WorldWideScience

Sample records for albicans protein microarray

  1. Nanotechnologies in protein microarrays.

    Science.gov (United States)

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.

  2. Microfluidic Methods for Protein Microarrays

    OpenAIRE

    Hartmann, Michael

    2010-01-01

    Protein microarray technology has an enormous potential for in vitro diagnostics (IVD)1. Miniaturized and parallelized immunoassays are powerful tools to measure dozens of parameters from minute amounts of sample, whilst only requiring small amounts of reagent. Protein microarrays have become well-established research tools in basic and applied research and the first diagnostic products are already released on the market. However, in order for protein microarrays to become broadly accepted to...

  3. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    DNA microarrays have changed the field of biomedical sciences over the past 10 years. For several reasons, antibody and other protein microarrays have not developed at the same rate. However, protein and antibody arrays have emerged as a powerful tool to complement DNA microarrays during the post...

  4. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    years. A genome-scale protein microarray has been demonstrated for identifying protein-protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria...

  5. Diagnostic and analytical applications of protein microarrays.

    Science.gov (United States)

    Dufva, Martin; Christensen, Claus B V

    2005-01-01

    DNA microarrays have changed the field of biomedical sciences over the past 10 years. For several reasons, antibody and other protein microarrays have not developed at the same rate. However, protein and antibody arrays have emerged as a powerful tool to complement DNA microarrays during the past 5 years. A genome-scale protein microarray has been demonstrated for identifying protein-protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria and toxins, identification of allergen reactivity and autoantibodies. They have also demonstrated the ability to measure the absolute concentration of small molecules. Besides their capacity for parallel diagnostics, microarrays can be more sensitive than traditional methods such as enzyme-linked immunosorbent assay, mass spectrometry or high-performance liquid chromatography-based assays. However, for protein and antibody arrays to be successfully introduced into diagnostics, the biochemistry of immunomicroarrays must be better characterized and simplified, they must be validated in a clinical setting and be amenable to automation or integrated into easy-to-use systems, such as micrototal analysis systems or point-of-care devices.

  6. Visual Analysis of DNA Microarray Data for Accurate Molecular Identification of Non-albicans Candida Isolates from Patients with Candidemia Episodes

    OpenAIRE

    De Luca Ferrari, Michela; Ribeiro Resende, Mariângela; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Gonoi, Tohru; Mikami, Yuzuru; Tominaga, Kenichiro; Kamei, Katsuhiko; Zaninelli Schreiber, Angelica; Trabasso, Plinio; Moretti, Maria Luiza

    2013-01-01

    The performance of a visual slide-based DNA microarray for the identification of non-albicans Candida spp. was evaluated. Among 167 isolates that had previously been identified by Vitek 2, the agreement between DNA microarray and sequencing results was 97.6%. This DNA microarray platform showed excellent performance.

  7. PMD: A Resource for Archiving and Analyzing Protein Microarray data.

    Science.gov (United States)

    Xu, Zhaowei; Huang, Likun; Zhang, Hainan; Li, Yang; Guo, Shujuan; Wang, Nan; Wang, Shi-Hua; Chen, Ziqing; Wang, Jingfang; Tao, Sheng-Ce

    2016-01-27

    Protein microarray is a powerful technology for both basic research and clinical study. However, because there is no database specifically tailored for protein microarray, the majority of the valuable original protein microarray data is still not publically accessible. To address this issue, we constructed Protein Microarray Database (PMD), which is specifically designed for archiving and analyzing protein microarray data. In PMD, users can easily browse and search the entire database by experimental name, protein microarray type, and sample information. Additionally, PMD integrates several data analysis tools and provides an automated data analysis pipeline for users. With just one click, users can obtain a comprehensive analysis report for their protein microarray data. The report includes preliminary data analysis, such as data normalization, candidate identification, and an in-depth bioinformatics analysis of the candidates, which include functional annotation, pathway analysis, and protein-protein interaction network analysis. PMD is now freely available at www.proteinmicroarray.cn.

  8. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  9. Novel Protein Microarray Technology to Examine Men with Prostate Cancer

    National Research Council Canada - National Science Library

    Lilja, Hans

    2005-01-01

    The authors developed a novel macro and nanoporous silicon surface for protein microarrays to facilitate high-throughput biomarker discovery, and high-density protein-chip array analyses of complex biological samples...

  10. Protein microarray-mediated detection of antienterovirus antibodies in serum.

    Science.gov (United States)

    Zhang, Aiying; Xiu, Bingshui; Zhang, Heqiu; Li, Ning

    2016-04-01

    To utilize prokaryotic gene expression and protein microarray to develop and evaluate a sensitive, accurate protein microarray assay for detecting antienterovirus antibodies in serum samples from patients with hand, foot and mouth disease (HFMD). Enterovirus 71 (EV71) and coxsackievirus A16 (CA16), two common causative agents for HFMD, were used for assay development. Serum was collected from patients with HFMD and healthy controls. EV71 and CA16 VP1 and VP3 genes were expressed in transfected Escherichia coli; the resultant VP1 and 3 proteins were used in a microarray assay for human serum EV71 and CA16 immunoglobulin (Ig) M and IgG. To validate the microarray assay, serum samples were tested for EV71 IgM using enzyme-linked immunosorbent assay (ELISA). Out of 50 patients with HFMD, EV71 IgM and CA16 IgM was detected in 80% and 44% of serum samples, respectively, using protein microarray, and EV71 IgM was detected in 78% of samples using ELISA. Protein microarray and ELISA showed 100% specificity for EV71-IgM detection. The protein microarray assay developed in the present study shows potential as a sensitive technique for detecting EV71 IgM in serum samples from patients with HFMD. © The Author(s) 2016.

