory.

    Science.gov (United States)

    Nilsson, Zach N; Mandella, Brian L; Sen, Kakali; Kekilli, Demet; Hough, Michael A; Moënne-Loccoz, Pierre; Strange, Richard W; Andrew, Colin R

    2017-11-06

    Nitrite coordination to heme cofactors is a key step in the anaerobic production of the signaling molecule nitric oxide (NO). An ambidentate ligand, nitrite has the potential to coordinate via the N- (nitro) or O- (nitrito) atoms in a manner that can direct its reactivity. Distinguishing nitro vs nitrito coordination, along with the influence of the surrounding protein, is therefore of particular interest. In this study, we probed Fe(III) heme-nitrite coordination in Alcaligenes xylosoxidans cytochrome c' (AXCP), an NO carrier that excludes anions in its native state but that readily binds nitrite (K d ∼ 0.5 mM) following a distal Leu16 → Gly mutation to remove distal steric constraints. Room-temperature resonance Raman spectra (407 nm excitation) identify ν(Fe-NO 2 ), δ(ONO), and ν s (NO 2 ) nitrite ligand vibrations in solution. Illumination with 351 nm UV light results in photoconversion to {FeNO} 6 and {FeNO} 7 states, enabling FTIR measurements to distinguish ν s (NO 2 ) and ν as (NO 2 ) vibrations from differential spectra. Density functional theory calculations highlight the connections between heme environment, nitrite coordination mode, and vibrational properties and confirm that nitrite binds to L16G AXCP exclusively through the N atom. Efforts to obtain the nitrite complex crystal structure were hampered by photochemistry in the X-ray beam. Although low dose crystal structures could be modeled with a mixed nitrite (nitro)/H 2 O distal population, their photosensitivity and partial occupancy underscores the value of the vibrational approach. Overall, this study sheds light on steric determinants of heme-nitrite binding and provides vibrational benchmarks for future studies of heme protein nitrite reactions.

  1. Biphenyl-Metabolizing Bacteria in the Rhizosphere of Horseradish and Bulk Soil Contaminated by Polychlorinated Biphenyls as Revealed by Stable Isotope Probing▿ †

    Science.gov (United States)

    Uhlik, Ondrej; Jecna, Katerina; Mackova, Martina; Vlcek, Cestmir; Hroudova, Miluse; Demnerova, Katerina; Paces, Vaclav; Macek, Tomas

    2009-01-01

    DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [13C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase α subunits (BphA) from bacteria that incorporated [13C]into DNA in 3-day incubations of the soils with [13C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl. PMID:19700551

  2. Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor.

    Science.gov (United States)

    Wang, Depeng; Liu, Bo; Ding, Xinchun; Sun, Xinbo; Liang, Zi; Sheng, Shixiong; Du, Lingfeng

    2017-10-01

    Ammonia is widely distributed in sulfate-reducing bioreactor dealing with sulfate wastewater, which shows potential effect on the metabolic pathway of sulfate and ammonia. This study investigates the sulfate-reducing efficiency and microbial community composition in the sulfate-reducing EGSB reactor with the increasing ammonia loading. Results indicated that, compared with low ammonia loading (166-666 mg/L), the sulfate and organic matter removal efficiencies were improved gradually with the appropriate ammonia loading (1000-2000 mg/L), which increased from 63.58 ± 3.81 to 71.08 ± 1.36% and from 66.24 ± 1.32 to 81.88 ± 1.83%, respectively. Meanwhile, with the appropriate ratio of ammonia and sulfate (1.5-3.0) and hydraulic retention time (21 h), the sulfate-reducing anaerobic ammonia oxidation (SRAO) process was occurred efficiently, inducing the accumulation of S 0 (270 mg/L) and the simultaneous ammonia removal (70.83%) in EGSB reactor. Moreover, the key sulfate-reducing bacteria (SRB) (Desulfovibrio) and denitrification bacteria (Pseudomonas and Alcaligenes) were responsible for the sulfate and nitrogen removal in these phases, which accounted for 3.66-5.54 and 3.85-9.13%, respectively. However, as the ammonia loading higher than 3000 mg/L (phases 9 and 10), the sulfate-reducing efficiency was decreased to only 28.3 ± 1.26% with the ammonia removal rate of 18.4 ± 3.37% in the EGSB reactor. Meanwhile, the predominant SRB in phases 9 and 10 were Desulfomicrobium (1.22-1.99%) and Desulfocurvus (4.0-5.46%), and the denitrification bacteria accounted for only 0.88% (phase 10), indicating the low nitrogen removal rate.

  3. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    Science.gov (United States)

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  4. A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22

    Directory of Open Access Journals (Sweden)

    Bhave Mrinal

    2009-03-01

    Full Text Available Abstract Background Achromobacter sp. AO22 (formerly Alcaligenes sp. AO22, a bacterial strain isolated from a lead-contaminated industrial site in Australia, was previously found to be resistant to moderate to high levels of mercury, copper and other heavy metals. However, the nature and location of the genetic basis for mercuric ion resistance in this strain, had not been previously identified. Findings Achromobacter sp. AO22 contains a functional mer operon with all four essential genes (merRTPA and shows >99% DNA sequence identity to that of Tn501. The mer operon was present on a transposon, designated TnAO22, captured by introducing a broad-host-range IncP plasmid into Achromobacter sp. AO22 and subsequently transferring it to E. coli recipients. The transposition frequency of TnAO22 was 10-2 to 10-3 per target plasmid transferred. Analysis of TnAO22 sequence revealed it belonged to the Tn21 subgroup of the Tn3 superfamily of transposons, with the transposition module having >99% identity with Tn5051 of a Pseudomonas putida strain isolated from a water sample in New York. Conclusion TnAO22 is thus a new variant of Tn5051 of the Tn3 superfamily and the transposon and its associated mercury resistance system are among the few such systems reported in a soil bacterium. Achromobacter sp. AO22 can thus be exploited for applications such as in situ mercury bioremediation of contaminated sites, or the mobile unit and mer operon could be mobilized to other bacteria for similar purposes.

  5. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts.

