Sample records for albumin colloid particles

  1. The role of colloid particles in the albumin-lanthanides interaction: The study of aggregation mechanisms. (United States)

    Tikhonova, Tatiana N; Shirshin, Evgeny A; Romanchuk, Anna Yu; Fadeev, Victor V


    We studied the interaction between bovine serum albumin (BSA) and lanthanide ions in aqueous solution in the 4.0÷9.5pH range. A strong increase of the solution turbidity was observed at pH values exceeding 6, which corresponds to the formation of Ln(OH)3 nanoparticles, while no changes were observed near the isoelectric point of BSA (pH 4.7). The results of the dynamic light scattering and protein adsorption measurements clearly demonstrated that the observed turbidity enhancement was caused by albumin sorption on the surface of Ln(OH)3 and colloid particles bridging via adsorbed protein molecules. Upon pH increase from 4.5 to 6.5, albumin adsorption on lanthanide colloids was observed, while the following increase of pH from 6.5 to 9.5 led to protein desorption. The predominant role of the electrostatic interactions in the adsorption and desorption processes were revealed in the zeta-potential measurements. No reversibility was observed upon decreasing pH from 9.5 to 4.5 that was suggested to be due to the other interaction mechanisms present in the system. It was shown that while for all lanthanide ions the interaction mechanism with BSA was similar, its manifestation in the optical properties of the system was significantly different. This was interpreted as a consequence of the differences in lanthanides hydrolysis constants. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Revealing deposition mechanism of colloid particles on human serum albumin monolayers. (United States)

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Kujda, Marta


    Colloid particle deposition was applied in order to characterize human serum albumin (HSA) monolayers on mica adsorbed under diffusion transport at pH 3.5. The surface concentration of HSA was determined by a direct AFM imaging of single molecules. The electrokinetic characteristics of the monolayers for various ionic strength were done by in situ streaming potential measurements. In this way the mean-field zeta potential of monolayers was determined. It was shown that the initially negative potential changed its sign for HSA surface concentrations above 2800μm(-2) that was interpreted as overcharging effect. The monolayers were also characterized by the colloid deposition method where negatively charged polystyrene particles, 810nm in diameter were used. The kinetics of particle deposition and their maximum coverage were determined as a function of the HSA monolayer surface concentration. An anomalous deposition of particles on substrates exhibiting a negative zeta potential was observed, which contradicts the mean-field theoretical predictions. This effect was quantitatively interpreted in terms of the random site sequential adsorption model. It was shown that efficient immobilization of particles only occurs at adsorption sites formed by three and more closely adsorbed HSA molecules. These results can be exploited as useful reference data for the analysis of deposition phenomena of bioparticles at protein monolayers that has practical significance for the regulation of the bioadhesive properties of surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Self-Assembly of Faceted Colloidal Particles

    NARCIS (Netherlands)

    Gantapara, A.P.


    A colloidal dispersion consists of insoluble microscopic particles that are suspended in a solvent. Typically, a colloid is a particle for which at least one of its dimension is within the size range of a nanometer to a micron. Due to collisions with much smaller solvent molecules, colloids perform

  4. Colloidal capsules: nano- and microcapsules with colloidal particle shells. (United States)

    Bollhorst, Tobias; Rezwan, Kurosch; Maas, Michael


    Utilizing colloidal particles for the assembly of the shell of nano- and microcapsules holds great promise for the tailor-made design of new functional materials. Increasing research efforts are devoted to the synthesis of such colloidal capsules, by which the integration of modular building blocks with distinct physical, chemical, or morphological characteristics in a capsule's shell can result in novel properties, not present in previous encapsulation structures. This review will provide a comprehensive overview of the synthesis strategies and the progress made so far of bringing nano- and microcapsules with shells of densely packed colloidal particles closer to application in fields such as chemical engineering, materials science, or pharmaceutical and life science. The synthesis routes are categorized into the four major themes for colloidal capsule formation, i.e. the Pickering-emulsion based formation of colloidal capsules, the colloidal particle deposition on (sacrificial) templates, the amphiphilicity driven self-assembly of nanoparticle vesicles from polymer-grafted colloids, and the closely related field of nanoparticle membrane-loading of liposomes and polymersomes. The varying fields of colloidal capsule research are then further categorized and discussed for micro- and nano-scaled structures. Finally, a special section is dedicated to colloidal capsules for biological applications, as a diverse range of reports from this field aim at pharmaceutical agent encapsulation, targeted drug-delivery, and theranostics.

  5. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank


    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  6. Suspended particles, colloids and radionuclide transport

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.


    Radionuclide can be transported either in true solution or associated with suspended particles and colloids. The definitions of colloids and suspended particles are introduced and the mechanisms by which they can influence radionuclide transport discussed. The aim of the Pocos de Caldas investigations was to characterise the natural particulate material in the groundwater, to investigate the association of trace elements with this material and to obtain information on the stability and mobility of the particles. The concentration of suspended particles measured in the groundwater samples were low; the particles also appear to be immobile. (author) 4 figs

  7. Patchy particles made by colloidal fusion (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano


    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  8. Inventions Utilizing Microfluidics and Colloidal Particles (United States)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.


    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  9. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa


    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  10. Particles with changeable topology in nematic colloids

    International Nuclear Information System (INIS)

    Ravnik, Miha; Čopar, Simon; Žumer, Slobodan


    We show that nematic colloids can serve as a highly variable and controllable platform for studying inclusions with changeable topology and their effects on the surrounding ordering fields. We explore morphing of toroidal and knotted colloidal particles into effective spheres, distinctively changing their Euler characteristic and affecting the surrounding nematic field, including topological defect structures. With toroidal particles, the inner nematic defect eventually transitions from a wide loop to a point defect (a small loop). Trefoil particles become linked with two knotted defect loops, mutually forming a three component link, that upon tightening transform into a two-component particle-defect loop link. For more detailed topological analysis, Pontryagin-Thom surfaces are calculated and visualised, indicating an interesting cascade of defect rewirings caused by the shape morphing of the knotted particles. (paper)

  11. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.


    The understanding of the structural and thermodynamic properties of moderately or highly concentrated solutions is fundamental, e.g., in medicine and biology and also in many technical processes, In this work, we have used the small-angle neutron scattering method (SANS), in combination with Monte...... Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles...

  12. Detection of elementary charges on colloidal particles. (United States)

    Strubbe, Filip; Beunis, Filip; Neyts, Kristiaan


    We have succeeded in determining the charge of individual colloidal particles with resolution higher than the elementary charge. The number of elementary charges on a particle is obtained from the analysis of optical tracking data of weakly charged silica spheres in an electric field in a nonpolar medium. The analysis also yields an accurate value of the particle size. Measurement of the charge as a function of time reveals events in which the particle loses or gains an elementary charge due to ionization or recombination processes at the surface.

  13. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.


    the Monte Carlo simulations. It is found that the SANS data can be explained by a model where the HSA molecules behave as hard ellipsoids of revolution with semiaxes a = 6.8 nm, b = c = 1.9 nm. In addition to the hard core interaction, the particles are also surrounded by a soft, repulsive rectangular......The understanding of the structural and thermodynamic properties of moderately or highly concentrated solutions is fundamental, e.g., in medicine and biology and also in many technical processes, In this work, we have used the small-angle neutron scattering method (SANS), in combination with Monte...... Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles...

  14. Interaction between colloidal particles. Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)


    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  15. Unexpected Normal Colloid Osmotic Pressure in Clinical States with Low Serum Albumin.

    Directory of Open Access Journals (Sweden)

    Regina Michelis

    Full Text Available In clinical states associated with systemic oxidative stress (OS and inflammation such as chronic kidney disease (CKD, oxidative modifications of serum albumin impair its quantification, resulting in apparent hypoalbuminemia. As the maintenance of oncotic pressure/colloid osmotic pressure (COP is a major function of albumin, this study examined the impact of albumin oxidation on COP, both in-vivo and in-vitro.Patients with proteinuria and patients on chronic hemodialysis (HD with systemic inflammation and OS were enrolled. Blood samples were collected from 134 subjects: 32 healthy controls (HC, proteinuric patients with high (n = 17 and low (n = 31 systemic inflammation and from 54 patients on chronic hemodialysis (HD with the highest levels of OS and inflammation.In-vitro oxidized albumin showed significantly higher COP values than non-oxidized albumin at identical albumin levels. In vivo, in hypoalbuminemic HD patients with the highest OS and inflammation, COP values were also higher than expected for the low albumin levels. The contribution to COP by other prevalent plasma proteins, such as fibrinogen and immunoglobulins was negligible. We imply that the calculation of COP based on albumin levels should be revisited in face of OS and inflammation. Hence, in hypoalbuminemic proteinuric patients with systemic OS and inflammation the assumption of low COP should be verified by its measurements.

  16. Unexpected Normal Colloid Osmotic Pressure in Clinical States with Low Serum Albumin (United States)

    Michelis, Regina; Sela, Shifra; Zeitun, Teuta; Geron, Ronit; Kristal, Batya


    Background In clinical states associated with systemic oxidative stress (OS) and inflammation such as chronic kidney disease (CKD), oxidative modifications of serum albumin impair its quantification, resulting in apparent hypoalbuminemia. As the maintenance of oncotic pressure/colloid osmotic pressure (COP) is a major function of albumin, this study examined the impact of albumin oxidation on COP, both in-vivo and in-vitro. Methods Patients with proteinuria and patients on chronic hemodialysis (HD) with systemic inflammation and OS were enrolled. Blood samples were collected from 134 subjects: 32 healthy controls (HC), proteinuric patients with high (n = 17) and low (n = 31) systemic inflammation and from 54 patients on chronic hemodialysis (HD) with the highest levels of OS and inflammation. Results In-vitro oxidized albumin showed significantly higher COP values than non-oxidized albumin at identical albumin levels. In vivo, in hypoalbuminemic HD patients with the highest OS and inflammation, COP values were also higher than expected for the low albumin levels. The contribution to COP by other prevalent plasma proteins, such as fibrinogen and immunoglobulins was negligible. We imply that the calculation of COP based on albumin levels should be revisited in face of OS and inflammation. Hence, in hypoalbuminemic proteinuric patients with systemic OS and inflammation the assumption of low COP should be verified by its measurements. PMID:27453993

  17. Nanoscale size dependence in the conjugation of amyloid beta and ovalbumin proteins on the surface of gold colloidal particles

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, K; Briglio, N M; Hartati, D Sri; Tsang, S M W; MacCormac, J E; Welchons, D R [Department of Chemistry, State University of New York College at Geneseo, One College Circle, Geneseo, NY 14454 (United States)], E-mail:


    Absorption spectroscopy was utilized to investigate the conjugation of amyloid {beta} protein solution (A{beta}{sub 1-40}) and chicken egg albumin (ovalbumin) with various sizes of gold colloidal nanoparticles for various pHs, ranging from pH 2 to pH 10. The pH value that indicates the colour change, pH{sub o}, exhibited colloidal size dependence for both A{beta}{sub 1-40} and ovalbumin coated particles. In particular, A{beta}{sub 1-40} coated gold colloidal particles exhibited non-continuous size dependence peaking at 40 and 80 nm, implying that their corresponding cage-like structures provide efficient net charge cancellation at these core sizes. Remarkably, only the pH{sub o} value for ovalbumin coated 80 nm gold colloid was pH>7, and a specific cage-like structure is speculated to have a positive net charge facing outward when ovalbumin self-assembles over this particular gold colloid. The previously reported reversible colour change between pH 4 and 10 took place only with A{beta}{sub 1-40} coated 20 nm gold colloids; this was also explored with ovalbumin coated gold colloids. Interestingly, gold colloidal nanoparticles showed a quasi-reversible colour change when they were coated with ovalbumin for all test sizes. The ovalbumin coated gold colloid was found to maintain reversible properties longer than A{beta}{sub 1-40} coated gold colloid.

  18. Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials (United States)

    Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.


    Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896

  19. Quantitative uptake of colloidal particles by cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Neus [Department of Physics, Philipps University Marburg, Marburg (Germany); Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Hühn, Jonas; Zyuzin, Mikhail V.; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif [Department of Physics, Philipps University Marburg, Marburg (Germany); Said, Alaa Hassan [Department of Physics, Philipps University Marburg, Marburg (Germany); Physics Department, Faculty of Science, South Valley University (Egypt); Escudero, Alberto [Department of Physics, Philipps University Marburg, Marburg (Germany); Instituto de Ciencia de Materiales de Sevilla, CSIC — Universidad de Sevilla, Seville (Spain); Pelaz, Beatriz [Department of Physics, Philipps University Marburg, Marburg (Germany); Gonzalez, Elena [Department of Physics, Philipps University Marburg, Marburg (Germany); University of Vigo, Vigo (Spain); Duarte, Miguel A. Correa [University of Vigo, Vigo (Spain); Roy, Sathi [Department of Physics, Philipps University Marburg, Marburg (Germany); Chakraborty, Indranath [Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL (United States); Lim, Mei L.; Sjöqvist, Sebastian [Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Jungebluth, Philipp [Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg (Germany); Parak, Wolfgang J., E-mail: [Department of Physics, Philipps University Marburg, Marburg (Germany); CIC biomaGUNE, San Sebastian (Spain)


    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  20. Large-scale assembly of colloidal particles (United States)

    Yang, Hongta

    increase of the effective refractive index of the diffractive medium, resulting in the red-shift of the optical stop bands. The wavelength shift is linearly proportional to the vapor partial pressure for a spectrum of vapors. Optical simulation and theoretical prediction based on Kelvin equation suggest that a liquid film is formed on the walls of the macropores during vapor condensation. The third topic describes introducing doctor blade coating fabricated large area and low cost macroporous films for thermochromic smart windows, which are useful for energy control in glazed buildings. The fabricated macroporous polymer films exhibit brilliant colors and are capable of reflecting solar radiation when in-situ heated, and become transparent as cavities are filled with a solvent which has the same refractive index as that of the polymer when cooled to building temperature. The fourth topic reports the roll-to roll fabricated excellent water-repelling and self-cleaning macroporous polymer films. The size of the voids can be easily controlled by tuning the duration of an oxygen reactive-ion etching process prior to the removal of the templating silica spheres from silica colloidal-polymer composites. After surface functionalization with fluorosilane, superhydrophobic surface with large apparent water contact angle and small sliding angle can be obtained. The self-cleaning functionality can be achieved on superhydrophobic macroporous coatings by preventing bacterial contamination is further demonstrated. The fifth topic presented is that the template macroporous polymer films with interconnected voids and uniform interconnecting nanopores can be directly used as filtration membranes to achieve size-exclusive separation of particles. The results also demonstrate that more than 85% of small sized particles are recovered after filtration. The results also demonstrate that Escherichia coli can be filtrated by the from macroporous polymer films aqueous solution.

  1. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.


    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  2. The Immobilization of a Transfer Hydrogenation Catalyst on Colloidal Particles

    NARCIS (Netherlands)

    van Ravensteijn, Bas G P|info:eu-repo/dai/nl/338806008; Schild, Dirk Jan; Kegel, Willem K.|info:eu-repo/dai/nl/113729464; Klein Gebbink, Robertus J M|info:eu-repo/dai/nl/166032646


    In this paper, we report a new synthetic procedure to immobilize a transfer hydrogenation catalyst on the surface of colloidal polystyrene particles. Using supports of colloidal dimensions allows for combining a relatively high surface area for catalyst binding, mobility of the catalyst, and facile

  3. Comparison of technetium-99m sulfur colloid and technetium-99m albumin colloid labeled solid meals for gastric emptying studies. (United States)

    Taillefer, R; Douesnard, J M; Beauchamp, G; Guimond, J


    A Tc-99m albumin colloid (Tc-AC) kit has been introduced as an alternative to Tc-99m sulfur colloid (Tc-SC) for liver-spleen imaging. Since there is no need for boiling, the use of Tc-AC reduces preparation time and manipulation. Tc-SC is one of the most commonly used radiopharmaceuticals for the labeling of solid-phase markers in gastric emptying studies. In vitro studies were performed to evaluate the labeling efficiency and stability in hydrochloric acid and in human gastric juice of intracellularly labeled chicken liver and scrambled eggs labeled with Tc-SC and Tc-AC. Gastric emptying studies also were performed on 20 healthy volunteers with both Tc-SC and Tc-AC labeled scrambled egg sandwiches. There was no significant difference between Tc-SC and Tc-AC in the labeling efficiency of chicken liver (98% +/- 1% for Tc-SC, 96% +/- 2% for Tc-AC) and scrambled eggs (92% +/- 2% for Tc-SC, 91% +/- 3% for Tc-AC). However, both Tc-SC and Tc-AC labeled scrambled eggs showed a lower stability than chicken liver, particularly in human gastric juice. Gastric emptying curves from both meals in 20 normal subjects were also similar, with a mean half-emptying time of 85 +/- 13 minutes and 87 +/- 16 minutes for the meals containing Tc-SC and Tc-AC respectively. Tc-AC is a reliable alternative to Tc-SC as a radiotracer for solid-phase gastric emptying studies.

  4. Hybrid electrokinetics for separation, mixing, and concentration of colloidal particles

    International Nuclear Information System (INIS)

    Sin, Mandy L Y; Shimabukuro, Yusuke; Wong, Pak Kin


    The advent of nanotechnology has facilitated the preparation of colloidal particles with adjustable sizes and the control of their size-dependent properties. Physical manipulation, such as separation, mixing, and concentration, of these colloidal particles represents an essential step for fully utilizing their potential in a wide spectrum of nanotechnology applications. In this study, we investigate hybrid electrokinetics, the combination of dielectrophoresis and electrohydrodynamics, for active manipulation of colloidal particles ranging from nanometers to micrometers in size. A concentric electrode configuration, which is optimized for generating electrohydrodynamic flow, has been designed to elucidate the effectiveness of hybrid electrokinetics and define the operating regimes for different microfluidic operations. The results indicate that the relative importance of electrohydrodynamics increases with decreasing particle size as predicted by a scaling analysis and that electrohydrodynamics is pivotal for manipulating nanoscale particles. Using the concentric electrodes, we demonstrate separation, mixing, and concentration of colloidal particles by adjusting the relative strengths of different electrokinetic phenomena. The effectiveness of hybrid electrokinetics indicates its potential to serve as a generic technique for active manipulation of colloidal particles in various nanotechnology applications.

  5. Cholesteric colloidal liquid crystals from phytosterol rod-like particles

    NARCIS (Netherlands)

    Rossi, L.; Sacanna, S.; Velikov, K.P.


    We report the first observation of chiral colloidal liquid crystals of rod-like particles from a low molecular weight organic compound— phytosterols. Based on the particles shape and crystal structure, we attribute this phenomenon to chiral distribution of surface charge on the surface of

  6. Phase diagrams of shape-anisotropic colloidal particles

    NARCIS (Netherlands)

    Dijkstra, M.


    In order to predict the equilibrium phase behaviour of colloidal particles, one should first identify the “candidate” structures in which the particles may assemble. Subsequently, the free energy of the candidate structures should be determined to establish the thermodynamically stable phases and to

  7. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules. (United States)

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan


    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  8. Single photon emission computed tomography and albumin colloid imaging of the liver

    International Nuclear Information System (INIS)

    Croft, B.Y.; Teates, C.D.; Honeyman, J.C.


    A single photon emission computed tomography (ECT) system using the GE 400T Anger camera with 37 PM tubes and the SPETS software has been installed in our clinical laboratory. It has been used in the study of liver imaging with Tc-99m albumin colloid and other agents. The object of the study is to define what improvement in liver diagnosis might be made using ECT. Patients were injected with 3-4 mCi (ca 120 MBq) of colloid; five standard liver-spleen views and a 64-image ECT study were acquired. The ECT images were acquired either in a circle of the radius of the longer transverse axis of the patient or in an ellipse to match the patient contour. Studies were corrected for the attenuation of the Tc-99m gamma rays by tissue. A series of normal and abnormal patients have been studied and the data analyzed. The significant change in the technique of ECT imaging is the elliptical motion of the camera head which allows a better approximation of the patient contour and improves the spatial resolution of the images. (orig.)

  9. Influence of colloid particle profile on sentinel lymph node uptake

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Nunez, Eutimio Gustavo [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil)], E-mail:; Linkowski Faintuch, Bluma; Teodoro, Rodrigo; Pereira Wiecek, Danielle [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Martinelli, Jose Roberto [Center of Materials Science and Technology, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Gomes da Silva, Natanael; Castanheira, Claudia E. [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Santos de Oliveira Filho, Renato [Faculty of Medicine, Federal University of Sao Paulo, SP 04020-041 (Brazil); Pasqualini, Roberto [CIS bio international, Research and Development, Gif sur Yvette, 91192 (France)


    Introduction: Particle size of colloids employed for sentinel lymph node (LN) detection is not well studied. This investigation aimed to correlate particle size and distribution of different products with LN uptake. Methods: All agents (colloidal tin, dextran, phytate and colloidal rhenium sulfide) were labeled with {sup 99m}Tc according to manufacturer's instructions. Sizing of particles was carried out on electron micrographs using Image Tool for Windows (Version 2.0). Biodistribution studies in main excretion organs as well as in popliteal LN were performed in male Wistar rats [30 and 90 min post injection (p.i.)]. The injected dose was 0.1 ml (37 MBq) in the footpad of the left posterior limb. Dynamic images (0-15 min p.i.) as well as static ones (30 and 90 min) were acquired in gamma camera. Results: Popliteal LN was clearly reached by all products. Nevertheless, particle size remarkably influenced node uptake. Colloidal rhenium sulfide, with the smallest diameter (5.1x10{sup -3}{+-}3.9x10{sup -3} {mu}m), permitted the best result [2.72{+-}0.64 percent injected dose (%ID) at 90 min]. Phytate displayed small particles (<15 {mu}m) with favorable uptake (1.02{+-}0.14%ID). Dextran (21.4{+-}12.8 {mu}m) and colloidal tin (39.0{+-}8.3 {mu}m) were less effective (0.55{+-}0.14 and 0.06{+-}0.03%ID respectively). Particle distribution also tended to influence results. When asymmetric, it was associated with biphasic uptake which increased over time; conversely, symmetric distribution (colloidal tin) was consistent with a constant pattern. Conclusion: The results are suggesting that particle size and symmetry may interfere with LN radiopharmaceutical uptake.

  10. The attachment of colloidal particles to environmentally relevant surfaces and the effect of particle shape. (United States)

    McNew, Coy P; Kananizadeh, Negin; Li, Yusong; LeBoeuf, Eugene J


    Despite the prevalence of nonspherical colloidal particles, the role of particle shape in the transport of colloids is largely understudied. This study investigates the attachment of colloidal particles onto environmentally relevant surfaces while varying particle shape and ionic strength. Using quartz crystal microbalance and atomic force microscopy measurements, the role of particle shape was elucidated and possible mechanisms discussed. The attachment of both spherical and stretched polystyrene colloidal particles onto a smooth alginate-coated silica surface showed qualitative agreement with DLVO theory. Attachment onto a Harpeth humic acid (HHA) surface, however, significantly deviated from DLVO theory due to its high surface heterogeneity and extended confirmation from the silica surface. This extended confirmation provided increased potential for spherical particle entanglement, while the enlarged major axis of the stretched particles hindered their ability to attach. As ionic strength increased, the HHA layer condensed and provided less potential for spherical particle entanglement and therefore the selectivity for spherical particle attachment vanished. The findings presented in this study suggest that colloidal particle shape may play a complex and important role in predicting the transport of colloidal particles, especially in the presence of natural organic matter-coated surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fractures as Carriers for Colloid and Nano-Particles (United States)

    Weisbrod, N.; Cohen, M.; Tang, X.; Zvikelsky, O.; Meron, H.


    One of the major questions in studies in which transport of colloids and nano particles (NPs) is being explored is whether or not they will be mobile on large scales and in large conduits such as fractures and cracks. While many studies explore the migration on a small scale and mostly in ideal porous media, less is known about this topic on larger scales and in fractured rocks or cracked soils. Fractures are likely to be favorable carriers for colloids and NPs due to their large aperture, enabling relatively high flow velocity and smaller tortuosity of the flow path. Transport of various colloids including microspheres, clay particles and viruses, as well as colloid-facilitated transport of lead and cesium was explored in a naturally discrete fractured chalk cores. Preliminary work exploring the transport of NZVIs and TiO2 NPs is being carried out through these cores as well. Our results indicate very high recovery of large microspheres (0.2 and 1 micron) and lower recovery of the small spheres (0.02 micron). It was observed that clay particles, with similar surface properties and sizes to that of the microspheres, show significantly lower recoveries (50 vs over 90%), probably due to the high density of clay particles in respect to the microspheres (2.65 vs. 1.05 g/cm3). High recovery of bacteriophages was also observed, but they exhibit some differences in respect to microspheres with similar properties. In all cases, including the 0.02 micron colloids exhibiting lower recovery rates, arrival times were earlier than that of the bromide that was used as a reference. It was found that colloid-facilitated transport played a major role in the migration of lead and cesium through the fracture. In practice, lead was found to be mobile only in a colloidal form. The on-going work on NP transport through fractures is still in a preliminary phase. Nevertheless, TiO2 recovery was found to be very low. In conclusion, it was observed that in many cases fractures are favorable

  12. Photonic crystals of core-shell colloidal particles

    NARCIS (Netherlands)

    Velikov, K.P.; Moroz, A.; Blaaderen, A. van


    We report on the fabrication and optical transmission studies of thin three-dimensional (3D) photonic crystals of high-dielectric ZnS-core and low-dielectric SiO2-shell colloidal particles. These samples were fabricated using a vertical controlled drying method. The spectral position and width of a

  13. Surfactant-free Colloidal Particles with Specific Binding Affinity. (United States)

    van der Wel, Casper; Bossert, Nelli; Mank, Quinten J; Winter, Marcel G T; Heinrich, Doris; Kraft, Daniela J


    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles.

  14. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment. (United States)

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph


    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  15. Photophysical effects between spirobenzopyran-methylmethacrylate functionalized colloidal particles.

    Energy Technology Data Exchange (ETDEWEB)

    Piech, Marcin; Bell, Nelson Simmons


    Colloidal particles were derivatized with end-grafted polymethylmethacryate polymer brushes containing varying concentrations of spirobenzopyran photochromic molecules. The polymers were grown from initiator-functionalized silica partilces by an atom-transfer radical polymerization (ATRP). These core-shell colloids formed stable suspensions in toluene with the spirobenzopyran in its closed, nonpolar form. However, UV-induced photoswitching of the photochrome to its open, polar merocyanine isomer caused rapid aggregation. The nature of this colloidal stability transition was examined with respect to the spirobenzopyran content in the polymeric brush and solvent polarity. Turbidimetry, wettability studies, UV-vis spectroscopy, suspension rheology, SEM, and visual inspection were utilized to characterize the system photoswitchability. It was found that the system exhibiting the greatest transition in toluene was the copolymer brush composed of 20% spirobenzopyran and 80% methyl methacrylate.

  16. Morphology of Colloidal Particles Dispersed in Nematic Solvent (United States)

    Kumar, Anupam; Mandal, Biplab Kumar; Mishra, Pankaj


    We have studied a system of spherical colloidal particles suspended in nematic liquid crystal confined to a two-dimensional plane. The dispersed colloidal particles pervert the uniform orientation of nematic resulting in topological defects. This small change in director field induces elastic interaction in the system. Considering the system exhibiting octopolar symmetry, the interaction of the particles can be described by octopole-octopole interaction potential which on some suitable scaling has the form, βu(r) ≈ Γ/r7, where Γ is dimensionless interaction strength parameter. We have calculated the pair correlation function and radial distribution function of the system by employing Roger-Young's integral equation theory, where the mixing parameter a, is obtained by demanding the consistency in pressure via virial and compressibility routs. With the increase in interaction strength, the system is found to become more ordered.

  17. Morphology of Colloidal Particles Dispersed in Nematic Solvent

    International Nuclear Information System (INIS)

    Kumar, Anupam; Kumar Mandal, Biplab; Mishra, Pankaj


    We have studied a system of spherical colloidal particles suspended in nematic liquid crystal confined to a two-dimensional plane. The dispersed colloidal particles pervert the uniform orientation of nematic resulting in topological defects. This small change in director field induces elastic interaction in the system. Considering the system exhibiting octopolar symmetry, the interaction of the particles can be described by octopole-octopole interaction potential which on some suitable scaling has the form, βu(r) ≈ Γ/r 7 , where Γ is dimensionless interaction strength parameter. We have calculated the pair correlation function and radial distribution function of the system by employing Roger-Young's integral equation theory, where the mixing parameter a, is obtained by demanding the consistency in pressure via virial and compressibility routs. With the increase in interaction strength, the system is found to become more ordered. (paper)

  18. Holographic characterization of colloidal particles in turbid media (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.


    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  19. Tuning particle geometry of chemically anisotropic dumbbell-shaped colloids. (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K


    Chemically anisotropic dumbbell-shaped colloids are prepared starting from cross-linked polymer seed particles coated with a chlorinated outer layer. These chlorinated seeds are swollen with monomer. Subsequently, a liquid protrusion is formed on the surface of the seed particle by phase separation between the monomer and the swollen polymer network. Solidification of these liquid lobes by polymerization leads to the desired dumbbell-shaped colloids. The chlorine groups remain confined on the seed lobe of the particles, ensuring chemical anisotropy of the resulting particles. Exploiting the asymmetric distribution of the chemically reactive surface chlorine groups allows for site-specific surface modifications. Here we show that the geometry of the resulting chemically anisotropic dumbbells can be systematically tuned by a number of experimental parameters including the volume of styrene by which the seeds are swollen, the cross-link density of the chlorinated seeds and chemical composition/thickness of the chlorinated coating deposited on the seed particles. Being able to control the particle geometry, and therefore the Janus balance of these chemically anisotropic particles, provides a promising starting point for the synthesis of sophisticated building blocks for future (self-assembly) studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Modeling Evaporation and Particle Assembly in Colloidal Droplets. (United States)

    Zhao, Mingfei; Yong, Xin


    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  1. Phytosterol colloidal particles as Pickering stabilizers for emulsions. (United States)

    Liu, Fu; Tang, Chuan-He


    Water-insoluble phytosterols were developed into a kind of colloidal particle as Pickering stabilizers for emulsions by a classic anti-solvent method using 100% ethanol as the organic phase to solubilize the phytosterols and whey protein concentrate (WPC) as the emulsifier. The colloidal particles in the dispersion, with morphology of stacked platelet-like sheets, had a mean diameter of 44.7 and 24.7 μm for the volume- and surface-averaged sizes, respectively. The properties and stability of the emulsions stabilized by these colloidal particles were highly dependent upon the applied total solid concentration (c; in the dispersion) and oil fraction (ø). The results indicated that (1) at a low c value (emulsions were susceptible to phase separation, even at a low ø of 0.2, (2) at low ø values (e.g., 0.2 or 0.3) and a relatively high c value (1.0%, w/v, or above), a severe droplet flocculation occurred for the emulsions, and (3) when both c and ø were appropriately high, a kind of self-supporting gel-like emulsions could be formed. More interestingly, a phase inversion of the emulsions from the oil-in-water to water-in-oil type was observed, upon the ø increasing from 0.2 to 0.6 (especially at high c values, e.g., 3.0%, w/v). The elaborated Pickering emulsions stabilized by the phytosterol colloidal particles with a gel-like behavior would provide a candidate to act as a novel delivery system for active ingredients.

  2. Programmable, isothermal disassembly of DNA-linked colloidal particles (United States)

    Tison, Christopher Kirby

    Colloidal particles serve as useful building blocks for materials applications ranging from controlled hand-gap materials to rationally designed drug delivery systems. Thus, developing approaches to direct the assembly and disassembly of sub-micron sized particles will be paramount to further advances in materials science engineering. This project focuses on using programmable and reversible binding between oligonucleotide strands to assemble and then disassemble polystyrene colloidal particles. It is shown that DNA-mediated assembly can be reversed at a fixed temperature using secondary oligonucleotide strands to competitively displace the primary strands linking particles together. It was found that (1) titrating the surface density of hybridizing probe strands and (2) adjusting the base length difference between primary and secondary target strands was key to successful isothermal disassembly. In order to titrate the surface density of primary probe-target duplexes, colloidal particles were conjugated with mixtures of probe strands and "diluent" strands in order to minimize the number of DNA linkages between particles. To reduce the steric interference of the diluent strands to hybridization events, diluent strands were clipped with a restriction enzyme in select cases. Kinetics studies revealed that a four to six base-length difference between primary and secondary target strands resulted in extensive competitive hybridization at secondary oligonucleotide concentrations as low as 10 nM. Importantly, it was found that the timing for release of either DNA alone or DNA-conjugated nanoparticles could be tuned through choices in the DNA sequences and concentration. Lastly, competitive hybridization was explored in select studies to drive the "shedding" of PEGylated DNA targets from microspheres to reveal underlying adhesive groups or ligands on the particle surface. Unlike prior work relying on elevated temperatures to melt DNA-linkages, this work presents an

  3. Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants. (United States)

    Chen, Dong; Amstad, Esther; Zhao, Chun-Xia; Cai, Liheng; Fan, Jing; Chen, Qiushui; Hai, Mingtan; Koehler, Stephan; Zhang, Huidan; Liang, Fuxin; Yang, Zhenzhong; Weitz, David A


    Emulsions of two immiscible liquids can slowly coalesce over time when stabilized by surfactant molecules. Pickering emulsions stabilized by colloidal particles can be much more stable. Here, we fabricate biocompatible amphiphilic dimer particles using a hydrogel, a strongly hydrophilic material, and achieve large contrast in the wetting properties of the two bulbs, resulting in enhanced stabilization of emulsions. We generate monodisperse single emulsions of alginate and shellac solution in oil using a flow-focusing microfluidics device. Shellac precipitates from water and forms a solid bulb at the periphery of the droplet when the emulsion is exposed to acid. Molecular interactions result in amphiphilic dimer particles that consist of two joined bulbs: one hydrogel bulb of alginate in water and the other hydrophobic bulb of shellac. Alginate in the hydrogel compartment can be cross-linked using calcium cations to obtain stable particles. Analogous to surfactant molecules at the interface, the resultant amphiphilic particles stand at the water/oil interface with the hydrogel bulb submerged in water and the hydrophobic bulb in oil and are thus able to stabilize both water-in-oil and oil-in-water emulsions, making these amphiphilic hydrogel-solid particles ideal colloidal surfactants for various applications.

  4. Out-of-Equilibrium Dynamics of Colloidal Particles at Interfaces (United States)

    Wang, Anna

    It is widely assumed that when colloidal particles adsorb to a fluid-fluid interface, they reach equilibrium rapidly. Recently, however, Kaz et al. [Nature Materials, 11, 138-142 (2012)] found that a variety of functionalised latex microspheres breaching an aqueous phase-oil interface relax logarithmically with time toward equilibrium. The relaxation is so slow that the time projected for the particles to reach the equilibrium contact angle of 110° is months--far longer than typical experimental timescales. In this thesis, we seek to understand the out-of-equilibrium behaviour of particles near interfaces. Because contact line pinning is likely an extra source of dissipation at interfaces, we start with experiments to elucidate the origins of contact-line pinning and find that polymer hairs on aqueous dispersed polymer particles strongly pin the contact-line. For particles without polymer hairs, nanoscale surface roughness can also pin the contact-line, though with a lower energy. We then extend our digital holography capabilities to track non-spherical particles. We demonstrate that we can track the centre-of-mass of a colloidal spherocylinder to a precision of 35 nm in all three dimensions and its orientation to a precision of 1.5°. Furthermore, the measured translational and rotational diffusion coefficients for the spherocylinders agree with hydrodynamic predictions to within 0.3%. This new functionality enables us to track colloidal ellipsoids and spherocylinders as they breach interfaces. By comparing the adsorption trajectories of the non-spherical particles to what is predicted from energy minimisation, we learn that contact-line pinning affects not just the timescales of breaching, but also the pathway to equilibrium. In fact, a particle's path to equilibrium can have complications even before the particle breaches the interface. Some particles are attracted to the interface, but stay within a few nanometers without ever breaching. We refer to this

  5. Electrophoretic Retardation of Colloidal Particles in Nonpolar Liquids

    Directory of Open Access Journals (Sweden)

    Filip Strubbe


    Full Text Available We have measured the electrophoretic mobility of single, optically trapped colloidal particles, while gradually depleting the co-ions and counterions in the liquid around the particle by applying a dc voltage. This is achieved in a nonpolar liquid, where charged reverse micelles act as co-ions and counterions. By increasing the dc voltage, the mobility first increases when the concentrations of co-ions and counterions near the particle start to decrease. At sufficiently high dc voltage (around 2 V, the mobility reaches a saturation value when the co-ions and counterions are fully separated. The increase in mobility is larger when the equilibrium ionic strength is higher. The dependence of the experimental data on the equilibrium ionic strength and on the applied voltage is in good agreement with the standard theory of electrophoretic retardation, assuming that the bare particle charge remains constant. This method is useful for studying the electrophoretic retardation effect and charging mechanisms for nonpolar colloids, and it sheds light on previously unexplained particle acceleration in electronic ink devices.

  6. Programmable colloidal molecules from sequential capillarity-assisted particle assembly. (United States)

    Ni, Songbo; Leemann, Jessica; Buttinoni, Ivo; Isa, Lucio; Wolf, Heiko


    The assembly of artificial nanostructured and microstructured materials which display structures and functionalities that mimic nature's complexity requires building blocks with specific and directional interactions, analogous to those displayed at the molecular level. Despite remarkable progress in synthesizing "patchy" particles encoding anisotropic interactions, most current methods are restricted to integrating up to two compositional patches on a single "molecule" and to objects with simple shapes. Currently, decoupling functionality and shape to achieve full compositional and geometrical programmability remains an elusive task. We use sequential capillarity-assisted particle assembly which uniquely fulfills the demands described above. This is a new method based on simple, yet essential, adaptations to the well-known capillary assembly of particles over topographical templates. Tuning the depth of the assembly sites (traps) and the surface tension of moving droplets of colloidal suspensions enables controlled stepwise filling of traps to "synthesize" colloidal molecules. After deposition and mechanical linkage, the colloidal molecules can be dispersed in a solvent. The template's shape solely controls the molecule's geometry, whereas the filling sequence independently determines its composition. No specific surface chemistry is required, and multifunctional molecules with organic and inorganic moieties can be fabricated. We demonstrate the "synthesis" of a library of structures, ranging from dumbbells and triangles to units resembling bar codes, block copolymers, surfactants, and three-dimensional chiral objects. The full programmability of our approach opens up new directions not only for assembling and studying complex materials with single-particle-level control but also for fabricating new microscale devices for sensing, patterning, and delivery applications.

  7. Programmable colloidal molecules from sequential capillarity-assisted particle assembly (United States)

    Ni, Songbo; Leemann, Jessica; Buttinoni, Ivo; Isa, Lucio; Wolf, Heiko


    The assembly of artificial nanostructured and microstructured materials which display structures and functionalities that mimic nature’s complexity requires building blocks with specific and directional interactions, analogous to those displayed at the molecular level. Despite remarkable progress in synthesizing “patchy” particles encoding anisotropic interactions, most current methods are restricted to integrating up to two compositional patches on a single “molecule” and to objects with simple shapes. Currently, decoupling functionality and shape to achieve full compositional and geometrical programmability remains an elusive task. We use sequential capillarity-assisted particle assembly which uniquely fulfills the demands described above. This is a new method based on simple, yet essential, adaptations to the well-known capillary assembly of particles over topographical templates. Tuning the depth of the assembly sites (traps) and the surface tension of moving droplets of colloidal suspensions enables controlled stepwise filling of traps to “synthesize” colloidal molecules. After deposition and mechanical linkage, the colloidal molecules can be dispersed in a solvent. The template’s shape solely controls the molecule’s geometry, whereas the filling sequence independently determines its composition. No specific surface chemistry is required, and multifunctional molecules with organic and inorganic moieties can be fabricated. We demonstrate the “synthesis” of a library of structures, ranging from dumbbells and triangles to units resembling bar codes, block copolymers, surfactants, and three-dimensional chiral objects. The full programmability of our approach opens up new directions not only for assembling and studying complex materials with single-particle-level control but also for fabricating new microscale devices for sensing, patterning, and delivery applications. PMID:27051882

  8. The migration of colloidal particles through glacial sand

    International Nuclear Information System (INIS)

    Harrison, I.; Higgo, J.J.W.; Leader, R.; Noy, D.; Smith, B.; Wealthall, G.; Williams, G.M.


    Significant concentrations of colloids exist in groundwater and radionuclides may be associated with this colloidal material. This must be taken into consideration in any safety case for a radionuclide waste repository. This report describes column experiments with monodisperse latex beads. A selection of beads with diameters ranging from 0.055 μm to 0.6 μm, some plain and some with carboxyl groups attached, were passed through columns of glacial sand. The breakthrough curves and profiles on the sand columns were studied and will be used to develop and validate colloid migration models. The mobility depended on both size and charge, and the beads appeared to move ahead of a 36Cl tracer until they were trapped. After trapping movement was slow with plain beads appearing to be slightly more mobile than carboxylated beads. The beads were shown to sorb strongly on the fine clay particles in the sand and there was evidence to suggest that they moved with the fines rather than independently. (author)

  9. Model simulations of particle aggregation effect on colloid exchange between streams and streambeds. (United States)

    Areepitak, Trachu; Ren, Jianhong


    Colloids found in natural streams have large reactive surface areas, which makes them significant absorbents and carriers for pollutants. Stream-subsurface exchange plays a critical role in regulating the transport of colloids and contaminants in natural streams. Previous process-based multiphase exchange models were developed without consideration of colloid-colloid interaction. However, many studies have indicated that aggregation is a significant process and needs to be considered in stream process analysis. Herein, a new colloid exchange model was developed by including particle aggregation in addition to colloid settling and filtration. Self-preserving size distribution concepts and classical aggregation theory were employed to model the aggregation process. Model simulations indicate that under conditions of low filtration and high degree of particle-particle interaction, aggregation could either decrease or increase the amount of colloids retained in streambeds, depending on the initial particle size. Thus, two possible cases may occur including enhanced colloid deposition and facilitated colloid transport. Also, when the aggregation rate is high and filtration increases, more particles are retained by bed sediments due to filtration, and fewer are aggregated, which reduces the extent of aggregation effect on colloid deposition. The work presented here will contribute to a better understanding and prediction of colloid transport phenomena in natural streams.

  10. Single-particle colloid tracking in four dimensions. (United States)

    Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve


    Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.

  11. Flow-induced aggregation of colloidal particles in viscoelastic fluids. (United States)

    Xie, Donglin; Qiao, Greg G; Dunstan, Dave E


    The flow-induced aggregation of dilute colloidal polystyrene nanoparticles suspended in Newtonian and viscoelastic solutions is reported. A rheo-optical method has been used to detect real-time aggregation processes via measuring optical absorption or scattering in a quartz Couette cell. The observed absorbance decreases over time are attributed to the flow-induced coagulation. Numerical simulations show that the aggregation processes still follow the Smoluchowski coagulation equation in a revised version. Suspensions in a series of media are studied to evaluate the effect of the media rheological properties on the particle aggregation. The data shows that elasticity reduces the aggregation while the solution viscosity enhances the aggregation processes.

  12. Lung clearance of polydispersed colloidal 198Au particles

    International Nuclear Information System (INIS)

    D'Addabbo, A.; Fanfani, G.