    Science.gov (United States)

    Wang, Lu; Wu, Yanan; Xie, Jia; Wu, Sheng; Wu, Zhenqiang

    2018-05-01

    The green synthesis of nanoparticles has become increasingly promising due to their potential applications in nanomedicine and materials science. In this study, silver nanoparticles (P-AgNPs) were synthesized from aqueous extracts of P. guajava L. leaf. The synthesized silver nanoparticles were confirmed by UV-vis spectrophotometry at 438 nm. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zetasizer analyses showed that the average sizes of the P-AgNPs were 20-35 nm, 25 nm, and 25-35 nm, respectively. Element mapping analyses of the P-AgNPs were confirmed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) analyses. Moreover, FTIR spectra of the synthesized P-AgNPs showed the presence of phyto constituents as capping agents. Zeta potential measurements (-20.17 mV) showed that the synthesized P-AgNPs had reasonably good stability. The in vitro antioxidant properties of the P-AgNPs were evaluated using two different methods. A highly efficient radical scavenging activity of P-AgNPs possessing IC 50 values of 52.53 ± 0.31 μg/mL (DPPH) and 55.10 ± 0.29 μg/mL (ABTS + ) were confirmed. At a concentration of 100 μg/mL, antimicrobial activity assays of the P-AgNPs showed significant inhibition against selected bacteria, S. cerevisiae, A. niger and R. oryzae, especially against Alcaligenes faecalis and Escherichia coli. The present study revealed that the low-cost and environmentally friendly synthesis of P-AgNPs can be widely used in biomedicine, water treatment or purification, and nanobiotechnology. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia

    International Nuclear Information System (INIS)

    Chang, Jin-Soo

    2015-01-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35–40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses. - Highlights: • The aox genotype system activity and arsenite-oxidizing bacteria was studied. • High arsenic contamination affects the detoxification activities of aoxS and aoxM. • Much Cambodian drinking water has dangerously high arsenic contamination. • Disease-causing microorganisms were found in various drinking water sources. - The importance of this study is that it responds to the high concentrations of arsenic contamination that were found in the drinking water of floating-house residents with the following proposition: The combined periplasm activity of the aoxS and aoxR genes and arsenite oxidase reflects the arsenic oxidation potential of the aoxA, aoxB, aoxC, and aoxD systems in the surface water of floating houses in Cambodia.

  7. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Vini C. [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Nampoothiri, K. Madhavan, E-mail: madhavan85@hotmail.com [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Mohan, Arya J.; Nair, Nimisha R. [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Bhaskar, Thallada [Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun, Uttarakhand 248005 (India); Pandey, Ashok [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India)

    2016-11-15

    Highlights: • Biodegradation of a high impact polystyrene e − plastic. • 12.4% (w/w) e plastic film lost using an isolate, Enterobacter sp. • Noted changes in the physico-chemical characteristics of degraded e-plastic film. • Polystyrene intermediates were detected in the degradation medium. • e-plastic degrading microbes displayed extracellular depolymerase activity. - Abstract: Accumulation of electronic waste has increased catastrophically and out of that various plastic resins constitute one of the leading thrown out materials in the electronic machinery. Enrichment medium, containing high impact polystyrene (HIPS) with decabromodiphenyl oxide and antimony trioxide as sole carbon source, was used to isolate microbial cultures. The viability of these cultures in the e-plastic containing mineral medium was further confirmed by triphenyl tetrazolium chloride (TTC) reduction test. Four cultures were identified by 16S rRNA sequencing as Enterobacter sp., Citrobacter sedlakii, Alcaligenes sp. and Brevundimonas diminuta. Biodegradation experiments were carried out in flask level and gelatin supplementation (0.1% w/v) along with HIPS had increased the degradation rate to a maximum of 12.4% (w/w) within 30 days. This is the first report for this kind of material. The comparison of FTIR, NMR, and TGA analysis of original and degraded e-plastic films revealed structural changes under microbial treatment. Polystyrene degradation intermediates in the culture supernatant were also detected using HPLC analysis. The gravity of biodegradation was validated by morphological changes under scanning electron microscope. All isolates displayed depolymerase activity to substantiate enzymatic degradation of e-plastic.

  8. Avaliação da contaminação bacteriana em desinfetantes de uso domiciliar

    Directory of Open Access Journals (Sweden)

    Miyagi Fumie

    2000-01-01

    Full Text Available OBJETIVO: Avaliar desinfetantes de uso domiciliar, identificando a presença de bactérias contaminantes, e conhecer o nível de tolerância dessas bactérias ao cloreto de benzalcônio. MÉTODOS: Foram adquiridas aleatoriamente no comércio da região metropolitana de São Paulo, SP, Brasil, 52 amostras de desinfetantes de uso domiciliar para análise quanto à presença de bactérias contaminantes. O nível de tolerância dessas bactérias ao cloreto de benzalcônio foi determinado pelo método da macrodiluição em caldo. RESULTADOS: De 52 amostras, 16 (30,77% estavam contaminadas por bactérias Gram negativas, com contagens variando entre 10(4 e 10(6 UFC/ml. Esses contaminantes foram identificados como Alcaligenes xylosoxidans, Burkholderia cepacia e Serratia marcescens. As Concentrações Inibitórias Mínimas (CIM: mg/ml do cloreto de benzalcônio para S. marcescens, A. xylosoxidans e B. cepacia foram: 2,48, 1,23 e 0,30, respectivamente. CONCLUSÕES Os desinfetantes de uso domiciliar à base de compostos de amônio quaternário são passíveis de contaminação por bactérias. As CIM do cloreto de benzalcônio para as bactérias contaminantes estavam abaixo das concentrações do princípio ativo presente nos desinfetantes, indicando que a tolerância ao biocida não é estável, podendo ser perdida com o cultivo das bactérias em meios de cultura sem o biocida.

  9. Avaliação da contaminação bacteriana em desinfetantes de uso domiciliar

    Directory of Open Access Journals (Sweden)

    Fumie Miyagi

    2000-10-01

    Full Text Available OBJETIVO: Avaliar desinfetantes de uso domiciliar, identificando a presença de bactérias contaminantes, e conhecer o nível de tolerância dessas bactérias ao cloreto de benzalcônio. MÉTODOS: Foram adquiridas aleatoriamente no comércio da região metropolitana de São Paulo, SP, Brasil, 52 amostras de desinfetantes de uso domiciliar para análise quanto à presença de bactérias contaminantes. O nível de tolerância dessas bactérias ao cloreto de benzalcônio foi determinado pelo método da macrodiluição em caldo. RESULTADOS: De 52 amostras, 16 (30,77% estavam contaminadas por bactérias Gram negativas, com contagens variando entre 10(4 e 10(6 UFC/ml. Esses contaminantes foram identificados como Alcaligenes xylosoxidans, Burkholderia cepacia e Serratia marcescens. As Concentrações Inibitórias Mínimas (CIM: mg/ml do cloreto de benzalcônio para S. marcescens, A. xylosoxidans e B. cepacia foram: 2,48, 1,23 e 0,30, respectivamente. CONCLUSÕES Os desinfetantes de uso domiciliar à base de compostos de amônio quaternário são passíveis de contaminação por bactérias. As CIM do cloreto de benzalcônio para as bactérias contaminantes estavam abaixo das concentrações do princípio ativo presente nos desinfetantes, indicando que a tolerância ao biocida não é estável, podendo ser perdida com o cultivo das bactérias em meios de cultura sem o biocida.

  10. Eiseniicola composti gen. nov., sp. nov., with antifungal activity against plant pathogenic fungi.

    Science.gov (United States)

    Yasir, Muhammad; Aslam, Zubair; Song, Geun Cheol; Jeon, Che Ok; Chung, Young Ryun

    2010-01-01

    A Gram-negative, short rod-shaped bacterial strain, YC06271T, was isolated from the vermicompost (VC) collected at Masan, Korea and its taxonomic position was investigated by a polyphasic taxonomic approach. Strain YC06271T grew optimally at 28-30 degrees C and at pH 7.0-9.0. The 16S rRNA gene sequence of strain YC06271T was most closely related to members of the genera Bordetella (96.4-95.8 %), Achromobacter (96.0-95.7 %), Alcaligenes (96.0-94.2 %), Pusillimonas noertemannii (95.9 %), Pigmentiphaga (95.8-95.5 %) and less than 95.5 % similarity with the members of the other genera of the family Alcaligenaceae. Strain YC06271T contained ubiquinone-8 (Q-8) as the major respiratory quinone system and putrescine as the major polyamine. The major fatty acids of strain YC06271T were C16:1omega7c and/or C15:0 iso 2-OH and C16:0. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the genomic DNA was 55.4 mol%. Phylogenetic analysis, biochemical, chemotaxonomic and phenotypic characteristics strongly supported the differentiation of strain YC06271T from the validly published genera of the family Alcaligenaceae. Therefore, it is proposed that strain YC06271T represents a novel species within a novel genus, with the name Eiseniicola composti gen. nov., sp. nov. The type strain is YC06271T (= KCTC 22250T = DSM 21045T).

  11. Characterization of Co(III) EDTA-Reducing Bacteria in Metal- and Radionuclide-Contaminated Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weimin [Arizona State University; Gentry, Terry J [ORNL; Mehlhorn, Tonia L [ORNL; Carroll, Sue L [ORNL; Jardine, Philip M [ORNL; Zhou, Jizhong [University of Oklahoma, Norman

    2010-01-01

    The Waste Area Grouping 5 (WAG5) site at Oak Ridge National Laboratory has a potential to be a field site for evaluating the effectiveness of various bioremediation approaches and strategies. The site has been well studied in terms of its geological and geochemical properties over the past decade. However, despite the importance of microorganisms in bioremediation processes, the microbiological populations at the WAG5 site and their potential in bioremediation have not been similarly evaluated. In this study, we initiated research to characterize the microbial populations in WAG5 groundwater. Approximately 100 isolates from WAG5 groundwater were isolated and selected based on colony morphology. Fifty-five unique isolates were identified by BOX-PCR and subjected to further characterization. 16S rRNA sequences indicated that these isolates belong to seventeen bacterial genera including Alcaligenes (1 isolate), Aquamonas (1), Aquaspirillum (1), Bacillus (10), Brevundimonas (5), Caulobacter (7), Dechloromonas (2), Janibacter (1), Janthinobacterium (2), Lactobacillus (1), Paenibacillus (4), Pseudomonas (9), Rhodoferax (1), Sphingomonas (1), Stenotrophomonas (6), Variovorax (2), and Zoogloea (1). Metal respiration assays identified several isolates, which phylogenically belong or are close to Caulobacter, Stenotrophomonas, Bacillus, Paenibacillus and Pseudomonas, capable of reducing Co(III)EDTA- to Co(II)EDTA{sup 2-} using the defined M1 medium under anaerobic conditions. In addition, using WAG5 groundwater directly as the inoculants, we found that organisms associated with WAG5 groundwater can reduce both Fe(III) and Co(III) under anaerobic conditions. Further assays were then performed to determine the optimal conditions for Co(III) reduction. These assays indicated that addition of various electron donors including ethanol, lactate, methanol, pyruvate, and acetate resulted in metal reduction. These experiments will provide useful background information for future

  12. Solvent-free lipase catalysed synthesis of diacylgycerols as low-calorie food ingredients

    Directory of Open Access Journals (Sweden)

    Luis eVazquez

    2016-02-01

    Full Text Available Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short and medium chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its re-synthesis in the enterocyte and its metabolism and absorption by the enterocyte are limited in comparison with the TAG, reducing chylomicron formation. In this work these two effects were combined to synthesize short and medium chain 1,3 diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase catalysed transesterification reactions were performed between short and medium chain fatty acid ethyl esters and glycerol. Different variables were investigated such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel or the addition of lecithin. Best reaction conditions were evaluated considering the conversion intopercentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica, other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei with 52% and 60.7% of DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs 1,2-DAG were Lipozyme RM IM (39.8% and 20.9%, respectively and Lipase PLG (Alcaligenes sp. (35.9% and 19.3%, respectively. By adding 1% (w/w of lecithin to the reaction with Novozym 435 and raw glycerol the reaction rate was considerably increased from 41.7% to 52.8% DAG at 24 h.

  13. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients.

    Science.gov (United States)

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h.

  14. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community.