    Lung clearance was studied on a group of subjects over 65 years old and on subjects aged between 30 and 40. A slowing down of material deposited in the bronchial tubes (polydispersed colloidal 198 Au particles) was observed in the senile subjects. This phenomenon is apparently related not only to a reduced activity of the vibratile ciliae, in connection with the frequent metaplasia of the bronchial cylindrical epithelium, but also to a quantitative and qualitative change in the mucopolysaccharides forming the mucus secretion [fr

  13. Effect of particle shape on colloid retention and release in saturated porous media. (United States)

    Liu, Qiang; Lazouskaya, Volha; He, Qingxiang; Jin, Yan


    Colloidal particles of environmental concern often have nonspherical shapes. However, theories and models such as the classical filtration theory have been developed based on the behavior of spherical particles. This study examined the effect of particle shape on colloid retention (e.g., attachment and straining) and release in saturated porous media. Two- and three-step transport experiments were conducted in water-saturated glass bead columns using colloids dispersed in deionized water and an electrolyte solution. The particles used in the experiments were carboxylate-modified latex colloids of spherical (500 nm diam.) and rod (aspect ratio, 7.0) shapes. The rod-like particles were prepared by stretching the spherical particles. Analysis of the colloid breakthrough curves indicates that particle shape affected transport behavior, but retention did not increase with increasing aspect ratio. Retention of the spherical particles occurred mainly in the secondary energy minimum, whereas retention of rod-like particles occurred in primary and secondary energy minima. There was less straining of rod-like particles compared with spherical ones, indicating that the minor axis was the critical dimension controlling the process. Release of spherical particles on elution was instantaneous, whereas release of rod-like particles was rate limited, giving rise to long tails, implying an orientation effect for rod-like colloids. The results suggest that the differences in electrostatic properties and shape contributed to the observed different retention and release behaviors of the two colloids.

  14. On adiabatic pair potentials of highly charged colloid particles (United States)

    Sogami, Ikuo S.


    Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.

  15. Propulsion and hydrodynamic particle transport of magnetically twisted colloidal ribbons (United States)

    Massana-Cid, Helena; Martinez-Pedrero, Fernando; Navarro-Argemí, Eloy; Pagonabarraga, Ignacio; Tierno, Pietro


    We describe a method to trap, transport and release microscopic particles in a viscous fluid using the hydrodynamic flow field generated by a magnetically propelled colloidal ribbon. The ribbon is composed of ferromagnetic microellipsoids that arrange with their long axis parallel to each other, a configuration that is energetically favorable due to their permanent magnetic moments. We use an external precessing magnetic field to torque the anisotropic particles forming the ribbon, and to induce propulsion of the entire structure due to the hydrodynamic coupling with the close substrate. The propulsion speed of the ribbon can be controlled by varying the driving frequency, or the amplitude of the precessing field. The latter parameter is also used to reduce the average inter particle distance and to induce the twisting of the ribbon due to the increase in the attraction between the rotating ellipsoids. Furthermore, non magnetic particles are attracted or repelled with the hydrodynamic flow field generated by the propelling ribbon. The proposed method may be used in channel free microfluidic applications, where the precise trapping and transport of functionalized particles via non invasive magnetic fields is required.

  16. Shear Thickening Electrolyte Built from Sterically Stabilized Colloidal Particles. (United States)

    Shen, Brian H; Armstrong, Beth L; Doucet, Mathieu; Heroux, Luke; Browning, James F; Agamalian, Michael; Tenhaeff, Wyatt E; Veith, Gabriel M


    We present a method to prepare shear thickening electrolytes consisting of silica nanoparticles in conventional liquid electrolytes with limited flocculation. These electrolytes rapidly and reversibly stiffen to solidlike behaviors in the presence of external shear or high impact, which is promising for improved lithium ion battery safety, especially in electric vehicles. However, in initial chemistries the silica nanoparticles aggregate and/or sediment in solution over time. Here, we demonstrate steric stabilization of silica colloids in conventional liquid electrolyte via surface-tethered PMMA brushes, synthesized via surface-initiated atom transfer radical polymerization. The PMMA increases the magnitude of the shear thickening response, compared to the uncoated particles, from 0.311 to 2.25 Pa s. Ultrasmall-angle neutron scattering revealed a reduction in aggregation of PMMA-coated silica nanoparticles compared to bare silica nanoparticles in solution under shear and at rest, suggesting good stabilization. Conductivity tests of shear thickening electrolytes (30 wt % solids in electrolyte) at rest were performed with interdigitated electrodes positioned near the meniscus of electrolytes over the course of 24 h to track supernatant formation. Conductivity of electrolytes with bare silica increased from 10.1 to 11.6 mS cm -1 over 24 h due to flocculation. In contrast, conductivity of electrolytes with PMMA-coated silica remained stable at 6.1 mS cm -1 over the same time period, suggesting good colloid stability.

  17. Cracking in thin films of colloidal particles on elastomeric substrates (United States)

    Smith, Michael; Sharp, James


    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  18. Numerical approach on dynamic self-assembly of colloidal particles (United States)

    Ibrahimi, Muhamet; Ilday, Serim; Makey, Ghaith; Pavlov, Ihor; Yavuz, Özgàn; Gulseren, Oguz; Ilday, Fatih Omer

    Far from equilibrium systems of artificial ensembles are crucial for understanding many intelligent features in self-organized natural systems. However, the lack of established theory underlies a need for numerical implementations. Inspired by a novel work, we simulate a solution-suspended colloidal system that dynamically self assembles due to convective forces generated in the solvent when heated by a laser. In order to incorporate with random fluctuations of particles and continuously changing flow, we exploit a random-walk based Brownian motion model and a fluid dynamics solver prepared for games, respectively. Simulation results manage to fit to experiments and show many quantitative features of a non equilibrium dynamic self assembly, including phase space compression and an ensemble-energy input feedback loop.

  19. Particle size distributions in waters from a karstic aquifer: from particles to colloids (United States)

    Atteia, O.; Kozel, R.


    Waters from the surface hydrologic network and the spring of a karstic aquifer in Switzerland were sampled to analyse their colloidal content. The measurements were done weekly with a single particle counter and were verified by other techniques. The particle size distribution (PSD) was modelled in two portions, below and above 5 μm, using two types of equation: a power law (Pareto distribution) and an exponential law. The model results matched well with the entire PSD data set by varying the parameter values. The parameters obtained from fitting the measured PSD curves were then interpreted in relation to environmental factors. It appears that the two parts of the curves vary independently. The first part of the PSD curve, relating to the smallest particles, is dependent on the pH value of the spring or the temperature of the surface brook. In contrast, the second part of the curve depends mostly on the spring discharge volume. During high flow events, the major effect of the discharge on particle size occurs during the rising limb of the hydrograph, interpreted as clays deposited in the aquifer and resuspended due to high water velocity. The contrasted behaviour of the two parts of the PSD curves suggested that the break point in the curves represents the limit between colloidal and particulate behaviour. Knowing these dependencies, and the characteristics of the particulate matter, allowed the estimation of the role of the colloids in contaminant transport. Large fluxes of suspended matter, specific to karstic aquifers, demonstrate the critical role of colloids in contaminant transport, which is markedly different from what typically occurs in porous media.

  20. Extending the limits of direct force measurements: colloidal probes from sub-micron particles. (United States)

    Helfricht, Nicolas; Mark, Andreas; Dorwling-Carter, Livie; Zambelli, Tomaso; Papastavrou, Georg


    Direct force measurements by atomic force microscopy (AFM) in combination with the colloidal probe technique are widely used to determine interaction forces in colloidal systems. However, a number of limitations are still preventing a more universal applicability of this technique. Currently, one of the most significant limitations is that only particles with diameters of several micrometers can be used as probe particles. Here, we present a novel approach, based on the combination of nanofluidics and AFM (also referred to as FluidFM-technique), that allows to overcome this size limit and extend the size of suitable probe particles below diameters of 500 nanometers. Moreover, by aspiration of colloidal particles with a hollow AFM-cantilever, the immobilization process is independent of the particle's surface chemistry. Furthermore, the probe particles can be exchanged in situ. The applicability of the FluidFM-technique is demonstrated with silica particles, which are also the types of particles most often used for the preparation of colloidal probes. By comparing 'classical' colloidal probes, i.e. probes from particles irreversibly attached with glue, and various particle sizes aspirated by the FluidFM-technique, we can quantitatively evaluate the instrumental limits. Evaluation of the force profiles demonstrate that even for 500 nm silica particles the diffuse layer properties can be evaluated quantitatively. Therefore, direct force measurements on the level of particle sizes used in industrial formulations will become available in the future.

  1. Release of colloidal particles in natural porous media by monovalent and divalent cations (United States)

    Grolimund, Daniel; Borkovec, Michal


    We study mobilization of colloidal particles from natural porous media, such as soils and groundwater aquifers. Extensive laboratory scale column experiments of particle release from four different subsurface materials are presented. The important characteristics of the release process are (i) its non-exponential kinetics, (ii) the finite supply of colloidal particles and (iii) the strong dependence of the release kinetic on the nature of the adsorbed cations. Particle release depends most sensitively on the relative saturation of the medium with divalent cations. We propose a mathematic model, which captures all these aspects quantitatively, and can be used to describe the coupling between transport of major cations and the release of colloidal particles. The present experimental investigations as well as the developed modeling framework represent an important step towards the understanding of colloid-facilitated transport phenomena in natural porous media.

  2. The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants. (United States)

    Pawlowska, Agnieszka; Sznajder, Izabela; Sadowski, Zygmunt


    Colloidal particles have an ability to sorb heavy metals, metalloids, and organic compounds (e.g. biosurfactants) present in soil and groundwater. The pH and ionic strength changes may promote release of such particles causing potential contaminant transport. Therefore, it is very important to know how a colloid particle-mineral particle and colloid-mineral-biosurfactant system behaves in the natural environment. They can have negative impact on the environment and human health. This study highlighted the influence of biosurfactants produced by Pseudomonas aeruginosa on the transport of colloidal hematite (α-Fe 2 O 3 ) through porous bed (materials collected from the Szklary and Zloty Stok solid waste heaps from Lower Silesia, Poland). Experiments were conducted using column set in two variants: colloid solution with porous bed and porous bed with adsorbed biosurfactants, in the ionic strengths of 5 × 10 -4 and 5 × 10 -3  M KCl. The zeta potential of mineral materials and colloidal hematite, before and after adsorption of biosurfactant, was determined. Obtained results showed that reduction in ionic strength facilitates colloidal hematite transport through the porous bed. The mobility of colloidal hematite was higher when the rhamnolipid adsorbed on the surface of mineral grain.

  3. Statics and dynamics of colloidal particles on optical tray arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory


    We examine the statics and dynamics of charged colloids interacting with periodic optical trap arrays. In particular we study the regime where more than one colloid is confined in each trap, creating effective dimer, trimer, and higher order states called colloidal molecular crystals. The n-mer states have all effective orientational degree of freedom which can be controlled with an external driving field. In general, the external field causes a polarization effect where the orientation of the n-mers aligns with the external field, similar to liquid crystal systems. Additionally, under a rotating external drive the n-mers can rotate with the drive. In some cases a series of structural transitions in the colloidal crystal states occur in the rotating field due to a competition between the ordering of the colloidal molecular crystals and the polarization effect which orients the n-mers in the direction of the drive. We also show that for some parameters, the n-mers continuously rotate with the drive without witching, that depinning transitions can occur where the colloids jump from well to well, and that there are a number of distinct dynamical transitions between the phases. Finally, we illustrate colloidal orderings at fillings of more than four colloids per trap, indicating that it is possible to create higher order colloidal crystal cluster phases.

  4. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    . The associated pollutants will, if not removed in stormwater treatment facilities, be discharged into receiving surface waters, due to enhanced transportation exerted by the colloids and nano-sized particles. More stormwater than previously is separated from wastewater and drained to stormwater treatment.......Since little is known about the colloids and nano-sized particle-enhanced transportation of pollutants in stormwater, it has been difficult to determine their quantitative role in the total release of pollutants into receiving waters.Therefore the main purpose of this thesis has been to document the presence...... and size distribution of colloids and nano-sized particles in stormwater, as well as quantify the particle-enhanced transportation of polycyclic aromatic hydrocarbons (PAHs) in stormwater. Stormwater from five sites in Europe was collected to characterise the particulate matter, colloids and nano...

  5. Light-Controlled Swarming and Assembly of Colloidal Particles

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang


    Full Text Available Swarms and assemblies are ubiquitous in nature and they can perform complex collective behaviors and cooperative functions that they cannot accomplish individually. In response to light, some colloidal particles (CPs, including light active and passive CPs, can mimic their counterparts in nature and organize into complex structures that exhibit collective functions with remote controllability and high temporospatial precision. In this review, we firstly analyze the structural characteristics of swarms and assemblies of CPs and point out that light-controlled swarming and assembly of CPs are generally achieved by constructing light-responsive interactions between CPs. Then, we summarize in detail the recent advances in light-controlled swarming and assembly of CPs based on the interactions arisen from optical forces, photochemical reactions, photothermal effects, and photoisomerizations, as well as their potential applications. In the end, we also envision some challenges and future prospects of light-controlled swarming and assembly of CPs. With the increasing innovations in mechanisms and control strategies with easy operation, low cost, and arbitrary applicability, light-controlled swarming and assembly of CPs may be employed to manufacture programmable materials and reconfigurable robots for cooperative grasping, collective cargo transportation, and micro- and nanoengineering.

  6. Surface roughness directed self-assembly of patchy particles into colloidal micelles. (United States)

    Kraft, Daniela J; Ni, Ran; Smallenburg, Frank; Hermes, Michiel; Yoon, Kisun; Weitz, David A; van Blaaderen, Alfons; Groenewold, Jan; Dijkstra, Marjolein; Kegel, Willem K


    Colloidal particles with site-specific directional interactions, so called "patchy particles", are promising candidates for bottom-up assembly routes towards complex structures with rationally designed properties. Here we present an experimental realization of patchy colloidal particles based on material independent depletion interaction and surface roughness. Curved, smooth patches on rough colloids are shown to be exclusively attractive due to their different overlap volumes. We discuss in detail the case of colloids with one patch that serves as a model for molecular surfactants both with respect to their geometry and their interactions. These one-patch particles assemble into clusters that resemble surfactant micelles with the smooth and attractive sides of the colloids located at the interior. We term these clusters "colloidal micelles". Direct Monte Carlo simulations starting from a homogeneous state give rise to cluster size distributions that are in good agreement with those found in experiments. Important differences with surfactant micelles originate from the colloidal character of our model system and are investigated by simulations and addressed theoretically. Our new "patchy" model system opens up the possibility for self-assembly studies into finite-sized superstructures as well as crystals with as of yet inaccessible structures.

  7. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    International Nuclear Information System (INIS)

    Choi, Young Joon; Djilali, Ned


    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified

  8. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv


    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  9. Age-related changes in the endocytosis of heat-denatured colloidal albumin by rat Kupffer cells in vitro

    International Nuclear Information System (INIS)

    Brouwer, A.; Barelds, R.J.; Knook, D.L.


    In this study, two major functions of rat liver Kupffer cells, viz., endocytosis and catabolism, were determined in relation to age to investigate the cellular basis of the age-related changes in the functional capacity of the RES. Rat liver Kupffer cells were isolated, purified and placed into maintenance culture for 24 hours. The cells were then incubated with 125 I-labelled heat-denatured colloidal albumin (CA 125 I), a clinically used RES test substance. The kinetics of endocytosis and the catabolism of CA 125 I by Kupffer cells obtained from female BN/BiRij rats of various ages were compared. After incubation of cultured Kupffer cells with various concentrations of CA 125 I, no differences were observed in the uptake of CA 125 I by cells from rats of different ages. The capacities of Kupffer cells from young and old rats to degrade and excrete ingested CA 125 I are compared. Although Kupffer cells from old rats appear to be slightly more effective in the degradation and excretion of CA 125 I during the first half hour of postincubation, no significant differences between the two age groups were observed. (Auth.)

  10. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim


    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  11. Role of particle shape anisotropy on crack formation in drying of colloidal suspension. (United States)

    Dugyala, Venkateshwar Rao; Lama, Hisay; Satapathy, Dillip K; Basavaraj, Madivala G


    Cracks in a colloidal film formed by evaporation induced drying can be controlled by changing drying conditions. We show, for the first time that the crack morphologies in colloidal films are dependent on shape of constituting particles apart from the microstructure and particle assembly. In order to investigate the particle shape effect on crack patterns, monodispered spherical and ellipsoidal particles are used in sessile drop experiments. On observing the dried sessile drop we found cracks along the radial direction for spherical particle dispersions and circular crack patterns for ellipsoidal particle dispersions. The change in crack pattern is a result of self assembly of shape anisotropic particles and their ordering. The ordering of particles dictate the crack direction and the cracks follow the path of least resistance to release the excess stress stored in the particle film. Ellipsoids having different aspect ratio (~3 to 7) are used and circular crack patterns are repeatedly observed in all experiments.

  12. Reversibility of structural rearrangements in bovine serum albumin during homomolecular exchange from AgI particles

    NARCIS (Netherlands)

    Vermonden, T; Giacomelli, CE; Norde, W


    The reversibility of the homomolecular exchange of bovine serum albumin (BSA) from AgI particles was studied by differential scanning calorimetry, the binding of 8-anilino-1-naphthaIene-sulfonic acid, and circular dichroism spectroscopy. The structure of BSA in solution before adsorption, in the

  13. Reversibility of structural rearrangements in Bovine Serum Albumin during homomolecular exchange from AgI particles

    NARCIS (Netherlands)

    Vermonden, T.; Giacomelli, C.E.; Norde, W.


    The reversibility of the homomolecular exchange of bovine serum albumin (BSA) from AgI particles was studied by differential scanning calorimetry, the binding of 8-anilino-1-naphthalene-sulfonic acid, and circular dichroism spectroscopy. The structure of BSA in solution before adsorption, in the

  14. Formation of Polyelectrolyte Complex Colloid Particles between Chitosan and Pectin with Different Degree of Esterification (United States)

    Wang, Hui; Sun, Hongyuan; He, Jieyu


    The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.

  15. Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field

    NARCIS (Netherlands)

    Smallenburg, F.; Vutukuri, H.R.; Imhof, A.; van Blaaderen, A.; Dijkstra, M.


    Colloidal particles with a dielectric constant (magnetic susceptibility) mismatch with the surrounding solvent acquire a dipole moment in a homogeneous external electric (magnetic) field. The resulting dipolar interactions can lead to aggregation of the particles into string-like clusters. Recently,

  16. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles. (United States)

    Yunker, Peter J; Chen, Ke; Gratale, Matthew D; Lohr, Matthew A; Still, Tim; Yodh, A G


    This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.

  17. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics (United States)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar


    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 colloid. The effect of different colloidal repulsions are then studied on temperature, reduced mobility and zeta potential which is computed based on charge distribution within the spherical colloidal EDL. System temperature and electrophoretic mobility both show a direct and inverse relationship respectively with electric field and colloidal repulsion. Mobility declining with colloidal repulsion reaches a plateau which is a relatively constant value at each electrolyte salinity for Aii > 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  18. Aggregation of amphiphilic polymers in the presence of adhesive small colloidal particles. (United States)

    Baulin, Vladimir A; Johner, Albert; Avalos, Josep Bonet


    The interaction of amphiphilic polymers with small colloids, capable to reversibly stick onto the chains, is studied. Adhesive small colloids in solution are able to dynamically bind two polymer segments. This association leads to topological changes in the polymer network configurations, such as looping and cross-linking, although the reversible adhesion permits the colloid to slide along the chain backbone. Previous analyses only consider static topologies in the chain network. We show that the sliding degree of freedom ensures the dominance of small loops, over other structures, giving rise to a new perspective in the analysis of the problem. The results are applied to the analysis of the equilibrium between colloidal particles and star polymers, as well as to block copolymer micelles. The results are relevant for the reversible adsorption of silica particles onto hydrophilic polymers, used in the process of formation of mesoporous materials of the type SBA or MCM, cross-linked cyclodextrin molecules threading on the polymers and forming the structures known as polyrotaxanes. Adhesion of colloids on the corona of the latter induce micellization and growth of larger micelles as the number of colloids increase, in agreement with experimental data.

  19. Correlated diffusion of colloidal particles near a liquid-liquid interface.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Optical microscopy and multi-particle tracking are used to investigate the cross-correlated diffusion of quasi two-dimensional colloidal particles near an oil-water interface. The behaviors of the correlated diffusion along longitudinal and transverse direction are asymmetric. It is shown that the characteristic length for longitudinal and transverse correlated diffusion are particle diameter d and the distance z from particle center to the interface, respectively, for large particle separation z. The longitudinal and transverse correlated diffusion coefficient D||(r and D[perpendicular](r are independent of the colloidal area fraction n when n 0.4 the power law exponent for the spatial decay of [Formula: see text] begins to decrease, which suggests the HIs are more contributed from the 2D particle monolayer self for large n.

  20. Dynamics of fractal cluster colloidal gels with embedded active Janus particles (United States)

    Solomon, Michael; Szakasits, Megan; Zhang, Wenxuan

    We find that fractal cluster gels of colloids in which platinum-coated Janus particles have been embedded exhibit enhanced mobility when the Janus particles are made active by the addition of hydrogen peroxide. Gelation is induced through addition of a divalent salt, magnesium chloride, to an initially stable suspension of Janus and polystyrene colloids, each of size about 1 micron. After the gels have been created, the embedded Janus colloids are activated by hydrogen peroxide, which is delivered to the system through a porous hydrogel membrane. We vary the ratio of active to passive colloids in the gels from about 1:20 to 1:8. Changes in structure and dynamics are visualized by two channel confocal laser scanning microscopy. By image analysis, we determine the particle positions and compute the mean squared displacement (MSD) of all particles in the gel. We measure the mobility enhancement in the fractal gels as a function of hydrogen peroxide concentration and Janus particle concentration and discuss the results in terms of the force provided by each active particle to the fractal gel network.

  1. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim


    Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...... the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  2. Fundamental Pair Interactions and Applications for Colloidal Silica Particles by Coarse-Grained Simulations

    International Nuclear Information System (INIS)

    Lee, Cheng K.; Hua, Chi C.


    In the first part of this presentation, we introduce how the fundamental pair interactions for colloidal silica particles may be constracted from a self-consistent mapping procedure and coarse-grained simulation without introducing adjustable parameters. Force fields for silica particles with diameter ranging from 1 nm to 100 nm are reported and tabulated in a simple analytical form. In the second part, we describe how the previously obtained force fields may be utilized for modeling rod-like colloidal systems. Focus is on exploring the effects of force field and particulate aspect ratio on the thermodynamic and rheological properties

  3. Study of colloidal particles FemOn-SiO2 synthesized by two different techniques (United States)

    Gareev, K. G.; Ionin, S. A.; Korolev, D. V.; Luchinin, V. V.; Moshnikov, V. A.; Panov, M. F.; Permyakov, N. V.


    Colloidal solutions FemOn-SiO2 were obtained by two different techniques based on sol-gel process: silica cores partially coated by iron oxide particles and iron oxide cores coated by silica. Dried layers were investigated by atomic force microscopy and size distribution was plotted. Chemical contain of dried specimen was analysed by FTIR-spectroscopy. Magnetic properties of colloidal particles obtained by both the techniques were measured by VSM. Resistivity's change under the influence of magnetic field was measured using LCR-meter.

  4. A study on particle deposition of an evaporating colloidal droplet

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sang Kwon; Lee, Jung Yong [Samsung Advanced Institute of Technology, Yongin (Korea, Republic of)


    The presented study aims to investigate the colloidal droplet deposition caused by evaporation of the liquid. In the numerical analysis, the evaporation is carried out by using different evaporation function intended to obtain different shape of solute deposition. In the experiment, the colloidal droplets of different solvents are placed on a glass plate and the surface profiles are measured after drying the solvents of the droplets to investigate the effect of the solvent evaporation on the final deposition profile. Comparing the surface profiles obtained under different conditions, the optimum drying conditions of colloidal droplets are determined to obtain uniform surface profiles. The numerical results showed that ring-shaped deposition of solute was formed at the edge of the droplet due to the coffee stain effect and the height of the ring was reduced at the lower evaporation rate. The experiments showed that the boiling point of a solvent was critical to the surface uniformity of the deposition profile and the mixture of solvents with different boiling points influenced the uniformity as well.

  5. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa


    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  6. Observation particle morphology of colloidal system by conventional SEM with an improved specimen preparation technique. (United States)

    Xu, Jing; Hou, Zhaosheng; Yuan, Xiaojiao; Guo, Hong


    On the basis of our previous report that polymer emulsion with different viscosity can be investigated by conventional scanning electron microscopy (SEM), we have developed an improved specimen preparation technique for obtaining particle morphology and size of colloidal silver, collagen, glutin, and polymer microspheres. In this study, we expect to provide a means for charactering the three-dimensional surface microstructure of colloidal particles. Dilution of the samples with appropriate volatile solvent like ethanol is effective for SEM specimen preparation. At a proper ratio between sample and ethanol, the colloidal particles are dispersed uniformly in ethanol and then deposited evenly on the substrate. Different drying methods are studied to search a proper drying condition, in which the small molecule solvent is removed without destroying the natural particle morphology. And the effects of ethanol in the specimen preparation process are described by analyzing the physicochemical properties of ethanol. The specimen preparation technique is simple and can be achieved in common laboratory for charactering the particle morphology of colloidal system. Copyright © 2010 Wiley-Liss, Inc.

  7. Complex plasmas and colloidal dispersions particle-resolved studies of classical liquids and solids

    CERN Document Server

    Ivlev, Alexei; Morfill, Gregor; Royall, C. Patrick


    Complex plasmas and colloidal dispersions represent different states of soft matter. They are complementary in many ways, with the most important being that complex plasmas are virtually undamped at the particle timescales, whereas colloidal dispersions are overdamped and therefore can be brought into equilibrium in a very controlled manner. Otherwise, both fields have similar advantages: fully resolved 3D particle trajectories can easily be visualized, the pair interactions are tunable, and particles can be manipulated individually or collectively. These unique properties allow us to investigate generic processes occurring in liquids or solids at the most fundamental individual particle level. The principal research topics to be addressed in the book include: particle dynamics in liquids, with the emphasis on mesoscopic processes in the supercooled (glassy) state, e.g. dynamical heterogeneity, phase transitions in solids, with particular attention to the evolutionary paths of crystal structure development an...

  8. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo


    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  9. Influence of particle shape on bending rigidity of colloidal monolayer membranes and particle deposition during droplet evaporation in confined geometries. (United States)

    Yunker, Peter J; Gratale, Matthew; Lohr, Matthew A; Still, Tim; Lubensky, T C; Yodh, A G


    We investigate the influence of particle shape on the bending rigidity of colloidal monolayer membranes (CMMs) and on evaporative processes associated with these membranes. Aqueous suspensions of colloidal particles are confined between glass plates and allowed to evaporate. Confinement creates ribbonlike air-water interfaces and facilitates measurement and characterization of CMM geometry during drying. Interestingly, interfacial buckling events occur during evaporation. Extension of the description of buckled elastic membranes to our quasi-2D geometry enables the determination of the ratio of CMM bending rigidity to its Young's modulus. Bending rigidity increases with increasing particle anisotropy, and particle deposition during evaporation is strongly affected by membrane elastic properties. During drying, spheres are deposited heterogeneously, but ellipsoids are not. Apparently, increased bending rigidity reduces contact line bending and pinning and induces uniform deposition of ellipsoids. Surprisingly, suspensions of spheres doped with a small number of ellipsoids are also deposited uniformly.

  10. Influence of Particle Shape on Bending Rigidity of Colloidal Monolayer Membranes and Particle Deposition during Droplet Evaporation in Confined Geometries (United States)

    Yunker, Peter J.; Gratale, Matthew; Lohr, Matthew A.; Still, Tim; Lubensky, T. C.; Yodh, A. G.


    We investigate the influence of particle shape on the bending rigidity of colloidal monolayer membranes (CMMs) and on evaporative processes associated with these membranes. Aqueous suspensions of colloidal particles are confined between glass plates and allowed to evaporate. Confinement creates ribbonlike air-water interfaces and facilitates measurement and characterization of CMM geometry during drying. Interestingly, interfacial buckling events occur during evaporation. Extension of the description of buckled elastic membranes to our quasi-2D geometry enables the determination of the ratio of CMM bending rigidity to its Young’s modulus. Bending rigidity increases with increasing particle anisotropy, and particle deposition during evaporation is strongly affected by membrane elastic properties. During drying, spheres are deposited heterogeneously, but ellipsoids are not. Apparently, increased bending rigidity reduces contact line bending and pinning and induces uniform deposition of ellipsoids. Surprisingly, suspensions of spheres doped with a small number of ellipsoids are also deposited uniformly.

  11. Zein-based colloidal particles for encapsulation and delivery of epigallocatechin gallate

    NARCIS (Netherlands)

    Donsì, F.; Voudouris, P.; Veen, S.J.; Velikov, K.P.

    Zein, a water insoluble plant protein from a renewable natural source, has been identified as a highly promising material for the production of protein-based colloidal particles for the encapsulation of lipophilic compounds. However, the encapsulation of hydrophilic, water-soluble, bioactive

  12. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.


    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  13. Perspective on "The effect of shape on the interaction of colloidal particles"

    NARCIS (Netherlands)

    Frenkel, D.


    Onsager's paper on the effect of shape on the interaction of colloidal particles is seminal in many ways. I shall focus on two aspects: it is (to my knowledge) the earliest classical density functional theory, and it demonstrates the possibility of ordering transitions driven by entropy

  14. Phase equilibria in stratified thin liquid films stabilized by colloidal particles


    Blawzdziewicz, J.; Wajnryb, E.


    Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-spher...

  15. Preparation and Characterization of Colloidal Silica Particles under Mild Conditions (United States)

    Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.


    A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…

  16. Preparation of Ultrafine Colloidal Gold Particles using a Bioactive Molecule (United States)

    Pal, Anjali


    Synthesis of nanometer-sized particles with new physical properties is an area of tremendous interest. In metal particles, the changes in size modify the electron density in the particles, which shifts the plasmon band. The most significant size effects occur when the particles are ultrafine (size is synthesis of ultrafine metal particles is enormously important to exploit their unique and selective application. Here we report a novel method for the synthesis of ultrafine gold particles in the size range of 0.5-3 nm using dopamine hydrochloride (dhc), an important neurotransmitter. This is the first time where such an important bioactive molecule like dhc has been used as a reagent for the transformation of Au(III) to Au(0). The synthesis is carried out, for the first time, either in simple aqueous or in a nonionic micellar (for example Triton X-100 (TX-100)) medium. The gold sol has a beautiful yellow-brown color showing λmax at 470 nm. The appearance of the absorption peak at substantially shorter wavelength (usually gold sol absorbs at ˜520 nm) indicates that the particles are very small. The method discussed here is very simple, reproducible and does not involve any reagent, which contains 'P' or 'S' atoms. Also in this case no polymer or dendrimer or thiol-related stabilizer is used. The effects of different parameters (such as the presence or absence of O2, temperature, TX-100 concentration and dhc concentration) on the formation of ultrafine gold particles are discussed. The effects of 3-mercapto propionic acid and pyridine on the ultrafine gold sol are also studied and compared with those on photochemically prepared gold sol. It is observed that 3-mercapto propionic acid dampens the plasmon absorption at 470 nm of ultrafine gold particles. Pyridine, on the other hand, has no effect on the particles.

  17. Self-Assembly of Ternary Particles for Tough Colloidal Crystals with Vivid Structure Colors

    Directory of Open Access Journals (Sweden)

    Binfu Bao


    Full Text Available Self-assembly of colloidal spheres is the most frequently used method for structural colors, but the chroma of the structural colors is usually so low that people cannot observe it under natural conditions. This paper presents a facile method for fabrications of vivid structural colors by doping carbon black into the self-assembly of colloidal polymer spheres and nanosilica particles. This approach can generate very gorgeous structural colors which can be very easily seen under natural conditions. The fabrication conditions for the self-assembly of composite dispersions of polymer/silica/carbon black were optimized to obtain colloidal crystals with vivid colors. Thus, robust mechanical properties, large-scale, and brilliant structural colors can guarantee the obtained crystal films to find practical applications, which are demonstrated by the fact that the successful applications of structural colors beautify the original simple and tedious surface of bamboo strand board (BSB.

  18. Structural and dynamic inhomogeneities induced by curvature gradients in elliptic colloidal halos of paramagnetic particles (United States)

    Ramírez-Garza, O. A.; Méndez-Alcaraz, J. M.; González-Mozuelos, P.


    Paramagnetic colloidal particles distributed along an ellipse are used as a model system to study the effects of curvature gradients on the structure and dynamics of colloids in curved manifolds. Unlike what happens for circular and spherical systems, in the present case, the equilibrium one-particle distribution function displays inhomogeneities due to the changing curvature along the ellipse. The ensuing effects on the two-body correlations are also analyzed, leading to the observation of anisotropic and long-ranged effects. Another noticeable consequence is the slowing down of the self-diffusion of these particles, which for large eccentricities may induce metastable states; this is evaluated by means of the time-dependent self-distribution.

  19. New polyelectrolyte complex particles as colloidal dispersions based on weak synthetic and/or natural polyelectrolytes

    Directory of Open Access Journals (Sweden)


    Full Text Available This study aims to evidence the formation of stable polyelectrolyte complex particles as colloidal dispersions using some weak polyelectrolytes: chitosan and poly(allylamine hydrochloride as polycations and poly(acrylic acid (PAA and poly(2-acrylamido-2-methylpropanesulfonic acid – co – acrylic acid (PAMPSAA as polyanions. Polyelectrolyte complex particles as colloidal dispersion were prepared by controlled mixing of the oppositely charged polymers, with a constant addition rate. The influences of the polyelectrolytes structure and the molar ratio between ionic charges on the morphology, size, and colloidal stability of the complex particles have been deeply investigated by turbidimetry, dynamic light scattering and atomic force microscopy. A strong influence of polyanion structure on the values of molar ratio n–/n+ when neutral complex particles were obtained has been noticed, which shifts from the theoretical value of 1.0, observed when PAA was used, to 0.7 for PAMPSAA based complexes. The polyions chain characteristics influenced the size and shape of the complexes, larger particles being obtained when chitosan was used, for the same polyanion, and when PAMPSAA was used, for the same polycation.

  20. Core-shell colloidal particles with dynamically tunable scattering properties. (United States)

    Meng, Guangnan; Manoharan, Vinothan N; Perro, Adeline


    We design polystyrene-poly(N'-isopropylacrylamide-co-acrylic acid) core-shell particles that exhibit dynamically tunable scattering. We show that under normal solvent conditions the shell is nearly index-matched to pure water, and the particle scattering is dominated by Rayleigh scattering from the core. As the temperature or salt concentration increases, both the scattering cross-section and the forward scattering increase, characteristic of Mie scatterers. The magnitude of the change in the scattering cross-section and scattering anisotropy can be controlled through the solvent conditions and the size of the core. Such particles may find use as optical switches or optical filters with tunable opacity.

  1. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, P.J.; Daria, V.R.; Glückstad, J.


    We transform a TEM00 laser mode into multiple counterpropagating optical traps to achieve four-dimensional simultaneous manipulation of multiple particles. Efficient synthesis and dynamic control of the counterpropagating-beam traps is carried out via the generalized phase contrast method......, and a spatial polarization-encoding scheme. Our experiments genuinely demonstrate real-time, interactive particle-position control for forming arbitrary volumetric constellations and complex three-dimensional trajectories of multiple particles. This opens up doors for cross-disciplinary cutting-edge research...

  2. Harnessing the advantages of hard and soft colloids by the use of core-shell particles as interfacial stabilizers

    NARCIS (Netherlands)

    Buchcic, C.; Tromp, R.H.; Meinders, M.B.J.; Cohen Stuart, M.A.


    The ability of colloidal particles to penetrate fluid interfaces is a crucial factor in the preparation of particle stabilized disperse systems such as foams and emulsions. For hard micron-sized particles the insertion into fluid interfaces requires substantial energy input, but soft particles

  3. Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions. (United States)

    Peral, D; Stehl, D; Bibouche, B; Yu, H; Mardoukh, J; Schomäcker, R; Klitzing, R von; Vogt, D


    Colloidal particles have been used to covalently bind ligands for the heterogenization of homogeneous catalysts. The replacement of the covalent bonds by electrostatic interactions between particles and the catalyst could preserve the selectivity of a truly homogeneous catalytic process. Functionalized polymer particles with trimethylammonium moieties, dispersed in water, with a hydrophobic core and a hydrophilic shell have been synthesized by emulsion polymerization and have been thoroughly characterized. The ability of the particles with different monomer compositions to act as catalyst carriers has been studied. Finally, the colloidal dispersions have been applied as phase transfer agents in the multiphasic rhodium-catalyzed hydroformylation of 1-octene. The hydrodynamic radius of the particles has been shown to be around 100 nm, and a core-shell structure could be observed by atomic force microscopy. The polymer particles were proven to act as carriers for the water-soluble hydroformylation catalyst, due to electrostatic interaction between the functionalized particles bearing ammonium groups and the sulfonated ligands of the catalyst. The particles were stable under the hydroformylation conditions and the aqueous catalyst phase could be recycled three times. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sangwoo [Univ. of Hawaii at Manoa, Honolulu, HI (United States); Ault, Jesse T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Patrick B. [Unilever R& D Port Sunlight, Wirral (United Kingdom); Stone, Howard A. [Princeton Univ., Princeton, NJ (United States)


    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  5. Light scattering studies of lower dimensional colloidal particle and critical fluid systems

    International Nuclear Information System (INIS)

    O'Sullivan, W.J.; Mockler, R.C.


    The authors have studied the response to compression of colloidal particle crystals in monolayers on the surface of water. The crystals deform elastically as the crystals are compressed in a Langmuir trough from a lattice spacing of ten microns to spacings less than two microns. A phase transition to a close packed triangular lattice phase occurs at very high densities, when the attractive van der Waals/steric interations between particles dominate. The authors have found that the aggregates formed, when a colloidal particle monolayer coagulates following switching off of the repulsive electric dipole-dipole interactions, show scale invariance with a fractal dimension consistent with the prediction of a theory of diffusion limited aggregation in two dimensions. The authors have made progress toward the development of a computer processed array detector-spectrometer to be used in studies of melting and crystallization of two dimensional colloidal particle films. Stable black bilipid membranes have been produced, both spherical and planar, with and without embedded microparticles. We have modified our heterodyne autocorrelation spectrometer, used for studies of the dynamic response of critical fluid films, to enable us to measure the intensity autocorrelation of light scattered at forward angles. Rayleigh linewidth data has been gathered from a 1.9 micron film of a 2,6-lutidine+water critical mixture, taken at a scattering angle of ten degrees. The preliminary results indicate that the film dynamical response remains that of an equivalent three dimensional system, in apparent disgreement with recent theoretical predictions of Calvo and Ferrell

  6. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev


    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  7. Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal

    International Nuclear Information System (INIS)

    Smalyukh, I.I.; Kuzmin, A.N.; Kachynski, A.V.; Prasad, P.N.; Lavrentovich, O.D.


    We demonstrate optical trapping and manipulation of transparent microparticles suspended in a thermotropic nematic liquid crystal with low birefringence. We employ the particle manipulation to measure line tension of a topologically stable disclination line and to determine colloidal interaction of particles with perpendicular surface anchoring of the director. The three-dimensional director fields and positions of the particles manipulated by laser tweezers are visualized by fluorescence confocal polarizing microscopy

  8. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Daria, Vincent Ricardo Mancao; Glückstad, Jesper


    The technical development of optical tweezers, along with their application in the biological and physical sciences, has progressed significantly since the demonstration of an optical trap for micron-sized particles based on a single, tightly focused laser beam was first reported more than twenty...

  9. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions. (United States)

    Yunker, Peter J; Lohr, Matthew A; Still, Tim; Borodin, Alexei; Durian, D J; Yodh, A G


    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth line, varies spatiotemporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson-like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by Kardar-Parisi-Zhang fluctuations in the presence of quenched disorder.

  10. Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process

    Directory of Open Access Journals (Sweden)

    Nicolas Vogel


    Full Text Available The benefits of miniemulsion and emulsion polymerization are combined in a seeded emulsion polymerization process with functional seed particles synthesized by miniemulsion polymerization. A systematic study on the influence of different reaction parameters on the reaction pathway is conducted, including variations of the amount of monomer fed, the ratio of initiator to monomer and the choice of surfactant and composition of the continuous phase. Critical parameters affecting the control of the reaction are determined. If carefully controlled, the seeded emulsion polymerization with functional seed particles yields monodisperse particles with adjustable size and functionalities. Size-adjusted platinum-acetylacetonate containing latex particles with identical seed particles and varied shell thicknesses are used to produce arrays of highly ordered platinum nanoparticles with different interparticle distances but identical particle sizes. For that, a self-assembled monolayer of functional colloids is prepared on a solid substrate and subsequently treated by oxygen plasma processing in order to remove the organic constituents. This step, however, leads to a saturated state of a residual mix of materials. In order to determine parameters influencing this saturation state, the type of surfactant, the amount of precursor loading and the size of the colloids are varied. By short annealing at high temperatures platinum nanoparticles are generated from the saturated state particles. Typically, the present fabrication method delivers a maximum interparticle distance of about 260 nm for well-defined crystalline platinum nanoparticles limited by deformation processes due to softening of the organic material during the plasma applications.

  11. Rheology of dense suspensions of non colloidal particles

    Directory of Open Access Journals (Sweden)

    Guazzelli Élisabeth


    Full Text Available Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing and in natural phenomena (e.g. flows of slurries, debris, and lava. Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers or non-Newtonian fluids that we will also address.

  12. Rheology of dense suspensions of non colloidal particles (United States)

    Guazzelli, Élisabeth


    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  13. Coarse-Grained Potential for Interaction with a Spherical Colloidal Particle and Planar Wall

    Czech Academy of Sciences Publication Activity Database

    Předota, Milan; Nezbeda, Ivo; Pařez, Stanislav


    Roč. 75, č. 5 (2010), s. 527-545 ISSN 0010-0765 R&D Projects: GA ČR GA203/08/0094; GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : spherical colloidal particles * surface interaction * molecular simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.853, year: 2010

  14. Production of the radiopharmaceuticals labelling albumin nano-colloid with 99mTc for scintiscanning studies of the lymphatic system and bone marrow

    International Nuclear Information System (INIS)

    Gonzalez Alvarado, Alba Evelia


    The objective of the present work was to carried out the production in Guatemala, of a new radiopharmaceutical in the General Direction of Nuclear Energy for the detection of the cancer, as well as its implementation, the quality control by means of the radiochemical purity, the microbiology control and organoleptic quality , to evaluate the biodistribution in rats and to check its stability. The work was carried out formulating the pharmaco albumin Nano-colloid, then it was labelled with 99m Tc, the radiochemical purity was evaluated, measuring the disintegrations in minutes of the 99m Tc in an scintillation counter type well, being determined the percentage of union from the 99m Tc to the nanocolloid, with a purity bigger than 90%

  15. Single charging events on colloidal particles in a nonpolar liquid with surfactant (United States)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip


    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  16. The synthesis and characterization of water-reducible nanoscale Colloidal Unimolecular Polymer (CUP) particles (United States)

    Riddles, Cynthia Jeannette

    The coatings industry has adapted to more stringent guidelines in paint formulations. Current VOC (volatile organic compound) limits placed by the federal government have pushed the industry toward the development of paint formulations which have very little to no VOC's. The development of Colloidal Unimolecular Polymer (CUP) particles is a step in the direction of providing a resin system which exists in zero VOC aqueous dispersion. The CUP particles are a part of the polymer field of Single Chain Nano Particles (SCNP) and ranged in diameters of 3-9 nm. The research presented in this dissertation describes the synthesis and design of these particles along with the various means of instrumentation used to gain insight into the structure and nature of these particles when suspended in aqueous medium.