    Science.gov (United States)

    Pan, Fei; Yu, Yang; Xu, Aihua; Xia, Dongsheng; Sun, Youmin; Cai, Zhengqing; Liu, Wen; Fu, Jie

    2017-10-15

    The potential and mechanism of synthesized magnetic octahedral molecular sieve (Fe 3 O 4 @OMS-2) nanoparticles in enhancing the aerobic microbial ability of sequencing batch reactor (SBR) for treating dye wastewater have been revealed in this study. The addition of Fe 3 O 4 @OMS-2 of 0.25g/L enhanced the decolorization of SBRs with an operation cycle of 24h by more than 20%. The 16S rRNA gene high-throughput sequencing indicated Fe 3 O 4 @OMS-2 increased the microbial richness and diversity of SBRs, and more importantly, promoted the potential dye-degrading bacteria. After a series of enriching and screening, four bacterial strains with the considerable decolorizing ability were isolated from SBRs, designating Alcaligenes faecalis FP-G1, Bacillus aryabhattai FP-F1, Escherichia fergusonii FP-D1 and Rhodococcus ruber FP-E1, respectively. The growth and decolorization of these pure strains were promoted in the presence of Fe 3 O 4 @OMS-2, which agrees with the result of high-throughput sequencing. Monitoring dissolved Fe/Mn ions and investigating the change of oxidation states of Fe/Mn species discovered OMS-2 composition played the critical role in modulating the microbial community. The significant enhancement of Mn-oxidizing/-reducing bacteria suggested microbial Mn redox may be the key action mechanism of Fe 3 O 4 @OMS-2, which can provide numerous benefits for the microbial community and decolorization of SBRs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Biodegradation of spent engine oil by bacteria isolated from the rhizosphere of legumes grown in contaminated soil

    Directory of Open Access Journals (Sweden)

    HY Ismail

    2014-05-01

    Full Text Available Biodegradation of spent engine oil (SEO by bacteria isolated from the rhizosphere of Cajan cajan and Lablab purpureus was investigated. It was with a view to determining most efficient bacterial species that could degrade SEO in phytoremediation studies. Hydrocarbon degrading bacteria were isolated and identified by enrichment culture technique using oil agar supplemented with 0.1% v/v SEO. Total heterotrophic and oil utilizing bacterial count showed the occurrence of large number of bacteria predominantly in the rhizosphere soil, ranging between 54×108 - 144×108 CFU/g and 4×108- 96×108 CFU/g respectively. Percentage of oil utilizing bacteria ranged between 0% (uncontaminated non rhizosphere soil to 76% (contaminated rhizosphere. Turbidimetrically, five bacterial species namely Pseudomonas putrefacience CR33, Klebsiella pneumonia CR23, Pseudomonas alcaligenes LR14, Klebsiella aerogenes CR21, and Bacillus coagulans CR31 were shown to grow maximally and degraded the oil at the rate of 68%, 62%, 59%, 58%and 45% respectively. Chromatographic analysis using GC-MS showed the presence of lower molecular weight hydrocarbons in the residual oil (indicating degradation after 21 days, whereas the undegraded oil (control had higher molecular weight hydrocarbons after the same period. The species isolated were shown to have high ability of SEO biodegradation and therefore could be important tools in ameliorating SEO contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10515 International Journal of the Environment Vol.3(2 2014: 63-75

  16. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.

    Directory of Open Access Journals (Sweden)

    Lara Bull-Otterson

    Full Text Available Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD. Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.

  17. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  18. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders.

    Directory of Open Access Journals (Sweden)

    Cheryl A Nickerson

    Full Text Available Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969-2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia

  19. Field investigations of bacterial contaminants and their effects on extended porcine semen.

    Science.gov (United States)

    Althouse, G C; Kuster, C E; Clark, S G; Weisiger, R M

    2000-03-15

    Field investigations (n=23) were made over a 3-yr period at North American boar studs and farms in which the primary complaint was sperm agglutination in association with decreased sperm longevity of extended semen, and increased regular returns to estrus and/or vaginal discharges across parity. Microscopic examination of extended semen from these units revealed depressed gross motility (usually semen collection and processing regardless of the semen extender used. The extended semen exhibited a high number of induced acrosome abnormalities (>20%). Sample pH was acidic (5.7 to 6.4) in 93% of the submitted samples. Aerobic culture yielded a variety of bacteria from different genera. A single bacterial contaminant was obtained from 66% of the submitted samples (n=37 doses); 34% contained 2 or more different bacterial genera. The most frequently isolated contaminant bacteria from porcine extended semen were Alcaligenes xylosoxydans (n=3), Burkholderia cepacia (n=6), Enterobacter cloacae (n=6), Escherichia coli (n=6), Serratia marcescens (n=5), and Stenotrophomonas [Xanthomonas] maltophilia (n=6); these 6 bacteria accounted for 71% of all contaminated samples, and were spermicidal when re-inoculated and incubated in fresh, high quality extended semen. All contaminant bacteria were found to be resistant to the aminoglycoside gentamicin, a common preservative antibiotic used in commercial porcine semen extenders. Eleven genera were spermicidal in conjunction with an acidic environment, while 2 strains (E. coli, S. maltophilia) were spermicidal without this characteristic acidic environment. Bacteria originated from multiple sources at the stud/farm, and were of animal and nonanimal origin. A minimum contamination technique (MCT) protocol was developed to standardize hygiene and sanitation. This protocol focused on MCT's during boar preparation, semen collection, semen processing and laboratory sanitation. Implementation of the MCT, in addition to specific recommendations

  20. The effect of cyclosporin-A on the oral microflora at gingival sulcus of the ferret.

    Science.gov (United States)

    Fischer, R G; Edwardsson, S; Klinge, B; Attström, R

    1996-09-01

    The effect of cyclosporin-A (CyA) on the dentogingival flora of ferrets with healthy and experimentally induced periodontal breakdown was studied. Five animals were given 10 mg/kg/d CyA. At the start of the experiments (day 0), ligatures were placed around 4 teeth in the right upper and lower jaws; corresponding contralateral teeth on the left side served as control. On days 0 and 28 (end of the experiment), microbiological samples were collected from the gingival sulcus of the experimental and the control teeth and from closely located gingival mucosa membrane. The samples were subjected to viable counts and to darkfield microscopic analyses. On day 0, facultative anaerobic rods, mainly Pasteurella spp, Alcaligenes spp, Corynebacterium spp. and Rothia spp dominated in the viable counts. No anaerobic bacteria were detected in the viable counts. On day 28 spirochetes increased in the experimental gingival sulcus samples and anaerobic bacteria appeared in most of the samples and constituted 40-60% of the total cultivable flora; Fusobacterium necrophorum and Eubacterium spp. predominated in the samples from the experimental sites. The results of the present study were compared with those of our previous investigation of ferrets not medicated with cyclosporin but also subject to experimental ligature periodontitis. Eubacterium spp. were absent in the animals not treated with cyclosporin, while this species was frequently present in the immunosuppressed ferrets. The results indicate that the presence of the large numbers of gram negative rods and of anaerobic bacteria may have enhanced the inflammatory process and further provoked the gingival overgrowth observed.

  1. Effects of Microbial and Phosphate Amendments on the Bioavailability of Lead (Pb) in Shooting Range Soil

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, Robin; Wilson, Christina; Knox, Anna; Seaman, John; Smith, Garriet

    2005-06-16

    Heavy metals including lead (Pb) are released continually into the environment as a result of industrial, recreational, and military activities. Lead ranked number two on the CERCLA Priority List of Hazardous Substances and was identified as a major hazardous chemical found on 47% of USEPA's National Priorities List sites (Hettiarachchi and Pierzynski 2004). In-situ remediation of lead (Pb) contaminated soils may be accomplished by changing the soil chemistry and structure with the application of microbial and phosphate amendments. Soil contaminated with lead bullets was collected from the surface of the berm at Savannah River Site (SRS) Small Arms Training Academy (SATA) in Aiken, SC. While uncontaminated soils typically have Pb levels ranging from 2 to 200 mg/kg (Berti et al. 1998), previous analysis show Pb levels of the SATA berm to reach 8,673 mg/kg. Biosurfactants are surface-active compounds naturally produced by soil bacteria that can bind metals. Biosurfactants have a wide variety of chemical structures that reduce interfacial surface tensions (Jennings and Tanner 2000) and have demonstrated efficient metal complexion (Lin 1996). Biosurfactants also have the potential to change the availability of natural organic matter (Strong-Gunderson 1995). Two types of bacteria, Alcaligenes piechaudii and Pseudomonas putida, were employed as amendments based on their ability to produce biosurfactants and survive in metal-contaminated soils. Apatites (calcium phosphate compounds) are important in the formation of Pb phosphates. Pb phosphates form rapidly when phosphate is available and are the most stable environmental form of lead in soil (Ruby et al.1998). Pyromorphites in particular remain insoluble under a wide range of environmental conditions (Zhang et al. 1998). The three apatites evaluated in the current study were North Carolina apatite (NCA), Florida apatite (FA), and biological apatite (BA). BA is ground fish bone that has few impurities such as As, Cr

  2. Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges, India.

    Science.gov (United States)

    Sudan, Sarabjeet Kour; Pal, Deepika; Bisht, Bhawana; Kumar, Narender; Chaudhry, Vasvi; Patil, Prabhu; Sahni, Girish; Mayilraj, Shanmugam; Krishnamurthi, Srinivasan

    2018-01-01

    A bacterial strain, designated ASS-1 T , was isolated and identified from a sediment sample of the river Ganges, Allahabad, India. The strain was Gram-stain-negative, formed straw-yellow pigmented colonies, was strictly aerobic, motile with a single polar flagellum, and positive for oxidase and catalase. The major fatty acids were C16 : 1ω7c/ 16 : 1 C16 : 1ω6c, C18 : 1ω7c and C16 : 0. Sequence analysis based on the 16S rRNA gene revealed that strain ASS-1 T showed high similarity to Pseudomonas guguanensis CC-G9A T (98.2 %), Pseudomonas alcaligenes ATCC 14909 T (98.2 %), Pseudomonas oleovorans DSM 1045 T (98.1 %), Pseudomonas indolxydans IPL-1 T (98.1 %) and Pseudomonas toyotomiensis HT-3 T (98.0 %). Analysis of its rpoB and rpoD housekeeping genes confirmed its phylogenetic affiliation and showed identities lower than 93 % with respect to the closest relatives. Phylogenetic analysis based on the 16S rRNA, rpoB, rpoD genes and the whole genome assigned it to the genus Pseudomonas. The results of digital DNA-DNA hybridization based on the genome-to-genome distance calculator and average nucleotide identity revealed low genome relatedness to its close phylogenetic neighbours (below the recommended thresholds of 70 and 95 %, respectively, for species delineation). Strain ASS-1 T also differed from the related strains by some phenotypic characteristics, i.e. growth at pH 5.0 and 42 °C, starch and casein hydrolysis, and citrate utilization. Therefore, based on data obtained from phenotypic and genotypic analysis, it is evident that strain ASS-1 T should be regarded as a novel species within the genus Pseudomonas, for which the name Pseudomonasfluvialis sp. nov. is proposed. The type strain is ASS-1 T (=KCTC 52437 T =CCM 8778 T ).

  3. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Varese Giovanna C

    2010-02-01

    Full Text Available Abstract Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure via enrichment (i.e., serial growth transfers on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms on Diesel (G1 and HiQ Diesel (G2, respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia

  4. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms.

    Science.gov (United States)

    Zanaroli, Giulio; Di Toro, Sara; Todaro, Daniela; Varese, Giovanna C; Bertolotto, Antonio; Fava, Fabio

    2010-02-16

    The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of

  5. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank.

    Science.gov (United States)

    Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B

    2016-08-01

    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate

  6. Modeling of Heavy Metal Transformation in Soil Ecosystem

    Science.gov (United States)

    Kalinichenko, Kira; Nikovskaya, Galina N.

    2017-04-01

    The intensification of industrial activity leads to an increase in heavy metals pollution of soils. In our opinion, sludge from biological treatment of municipal waste water, stabilized under aerobic-anaerobic conditions (commonly known as biosolid), may be considered as concentrate of natural soil. In their chemical, physical and chemical and biological properties these systems are similar gel-like nanocomposites. These contain microorganisms, humic substances, clay, clusters of nanoparticles of heavy metal compounds, and so on involved into heteropolysaccharides matrix. It is known that microorganisms play an important role in the transformation of different nature substances in soil and its health maintenance. The regularities of transformation of heavy metal compounds in soil ecosystem were studied at the model of biosolid. At biosolid swelling its structure changing (gel-sol transition, weakening of coagulation contacts between metal containing nanoparticles, microbial cells and metabolites, loosening and even destroying of the nanocomposite structure) can occur [1, 2]. The promotion of the sludge heterotrophic microbial activities leads to solubilization of heavy metal compounds in the system. The microbiological process can be realized in alcaligeneous or acidogeneous regimes in dependence on the type of carbon source and followed by the synthesis of metabolites with the properties of flocculants and heavy metals extragents [3]. In this case the heavy metals solubilization (bioleaching) in the form of nanoparticles of hydroxycarbonate complexes or water soluble complexes with oxycarbonic acids is observed. Under the action of biosolid microorganisms the heavy metals-oxycarbonic acids complexes can be transformed (catabolised) into nano-sizing heavy metals- hydroxycarbonates complexes. These ecologically friendly complexes and microbial heteropolysaccharides are able to interact with soil colloids, stay in the top soil profile, and improve soil structure due