  17. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles

    International Nuclear Information System (INIS)

    Spruijt, E; Biesheuvel, P M


    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation–diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL

  18. Stable, Fluorescent Polymethylmethacrylate Particles for the Long-Term Observation of Slow Colloidal Dynamics. (United States)

    Kodger, Thomas E; Lu, Peter J; Wiseman, G Reid; Weitz, David A


    Suspensions of solid micron-scale colloidal particles in liquid solvents are a foundational model system used to explore a wide range of phase transitions, including crystallization, gelation, spinodal decomposition, and the glass transition. One of the most commonly used systems for these investigations is the fluorescent spherical particles of polymethylmethacrylate (PMMA) suspended in a mixture of nonpolar solvents that match the density and the refractive index of the particles to minimize sedimentation and scattering. However, the particles can swell in these solvents, changing their size and density, and may leak the fluorescent dye over days to weeks; this constrains the exploration of slow and kinetically limited processes, such as near-boundary phase separation or the glass transition. In this paper, we produce PMMA colloidal particles that employ polymerizable and photostable cyanine-based fluorescent monomers spanning the range of visible wavelengths and a polymeric stabilizer prepared from polydimethylsiloxane, PDMS-graft-PMMA. Using microcalorimetry, we characterize the thermodynamics of an accelerated equilibration process for these dispersions in the buoyancy- and refractive-index-matching solvents. We use confocal differential dynamic microscopy to demonstrate that they behave as hard spheres. The suspended particles are stable for months to years, maintaining fixed particle size and density, and do not leak dye. Thus, these particles enable longer term experiments than may have been possible earlier; we demonstrate this by observing spinodal decomposition in a mixture of these particles with a depletant polymer in the microgravity environment of the International Space Station. Using fluorescence microscopy, we observe coarsening over several months and measure the growth of the characteristic length scale to be a fraction of a picometer per second; this rate is among the slowest observed in a phase-separating system. Our protocols should

  19. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid-particle model. (United States)

    Dzwinel, Witold; Yuen, David A


    The dispersion of the agglomerating fluid process involving colloids has been investigated at the mesoscale level by a discrete particle approach--the hybrid fluid-particle model (FPM). Dynamical processes occurring in the granulation of colloidal agglomerate in solvents are severely influenced by coupling between the dispersed microstructures and the global flow. On the mesoscale this coupling is further exacerbated by thermal fluctuations, particle-particle interactions between colloidal beds, and hydrodynamic interactions between colloidal beds and the solvent. Using the method of FPM, we have tackled the problem of dispersion of a colloidal slab being accelerated in a long box filled with a fluid. Our results show that the average size of the agglomerated fragments decreases with increasing shearing rate gamma, according to the power law A x gamma(k), where k is around 2. For larger values of gamma, the mean size of the agglomerate S(avg) increases slowly with gamma from the collisions between the aggregates and the longitudinal stretching induced by the flow. The proportionality constant A increases exponentially with the scaling factor of the attractive forces acting between the colloidal particles. The value of A shows a rather weak dependence on the solvent viscosity. But A increases proportionally with the scaling factor of the colloid-solvent dissipative interactions. Similar type of dependence can be found for the mixing induced by Rayleigh-Taylor instabilities involving the colloidal agglomerate and the solvent. Three types of fragmentation structures can be identified, which are called rupture, erosion, and shatter. They generate very complex structures with multiresolution character. The aggregation of colloidal beds is formed by the collisions between aggregates, which are influenced by the flow or by the cohesive forces for small dispersion energies. These results may be applied to enhance our understanding concerning the nonlinear complex

  20. Laser-Induced "Regeneration" of Colloidal Particles: The Effects of Thermal Inertia on the Chemical Reactivity of Laser-Heated Particles. (United States)

    McGrath; Beveridge; Diebold


    A size reduction of the suspended particles is observed upon irradiation of colloidal metal solutions by a high-power, pulsed laser, resulting in dramatic changes in their optical properties. The mechanism of change involves rapid production of ions as a consequence of laser heating, followed by diffusion and chemical reduction on a long time scale to form new colloidal particles. The process, by which large particles are differentially consumed relative to small ones, depends on the "thermal inertia" of the particles, which governs the temperature of the particles and hence their reactivity.

  1. Investigating flow behaviors of colloidal materials at the single-particle scale (United States)

    Lin, Yen-Chih

    My thesis work focuses on the nonlinear mechanical behaviors of colloidal suspensions at the particle-level. This work covers both quiescent and strongly sheared suspensions. For quiescent suspensions, we image their 3D structures with confocal microscopy, and implement Stress Assessment from Local Structural Anisotropy (SALSA) to visualize the stress fields in them. Unlike traditional numerical methods, SALSA takes a statistical approach converting the probability of hard-sphere Brownian collisions to stresses. This direct stress measurement allows us to quantify the particle-level stresses surrounding vacancies, dislocations, and grain boundaries in crystalline materials. To drive the suspensions away from equilibrium, we develop a confocal-rheoscope, which is able to shear and image colloidal materials simultaneously. Using this device, we investigate the nonlinear flow behavior governed by Brownian motion, shear induced diffusion, and advection, and more importantly, disentangle them. We also study particle assembly and its corresponding rheological properties under confinement. Finally, we study even more strongly sheared suspensions, in which particle dynamics are too fast to be imaged by a confocal microscope. Here, we use flow reversal rheometry to reveal the underlying mechanism of suspension shear thickening where the viscosity increases with shear rate. We show that the thickening behavior of a suspension arises from the particle contact forces rather than hydrodynamic interactions. Such findings then lead us to design a biaxial shear protocol that can tune the suspension viscosity on demand. This viscosity tuning capability is a foundational step toward using dense suspensions in 3D printing, energy storage, and robotics.

  2. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals. (United States)

    Gârlea, Ioana C; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G A L; Lettinga, M Pavlik; Koenderink, Gijsje H; Mulder, Bela M


    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  3. Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals

    International Nuclear Information System (INIS)

    Woldering, Leon A; Otter, A M; Husken, Bart H; Vos, Willem L


    We present a new method of realizing single nanocavities in individual colloidal particles on the surface of silicon dioxide artificial opals using a focused ion beam milling technique. We show that both the radius and the position of the nanocavity can be controlled with nanometre precision, to radii as small as 40 nm. The relation between the defect size and the milling time has been established. We confirmed that milling not only occurs on the surface of the spheres, but into and through them as well. We also show that an array of nanocavities can be fashioned. Structurally modified colloids have interesting potential applications in nanolithography, as well as in chemical sensing and solar cells, and as photonic crystal cavities

  4. Dissipative particle dynamics: Effects of thermostating schemes on nano-colloid electrophoresis (United States)

    Hassanzadeh Afrouzi, Hamid; Moshfegh, Abouzar; Farhadi, Mousa; Sedighi, Kurosh


    A novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced in the present study to model the electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Performance of various thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field (0 . 072 0 . 145[v/nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the system radial distribution function with available EW3D modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  5. Electrokinetics and behavior near the interface of colloidal particles in non-polar dispersions. (United States)

    Prasad, Manoj; Strubbe, Filip; Beunis, Filip; Neyts, Kristiaan


    The electrokinetics and charging of nonpolar colloidal dispersions subjected to a voltage are investigated by electric current and optical measurements. From electric current measurements in response to an alternating triangular voltage with a peak value of a few hundred volts, we find that polystyrene toner particles are compacted near the electrodes and their charge increases by more than a factor of 20. The important increase of charge is interpreted by a mechanism in which counter charges, which are originally at the particle surface, are desorbed. Optical measurements performed under a dc voltage of the order of a few hundred volts demonstrate that the charge of the particles can again decrease or even be inverted. These phenomena are attributed to the movement of counter charged species from the interface layers onto the surface of the particles. The findings of this study are relevant for electrophoretic displays and liquid toner printing.

  6. Electrically induced interactions between colloidal particles in the vicinity of a conducting plane (United States)

    Nadal, François; Argoul, Françoise; Hanusse, Patrick; Pouligny, Bernard; Ajdari, Armand


    We address the problem of two-dimensional (2D) colloidal aggregation driven by an ac electrical field, by observing an aqueous dispersion of latex microspheres in contact with a conducting surface. Using micron-sized carboxylated polystyrene particles, we have systematically investigated the aggregation process, as a function of particle size and charge, and of the applied electric field amplitude and frequency. A low-density 2D phase is observed at high frequency (typically above 1 kHz), while at low frequency (below a ``contact frequency'' νc) the collection of particles collapses into disconnected compact aggregates of crystalline (hexagonal) structure. We argue that this scenario is governed by the competition between an attractive force, of electrohydrodynamic nature, and a repulsive force, basically an electrical dipole-dipole interaction. Both contributions are revealed and analyzed in independent experiments on isolated particle pairs, using optical manipulation and dynamometry.

  7. Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia (United States)

    Hirst, Catherine; Andersson, Per S.; Shaw, Samuel; Burke, Ian T.; Kutscher, Liselott; Murphy, Melissa J.; Maximov, Trofim; Pokrovsky, Oleg S.; Mörth, Carl-Magnus; Porcelli, Don


    Rivers are significant contributors of Fe to the ocean. However, the characteristics of chemically reactive Fe remain poorly constrained, especially in large Arctic rivers, which drain landscapes highly susceptible to climate change and carbon cycle alteration. The aim of this study was a detailed characterisation (size, mineralogy, and speciation) of riverine Fe-bearing particles (>0.22 μm) and colloids (1 kDa-0.22 μm) and their association with organic carbon (OC), in the Lena River and tributaries, which drain a catchment almost entirely underlain by permafrost. Samples from the main channel and tributaries representing watersheds that span a wide range in topography and lithology were taken after the spring flood in June 2013 and summer baseflow in July 2012. Fe-bearing particles were identified, using Transmission Electron Microscopy, as large (200 nm-1 μm) aggregates of smaller (20-30 nm) spherical colloids of chemically-reactive ferrihydrite. In contrast, there were also large (500 nm-1 μm) aggregates of clay (illite) particles and smaller (100-200 nm) iron oxide particles (dominantly hematite) that contain poorly reactive Fe. TEM imaging and Scanning Transmission X-ray microscopy (STXM) indicated that the ferrihydrite is present as discrete particles within networks of amorphous particulate organic carbon (POC) and attached to the surface of primary produced organic matter and clay particles. Together, these larger particles act as the main carriers of nanoscale ferrihydrite in the Lena River basin. The chemically reactive ferrihydrite accounts for on average 70 ± 15% of the total suspended Fe in the Lena River and tributaries. These observations place important constraints on Fe and OC cycling in the Lena River catchment area and Fe-bearing particle transport to the Arctic Ocean.

  8. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret


    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...... to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMWPAHs was highest in the Particulate fractions (particles N 0.7 μm). The highest concentration of PAHs in the Colloidal...... fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. © 2015 Elsevier B.V. All...

  9. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)


    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  10. Fermi level equilibration between colloidal lead and silver particles in aqueous solution

    International Nuclear Information System (INIS)

    Henglein, A.; Holzwarth, A.; Mulvaney, P.


    Colloidal solutions of lead and silver were mixed under the exclusion of air. The equilibration of the Fermi levels in the two different types of metal particles took place over a few days at room temperature. The equilibration took place by the transfer of lead atoms from lead to silver particles until the latter carried a lead mantle of one to two monolayers. This could be concluded from the observed changes in the optical spectrum of the silver particles. The results are discussed in terms of two mechanisms: (1) Pb atom transfer following heterocoagulation of the lead and silver particles and (2) electron transfer during Brownian encounters, followed by Pb 2+ desorption from the lead particles and subsequent Pb 2+ reductor on the silver particles carrying the transferred electrons. Traces of methylviologen, MV 2+ , in the solution drastically increase the rate of equilibration; this is explained by a relay mechanism in which electrons in the lead particles are first picked up by MV 2+ and are then transferred from MV + to the silver particles. 2 refs., 4 figs

  11. Dynamic properties of polydisperse colloidal particles in the presence of thermal gradient studied by a modified Brownian dynamic model (United States)

    Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin


    Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.

  12. Study of colloidal particles behaviour in the PWR primary circuit conditions

    International Nuclear Information System (INIS)

    Barale, M.


    EDF wants to understand, model and limit primary circuit contamination of Pressurized Water Reactors by colloidal particles resulting from corrosion. The electrostatic behaviour of representative oxide particles (cobalt ferrite, nickel ferrite and magnetite) has been studied in primary circuit conditions with the influence of boric acid and lithium hydroxide. The isoelectric point (IEP) and the point of zero charge (PZC) of particles, measured between 5 C and 320 C, exhibit a minimum towards 200 C. The thermodynamic constants of the protonation equilibrium of surface sites were calculated. When boric acid is added, zeta potential and IEP decrease because of borate ions sorption. On the contrary, there is not effect of lithium ions. The modelling of these results under conditions representative of primary circuit shows that these oxides exhibit a negative surface charge, explaining their sorption and adhesion behaviour. (author)

  13. Modes of surface premelting in colloidal crystals composed of attractive particles. (United States)

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong


    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface

  14. Mobilization of colloidal particles by low-frequency dynamic stress stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Richard Edward [Los Alamos National Laboratory; Amr, Abdel - Fattah I [Los Alamos National Laboratory; Peter, Roberts M [Los Alamos National Laboratory; Reem, Ibrahim [Los Alamos National Laboratory; Tarimala, Sowmitri [Los Alamos National Laboratory


    Naturally occurring seismic events and artificially generated low-frequency (1 to 500 Hertz) elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of surface and well water. The decreases in production are of particular concern - especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. While the underlying environment is certainly complex, the observed increase in water well turbidity after natural seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and mobilization of in-situ colloidal particles. This paper explores the macroscopic and microscopic effects of low-frequency dynamic stress stimulations on the release of colloidal particles from an analog core representing an infinitesimal section along the propagation paths of an elastic wave. Experiments on a column packed with 1-mm borosilicate beads and loaded with polystyrene microspheres demonstrate that axial mechanical stress oscillations enhance the mobilization of captured microspheres. Increasing the amplitude of the oscillations increases the number of microspheres released and can also result in cyclical spikes in effluent microsphere concentration during stimulation. Under a prolonged period of stimulation, the cyclical effluent spikes coincided with fluctuations in the column pressure data, and continue at a diminished level after stimulation. This behavior can be attributed to rearrangements of the beads in the column, resulting in possible changes to the void space and/or tortuosity of the packing. Optical microscopy observations of the beads during low frequency oscillations reveal that individual beads rotate, thereby rubbing against each other and scraping away portions of the adsorbed microspheres. These

  15. Novel colloidal system: Magnetite-polymer particles/lyotropic liquid crystal under magnetic field (United States)

    Mănăilă-Maximean, D.; Cîrtoaje, C.; Dănilă, O.; Donescu, D.


    We obtained a new highly ordered colloidal composite using specially manufactured magnetite-polymer nanoparticles and lyotropic liquid crystal. A good compatibility between the components was ensured by the functionalization of the particles during their synthesis. We studied the laser light transmission for the mixtures filled in sandwich-glass cells with homeotropic and planar treatment of the surfaces under external magnetic field. The Fréedericksz transition critical field was estimated, and its' behavior was compared to our new theoretical model based on the Brochard-de Gennes one.

  16. Intermethod comparison of the particle size distributions of colloidal silica nanoparticles. (United States)

    Tuoriniemi, Jani; Johnsson, Ann-Cathrin J H; Holmberg, Jenny Perez; Gustafsson, Stefan; Gallego-Urrea, Julián A; Olsson, Eva; Pettersson, Jan B C; Hassellöv, Martin


    There can be a large variation in the measured diameter of nanoparticles depending on which method is used. In this work, we have strived to accurately determine the mean particle diameter of 30-40 nm colloidal silica particles by using six different techniques. A quantitative agreement between the particle size distributions was obtained by scanning electron microscopy (SEM), and electrospray-scanning mobility particle sizer (ES-SMPS). However, transmission electron microscopy gave a distribution shifted to smaller sizes. After confirming that the magnification calibration was consistent, this was attributed to sample preparation artifacts. The hydrodynamic diameter, d h , was determined by dynamic light scattering (DLS) both in batch mode, and hyphenated with sedimentation field flow fractionation. Surprisingly the d h were smaller than the SEM, and ES-SMPS diameters. A plausible explanation for the smaller sizes found with DLS is that a permeable gel layer forms on the particle surface. Results from nanoparticle tracking analysis were strongly biased towards larger diameters, most likely because the silica particles provide low refractive index contrast. Calculations confirmed that the sensitivity is, depending on the shape of the laser beam, strongly size dependent for particles with diameters close to the visualization limit.

  17. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry. (United States)

    Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng


    Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Self-Assembly Kinetics of Colloidal Particles inside Monodispersed Micro-Droplet and Fabrication of Anisotropic Photonic Crystal Micro-Particles

    Directory of Open Access Journals (Sweden)

    Ming-Yu Zhang


    Full Text Available A new microfluidic approach to preparing anisotropic colloidal photonic crystal microparticles is developed and the self-assembly kinetics of colloidal nanoparticles is discussed. Based on the “coffee ring” effect in the self-assembly process of colloidal silica particle in strong solvent extraction environment, we successfully prepared anisotropic photonic crystal microparticles with different shapes and improved optical properties. The shapes and optical properties of photonic crystal microparticles can be controlled by adjusting the droplet size and extraction rate. We studied the self-assembly mechanism of colloidal silica particles in strong solvent extraction environment, which has potential applications in a variety of fields including optical communication technology, environmental response, photo-catalysis and chromic material.

  19. Electric field induced charging of colloidal particles in a nonpolar liquid. (United States)

    Schreuer, Caspar; Vandewiele, Stijn; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip


    Colloidal particles in a pure nonpolar solvent are expected to be in a state of dynamic equilibrium where a particle's charge fluctuates around a stable mean value. However, we find that PHSA-coated PMMA microparticles in dodecane gain positive charge over time. We hypothesize that this phenomenon is prompted by the high electric field (∼1 V/µm) that is applied in these measurements. Hence, we expect the reaction rate at which charge builds up on the particle to change when modifying the measurement parameters. Single elementary charging and discharging events can be resolved by measuring the charge of PHSA-coated PMMA particles with optical trapping electrophoresis. With this technique, the influence of the electric field amplitude and frequency, particle size, electrode material and acquired charge can be investigated. The rate of the charging phenomenon is proportional to the amplitude of the applied electric field and the charging stops when the voltage is switched off. We propose a reaction mechanism where the particle sheds negatively charged ions. This mechanism can account for all the experimental observations of the electric field induced charging phenomenon. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Ion release kinetics and particle persistence in aqueous nano-silver colloids. (United States)

    Liu, Jingyu; Hurt, Robert H


    Many important aspects of nanosilver behavior are influenced by the ionic activity associated with the particle suspension, including antibacterial potency, eukaryotic toxicity, environmental release, and particle persistence.The present study synthesizes pure, ion-free, citrate-stabilized nanosilver (nAg) colloids as model systems, and measures their time-dependent release of dissolved silver using centrifugal ultrafiltration and atomic absorption spectroscopy. Ion release is shown to be a cooperative oxidation process requiring both dissolved dioxygen and protons. It produces peroxide intermediates, and proceeds to complete reactive dissolution under some conditions. Ion release rates increase with temperature in the range 0-37 °C, and decrease with increasing pH or addition of humic or fulvic acids. Sea salts have only a minor effect on dissolved silver release. Silver nanoparticle surfaces can adsorb Ag(+), so even simple colloids contain three forms of silver: Ag(0) solids, free Ag(+) or its complexes, and surface-adsorbed Ag(+). Both thermodynamic analysis and kinetic measurements indicate that Ag(0) nanoparticles will not be persistent in realistic environmental compartments containing dissolved oxygen. An empirical kinetic law is proposed that reproduces the observed effects of dissolution time, pH, humic/fulvic acid content, and temperature observed here in the low range of nanosilver concentration most relevant for the environment.

  1. Interaction between colloidal particles on an oil-water interface in dilute and dense phases. (United States)

    Parolini, Lucia; Law, Adam D; Maestro, Armando; Buzza, D Martin A; Cicuta, Pietro


    The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher. This condition is thus explored in an alternative fashion, measuring the local mobility of colloids when confined by their neighbors. This method of extracting interaction potentials gives results that are consistent with dipolar repulsion throughout the concentration range, with the same magnitude as in the dilute limit. We are unable to rule out the density dependence based on the experimental accuracy of our data, but we show that incomplete equilibration of the experimental system, which would be possible despite long waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted potentials. We conclude that to within the precision of these measurements, the dilute pair potential remains valid at high density in this system.

  2. Symmetric alignment of the nematic matrix between close penetrable colloidal particles

    International Nuclear Information System (INIS)

    Teixeira, P I C; Barmes, F; Cleaver, D J


    A simple model is proposed for the liquid crystal matrix surrounding 'soft' colloidal particles whose separation is much smaller than their radii. We use our implementation of the Onsager approximation of density-functional theory (Chrzanowska et al 2001 J. Phys.: Condens. Matter 13 4715) to calculate the structure of a nanometrically thin film of hard Gaussian overlap particles of elongations κ = 3 and 5, confined between two solid walls. The penetrability of either substrate can be tuned independently to yield symmetric or hybrid alignment. Comparison with Monte Carlo simulations of the same system (Cleaver and Teixeira 2001 Chem. Phys. Lett. 338 1, Barmes and Cleaver 2004 in preparation) reveals good agreement in the symmetric case

  3. Size fractionation and characterisation of fresh water colloids and particles: split-flow thin-cell and electron microscopy analyses. (United States)

    De Momi, Anna; Lead, Jamie R


    Split-flow thin-cell (SPLITT) was employed in conventional mode (CSF), to size-fractionate colloids and particles from a selected freshwater. Imaging and quantification by calculations of particle size distributions (PSDs) and shape factors were performed on sample analyzed by conventional high vacuum scanning electron microscopy (SEM) and environmental SEM (ESEM), to investigate the ability of SPLITT to make accurate and nonperturbing separations. SEM and ESEM images of unperturbed and SPLITT-generated fractions were used in order to obtain qualitative and quantitative information about the properties of colloids and particles. Particle size distributions (PSDs) showed that separations were very good, agreeing with theoretical behavior. ESEM PSDs showed that up to 87-88% of the material in the a fraction (expected to be 1 microm) 87-95% of the material was the expected size. The SEM data indicated a slightly higher contamination of the b fraction with the presence of submicron colloids. Moreover, analysis of conformations indicated significant nonsphericity in unfractionated colloids and particles, but after SPLITT fractionation, shape factors showed that particles were significantly more spherical than before separation.

  4. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  5. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies. (United States)

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias


    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  6. Orientational order of one-patch colloidal particles in two dimensions. (United States)

    Iwashita, Yasutaka; Kimura, Yasuyuki


    We studied the orientational order of one-patch colloidal particles (Janus particles) in a close-packed monolayer. In an experiment on hemispherically patched particles, we realized a highly ordered zigzag stripe pattern by inducing directional growth of the pattern via a phase transition of the solvent. Upon spontaneous ordering by strengthening the inter-patch attraction, however, the particles are trapped in a poorly ordered zigzag pattern, illustrating the importance of controlling kinetics to attain a highly ordered state. The patch-size dependence of an equilibrium orientational order is experimentally observed under moderate inter-patch attraction. We also calculated the equilibrium order against the patch size and attraction in a Monte Carlo simulation. In the simulation, the rather discrete transition between a zigzag stripe, tiling of triangular trimers and tiling of dimers under strong attraction becomes continuous with weakening attraction. The experimental result not only coincides with the simulation qualitatively but also suggests that a particular cluster is selectively formed by nonuniform inter-patch attraction in the experiment. The effect of patch-substrate attraction and commonalities of the order with liquid crystals are also discussed.

  7. Fabrication and application of responsive polymer surfaces on planar substrates and colloidal particles (United States)

    Lupitskyy, Robert


    In the present dissertation, the problem of controlling interactions of material surfaces with the environment was addressed. Using chemical modification of surfaces with responsive polymers, it is possible to use external stimuli to regulate surface wettability, protein adsorption, stability, and interfacial properties of colloidal particles. The research work presented in this dissertation consists of four independent parts. In the first part (Chapter II), the responsive behavior of a novel heteroarm star-copolymer, poly(2-vinylpyridine)-star-poly(styrene) (PS7-P2VP7), was investigated. For grafted layers of PS7-P2VP7,surface composition, morphology, and wettability can be reversibly changed by treatment with solvents of different thermodynamic quality. Grafted layers of the star-copolymer exhibit a pronounced solvent-dependent phase segregation characteristic and behave similarly to mixed polymer brushes with incompatible components. In the second part (Chapter III), the regulation of fibrinogen adsorption by changing surface composition and microstructure of a mixed polymer brush was explored. The brush is a combination of a protein-repelling component, poly(ethylene glycol), and a protein-attracting component, poly(acrylic acid)-b-polystyrene. Treatment with different organic solvents changes the degree of adsorption of a test protein, fibrinogen, whereas treatment with calcium chloride solution results in virtually no protein adsorption at all. Studies of brush morphology and brush extension in aqueous medium revealed that treatment with different solvents results in different size and distribution of polystyrene domains, which in turn affects the adsorption of fibrinogen. In the third part (Chapter IV), a responsive colloidal system was developed by grafting poly(styrene-b-2-vinylpyridine-b-ethylene oxide) triblock copolymer onto the surface of 200 nm silica particles. This type of grafted polymer layer is both pH- and solvent-sensitive. These properties

  8. A new method to determine the skin thickness of asymmetric UF-membranes using colloidal gold particles

    NARCIS (Netherlands)

    Cuperus, Folkert Petrus; Bargeman, Derk; Smolders, C.A.


    In this paper a new method is presented for the determination of the skin thickness of asymmetric ultrafiltration membranes. The method is based on the use of well-defined, uniformly sized colloidal gold particles, permeated from the sublayer side of the membrane, combined with electron microscopic

  9. Design colloidal particle morphology and self-assembly for coating applications. (United States)

    Jiang, Shan; Van Dyk, Antony; Maurice, Alvin; Bohling, James; Fasano, David; Brownell, Stan


    The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with less cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. These technologies also represent the most important considerations in architectural coating design.

  10. Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals. (United States)

    Tovkach, O M; Chernyshuk, S B; Lev, B I


    We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.

  11. Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles. (United States)

    Qazi, S Junaid S; Rennie, Adrian R; Cockcroft, Jeremy K; Vickers, Martin


    Laboratory X-ray diffraction is used to investigate the size and shape of dispersed plate-like and spherical colloidal particles. Analysis of the wide-angle diffraction data provides information about the size and shape of crystals from the width of the Bragg peaks according to the Debye-Scherrer formula. The measurements, data analysis, and evaluation are discussed. It is shown that X-ray diffraction with conventional laboratory equipment on dispersed particles is feasible as a tool to determine both particle size and shape. Data for two samples--gold colloids and nickel (II) hydroxide particles are presented. The advantages and limitations of the method are discussed. X-ray diffraction measurements that are made in combination with dynamic light scattering can be used to estimate the thickness of stabilizing layers of polymers.

  12. Reactivity of surface of metal oxide particles: from adsorption of ions to deposition of colloidal particles

    International Nuclear Information System (INIS)

    Lefevre, Gregory


    In this Accreditation to supervise research (HDR), the author proposes an overview of his research works in the field of chemistry. These works more particularly addressed the understanding of the surface reactivity of metal oxide particles and its implication on sorption and adherence processes. In a first part, he addresses the study of surface acidity-alkalinity: measurement of surface reactivity by acid-base titration, stability of metal oxides in suspension, effect of morphology on oxide-hydroxide reactivity. The second part addresses the study of sorption: reactivity of iron oxides with selenium species, sorption of sulphate ions on magnetite, attenuated total reflection infrared spectroscopy (ATR-IR). Adherence effects are addressed in the third part: development of an experimental device to study adherence in massive substrates, deposition of particles under turbulent flow. The last part presents a research project on the effect of temperature on ion sorption at solids/solutions interfaces, and on the adherence of metal oxide particles. The author gives his detailed curriculum, and indicates his various publications, teaching activities, research and administrative responsibilities

  13. High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings (United States)

    Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.


    Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.

  14. Synthesis of polystyrene-polyphenylsiloxane Janus particles through colloidal assembly with unexpected high selectivity: Mechanistic insights and their application in the design of polystyrene particles with multiple polyphenylsiloxane patches

    NARCIS (Netherlands)

    Mann, D.; Voogt, S.; Keul, H.; Möller, M.; Verheijen, M.; Buskens, P.


    Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and

  15. Synthesis of tailored core-brush polymer particles via a living radical polymerization and architecture of colloidal crystals. (United States)

    Ishizu, Koji; Amir, Isamu; Okamoto, Nobuyuki; Uchida, Satoshi; Ozawa, Masaaki; Chen, Hui


    Narrow disperse core-brush polymer nanoparticles (BP) were synthesized by grafting from photo-induced atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate (HEMA) from N,N-diethyldithiocarbamate (DC) groups of core-shell particle surface. We constructed colloidal crystals of these particles by depositing on glass substrate. By variation of the particle size, the brilliant color could be varied throughout the visible spectrum. We locked also permanently such colloidal crystals by cross-linking of poly(2-hydroxyethyl methacrylate) (PHEMA) brush phases with glutaraldehyde. The peak wavelength (λ(max)) in the reflection spectra agreed well with the bandgap position for light incident on the (1 1 1) face of face-centered cubic (fcc) lattice according to Bragg's law. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mary X.; Brodin, Jeffrey D.; Millan, Jaime A.; Seo, Soyoung E.; Girard, Martin; Olvera de la Cruz, Monica; Lee, Byeongdu [X-Ray; Mirkin, Chad A.


    Colloidal crystal engineering with DNA can be used to realize precise control over nanoparticle (NP) arrangement. Here, we investigate a case of DNA-based assembly where the properties of DNA as a polyelectrolyte brush are employed to alter a hybridization-driven NP crystallization pathway. Using the co-assembly of DNA-conjugated proteins and spherical gold 2 nanoparticles (AuNPs) as a model system, we explore how steric repulsion between non-complementary, neighboring DNA-NPs due to overlapping DNA shells can influence their ligand-directed behavior. Specifically, our experimental data coupled with coarse-grained molecular dynamics (MD) simulations reveal that by changing factors related to NP repulsion, two structurally distinct outcomes can be achieved. When steric repulsion between DNA-AuNPs is significantly greater than that between DNA-proteins, a lower packing density crystal lattice is favored over the structure that is predicted by design rules based on DNA-hybridization considerations alone. This is enabled by the large difference in DNA density on AuNPs versus proteins and can be tuned by modulating the flexibility, and thus conformational entropy, of the DNA on the constituent particles. At intermediate ligand flexibility, the crystallization pathways are energetically similar and the structural outcome can be adjusted using the density of DNA duplexes on DNA-AuNPs and by screening the Coulomb potential between them. Such lattices are shown to undergo dynamic reorganization upon changing salt concentration. These data help elucidate the structural considerations necessary for understanding repulsive forces in DNA-assembly and lay the groundwork for using them to increase architectural diversity in engineering colloidal crystals.

  17. Cholesterics of colloidal helices: predicting the macroscopic pitch from the particle shape and thermodynamic state. (United States)

    Dussi, Simone; Belli, Simone; van Roij, René; Dijkstra, Marjolein


    Building a general theoretical framework to describe the microscopic origin of macroscopic chirality in (colloidal) liquid crystals is a long-standing challenge. Here, we combine classical density functional theory with Monte Carlo calculations of virial-type coefficients to obtain the equilibrium cholesteric pitch as a function of thermodynamic state and microscopic details. Applying the theory to hard helices, we observe both right- and left-handed cholesteric phases that depend on a subtle combination of particle geometry and system density. In particular, we find that entropy alone can even lead to a (double) inversion in the cholesteric sense of twist upon changing the packing fraction. We show how the competition between single-particle properties (shape) and thermodynamics (local alignment) dictates the macroscopic chiral behavior. Moreover, by expanding our free-energy functional, we are able to assess, quantitatively, Straley's theory of weak chirality, which is used in several earlier studies. Furthermore, by extending our theory to different lyotropic and thermotropic liquid-crystal models, we analyze the effect of an additional soft interaction on the chiral behavior of the helices. Finally, we provide some guidelines for the description of more complex chiral phases, like twist-bend nematics. Our results provide new insights into the role of entropy in the microscopic origin of this state of matter.

  18. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles. (United States)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret; Baun, Anders; Eriksson, Eva


    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (<10nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals. (United States)

    Singh, Gurvinder; Bremmell, Kristen E; Griesser, Hans J; Kingshott, Peter


    In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction.

  20. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance. (United States)

    Sun, Jiadi; Zhu, Ye; Meng, Long; Chen, Peng; Shi, Tiantian; Liu, Xiaoya; Zheng, Yufeng


    Magnesium (Mg) has recently received increasing attention due to its unique biological performance, including cytocompatibility, antibacterial and biodegradable properties. However, rapid corrosion in physiological environment and potential toxicity limits its clinical applications. To improve the corrosion resistance meanwhile not compromise other excellent performance, self-assembled colloidal particles were deposited onto magnesium surfaces in ethanol by a simple and effective electrophoretic deposition (EPD) method. The fabricated functional nanostructured coatings were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM). The electrochemical test, pH value, and Mg ion concentration data show that the corrosion resistance of Mg samples is enhanced appreciably after surface treatment. In vitro cellular response and antibacterial capability of the modified Mg substrates are performed. Significantly increased cell adhesion and viability are observed from the coated Mg samples, and the amounts of adherent bacteria on the treated Mg surfaces diminish remarkably compared to the bare Mg. Furthermore, the bare and coated Mg samples were implanted in New Zealand white rabbits for 12 weeks to examine the in vivo long-term corrosion performance and in situ inflammation behavior. The experiment results confirmed that compared with bare Mg substrate the corrosion and foreign-body reactions of the coated Mg samples were suppressed. The above results suggested that our coatings, which effectively enhance the biocompatibility, antimicrobial properties, and corrosion resistance of Mg substrate, provide a simple and practical strategy to expedite clinical acceptance of biodegradableMg and its alloys. Biomedical Mg metals have been considered as promising biodegradable implants because of their intended functions, such as cytocompatibility, antibacterial, and biodegradable properties. However

  1. AFM Colloidal Probe Measurements Implicate Capillary Condensation in Punch-Particle Surface Interactions during Tableting. (United States)

    Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Millqvist-Fureby, Anna; Rutland, Mark W


    Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture-due to the fast condensation kinetics-leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive

  2. Novel high relaxivity colloidal particles based on the specific phase organisation of amphiphilic gadolinium chelates with cholesterol. (United States)

    Gløgård, Christian; Stensrud, Gry; Klaveness, Jo


    To obtain high T(1)-relaxivity colloidal particles with a simultaneously high loading of amphiphilic Gd-chelates, a novel drug dosage form based on the phase organisation of amphiphilic gadolinium chelates with cholesterol was developed. In order to find a formulation, which exhibit both high T(1)-relaxivity and gives small particles a D-optimal mixture design (experimental design) was applied. Gadolinium 1,4,7-tris(carboxymethyl)-10-(2-hydroxyhexadecyl)-1,4,7,10-tetraazacyclododecane (Gd-HHD-DO3A) and cholesterol at approximately equimolar ratio proved to form thermodynamic stable disc-like colloidal particles as seen by cryo-electron micrographs. T(1)-relaxivity of these particles was typically around 20mM(-1)s(-1) and the size below 100 nm (photon correlation spectroscopy (PCS)). The particles do most probably not interact with blood components as no change in T(1)-relaxivity was observed when the particles were mixed with whole blood. The particles were stable at room temperature for at least 6 months.

  3. Interplay of Natural Organic Matter with Flow Rate and Particle Size on Colloid Transport: Experimentation, Visualization, and Modeling. (United States)

    Yang, Xinyao; Zhang, Yimeng; Chen, Fangmin; Yang, Yuesuo


    The investigation on factors that affect the impact of natural organic matter (NOM) on colloid transport in complex hydraulic flow systems remains incomplete. Using our previously established approach, the interplay of flow rate and particle size on the NOM effect was quantified, using flow rates of 1 and 2 mL/min and particle sizes of 50 and 200 nm to represent small nanoparticles (1-100 nm) and large non-nano-microspheres (100-1000 nm) in the low-flow groundwater environment. Latex particles, Suwannee River humic acid (SRHA), and iron oxide-coated sand were used as model particles, NOM, and the aquifer medium, respectively. The quantitative results show NOM blocked more sites for large particles at a high flow rate: 1 μg of SRHA blocked 5.95 × 10(9) microsphere deposition sites at 2 mL/min but only 7.38 × 10(8) nanoparticle deposition sites at 1 mL/min. The particle size effect dominated over the flow rate, and the overall effect of the two is antagonistic. Granule-scale visualization of the particle packing on the NOM-presented sand surface corroborates the quantification results, revealing a more dispersed status of large particles at a high flow rate. We interpret this phenomenon as a polydispersivity effect resulting from the differential size of the particles and NOM: high flow and a high particle size enlarge the ratio of particle-blocked to NOM-blocked areas and thus the NOM blockage. To our knowledge, this is the first model-assisted quantification on the interplay of NOM, flow rate, and particle size on colloid transport. These findings are significant for nanorisk assessment and nanoremediation practices.

  4. Self-assembly of spherical colloidal particles with off-centered magnetic dipoles

    NARCIS (Netherlands)

    Abrikosov, A.I.; Sacanna, S.; Philipse, A.P.; Linse, P.


    Fluids of spherical colloids possessing an off-centered embedded magnetic dipole were investigated by using Monte Carlo simulations. Systems of colloids with different strengths and directions of the embedded dipole moment confined in a 2D space without and with an external magnetic field applied

  5. Anisotropic deformation of colloidal particles under MeV ion irradiation

    NARCIS (Netherlands)

    Dillen, T. van; Snoeks, E.; Fukarek, W.; Kats, C.M. van; Velikov, K.P.; Blaaderen, A. van; Polman, A.


    Spherical silica colloids with a diameter of 1.0 um made by wet chemical synthesis, were irradiated with 2-16 MeV Au ions at fluences ranging from 2*10^(14) to 11*10^(14) cm^(-2). The irradiation induces an anisotropic plastic deformation turning the sperical colloids into ellipsional oblates. After

  6. Aggregation kinetics of colloidal particles measured by gas-phase differential mobility analysis. (United States)

    Tsai, D-H; Pease, L F; Zangmeister, R A; Tarlov, M J; Zachariah, M R


    We demonstrate the utility of electrospray gas-phase ion-mobility analysis as a new method to investigate nanoparticle flocculation, or aggregation. Au nanoparticle (Au-NP) solutions were sampled via electrospray (ES), followed by differential ion-mobility analysis (DMA) to determine the particle mobility distribution. Multimodal size distributions obtained with ES-DMA indicated the presence of single Au-NPs (monomer) as well as larger Au-NP clusters such as dimers, trimers, and tetramers under specific solution conditions. The fraction of each aggregate species as a function of time was quantitatively characterized, from which the degree of aggregation, aggregation rate, and stability ratio at different ionic strengths were determined. The latter enabled the extraction of a surface potential (or surface charge density) of 64 +/- 2 mV for 10 nm Au-NPs, which is in good agreement with values obtained from other methods, thus validating our approach. Our results show that ES-DMA is a valuable tool for quantitatively probing the early stages of colloidal aggregation or as a preparatory tool for the size election of aggregates.

  7. A physiologically relevant approach to characterize the microbial response to colloidal particles in food matrices within a simulated gastrointestinal tract. (United States)

    Sooresh, Aishwarya; Zeng, Zhirui; Chandrasekharan, Jayashree; Pillai, Suresh D; Sayes, Christie M


    Colloids on the nanometer size scale are beginning to find increased applications in drinks, foods, food-contact surfaces, and food packaging. While these particles add intrinsic value to the food industry, their potential toxicities warrant careful studies. The physicochemical changes and possible perturbations to microbial communities within the gastrointestinal tract have not been adequately studied. The purpose of this study was to design and perform a simulated digestion protocol to evaluate the effect of colloidal silver in an orange juice suspension when exposed to planktonic bacterial cultures and biofilms. The model system includes four precursor steps in which the silver is exposed to varying pH conditions and incubation times. The gastrointestinally "digested" samples were then incubated with Escherichia coli strains for up to 4h, the average residence time of foods in the GI tract. The physicochemical changes of the colloids and their corresponding biological effects were characterized at every step. The results showed differences between (1) bacterial cultures versus bacterial biofilms, (2) "digested" versus "undigested" silver on bacteria, and (3) differences between "digested" silver nitrate versus silver colloids on bacteria. We conclude that simulated digestion, as well as manner in which bacterial cells are grown, influences the results of toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. An analytical model of multi-particle electric double-layer interaction between identical spherical colloid nanoparticles (United States)

    Alfimov, Anton V.; Aryslanova, Elizaveta M.; Chivilikhin, Sergey A.


    The present work is devoted to the theoretical study of the colloid nanoparticle interaction. A simple analytical model for the multi-particle interaction between the amphoteric oxide nanoparticles with low surface potential has been developed. The model utilizes the framework of the DLVO (Derjaguin, Landau, Verwey, Overbeak) theory and accounts for the surface charge regulation during the multi-particle interaction. The results of this study demonstrate a good qualitative agreement with the experimental data and reveal the presence of the orientation effects during nanoparticle aggregation, which may cause the formation of aggregates with different morphologies.

  9. Facile organization of colloidal particles into large, perfect one- and two-dimensional arrays by dry manual assembly on patterned substrates. (United States)

    Khanh, Nguyen Nguyen; Yoon, Kyung Byung


    The ability to rapidly and reproducibly assemble colloidal particles into large (>mm) one- (1D) and two-dimensional (2D) single crystals with perfect control of the particle networking pattern would open a new world rich with high quality novel materials, technologies, and sciences. However, current methods rely on self-assembly of colloidal particles in solution (wet self-assembly), which intrinsically makes the assembly of the colloidal particles into defect-free large 1D and 2D single crystals difficult. We now demonstrate a new paradigm of colloidal particle organization into 1D and 2D single crystals, a process we call 'dry manual assembly on nanolithographically patterned substrates', which enables facile and rapid organization of colloidal particles in dry states into 1D and 2D single crystals in the centimeter or larger scales with a well-defined particle networking pattern. We believe that this novel methodology will serve as a key to open a new era of particle organization.

  10. Deposition of colloidal particles in porous media; Depot de particules minerales de taille colloidale en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Coste, J.P.


    The aim of this study was to determine the deposition rates of colloidal particles in porous media in relation with particle stability. It combines experimental results and theoretical analysis and gives an original approach which allows to improve the predictions of particle deposition. The colloidal particles studied are several times smaller than the pore restrictions. Experimental results shows that the porous media surface is heterogeneous, whatever the preparation mean and the history of the porous media. The degree of surface heterogeneity depends both on salinity and porous media cleaning process. Heterogeneity is responsible for initial collection efficiency values higher that the theoretical predictions. When deposition occurs mainly on the less repulsive zones, the velocity dependence of the effective grain collection efficiency is close to the -2/3 value expected for the diffusion limited deposition regime. On the other hand, when these zones have been covered and thus behave as strongly repulsive, we obtain a collection efficiency on the more repulsive zones, with a slope close to -1, which is the value expected for the reaction limited deposition regime. The fraction of surface favorable for deposition can be assessed from attachment efficiency values. The attachment efficiency can be estimated from the measurement of particles stability. (author)

  11. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Daniel, Richard C.; Rector, David R.; Bredt, Paul R.; Buck, Edgar C.; Berg, John C.; Saez, Avelino E.


    Hanford TRU tank sludges are complex mixtures of undissolved minerals and salt solids in an aqueous phase of high ionic strength. They show complex rheological behavior resulting from interactions at the macroscopic level, such as interparticle friction between grains in the coarse fraction, as well as from interactions at the nano-scale level, such as the agglomeration of colloidal particles. An understanding of how phenomena such as interparticle friction and aggregate stability under shear will allow better control of Hanford TRU tank sludges being processed for disposal. The project described in this report had two objectives. The first was to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of sludge physical properties by correlating the macroscopic behavior with interactions occurring at the particle/colloidal scale. These objectives were accomplished by: 1) developing continuum models for coarse granular slurries and 2) studying the behavior of colloidal agglomerates under shear and under irradiation.