  7. Exposure to airborne microorganisms and endotoxin in herb processing plants.

    Science.gov (United States)

    Dutkiewicz, J; Krysińska-Traczyk, E; Skórska, C; Sitkowska, J; Prazmo, Z; Golec, M

    2001-01-01

    Microbiological air sampling was performed in two herb processing plants located in eastern Poland. Air samples for determination of the levels of bacteria, fungi, dust and endotoxin were collected at 14 sites during cleaning, cutting, grinding, sieving, sorting and packing of 11 kinds of herbs (nettle, caraway, birch, celandine, marjoram, mint, peppermint, sage, St. John's wort, calamus, yarrow), used for production of medications, cosmetics and spices. It was found that processing of herbs was associated with a very high pollution of the air with bacteria, fungi, dust and endotoxin. The numbers of microorganisms (bacteria and fungi) in the air of herb processing plants ranged within 40.6-627.4 x 10(3) cfu/m3 (mean +/- S.D = 231.4 +/- 181.0 x 10(3) cfu/m3). The greatest concentrations were noted at the initial stages of production cycle, during cleaning, cutting and grinding of herbs. The numbers of airborne microorganisms were also significantly (pnettle, yarrow and mint. The values of the respirable fraction of airborne microflora in the examined facilities varied within a fairly wide range and were between 14.7-67.7%. The dominant microorganisms in the air of herb processing plants were mesophilic bacteria, among which endospore-forming bacilli (Bacillus spp.) and actinomycetes of the species Streptomyces albus were most numerous. Among Gram-negative bacteria, the most common was endotoxin-producing species Alcaligenes faecalis. Altogether, 37 species or genera of bacteria and 23 species or genera of fungi were identified in the air of herb processing plants, of these, 11 and 10 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of dust and bacterial endotoxin in the air of herb processing plants were large with extremely high levels at some sampling sites. The concentrations of airborne dust ranged within 3.2-946.0 mg/m3 (median 18.1 mg/m3), exceeding at 13 out of 14 sampling sites the Polish OEL

  8. Linear Alkylbenzene Sulfonate tolerance in bacteria isolated from sediment of tropical water bodies polluted with detergents

    Directory of Open Access Journals (Sweden)

    I.T Kehinde

    2008-12-01

    Full Text Available The discharge of untreated detergent-bearing waste introduces linear alkylbenzene sulfonates (LAS to the aquatic environment. The surfactant persists in some streams and rivers in Nigeria, some is adsorbed to suspended materials and end in the sediment of the receiving water bodies. In this study, bacteria isolated from sediments of some tropical detergent-effluent-polluted streams were tested for tolerance to LAS using the media dilution technique. LAS-tolerance was indicated by growth of the bacteria in the presence of the surfactant. The pH, concentrations of surfactant, population of heterotrophic bacteria and population of LAS-tolerant bacteria in the sediments were determined. A direct relationship (r= 0.9124 was found between the alkaline conditions (pH= 8.2-12.0 and high surfactant concentrations (45-132 mg/g in the sediment. The sediments harboured a high population and a wide variety of bacteria; the populations of viable heterotrophic bacteria (vHB: 2.9×10(5 to 1.2×10(7 cfu/g and LAS tolerant bacteria (LTB: 1.5×10(4 to 1.2×10(6 cfu/g had a direct relationship (r= 0.9500. An inverse relationship resulted between each of them and the concentration of surfactant in the sediment, r vHB/ LAS = -0.9303 and rLTB/ LAS = -0.9143, respectively. Twelve bacteria species were isolated from the sediment: Alcaligenes odorans, Bacillus subtilis, Burkholderia cepacia, Citrobacter freundii, Citrobacter diversus, Escherichia coli, Micrococcus luteus, Micrococcus albus, Pseudomonas putida, Pseudomonas stutzeri, Staphylococcus aureus and Streptococcus faecalis. Most of them were adapted to the surfactant with their maximum acceptable concentrations ranging between 0.03 and >1.0% (w/v. The sediments could serve as source of adapted organisms which can be used in bio-treatment of LAS-bearing waste. Rev. Biol. Trop. 56 (4:7-15. Epub 2008 December 12.La descarga de desechos que contienen detergentes liberan sulfonatos de alquibenceno lineal (LAS al

  9. Perfil epidemiológico das infecções bacterianas do aparelho respiratório em doentes com fibrose quística

    Directory of Open Access Journals (Sweden)

    Sofia Quintas

    2003-07-01

    Full Text Available RESUMO: Com o intuito de caracterizar a evolução do perfil epidemiológico das infecções bacterianas do aparelho respiratório dos doentes com Fibrose Quística (FQ, os autores realizaram um estudo retrospectivo da prevalência e incidência das mesmas em 78 doentes com FQ seguidos no Centro Especializado de FQ da Clínica Universitária de Pediatria do Hospital de Santa Maria, Lisboa durante um período de 5 anos (1995-1999.A Pseudomonas aeruginosa foi a bactéria mais frequentemente isolada nos três primeiros anos do estudo (60-73%, sendo ultrapassada nos dois anos seguintes pelo Staphylococcus aureus. No entanto, a Pseudomonas aeruginosa constituiu sempre o principal agente de colonização crónica (44-59%, com um pico de início da mesma entre os 0 e os 5 anos (34%. Verificou-se ao longo dos 5 anos um aumento significativo da prevalência de colonização intermitente e crónica por Staphylococcus aureus (48% para 83% e 32% para 54%. A prevalência de isolamentos de Staphylococcus aureus resistente à meticilina e de Burkholderia cepacia quase que duplicou neste período. As taxas de isolamento e de colonização crónica por Alcaligenes xylosoxidans aumentaram bruscamente a partir de 1997 (de 3% e 0% em 1996 para 7% e 5% em 1997 e 10% e 7% em 1999. A colonização crónica por Haemophilus influenzae manteve uma prevalência média de 22%, apesar dum aumento dos isolamentos (de 42% para 61%. Em 55% dos doentes observou-se colonização crónica por dois ou mais agentes.Em função destes resultados são discutidos os esquemas terapêuticos e as medidas de prevenção de contágios que têm sido preconizados nos doentes com FQ do nosso centro.REV PORT PNEUMOL 2003; IX (4: 337-352 ABSTRACT: With the aim of characterizing the evolution of the epidemiological profile of respiratory bacterial infections of patients having Cystic Fibrosis (CF, the authors

  10. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M.; Ortega-Calvo, J.J.