  12. Analytical Ultracentrifugation of Inorganic Colloids; Sedimentation Velocity of Interacting and Non-Interacting Particles

    NARCIS (Netherlands)

    Planken, K.L.


    Several case studies of the sedimentation velocity of non-interacting, attractive and repulsive colloids are discussed. After a brief introduction that highlights historical facts, basic analytical ultracentrifugation theory, some instrument issues and experiments are reviewed. The existence of

  13. Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches

    Directory of Open Access Journals (Sweden)

    Daniel Mann


    Full Text Available Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and scalable process, it typically lacks selectivity. As a consequence, it results in a complex mixture of particles of different architectures, which is tedious to purify. Very recently, we reported the colloidal synthesis of Au semishells, making use of polystyrene–polyphenylsiloxane Janus particles as an intermediate product (Chem. Commun. 2017, 53, 3898–3901. Here, we demonstrate that these Janus particles are realized through colloidal assembly of spherical glucose-functionalized polystyrene particles and an emulsion of phenyltrimethoxysilane in aqueous ammonia, followed by interfacial polycondensation to form the polyphenylsiloxane patch. Both the polystyrene spheres and the emulsion of Ph-TMS in aqueous ammonia are stabilized by a surfmer—a reactive surfactant. The colloidal assembly reported in this manuscript proceeds with an unexpected high selectivity, which makes this process exceptionally interesting for the synthesis of Janus particles. Furthermore, we report insights into the details of the mechanism of formation of these Janus particles, and apply those to adapt the synthesis conditions to produce polystyrene particles selectively decorated with multiple polyphenylsiloxane patches, e.g., raspberry particles.

  14. Concentrations and compositions of colloidal particles in groundwater near the ICPP, Idaho National Laboratory, Idaho

    International Nuclear Information System (INIS)

    Estes, M.; McCurry, M.


    The presence of colloidal material is being investigated in groundwater near the ICPP to determine whether the concentrations and chemical compositions are suitable to have an impact on the transport of Sr-90. Colloids are proposed as a viable transport mechanism, and may have an influence on the chemical trends observed in three wells near the ICPP. Ultrafiltration of groundwater samples has been performed on difFerent intervals in USGS wells 45, 46, and Site 14, has provided filtrate samples, for analyses by ICP-MS, and filters for analyses by SEM/EDS. Preliminary results indicate that concentrations of colloids are from 2.1-0.8 ppm for the >0.45 μm size fraction, and 2.3-9.8 ppm for the <0.45 μm size fractions. Compositions consist of calcite, silicic acid, ferrihydrite, clay, and possibly dolomite. Calcium was shown to have the largest contribution from both EDS and ICP-MS. Magnesium and silicon were also found to filter out in large concentrations. Iron and aluminum are minor constituents of the colloidal mass and contain concentrations of <10ppb and <1ppb, respectively. These results indicate that if colloids are going to have a major impact on contaminant migration then the coprecipitation of Sr-90 with calcite and dolomite would have to be a sorption mechanism. Sorption onto Fe and Al colloids probably does not have a major impact because of the low concentrations. Clay colloids were noted to be relatively abundant and may also have an impact on Sr-90 migration, due to the exchange of Sr with other cations in the clay structure. 14 refs., 4 figs., 2 tabs

  15. Preparation and characterization of nanosized P(NIPAM-MBA) hydrogel particles and adsorption of bovine serum albumin on their surface. (United States)

    Zhu, Xiaoli; Gu, Xiangling; Zhang, Lina; Kong, Xiang-Zheng


    Thermosensitive polymer hydrogel particles with size varying from 480 to 620 nm were prepared through precipitation copolymerization of N-isopropylacrylamide with N,N'-methylenebisacrylamide (MBA) in water with ammonium persulfate as the initiator. Only polymer hydrogels without any coagula were obtained when MBA concentration in the monomer mixture was kept between 2.5 and 10.0 wt%; with increased MBA concentration, the monomer conversion was enhanced, the size of the hydrogels was increased, and their shrinking was lessened when heated from 25°C to 40°C. Bovine serum albumin adsorption on the surface of the hydrogels of different MBA content was measured at different pH levels and under different temperatures. The results demonstrated that the adsorption of the protein on the hydrogels could be controlled by adjusting the pH, the temperature of adsorption, and the crosslinking in the hydrogels. The results were interpreted, and the mechanisms of the polymerization were proposed.

  16. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui


    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  17. Colloid and surfactant

    International Nuclear Information System (INIS)

    Kuk, Yun Hwan; Lee, Jeong Jung; Cho, Sun Chae; Ryeo, Su Dong


    This book consists of two parts about colloid and surfactant. The first parts has explanations colloid and surface science, which deal with creation and properties of colloidal particles, surfactant and micelle colloid, property of surfactant, membranes, absorption of surface science, electrokinetic phenomenon, emulsion, foam and rheology. The second part mentions surfactant on anionic surfactant with five types, amphoteric surface active agent, non-ionic surface active agent and use of surfactant.

  18. Colloidal polyaniline (United States)

    Armes, Steven P.; Aldissi, Mahmoud


    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  19. Radioactive colloids

    International Nuclear Information System (INIS)

    Bergqvist, L.


    Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)

  20. Organic-inorganic nanocomposite films made from polyurethane dispersions and colloidal silica particles

    Czech Academy of Sciences Publication Activity Database

    Serkis, Magdalena; Špírková, Milena; Kredatusová, Jana; Hodan, Jiří; Bureš, R.


    Roč. 23, č. 2 (2016), s. 157-173 ISSN 0927-6440 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : polyurethane dispersion * colloidal silica * composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.083, year: 2016

  1. Transmission electron microscopy investigation of colloids and particles from landfill leachates

    Czech Academy of Sciences Publication Activity Database

    Matura, M.; Ettler, V.; Klementová, Mariana


    Roč. 30, č. 5 (2012), s. 530-541 ISSN 0734-242X Institutional research plan: CEZ:AV0Z40320502 Keywords : colloids * landfill leachates * transmission electron microscopy * calcite * contaminant mobility Subject RIV: CA - Inorganic Chemistry Impact factor: 1.047, year: 2012

  2. Enhanced transport of ferrihydrite colloid by chain-shaped humic acid colloid in saturated porous media. (United States)

    Ma, Jie; Guo, Huaming; Lei, Mei; Li, Yongtao; Weng, Liping; Chen, Yali; Ma, Yuling; Deng, Yingxuan; Feng, Xiaojuan; Xiu, Wei


    Both humic acid and colloid particle size effectively regulate colloid transport. However, little is known about effect of particle size and configuration of humic acid colloid (HA colloid ) on enhanced-transport of ferrihydrite colloid (FH colloid ) in porous media. Co-transport of HA colloid and FH colloid at different pH was systematically investigated by monitoring breakthrough curves (BTCs) in saturated sand columns. The colloid transport model and the (X)DLVO theory were used to reveal the mechanism of HA colloid -enhanced FH colloid transport in the columns. Results showed that HA colloid enhanced FH colloid transport in neutral and alkaline conditions. In neutral conditions, small HA colloid (F-HA colloid ) with chain-shaped structure enhanced FH colloid transport more prominently than pristine granular HA colloid . The chain-shaped F-HA colloid caused osmotic repulsion and elastic-steric repulsion between colloids and sand, leading to enhanced transport. However, the granular HA colloid readily occurred as deposition due to attachment and straining, which decreased the enhanced transport of FH colloid . In alkaline conditions, both HA colloid and F-HA colloid were chain-shaped, with longer chains of HA colloid than F-HA colloid . Ferrihydrite colloid transport was enhanced by HA colloid more significantly than F-HA colloid due to stronger repulsion between mixed HA colloid -FH colloid and sand. It suggested that regulation of particle size and morphology of HA colloid would enhance FH colloid transport and further help in understanding FH colloid -facilitated contaminants transport in porous media. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hierarchical self-assembly of 'hard-soft' Janus particles into colloidal molecules and larger supracolloidal structures. (United States)

    Skelhon, Thomas S; Chen, Yunhua; Bon, Stefan A F


    Here we report the self-assembly of 'hard-soft' micron-sized Janus particles into clusters in aqueous media. The assembly process is induced by the desorption of a polymeric stabiliser from the particles, that is polyvinylpyrrolidone (PVP). Upon contact through collision and coalescence of the soft polymeric lobes, the newly formed clusters adopt a minimized surface area to volume ratio, thereby forming distinct microscopic supracolloidal analogues of simple molecular valance shell electron pair repulsion (VSEPR) space-fill structures. To explain this behaviour, the colloidal stability of our particle suspensions were studied with and without an adsorbed steric surfactant. Simulations of expected cluster morphology, compared with those from cryo-SEM analysis support the mechanism of assembly driven by surface area minimization in the case of soft-soft interactions. Altering the soft lobe size with respect to the hard lobe indicates a moderate effect on number of primary particles per cluster. Additionally, higher order structures of clusters containing a number of primary particles exceeding what is possible for a 'solid' core cluster are observed. As such, we also investigated the formation of suprastructures using a high number of 'hard-soft' Janus particles and verified their effective Pickering stabilization of air bubbles.

  4. Fracture toughness of wet and dry particulate materials comprised of colloidal sized particles: role of plastic deformation. (United States)

    Sesso, Mitchell L; Franks, George V


    This work demonstrates a method of measuring the fracture toughness of particulate materials comprised of colloidal sized particles over a wide range of saturation. Diametral compression of cylinders containing flaws of controlled length was used to measure the mode I fracture toughness. The effect of degree of saturation on the fracture toughness of slip cast ceramic grade alumina (d 50 = 0.7 μm) was investigated. Dry powder compacts have significantly lower fracture toughness than when the powder compact is nearly fully saturated. All observations are consistent with the fracture mechanism being predominantly brittle for the dry samples but predominantly ductile in the nearly saturated samples. The additional dissipation that occurs during the ductile fracture of the nearly saturated samples is due to plastic deformation in front of the crack tip. This well-known mechanism for toughening in metals has been quantified for the first time in soft matter. Analysis of the results indicates that the size of the plastic dissipation zone is more than an order of magnitude larger in the nearly saturated materials compared to the dry material. Understanding the fracture mechanisms that control the propagation of cracks through saturated, partially saturated and dry particulate materials comprised of colloidal sized particles provides additional insight into understanding drying cracks in paint, other coatings, ceramics and water treatment sludge.

  5. Configuration of bovine serum albumin adsorbed on polymer particles with grafted dextran corona. (United States)

    Vauthier, Christine; Lindner, Peter; Cabane, Bernard


    The configuration of BSA macromolecules adsorbed on the surfaces of poly(alkylcyanoacrylate) nanoparticles has been determined using small angle neutron scattering (SANS). The nanoparticles were made by anionic emulsion polymerization (AEP) and self-assembly of dextran-poly(isobutylcyanoacrylate) (PICBA) copolymers. They have a hydrophobic PICBA core and a hydrophilic dextran corona. In vivo, they are recognized by the macrophages of the mononuclear phagocyte system. The amount of BSA bound to the particles, at adsorption equilibrium, has been determined through immunodiffusion, immunoelectrophoresis, and SANS. For particles with a radius of 25.3nm, the adsorption was found to saturate at 64 adsorbed BSA molecules per particle. The configuration of the adsorbed BSA molecules was determined from the SANS scattering curves, first at full contrast, and then at contrast match. Both experiments indicate that the BSA molecules are adsorbed on the PICBA core, in a flat configuration. This result may be important for understanding the in vivo opsonization mechanisms of nanoparticles and their resulting biodistribution.

  6. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions. (United States)

    Lestage, David J; Urban, Marek W


    The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films. Copyright 2004 American Chemical Society

  7. Dynamic localization and shear-induced hopping of particles: A way to understand the rheology of dense colloidal dispersions

    International Nuclear Information System (INIS)

    Jiang, Tianying; Zukoski, Charles F.


    For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamic yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within

  8. Towards a Discrete Element Method (DEM) for modeling anisotropic, nano- and colloidal scale particles in Molecular Dynamics (MD) (United States)

    Marson, Ryan; Spellings, Matthew; Anderson, Joshua; Glotzer, Sharon


    Faceted shapes, such as polyhedra, are commonly created in experimental systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystalline nucleation and growth, vacancy motion, and glassy dynamics, are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We report the first implementation of DEM MD intended for thermodynamic nanoscale simulation. Our method is implemented in parallel on the GPU within the HOOMD-Blue framework. By decomposing the force calculation into its components, this implementation can take advantage of massive data parallelism, enabling optimal use of the GPU for even relatively small systems while achieving a speedup of 60 times over a single CPU core. This method is a natural extension of classical molecular dynamics into the realm of faceted particles, and allows simulation of disparate size scales ranging from the nanoscale to granular particulates, all within the same framework.

  9. Effects of rigid or adaptive confinement on colloidal self-assembly. Fixed vs. fluctuating number of confined particles

    Energy Technology Data Exchange (ETDEWEB)

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)


    The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles are studied in the one dimensional lattice model solved exactly in the grand canonical ensemble (GCE) in Pȩkalski et al. [J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states corresponding to self-assembly into clusters. Both fixed and adaptive boundaries are studied. For fixed boundaries, there are particular states in which, for equal average densities, the number of clusters in the GCE is larger than in the canonical ensemble. The dependence of pressure on density has a different form when the system size changes with fixed number of particles and when the number of particles changes with fixed size of the system. In the former case, the pressure has a nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding system is accompanied by formation of a larger number of smaller clusters. In the case of elastic confining surfaces, we observe a bistability, i.e., two significantly different system sizes occur with almost the same probability. The mechanism of the bistability in the closed system is different to that of the case of permeable walls, where the two equilibrium system sizes correspond to a different number of particles.

  10. Ultracentrifugation of single-domain magnetite particles and the De Gennes-Pincus approach to ferromagnetic colloids in the dilute regime.

    NARCIS (Netherlands)

    Planken, K.L.; Klokkenburg, M.; Groenewold, J.; Philipse, A.P.


    We report an analytical ultracentrifugation study on sedimentation in dilute stable dispersions of uniform, magnetic iron oxide (Fe3O4) colloids. On increase of the dipolar coupling constant, tuned by the average particle size, the linear concentration dependence of the sedimentation velocity shows

  11. Contamination of the transformer oil of power transformers and shunting reactors by metal-containing colloidal particles

    International Nuclear Information System (INIS)

    L’vov, S. Yu.; Komarov, V. B.; Bondareva, V. N.; Seliverstov, A. F.; Lyut’ko, E. O.; L’vov, Yu. N.; Ershov, B. G.


    The results of a measurement of the contamination of the oil in 66 transformers by metal-containing colloidal particles, formed as a result of the interaction of the oil with the structural materials (the copper of the windings, the iron of the tank and core etc.), and also the results of measurements of the optical turbidity of the oil in 136 transformers when they were examined at the Power Engineering Research and Development Center Company are presented. Methods of determining the concentration of copper and iron in transformer oil are considered. The limiting values of the optical turbidity factors, the copper and iron content are determined. These can serve as a basis for taking decisions on whether to replace the silica gel of the filters for continuously purifying the oil of power transformers and the shunting reactors in addition to the standardized oil contamination factors, namely, the dielectric loss tangent and the acidity number of the oil.

  12. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Poloski; R.C. Daniel; D.R. Rector; P.R. Bredt; E.C. Buck; Berg, J.C.; Saez, A.E.


    This project had two primary objectives. The first was to understand the physical properties and behavior of select Hanford tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale. The specific tank wastes considered herein are contained in thirteen Hanford tanks including three double-shell tanks (DSTs) (AW-103, AW-105, and SY-102) and ten single-shell tanks (SSTs) (B-201 through B-204, T-201 through T-204, T-110, and T-111). At the outset of the project, these tanks were designated as potentially containing transuranic (TRU) process wastes that would be treated and disposed of in a manner different from the majority of the tank wastes.

  13. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. (United States)

    Gawde, Kaustubh A; Kesharwani, Prashant; Sau, Samaresh; Sarkar, Fazlul H; Padhye, Subhash; Kashaw, Sushil K; Iyer, Arun K


    Albumin-bound paclitaxel colloidal nanoparticle (Abraxane®) is an FDA approved anticancer formulation available in the market. It is a suspension which is currently used therapeutically for treating cancers of the breast, lung, and pancreas among others. CDF is a novel new and potent synthetic curcumin analogue that is widely used for breast and ovarian cancer. The aim of this study was to use biocompatible albumin as well as folate decorated albumin to formulate colloidal nanoparticles encapsulating curcumin difluorinated (CDF). CDF has demonstrated a 16-fold improvement in stability and remarkable anticancer potency compared to its natural derivative, curcumin. CDF showed marked inhibition of cancer cell growth through down-regulation of multiple miRNAs, up-regulation of phosphatase and tensin homolog (PTEN), and attenuation of histone methyl transferase EZH2. However, CDF is highly hydrophobic and photodegradable with sparing aqueous solubility. In this study, we have formulated albumin nanoparticle using a modified desolvation method, which yielded high CDF loading in a nanoformulation. The physicochemical properties of CDF loaded albumin and folate-decorated albumin nanosuspensions were assessed for particle size, morphology, zeta potential, drug encapsulation efficiency/loading, solubility and drug release. Importantly, the folate ligand decorated albumin nanoparticles were formulated in principle to passively and actively target folate-overexpressing-cancers. In this study, the synthesis and optimization of BSA and folate decorated BSA conjugated CDF nanoparticles are assessed in detail that will be useful for its future clinical translation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Physics of Hard Sphere Experiment: Scattering, Rheology and Microscopy Study of Colloidal Particles (United States)

    Cheng, Z.-D.; Zhu, J.; Phan, S.-E.; Russel, W. B.; Chaikin, P. M.; Meyer, W. V.


    The Physics of Hard Sphere Experiment has two incarnations: the first as a scattering and rheology experiment on STS-83 and STS-94 and the second as a microscopy experiment to be performed in the future on LMM on the space station. Here we describe some of the quantitative and qualitative results from previous flights on the dynamics of crystallization in microgravity and especially the observed interaction of growing crystallites in the coexistance regime. To clarify rheological measurements we also present ground based experiments on the low shear rate viscosity and diffusion coefficient of several hard sphere experiments at high volume fraction. We also show how these experiments will be performed with confocal microscopy and laser tweezers in our lab and as preparation for the phAse II experiments on LMM. One of the main aims of the microscopy study will be the control of colloidal samples using an array of applied fields with an eye toward colloidal architectures. Temperature gradients, electric field gradients, laser tweezers and a variety of switchable imposed surface patterns are used toward this control.

  15. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki


    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  16. Nematic Liquid-Crystal Colloids. (United States)

    Muševič, Igor


    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of k B T per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology.

  17. Interactions between colloidal particles in the presence of an ultrahighly charged amphiphilic polyelectrolyte. (United States)

    Yu, Danfeng; Yang, Hui; Wang, Hui; Cui, Yingxian; Yang, Guang; Zhang, Jian; Wang, Jinben


    A novel amphiphilic polyelectrolyte denoted as PAGC8 and a traditional amphiphilic polyelectrolyte denoted as PASC8 were prepared. PAGC8 consisted of gemini-type surfactant segment based on 1,3-bis (N,N-dimethyl-N-octylammonium)-2-propyl acrylate dibromide, while PASC8 incorporated acryloyloxyethyl-N,N-dimethyl-N-dodecylammonium bromide as single chain surfactant units within its repeat unit structure. Turbidity, stability, and zeta potential measurements were performed in the presence of PAGC8 and PASC8, respectively, to evaluate their effectiveness in inducing solid/liquid separations. It was found that the maximum transmittance was observed before the zeta potential values reached the isoelectric point, implying that not only charge neutralization but also charge-patch mechanism contributed to the separation process. Colloid probe atomic force microscopy technique was introduced to directly determine the interactions between surfaces in the presence of ultrahighly charged amphiphilic polyelectrolyte. On the basis of the AFM results, we have successfully interpreted the influence of the charge density of the polyelectrolytes on the phase stability. Electrostatic interaction played the dominant role in the flocculation processes, although both electrostatic interaction and hydrophobic effect provided contributions to the colloidal dispersions. The attractions upon surfaces approach in the case of PAGC8 were significantly larger than that of PASC8 due to the higher charge density. The strong peeling events upon retraction in the presence of PAGC8 implied that the hydrophobic effect was stronger than that of PASC8, which displayed the loose pulling events. A strong attraction was identified at shorter separation distances for both systems. However, these interactions cannot be successfully described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloid stability due to the participation of charge-patch and strong hydrophobic effect. To account for the

  18. Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.

    Directory of Open Access Journals (Sweden)

    Melissa L Bates

    Full Text Available Intrapulmonary arteriovenous anastomoses (IPAVs are large diameter connections that allow blood to bypass the lung capillaries and may provide a route for right-to-left embolus transmission. These anastomoses are recruited by exercise and catecholamines and hypoxia. Yet, whether IPAVs are recruited via direct, oxygen sensitive regulatory mechanisms or indirect effects secondary to redistribution pulmonary blood flow is unknown. Here, we hypothesized that the addition of exercise to hypoxic gas breathing, which increases cardiac output, would augment IPAVs recruitment in healthy humans. To test this hypothesis, we measured the transpulmonary passage of 99mTc-macroaggregated albumin particles (99mTc-MAA in seven healthy volunteers, at rest and with exercise at 85% of volitional max, with normoxic (FIO2 = 0.21 and hypoxic (FIO2 = 0.10 gas breathing. We found increased 99mTc-MAA passage in both exercise conditions and resting hypoxia. However, contrary to our hypothesis, we found the greatest 99mTc-MAA passage with resting hypoxia. As an additional, secondary endpoint, we also noted that the transpulmonary passage of 99mTc-MAA was well-correlated with the alveolar-arterial oxygen difference (A-aDO2 during exercise. While increased cardiac output has been proposed as an important modulator of IPAVs recruitment, we provide evidence that the modulation of blood flow through these pathways is more complex and that increasing cardiac output does not necessarily increase IPAVs recruitment. As we discuss, our data suggest that the resistance downstream of IPAVs is an important determinant of their perfusion.

  19. Nanostructured Colloidal Particles by Confined Self-Assembly of Block Copolymers in Evaporative Droplets

    Directory of Open Access Journals (Sweden)

    Minsoo P. Kim


    Full Text Available Block copolymers (BCPs can create various morphology by self-assembly in bulk or film. Recently, using BCPs in confined geometries such as thin film (one-dimension, cylindrical template (two-dimension, or emulsion droplet (three-dimension, nanostructured BCP particles have been prepared, in which unique nanostructures of the BCP are formed via solvent annealing process and can be controlled depending on molecular weight ratio and interaction parameter of the BCPs, and droplet size. Moreover, by tuning interfacial property of the BCP particles, anisotropic particles with unique nanostructures have been prepared. Furthermore, for practical application such as drug delivery system, sensor, self-healing, metamaterial, and optoelectronic device, functional nanoparticles can be incorporated inside BCP particles. In this article, we summarize recent progress on the production of structured BCP particles and composite particles with metallic nanoparticles.

  20. Starch stabilized Pickering emulsions : Colloidal starch particles and their effects on emulsion properties


    Saari, Hisfazilah


    Particles can be used to stabilize multi-phase systems known as Pickering emulsions. The aim of this thesis was to investigate how starch particles affect emulsion properties. Starch granules were used individually as well as in binary mixtures. To obtain a wide variety of starch properties granules were selected based on botanic variation (quinoa, oat, waxy barley, waxy maize and potato). The properties of the starch particles were furthermore changed by size fractionation by sedimentation, ...

  1. Evaluation of use of human albumin in critically ill dogs: 73 cases (2003-2006). (United States)

    Trow, Amy V; Rozanski, Elizabeth A; Delaforcade, Armelle M; Chan, Daniel L


    To evaluate the use of human albumin in critically ill dogs. Design-Retrospective case series. 73 client-owned hospitalized dogs. Medical records of dogs that received human albumin were reviewed to assess effects of the use of human albumin on serum albumin concentration, colloid osmotic pressure, and total protein concentration; determine the relationships between these variables and outcome; and assess its safety. Data for signalment, diagnoses, physiologic variables, dosage, amount of crystalloid fluid administered prior to human albumin administration, complications, and outcome were reviewed. Additionally, pre- and postadministration values for serum albumin, colloid osmotic pressure, and total protein were recorded. Administration of human albumin resulted in significant changes in serum albumin, colloid osmotic pressure, and total protein. The serum albumin, total protein, degree of improvement in serum albumin, colloid osmotic pressure, and dosage of human albumin were significantly greater in survivors. Seventeen of 73 (23%) dogs had at least 1 complication that could be potentially associated with the administration of human albumin that occurred during or immediately following administration of human albumin. Three of 73 (4%) dogs had severe delayed complications. Administration of human albumin significantly increased serum albumin, and total protein concentrations and colloid osmotic pressure, especially in survivors. Because of the high mortality rate of the study population and other confounding factors, it was uncertain whether complications were associated with the underlying disease or with human albumin administration. Acute and delayed complications may have been under-recognized.

  2. General bottom-up construction of spherical particles by pulsed laser irradiation of colloidal nanoparticles: a case study on CuO. (United States)

    Wang, Hongqiang; Kawaguchi, Kenji; Pyatenko, Alexander; Li, Xiangyou; Swiatkowska-Warkocka, Zaneta; Katou, Yukiko; Koshizaki, Naoto


    The development of a general method to fabricate spherical semiconductor and metal particles advances their promising electrical, optical, magnetic, plasmonic, thermoelectric, and optoelectric applications. Herein, by using CuO as an example, we systematically demonstrate a general bottom-up laser processing technique for the synthesis of submicrometer semiconductor and metal colloidal spheres, in which the unique selective pulsed heating assures the formation of spherical particles. Importantly, we can easily control the size and phase of resultant colloidal spheres by simply tuning the input laser fluence. The heating-melting-fusion mechanism is proposed to be responsible for the size evolution of the spherical particles. We have systematically investigated the influence of experimental parameters, including laser fluence, laser wavelength, laser irradiation time, dispersing liquid, and starting material concentration on the formation of colloidal spheres. We believe that this facile laser irradiation approach represents a major step not only for the fabrication of colloidal spheres but also in the practical application of laser processing for micro- and nanomaterial synthesis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly (United States)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing sulfur-limited C. reinhardtii CC-124. These coatings demonstrated stable, sustained (>90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.

  4. The role of colloidal particles in the stability of decontamination foams

    International Nuclear Information System (INIS)

    Guignot, S.


    Illustrating an effort in the design of more controllable foams, therefore better adapted to decontamination, this research aims at highlighting the reciprocal interaction mechanisms between foam and a population of hydrophilic of hydrophobic particles. This study aims at identifying the particle system model for these both cases, hydrophilic and hydrophobic. Then, in the case of partially hydrophobic particles, the author tries to identify the viscoelastic properties of a water-air interface bearing the particles, and then to characterize the corresponding foams. In the case of hydrophilic particles, he investigated the influence of confinement on flow properties of suspensions, using a stack of spherical balls as a foam model. The obtained results are compared to those obtained in a free drainage configuration which is more representative of the use of a decontamination foam

  5. Interface colloidal robotic manipulator (United States)

    Aronson, Igor; Snezhko, Oleksiy


    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  6. The role of <100> edge dislocations in nucleating radiation-induced colloid particles in sodium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Teutonico, L.J.


    A theoretical program to investigate the role of dislocations in the nucleation of sodium colloids in irradiated rock salt has been outlined. As the first study in the investigation the interaction of radiation-produced defects with the <001> edge dislocation in rock salt, i.e., the edge dislocation in the principal slip system of NaCl, has been considered. The interaction potential between a symmetric defect and the <001> edge dislocation has been determined on the basis of anisotropic elasticity theory. The potential arises from the interaction between the long-range stress field of the dislocation and the displacements around the point defect. The corresponding flow lines, i.e., the lines along which the defects flow to the dislocation, have also been determined. In general, the flow lines are closed loops passing through the center of the dislocation. One of the novel features introduced by anisotropy is the possibility of open flow lines for certain elastic constant values. Along some of these open flow lines defects are attracted to the dislocation, whereas long others defects are repelled from the dislocation of common plane. 33 refs., 17 figs.

  7. Design and optimization of a nanoprobe comprising amphiphilic chitosan colloids and Au-nanorods: Sensitive detection of human serum albumin in simulated urine (United States)

    Jean, Ren-Der; Larsson, Mikael; Cheng, Wei-Da; Hsu, Yu-Yuan; Bow, Jong-Shing; Liu, Dean-Mo


    Metallic nanoparticles have been utilized as analytical tools to detect a wide range of organic analytes. In most reports, gold (Au)-based nanosensors have been modified with ligands to introduce selectivity towards a specific target molecule. However, in a recent study a new concept was presented where bare Au-nanorods on self-assembled carboxymethyl-hexanoyl chitosan (CHC) nanocarriers achieved sensitive and selective detection of human serum albumin (HSA) after manipulation of the solution pH. Here this concept was further advanced through optimization of the ratio between Au-nanorods and CHC nanocarriers to create a nanotechnology-based sensor (termed CHC-AuNR nanoprobe) with an outstanding lower detection limit (LDL) for HSA. The CHC-AuNR nanoprobe was evaluated in simulated urine solution and a LDL as low as 1.5 pM was achieved at an estimated AuNR/CHC ratio of 2. Elemental mapping and protein adsorption kinetics over three orders of magnitude in HSA concentration confirmed accumulation of HSA on the nanorods and revealed the adsorption to be completed within 15 min for all investigated concentrations. The results suggest that the CHC-AuNR nanoprobe has potential to be utilized for cost-effective detection of analytes in complex liquids.

  8. Colloid molecular weight estimation by gel chromatography/acrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Liberatore, F.A.; Dearborn, C.; Nigam, S.; Poon, C.; Camin, L.; Liteplo, M.


    Size or molecular weight (MW) estimation of radiolabeled collides in aqueous solutions has long been a problem. The authors have prepared several minimicroaggregated albumin colloids (mμAA) by heat denaturation of stannous-containing HSA solutions at pH 7.0, 7.5, and 8.5). The resulting colloids were labeled with Tc-99m and compared with Au-198 colloid and Tc-99m-antimony sulfide colloid (Tc-99m-Sb/sub 2/S3) by gel chromatography and gel electrophoresis. Tc-99mm-mμAA aggregated at pH 7.0 and the Au-198 colloid appeared in the external void volume of a BioRad A5.0 agarose column indicating an apparent MW of > 5 x 10/sup 6/ daltons. The pH7.5 Tc-99m-mμAA, migrated within the filtration range of the column as did a small fraction of Tc-99m-Sb/sub 2/S/sub 3/, suggesting that the MW is between 6 x 10/sup 4/ - 5 x 10/sup 6/ daltons. The Tc-99m-mμAA, aggregated at pH 8.5, had an apparent MW on gel filtration similar to that of untreated albumin, MW 6.6 x 10-/sup 4/ daltons. The mobilities of the colloids, on acrylamide disc gel electrophoresis, were consistent with the results on gel chromatography. The largest colloids, Au-198 colloid and pH 7.0 Tc-99m-mμAA, barely entered the separating gel; intermediate sized colloids, a small fraction of Tc-99m-Sb/sub 2/S/sub 3/ and pH 7.5 Tc-99m-mμAA migrated farther into the separating gel; while pH 8.5 Tc-99m-mμAA had mobility approaching that of untreated albumin. Lymphoscintigraphy studies using these colloids in animals showed the predicted, particle size-related differences in migration and clearance. The authors conclude that gel chromatography and gel electrophoresis are useful methods for estimating the apparent size of the colloidal particles

  9. Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin-Voigt and Maxwell models

    NARCIS (Netherlands)

    van der Westen, Rebecca; Sharma, Prashant K; De Raedt, Hans; Vermue, Ijsbrand; van der Mei, Henny C; Busscher, Henk J


    A quartz-crystal-microbalance with dissipation (QCM-D) can measure molecular mass adsorption as well as register adhesion of colloidal particles. However, analysis of the QCM-D output to quantitatively analyze adhesion of (bio) colloids to obtain viscoelastic bond properties is still a subject of

  10. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids (United States)

    Zanini, Michele; Isa, Lucio


    Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces.

  11. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids. (United States)

    Mikhlin, Yuri; Vorobyev, Sergey; Romanchenko, Alexander; Karasev, Sergey; Karacharov, Anton; Zharkov, Sergey


    Although mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.4 vol. %. The aquatic particles in supernatants were micrometer size aggregates with increased content of zinc, sulfur, calcium as compared with the bulk ore concentrations. The hydrodynamic diameter of the colloidal species decreased with time, with their zeta potentials remaining about -12 mV. The colloids produced from galena were composed of 20-50 nm PbS nanoparticles associated with lead sulfate and thiosulfate, while the surface oxidation products at precipitated galena were largely lead oxyhydroxides. The size and zeta potential of the lead-bearing colloids decreased with time down to about 100 nm and from -15 mV to -30 mV, respectively. And, conversely, lead sulfide nanoparticles were mobilized before the aggregates during redispersion of the precipitates in fresh portions of water. The potential environmental impact of the metal-bearing colloids, which is due to the large-scale production and relative stability, is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Spatially and angularly resolved spectroscopy for in-situ estimation of concentration and particle size in colloidal suspensions. (United States)

    Chen, Yi-Chieh; Foo, David; Dehanov, Nicolau; Thennadil, Suresh N


    Successful implementation of process analytical technology (PAT) hinges on the ability to make continuous or frequent measurements in-line or at-line of critical product attributes such as composition and particle size, the latter being an important parameter for particulate processes such as suspensions and emulsions. A novel probe-based spatially and angularly-resolved diffuse reflectance measurement (SAR-DRM) system is proposed. This instrument, along with appropriate calibration models, is designed for online monitoring of concentration of chemical species and particle size of the particulate species in process systems involving colloidal suspensions. This measurement system was investigated using polystyrene suspensions of various particle radius and concentration to evaluate its performance in terms of the information obtained from the novel configuration which allows the measurement of a combination of incident light at different angles and collection fibres at different distances from the source fibres. Different strategies of processing and combining the SAR-DRM measurements were considered in terms of the impact on partial least squares (PLS) model performance. The results were compared with those obtained using a bench-top instrument which was used as the reference (off-line) instrument for comparison purposes. The SAR-DRM system showed similar performance to the bench top reference instrument for estimation of particle radius, and outperforms the reference instrument in estimating particle concentration. The investigation shows that the improvement in PLS regression model performance using the SAR-DRM system is related to the extra information captured by the SAR-DRM configuration. The differences in SAR-DRM spectra collected by the different collection fibres from different angular source fibres are the dominant reason for the significant improvement in the model performance. The promising results from this study suggest the potential of the SAR

  13. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. (United States)

    Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie


    The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening.

  14. Optical tweezers in concentrated colloidal dispersions : Manipulating and imaging individual particles

    NARCIS (Netherlands)

    Vossen, Dirk Leo Joep


    Using a laser beam that is focused down to a diffraction-limited spot, particles with a size ranging from several nanometers up to tens of micrometers can be trapped and manipulated. This technique, known as "optical tweezers" or "optical trapping", has been used in a wide variety of

  15. Aggregation and Breakup of Colloidal Particle Aggregates in Shear Flow, Studied with Video Microscopy

    NARCIS (Netherlands)

    Tolpekin, V.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.


    We used video microscopy to study the behavior of aggregating suspensions in shear flow. Suspensions consisted of 920 nm diameter silica spheres, dispersed in a methanol/bromoform solvent, to which poly(ethylene glycol) (M = 35.000 g) was added to effect weak particle aggregation. With our solvent

  16. Polydopamine-Based 3D Colloidal Photonic Materials: Structural Color Balls and Fibers from Melanin-Like Particles with Polydopamine Shell Layers. (United States)

    Kohri, Michinari; Yanagimoto, Kenshi; Kawamura, Ayaka; Hamada, Kosuke; Imai, Yoshihiko; Watanabe, Takaichi; Ono, Tsutomu; Taniguchi, Tatsuo; Kishikawa, Keiki


    Nature creates beautiful structural colors, and some of these colors are produced by nanostructural arrays of melanin. Polydopamine (PDA), an artificial black polymer produced by self-oxidative polymerization of dopamine, has attracted extensive attention because of its unique properties. PDA is a melanin-like material, and recent studies have reported that photonic materials based on PDA particles showed structural colors by enhancing color saturation through the absorption of scattered light. Herein, we describe the preparation of three-dimensional (3D) colloidal photonic materials, such as structural color balls and fibers, from biomimetic core-shell particles with melanin-like PDA shell layers. Structural color balls were prepared through the combined use of membrane emulsion and heating. We also demonstrated the use of microfluidic emulsification and solvent diffusion for the fabrication of structural color fibers. The obtained 3D colloidal materials, i.e., balls and fibers, exhibited angle-independent structural colors due to the amorphous assembly of PDA-containing particles. These findings provide new insight for the development of dye-free technology for the coloration of various 3D colloidal architectures.

  17. Analysis of colloid transport

    International Nuclear Information System (INIS)

    Travis, B.J.; Nuttall, H.E.


    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab

  18. Combining single-particle inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy to evaluate the release of colloidal arsenic from environmental samples. (United States)

    Gomez-Gonzalez, Miguel Angel; Bolea, Eduardo; O'Day, Peggy A; Garcia-Guinea, Javier; Garrido, Fernando; Laborda, Francisco


    Detection and sizing of natural colloids involved in the release and transport of toxic metals and metalloids is essential to understand and model their environmental effects. Single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was applied for the detection of arsenic-bearing particles released from mine wastes. Arsenic-bearing particles were detected in leachates from mine wastes, with a mass-per-particle detection limit of 0.64 ng of arsenic. Conversion of the mass-per-particle information provided by SP-ICP-MS into size information requires knowledge of the nature of the particles; therefore, synchrotron-based X-ray absorption spectroscopy (XAS) was used to identify scorodite (FeAsO4·2H2O) as the main species in the colloidal particles isolated by ultrafiltration. The size of the scorodite particles detected in the leachates was below 300-350 nm, in good agreement with the values obtained by TEM. The size of the particles detected by SP-ICP-MS was determined as the average edge of scorodite crystals, which show a rhombic dipyramidal form, achieving a size detection limit of 117 nm. The combined use of SP-ICP-MS and XAS allowed detection, identification, and size determination of scorodite particles released from mine wastes, suggesting their potential to transport arsenic. Graphical abstract Analytical approach for the detection and size characterization of As-bearing particles by SP-ICP-MS and XAS in environmental samples.

  19. Orientational transitions in ferromagnetic liquid crystals with bistable coupling between colloidal particles and the matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zakhlevnykh, A. N., E-mail:; Petrov, D. A. [Perm State National Research University (Russian Federation)


    We study the orientational response of a ferromagnetic liquid crystal that is induced by magnetic and electric fields. A modified form of the energy of the orientational interaction between magnetic impurity particles and the liquid crystal matrix that leads to bistable coupling is considered. It is shown that apart from magnetic impurity segregation, first-order orientational transitions can be due to the bistability of the potential of the orientational coupling between the director and the magnetization. The ranges of material parameters that lead to optical bistability are determined. The possibility of first-order orientational transitions is analyzed for the optical phase difference between the ordinary and extraordinary light rays transmitted through a ferronematic cell. It is shown that an electric field applied in the given geometry considerably enhances the magneto-orientational response of the ferronematic.

  20. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. (United States)

    Torkzaban, Saeed; Bradford, Scott A; van Genuchten, Martinus Th; Walker, Sharon L


    Packed column and mathematical modeling studies were conducted to explore the influence of water saturation, pore-water ionic strength, and grain size on the transport of latex microspheres (1.1 microm) in porous media. Experiments were carried out under chemically unfavorable conditions for colloid attachment to both solid-water interfaces (SWI) and air-water interfaces (AWI) using negatively charged and hydrophilic colloids and modifying the solution chemistry with a bicarbonate buffer to pH 10. Interaction energy calculations and complementary batch experiments were conducted and demonstrated that partitioning of colloids to the SWI and AWI was insignificant across the range of the ionic strengths considered. The breakthrough curve and final deposition profile were measured in each experiment indicating colloid retention was highly dependent on the suspension ionic strength, water content, and sand grain size. In contrast to conventional filtration theory, most colloids were found deposited close to the column inlet, and hyper-exponential deposition profiles were observed. A mathematical model, accounting for time- and depth-dependent straining, produced a reasonably good fit for both the breakthrough curves and final deposition profiles. Experimental and modeling results suggest that straining--the retention of colloids in low velocity regions of porous media such as grain junctions--was the primary mechanism of colloid retention under both saturated and unsaturated conditions. The extent of stagnant regions of flow within the pore structure is enhanced with decreasing water content, leading to a greater amount of retention. Ionic strength also contributes to straining, because the number of colloids that are held in the secondary energy minimum increases with ionic strength. These weakly associated colloids are prone to be translated to stagnation regions formed at grain-grain junctions, the solid-water-air triple point, and dead-end pores and then becoming

  1. The self-assembly of particles with isotropic interactions: Using DNA coated colloids to create designer nanomaterials

    International Nuclear Information System (INIS)

    Thompson, R. B.; Dion, S.; Konigslow, K. von


    Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale modelling techniques are discussed

  2. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow (United States)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.


    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  3. Colloidal phytosterols: synthesis, characterization and bioaccessibility

    NARCIS (Netherlands)

    Rossi, L.; Seijen ten Hoorn, J.W.M.; Melnikov, S.M.; Velikov, K.P.


    We demonstrate the synthesis of phytosterol colloidal particles using a simple food grade method based on antisolvent precipitation in the presence of a non-ionic surfactant. The resulting colloidal particles have a rod-like shape with some degree of crystallinity. The colloidal dispersions display

  4. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor


    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...


    Directory of Open Access Journals (Sweden)

    Gang Chen


    Full Text Available Naturally occurring clay colloidal particles are heavily involved in sediment processes in the subsurface soil. Due to the import ance of these processes in the subsurface environment, the transport of clay colloidal particles has been studied in several disciplines, including soil sciences, petr ology, hydrology, etc. Specifically, in environmental engineering, clay colloid re lease and transport in the sediments have been extensively investigated, which are motiv ated by environmental concerns such as colloid-facilitated contaminant transport in groundwater and the subsurface soil. Clay colloid release is resulted from physical alteration of subsurface sediments. Despite the potential importance of clay colloid activiti es, the detailed mechanisms of release and transport of clay colloidal particles with in natural sediments are poorly understood. Pore medium structure, properties and flow dynamics, etc. are factors that affect clay colloid generation, mobilization, and subse quent transport. Possible mechanisms of clay colloid generation in the sediments in clude precipitation, erosion and mobilization by changes in pore water chemistry and clay colloid release depends on a balance of applied hydrodynamic and resisting adhesive torques and forces. The coupled role of pore water chemistry and fluid hydrodynamics thus play key roles in controlling clay colloid release and transport in the sediment s. This paper investigated clay colloidal particle release and transport, especially th e colloidal particle release mechanisms as well as the process modeling in the sediments. In this research, colloidal particle release from intact sediment columns with variable length was examined and colloidal particle release curves were simulated using an im plicit, finite-difference scheme. Colloidal particle release rate coefficient was found to be an exponential function of the sediment depth. The simulated results demonstrated that transport parameters were

  6. Medical applications of colloids

    CERN Document Server

    Matijevic, Egon


    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  7. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.


    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal

  8. Colloidal Plasmas: Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various ...

  9. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.|info:eu-repo/dai/nl/30483176X; Imhof, A.|info:eu-repo/dai/nl/145641600


    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  10. Crack formation and prevention in colloidal drops (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook


    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  11. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays. (United States)

    Liu, Panmiao; Chen, Jialun; Zhang, Zexi; Xie, Zhuoying; Du, Xin; Gu, Zhongze


    Here we propose a new method for constructing highly color fast non-iridescent structural color materials by assembling self-adhesive poly-dopamine coated SiO 2 nanoparticles (PDA@SiO 2 ) for amorphous colloidal arrays through a "spraying" process. Simply by alkaline vapor treatment, the adhesive forces and fastness of the amorphous colloidal arrays were significantly improved. This was demonstrated by lap shear tests of tape tearing and cohesive failure as well as a series of fastness tests like sandpaper abrasion, finger wiping and ultrasonic cleaning. Besides, the strengthening fastness reaction could occur on different substrates, including glass, metals, polymers and paper, regardless of their chemical and physical properties. Moreover, the structural color of the PDA@SiO 2 arrays was bright due to the broadband absorption of PDA, and was tunable according to the size, PDA content and arrangement of the PDA@SiO 2 arrays.

  12. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. (United States)

    Pichot, R; Spyropoulos, F; Norton, I T


    The stability against coalescence of O/W emulsions in the presence of both surfactants and colloidal particles was investigated. In particular the effect of the surfactant type and concentration in these emulsifier mixtures on the O/W emulsions' stability was studied. Two types of surfactants were selected; those that have the ability to stabilise O/W emulsions on their own (O/W surfactants) and those that cannot (W/O surfactants). Tween 60 and Sodium Caseinate were selected as the O/W surfactants and lecithin as the W/O surfactant. Oil-in-water emulsions prepared with both particles and any of the three surfactants were stable against coalescence but, depending on the type of surfactant, the behaviour of the systems was found to depend on surfactant concentration. The droplet sizes of emulsions stabilised by mixed emulsifier systems containing low concentrations of O/W surfactants (Tween 60 or Sodium Caseinate) were smaller than those solely stabilised by either the surfactant or particles alone. At intermediate O/W surfactants concentrations, the droplet sizes of the emulsions increased. Further increases in the O/W surfactants' concentration, resulted in the complete removal of particles from the interface with the system now behaving as a surfactant-only stabilised emulsion. The behaviour of emulsions stabilised by emulsifier mixtures containing W/O surfactants was not dependent on the concentration of surfactant: no removal of particles was observed. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. EDITORIAL: Colloidal suspensions Colloidal suspensions (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen


    fluid-fluid interface [2]. Together with Remco Tuinier, Henk has recently completed a book in this area which is to appear later this year. A major theme in Henk's research is that of phase transitions in lyotropic liquid crystals. Henk, together with Daan Frenkel and Alain Stroobants, realized in the 1980s that a smectic phase in dispersions of rod-like particles can be stable without the presence of attractive interactions, similar to nematic ordering as predicted earlier by Onsager [3]. Together with Gert-Jan Vroege he wrote a seminal review in this area [4]. Henk once said that 'one can only truly develop one colloidal model system in one's career' and in his case this must be that of gibbsite platelets. Initially Henk's group pursued another polymorph of aluminium hydroxide, boehmite, which forms rod-like particles [5], which already displayed nematic liquid crystal phases. The real breakthrough came when the same precursors treated the produced gibbsite platelets slightly differently. These reliably form a discotic nematic phase [6] and, despite the polydispersity in their diameter, a columnar phase [7]. A theme encompassing a wide range of soft matter systems is that of colloidal dynamics and phase transition kinetics. Many colloidal systems have a tendency to get stuck in metastable states, such as gels or glasses. This is a nuisance if one wishes to study phase transitions, but it is of great practical significance. Such issues feature in many of Henk's publications, and with Valerie Anderson he wrote a highly cited review in this area [8]. Henk Lekkerkerker has also invested significant effort into the promotion of synchrotron radiation studies of colloidal suspensions. He was one of the great supporters of the Dutch-Belgian beamline 'DUBBLE' project at the ESRF [9]. He attended one of the very first experiments in Grenoble in 1999, which led to a Nature publication [7]. He was strongly involved in many other experiments which followed and also has been a

  14. Nematic Liquid-Crystal Colloids (United States)

    Muševič, Igor


    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574

  15. Nematic Liquid-Crystal Colloids

    Directory of Open Access Journals (Sweden)

    Igor Muševič


    Full Text Available This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology.

  16. Removal of colloidal particles from quartz collector surfaces as stimulated by the passage of liquid-air interfaces

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ


    Micron-sized particles adhering to collector surfaces can be detached by passing a liquid-air interface over the adhering particles. Theoretically, the efficiency of particle detachment depends on the interface velocity, the liquid surface tension, the viscosity, and the particle-substratum

  17. Liquid crystal boojum-colloids

    International Nuclear Information System (INIS)

    Tasinkevych, M; Silvestre, N M; Telo da Gama, M M


    Colloidal particles dispersed in a liquid crystal (LC) lead to distortions of the director field. The distortions are responsible for long-range effective colloidal interactions whose asymptotic behaviour is well understood. The short-distance behaviour depends on the structure and dynamics of the topological defects nucleated near the colloidal particles and a full nonlinear theory is required to describe it. Spherical colloidal particles with strong planar degenerate anchoring nucleate a pair of antipodal surface topological defects, known as boojums. We use the Landau-de Gennes theory to resolve the mesoscopic structure of the boojum cores and to determine the pairwise colloidal interactions. We compare the results in three (3D) and two (2D) spatial dimensions for spherical and disc-like colloidal particles, respectively. The corresponding free energy functionals are minimized numerically using finite elements with adaptive meshes. Boojums are always point-like in 2D, but acquire a rather complex structure in 3D, which depends on the combination of the anchoring potential, the radius of the colloid, the temperature and the LC elastic anisotropy. We identify three types of defect cores in 3D that we call single, double and split-core boojums, and investigate the associated structural transitions. The split-core structure is favoured by low temperatures, strong anchoring and small twist to splay or bend ratios. For sufficiently strong anchoring potentials characterized by a well-defined uniaxial minimum, the split-core boojums are the only stable configuration. In the presence of two colloidal particles, we observe substantial re-arrangements of the inner defects in both 3D and 2D. These re-arrangements lead to qualitative changes in the force-distance profile when compared to the asymptotic quadrupole-quadrupole interaction. In line with the experimental results, the presence of the defects prevents coalescence of the colloidal particles in 2D, but not in 3D

  18. Preparation of colloidal gold-labeled agarose-gelatin microspherules for electron microscopic studies of phagocytosis in cultured cells. (United States)

    Gao, K X; Huang, L


    Agarose-gelatin microspherules about 0.5 micron or larger are prepared with emulsification of 4% agarose-gelatin sol containing 0.2 M N-octylglucoside in an organic phase composed of cyclohexane, egg lecithin, Span 80, and ethanol, followed by extraction of lipophilic components with cyclohexane and ether. Colloidal gold particles are then introduced into microspherules using gold chloride reacting at room temperature with tannic acid in a specified concentration range. After they have been coated with bovine serum albumin or mouse IgG, colloidal gold-labeled microspherules can be readily phagocytized by mouse L-cells and P388 cells after incubation for several hours. In addition to their use as a novel marker for phagocytosis, we discuss other potential uses for these colloidal gold-labeled microspherules.

  19. Reappraising the role of albumin for resuscitation. (United States)

    Finfer, Simon


    Fluid resuscitation is a common intervention in acute medical practice. The optimum fluid for resuscitation remains hotly debated and it is likely to vary from one clinical situation to another. Human albumin solutions have been available since the 1940s, but their use varies greatly around the world. This review examines the current evidence for and against the use of albumin as a resuscitation fluid. Fluid resuscitation with albumin has been compared to resuscitation with saline in large high-quality trials in adult ICU patients and in African children. Within overall equivalent effects, albumin may offer a slight mortality benefit in adult ICU patients with severe sepsis whilst increasing mortality in patients with traumatic brain injury. There are no recent high-quality trials comparing albumin to synthetic colloid solutions. In African children with febrile illness and compensated shock, the effects of bolus resuscitation with albumin and saline are similar, but both increase mortality compared to treatment that avoids fluid boluses. Fluid resuscitation with albumin is well tolerated and produces similar results to resuscitation with saline. Albumin should be avoided in patients with traumatic brain injury; possible benefits in adults with severe sepsis remain to be confirmed.

  20. Flow Cytometry for rapid characterization of colloidal particles of various types in process waters; Floedescytometri foer snabb karaktaerisering av kolloidala partiklar av olika typ i bakvatten - MPKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Degerth, R.; Holmbom, B. [Aabo Akademi, Turku (Finland)


    Since more than ten years Flow Cytometry (FCM) has been used for characterization of blood cells and bacteria and has become indispensable for medical and biological use. FCM is able to count thousands of particles per second and simultaneously determine their the type and size ending up in a statistically significant report within less than a minute. The principle of FCM is based on a light excitation of a `lined up` particle stream and a multi-channel determination of scatter and fluorescence. This rapid technology has so far not been used in a greater extent within process industry, except for counting bacteria in milk and beer. BASF of Germany has developed and patented a single-channel fluorescence counter for determination of resin droplets in the process waters of paper making. The FCM, however, is a far more effective and reliable method, being able not only to detect resin droplets but also bacteria, live or dead, as well as other occurring particles. We know we are able to determine bacteria, we have seen resin and we aim to show that FCM is able to give a comprehensive view of the colloidal contents of process waters in paper mills by exploring means to selectively stain the different types of particles. (orig.) 3 refs. CACTUS Research Programme

  1. Colloid characterization and quantification in groundwater samples

    Energy Technology Data Exchange (ETDEWEB)

    K. Stephen Kung


    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  2. Flocking ferromagnetic colloids. (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S


    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  3. Active structuring of colloidal armour on liquid drops


    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Fossum, Jon Otto


    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-fieldassisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a...

  4. Does colloid shape affect detachment of colloids by a moving air-water interface? (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P


    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  5. Numerical Analysis of Colloid Transport in Volcanic Ash Soil (United States)

    Saito, H.; Kawamoto, K.; Komatsu, T.; Moldrup, P.; Simunek, J.


    Many studies have been conducted to investigate colloid-facilitated transport of organic or inorganic contaminants in soils. Because many contaminants, even non-soluble contaminants, can sorb onto colloids, failure to account for colloid-facilitated transport may lead to significant errors in predicting movement of contaminants in soils. Volcanic ash soils usually contain a considerable amount of soil particles smaller than 1 micrometer that are considered to have colloidal properties. This study investigated experimentally and numerically the transport of such colloidal particles in a volcanic ash soil called Tachikawa loam under simulated rainfall conditions. Disturbed soil columns were irrigated by controlled rainfall events using artificial rain water (ARW) and colloid solution extracted from Tachikawa loam soil (soil particles smaller than 1 micrometer). There was a continuous leaching of natural colloids with an initial increase in concentrations followed by a long tailing even when irrigated only by ARW. When colloid solution was applied, the breakthrough curve of the applied colloid showed no tailing and least time lag. HYDRUS-1D was used to obtain transport parameters of natural and applied colloids from breakthrough curves using a standard colloid transport model with the first-order deposition and entrainment coefficients (i.e., attachment and detachment terms) to account for kinetic sorption. The estimated distribution coefficient of natural colloids was an order of magnitude larger than that of applied colloids. While the estimated attachment coefficient of natural colloids was negligible, that of applied colloids led to a high retention of applied colloids in soils. The estimated detachment coefficient of natural colloids was three to four orders of magnitude greater than that of applied colloids. One possible explanation is that the estimated attachment coefficient for applied colloids may account for so-called straining that is a physical filtration

  6. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell. (United States)

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan


    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.

  7. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.


    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  8. Waterborne, all-polymeric, colloidal ‘raspberry’ particles with controllable hydrophobicity and water droplet adhesion properties

    International Nuclear Information System (INIS)

    Telford, Andrew M.; Easton, Christopher D.; Hawkett, Brian S.; Neto, Chiara


    We present a superhydrophobic coating made from waterborne, all-polymeric ‘raspberry’ particles, composed of a micrometric spherical core decorated with a corona of nanometric spherical particles. As-cast particles produced hydrophobic coatings that were highly adhesive to almost-spherical droplets of water, resembling the properties of some types of rose petals. The coatings could be made slippery to spherical water droplets, like the lotus leaf, by surface activation with air plasma followed by reaction with an alkyl-trichlorosilane. The silanisation of films of latex particles was investigated on two model surfaces (a flat polystyrene film and a monolayer of polystyrene waterborne microparticles) by X-ray photoelectron spectroscopy and water contact angle measurements, and applied to our recently-developed ‘raspberry’ particles to produce a superhydrophobic coating. - Highlights: • We have prepared superhydrophobic films using all-polymeric ‘raspberry’ particles. • We have prepared both ‘rose petal’ and ‘lotus leaf’ surfaces. • We have investigated the silanisation of complex latex particles.

  9. Waterborne, all-polymeric, colloidal ‘raspberry’ particles with controllable hydrophobicity and water droplet adhesion properties

    Energy Technology Data Exchange (ETDEWEB)

    Telford, Andrew M. [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Easton, Christopher D. [CSIRO Manufacturing Flagship, Clayton South, VIC 3169 (Australia); Hawkett, Brian S. [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Neto, Chiara, E-mail: [School of Chemistry, The University of Sydney, NSW 2006 (Australia)


    We present a superhydrophobic coating made from waterborne, all-polymeric ‘raspberry’ particles, composed of a micrometric spherical core decorated with a corona of nanometric spherical particles. As-cast particles produced hydrophobic coatings that were highly adhesive to almost-spherical droplets of water, resembling the properties of some types of rose petals. The coatings could be made slippery to spherical water droplets, like the lotus leaf, by surface activation with air plasma followed by reaction with an alkyl-trichlorosilane. The silanisation of films of latex particles was investigated on two model surfaces (a flat polystyrene film and a monolayer of polystyrene waterborne microparticles) by X-ray photoelectron spectroscopy and water contact angle measurements, and applied to our recently-developed ‘raspberry’ particles to produce a superhydrophobic coating. - Highlights: • We have prepared superhydrophobic films using all-polymeric ‘raspberry’ particles. • We have prepared both ‘rose petal’ and ‘lotus leaf’ surfaces. • We have investigated the silanisation of complex latex particles.

  10. Neutron scattering from colloids

    International Nuclear Information System (INIS)

    Cebula, D.J.; Thomas, R.K.; Harris, N.M.; Tabony, J.; White, J.W.


    This paper appraises the usefulness of neutron diffraction and small angle scattering for determining the structure of dilute and concentrated sols. For monodisperse polystyrene latex, the particle size and density can be readily determined and an upper limit to density fluctuations within the colloid particle set. For the polystyrene latex peptized by the adsorption of laurate, the physical dimensions and packing density of the adsorbed phase can be determined. The effects of polydispersity for unpeptized and peptized graphite sols, and the effects of extreme particle anisotropy using sols of montmorillonite clay minerals have been studied. (author)

  11. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures (United States)

    Tong, Penger


    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  12. Glass/Jamming Transition in Colloidal Aggregation (United States)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)


    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  13. Influences of magnetic particle-particle interactions on orientational distributions and rheological properties for a colloidal dispersion composed of rod-like particle with a magnetic moment normal to the particle axis (United States)

    Hayasaka, Ryo; Aoshima, Masayuki; Satoh, Akira

    We have investigated mainly the influences of magnetic particle-particle interactions on the orientational distribution and viscosity of a semi-dense dispersion, which is composed of rod-like particles with a magnetic moment magnetized normal to the particle axis. In addition, the influences of the magnetic field strength, shear rate, and random forces on the orientational distribution and rheological properties have been clarified. The mean field approximation has been applied to take into account magnetic interactions between rod-like particles. The basic equation of the orientational distribution function has been derived from the balance of torques and solved by the numerical analysis method. The results obtained here are summarized as follows. For a strong magnetic field, the rotational motion of the rod-like particle is restricted in a plane normal to the shearing plane since the magnetic moment of the particle is restricted in the magnetic field direction. Under circumstances of a very strong magnetic interaction between particles, the magnetic moment is strongly restricted in the magnetic field direction, so that the particle has a tendency to incline in the flow direction with the magnetic moment pointing to the magnetic field direction. For a strong shear flow, a directional characteristic of rod-like particles is enhanced, and this leads to a more significant one-peak-type distribution of the orientational distribution function. Magnetic interactions between particles do not contribute to the increase in the viscosity because the mean-field vector has only a component along the magnetic field direction.

  14. An experimental study of the dynamic properties of nanoparticle colloids with identical magnetization but different particle size

    International Nuclear Information System (INIS)

    Fannin, P.C.; Marin, C.N.; Raj, K.; Couper, C.; Barvinschi, P.


    Measurements of the frequency dependent complex magnetic susceptibility, χ(ω)=χ′(ω)−iχ″(ω), have been used to determine the dynamic properties of three specially prepared 400 G (0.04 T) magnetic fluids. The samples, denoted by sample 1, sample 2 and sample 3, consisted of magnetite particles of mean diameter 6.4 nm, 7.5 nm and 9 nm respectively and were identical in terms of carrier liquid, surfactant and particle material. From polarized ferromagnetic measurements, the anisotropy field, H A , the Landau–Lifshitz damping parameter, α, and the precessional decay time, τ 0 of the particles were determined. The results show that the H A value for sample 3 was almost twice that of sample 1 and 2, thus confirming that the smaller the particle size, the lower the value of H A . The damping parameter, α, was found to be 0.174 (for sample 1), 0.18 (for sample 2) and 0.16 (for sample 3). The values determined for the precessional decay time, τ 0 were 1.197×10 −9 s, 1.157×10 −9 s and 0.789×10 −9 s, for samples 1, 2 and 3 respectively.

  15. Pair distribution functions of colloidal particles on a quartz collector in a parallel plate and stagnation point flow chamber

    NARCIS (Netherlands)

    Yang, JL; Busscher, HJ; Bos, R.R.M.


    Pair distribution functions of polystyrene particles adhering on a quartz collector surface are compared for a parallel plate (PP) and stagnation point (SP) flow chamber at a common Peclet number and identical surface coverage. Radial pair distribution functions of deposition patterns around the

  16. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein

    NARCIS (Netherlands)

    de Folter, J.W.J.; van Ruijven, M.W.M.; Velikov, K.


    Few fully natural and biocompatible materials are available for the effective particle-stabilization of emulsions since strict requirements, such as insolubility in both fluid phases and intermediate wettability, need to be met. In this paper, we demonstrate the first use of water-insoluble

  17. Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.


    Micrometer-sized vapor-gas bubbles are formed due to local heating of a water suspension containing absorptive pigment particles of 100 nm diameter. The heating is performed by CW near-infrared (980 nm) laser radiation with controllable power, focused into a 100 mu m spot within a 2 mm suspension...

  18. Fabrication of size-controllable hexagonal non-close-packed colloidal crystals and binary colloidal crystals by pyrolysis combined with plasma-electron co-irradiation of polystyrene colloidal monolaye

    International Nuclear Information System (INIS)

    Kim, Jae Joon


    We present an unprecedented and systematic route to controllably fabricate hexagonal non-close-packed (HNCP) monolayer colloidal crystals and binary colloidal crystals (BCCs) based on plasma-electron co-irradiation of polystyrene colloidal monolayers followed by thermal decomposition. HNCP colloidal crystals with tunable particle sizes and periods could be fabricated by changing the pristine colloidal particle size and the thermal decomposition time. In addition, BCCs and trimodal colloidal crystals that are composed of different-sized colloidal particles can also be fabricated by adding small particles on the prepared HNCP colloidal crystals. Both the particle size ratio and the volume fraction of the BCCs can be widely tuned. These HNCP colloidal crystals and BCCs have various potential applications as optical and photonic materials as well as in catalysis and sensors

  19. [Current role of albumin in critical care]. (United States)

    Aguirre Puig, P; Orallo Morán, M A; Pereira Matalobos, D; Prieto Requeijo, P


    The use of colloids in fluid therapy has been, and still continues to be a controversial topic, particularly when referring to the critical patient. The choice of the fluid that needs to be administered depends on several factors, many of which are theoretical, and continue being an object of debate. The interest in the clinical use of the albumin has emerged again, immediately after recent publications in the search of the most suitable colloid. It is the most abundant protein in the plasma, being responsible for 80% of the oncotic pressure. It regulates the balance between the intra- and extra-vascular volumes. Recent multicenter studies question the supposed lack of safety that was previously assigned to it. Furthermore, in vitro studies demonstrate other important actions besides oncotic, for example neutralization of free radicals, and exogenous (drugs) and endogenous substances (bile pigments, cholesterol). Being aware of these secondary properties of albumin, and evaluating the pathophysiology of the critical patient (in particular, sepsis), to maintain plasma albumin levels within the normal range, could be of great importance. Based on the most recent publications, the aim of this review is to briefly analyze the pathophysiology of albumin, as well as to discuss its possible indications in the critical patient. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik


    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  1. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    Energy Technology Data Exchange (ETDEWEB)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh, E-mail: [Indian Institute of Technology Delhi, Mechanical Engineering Department (India)


    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  2. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica (United States)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh


    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  3. Stable colloids in molten inorganic salts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.


    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  4. Colloidal superballs

    NARCIS (Netherlands)

    Rossi, L.


    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and

  5. Colloidal discs in nematic liquid crystals

    International Nuclear Information System (INIS)

    Silvestre, N M; Patricio, P; Tasinkevych, M; Andrienko, D; Gama, M M Telo da


    We use adaptive finite elements methods to investigate a variety of structures in inverted nematic emulsions numerically. In particular, we study dipolar and quadrupolar interactions between colloidal discs in two-dimensional nematics. The behaviour of colloidal particles near a substrate and at a nematic-isotropic interface are also considered

  6. Manipulating colloids with charges and electric fields

    NARCIS (Netherlands)

    Leunissen, M.E.


    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their


    Hitchcock, David I.


    1. It has been shown by titration experiments that the globulin edestin behaves like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of edestin chloride or acetate separated by a collodion membrane from an acid solution free from protein was found to be influenced by salt concentration and hydrogen ion concentration in the way predicted by Donnan's theory of membrane equilibrium. 3. The osmotic pressure of such edestin-acid salt solutions was found to be influenced by salt concentration and by hydrogen ion concentration in the same way as is the potential difference. 4. The colloidal behavior of edestin is thus completely analogous to that observed by Loeb with gelatin, casein, and egg albumin, and may be explained by Loeb's theory of colloidal behavior, which is based on the idea that proteins react stoichiometrically as amphoteric electrolytes and on Donnan's theory of membrane equilibrium. PMID:19871959

  8. Radio-active colloids in the functional exploration of the reticulo-endothelium system

    International Nuclear Information System (INIS)

    Chivot, J.J.


    A historical review describes the reticulo-endothelial system (R.E.S.) and aims at defining it and at explaining its operation. The methods used for its examination and the colloids utilized are considered. The author has been led to prepare a special type of colloid: an albuminous complex containing radio-iodine, 'C.A. 131 I', whose method of preparation and physical and biological examination are described. A human albumin, having a known optical density in solution, is heated until a change in the optical density indicates that an aggregation of the proteinic molecules has occurred. The denatured protein is iodated with 131 I. Electrophoretic, ultracentrifuge and autoradiographic controls are then carried out. This atoxic and metabolisable preparation of biological origin is compared with the better defined colloidal gold which serves as reference. C.A. 131 I is injected into mice. It is shown by radioactivity measurements, auto-radiographies on sections of the whole animal, and anthropo-gamma-metric detections that a high concentration occurs in the S.R.E. of the liver. These static results are only of limited importance however compared to those obtained from an in vivo study of the phenomenon. The author records the changes in the radioactivity of the blood derived from the carotid artery using a well-scintillator. He obtains directly a curve of the radioactivity of blood having a decreasing exponential form; the mathematical expression describing this curve is given. The biological half-life T 1/2 of the colloid in the blood is a measure of its phagocytosis by the S.R.E. cells. A supplementary check is provided by the direct recording of the hepatic activity using a suitably collimated exterior detector. A curve of increasing-exponential form is obtained and its parameters are corollary to the preceding curve. These tests carried out on guinea-pigs and rats make it possible to give to the S.R.E. a phagocytic index which is characteristic of its state of

  9. Producing colloids with microfluidics (United States)

    Pannacci, Nicolas; Willaime, Herve; Tabeling, Patrick


    Submicronic emulsions are commonly used in pharmaceutical, food, cosmetic and material industries. Standard microfluidic tool is particularly convenient to produce in a very controlled way either droplets of typical diameter ranging from 10 to 300 microns with a perfect monodispersity (nanodrops in a way that is slightly dependent on the fluids used. The control on such a flow authorizes the adjustment of the diameter of the colloids formed. We will show brownian particles from 860 nm to 1.3 μm in diameter obtained in such way and their clustering into crystals thanks to their high monodispersity. These first experimental results are very promising and make evident the great potential of micro and nano-fluidics to produce nano-emulsions or colloids with very controlled size that metamaterials can require.

  10. The radiation chemistry of colloids

    International Nuclear Information System (INIS)

    Sellers, R.M.


    One of the most important problems associated with water cooled reactors is the accumulation on the pipework of radio-active deposits. These are formed from corrosion products which become activated during their passage through the reactor core. The first step of the activation process involves the deposition of the corrosion products, which are present as either colloidal or particulate matter, onto surfaces in the reactor core, i.e. within the radiation zone. A review of the literature on the effect of radiation on colloids is presented. Particular emphasis is given to the dependence of colloidal parameters such as particle size, turbidity and electrophoretic mobility on radiation dose. Most of the data available is of a qualitative nature only. Evidence is presented that colloids of iron are affected (in some cases precipitated) by radiation, and it is suggested that this process plays a part in the deposition of corrosion products in nuclear reactor cores. The bulk of the information available can be rationalized in terms of the radiation chemistry of aqueous solutions, and the interaction of the radicals produced with the atoms or molecules at the surface of the colloidal particles. This approach is very successful in explaining the variation of the mean particle size of monodisperse sulphur hydrosols with dose, for which quantitative experimental data are available. (author)

  11. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S


    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  12. Nonequilibrium forces between dragged ultrasoft colloids. (United States)

    Singh, Sunil P; Winkler, Roland G; Gompper, Gerhard


    The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The deformation, in the close encounter of colloids, and the energy dissipation are examined as a function of the drag velocity and their separation.

  13. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    NARCIS (Netherlands)

    de Folter, J.W.J.


    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  14. Colloid-Facilitated Transport of Radionuclides Through The Vadose Zone

    International Nuclear Information System (INIS)

    Markus Flury; James B. Harsh; John F. McCarthy' Peter C. Lichtner; John M. Zachara


    The main purpose of this project was to advance the basic scientific understanding of colloid and colloid-facilitated Cs transport of radionuclides in the vadose zone. We focused our research on the hydrological and geochemical conditions beneath the leaking waste tanks at the USDOE Hanford reservation. Specific objectives were (1) to determine the lability and thermodynamic stability of colloidal materials, which form after reacting Hanford sediments with simulated Hanford Tank Waste, (2) to characterize the interactions between colloidal particles and contaminants, i.e., Cs and Eu, (3) to determine the potential of Hanford sediments for in situ mobilization of colloids, (4) to evaluate colloid-facilitated radionuclide transport through sediments under unsaturated flow, (5) to implement colloid-facilitated contaminant transport mechanisms into a transport model, and (6) to improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for clean-up procedures and long-term risk assessment

  15. Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. (United States)

    Ruttala, Hima Bindu; Ko, Young Tag


    Albumin nanoparticles have been explored as a promising delivery system for various therapeutic agents. One limitation of such formulations is their poor colloidal stability in vivo. Present study aimed at enhancing the chemotherapeutic potential of paclitaxel by improving the colloidal stability and pharmacokinetic properties of albumin-paclitaxel nanoparticles (APNs) such as Abraxane®. This was accomplished by encapsulating the preformed APNs into PEGylated liposomal bilayer by thin-film hydration/extrusion technique. The resulting liposome-encapsulated albumin-paclitaxel hybrid nanoparticles (L-APNs) were nanosized (~200 nm) with uniform spherical dimensions. The successful incorporation of albumin-paclitaxel nanoparticle (NP) in liposome was confirmed by size exclusion chromatography analysis. Such hybrid NP showed an excellent colloidal stability even at 100-fold dilutions, overcoming the critical drawback associated with simple albumin-paclitaxel NP system. L-APNs further showed higher cytotoxic activity towards B16F10 and MCF-7 cells than APN; this effect was characterized by arrest at the G2/M phase and a higher prevalence of apoptotic subG1 cells. Finally, pharmacokinetic and biodistribution studies in tumor mice demonstrated that L-APNs showed a significantly enhanced plasma half-life, and preferential accumulation in the tumor. Taken together, the data indicate that L-APNs can be promising therapeutic vehicles for enhanced delivery of PTX to tumor sites.

  16. Particles in water properties and processes

    CERN Document Server

    Gregory, John


    INTRODUCTION Particles in the Aquatic Environment Colloidal Aspects PARTICLE SIZE AND RELATED PROPERTIES Particle Size and Shape Particle Size Distributions Particle Transport Light Scattering and Turbidity Measurement of Particle Size SURFACE CHARGE Origin of Surface Charge The Electrical Double Layer Electrokinetic Phenomena COLLOID INTERACTIONS AND COLLOID STABILITY Colloid Interactions - General Concepts van der Waals Interaction Electrical Double Layer Interaction Combined Interaction - DLVO Theory Non-DLVO Interactions AGGREGATION KINETICS Collision Frequency - Smoluchow

  17. Synthesis of colloidal silica dumbbells. (United States)

    Johnson, Patrick M; van Kats, Carlos M; van Blaaderen, Alfons


    We describe the synthesis and characterization of stable suspensions of monodisperse fluorescently labeled silica dumbbell particles. Pure dispersions of silica dumbbells with center-to-center lengths from 174 nm to 2.3 microm were produced with a variety of aspect ratios. Individual particles in concentrated dispersions of these particles could be imaged with confocal microscopy. These particles can be used as a colloidal model system for addressing fundamental questions about crystal and glass formation of low-aspect-ratio anisotropic particles. They also have potential in photonic applications and electro-optical devices.

  18. Development of a Promising Antitumor Compound Based on Rhodium(II) Succinate Associated with Iron Oxide Nanoparticles Coated with Lauric Acid/Albumin Hybrid: Synthesis, Colloidal Stability and Cytotoxic Effect in Breast Carcinoma Cells. (United States)

    Silva, Matheus Oliveira da; Carneiro, Marcella Lemos Brettas; Siqueira, Joseílma Luciana Neves; Báo, Sônia Nair; Souza, Aparecido Ribeiro de


    In this study, we report the synthesis and characterization of a new rhodium(II) succinate complex (Rh2(suc)4) and its immobilization on lauric acid bilayer-coated maghemite nanoparticles (MGH-2L/Rh2(suc)4) and subsequent adsorption with bovine serum albumin (MGH-2L/Rh2(suc)4/BSA). Rh2(suc)4 has been characterized by elemental analysis, potentiometric titration, TGA, MS, FTIR and UV-Vis analysis. The maghemite phase was confirmed by XRD, and a diameter of 10 nm was obtained by Sherrer equation. The VSM experiment showed superparamagnetic properties. TEM showed nanoparticles with a spherical shape and a mean diameter of 8.5±0.4 and 9.1 ± 0.4 nm for MGH-2L/Rh2(suc)4 and MGH-2L/Rh2(suc)4/BSA, respectively. FTIR and TGA confirmed the immobilization of Rh2(suc)4 and bovine serum albumin adsorption on superparamagnetic iron oxide. Hydrodynamic size (DH) and zeta potential (ζ) measurements were made in aqueous, NaCl and DMEM media. DH for dispersions was lower in aqueous medium, but increased in saline and DMEM media. In aqueous and saline media, ζ was not altered for MGH-2L and MGH-2L/Rh2(suc)4, but was significantly lower for MGH-2L/Rh2(suc)4/BSA. Therefore, MGH-2L/Rh2(suc)4/BSA was the most stable dispersion, meaning that BSA coating prevents aggregation more than lauric acid bilayer coating. MGH-2L/Rh2(suc)4 and MGH-2L/Rh2(suc)4/BSA dispersions induced cytotoxicity in breast carcinoma (MCF-7) and fibroblast cells in culture, and this effect was higher than that exerted by free Rh2(suc)4 and more specific to breast carcinoma cells than to fibroblasts. Therefore, we suggest that these dispersions have an important potential for future clinical applications and, thus, they should be considered a platform to enhance Rh2(suc)4 cytotoxicity, specifically in breast carcinoma.


    Directory of Open Access Journals (Sweden)



    Full Text Available Recent results in theory and simulation of star-polymer--colloid mixtures are reviewed. We present the effective interaction between hard, colloidal particles and star polymers in a good solvent derived by monomer-resolved Molecular Dynamics simulations and theoretical arguments. The relevant parameters are the size ratio q between the stars and the colloids, as well as the number of polymeric arms f (functionality attached to the common center of the star. By covering a wide range of q's ranging from zero (star against a flat wall up to about 0.5, we establish analytical forms for the star-colloid interaction which are in excellent agreement with simulation results. By employing this cross interaction and the effective interactions between stars and colloids themselves, a demixing transition in the fluid phase is observed and systematically investigated for different arm numbers and size ratios. The demixing binodals are compared with experimental observations and found to be consistent. Furthermore, we map the full two-component system on an effective one-component description for the colloids, by inverting the two-component Ornstein-Zernike equations. Some recent results for the depletion interaction and freezing transitions are shown.

  20. Colloidal Mineral Liquid Crystals. Formation & Manipulation

    NARCIS (Netherlands)

    Leferink op Reinink, A.B.G.M.


    The central topic of this thesis is the formation, manipulation and characterization of colloidal mineral liquid crystals. Liquid crystals are liquids containing ordered anisometric particles. A range of liquid crystalline phases exists, from solely orientationally ordered nematic phases to

  1. Active structuring of colloidal armour on liquid drops (United States)

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon


    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.

  2. Sampling and analysis of groundwater colloids. A literature review

    International Nuclear Information System (INIS)

    Takala, M.; Manninen, P.


    The purpose of this literature study was to give basic information of colloids: their formation, colloid material, sampling and characterisation of groundwater colloids. Colloids are commonly refereed to as particles in the size range of 1 nm to 1000 nm. They are defined as a suspension of solid material in a liquid that does not appear to separate even after a long period of time. Colloids can be formed from a variety of inorganic or organic material. Inorganic colloids in natural groundwaters are formed by physical fragmentation of the host rock or by precipitation. The water chemistry strongly controls the stability of colloids. The amount of colloid particles in a solution tends to decrease with the increasing ionic strength of the solution. Increases in pH and organic material tend to increase the stability of colloids. The mobility of colloids in a porous medium is controlled mainly by groundwater movement, sedimentation, diffusion and interception. Factors controlling sampling artefacts are oxygen diffusion: leads to e.g. calcite precipitation, pumping rates and filtering techniques. Efforts to minimise artefact formation should be taken if the scope of the sampling programme is to study the colloid particles. The colloid phase size distribution can be determined by light scattering systems, laser induced break down or by single particle analysis using SEM micrographs. Elemental compositions can be analysed with EDS spectrometry from single colloid particles. Bulk compositions of the colloid phase can be analysed with e.g. ICP-MS analyser. The results of this study can be used as guidelines for groundwater colloid samplings. Recommendations for future work are listed in the conclusions of this report. (orig.)

  3. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station (United States)

    Doherty, Michael P.; Sankaran, Subramanian


    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  4. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors. (United States)

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo


    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  5. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.


    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  6. Study of colloidal particles behaviour in the PWR primary circuit conditions; Etude du comportement des particules colloidales dans les conditions physicochimiques du circuit primaire des reacteurs a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Barale, M


    EDF wants to understand, model and limit primary circuit contamination of Pressurized Water Reactors by colloidal particles resulting from corrosion. The electrostatic behaviour of representative oxide particles (cobalt ferrite, nickel ferrite and magnetite) has been studied in primary circuit conditions with the influence of boric acid and lithium hydroxide. The isoelectric point (IEP) and the point of zero charge (PZC) of particles, measured between 5 C and 320 C, exhibit a minimum towards 200 C. The thermodynamic constants of the protonation equilibrium of surface sites were calculated. When boric acid is added, zeta potential and IEP decrease because of borate ions sorption. On the contrary, there is not effect of lithium ions. The modelling of these results under conditions representative of primary circuit shows that these oxides exhibit a negative surface charge, explaining their sorption and adhesion behaviour. (author)

  7. Characterization of Metal Ion ­ Colloid Interaction: Impact On Colloid-facilitated Transport (United States)

    Specht, C. H.; Schmitt, D.; Kaulisch, E.-M.; Frimmel, F. H.

    It is generally accepted, that metal transport in natural aquatic systems strongly de- pends on the metal binding form. Besides complex formation with well defined inor- ganic and organic ligands, the interaction with colloidal particles and soil material is one of the most important reactions of metal ions in aquatic systems. Mobile colloids compete with the stationary soil matrix for binding of metal ions and might facili- tate their transport. Important representatives for mineral and organic colloids are clay minerals and natural organic matter (NOM), respectively. In this work, the interaction of metal ions with clay minerals and NOM is characterized by coupling of asymmetric flow field-flow fractionation AF4 to inductively coupled plasma ­ mass spectrometry (ICPMS). A method for separating mineral from organic colloids is presented, which allows to quantify the amount of metals being bound to either colloid. For different metal ions (Cu, Zn, Pb, Pt) and a metalloid (As) a different extent of binding to either colloid was found.The information obtained from the AF4-ICPMS measurements was useful for the understanding of the observations from column experiments which were conducted to quantify the colloid-facilitated metal transport. In column experiments, the transport of the mineral colloids itself and the influence of NOM onto the colloid transport were investigated. Furthermore, the dependance of colloid transport from the ionic strength and the pH value was elucidated. In order to get information about the co-transport of metal ions by organic and mineral colloids, metal ions were adsorbed onto the colloidal material and a distribution coef- ficient of the metal ions between the colloidal phase and the solution was determined. The colloidal suspension containing both, "free" and adsorbed metal ions were then injected onto the column. The direct metal breakthrough caused by colloidal trans- port was detected at the column outlet. The results clearly

  8. Microbial effects on colloidal agglomeration

    International Nuclear Information System (INIS)

    Hersman, L.


    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs

  9. Measuring the osmotic pressure of active colloids (United States)

    Wang, Michael; Soni, Vishal; Magkiriadou, Sofia; Ferrari, Melissa; Youssef, Mina; Driscoll, Michelle; Sacanna, Stefano; Chaikin, Paul; Irvine, William

    We study the behavior of a system of colloidal spinners, consisting of weakly magnetic colloids driven by a rotating magnetic field. First the particles are allowed to sediment to an equilibrium density profile in a gravitational field, from which we measure the equilibrium equation of state. By spinning the particles at various frequencies, we introduce activity into the system through the hydrodynamic interactions between particles. We observe that the activity expands the sedimentation profile to a new steady state, from which we measure the pressure as a function of the density and activity. We compare the effects of activity on the pressure and mean-squared displacement of spinners and tracer particles.

  10. Anisotropic Model Colloids

    NARCIS (Netherlands)

    van Kats, C.M.


    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are

  11. Shape-induced frustration of hexagonal order in polyhedral colloids

    NARCIS (Netherlands)

    Dullens, Roel P.A.; Mourad, Maurice C.D.; Aarts, Dirk G.A.L.; Hoogenboom, Jacob; Hoogenboom, J.P.; Kegel, Willem K.


    The effect of a nonspherical particle shape and shape polydispersity on the structure of densely packed hard colloidal particles was studied in real space by confocal microscopy. We show that the first layer at the wall of concentrated size-monodisperse but shape-polydisperse polyhedral colloids

  12. Small-angle neutron scattering from colloidal dispersions

    International Nuclear Information System (INIS)

    Ottewill, R.H.


    A survey is given of recent work on the use of small-angle neutron scattering to examine colloidal dispersions. Particular attention is given to the determination of particle size and polydispersity, the determination of particle morphology and the behaviour of concentrated colloidal dispersions, both at rest and under the influence of an applied shear field. (orig.)

  13. Photoelectrochemical studies on colloidal copper (I) oxide/modified ...

    Indian Academy of Sciences (India)


    of the photoactive system. The nano-colloidal particle offers a condition where its size is less than √Dt. Keywords. Photoelectrochemistry; nano-particles; semiconductors; interface; colloidal. 1. Introduction. The great demand for renewable sources of energy has increased interest in the use of semiconductors in capturing.

  14. Stability and aggregation of nanoscale titanium dioxide particle (nTiO2): Effect of cation valence, humic acid, and clay colloids. (United States)

    Tang, Zhong; Cheng, Tao


    Fate and transport of engineered nanoscale titanium dioxide (nTiO 2 ) have received much attention during the past decade. The aggregation and stability of nTiO 2 in water with complicated components, however, have not been fully examined. The objective of this paper is to determine the individual and synergistic effect of cation valence, humic acid, and clay colloids on nTiO 2 stability and aggregation, and elucidate the related mechanisms. We conducted systematic laboratory experiments to determine nTiO 2 stability and aggregation in NaCl and MgCl 2 solutions, both in the absence and presence of humic acid and illite colloids. Results showed that Mg 2+ , in comparison to Na + , could make the zeta potential of nTiO 2 more positive, and shift the point of zero charge of nTiO 2 (pH pzc,TiO2 ) towards higher pH. We also found that nTiO 2 are destabilized by illite colloids at pH < pH pzc,TiO2 through formation of illite-nTiO 2 hetero-aggregates, but are not interfered by illite colloids at higher pH. HA was found to make nTiO 2 stable via electrostatic and steric effects, both in the absence and presence of illite colloids. Calculated interaction energy based on DLVO theory revealed that instability of the nTiO 2 suspensions is mainly caused by primary minima, and that secondary minima normally do not destabilize the suspension, even though they are found to promote aggregation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav


    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  16. Pore water colloid properties in argillaceous sedimentary rocks. (United States)

    Degueldre, Claude; Cloet, Veerle


    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay


    Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was ...

  18. Effects of hydrodynamic chromatography on colloid-facilitated migration of radionuclides in the fractured rock. (United States)

    Jen, C P; Li, S H


    The performance assessment of high level radioactive waste disposal has emphasized the role of colloids in the migration of radionuclides in the geosphere. Previous literature [Nagasaki S, Tanaka S, Suzuki A. Fast transport of colloidal particles through quartz-packed columns. J. Nucl. Sci. Technol. 1975;30(11):1136] indicates that owing to hydrodynamic chromatography the colloid velocity may not be equal to that of groundwater. Using hydrodynamic chromatography, this work investigates the effects of the size of colloidal particles on the radionuclide migration facilitated by colloids in a single fractured porous rock. Also, a methodology is proposed to develop a predictive model to assess transport within the fracture rock as well as various other phenomenological coefficients, particularly the size of colloidal particles. In addition, a fully developed concentration profile for non-reactive colloids in the fracture is developed to elucidate hydrodynamic chromatography of colloids in geological media. The external forces acting on colloidal particles hypothesized in the model proposed herein include inertial force, van der Waals attractive force, double layer force as well as gravitational force. The dispersion coefficient of colloids and the distribution coefficient for radionuclides with colloids are also considered as they pertain to the size of the colloid. In addition, the size distributions of colloids are utilized to investigate the effects of polydispersed colloids.

  19. Anisotropic Colloids: Synthesis and Phase Behavior of Eccentric, Dimer and String-like Colloids

    NARCIS (Netherlands)

    Demirors, A.F.