    2005-01-01

    contain were analyzed by gas chromatography method. Four bioassays were used to measure toxicity during bio-remediation of soil contaminated by petroleum hydrocarbons: Microtox(R) test, SOSchromotest, lettuce seed germination and sheep red blood cell (RBS) hemolysis assay. Rhizosphere remediation was found to be effective for removal of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs) from soil with the use of alfalfa inoculated by the Pseudomonas stutzeri MEV-S1 strain (RU 2228952 patent) and oats inoculated by the Pseudomonas alcaligenes MEV strain (RU 2228953 patent) in vegetation and field experiments. The reduction of the TPH and PAH concentrations in soil was accompanied by the reduction of integral toxicity and genotoxicity, evaluated by bio-testing. It is conceivable, therefore, that a possible way to optimize petroleum hydrocarbons phyto-remediation is the use of selected plants and microbial inoculants with specific chemotactic affinities and bio-surfactant production. The proposed technology for soil bio-remediation with the use of integrated plant-microbial system is ecologically and toxicologically safe and economically attractive

  11. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans.

    Science.gov (United States)

    Das, P; Mukherjee, S; Sen, R

    2008-06-01

    To isolate the biologically active fraction of the lipopeptide biosurfactant produced by a marine Bacillus circulans and study its antimicrobial potentials. The marine isolate B. circulans was cultivated in glucose mineral salts medium and the crude biosurfactant was isolated by chemical isolation method. The crude biosurfactants were solvent extracted with methanol and the methanol extract was subjected to reverse phase high-performance liquid chromatography (HPLC). The crude biosurfactants resolved into six major fractions in HPLC. The sixth HPLC fraction eluting at a retention time of 27.3 min showed the maximum surface tension-reducing property and reduced the surface tension of water from 72 mNm(-1) to 28 mNm(-1). Only this fraction was found to posses bioactivity and showed a pronounced antimicrobial action against a panel of Gram-positive and Gram-negative pathogenic and semi-pathogenic micro-organisms including a few multidrug-resistant (MDR) pathogenic clinical isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of this antimicrobial fraction of the biosurfactant were determined for these test organisms. The biosurfactant was found to be active against Gram-negative bacteria such as Proteus vulgaris and Alcaligens faecalis at a concentration as low as 10 microg ml(-1). The biosurfactant was also active against methicillin-resistant Staphylococcus aureus (MRSA) and other MDR pathogenic strains. The chemical identity of this bioactive biosurfactant fraction was determined by post chromatographic detection using thin layer chromatography (TLC) and also by Fourier transform infrared (FTIR) spectroscopy. The antimicrobial HPLC fraction resolved as a single spot on TLC and showed positive reaction with ninhydrin, iodine and rhodamine-B reagents, indicating its lipopeptide nature. IR absorption by this fraction also showed similar and overlapping patterns with that of other lipopeptide biosurfactants such as surfactin

  12. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M. [Research Centre for Toxicology and Hygienic Regulation of Biopreparations, Moscow region (Russian Federation); Ortega-Calvo, J.J. [Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla (Spain)

    2005-07-01

    contain were analyzed by gas chromatography method. Four bioassays were used to measure toxicity during bio-remediation of soil contaminated by petroleum hydrocarbons: Microtox(R) test, SOSchromotest, lettuce seed germination and sheep red blood cell (RBS) hemolysis assay. Rhizosphere remediation was found to be effective for removal of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs) from soil with the use of alfalfa inoculated by the Pseudomonas stutzeri MEV-S1 strain (RU 2228952 patent) and oats inoculated by the Pseudomonas alcaligenes MEV strain (RU 2228953 patent) in vegetation and field experiments. The reduction of the TPH and PAH concentrations in soil was accompanied by the reduction of integral toxicity and genotoxicity, evaluated by bio-testing. It is conceivable, therefore, that a possible way to optimize petroleum hydrocarbons phyto-remediation is the use of selected plants and microbial inoculants with specific chemotactic affinities and bio-surfactant production. The proposed technology for soil bio-remediation with the use of integrated plant-microbial system is ecologically and toxicologically safe and economically attractive.

  13. Duševní stav málo a pravidelně tělesně aktivních žen ve druhém trimestru těhotenství The state of mind of less physically active and regularly physically active women in the second trimester of their pregnancies

    Directory of Open Access Journals (Sweden)

    Damir Karpljuk

    2008-04-01

    ětluje 23,51 % variance z celkových 34,91 % vysvětlené variance. Těhotné ženy skupiny PTA tedy svůj stav defi novaly většinou jako pozitivní, s následujícími emocemi: uvolněný, spokojený, příjemný, nepesimistický, přitažlivý, hrdý a šťastný. U skupiny NTA byl prvním eliminovaným faktorem faktor spojený s negativními emocemi, což vysvětluje 19,45 % variance z celkových 34,68 % vysvětlené variance. Tato skupina těhotných žen defi novala svůj stav většinou jako negativní, s následujícími opakujícími se emocemi: melancholický, napjatý, vznětlivý, depresivní a nervózní. Zjištěná fakta ukazují, že pravidelná sportovní aktivita prospívá duševnímu stavu a duševnímu zdraví těhotných žen. The moment a woman fi nds out that she is pregnant, her life changes in many aspects as she starts to adjust to the baby growing in her body. Her wish is to feel well, to safely reach the due date and give birth to a healthy child. We conducted a survey among 163 pregnant women at the end of the second trimester of their pregnancies and this article presents the relationship between their sport activity and their state of mind during pregnancy. Two groups of pregnant women, namely those who were regularly physically active (RPA and those with a low level of being physically active (LPA were compared and the relationship between their level of sport activity and their state of mind was established. The first part of the inventory focused on sport activity, namely – the frequency, forms and types of their sport activities. The RPA group consisted of 69 pregnant women who regularly engage in organised sport activities at sport centres or are physically active 3 to 4 times a week in an unorganised way. Activities which lasted for 30 minutes or more were considered. The LPA group consisted of 94 pregnant women who were physically active only occasionally or were physically inactive. The second part of the inventory investigating