    The research described in this thesis focuses on synthesis and phase behavior of anisotropic colloids prepared through different synthetic strategies. Namely, eccentric core-shell particles, dimers, string-like particles and core-shell particles are the systems investigated throughout this work. The


    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L


    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  1. Microrheology of colloidal systems

    International Nuclear Information System (INIS)

    Puertas, A M; Voigtmann, T


    Microrheology was proposed almost twenty years ago as a technique to obtain rheological properties in soft matter from the microscopic motion of colloidal tracers used as probes, either freely diffusing in the host medium, or subjected to external forces. The former case is known as passive microrheology, and is based on generalizations of the Stokes–Einstein relation between the friction experienced by the probe and the host-fluid viscosity. The latter is termed active microrheology, and extends the measurement of the friction coefficient to the nonlinear-response regime of strongly driven probes. In this review article, we discuss theoretical models available in the literature for both passive and active microrheology, focusing on the case of single-probe motion in model colloidal host media. A brief overview of the theory of passive microrheology is given, starting from the work of Mason and Weitz. Further developments include refined models of the host suspension beyond that of a Newtonian-fluid continuum, and the investigation of probe-size effects. Active microrheology is described starting from microscopic equations of motion for the whole system including both the host-fluid particles and the tracer; the many-body Smoluchowski equation for the case of colloidal suspensions. At low fluid densities, this can be simplified to a two-particle equation that allows the calculation of the friction coefficient with the input of the density distribution around the tracer, as shown by Brady and coworkers. The results need to be upscaled to agree with simulations at moderate density, in both the case of pulling the tracer with a constant force or dragging it at a constant velocity. The full many-particle equation has been tackled by Fuchs and coworkers, using a mode-coupling approximation and the scheme of integration through transients, valid at high densities. A localization transition is predicted for a probe embedded in a glass-forming host suspension. The

  2. Radiolabeled colloid scintigraphy and assessment of clinical outcome in patients with alcoholic liver disease

    International Nuclear Information System (INIS)

    Bhatia, N.


    This paper evaluates the efficiency of radiolabeled colloid imaging in the determination of clinical outcome for patients with alcoholic liver disease (ALD). Tc-99m sulfur colloid or albumin colloid studies were evaluated for 74 patients referred to the nuclear medicine service for assessment of ALD or cirrhosis. Images were graded for splenic activity relative to liver on a scale of 1-5 (5 being normal), bone marrow activity on a scale of 0-3 (3 being normal), and spleen volume on a scale of 0-2 (2 being normal). A composite colloid shift index (CSI) was calculated by adding the three-individual category scores for each radiolabeled colloid study (1 being greatest colloid shift and 10 being least colloid shift). One-year survival was determined from hospital records for 55 of the 74 patients

  3. Dynamics of Colloids Confined in Microcylinders

    NARCIS (Netherlands)

    Ghosh, Somnath; Wijnperle, Daniël; Mugele, Friedrich Gunther; Duits, Michael H.G.


    We studied both global and local effects of cylindrical confinement on the diffusive behavior of hard sphere (HS) colloids. Using confocal scanning laser microscopy (CSLM) and particle tracking, we measured the mean squared displacement (MSD) of 1 micron sized silica particles in water–glycerol.

  4. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.


    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  5. Encapsulation of human serum albumin in submicrometer magnetic poly(lactide-co-glycolide) particles as a model system for targeted drug delivery

    Czech Academy of Sciences Publication Activity Database

    Shubhra, Q. T. H.; Macková, Hana; Horák, Daniel; Fodor-Kardos, A.; Tóth, J.; Gyenis, J.; Feczkó, T.


    Roč. 13, č. 1 (2013), s. 310-318 ISSN 1618-7229 R&D Projects: GA AV ČR(CZ) KAN401220801; GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : magnetic * PLGA * particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.330, year: 2013

  6. Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin-Voigt and Maxwell models. (United States)

    van der Westen, Rebecca; Sharma, Prashant K; De Raedt, Hans; Vermue, Ijsbrand; van der Mei, Henny C; Busscher, Henk J


    A quartz-crystal-microbalance with dissipation (QCM-D) can measure molecular mass adsorption as well as register adhesion of colloidal particles. However, analysis of the QCM-D output to quantitatively analyze adhesion of (bio)colloids to obtain viscoelastic bond properties is still a subject of debate. Here, we analyze the QCM-D output to analyze the bond between two hydrophilic streptococcal strains 91 nm long and without fibrillar surface appendages and micron-sized hydrophobic polystyrene particles on QCM-D crystal surfaces with different hydrophobicities, using the Kelvin-Voigt model and the Maxwell model. A Poisson distribution was implemented in order to determine the possible virtues of including polydispersity when fitting model parameters to the data. The quality of the fits did not indicate whether the Kelvin-Voigt or the Maxwell model is preferable and only polydispersity in spring-constants improved the fit for polystyrene particles. The Kelvin-Voigt and Maxwell models both yielded higher spring-constants for the bald streptococcus than for the fibrillated one. In both models, the drag coefficients increased for the bald streptococcus with the ratio of electron-donating over electron-accepting parameters of the crystal surface, while for the fibrillated strain the drag coefficient was similar on all crystal surfaces. Combined with the propensity of fibrillated streptococci to bind to the sensor crystal as a coupled-resonator above the crystal surface, this suggests that the drag experienced by resonator-coupled, hydrophilic particles is more influenced by the viscosity of the bulk water than by interfacial water adjacent to the crystal surface. Hydrophilic particles that lack a surface tether are mass-coupled just above the crystal surface and accordingly probe the drag due to the thin layer of interfacial water that is differently structured on hydrophobic and hydrophilic surfaces. Hydrophobic particles without a surface tether are also mass

  7. 99M-technetium labeled macroaggregated human serum albumin pharmaceutical (United States)

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer


    A reagent comprising macroaggregated human serum albumin having dispersed therein particles of stannous tin and a method for instantly making a labeled pharmaceutical therefrom, are disclosed. The labeled pharmaceutical is utilized in organ imaging.

  8. Design and elaboration of colloidal molecules: an overview. (United States)

    Duguet, Etienne; Désert, Anthony; Perro, Adeline; Ravaine, Serge


    The concept of colloidal molecules was first evoked by van Blaaderen in 2003 for describing small non-spherical colloids made of the aggregation of a small number of particles. He predicted original properties to the complex assemblies of such colloids, in particular in optics. This critical review deals with the different strategies reported for creating robust clusters of spherical particles which could mimic the space-filling models of simple conventional molecules. These routes concern either the controlled clustering of preformed colloids directed by coalescence, physical routes, chemical routes, or 2-D/3-D geometrical confinement, or strategies starting from a single colloid which is decorated by satellite colloids by taking advantage of controlled phase separation or nucleation and growth phenomena. These routes are compared from the viewpoint of the accessible shapes, their tunability and scalability (146 references).

  9. Pore water colloid properties in argillaceous sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Degueldre, Claude, E-mail: [Engineering Department, University of Lancaster, LA1 4YW Lancaster (United Kingdom); ChiAM & Institute of Environment, University of Geneva, 1211 Genève 4, Swizerland (Switzerland); Earlier, NES, Paul Scherrer Institute, 5232 Villigen (Switzerland); Cloet, Veerle [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)


    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  10. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander


    Book Description: Colloidal science and technology is one of the fastest growing research and technology areas. This book explores the cutting edge research in colloidal science and technology that will be usefull in almost every aspect of modern society. This book has a depth of information...... related to historical prospective, synthesis, characterization, theoretical modeling and application of unique class of colloidal materials starting from colloidal gold to coated silica colloid and platinum, titania colloids. This book is unique in its design, content, providing depth of science about...... different colloidal materials and their applications in chemistry, physics, biological, medical sciences and environment. Graduate students, academic and industrial researchers and medical professionals will discover recently developed colloidal materials and their applications in many areas of human...

  11. Radio-active colloids in the functional exploration of the reticulo-endothelium system; Les colloides radioactifs dans l'exploration fonctionnelle du systeme reticulo-endothelial

    Energy Technology Data Exchange (ETDEWEB)

    Chivot, J.J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    characteristic of its state of activity. The phagocytic index K depends also on the diameter of the colloidal particles injected and can be used as biological test for a colloid: this is the percentage of injected colloid which is retained by the S.R.E. per unit time. This index depends on anaesthetics, on the state of inflammation of the organism and on chemical mediators such as histamine. (author) [French] Un rappel historique met en lumiere le systeme reticulo-endothelial S.R.E. et tente d'en preciser l'identite et le fonctionnememt. Les methodes de son exploration et les colloides utilises sont envisages. L'auteur est amene a fabriquer un colloide d'un type particulier: un complexe albuminique radioiode le 'C.A. {sup 131}I' dont il decrit les etapes de la preparation et des essais tant physiques que biologiques. Une albumine humaine, presentant en solution une densite optique definie est portee a la chaleur jusqu'a modification de la densite optique, temoin d'une agregation des molecules proteiques. La proteine denaturee est iodee par {sup 131}I. Des controles d'electrophorese, d'ultracentrifugation et d'autoradiographie sont effectues. Cette preparation d'origine biologique atoxique et metabolisable sera comparee a l'or colloidal mieux defini qui servira de reference. Le C.A.{sup 131}I est injecte a la souris. Des mesures de radioactivite, des autoradiographies de coupe de l'animal entier, des detections de l'anthropogammametre mettent en evidence une concentration importante au niveau du S.R.E. du foie. Mais ces resultats statiques ont une portee limitee en regard de l'exploitation d'une etude cinetique in vivo du phenomene. L'auteur enregistre les variations de la radioactivite du sang derive de la carotide dans un scintillateur a puits. Il obtient directement une courbe de radioactivite sanguine d'allure exponentielle decroissante dont il definit la formule mathematique. La

  12. Modified colloidal primitive model as a homogeneous surface charge distribution: ζ-potential. (United States)

    Manzanilla-Granados, Héctor M; Lozada-Cassou, Marcelo


    An integral equations theory is derived and applied to a modified colloidal primitive model (MCPM), for finite concentration colloidal dispersions. In MCPM, the charge on the colloidal particle is assumed to be smeared on its surface. We find important quantitative and qualitative differences of the ζ-potential, induced charge, and the colloid-colloid electric effective force, calculated in the MCPM, with those obtained from the colloidal primitive model (CPM), where the colloidal charge is assumed to be in the center of the particle, in spite of the fact that, due to Gauss's law, both models have the same particle distribution function. In particular, for the same parameters, while the ζ-potential is positive in MCPM, is negative in the CPM, implying opposite electrophoretic mobilities, μ. An inverse μ has been theoretically predicted in the past, for infinite dilution colloidal dispersions. The MCPM could be a better model for some colloidal particles. In both models, the CPM and the MCPM, it is found a very long-range colloid-colloid correlation, in accordance with previous Monte Carlo simulations. The electrostatic, as well as entropic, like-charged colloid-colloid forces are oscillatory, implying a long-range attraction.

  13. Structural color from colloidal glasses (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  14. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)


    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  15. Colloids with continuously tunable surface charge. (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K


    In this paper, we present a robust way to tune the surface potential of polystyrene colloids without changing the pH, ionic strength, etc. The colloids are composed of a cross-linked polystyrene core and a cross-linked vinylbenzyl chloride layer. Besides the chlorine groups, the particle surface contains sulfate/sulfonate groups (arising from the polymerization initiators) that provide a negative surface potential. Performing a Menschutkin reaction on the surface chlorine groups with tertiary amines allows us to introduce quaternary, positively charged amines. The overall charge on the particles is then determined by the ratio between the sulfate/sulfonate moieties and the quaternary amines. Using this process, we were able to invert the charge in a continuous manner without losing colloidal stability upon passing the isoelectric point. The straightforward reaction mechanism together with the fact that the reaction could be quenched rapidly resulted in a colloidal system in which the ζ potential can be tuned between -80 and 45 mV. As proof of principle, the positively charged particles were used in heterocoagulation experiments with nanometer- and micrometer-sized negatively charged silica particles to create geometrically well-defined colloidal (nano) clusters.

  16. Vector assembly of colloids on monolayer substrates (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve


    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  17. Colloid suspension stability and transport through unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, M.A.; Kaplan, D.I.


    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  18. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. (United States)

    Kanti Sen, Tushar; Khilar, Kartic C


    In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.

  19. Pharmacological study of radioactive-gold colloid transport by blood and by serous exudate; Contribution a l'etude pharmacologique du transport des colloides d'or radioactif par le sang et les exsudats sereux

    Energy Technology Data Exchange (ETDEWEB)

    Rousselet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    After giving the essential physico-chemical properties of the colloids, the author considers the biological role of these substances and, in connection with their transport by the blood, their capture by elements of the reticula-endothelial system. A summary is given of present knowledge concerning the role of serous proteins in the transport of substances, particularly that of radio-active colloidal gold. The blood fractions which can take part in colloidal gold transport are the red blood corpuscles, the leukocytes and histiocytic elements as well as the plasma. The radioactive distribution in these various fractions is obtained by autoradiography of blood sediments. After showing the importance of the role of the plasma in radioactive particle transport, the author, describes the attempts made to detect a possible of colloidal gold 198 on the various serous proteins using various methods of separation. The ''in vitro'' and ''in vivo'' bonds between colloidal gold-198 particles and either the serous proteins or healthy specimens or the effusion liquids of pathological origin in man, or due to an experimental inflammation with carregenin in the rat, have been studied. The bonding appears to be effective because of the protective macromolecular layer formed by the gelatine. The different positions of the colloidal grains on the electrophoregram can only be explained by their different physico-chemical characteristics. Gold in the ionic form, on the other hand, is combined only with the albumen is the amount metal present does not exceed a certain value. (author) [French] Apres avoir enonce les proprietes physicochimiques essentielles des colloides nous etudions le devenir biologique de ces substances et, en relation avec leur transport par le sang, leur captation par les elements du Systeme Reticulo-Endothelial. Nous resumons les connaissances acquises jusqu'alors sur le role des proteines seriques dans le transport des

  20. Tunable Time-Dependent Colloidal Interactions (United States)

    Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.

    Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.

  1. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA


    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI:

  2. Rheology and dynamics of colloidal superballs. (United States)

    Royer, John R; Burton, George L; Blair, Daniel L; Hudson, Steven D


    Recent advances in colloidal synthesis make it possible to generate a wide array of precisely controlled, non-spherical particles. This provides a unique opportunity to probe the role that particle shape plays in the dynamics of colloidal suspensions, particularly at higher volume fractions, where particle interactions are important. We examine the role of particle shape by characterizing both the bulk rheology and micro-scale diffusion in a suspension of pseudo-cubic silica superballs. Working with these well-characterized shaped colloids, we can disentangle shape effects in the hydrodynamics of isolated particles from shape-mediated particle interactions. We find that the hydrodynamic properties of isolated superballs are marginally different from comparably sized hard spheres. However, shape-mediated interactions modify the suspension microstructure, leading to significant differences in the self-diffusion of the superballs. While this excluded volume interaction can be captured with a rescaling of the superball volume fraction, we observe qualitative differences in the shear thickening behavior of moderately concentrated superball suspensions that defy simple rescaling onto hard sphere results. This study helps to define the unknowns associated with the effects of shape on the rheology and dynamics of colloidal solutions.

  3. Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95 (United States)

    Hoffmann, Monica T.


    The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.

  4. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. Viswanathan; P. Reimus


    Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.

  5. Glass transition of soft colloids (United States)

    Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca


    We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

  6. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.


    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  7. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility. (United States)

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph


    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  8. Colloids from the aqueous corrosion of uranium nuclear fuel (United States)

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.


    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  9. Colloid straining within saturated heterogeneous porous media. (United States)

    Porubcan, Alexis A; Xu, Shangping


    The transport of 0.46 μm, 2.94 μm, 5.1 μm and 6.06 μm latex particles in heterogeneous porous media prepared from the mixing of 0.78 mm, 0.46 mm and 0.23 mm quartz sands was investigated through column transport experiments. It was observed that the 0.46 μm particles traveled conservatively within the heterogeneous porous media, suggesting that under the experimental conditions employed in this research the strong repulsive interactions between the negatively charged latex particles and the clean quartz sands led to minimal colloid immobilization due to physicochemical filtration. The immobilization of the 2.94 μm, 5.1 μm and 6.06 μm latex particles was thus attributed to colloid straining. Experimental results showed that the straining of colloidal particles within heterogeneous sand mixtures increased when the fraction of finer sands increased. The mathematical model that was developed and tested based on results obtained using uniform sands (Xu et al., 2006) was found to be able to describe colloid straining within heterogeneous porous media. Examination of the relationship between the best-fit values of the clean-bed straining rate coefficients (k(0)) and the ratio of colloid diameter (d(p)) and sand grain size (d(g)) indicated that when number-average sizes were used to represent the size of the heterogeneous porous media, there existed a consistent relationship for both uniform sands and heterogeneous sand mixtures. Similarly, the use of the number-averaged sizes for the heterogeneous porous media produced a uniform relationship between the colloid straining capacity term (λ) and the ratio of d(p)/d(g) for all the sand treatments. © 2010 Elsevier Ltd. All rights reserved.

  10. Size Segregation in Sheared Jammed Colloids (United States)

    Mbi, Armstrong; Blair, Daniel


    It is well known that granular materials can spontaneously size segregate when continuously driven. However, in jammed colloidal suspensions, this phenomenon is not well understood. Colloidal dispersions provide a unique system to study the structure and dynamics of jammed matter. In this talk, we present results of size segregation of a continuously sheared binary colloidal suspension well above point J. Our colloidal system is comprised of indexed-matched bi-disperse silica particles with diameters a = { 2 . 3 μm and 3 . 2 μm } and at ϕ 61 % , well above the colloidal glass transition. We apply a highly controlled shear at a constant shear rate through the use of a rheometer. By coupling our rheometer with a high-speed laser scanning confocal microscope, we directly image the structure and flow profiles of the suspension as it un-jams. We observe migration of the small and large species; large particles move to the top while the small particles move toward the bottom conserving the total volume fraction in all regions. Moreover, we find that an associating feature of segregation is a sustained shear band. Our results are consistent with a recently proposed void filling and squeeze expulsion mechanism. Funding is provided by NSF DMR #0847490.

  11. Study on the colloids generated from testing of high-level nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.J.


    The generation of colloids in the interaction of high-level nuclear waste glasses with groundwater at 90 degrees C has been investigated. The stability of the colloidal suspensions has been characterized with respect to salt concentration, pH time, particle size, and zeta potential. The compositions and the morphology of the colloids have also been determined with transmission electron microscopy (TEM). From ourtest results combined with earlier ones, we conclude that the waste glass may contribute to the colloid formation by increasing ion concentration in groundwater, which causes nucleation of colloids; by releasing radionuclides that adsorb onto existing groundwater colloids; and by spalling colloidal-size fragments from the surface layer of the reacted glass. The colloids are silicon-rich particles, such as smectites and uranium silicates. When the salt concentration in the solution is high the colloidal suspensions agglomerate. However, the agglomerated particles can be resuspended if the salt concentration is lowered by dilution with groundwater. The colloids agglomerate quickly after the leachate is cooled to room temperature. Most of the colloids settle out of the solution within a few days at ambient temperature. The isoelectric point is at a pH of approximately 1.0. Between pH 1 and 10.5, the colloids are negatively charged, which suggests that they will deposit readily on, positively charged surfaces. The average particle size islargest at the isoelectric point and is smallest around pH 6

  12. Directed self-assembly of colloidal dumbbells with an electric field

    NARCIS (Netherlands)

    Demirors, A.F.; Johnson, P.M.; van Kats, C.M.; van Blaaderen, A.; Imhof, A.


    We demonstrate the assembly of colloidal particles with the shape of diatomic molecules (“dumbbells”) into crystals that we study with confocal microscopy. The literature on the preparation of nonspherical colloidal particles has grown steadily. Assembly of these particles into regular

  13. Molecular Recognition in the Colloidal World. (United States)

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus


    Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners

  14. Transport coefficients and orientational distributions of dilute colloidal dispersions composed of hematite particles (for an external magnetic field parallel to the angular velocity vector of simple shear flow) (United States)

    Satoh, Akira; Hayasaka, Ryo; Majima, Tamotsu

    We have treated a dilute dispersion composed of ferromagnetic rodlike particles with a magnetic moment normal to the particle axis, such as hematites, to investigate the influences of the magnetic field strength, shear rate, and random forces on the orientational distribution of rodlike particles and also on transport coefficients, such as viscosity and diffusion coefficient. In the present analysis, these rodlike particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The results obtained here are summarized as follows. In the case of a strong magnetic field and a smaller shear rate, the rodlike particle can freely rotate in the xy-plane with the magnetic moment continuing to point the magnetic field direction. On the other hand, for a strong shear flow, the particle has a tendency to incline in the flow direction with the magnetic moment pointing to the magnetic field direction. In the case of the magnetic field applied normal to the direction of the sedimentation, the diffusion coefficient gives rise to smaller values than expected, since the rodlike particle sediments with the particle axis inclining toward directions normal to the movement direction and, of course, toward the direction along that direction.

  15. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ


    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and

  16. Interactions in charged colloidal suspensions: A molecular dynamics simulation study (United States)

    Padidela, Uday Kumar; Behera, Raghu Nath


    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  17. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina


    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  18. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.


    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  19. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike


    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  20. Development of a model colloidal system for rheology simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Tallant, David Robert; Piech, Martin (United Technologies Research Center, East Hartford, CT); Bell, Nelson Simmons; Frischknecht, Amalie Lucile


    The objective of the experimental effort is to provide a model particle system that will enable modeling of the macroscopic rheology from the interfacial and environmental structure of the particles and solvent or melt as functions of applied shear and volume fraction of the solid particles. This chapter describes the choice of the model particle system, methods for synthesis and characterization, and results from characterization of colloidal dispersion, particle film formation, and the shear and oscillatory rheology in the system. Surface characterization of the grafted PDMS interface, dispersion characterization of the colloids, and rheological characterization of the dispersions as a function of volume fraction were conducted.

  1. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    African Journals Online (AJOL)

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  2. The Challenge of Colloidal Nanoparticle Synthesis

    NARCIS (Netherlands)

    Groeneveld, Esther; de Mello-Donega, Celso


    Inorganic nanoparticles have developed into one of the main pillars of Nanoscience. Colloidal nanoparticles are particularly attractive as they consist of inorganic particles that are coated with a layer of organic ligand molecules. The hybrid nature of these nanostructures greatly expands the

  3. Chemical modification of colloidal masks for nanolithography

    NARCIS (Netherlands)

    Vossen, D.L.J.; Penninkhof, J.J.; van Blaaderen, A.


    A method is presented to tune the holes in colloidal masks used for nanolithography. Using a simple wet-chemical method, a thin layer of silica is grown on masks of silica particles. The size of the holes is controlled by the amount of tetraethoxysilane (TEOS) added. More accurate tuning of the hole

  4. Designing Zirconium Coated Polystyrene Colloids and Application

    Directory of Open Access Journals (Sweden)

    Diana Chira


    Full Text Available A simple technique has been developed to prepare core colloids that are modified using zirconium oxychloride, based on heating a solution of core colloid composites, consisting of poly (ethylenimine (PEI and zirconium oxychloride. The interaction of zirconium oxychloride with the polystyrene (PS core colloids has been investigated using Fourier transform-infrared spectroscopy (FT-IR, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM data. FT-IR studies confirm the occurrence of amine groups present in PEI which are oxidized to carboxyl groups after the reaction. The EDX data and the SEM images confirm the presence of zirconium particles immobilized on the polystyrene surfaces. Demeton, a highly toxic nerve agent, was used due to its ability to easily bind through its organophosphate group illustrating a practical application of the PS-PEI-Zr particles. Attenuated Total Reflection (ATR Spectroscopy was used to assess the interactions between the toxic nerve agent demeton-S and the PS-PEI-Zr particles. The results show that the presented technique for coating polystyrene core colloids with zirconium was successfully accomplished, and the newly formed particles easily bond with demeton agents through the P=O functional group.

  5. Dipolar structures in colloidal magnetite dispersions

    NARCIS (Netherlands)

    Klokkenburg, Mark


    Dipolar structures in liquid colloidal dispersions comprising well-defined magnetite (Fe3O4) nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). Compared to conventional ferrofluids, these

  6. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)


    1988) and application also in optical, electronic and mag- netic devices (Schon and Simon 1995). The catalytic reacti- vity depend on size and shape of nanoparticles and therefore synthesis of controlled shapes and size of colloidal platinum particles could be critical for these applications. Nanostructured materials promise ...

  7. Transport phenomena of polar biomolecules and colloids : perspectives through simulation


    Terämä, Emma


    The thesis focuses on the transport of polar biomolecules and colloid particles studied through atomistic and coarse-grained simulation techniques. The thesis is comprised of two themes complementing one another. First we concentrate on the structural and dynamical aspects of alcohol molecules in lipid bilayers with varying degree of unsaturation. Second, the thesis employs dielectrophoresis to elucidate the non-equilibrium transport phenomena of nano-sized colloidal particles. The former is ...

  8. Patchy polymer colloids with tunable anisotropy dimensions. (United States)

    Kraft, Daniela J; Hilhorst, Jan; Heinen, Maria A P; Hoogenraad, Mathijs J; Luigjes, Bob; Kegel, Willem K


    We present the synthesis of polymer colloids with continuously tunable anisotropy dimensions: patchiness, roughness, and branching. Our method makes use of controlled fusion of multiple protrusions on highly cross-linked polymer particles produced by seeded emulsion polymerization. Carefully changing the synthesis conditions, we can tune the number of protrusions, or branching, of the obtained particles from spheres with one to three patches to raspberry-like particles with multiple protrusions. In addition to that, roughness is generated on the seed particles by adsorption of secondary nucleated particles during synthesis. The size of the roughness relative to the smooth patches can be continuously tuned by the initiator, surfactant, and styrene concentrations. Seed colloids chemically different from the protrusions induce patches of different chemical nature. The underlying generality of the synthesis procedure allows for application to a variety of seed particle sizes and materials. We demonstrate the use of differently sized polyNIPAM (poly-N-isopropylacrylamide), as well as polystyrene and magnetite filled polyNIPAM seed particles, the latter giving rise to magnetically anisotropic colloids. The high yield together with the uniform, anisotropic shape make them interesting candidates for use as smart building blocks in self-assembling systems.

  9. Sorption behavior of cesium onto bentonite colloid

    International Nuclear Information System (INIS)

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu


    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  10. Fabrication of anisotropic multifunctional colloidal carriers (United States)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  11. Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy (United States)

    Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.

    Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.

  12. Kinetics of colloidal fractal aggregation by differential dynamic microscopy (United States)

    Ferri, F.; D'Angelo, A.; Lee, M.; Lotti, A.; Pigazzini, M. C.; Singh, K.; Cerbino, R.


    We study the kinetics of an aggregation process induced by adding salt to a stable colloidal suspension of 73 nm (diameter) particles. Despite the subdiffraction size of the colloidal particles, the process is monitored via optical microscopy, which is used here to obtain time-resolved scattering information about the colloidal aggregates. The radius of the aggregates is determined as a function of time and their fractal dimension is extracted. Our results are compatible with a diffusion limited aggregation process, as independently confirmed by spectral turbidimetry measurements on the same sample.

  13. Generation of colloidal granules and capsules from double emulsion drops (United States)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  14. Microgels: Novel Colloidal Materials

    Directory of Open Access Journals (Sweden)

    Fernández-Nieves, A.


    Full Text Available Microgels are novel colloidal gels widely used because of the swelling or de-swelling exhibited under specific external conditions. In this work, the swelling and de-swelling of microgel particles is experimentally described. The medium pH, salt concentration and osmotic stress, are the three variables with which the change of phase has been realised. All transitions are found to occur well above the critical point of the system. Additionally, the basic applications in which the given transition is employed are described.

    Los microgeles son geles coloidales que se emplean por el inflado y/o desinflado que manifiestan ante ciertas condiciones externas. En este trabajo, se describe experimentalmente el inflado y el desinflado de partículas de gel. El pH del medio, su concentración iónica y el esfuerzo osmótico externo son las variables externas que se emplean para provocar el cambio de fase en las partículas. Todas las transiciones ocurren por encima del punto crítico del sistema. Adicionalmente, se presentan algunas de las aplicaciones en donde se emplea la transición provocada por la variable externa concreta.

  15. Assembly of Colloidal Materials Using Bioadhesive Interactions (United States)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.


    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using

  16. Oppositely charged colloids out of equilibrium (United States)

    Vissers, T.


    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar solvent mixtures. Since the ions can still partially dissociate, a surface charge builds up which causes electrostatic interactions between the colloids. By carefully tuning the conditions inside the suspension, we make two kinds of particles oppositely charged. To study our samples, we use Confocal Laser Scanning Microscopy (CLSM). The positively and negatively charged particles can be distinguished by a different fluorescent dye. Colloids constantly experience a random motion resulting from random kicks of surrounding solvent molecules. When the attractions between the oppositely charged particles are weak, the particles can attach and detach many times and explore a lot of possible configurations and the system can reach thermodynamic equilibrium. For example, colloidal ‘ionic’ crystals consisting of thousands to millions of particles can form under the right conditions. When the attractions are strong, the system can become kinetically trapped inside a gel-like state. We observe that when the interactions change again, crystals can even emerge again from this gel-like phase. By using local order parameters, we quantitatively study the crystallization of colloidal particles and identify growth defects inside the crystals. We also study the effect of gravity on the growth of ionic crystals by using a rotating stage. We find that sedimentation can completely inhibit crystal growth and plays an important role in crystallization from the gel-like state. The surface

  17. Effective electrostatic interactions in colloid-nanoparticle mixtures (United States)

    Denton, Alan R.


    Interparticle interactions and bulk properties of colloidal suspensions can be substantially modified by the addition of nanoparticles. Extreme asymmetries in size and charge between colloidal particles and nanoparticles present severe computational challenges to molecular-scale modeling of such complex systems. We present a statistical mechanical theory of effective electrostatic interactions that can greatly ease large-scale modeling of charged colloid-nanoparticle mixtures. By applying a sequential coarse-graining procedure, we show that a multicomponent mixture of charged colloids, nanoparticles, counterions, and coions can be mapped first onto a binary mixture of colloids and nanoparticles and then onto a one-component model of colloids alone. In a linear-response approximation, the one-component model is governed by a single effective pair potential and a one-body volume energy, whose parameters depend nontrivially on nanoparticle size, charge, and concentration. To test the theory, we perform molecular dynamics simulations of the two-component and one-component models and compute structural properties. For moderate electrostatic couplings, colloid-colloid radial distribution functions and static structure factors agree closely between the two models, validating the sequential coarse-graining approach. Nanoparticles of sufficient charge and concentration enhance screening of electrostatic interactions, weakening correlations between charged colloids and destabilizing suspensions, consistent with experiments.

  18. An agglomeration-based model for colloid filtration. (United States)

    Chatterjee, Jaideep; Gupta, Santosh Kumar


    This paper develops a model for colloid filtration which accounts for the possibility of aggregation of the colloidal particles in the aqueous phase. Depth-wise variation of liquid-phase colloid concentration, C(x), is measured experimentally in the presence of monovalent cations at different concentrations and divalent cations, which confirm that log of C(x) deviates significantly from linearity for all of the above cases. It is also observed that in all systems showing significant removal, preaggregation of the colloids is observed, which confirms the correlation between aggregation of colloids with their retention in saturated porous media, which has been reported earlier. A new model for depth filtration which is based on material balances of the different sized aggregates, which could be present in the colloidal dispersion, is developed. This resulting model, based on differential deposition rates for different sized aggregates, shows good match with the experimentally observed variation of C(x) with depth, for all of the above conditions. A method for estimating model parameters from data is developed. This model remains independent of the actual deposition mechanism, which could be secondary minima attachment of these colloidal aggregates or the entrapment of these colloidal aggregates in regions of confined geometry. This model can be extended to predict the transport of colloids in groundwater.

  19. Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hui-Hua Li

    Full Text Available Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC and pulmonary artery (RPAEC endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1 in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake. Thus, we isolated and cultured mouse lung endothelial cells (MLEC from wild type and cav-1(-/- mice and noted that ~ 65% of albumin uptake, as determined by confocal imaging or live cell total internal reflectance fluorescence microscopy (TIRF, persisted in total absence of cav-1. Uptake of colloidal gold labeled albumin was evaluated by electron microscopy and demonstrated that albumin uptake in MLEC from cav-1(-/- mice was through caveolae-independent pathway(s including clathrin-coated pits that resulted in endosomal accumulation of albumin. Finally, we noted that albumin uptake in RPMEC was in part sensitive to pharmacological agents (amiloride [sodium transport inhibitor], Gö6976 [protein kinase C inhibitor], and cytochalasin D [inhibitor of actin polymerization] consistent with a macropinocytosis-like process. The amiloride sensitivity accounting for macropinocytosis also exists in albumin uptake by both wild type and cav-1(-/- MLEC. We conclude from these studies that in addition to the well described caveolar-dependent pulmonary endothelial cell endocytosis of albumin, a portion of overall uptake in pulmonary endothelial cells is cav-1 insensitive and appears to involve clathrin-mediated endocytosis and macropinocytosis-like process.

  20. Design and synthesis of model transparent aqueous colloids with optimal scattering properties. (United States)

    Perro, Adeline; Meng, Guangnan; Fung, Jerome; Manoharan, Vinothan N


    We demonstrate the synthesis and self-assembly of colloidal particles with independently controlled diameter and scattering cross section. We show that it is possible to prepare bulk colloidal suspensions that are nearly transparent in water, while the particles themselves can be individually resolved using optical microscopy. These particles may be ideal model colloids for real-space studies of self-assembly in aqueous media. Moreover, they illustrate the degree to which the optical properties of colloids can be engineered through straightforward chemistry.

  1. Bulk synthesis of polymer-inorganic colloidal clusters. (United States)

    Perro, Adeline; Manoharan, Vinothan N


    We describe a procedure to synthesize colloidal clusters with polyhedral morphologies in high yield (liter quantities at up to 70% purity) using a combination of emulsion polymerization and inorganic surface chemistry. We show that the synthesis initially used for silica-polystyrene hybrid clusters can be generalized to create clusters from other inorganic and polymer particles. We also show that high yields of particular morphologies can be obtained by precise control of the inorganic seed particle size, a finding that can be explained using a hard-sphere packing model. These clusters can be further chemically modified for a variety of applications. Introducing a cross-linker leads to colloidal clusters that can be index matched in an appropriate solvent, allowing them to be used for particle tracking or optical studies of colloidal self-assembly. Also, depositing a thin silica layer on these colloids allows the surface properties to be controlled using silane chemistry.

  2. Colloidal Dancers: Designing networks of DNA-functionalized colloids for non-random walks (United States)

    Gehrels, Emily W.; Rogers, W. Benjamin; Zeravcic, Zorana; Manoharan, Vinothan N.


    We present experimental developments of a system of DNA-functionalized colloidal particles with the goal of creating directed motion (`dancing') along patterned substrates in response to temperature cycling. We take advantage of toehold exchange in the design of the DNA sequences that mediate the colloidal interactions to produce broadened, flat, or even re-entrant binding and unbinding transitions between the particles and substrate. Using this new freedom of design, we devise systems where, by thermal ratcheting, we can externally control the direction of motion and sequence of steps of the colloidal dancer. In comparison to DNA-based walkers, which move autonomously and whose motion is controlled by the substrate, our colloidal dancers respond to external driving, and their motion can be controlled in situ. Our use of DNA-functionalized colloidal particles instead of pure DNA systems also enables walking on the mesoscale in contrast to the molecular length scales previously demonstrated, allowing for the future prospect of directed transport over larger distances.

  3. Switching Colloidal Superstructures by Critical Casimir Forces. (United States)

    Nguyen, Truc A; Newton, Arthur; Veen, Sandra J; Kraft, Daniela J; Bolhuis, Peter G; Schall, Peter


    Recent breakthroughs in colloidal synthesis promise the bottom-up assembly of superstructures on nano- and micrometer length scales, offering molecular analogues on the colloidal scale. However, a structural control similar to that in supramolecular chemistry remains very challenging. Here, colloidal superstructures are built and controlled using critical Casimir forces on patchy colloidal particles. These solvent-mediated forces offer direct analogues of molecular bonds, allowing patch-to-patch binding with exquisite temperature control of bond strength and stiffness. Particles with two patches are shown to form linear chains undergoing morphological changes with temperature, resembling a polymer collapse under poor-solvent conditions. This reversible temperature switching carries over to particles with higher valency, exhibiting a variety of patch-to-patch bonded structures. Using Monte Carlo simulations, it is shown that the collapse results from the growing interaction range favoring close-packed configurations. These results offer new opportunities for the active control of complex structures at the nano and micrometer scale, paving the way to novel temperature-switchable materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ethanol vapor-induced fabrication of colloidal crystals with controllable layers and photonic properties. (United States)

    Zhou, Chuanqiang; Gong, Xiangxiang; Han, Jie; Guo, Rong


    A novel fabrication method for colloidal crystals has been proposed for the first time in this research. In this method, a suspension droplet containing colloidal particles was first spread onto a glass substrate placed in an ethanol vapor environment, and then the droplet was extracted from its center. In that case, the contact angle of the droplet reduced and the contact line receded toward the center, during which the colloidal particles self-assembled and immobilized forming a 2D colloidal crystal film on the substrate upon drying the liquid film. Alternately spreading and drying of suspension films could construct fine multi-layers of colloidal crystals, while the ethanol fraction in the suspension would be used to control roughly but rapidly the layer numbers of colloidal crystals. It was also found that the photonic properties of resultant colloidal crystal films were elevated by increasing their thickness.

  5. Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport. (United States)

    Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning


    Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.

  6. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan


    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  7. Colloidal Switches by Electric and Magnetic Fields. (United States)

    Demirörs, Ahmet Faik; Beltramo, Peter J; Vutukuri, Hanumantha Rao


    External electric and magnetic fields have already been proven to be a versatile tool to control the particle assembly; however, the degree of control of the dynamics and versatility of the produced structures is expected to increase if both can be implemented simultaneously. For example, while micromagnets can rapidly assemble superparamagnetic particles, repeated, rapid disassembly or reassembly is not trivial because of the remanence and coercivity of metals used in such applications. Here, an interdigitated design of micromagnet and microfabricated electrodes enables rapid switching of colloids between their magnetic and electric potential minima. Active control over colloids between two such adjacent potential minima enables a fast on/off mechanism, which is potentially important for optical switches or display technologies. Moreover, we demonstrate that the response time of the colloids between these states is on the order of tens of milliseconds, which is tunable by electric field strength. By carefully designing the electrode pattern, our strategy enables the switchable assembly of single particles down to few microns and also hierarchical assemblies containing many particles. Our work on precise dynamic control over the particle position would open new avenues to find potential applications in optical switches and display technologies.

  8. Armoring confined bubbles in concentrated colloidal suspensions (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard


    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  9. Discontinuous nature of the repulsive-to-attractive colloidal glass transition

    NARCIS (Netherlands)

    De Laar, Van T.; Higler, R.; Schroën, K.; Sprakel, J.


    In purely repulsive colloidal systems a glass transition can be reached by increasing the particle volume fraction beyond a certain threshold. The resulting glassy state is governed by configurational cages which confine particles and restrict their motion. A colloidal glass may also be formed by

  10. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer


    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  11. Colloidal characterization of silicon nitride and silicon carbide (United States)

    Feke, Donald L.


    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  12. The effects of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.


    This report assesses the possible effects of colloidal corrosion products on the transport of actinides from the near field of radioactive waste repositories. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium was studied under conditions simulating a transition from near-field to far-field environmental conditions. Desorption of actinides occurred slowly from the colloids under far-field conditions. Measurements of particle stability showed all the colloids to be unstable in the near field. Stability increased under far-field conditions or as a result of the evolution of the near field. Migration of colloids from the near field is unlikely except in the presence of organic materials. (Author)

  13. Colloids or artefacts?

    International Nuclear Information System (INIS)

    Laaksoharju, M.; Vuorinen, U.; Allard, B.; Pettersson, C.; Hinkkanen, H.


    TVO (Teollisuuden Voima Oy, Finland) initiated a co-operative task with SKB (Swedish Nuclear Fuel and Waste Management Co.) to critically evaluate colloid sampling methods at the test site in Olkiluoto, SW Finland. Three different colloid sampling methods were compared when sampling at 613-618 m depth. The colloid sampling consisted of ordinary filtering (cross-flow filtering, 20-450 nm) in open air, inert filtering (cross-flow filtering, prefilter=2500 nm, separate filtration to three fractions 50,200 and 400 nm) by using N 2 and ultrafiltration (tangential filtering, prefilter=1000 nm concentration to a single fraction 2-1000 nm) using N 2 . Two samples per method were taken with an interval of three weeks. For organic determination one sample was collected. Care was taken to avoid possible known artefacts in connection with the colloid sampling. (27 refs., 31 figs., 13 tabs.)

  14. Active colloidal propulsion over a crystalline surface (United States)

    Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix


    We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

  15. Waveguides in colloidal nanosuspensions (United States)

    López-Peña, Luis A.; Salazar-Romero, Yadira; Terborg, Roland A.; Hernández-Cordero, Juan; Torres, Juan P.; Volke-Sepúlveda, K.


    We present and discuss a set of experiments based on the application of the nonlinear properties of colloidal nanosuspensions to induce waveguides with a high-power CW laser beam (wavelength 532nm) and its use for controlling an additional probe beam. The probe is a CW laser of a different wavelength (632nm), whose power is well below the critical value to induce nonlinear effects in the colloidal medium. We also discuss a technique for the characterization of the induced waveguides.

  16. Scattering of light by colloidal aluminosilicate particles produces the unusual sky-blue color of Río Celeste (Tenorio volcano complex, Costa Rica). (United States)

    Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E; Chavarría, Max


    Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams--Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)--is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one.

  17. Scattering of light by colloidal aluminosilicate particles produces the unusual sky-blue color of Río Celeste (Tenorio volcano complex, Costa Rica.

    Directory of Open Access Journals (Sweden)

    Erick Castellón

    Full Text Available Río Celeste (Sky-Blue River in Tenorio National Park (Costa Rica, a river that derives from the confluence and mixing of two colorless streams--Río Buenavista (Buenavista River and Quebrada Agria (Sour Creek--is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC and inductively coupled plasma atomic emission spectroscopy (ICP-OES made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS, zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM with energy-dispersive spectra (EDS. Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one.

  18. Controlled assembly of jammed colloidal shells on fluid droplets (United States)

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.


    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  19. Structure and stability of charged colloid-nanoparticle mixtures (United States)

    Weight, Braden M.; Denton, Alan R.


    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  20. Modeling of simultaneous exchange of colloids and sorbing contaminants between streams and streambeds. (United States)

    Ren, Jianhong; Packman, Aaron I


    Contaminant transport in streams can be significantly modified by both stream-subsurface exchange and the presence of colloidal particles, but the interaction of these effects is notwell understood. Exchange with the hyporheic zone exposes contaminants to surface-chemical reactions with streambed sediments, while colloidal particles have a large reactive surface area that allows them to carry pollutants that would otherwise be transported primarily as dissolved species. A new theoretical model is developed to predict the role of colloids in mediating advective contaminant exchange between streams and streambeds. Bedform-induced pumping theory is applied to model physical transport, and colloid filtration and reversible contaminant sorption are used to calculate the local distributions of colloids and contaminants within the streambed. Residence time functions of both colloids and contaminants in the bed are then used to link contaminant concentrations in the pore water and streamwater. Model simulations indicate that, under conditions of low colloid filtration and strong contaminant sorption to colloids, contaminants are mobilized by colloids and there is less retention of contaminants in the streambed. This is the case of "colloid-facilitated contaminant transport" commonly considered in groundwater transport. On the other hand, when colloid filtration is high and contaminants still sorb strongly to colloids, contaminant mobility decreases and there is greater contaminant retention in the streambed. We term this case "colloid-impeded contaminant transport". Thus, we find that a variety of contaminanttransport behavior can occur depending on the concentration and mobility of suspended particles in the system and the relative affinity of contaminants for colloids and other solid phases.

  1. Bovine serum albumin adsorption to iron-oxide coated sands can change microsphere deposition mechanisms. (United States)

    Flynn, Raymond M; Yang, Xinyao; Hofmann, Thilo; von der Kammer, Frank


    Particulate colloids often occur together with proteins in sewage-impacted water. Using Bovine Serum Albumin (BSA) as a surrogate for protein in sewage, column experiments investigating the capacity of iron-oxide coated sands to remove latex microspheres from water revealed that microsphere attenuation mechanisms depended on antecedent BSA coverage. Dual pulse experiment (DPE) results suggested that where all BSA was adsorbed, subsequent multiple pore volume microsphere breakthrough curves reflected progressively reduced colloid deposition rates with increasing adsorbed BSA content. Modeling colloid responses suggested adsorption of 1 μg BSA generated the same response as blockage by between 7.1 × 10(8) and 2.3 × 10(9) deposited microspheres. By contrast, microsphere responses in DPEs where BSA coverage of the deposition sites approached/reached saturation revealed the coated sand maintained a finite capacity to attenuate microspheres, even when incapable of further BSA adsorption. Subsequent microsphere breakthrough curves demonstrated the matrix's colloid attenuation capacity progressively increased with continued microsphere deposition. Experimental findings suggested BSA adsorption on the sand surface approaching/reaching saturation generated attractive deposition sites for colloids, which became progressively more attractive with further colloid deposition (filter ripening). Results demonstrate that adsorption of a single type of protein may either enhance or inhibit colloid mobility in saturated porous media.

  2. Self-assembled three-dimensional chiral colloidal architecture (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.


    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  3. Colloidal 234Th and the turnover of oceanic DOC

    International Nuclear Information System (INIS)

    Murray, J.W.; Balistrieri, L.S.


    234 Th has been proposed to be a tracer for the labile, colloidal fraction of DOC in seawater. During the recent North Atlantic Bloom Experiment (NABE) the turnover of DOC was directly measured. 234 Th and total suspended matter (C p ) were also measured by different research groups. Using the NABE 234 Th data the authors have calculated the turnover rate of colloidal material using the Brownian Pumping model of Honeyman and Santschi and the 4-box particle cycling model of Moran and Buesseler. The rate constants for colloid cycling determined from the 234 Th data agree well with the experimentally determined rate constants for turnover of DOC

  4. The kinetics of phagocytosis of 198Au colloids ''in vitro''

    International Nuclear Information System (INIS)

    Astorri, N.L.; Bergoc, R.M.; Bianchin, A.M.; Caro, R.A.; Ihlo, J.E.; Rivera, E.S.


    The kinetics of the phagocytosis of 198-Au colloids by macrophages ''in vitro'' was studied by incubating during 5 hours phagocytic cells from the liver and the spleen of Wistar rats with colloidal radiogold particles, in the presence of an adequate culture medium (TC-199 with 10 per cent of Bovine Fetal Serum). In each experiment, the number of colloidal gold particles offered to each phatocytic cell, (Au) 0 and the mean rate of phagocytosis v, were calculated. The latter value was determined by measuring the radioactivity incorporated into the phagocytic cells during the incubation; it was expressed as the number of phagocytized colloidal gold particles per cell per minute. The values of log v = f [log (Au) 0 ] were plotted. The Lineweaver-Burk analysis of the results demonstrates that the kinetics of the phagocytosis of colloidal radiogold particles ''in vitro'' follows a model similar to Michaelis-Menten equations for enzyme reactions. The values of the substratum constant Ks and maximun velocity Vm were obtained by the regression analysis of the 1/v vs. 1/(Au) 0 graph. Vm was equal to 9.44 x 10 and 1.63 x 10 phagocytized colloidal gold particles per cell per minute for liver and spleen macrophages, respectively. Ks was equal to 6.01 x 10 9 and 8.02 x 10 8 colloidal gold particles per cell for liver and spleen macrophages, respectively. The significance of these differences is discussed and attributed mainly to a change of the specific engulfment rate constant. (author) [es

  5. Thyroid albumin originates from blood

    NARCIS (Netherlands)

    de Vijlder, J. J.; Veenboer, G. J.; van Dijk, J. E.


    Iodoalbumin has been found in the goiter of Dutch goats with a thyroglobulin synthesis defect. Immunohistochemical studies showed that in the goiter the percentage of follicles containing albumin was higher than that in normal thyroid glands. In the albumin-containing follicles of normal and


    African Journals Online (AJOL)

    The reaction of tribromoarsenazo(TB-ASA) with serum albumin in the presence of emulgent OP was studied by spectrophotometry. In a Britton-Robinson buffer solution at pH 2.9, tribromoarsenazo and bovine serum albumin can immediately form a red compound in the presence of emulgent OP with a maximum absorption ...

  7. Statistical analysis of phase formation in 2D colloidal systems. (United States)

    Carstensen, Hauke; Kapaklis, Vassilios; Wolff, Max


    Colloidal systems offer unique opportunities for the study of phase formation and structure since their characteristic length scales are accessible to visible light. As a model system the two-dimensional assembly of colloidal magnetic and non-magnetic particles dispersed in a ferrofluid (FF) matrix is studied by transmission optical microscopy. We present a method to statistically evaluate images with thousands of particles and map phases by extraction of local variables. Different lattice structures and long-range connected branching chains are observed, when tuning the effective magnetic interaction and varying particle ratios.

  8. Eletroquímica das partículas coloidais e sua relação com a mineralogia de solos altamente intemperizados Electrochemistry of colloidal particles and its relationship with the mineralogy of highly weathered soils

    Directory of Open Access Journals (Sweden)

    Maurício Paulo F. Fontes


    improvement of the predictive capability of several phenomena, such as, floculation and dispersion of colloids, cations exchange, anion adsorption, specially phosphates, heavy metals adsorption, etc. Therefore, this literature review aims at to make a scientific approach of the topic "Electrochemistry of colloidal particles and its relationship with the mineralogy of highly weathered soils", in which, the historical evolution of the knowledge in this field is covered and the challenges to the development of the research in this area are raised. Different tendencies and views existing in the literature about Zero Points of Charge (ZPC, Charge Characterization and Measurement, ZPCs Terminology and Simbology and Relationship between Charge and Minerals of the highly weathered soils are also presented. Basic concepts are revisited and new or seldom used concepts in Soil Science are presented and discussed with the objective of improving the understanding and refining the interpretation of such important branch of the Soil Chemistry and Mineralogy field.

  9. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.


    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  10. Direct visualization of colloidal liquids (United States)

    Durand, Richard Vernon

    We have investigated various colloidal systems consisting of aqueous suspensions of micron sized polystyrene particles. These systems are appealing because they provide a fertile testing ground for theories of both the liquid and solid states, as well as for theories describing hydrodynamic interactions. Our first study of colloidal systems was motivated by some interesting observations we made while looking at a suspension under a light microscope. We, as well as other workers, noticed that particles undergoing Brownian motion can appear to linger around each other for long periods of time. The question arose as to whether this lingering was a product of interparticle interactions, or was an artifact due to random thermal motion and projection onto a two dimensional image plane. We found that the latter was true, which drove home the idea that we must be wary of our own biases when making scientific observations. During the course of the research on this lingering behavior, we developed a mathematical technique for generating successively more accurate approximate analytical solutions to initial value linear partial differential equations which are first order in time and have no mixing of spatial and time derivatives. This formalism is especially useful for diffusion problems, since the analytical approximation conserves probability at each order of approximation. Our next experimental effort involved colloidal systems in which the suspending medium was carefully prepared to promote long ranged electrostatic interactions between the particles. The interaction potential in such a suspension has been the topic of much research recently. Using digital video microscopy, as well as techniques we developed allowing the proper analysis of two dimensional data, we found that the interaction length in our samples was surprisingly short ranged compared to what we expected based on our water purification experiments. The problems with projection effects associated with two

  11. Nonlinear rheology of colloidal dispersions

    International Nuclear Information System (INIS)

    Brader, J M


    Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states. (topical review)

  12. Microrheology of colloidal dispersions by Brownian dynamics simulations

    NARCIS (Netherlands)

    Carpen, I.C.; Brady, John F.; Brady, J.F.


    We investigate active particle-tracking microrheology in a colloidal dispersion by Brownian dynamics simulations. A probe particle is dragged through the dispersion with an externally imposed force in order to access the nonlinear viscoelastic response of the medium. The probe’s motion is governed

  13. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V


    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  14. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization. (United States)

    Li, Zhelong; Zhang, Dongxiao; Li, Xiqing


    Advances in pore structure characterization and lattice-Boltzmann (LB) simulations of flow fields in pore spaces are making mechanistic simulations of colloid transport in real porous media a realistic goal. The primary challenge to reach this goal may be the computational demand of LB flow simulations in discretized porous medium domains at an assemblage scale. In this work, flow fields in simple cubic and dense packing systems were simulated at different discretization resolutions using the LB method. The simulated flow fields were incorporated into to a three-dimensional particle tracking model to simulate colloid transport in the two systems. The simulated colloid deposition tended to become asymptotic at a critical discretization resolution (voxel-grain size ratio = 0.01) at groundwater flow regimes for colloids down to submicrometer level under favorable conditions and down to around 1 microm under unfavorable conditions. The average simulated fluid velocities near grain surfaces were extracted to explain the sensitivities of simulated depositions to space discretization under both conditions. At the critical discretization resolution, current computation capacity would allow flow simulations and particle tracking in assemblage porous medium domains. In addition, particle tracking simulations revealed that colloids may be retained in flow vortices under conditions both favorable and unfavorable for deposition. Colloid retention in flow vortices has been proposed only very recently. Here we provide a mechanistic confirmation to this novel retention process.

  15. Colloid and Phosphorus Leaching From Undisturbed Soil Cores Sampled Along a Natural Clay Gradient

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Heckrath, Goswin Johann


    was to correlate easily measurable soil properties, such as clay content and water-dispersible colloids, to colloid and phosphorus leaching. The clay contents across the gradient ranged from 0.11 to 0.23 kg kgj1. Irrigating with artificial rainwater, all samples showed a high first flush of colloids and phosphorus......The presence of strongly sorbing compounds in groundwater and tile drains can be a result of colloid-facilitated transport. Colloid and phosphorus leaching from macropores in undisturbed soil cores sampled across a natural clay gradient at Aarup, Denmark, were studied. The aim of the study...... followed by lower and stable colloid and phosphorus concentrations. The mass of particles leached at first flush was independent of clay content and was attributed to the instant release of particles associated with the macropore walls and released upon contact with flowing water. Below a clay content of È...

  16. Temperature-Triggered Colloidal Gelation through Well-Defined Grafted Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Jan Maarten van Doorn


    Full Text Available Sufficiently strong interparticle attractions can lead to aggregation of a colloidal suspension and, at high enough volume fractions, form a mechanically rigid percolating network known as a colloidal gel. We synthesize a model thermo-responsive colloidal system for systematically studying the effect of surface properties, grafting density and chain length, on the particle dynamics within colloidal gels. After inducing an attraction between particles by heating, aggregates undergo thermal fluctuation which we observe and analyze microscopically; the magnitude of the variance in bond angle is larger for lower grafting densities. Macroscopically, a clear increase of the linear mechanical behavior of the gels on both the grafting density and chain length arises, as measured by rheology, which is inversely proportional to the magnitude of local bond angle fluctuations. This colloidal system will allow for further elucidation of the microscopic origins to the complex macroscopic mechanical behavior of colloidal gels including bending modes within the network.

  17. Colloid-facilitated radionuclide transport: a regulatory perspective (United States)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.


    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  18. Cracking in Drying Colloidal Films (United States)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.


    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  19. Magnetically actuated and controlled colloidal sphere-pair swimmer

    International Nuclear Information System (INIS)

    Ran, Sijie; Guez, Allon; Friedman, Gary


    Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ , stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced. (paper)

  20. Colloidal photonic crystals: from lasing to microfluidics (United States)

    Clays, Koen; Zhong, Kuo; Song, Kai


    Colloidal photonic crystals are photonic crystals made by bottom-up physical chemistry strategies from monodisperse colloidal particles. The self-assembly process is automatically leading to inherently three-dimensional structures with their optical properties determined by the periodicity, induced by this ordering process, in the dielectric properties of the colloidal material. The best-known optical effect is the photonic band gap, the range of energies, or wavelengths, that is forbidden for photons to exist in the structure. This photonic band gap is similar to the electronic band gap of electronic semiconductor crystals. We have previously shown how with the proper photonic band gap engineering, we can insert allowed pass band defect modes and use the suppressing band gap in combination with the transmitting pass band to induce spectral narrowing of emission. We show now how with a high-quality narrow pass band in a broad stop band, it is possible to achieve photonic crystal lasing in self-assembled colloidal photonic crystals with a planar defect. In addition, with proper surface treatment in combination with patterning, we prepare for addressable integrated photonics. Finally, by incorporating a water in- and outlet, we can create optomicrofluidic structures on a photonic crystal allowing the optical probing of microreactors or micro-stopped-flow in the lab-on-an-optical-chip.


    Directory of Open Access Journals (Sweden)

    Alexei Baerle


    Full Text Available Phase state and the charge of colloidal particles in the gelatine-polyuronate system were studied. A method for comparative evaluation of molecular weight of colloids by means of viscosimetric measurements and electrophoresis was developed. It is shown that the Diagram {Phase state = f (composition, pH} contains six well-defined regions. The diagram explains and predicts the behaviour of protein-polysaccharide colloids, which are included in beverages or forms the shells of oil-containing microcapsules.

  2. Hydrodynamically driven colloidal assembly in dip coating. (United States)

    Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A


    We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.

  3. Copper distribution in water-dispersible colloids of swine manure and its transport through quartz sand. (United States)

    Bao, Qibei; Lin, Qi; Tian, Guangming; Wang, Guihao; Yu, Jian; Peng, Guiqun


    To demonstrate the potential risks associated with the application of solid agricultural wastes, we investigated Cu distribution in water-dispersible colloids derived from swine manure and its transport through quartz sand. Samples were sequentially centrifuged to obtain five colloid suspensions (colloid subsamples (1-10, 0.45-1, 0.2-0.45, and 0.02-0.2 μm). We observed that 2% of Cu in the swine manure was found in the 0.02-10 μm colloid fractions, while 18% was observed in the colloid suspension. The highest accumulation of Cu was found in the 0.02-0.2 μm fraction of colloids, in which organic carbon was the major component. The Cu in the 1-10 μm colloid fraction existed in both inorganic compounds and organic associations, whereas it mainly existed as organic complexes in colloids colloids (1-10 μm) of swine manure were partially filtered out as they passed through the sand particles, and fine colloids facilitated the transport of Cu. The formation of organic complexes was hypothesized to enhance the mobility of Cu. Further research is needed to incorporate our experimental findings into a realistic model of particle mobilization and transport through soil or groundwater aquifers. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Colloidal approach to prepare colour blends from colourants with different solubility profiles. (United States)

    Patel, A R; Heussen, P C M; Dorst, E; Hazekamp, J; Velikov, K P


    Food colouring plays a vital and a determining role in the processing and the manufacturing of food products because the appearance of products is critical for attracting consumers and influencing their food choices. However, factors such as legislative restrictions, limited number of approved colourants and the processing, formulation and stability issues of the natural colourants severely limits the application of food colouring in actual product formats. Hence, finding alternatives to the currently utilised formulation practises, represents an important area of research. Here, we report a simple colloidal approach to prepare colour blends by co-incorporating colourants with contrasting aqueous solubility profiles in composite colloidal particles. Curcumin and indigocarmine were selected as water insoluble and water soluble food-grade colourants respectively and incorporated in the colloidal particles prepared from food protein-zein. Composite particles obtained by loading of curcumin and indigocarmine (at different ratios) had mean particle size ranging from 76 to 300nm. The spherical shape of the colloidal particles was confirmed using transmission electron microscopy and the colloidal dispersions were further characterised using UV-Vis and fluorescence spectroscopy. The incorporation of colourants in colloidal particles led to the generation of different shade of colour in yellow-green-blue range. The encapsulation also led to the stabilization of individual pigments against photodegradation. Such composite colloidal particles could potentially serve as an approach for developing tuneable colouring system for food and nutraceutical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Software for fitting and simulating fate and transport of dense colloids and biocolloids in one-dimensional porous media: Re-introducing ColloidFit. (United States)

    Katzourakis, Vasileios; Chrysikopoulos, Constantinos


    The present work re-introduces ColloidFit, which is an autonomous, modular, multipurpose fitting software for dense colloid and biocolloid transport phenomena in porous media. The initial version of ColloidFit, introduced by Sim and Chrysikopoulos (1995), was substantially improved and combined with a relatively intuitive and easy to use graphical user interface. The re-introduced ColloidFit can simulate the migration of suspended colloid or biocolloid particles in one-dimensional, water saturated, homogeneous porous media with uniform flow, accounting for non-equilibrium attachment onto the solid matrix, as well as gravitational effects. Furthermore, the improved ColloidFit software employs a variety of non-equilibrium, linear and nonlinear models for the simulation of colloid attachment onto a solid matrix under batch experimental conditions. The re-introduced ColloidFit uses the state of the art fitting software "Pest" to estimate unknown model parameter values, together with their 95% confidence intervals. Pest is a model-independent parameter estimation software capable of adjusting model parameters, so that discrepancies between model-generated data and the corresponding experimental measurements are reduced to a user preselected minimum. The fitting process is graphed and displayed in real time. The user is allowed to overview every step of the fitting progress, and if needed to change the initial parameter values. The re-introduced ColloidFit software is expected to make the fitting process of colloid and biocolloid transport data, just a simple task.

  6. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide. (United States)

    Liao, Peng; Yuan, Songhu; Wang, Dengjun


    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  7. Self-assembly of colloids with liquid protrusions. (United States)

    Kraft, Daniela J; Vlug, Wessel S; van Kats, Carlos M; van Blaaderen, Alfons; Imhof, Arnout; Kegel, Willem K


    A facile and flexible synthesis for colloidal molecules with well-controlled shape and tunable patchiness is presented. Cross-linked polystyrene spheres with a liquid protrusion were found to assemble into colloidal molecules by coalescence of the liquid protrusions. Similarly, cross-linked poly(methyl methacrylate) particles carrying a wetting layer assembled into colloidal molecules by coalescence of the wetting layer. Driven by surface energy, a liquid droplet on which the solid spheres are attached is formed. Subsequent polymerization of the liquid yields a wide variety of colloidal molecules as well as colloidosomes with tunable patchiness. Precise control over the topology of the particles has been achieved by changing the amount and nature of the swelling monomer as well as the wetting angle between the liquid and the seed particles. The overall cluster size can be controlled by the seed size as well as the swelling ratio. Use of different swelling monomers and/or particles allows for chemical diversity of the patches and the center. For low swelling ratios assemblies of small numbers of seeds resemble clusters that minimize the second moment of the mass distribution. Assemblies comprised of a large number of colloids are similar to colloidosomes exhibiting elastic strain relief by scar formation.

  8. Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly (United States)

    Akerboom, Sabine; Appel, Jeroen; Labonte, David; Federle, Walter; Sprakel, Joris; Kamperman, Marleen


    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces. PMID:25392404

  9. Dynamic of Faceted Colloidal Clusters (United States)

    Sindoro, Melinda; Jee, Ah-Young; Yu, Changqian; Granick, Steve


    We study the emulsion induced clustering of faceted metal organic frameworks (MOFs) and their dynamics. Our approach to anisotropic building block is through the rational synthesis of water stable and highly uniform MOFs. This generates colloidal-sized MOFs of defined polyhedral shape with tunable size in micrometer range that are suitable for in situ imaging. The 3D clusters formations are promoted by hydrophilic MOFs particles confined in aqueous droplets of binary water-lutidine mixture at transition temperature. Below this temperature, the water droplet decreases in volume due to one phase mixing with lutidine which forces the N-mers of faceted particles to aggregate in close contact. We compare the faceted clusters formed to those made of spherical particles in term of the building block sphericity. Other focus of our study involves the dynamic of the clusters. We found that, unlike spherical clusters, these faceted N-mers are highly stable on large scale of temperature due to their dominant capillary force on their facet-to-facet contact.

  10. Effect of biofilm on colloid attachment in saturated porous media. (United States)

    Majumdar, Udayan; Alexander, Thrisha; Waskar, Morris; Dagaonkar, Manoj V


    Biofilm plays an important role in controlling the transport of colloids in a porous media. Biofilms are formed when micro-organisms come in contact with substrates, and are able to attach and grow with availability of nutrients. The microorganisms get embedded in a matrix of the substrate and extracellular polymeric substances which are responsible for the morphology, physico-chemical properties, structure and coherence of the biofilm. In this study, the effect of biofilm and its aging on colloid removal was studied on a glass bead column. Oocysts, polystyrene microspheres and inorganic colloids were used as colloidal particles. Pseudomonas aeruginosa was used as a model biofilm-forming microorganism. Presence of biofilm significantly enhanced colloid removal in the column. After 3 weeks, almost complete colloid removal was observed. The formation of biofilm was confirmed by various physical characterization techniques. During the extended aging study, biofilm sloughed off under shear stress. The loss of biofilm was higher during the early stage of its growth, and subsequently slowed down probably due to the formation of a more rigid biofilm. This research indicates that biofilm formation, maturation and sloughing-off play a critical role in colloid removal through porous media.

  11. Experimental Studies to Evaluate the Role of Colloids on the Radionuclide Migration in a Crystalline Medium

    Energy Technology Data Exchange (ETDEWEB)

    Albarran, Nairoby; Missana, Tiziana; Alonso, Ursula; Garcia-Gutierrez, Miguel; Mingarro, Manuel; Lopez, Trinidad [CIEMAT, Departamento de Medioambiente, Avenida Complutense, 22 28040 Madrid (Spain)


    In a deep geological repository (DGR) of high level radioactive waste, all the possible phenomena affecting radionuclide migration have to be studied to assess its security over time. Colloids can play an important role for contaminant transport if the following conditions are fulfilled: colloids exist in a non negligible concentration, they are mobile and stable in the environment of interest, and they are able to adsorb radionuclides irreversibly. In this study, different transport experiments where performed to improve the knowledge on the main mechanisms affecting the radionuclide migration in the presence of colloids in a crystalline medium. Firstly, colloid stability was analysed and then transport experiments in an artificial granite longitudinal fracture were carried out. Synthetic colloids of different size and bentonite clay colloids were used to evaluate the effects of colloid size, charge, and water flow rate on their mobility. Results showed that both major importance of the water flow rate on the mobility of colloids and their recovery and a higher interaction of smaller particles with the surface. Finally, the migration behaviour of Sr, and Sr adsorbed onto bentonite colloids was compared. The elution curves of Sr adsorbed onto colloid were significantly different from the ones of Sr alone, pointing out that sorption/desorption mechanisms must be taken into account to understand the radionuclide migration in the fracture in the presence of colloids. (authors)

  12. Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients. (United States)

    Cheng, Tao; Saiers, James E


    Colloid-sized particles are commonly detected in vadose-zone pore waters and are capable of binding chemicals with sorptive affinities for geologic materials. Published research demonstrates that colloids are capable of facilitating the transport of sorptive contaminants under conditions of steady pore water flow, when volumetric moisture content and pore water velocity are constant. Less is known about the role of colloids in governing contaminant mobility under transient-flow conditions, which are characteristic of natural vadose-zone environments. The objective of this study is to elucidate the influences of flow transients on the mobilization and transport of in situ colloids and colloid-associated contaminants. We conducted column experiments in which the mobilization of in situ colloids and (137)Cs was induced by transients associated with the drainage and imbibition of (137)Cs contaminated-sediments. Our results demonstrate that substantial quantities of in situ colloids and colloid-associated (137)Cs are mobilized as volumetric moisture content declines during porous-medium drainage and as volumetric moisture content increases during porous-medium imbibition. We also find that the colloid-effect on (137)Cs transport is sensitive to changes in pore water ionic strength. That is, the quantities of colloids mobilized and the capacity of the these colloids to bind (137)Cs decrease with increasing ionic strength, leading to a decrease of the mass of (137)Cs eluted from the columns during porous-medium drainage and imbibition.

  13. Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation. (United States)

    Johnson, W P; Li, Xiqing; Yal, Gozde


    A three-dimensional particle tracking model for colloid transport in porous media was developed that predicts colloid retention in porous media in the presence of an energy barrier via two mechanisms: (1) wedging of colloids within grain to grain contacts; (2) retention of colloids (without attachment) in flow stagnation zones. The model integrates forces experienced by colloids during transport in porous media, i.e., fluid drag, gravity, diffusion, and colloid-surface Derjaguin-Landau-Verwey-Overbeek interactions. The model was implemented for a fluid flow field that explicitly represented grain to grain contacts. The model utilized a variable time stepping routine to allow finer time steps in zones of rapid change in fluid velocity and colloid-surface interaction forces. Wedging was favored by colloid: collector ratios greater than about 0.005, with this threshold ratio increasing with decreasing fluid velocity. Retention in flow stagnation zones was demonstrated for colloid: collector ratios less than about 0.005, with this threshold decreasing with increasing fluid velocity. Both wedging and retention in flow stagnation zones were sensitive to colloid-surface interaction forces (energy barrier height and secondary energy minimum depth). The model provides a mechanistic basis for colloid retention in the presence of an energy barrier via processes that were recently hypothesized to explain experimental observations.

  14. Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients

    DEFF Research Database (Denmark)

    Reinhart, Konrad; Perner, Anders; Sprung, Charles L


    PURPOSE: Colloids are administered to more patients than crystalloids, although recent evidence suggests that colloids may possibly be harmful in some patients. The European Society of Intensive Care Medicine therefore assembled a task force to compile consensus recommendations based on the current...... best evidence for the safety and efficacy of the currently most frequently used colloids--hydroxyethyl starches (HES), gelatins and human albumin. METHODS: Meta-analyses, systematic reviews and clinical studies of colloid use were evaluated for the treatment of volume depletion in mixed intensive care...... unit (ICU), cardiac surgery, head injury, sepsis and organ donor patients. Clinical endpoints included mortality, kidney function and bleeding. The relevance of concentration and dosage was also assessed. Publications from 1960 until May 2011 were included. The quality of available evidence...

  15. Interfacial colloidal rod dynamics: Coefficients, simulations, and analysis (United States)

    Yang, Yuguang; Bevan, Michael A.


    Colloidal rod diffusion near a wall is modeled and simulated based on a constrained Stokesian dynamic model of chains-of-spheres. By modeling colloidal rods as chains-of-spheres, complete diffusion tensors are computed for colloidal rods in bulk media and near interfaces, including hydrodynamic interactions, translation-rotation coupling, and all diffusion modes in the particle and lab frames. Simulated trajectories based on the chain-of-spheres diffusion tensor are quantified in terms of typical experimental quantities such as mean squared positional and angular displacements as well as autocorrelation functions. Theoretical expressions are reported to predict measured average diffusivities as well as the crossover from short-time anisotropic translational diffusion along the rod's major axis to isotropic diffusion. Diffusion modes are quantified in terms of closed form empirical fits to model results to aid their use in interpretation and prediction of experiments involving colloidal rod diffusion in interfacial and confined systems.

  16. Colloidal motion under the action of a thermophoretic force. (United States)

    Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika


    We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.

  17. PCR detection of groundwater bacteria associated with colloidal transport

    International Nuclear Information System (INIS)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.


    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research

  18. Clay colloid formation and release from MX-80 buffer

    International Nuclear Information System (INIS)

    Pusch, R.


    Flowing groundwater can tear off clay colloids from buffer clay that has penetrated into fractures and transport them and bring sorbed radionuclides up to the biosphere. The colloids are 2-50 μm particle aggregates that are liberated from expanded, softened buffer if the water flow rate in the fractures exceeds a few centimeters per second. Except for the first few months or years after application of the buffer in the deposition holes the flow rate will not be as high as that. The aperture of the fractures will not hinder transport of colloids but most of the fractures contain clastic fillings, usually chlorite, that attract and immobilize them. This condition and the flow rate criterion combine to reduce the chance of radionuclide-bearing clay colloids to reach the biosphere to practically zero except for certain cases that need to be considered

  19. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.


    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  20. Self-Assembly of Colloidal Particles

    Indian Academy of Sciences (India)

    Imagine buying different components of a computer – mother board, RAM, power supply, cables, cabinet, monitor, keyboard etc., and ..... its chiral behaviour. Furthermore, it is also a big question in the field how this microscopic chirality of the virus gets translated into the macroscopic rotation of the director that is observed in.

  1. Progress report on colloid-facilitated transport at Yucca Mountain: Yucca Mountain site characterization program milestone 3383

    International Nuclear Information System (INIS)

    Triay, I.R.; Degueldre, C.; Wistrom, A.O.; Cotter, C.R.; Lemons, W.W.


    To assess colloid-facilitated radionuclide transport in groundwaters at the potential nuclear waste repository at Yucca Mountain, it is very important to understand the generation and stability of colloids, including naturally occurring colloids. To this end, we measured the colloid concentration in waters from Well J-13, which is on the order of 106 particles per milliliter (for particle sizes larger than 100 manometers). At this low particle loading, the sorption of radionuclides to colloids would have to be extremely high before the colloids could carry a significant amount of radionuclides from the repository to the accessible environment. We also performed aggregation experiments to evaluate the stability of silica (particle diameter: 85 nm) and clay colloids (particle diameter: 140 nm) as a function of ionic strength in a carbonate-rich synthetic groundwater. When the concentration of electrolyte is increased to induce aggregation, the aggregation is irreversible and the rate of aggregation increases with increasing electrolyte strength. We used autocorrelation photon spectroscopy to estimate the rate of particle aggregation for both types of colloids. By relating the measured aggregation rate to the Smoluchowski rate expression, we determined the stability ratio, W. Aggregation of silica particles and kaolinite clay particles decreased dramatically for an electrolyte concentration, C NaCl , below 300 mM and 200 mM, respectively



    Belyuchenko I. S.


    Dispersed colloidal particles pertaining to positive colloids is played important role in the process of the interaction of organic wastes (sewage sludge, defeca-tion mud, chicken manure, etc.) with various wastes of mineral raw materials (phosphogypsum, lime powder, halite, etc.)

  3. Order-to-Disorder Transition in Ring-Shaped Colloidal Stains

    NARCIS (Netherlands)

    Gomez Marin, Alvaro; Gelderblom, Hanneke; Lohse, Detlef; Snoeijer, Jacobus Hendrikus


    A colloidal dispersion droplet evaporating from a surface, such as a drying coffee drop, leaves a distinct ring-shaped stain. Although this mechanism is frequently used for particle self-assembly, the conditions for crystallization have remained unclear. Our experiments with monodisperse colloidal

  4. Hard and soft colloids at fluid interfaces: adsorption, interactions, assembly and rheology

    NARCIS (Netherlands)

    Deshmukh, Omkar; van den Ende, Henricus T.M.; Cohen Stuart, Martinus Abraham; Mugele, Friedrich Gunther; Duits, Michael H.G.


    Soft microgel particles inherently possess qualities of both polymers as well as particles. We review the similarities and differences between soft microgel particles and stiff colloids at fluid–fluid interfaces. We compare two fundamental aspects of particle-laden interfaces namely the adsorption

  5. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly and rheology

    NARCIS (Netherlands)

    Deshmukh, O.S.; Ende, van den D.; Cohen Stuart, M.A.; Mugele, F.; Duits, M.


    Soft microgel particles inherently possess qualities of both polymers as well as particles. We review the similarities and differences between soft microgel particles and stiff colloids at fluid–fluid interfaces. We compare two fundamental aspects of particle-laden interfaces namely the adsorption

  6. Colloidal stability of silver nanoparticles in biologically relevant conditions

    International Nuclear Information System (INIS)

    MacCuspie, Robert I.


    Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.

  7. Collective motion in populations of colloidal robots (United States)

    Bartolo, Denis; Bricard, Antoine; Caussin, Jean-Baptiste; Dauchot, Olivier; Desreumaux, Nicolas


    Could the behavior of bacteria swarms, fish schools, and bird flocks be understood within a unified framework? Can one ignore the very details of the interaction mechanisms at the individual level to elucidate how strikingly similar collective motion emerges at the group level in this broad range of motile systems? These seemingly provocative questions have triggered significant advance in the physics and the biology, communities over the last decade. In the physics language these systems, made of motile individuals, can all be though as different realizations of ``active matter.'' In this talk, I will show how to gain more insight into this vivid field using self-propelled colloids as a proxy for motile organism. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors. Then, I will demonstrate that these archetypal populations display spontaneous transitions to swarming motion, and to global directed motion with very few density and orientation fluctuations.

  8. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)


    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  9. Colloidal attraction induced by a temperature gradient. (United States)

    Di Leonardo, R; Ianni, F; Ruocco, G


    Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.

  10. Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Liu W


    Full Text Available Weixi Liu,1 Menashi A Cohenford,1–3 Leslie Frost,3 Champika Seneviratne,4 Joel A Dain1 1Department of Chemistry, University of Rhode Island, Kingston, RI, USA; 2Department of Integrated Science and Technology, 3Department of Chemistry, Marshall University, Huntington, WV, USA; 4Department of Chemistry, College of the North Atlantic, Labrador, NL, Canada Abstract: Formation of advanced glycation end products (AGEs by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs on the D-ribose glycation of bovine serum albumin (BSA. A combination of analytical methods including ultraviolet–visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia. Keywords: gold nanoparticles, glycation, AGEs, GNPs, BSA

  11. Controlled Clustering in Binary Charged Colloids by Adsorption of Ionic Surfactants. (United States)

    Nakamura, Yuki; Okachi, Manami; Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei


    We report on the controlled clustering of oppositely charged colloidal particles by the adsorption of ionic surfactants, which tunes charge numbers Z of particles. In particular, we studied the heteroclustering of submicron-sized polystyrene (PS) and silica particles, both of which are negatively charged, in the presence of cetylpyridinium chloride (CPC), a cationic surfactant. The surfactant concentration Csurf was selected below the critical micelle concentration. As CPC molecules were adsorbed, Z values of the PS and silica particles decreased, inverting to positive when Csurf exceeded the isoelectric point Ciep. Hydrophobic PS particles exhibited much lower Ciep than hydrophilic silica particles. At Csurf valuess between their Ciep values, the particles were oppositely charged, and clustering was enabled. To explain the clustering behavior, we investigated adsorption isotherms of the CPC and screened-Coulomb-type pair potential. Expected applications of the present findings are the control of colloidal associations and construction of various particle types into heterogeneous colloidal clusters.

  12. Application of colloidal chemistry in aqueous phase to the preparation of supported metallic catalysts: particles size and aggregation control; Application de la chimie colloidale en phase aqueuse a la preparation de catalyseurs metalliques supportes: controle de la taille et de l`etat d`agregation des particules

    Energy Technology Data Exchange (ETDEWEB)

    Pages, T.


    This work is an application of colloidal chemistry in aqueous phase on supported metal catalyst preparation. The objective is the control of particle size and aggregation. The preparation of the materials was achieved in two steps: - the synthesis of PdO hydrosols was obtained by two ways: neutralisation of the solution containing metallic salt by adding alkaline solution or by thermo-hydrolysis; the sols were then deposited on carriers (Al{sub 2}O{sub 3}, SIO{sub 2}). The use of partial charge model allowed us to determine the complexes that were able to generate PdO. The preparation of PdO from Pd(H{sub 2}O){sub 4}{sup 2+} was studied and a mechanism of oxide formation was elaborated. The neutralisation of Pd(H{sub 2}O){sub 4}{sup 2+} obtained by adding alkaline solution led to particles with an average size of 1.8 nm and a narrow particle size distribution. Only the thermo-hydrolysis of Pd(H{sub 2}O){sub 4}{sup 2+} led to particles which size is higher than 3.0 nm. In the last case, particle size is controlled by the precursor concentration (Pd(H{sub 2}O){sub 2}(OH){sub 2}) generated in the medium. We have demonstrated that particle aggregation in the sol depends on the Ph and the way of preparation. It can be controlled by adding complexing anions (Cl{sup -}, NO{sub 2}{sup -}). Concerning the deposition of sols on carriers, it led to isolated or aggregated particles according to experimental conditions. Particle size was not modified during the deposition. Moreover, in our experimental conditions, reduction of particles did not modify particle size and aggregation. An application of this original way of preparation on catalysis allowed us to demonstrate the interest of controlling particle size and aggregation. (author) 186 refs.

  13. Synthesis of colloids based on gold nanoparticles dispersed in castor oil

    International Nuclear Information System (INIS)

    Silva, E. C. da; Silva, M. G. A. da; Meneghetti, S. M. P.; Machado, G.; Alencar, M. A. R. C.; Hickmann, J. M.; Meneghetti, M. R.


    New colloidal solutions of gold nanoparticles (AuNP), using castor oil as a nontoxic organic dispersant agent, were prepared via three different methods. In all three cases, tetrachloroauric(III) acid was employed as the gold source. The colloids were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The AuNP produced by the three methods were quasispherical in shape, however with different average sizes. The individual characteristics of the nanoparticles presented in each colloidal system were also confirmed by observation of absorption maxima at different wavelengths of visible light. Each method of synthesis leads to colloids with different grades of stability with respect to particle agglomeration.

  14. Interaction of Myoglobin colloids with BSA in solution: Insights into complex formation and elastic compliance. (United States)

    Madhumitha, D; Dhathathreyan, Aruna


    This work focusses on the supramolecular complex formed between Myoglobin (Mb) and Bovine Serum Albumin (BSA) at colloids/solution interface at pH 4.0 and pH 7.5. Electrostatic interactions between Mb as colloids and BSA solution (pH=7.5 and 4.0) have been confirmed by Zeta potential that suggest that while Mb has a narrow interaction range, BSA has a wider interaction space. The organization of Mb colloids in BSA characterized using dilational rheological parameters show that the Mb colloids are elastic and the strong adsorbed water layers on the surface restrict the deformation, regulated by the viscoelastic surface layer. Stability of the complexes analyzed using UV-vis, Fluorescence and Circular dichroic spectroscopy indicate that there is a 1:1 interaction between Mb and BSA with a binding constant of about 10 5 M -1 . Quartz Crystal microbalance with dissipation has been used to evaluate the elastic compliance of the complexes of Mb colloids dispersed in very dilute BSA solution. The higher elastic compliance at pH=4.0 (than at pH=7.5) and the complex sizes correlate with changes in zeta potential suggesting that the mechanical properties of the protein in colloids are dependent on both the electrostatic interaction as well as the degree of hydration of the colloids. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Capillary-inertial colloidal catapults upon drop coalescence (United States)

    Chen, Chuan-Hua


    Surface energy released upon drop coalescence is known to power the self-propelled jumping of liquid droplets on superhydrophobic solid surfaces, and the jumping droplets can additionally carry colloidal payloads toward self-cleaning. Here, we show that drop coalescence on a spherical particle leads to self-propelled launching of the particle from virtually any solid surface. The main prerequisite is an intermediate wettability of the particle, such that the momentum from the capillary-inertial drop coalescence process can be transferred to the particle. By momentum conservation, the launching velocity of the particle-drop complex is proportional to the capillary-inertial velocity based on the drop radius and to the fraction of the liquid mass in the total mass. The capillary-inertial catapult is not only an alternative mechanism for removing colloidal contaminants, but also a useful model system for studying ballistospore launching. PMID:27478201

  16. Building micro-soccer-balls with evaporating colloidal fakir drops (United States)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.


    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  17. Colloid mobilization and arsenite transport in soil columns: effect of ionic strength. (United States)

    Zhang, Hua; Selim, H M


    Colloid generation and transport in soils is of significance because of suspected colloid-facilitated transport of contaminants to the groundwater. In this study, colloid mobilization and its effect on the transport of arsenite [As(III)] were investigated in Olivier (fine-silty, mixed, active, thermic Aquic Fraglossudalfs) and Windsor (mixed, mesic typic Udipsamments) soil columns. Input solution of 10 mg L(-1) As(III) in 0.01 M NaCl was applied to water-saturated columns, and followed by leaching with deionized water (DIW). Flow interruptions were performed during the As(III) input and DIW leaching phases. Turbidity, electrical conductivity (EC), and pH of column effluents were monitored with time. Total and dissolved concentrations of As, Fe, and Al were analyzed. Effluent results demonstrated that colloid-facilitated transport contributed little to arsenic movement when the solution ionic strength was maintained constant. Mobilization of colloidal amorphous material and enhanced transport of As(III) were observed as a result of changes in ionic strength of the input solution. The peak of colloid generation coincided with peak concentrations of Fe, suggesting mobilization of Fe oxides and facilitated transport of As(III) adsorbed on oxide surfaces. Colloid mobilization was enhanced due to flow interruption in the Olivier column, which suggests slow dissociation of aggregated colloidal particles. Moreover, effluent results indicate significant effect of organic matter in stabilizing aggregates of colloidal particles.

  18. Colloidal assemblies on patterned silane layers (United States)

    Jonas, Ulrich; del Campo, Aránzazu; Krüger, Christian; Glasser, Gunnar; Boos, Diana


    The site-selective assembly of colloidal polymer particles onto laterally patterned silane layers was studied as a model system for the object assembly process at mesoscale dimensions. The structured silane monolayers on silicon oxide substrates were fabricated by a combination of liquid- and gas-phase deposition of different trialkoxysilanes with a photolithographic patterning technique. By using this method various types of surface functionalizations such as regions with amino functions next to areas of the bare silica surface or positively charged regions of a quaternary ammonium silane surrounded by a hydrophobic octadecylsilane film could be obtained. Furthermore, a triethoxysilane with a photoprotected amino group was synthesized, which allowed direct photopatterning after monolayer preparation, leading to free NH2 groups at the irradiated regions. The different silane monolayer patterns were used to study the surface assembly behavior of carboxylated methacrylate particles by optical and scanning electron microscopy. In dependence of the assembly conditions (different surface functionalizations, pH, and drying conditions), a selective preference of the particles for a specific surface type versus others was found. Site-specific colloid adsorption could be observed also on the photosensitive silane layers after local deprotection with light. From the photosensitive silane and positively charged ammonium silane, molecularly mixed monolayers were prepared, which allowed particle adsorption and photoactivation within the same monolayer as shown by fluorescence labeling. PMID:11959954

  19. Normal modes of weak colloidal gels (United States)

    Varga, Zsigmond; Swan, James W.


    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer

  20. Colloids in the mortar backfill of a cementitious repository for radioactive waste

    International Nuclear Information System (INIS)

    Wieland, E.; Spieler, P.


    Colloids are present in groundwater aquifers and water-permeable engineered barrier systems and may facilitate the migration of radionuclides. A careful evaluation of colloid concentrations is required to assess the potential effect of colloids on nuclide migration and, consequently, on the safety of a repository for radioactive waste. A highly permeable mortar is foreseen to be used as backfill for the engineered barrier of the Swiss repository for low- and intermediate-level waste (L/ILW). The backfill is considered to be a chemical environment with a potential for colloid generation and, due to its high porosity, for colloid mobility. In this contribution a novel in-house built particle counting device is described, and measurements of colloid concentrations in the pore water of backfill mortar are presented. (author)

  1. A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. (United States)

    Sun, N; Elimelech, M; Sun, N Z; Ryan, J N


    A two-dimensional model for colloid transport in geochemically and physically heterogeneous porous media is presented. The model considers patchwise geochemical heterogeneity, which is suitable to describe the chemical variability of many surficial aquifers with ferric oxyhydroxide-coated porous matrix, as well as spatial variability of hydraulic conductivity, which results in heterogeneous flow field. The model is comprised of a transient fluid flow equation, a transient colloid transport equation, and an equation for the dynamics of colloid deposition and release. Numerical simulations were carried out with the model to investigate the colloid transport behavior in layered and randomly heterogeneous porous media. Results demonstrate that physical and geochemical heterogeneities markedly affect the colloid transport behavior. Layered physical or geochemical heterogeneity can result in distinct preferential flow paths of colloidal particles. Furthermore, the combined effect of layered physical and geochemical heterogeneity may result in enhanced or reduced preferential flow of colloids. Random distribution of physical heterogeneity (hydraulic conductivity) results in a random flow field and an irregularly distributed colloid concentration profile in the porous medium. Contrary to random physical heterogeneity, the effect of random patchwise geochemical heterogeneity on colloid transport behavior is not significant. It is mostly the mean value of geochemical heterogeneity rather than its distribution that governs the colloid transport behavior.