  14. Microbiological analyses of water from hemodialysis services in São Luís, Maranhão, Brazil Análises microbiológicas da água dos serviços de hemodiálise em São Luís, Maranhão, Brasil

    Directory of Open Access Journals (Sweden)

    José de Ribamar Oliveira Lima

    2005-06-01

    Full Text Available Rigorous control of water quality in hemodialysis services is extremely important in order to guarantee a better quality of life of the patients submitted to this treatment. The lack of adequate water monitoring has caused the death of various patients in the past. The objective of the present study was to determine the physicochemical and bacteriological characteristics of water used by hemodialysis services in hospitals of the city of São Luís, Maranhão, Brazil. Bacteriological analyses included the membrane filter method for the determination of total coliform bacteria, the Cult-Dipcombi-TTC-agar method for heterotrophic bacteria and the limulus amebocyte lysate method for the determination of endotoxins. Eighteen water samples obtained from three hospital units, six samples per hemodialysis service, collected directly at the pre- and post-treatment points, were analyzed. Microorganisms were detected in the water used by the hemodialysis services in two of the three hospital units (B and C studied. No contamination with heterotrophic bacteria was observed in pretreatment samples, while endotoxin production was detected in 100% of the samples. In post-treatment samples, heterotrophic bacteria were detected in 66.6% of the samples and endotoxins in 33.3%. The microorganisms identified in unit B were Burkholderia cepacia, Alcaligenes xylosoxidans,Pseudomonas aeruginosa and Stenotrophomonas maltophilia In unit C Flavimonas oryzihabitans,Ralstonia pickettii and Burkholderia cepacia were identified. A significant correlation was observed between the presence of endotoxins and the physicochemical characteristics of water such as turbidity and conductivity. These data indicate that two of the three hospital units studied should revise the control of their hemodialysis water system.A necessidade de um controle rigoroso no serviço de hemodiálise tornou-se algo de extrema importância para garantir uma melhor qualidade de vida aos pacientes

  15. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    effective fertilizer. However, the source of nitrogen was still uncertain. Lightning and atmospheric deposition were thought to be the most important sources. Although the existence of biological nitrogen fixation (BNF) was unknown at that time, in 1838 Boussingault demonstrated that legumes restore Nr to the soil and that somehow they create Nr directly. It took almost 50 more years to solve the puzzle. In 1888, Herman Hellriegel (1831-1895) and Hermann Wilfarth (1853-1904) published their work on microbial communities. They noted that microorganisms associated with legumes have the ability to assimilate atmospheric N2 (Smil, 2001). They also said that it was necessary for a symbiotic relationship to exist between legumes and microorganisms.Other important processes that drive the cycle were elucidated in the nineteenth century. In the late 1870s, Theophile Scholesing proved the bacterial origins of nitrification. About a decade later, Serfei Nikolaevich Winogradsky isolated the two nitrifers - Nitrosomonas and Nitrobacter - and showed that the species of the former genus oxidize ammonia to nitrite and that the species of the latter genus convert nitrite to nitrate. Then in 1885, Ulysse Gayon isolated cultures of two bacteria that convert nitrate to N2. Although there are only two bacterial genera that can convert N2 to Nr, several can convert Nr back to N2, most notably Pseudomonas, Bacillus, and Alcaligenes (Smil, 2001).By the end of the nineteenth century, humans had discovered nitrogen and the essential components of the nitrogen cycle. In other words, they then knew that some microorganisms convert N2 to NH4+, other microorganisms convert NH4+ to NO3-, and yet a third class of microorganisms convert NO3- back to N2, thus completing the cycle.The following sections of this chapter examine the biogeochemical reactions of Nr, the distribution of Nr in Earth's reservoirs, and the exchanges between the reservoirs. This chapter then discusses Nr creation by natural and

  16. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    Science.gov (United States)

    de Rigo, Daniele; Corti, Paolo; Caudullo, Giovanni; McInerney, Daniel; Di Leo, Margherita; San-Miguel-Ayanz, Jesús

    2013-04-01

    -European Framework for Integrated Soil Water Erosion Assessment. Vol. 359 of IFIP Advances in Information and Communication Technology. Springer Boston, Berlin, Heidelberg, Ch. 34, pp. 310-318. http://dx.doi.org/10.1007/978-3-642-22285-6_34 San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., Giovando, C., Boca, R., Sedano, F., Kempeneers, P., McInerney, D., Withmore, C., de Oliveira, S. S., Rodrigues, M., Durrant, T., Corti, P., Oehler, F., Vilar, L., Amatulli, G., Mar. 2012. Comprehensive monitoring of wildfires in Europe: The European Forest Fire Information System (EFFIS). In: Tiefenbacher, J. (Ed.), Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts. InTech, Ch. 5. http://dx.doi.org/10.5772/28441 de Rigo, D., Caudullo, G., San-Miguel-Ayanz, J., Stancanelli, G., 2012. Mapping European forest tree species distribution to support pest risk assessment. In: Baker, R., Koch, F., Kriticos, D., Rafoss, T., Venette, R., van der Werf, W. (Eds.), Advancing risk assessment models for invasive alien species in the food chain: contending with climate change, economics and uncertainty. Bioforsk FOKUS 7. OECD Co-operative Research Programme on Biological Resource Management for Sustainable Agricultural Systems; Bioforsk - Norwegian Institute for Agricultural and Environmental Research. http://www.pestrisk.org/2012/BioforskFOKUS7-10_IPRMW-VI.pdf Estreguil, C., Caudullo, G., de Rigo, D., Whitmore, C., San-Miguel-Ayanz, J., 2012. Reporting on European forest fragmentation: Standardized indices and web map services. IEEE Earthzine. http://www.earthzine.org/2012/07/05/reporting-on-european-forest-fragmentation-standardized-indices-and-web-map-services/ Estreguil, C., de Rigo, D. and Caudullo, G. (exp. 2013). Towards an integrated and reproducible characterisation of habitat pattern. Submitted to Environmental Modelling & Software Amatulli, G., Camia, A., San-Miguel-Ayanz, J., 2009. Projecting future burnt area in the EU