  2. Fractal nematic colloids (United States)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.


    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  3. Overview of the phase diagram of ionic magnetic colloidal dispersions

    International Nuclear Information System (INIS)

    Cousin, F.; Dubois, E.; Cabuil, V.; Boue, F.; Perzynski, R.


    We study ionic magnetic colloidal dispersions, which are constituted of γ-Fe 2 O 3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion. The phase diagram PV versus Φ (P: osmotic pressure, V: particle volume, Φ: particle volume fraction) is explored, especially in the range of high Π and high Φ. The osmotic pressure P of the colloidal dispersion is known either by a measurement either because it is imposed during the sample preparation by osmotic compression. The structure of the colloidal dispersion is determined from Small Angle Neutron Scattering. Two regimes can be distinguished. At high pressure, fluid and solid phases can exist. Their structure is governed by strong electrostatic repulsion, the range of which is here evaluated. At low pressure, gas, liquid and glassy solids can exist. Their structure results from a sticky hard sphere potential. (author)

  4. Patterned Colloidal Photonic Crystals. (United States)

    Hou, Jue; Li, Mingzhu; Song, Yanlin


    Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Albumin-based drug delivery

    DEFF Research Database (Denmark)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke


    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand...... binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent...... conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform....

  6. Colloid migration in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.R. (California Univ., Berkeley, CA (USA). Dept. of Civil Engineering)


    Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs.

  7. pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes. (United States)

    Guo, Yong; van Ravensteijn, Bas G P; Evers, Chris H J; Kegel, Willem K


    We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies.

  8. Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

    International Nuclear Information System (INIS)

    James Saiers


    Radionuclides, metals, and dense non-aqueous phase liquids have contaminated about six billion cubic meters of soil at Department of Energy (DOE) sites. The subsurface transport of many of these contaminants is facilitated by colloids (i.e., microscopic, waterborne particles). The first step in the transport of contaminants from their sources to off-site surface water and groundwater is migration through the vadose zone. Developing our understanding of the migration of colloids and colloid-associated contaminants through the vadose zone is critical to assessing and controlling the release of contaminants from DOE sites. In this study, we examined the mobilization, transport, and filtration (retention) of mineral colloids and colloid-associated radionuclides within unsaturated porous media. This investigation involved laboratory column experiments designed to identify properties that affect colloid mobilization and retention and pore-scale visualization experiments designed to elucidate mechanisms that govern these colloid-mass transfer processes. The experiments on colloid mobilization and retention were supplemented with experiments on radionuclide transport through porous media and on radionuclide adsorption to mineral colloids. Observations from all of these experiments--the column and visualization experiments with colloids and the experiments with radionuclides--were used to guide the development of mathematical models appropriate for describing colloids and colloid-facilitated radionuclide transport through the vadose zone

  9. Patterning symmetry in the rational design of colloidal crystals (United States)

    Romano, Flavio; Sciortino, Francesco


    Colloidal particles have the right size to form ordered structures with periodicities comparable to the wavelength of visible light. The tantalizing colours of precious opals and the colour of some species of birds are examples of polycrystalline colloidal structures found in nature. Driven by the demands of several emergent technologies, efforts have been made to develop efficient, self-assembly-based methodologies for generating colloidal single crystals with well-defined morphologies. Somewhat unfortunately, these efforts are often frustrated by the formation of structures lacking long-range order. Here we show that the rational design of patch shape and symmetry can drive patchy colloids to crystallize in a single, selected morphology by structurally eliminating undesired polymorphs. We provide a proof of this concept through the numerical investigation of triblock Janus colloids. One particular choice of patch symmetry yields, via spontaneous crystallization, a pure tetrastack lattice, a structure with attractive photonic properties, whereas another one results in a colloidal clathrate-like structure, in both cases without any interfering polymorphs.

  10. Fate and transport of viruses and colloids in saturated and unsaturated porous media

    NARCIS (Netherlands)

    Torkzaban, S.


    The fundamental mechanisms involved in fate and transport of colloidal particles (viruses and latex microspheres) in saturated and unsaturated porous media were systematically examined. Two different bacteriophages were used as surrogate for pathogenic viruses to investigate the effects of various

  11. Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources. (United States)

    Heathwaite, Louise; Haygarth, Phil; Matthews, Rachel; Preedy, Neil; Butler, Patricia


    Colloid-facilitated phosphorus (P) delivery from agricultural soils in different hydrological pathways was investigated using a series of laboratory and field experiments. A soil colloidal P test was developed that yields information on the propensity of different soils to release P attached to soil colloids. The relationship between turbidity of soil extracts and total phosphorus (TP) was significant (r2 = 0.996, p 0.45-microm particle-size fractions (p = 0.05), and may be evidence of surface applications of organic and inorganic fertilizers being transferred through the soil either as intact organic colloids or attached to mineral particles. Our results highlight the potential for drainage water to mobilize colloids and associated P during rainfall events.

  12. Temperature-Induced, Selective Assembly of Supramolecular Colloids in Water

    NARCIS (Netherlands)

    Van Ravensteijn, Bas G.P.; Vilanova, Neus; De Feijter, Isja; Kegel, Willem K.; Voets, Ilja K.


    In this article, we report the synthesis and physical characterization of colloidal polystyrene particles that carry water-soluble supramolecular N,N′,N″,-trialkyl-benzene-1,3,5-tricarboxamides (BTAs) on their surface. These molecules are known to assemble into one-dimensional supramolecular

  13. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity

    Czech Academy of Sciences Publication Activity Database

    Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, Naděžda; Sharma, V. K.; Nevěčná, T.; Zbořil, R.


    Roč. 110, č. 33 (2006), s. 16248-16253 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : silver colloid nanoparticles * antimicrobial and bactericidal assays * particle size Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  14. Using Light Scattering to Track, Characterize and Manipulate Colloids

    NARCIS (Netherlands)

    van Oostrum, P.D.J.


    A new technique is developed to analyze in-line Digital Holographic Microscopy images, making it possible to characterize, and track colloidal particles in three dimensions at unprecedented accuracy. We took digital snapshots of the interference pattern between the light scattered by micrometer

  15. Ionic strength effects: Tunable nanocrystal distribution in colloidal gold films

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Wormeester, Herbert; Poelsema, Bene; Schwarz, James A.; Contescu, Cristian I.; Putyera, Karol


    The self-assembly of colloidal particles into disordered structures or highly ordered superlattices can be achieved in different ways. Hydrodynamic forces during controlled drying allow control over the deposition process by varying the solvent vapor pressure and temperature, or, more physically, by

  16. Alternating strings and clusters in suspensions of charged colloids

    NARCIS (Netherlands)

    Everts, J. C.; Van Der Linden, M. N.; Van Blaaderen, A.; Van Roij, R.


    We report the formation of alternating strings and clusters in a binary suspension of repulsive charged colloids with double layers larger than the particle size. Within a binary cell model we include many-body and charge-regulation effects under the assumption of a constant surface potential, and

  17. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.


    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  18. Population Balance Modeling of Aggregation and Coalescence in Colloidal Systems

    NARCIS (Netherlands)

    Kryven, I.; Lazzari, S.; Storti, G.


    A complex interplay between aggregation and coalescence occurs in many colloidal polymeric systems and determines the morphology of the final clusters of primary particles. To describe this process, a 2D population balance equation (PBE) based on cluster mass and fractal dimension is solved,

  19. Evolution of an ensemble of fractal aggregates in a colloidal system

    International Nuclear Information System (INIS)

    Elfimova, E. A.; Zubarev, A. Yu.; Ivanov, A. O.


    A theoretical study is presented of primary-minimum aggregation of colloidal particles, which generally leads to the formation of ramified fractal clusters. The focus is placed on the cooperative effects due to competition between aggregates for particles moving freely in the colloidal suspension. An analysis shows that the competition leads to aggregate density distributions and aggregation kinetics governed by more complicated laws as compared to those established in previous numerical and analytical studies of single-cluster growth

  20. Capillary-Inertial Colloidal Catapult upon Drop Coalescence (United States)

    Chavez, Roger; Liu, Fangjie; Feng, James; Chen, Chuan-Hua


    To discharge micron-sized particles such as colloidal contaminants and biological spores, an enormous power density is needed to compete against the strong adhesive forces between the small particles and the supporting surface as well as the significant air friction exerted on the particles. Here, we demonstrate a colloidal catapult that achieves such a high power density by extracting surface energy released upon drop coalescence within an extremely short time period, which is governed by the capillary-inertial process converting the released surface energy into the bulk inertia of the merged drop. When two drops coalesce on top of a spherical particle, the resulting capillary-inertial oscillation is perturbed by the solid particle, giving rise to a net momentum eventually propelling the particle to launch from the supporting surface. The measured launching velocity follows a scaling law that accounts for the redistribution of the momentum of the merged drop onto the particle-drop complex, and is therefore proportional to the capillary-inertial velocity characterizing the coalescing drops. The interfacial flow process associated with the colloidal catapult is elucidated with both high-speed imaging and phase-field simulations.

  1. Rheological State Diagrams for Rough Colloids in Shear Flow (United States)

    Hsiao, Lilian C.; Jamali, Safa; Glynos, Emmanouil; Green, Peter F.; Larson, Ronald G.; Solomon, Michael J.


    To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.

  2. Studied of actinide colloids in high-ionic strength groundwaters

    International Nuclear Information System (INIS)

    Kadkhodayan, B.; Zhao, P.; Marquez, L.N.


    Proposed plans for permanent disposal of transuranic wastes in geologic repositories require the development of an actinide source-term model that predicts the total concentrations of mobile actinides both near field and far-field environments. An actinide source-term model must quantify mobile actinide-bearing species, which may be present as dissolved species in several possible oxidation states or as suspended colloidal particles. In this presentation, we describe results of experiments with several actinides in Na-Ca-Mg-Cl-SO 4 brines with ionic strengths ranging from 0.8 to 8 molal, designed to assess the formation of intrinsic colloids (Eigenkollide or real colloids), and their temporal behavior e.g., changes in concentration and size. We have implemented a test matrix that provides us with the basis to understand the behavior of actinides with +3, +4, +5, and +6 oxidation states, as a function of pH (3 to 11) and actinide concentration (10 -8 - 10 -4 molar). Colloid sizes were estimated using sequential filtration and ultrafiltration techniques. Colloidal particles were characterized with scanning electron microscopy and energy-dispersive x-ray spectrometry. The oxidation states of the actinides were investigated with absorption spectroscopy

  3. Nonequilibrium Equation of State in Suspensions of Active Colloids

    Directory of Open Access Journals (Sweden)

    Félix Ginot


    Full Text Available Active colloids constitute a novel class of materials composed of colloidal-scale particles locally converting chemical energy into motility, mimicking micro-organisms. Evolving far from equilibrium, these systems display structural organizations and dynamical properties distinct from thermalized colloidal assemblies. Harvesting the potential of this new class of systems requires the development of a conceptual framework to describe these intrinsically nonequilibrium systems. We use sedimentation experiments to probe the nonequilibrium equation of state of a bidimensional assembly of active Janus microspheres and conduct computer simulations of a model of self-propelled hard disks. Self-propulsion profoundly affects the equation of state, but these changes can be rationalized using equilibrium concepts. We show that active colloids behave, in the dilute limit, as an ideal gas with an activity-dependent effective temperature. At finite density, increasing the activity is similar to increasing adhesion between equilibrium particles. We quantify this effective adhesion and obtain a unique scaling law relating activity and effective adhesion in both experiments and simulations. Our results provide a new and efficient way to understand the emergence of novel phases of matter in active colloidal suspensions.

  4. Colloid-facilitated transport of lead in natural discrete fractures. (United States)

    Tang, Xiang-Yu; Weisbrod, Noam


    Colloid-facilitated transport of lead (Pb) was explored in a natural chalk fracture with an average equivalent hydraulic aperture of 139 microm. Tracer solution was prepared by adding montmorillonite (100 mg L(-1)) and/or humic acid (HA) (10 mg L(-1)) to modified artificial rainwater containing dissolved Pb (21.4 mg Pb L(-1)), naturally precipitated PbCO(3) particles (16.4 mg Pb L(-1)) and LiBr (39.0 mg L(-1)). We found that Pb is only mobile when associated with colloids. PbCO(3) particles were not mobile in the fracture. The addition of HA to the montmorillonite suspension increased the suspension's mobility and therefore promoted the colloid-facilitated transport of Pb. The increases in pH and sodium absorption ratio induced by the chalk-tracer solution interactions appeared to increase the dispersion and mobilization of colloids entering the fracture. The dominant colloid-facilitated transport of Pb reported in this study has significant implications for risk assessment of Pb mobility in fractured rocks.

  5. An evaporation model of colloidal suspension droplets (United States)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.


    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  6. Anomalous electrical conductivity of nanoscale colloidal suspensions. (United States)

    Chakraborty, Suman; Padhy, Sourav


    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  7. Sustainable steric stabilization of colloidal titania nanoparticles (United States)

    Elbasuney, Sherif


    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  8. Ligand-Mediated Coating of Liposomes with Human Serum Albumin. (United States)

    Sato, Hikari; Nakhaei, Elnaz; Kawano, Takahito; Murata, Masaharu; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki


    Coating liposome surfaces with human serum albumin (HSA) can improve the colloidal stability and prevent opsonization. HSA coating via specific binding with alkyl ligands is promising because although the ligand-mediated coating is relatively stable it can spontaneously exchange with fresh HSA. However, to achieve surface coating with HSA, multiple hydrophobic ligands must be exposed to an aqueous medium prior to binding with HSA. This presents a challenge, as hydrophobic ligands tend to be buried in the liposomal membrane. Here we present the first HSA modification of liposome surfaces via alkyl ligands. We found that a relatively short alkyl ligand, or a long alkyl ligand with a terminal carboxylate, could be exposed on the liposome surface without causing aggregation of the liposomes and these ligands could subsequently bind HSA. The resulting HSA-coated liposomes were as inert as conventional PEGylated liposomes in terms of macrophage recognition.

  9. Albumin metabolism in health and disease

    International Nuclear Information System (INIS)

    Kirsch, R.E.; Saunders, S.J.; Brock, J.F.


    Studies performed at the University of Cape Town on the metabolism of albumin have been reviewed. The control of albumin metabolism in protein energy malnutrition, in acute exposure to alcohol and after partial hepatectomy in the rat is discussed

  10. Dips and rims in dried colloidal films. (United States)

    Parneix, C; Vandoolaeghe, P; Nikolayev, V S; Quéré, D; Li, J; Cabane, B


    We describe a spatial pattern arising from the nonuniform evaporation of a colloidal film. Immediately after the film deposition, an obstacle is positioned above its free surface, minimizing evaporation at this location. In a first stage, the film dries everywhere but under the obstacle, where a liquid region remains. Subsequently, this liquid region evaporates near its boundaries with the dry film. This loss of water causes a flow of liquid and particles from the center of the obstructed region to its periphery. The final film has a dip surrounded by a rim whose diameter is set by the obstacle. This turns out to be a simple technique for structuring films of nanometric thickness.

  11. Engineering bispecificity into a single albumin-binding domain.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available Bispecific antibodies as well as non-immunoglobulin based bispecific affinity proteins are considered to have a very high potential in future biotherapeutic applications. In this study, we report on a novel approach for generation of extremely small bispecific proteins comprised of only a single structural domain. Binding to tumor necrosis factor-α (TNF-α was engineered into an albumin-binding domain while still retaining the original affinity for albumin, resulting in a bispecific protein composed of merely 46 amino acids. By diversification of the non albumin-binding side of the three-helix bundle domain, followed by display of the resulting library on phage particles, bispecific single-domain proteins were isolated using selections with TNF-α as target. Moreover, based on the obtained sequences from the phage selection, a second-generation library was designed in order to further increase the affinity of the bispecific candidates. Staphylococcal surface display was employed for the affinity maturation, enabling efficient isolation of improved binders as well as multiparameter-based sortings with both TNF-α and albumin as targets in the same selection cycle. Isolated variants were sequenced and the binding to albumin and TNF-α was analyzed. This analysis revealed an affinity for TNF-α below 5 nM for the strongest binders. From the multiparameter sorting that simultaneously targeted TNF-α and albumin, several bispecific candidates were isolated with high affinity to both antigens, suggesting that cell display in combination with fluorescence activated cell sorting is a suitable technology for engineering of bispecificity. To our knowledge, the new binders represent the smallest engineered bispecific proteins reported so far. Possibilities and challenges as well as potential future applications of this novel strategy are discussed.

  12. Rhythmic cluster generation in strongly driven colloidal dispersions


    Wensink, H. H.; Löwen, H.


    We study the response of a nematic colloidal dispersion of rods to a driven probe particle which is dragged with high speed through the dispersion perpendicular to the nematic director. In front of the dragged particle, clusters of rods are generated which rhythmically grow and dissolve by rotational motion. We find evidence for a mesoscopic cluster-cluster correlation length, {\\em independent} of the imposed drag speed. Our results are based on non-equilibrium Brownian dynamics computer simu...

  13. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P. [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)


    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  14. 21 CFR 640.80 - Albumin (Human). (United States)


    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Albumin (Human). 640.80 Section 640.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Albumin (Human) § 640.80 Albumin (Human). (a) Proper...

  15. Release of colloids and polycyclic aromatic hydrocarbons from a contaminated soil under natural conditions (United States)

    Jann, S.; Totsche, K. U.; Kögel-Knabner, I.


    Mobile colloidal particles play an important role in the carrier-facilitated transport of strongly sorbing solutes. They act as a possible sorbent for contaminants and are possible pollutant carriers. Knowledge on the release and transport of soil-borne colloidal particles is mandatory for the understanding of the mobility of hydrophobic or surface-complexing contaminants. In soils, the major fraction of colloidal phase particles is of organic provenience. Their mobility in soils is controlled by the release from and the interactions with the immobile solid phase, by microbial formation processes as well as by the flow regime. Important factors of the release and transport are the site-specific meteorological conditions like groundwater recharge, temperature and moisture regime, and amount and distribution of precipitation. We studied the release of natural organic colloids and polycyclic aromatic hydrocarbons (PAH) from a coarse textured, calcareous porous media under field conditions. Three natural gradient lysimeters and nine precipitation gauges were installed at a contaminated site. Sampling of the seepage water was triggered by rainfall events. Analysis of the samples comprised the determination of the 16 EPA-PAH in the liquid phase and in the colloidal and suspended particle fraction, dissolved and colloidal phase organic carbon (DCOC), pH, electrolytic conductivity and turbidity. Preliminary results show a direct response of the release of colloids to strong rainfall events. The amount of seepage corresponds directly with the precipitation rate. Mean concentrations of DCOC in the seepage water range between 2 and 6 mg/l. PAH concentrations are very low in the liquid phase but reach up to 660 mg/kg in the colloidal and suspended particle fraction. This points to the importance of colloid-facilitated transport of the contaminant through the unsaturated soil zone.

  16. Combined time-lapse magnetic resonance imaging and modeling to investigate colloid deposition and transport in porous media


    LEHOUX, Alizée; FAURE, Paméla; LAFOLIE, Francois; RODTS, Stéphane; COURTIER-MURIAS, Denis; COUSSOT, Philippe; MICHEL, Eric


    Colloidal particles can act as vectors of adsorbed pollutants in the subsurface, or be themselves pollutants. They can reach the aquifer and impair groundwater quality. The mechanisms of colloid transport and deposition are often studied in columns filled with saturated porous media. Time-lapse profiles of colloid concentration inside the columns have occasionally been derived from magnetic resonance imaging (MRI) data recorded in transport experiments. These profiles are valuable, in additio...

  17. Sampling and characterisation of groundwater colloids in ONKALO at Olkiluoto, Finland, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Takala, M.; Ojala, S.; Jarvinen, E.; Manninen, P. [Ramboll Finland Oy, Espoo (Finland)


    The purpose of this study was to estimate the concentration of colloids and composition of the colloid phase on the basis of the water chemistry results of filtered and unfiltered water samples and to compare the results with the previous ones. The water samples were collected from groundwater stations ONK-PVA1 and ONK-PVA3 in October 2011. The colloid concentrations were determined from scanning electron microscopy (SEM) micrographs taken from the filters. The change in the water chemistry due to filtration was also analysed. The decrease of element concentrations due to filtration would possibly reflect the composition of the colloid phase. Because the concentration of the colloids is very low, two parallel water samples were analysed five times with an Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) analyser so that the chemical differences between the filtered and unfiltered water could be evaluated. The colloid concentration in ONK-PVA1, determined by the single particle analysis of SEM micrographs, was 6 {mu}g/l while the colloid concentration in ONK-PVA3 was 7 {mu}g/l. The colloid phase composition could not be reliably determined due to the low colloid concentration. (orig.)

  18. Experimental analysis of colloid capture by a cylindrical collector in laminar overland flow. (United States)

    Wu, Lei; Gao, Bin; Muñoz-Carpena, Rafael


    Although colloid-facilitated contaminant transport in water flow is a well-known contamination process, little research has been conducted to investigate the transport of colloidal particles through emergent vegetation in overland flow. In this work, a series of laboratory experiments were conducted to measure the single-collector contact efficiency (η(0)) of colloid capture by a simulated plant stem in laminar lateral flow. Fluorescent microspheres of various sizes were used as experimental colloids. The colloid suspensions were applied to a glass cylinder installed in a small size flow chamber at different flow rates. Two cylinder sizes were tested in the experiment and silicone grease was applied to the cylinder surface to make it favorable for colloid deposition. Our results showed that increases in flow rate and collector size reduced the value of η(0) and a minimum value of η(0) might exist for a colloid size. The experimental data were compared to theoretical predictions of different single-collector contact efficiency models. The results indicated that existing single-collector contact efficiency models underestimated the η(0) of colloid capture by the cylinders in laminar overland flow. A regression equation of η(0) as a function of collector Reynolds number (Re(c)) and Peclet number (N(Pe)) was developed and fit the experimental data very well (R(2) > 0.98). This regression equation can be used to help construct and refine mathematical models of colloid transport and filtration in laminar overland flow on vegetated surfaces.

  19. Transport of synthetic colloids through single saturated fractures: A literature review

    International Nuclear Information System (INIS)

    Reimus, P.W.


    Colloids having the same surface charge sign as the bulk of the geologic media in a groundwater system may be able to travel through the system faster than soluble species because they will follow fluid streamlines more closely and they should have less tendency to diffuse into pores or dead spaces in the media than soluble species. Synthetic colloids with uniform, controlled properties may be ideal for serving as open-quotes worst-caseclose quotes tracers that provide lower-bound estimates of contaminant travel times in hydrologic systems. This report discusses a review of the literature pertaining to colloid transport in single saturated natural fractures. After a brief background discussion to put the literature review in perspective, the phenomenon of colloid transport in saturated fractures is divided into three major topics, each of which is reviewed in detail: (1) saturated fluid flow through fractures; (2) colloid transport by convection, diffusion, and force fields; and (3) colloid interactions with surfaces. It is suggested that these phenomena be accounted for in colloid transport models by using (1) lubrication theory to describe water flow through fractures, (2) particle tracking methods to describe colloid transport in fractures, and (3) a kinetic boundary layer approximation to describe colloid interactions with fracture walls. These methods offer better computational efficiency and better experimental accessibility to model parameters than rigorously solving the complete governing equations

  20. Fibrinogen estimates are influenced by methods of measurement and hemodilution with colloid plasma expanders. (United States)

    Fenger-Eriksen, Christian; Moore, Gary W; Rangarajan, Savita; Ingerslev, Jørgen; Sørensen, Benny


    Measurement of plasma fibrinogen is often required in critically ill patients or massively bleeding patients being resuscitated with colloid plasma expander. This study aimed at evaluating different assays of plasma fibrinogen after in vitro dilution with commonly used plasma expanders and challenged the hypothesis that levels of fibrinogen are estimated significantly higher in plasma diluted with colloid plasma expander compared with isotonic saline. Fibrinogen measurements were established in plasma samples each diluted in vitro to 30 or 50% with isotonic saline, hydroxyethyl starch (HES) 130/0.4, and human albumin. Fibrinogen levels were assessed using an antigen determination, three photo-optical Clauss methods, one mechanical Clauss method, a prothrombin-derived method, and viscoelastic measurement through thromboelastometry. Measurement of fibrinogen levels was significantly different when performed on alternate analytical platforms. By 30 and 50% dilution with HES 130/0.4 coagulation analyzers using the photo-optical Clauss methods significantly overestimated levels of fibrinogen. Dilution with human albumin did not affect fibrinogen levels except from one analyzer by 50% dilution level. Viscoelastic measurement of fibrin polymerization was reduced at both dilution levels and appeared to reflect the impairment of fibrin polymerization induced by HES 130/0.4 and to a lesser extent human albumin. This study demonstrated that different automated coagulation analyzers revealed significantly different levels of fibrinogen. The presence of colloid plasma expander gave rise to erroneous high levels of fibrinogen returned from some coagulation analyzers employing the method of Clauss. © 2010 American Association of Blood Banks.

  1. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent (United States)

    Fahrländer, E.; Schelhaas, S.; Jacobs, A. H.; Langer, K.


    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a ‘brush’ conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life.

  2. The origin of flow-induced alignment of spherical colloids in shear-thinning viscoelastic fluids. (United States)

    Santos de Oliveira, I S; den Otter, W K; Briels, W J


    We have studied the poorly understood process of flow-induced structure formation by colloids suspended in shear-thinning fluids. These viscoelastic fluids contain long flexible chains whose entanglements appear and disappear continuously as a result of brownian motion and the applied shear flow. Responsive particle dynamics simulates each chain as a single smooth brownian particle, with slowly evolving inter-particle degrees of freedom accounting for the entanglements. The colloids mixed homogeneously in all simulated quiescent dispersions and they remain dispersed under slow shear flow. Beyond a critical shear rate, which varies depending on the fluid, the colloids aggregate and form flow-aligned strings in the bulk of the fluid. In this work we explore the physical origins of this hitherto unexplained ordering phenomena, both by systematically varying the parameters of the simulated fluids and by analyzing the flow-induced effective colloidal interactions. We also present an expression for the critical shear rate of the studied fluids.

  3. Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background. (United States)

    Iwata, Masanori; Teshima, Midori; Seki, Takahiro; Yoshioka, Shinya; Takeoka, Yukikazu


    Inspired by Steller's jay, which displays angle-independent structural colors, angle-independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer-sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on-off system is successfully built by controlling the background brightness of the colloidal amorphous arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mobile colloid generation induced by a cementitious plume: mineral surface-charge controls on mobilization. (United States)

    Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C


    Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.

  5. Flocculation of diatomite by methylated egg albumin


    Seki, Hideshi; Suzuki, Akira


    A common and inexpensive protein, egg albumin, was applied to the solid-liquid separation or flocculation of diatomite. Egg albumin was methylated in a 0.1 M HCl methyl alcohol solution at room temperature. About 90% of the carboxylic groups of egg albumin could be methylated within 24 h. The adsorption of egg albumin to diatomite at pH6.8 was remarkably enhanced by methylation. The adsorption constant of methylated egg albumin to diatomite at 30°C was about 100-fold larger than that of nativ...

  6. Static and dynamic friction in sliding colloidal monolayers. (United States)

    Vanossi, Andrea; Manini, Nicola; Tosatti, Erio


    In a pioneer experiment, Bohlein et al. realized the controlled sliding of two-dimensional colloidal crystals over laser-generated periodic or quasi-periodic potentials. Here we present realistic simulations and arguments that besides reproducing the main experimentally observed features give a first theoretical demonstration of the potential impact of colloid sliding in nanotribology. The free motion of solitons and antisolitons in the sliding of hard incommensurate crystals is contrasted with the soliton-antisoliton pair nucleation at the large static friction threshold F(s) when the two lattices are commensurate and pinned. The frictional work directly extracted from particles' velocities can be analyzed as a function of classic tribological parameters, including speed, spacing, and amplitude of the periodic potential (representing, respectively, the mismatch of the sliding interface and the corrugation, or "load"). These and other features suggestive of further experiments and insights promote colloid sliding to a unique friction study instrument.

  7. On the nature of fibres grown from nanodiamond colloids

    International Nuclear Information System (INIS)

    Batsanov, Stepan S.; Guriev, Dmitry L.; Gavrilkin, Sergey M.; Hamilton, Katherine A.; Lindsey, Keith; Mendis, Budhika G.; Riggs, Helen J.; Batsanov, Andrei S.


    Contrary to earlier assumptions, the fibres spontaneously forming in aqueous colloids of detonation-produced nanodiamond (ND), do not consist purely of ND particles but are agglomerates of the latter with water and/or soft matter of biological (probably fungal) origin, as shown by elemental analysis, IR and Raman spectroscopy, X-ray diffraction, optical refractometry, optical and electron (TEM and ESEM)microscopy, as well as biological staining tests. - Graphical abstract: Fibres spontaneously formed in water colloids of nanodiamond, consist of diamond nanoparticles dispersed in bioorganic matter. - Highlights: • Entangled fibres slowly grow in dilute (∼0.1%) colloids of nanodiamond in water. • Refractive index (∼1.56), electron microscopy and CHN analysis indicate nanodiamond dispersed in organic matter. • Explanation: nanodiamond grains help the growth of fungi which assemble them.

  8. On the nature of fibres grown from nanodiamond colloids

    Energy Technology Data Exchange (ETDEWEB)

    Batsanov, Stepan S., E-mail: [National Research Institute of Physical-Technical Measurements, Moscow Region (Russian Federation); Guriev, Dmitry L.; Gavrilkin, Sergey M. [National Research Institute of Physical-Technical Measurements, Moscow Region (Russian Federation); Hamilton, Katherine A.; Lindsey, Keith [School of Biological and Biomedical Sciences, Durham University, Durham (United Kingdom); Mendis, Budhika G. [Physics Department, Durham University, Durham (United Kingdom); Riggs, Helen J.; Batsanov, Andrei S. [Chemistry Department, Durham University, Durham (United Kingdom)


    Contrary to earlier assumptions, the fibres spontaneously forming in aqueous colloids of detonation-produced nanodiamond (ND), do not consist purely of ND particles but are agglomerates of the latter with water and/or soft matter of biological (probably fungal) origin, as shown by elemental analysis, IR and Raman spectroscopy, X-ray diffraction, optical refractometry, optical and electron (TEM and ESEM)microscopy, as well as biological staining tests. - Graphical abstract: Fibres spontaneously formed in water colloids of nanodiamond, consist of diamond nanoparticles dispersed in bioorganic matter. - Highlights: • Entangled fibres slowly grow in dilute (∼0.1%) colloids of nanodiamond in water. • Refractive index (∼1.56), electron microscopy and CHN analysis indicate nanodiamond dispersed in organic matter. • Explanation: nanodiamond grains help the growth of fungi which assemble them.

  9. Prediction of colloid osmotic pressure in renal patients. (United States)

    Geranton, F; Chantrel, F; Bouiller, M; Muller, S; Kolb, I; Moulin, B; Hannedouche, T


    Colloid osmotic pressure (COP) plays a major role in transcapillary fluid shift, including in the glomerular capillary. However, COP is generally estimated by quadratic equations derived from total plasma protein and/or albumin concentrations. The aim of this study was to assess the accuracy of such equations, and to determine the potential role of liver-derived non-albumin proteins in the maintenance of COP, especially in patients presenting a nephrotic syndrome. COP was directly assessed with an osmometer in 170 patients (347 samples), and the results compared with calculated COP, using 4 previously published formulas [Brenner 1972, Canaan-Kühl 1993, Landis-Pappenheimer 1963, Navar 1977]. The 4 calculated COP values were strongly correlated with measured COP (range r = 0.88 - 0.96). However, in absolute terms, measured COP differed significantly from each of the 4 calculated mean values of COP (p equation was: COP(mmHg) = 6.89 x (albumin + fibrinogen) (g/dl) - 5.68. None of the 4 most commonly used formulas correctly predicted COP, and direct measurement of COP is still preferable for research studies. The introduction of fibrinogen into the formula estimating COP leads to higher accuracy, and therefore represents a more convenient model for routine evaluation.

  10. Soft glassy colloidal arrays in an ionic liquid: colloidal glass transition, ionic transport, and structural color in relation to microstructure. (United States)

    Ueno, Kazuhide; Sano, Yuta; Inaba, Aya; Kondoh, Masashi; Watanabe, Masayoshi


    The colloidal glass transition, ionic transport, and optical properties of soft glassy colloidal arrays (SGCAs) that consist of poly(methyl methacrylate) (PMMA)-grafted silica nanoparticles (PMMA-g-NPs) and a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)amide ([C(2)mim][NTf(2)]), were investigated. At lower particle concentrations, PMMA-g-NPs were well-suspended in the IL without any aggregation or sedimentation, and the dilute suspensions showed liquid-like behavior. However, above a certain particle concentration, the suspensions became solidified and exhibited different structural colors depending on the particle concentrations. The liquid-solid transition of the SGCAs was essentially caused by colloidal glass transition. Due to the soft repulsive interaction between the particles, the effective volume fraction of the particle (ϕ(eff)) required for colloidal glass transition was higher than that of the hard sphere system and found to be approximately 0.70-0.74. The SGCA had sufficient ionic conductivity, which was greater than 10(-3) S cm(-1) at room temperature, even in the highly concentrated region. For ionic transport of the cation and the anion in the SGCAs, the decrease in diffusivity observed with the addition of the particles (D(g)/D(0)) was slightly greater for the [NTf(2)] anion than that of the [C(2)mim] cation, suggesting that the [NTf(2)] anion preferentially interacts with the PMMA chains. The SGCAs showed homogeneous, nonbrilliant, and angle-independent structural colors above the glass transition volume fraction. In addition, the color of the SGCAs changed from red to green to blue as the particle concentration increased. A linear relationship was found between the maximum wavelength of the reflection spectra and the center-to-center distance in the SGCAs.

  11. Removal of colloidal biogenic selenium from wastewater. (United States)

    Staicu, Lucian C; van Hullebusch, Eric D; Oturan, Mehmet A; Ackerson, Christopher J; Lens, Piet N L


    Biogenic selenium, Se(0), has colloidal properties and thus poses solid-liquid separation problems, such as poor settling and membrane fouling. The separation of Se(0) from the bulk liquid was assessed by centrifugation, filtration, and coagulation-flocculation. Se(0) particles produced by an anaerobic granular sludge are normally distributed, ranging from 50 nm to 250 nm, with an average size of 166±29 nm and a polydispersity index of 0.18. Due to its nanosize range and protein coating-associated negative zeta potential (-15 mV to -23 mV) between pH 2 and 12, biogenic Se(0) exhibits colloidal properties, hampering its removal from suspension. Centrifugation at different centrifugal speeds achieved 22±3% (1500 rpm), 73±2% (3000 rpm) and 91±2% (4500 rpm) removal. Separation by filtration through 0.45 μm filters resulted in 87±1% Se(0) removal. Ferric chloride and aluminum sulfate were used as coagulants in coagulation-flocculation experiments. Aluminum sulfate achieved the highest turbidity removal (92±2%) at a dose of 10(-3) M, whereas ferric chloride achieved a maximum turbidity removal efficiency of only 43±4% at 2.7×10(-4) M. Charge repression plays a minor role in particle neutralization. The sediment volume resulting from Al2(SO3)4 treatment is three times larger than that produced by FeCl3. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Transport of the colloid matter of riverine runoff through estuaries (United States)

    Lasareva, E. V.; Parfenova, A. M.; Demina, T. S.; Romanova, N. D.; Belyaev, N. A.; Romankevich, E. A.


    A procedure for separating the colloid component of natural waters is proposed. It was shown that this component is the main form of matter transfer in Ob River runoff, because the mass of colloid substance is two orders of magnitude higher than that of particulate matter in the outer part of the estuary. Simulation and field experiments revealed the influence of nature and concentration of organic matter on their ability to stabilize or flocculate clay particles with an increase in salinity, thus affecting the range of transfer of riverine runoff matter. It was shown that the interaction of humic acids and clay particles, as well as the increase in hydrophobic properties of a flocculant, improve flocculation efficiency. Criteria are proposed to recognize in the estuarine region areas of pronounced contribution of flocculation processes to sedimentation of fine particles. It is shown that the newly formed organic matter produced by biota under saline stress might be flocculants of fine particulate matter.

  13. TiO2 (NanoParticles Extracted from Sugar-Coated Confectionery

    Directory of Open Access Journals (Sweden)

    Martina Lorenzetti


    Full Text Available As the debate about TiO2 food additive safety is still open, the present study focuses on the extraction and characterisation of TiO2 (nanoparticles added as a whitening agent to confectionary products, that is, chewing gum pellets. The aim was to (1 determine the colloidal properties of suspensions mutually containing TiO2 and all other chewing gum ingredients in biologically relevant media (preingestion conditions; (2 characterise the TiO2 (nanoparticles extracted from the chewing gum coating (after ingestion; and (3 verify their potential photocatalysis. The particle size distribution, in agreement with the zeta potential results, indicated that a small but significant portion of the particle population retained mean dimensions close to the nanosize range, even in conditions of moderate stability, and in presence of all other ingredients. The dispersibility was enhanced by proteins (i.e., albumin, which acted as surfactants and reduced particle size. The particle extraction methods involved conventional techniques and no harmful chemicals. The presence of TiO2 particles embedded in the sugar-based coating was confirmed, including 17–30% fraction in the nanorange (<100 nm. The decomposition of organics under UV irradiation proved the photocatalytic activity of the extracted (nanoparticles. Surprisingly, photocatalysis occurred even in presence of an amorphous SiO2 layer surrounding the TiO2 particles.

  14. Organized thiol functional groups in mesoporous core shell colloids

    Energy Technology Data Exchange (ETDEWEB)

    Marchena, Martin H. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Granada, Mara [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Bordoni, Andrea V. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Joselevich, Maria [Asociacion Civil Expedicion Ciencia, Cabrera 4948, C1414BGP Buenos Aires (Argentina); Troiani, Horacio [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Williams, Federico J. [DQIAQyF-INQUIMAE FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires (Argentina); Wolosiuk, Alejandro, E-mail: [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina)


    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  15. Quantitative Assessment of the Potential Significance of Colloids to the KBS-3 Disposal Concept

    International Nuclear Information System (INIS)

    Klos, R.A.; White, M.J.; Wickham, S.M.; Bennett, D.G.; Hicks, T.W.


    Colloids are minute particles in the size range 1 nm to 1 μm that can remain suspended in water, and may influence radionuclide transport in radioactive waste disposal systems. Galson Sciences Ltd (GSL) has undertaken a quantitative assessment of the impact that colloid-facilitated radionuclide transport may have on the performance of the Swedish KBS-3 concept for disposal of high-level radioactive waste and spent fuel. This assessment has involved the evaluation and application of SKI's colloid transport model, COLLAGE II, modelling of km-scale Pu transport at the Nevada Test Site (NTS), USA, and identification of circumstances under which colloid-facilitated transport could be important for a KBS-3-type environment. Colloids bearing traces of plutonium from the BENHAM underground nuclear test have been detected in samples obtained from Nevada Test Site (NTS) groundwater wells 1.3 km from the detonation point. Plutonium is generally fairly immobile in groundwater systems, and it has been suggested that colloids may have caused the plutonium from the BENHAM test to be transported 1.3 km in only 30 years. This hypothesis has been tested by modelling plutonium transport in a fracture with similar characteristics to those present in the vicinity of the BENHAM test. SKI's colloid transport code, COLLAGE II, considers radionuclide transport in a one-dimensional planar fracture and represents radionuclide-colloid sorption and desorption assuming first-order, linear kinetics. Recently published data from both the ongoing NTS site investigation and from the associated Yucca Mountain Project have been used to define a COLLAGE II dataset. The kinetics of radionuclide-colloid sorption and desorption have been found to be crucial in explaining the transport of plutonium associated with colloids, as inferred at the NTS. Specifically, it has been found that for plutonium to have been transported by colloids over the full 1.3 km transport path, it is likely that the plutonium

  16. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating. (United States)

    Fatisson, Julien; Quevedo, Ivan R; Wilkinson, Kevin J; Tufenkji, Nathalie


    The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24h of incubation at 37°C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Field Scale Variation in Water Dispersible Colloids from Aggregates and Intact Soil Samples

    DEFF Research Database (Denmark)

    Nørgaard, Trine; Møldrup, Per; Ferré, Ty P A

    . It is, however, difficult to quantify the amount of colloids ready available to participate in colloid-facilitated transport. In literature, the part of the colloidal fraction that readily disperses into suspension is referred to as water-dispersible clay (WDC). In this study we used two methods......Colloid-facilitated transport can play an important role in the transport of chemicals through the soil profile. The negative surface charge and large surface area makes colloids perfect carriers for strongly sorbing chemicals, like phosphorus and certain pesticides, in highly structured soils...... for measuring the amount of WDC (soil sampled from an agricultural 1.69 ha field in a 15 x 15 m grid (65 points). In method no. 1 laser diffraction was applied to continuously measure the particle size distribution of 1-2 mm intact soil aggregates at two initial moisture...


    Hitchcock, David I.


    1. The globulin prepared from ox serum by dilution and precipitation with carbon dioxide has been found, by electrometric titration experiments, to behave like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of globulin chloride, phosphate, or acetate and a solution of the corresponding acid, free from protein, separated from the globulin by a collodion membrane, was found to be influenced by hydrogen ion concentration and salt concentration in the way predicted by Donnan's theory of membrane equilibrium. In experiments with sodium globulinate and sodium hydroxide it was found that the potential difference could be similarly explained. 3. The osmotic pressure of such solutions could be qualitatively accounted for by the Donnan theory, but exhibited a discrepancy which is explicable by analogy with certain experiments of Loeb on gelatin. 4. The application of Loeb's theory of colloidal behavior, which had previously been found to hold in the case of gelatin, casein, egg albumin, and edestin, has thus been extended to another protein, serum globulin. PMID:19871977

  19. Virus-sized colloid transport in a single pore: model development and sensitivity analysis. (United States)

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S; Raoof, Amir


    A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid-collector surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-collector interaction forces dominate the transport in the potential region where colloid deposition occurs. The governing equations are non-dimensionalized and solved numerically. A sensitivity analysis indicates that the virus-sized colloid transport and deposition is significantly affected by various pore-scale parameters such as the surface potentials on colloid and collector, ionic strength of the solution, flow velocity, pore size and colloid size. The adsorbed concentration and hence, the favorability of the surface for adsorption increases with: (i) decreasing magnitude and ratio of surface potentials on colloid and collector, (ii) increasing ionic strength and (iii) increasing pore radius. The adsorbed concentration increases with increasing Pe, reaching a maximum value at Pe=0.1 and then decreases thereafter. Also, the colloid size significantly affects particle deposition with the adsorbed concentration increasing with increasing particle radius, reaching a maximum value at a particle radius of 100nm and then decreasing with increasing radius. System hydrodynamics is found to have a greater effect on larger particles than on smaller ones. The secondary minimum contribution to particle deposition has been found to increase as the favorability of the surface for adsorption decreases. The sensitivity of the model to a given parameter will be high if

  20. Colloid facilitated transport of lanthanides through discrete fractures in chalk (United States)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam


    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of