  11. Protein microarray: sensitive and effective immunodetection for drug residues

    Directory of Open Access Journals (Sweden)

    Zer Cindy

    2010-02-01

    Full Text Available Abstract Background Veterinary drugs such as clenbuterol (CL and sulfamethazine (SM2 are low molecular weight ( Results The artificial antigens were spotted on microarray slides. Standard concentrations of the compounds were added to compete with the spotted antigens for binding to the antisera to determine the IC50. Our microarray assay showed the IC50 were 39.6 ng/ml for CL and 48.8 ng/ml for SM2, while the traditional competitive indirect-ELISA (ci-ELISA showed the IC50 were 190.7 ng/ml for CL and 156.7 ng/ml for SM2. We further validated the two methods with CL fortified chicken muscle tissues, and the protein microarray assay showed 90% recovery while the ci-ELISA had 76% recovery rate. When tested with CL-fed chicken muscle tissues, the protein microarray assay had higher sensitivity (0.9 ng/g than the ci-ELISA (0.1 ng/g for detection of CL residues. Conclusions The protein microarrays showed 4.5 and 3.5 times lower IC50 than the ci-ELISA detection for CL and SM2, respectively, suggesting that immunodetection of small molecules with protein microarray is a better approach than the traditional ELISA technique.

  12. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    Science.gov (United States)

    Herbáth, Melinda; Papp, Krisztián; Balogh, Andrea; Matkó, János; Prechl, József

    2014-09-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications.

  13. Candida albicans Hom6 is a homoserine dehydrogenase involved in protein synthesis and cell adhesion

    Directory of Open Access Journals (Sweden)

    Pei-Wen Tsai

    2017-12-01

    Full Text Available Background/Purpose: Candida albicans is a common fungal pathogen in humans. In healthy individuals, C. albicans represents a harmless commensal organism, but infections can be life threatening in immunocompromised patients. The complete genome sequence of C. albicans is extremely useful for identifying genes that may be potential drug targets and important for pathogenic virulence. However, there are still many uncharacterized genes in the Candida genome database. In this study, we investigated C. albicans Hom6, the functions of which remain undetermined experimentally. Methods: HOM6-deleted and HOM6-reintegrated mutant strains were constructed. The mutant strains were compared with wild-type in their growth in various media and enzyme activity. Effects of HOM6 deletion on translation were further investigated by cell susceptibility to hygromycin B or cycloheximide, as well as by polysome profiling, and cell adhesion to polystyrene was also determined. Results: C. albicans Hom6 exhibits homoserine dehydrogenase activity and is involved in the biosynthesis of methionine and threonine. HOM6 deletion caused translational arrest in cells grown under amino acid starvation conditions. Additionally, Hom6 protein was found in both cytosolic and cell-wall fractions of cultured cells. Furthermore, HOM6 deletion reduced C. albicans cell adhesion to polystyrene, which is a common plastic used in many medical devices. Conclusion: Given that there is no Hom6 homologue in mammalian cells, our results provided an important foundation for future development of new antifungal drugs. Keywords: Candida albicans, cell adhesion, Hom6, homoserine dehydrogenase, protein synthesis

  14. Specific serology for emerging human coronaviruses by protein microarray

    NARCIS (Netherlands)

    Reusken, C.; Mou, H.; Godeke, G. J.; van der Hoek, L.; Meyer, B.; Müller, M. A.; Haagmans, B.; de Sousa, R.; Schuurman, N.; Dittmer, U.; Rottier, P.; Osterhaus, A.; Drosten, C.; Bosch, B. J.; Koopmans, M.

    2013-01-01

    We present a serological assay for the specific detection of IgM and IgG antibodies against the emerging human coronavirus hCoV-EMC and the SARS-CoV based on protein microarray technology. The assay uses the S1 receptor-binding subunit of the spike protein of hCoV-EMC and SARS-CoV as antigens. The

  15. A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans.

    Science.gov (United States)

    Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y

    1997-02-01

    Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.

  16. Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence.

    Directory of Open Access Journals (Sweden)

    Lifang Li

    2015-09-01

    Full Text Available The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(PH quinone oxidoreductases, a C. albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance to oxidation was restored in the quadruple mutant by expressing either Escherichia coli wrbA or mammalian NQO1, two distinct types of quinone reductases. FLPs were detected at the plasma membrane in C. albicans, and the quadruple mutant was more sensitive to linolenic acid, a polyunsaturated fatty acid that can auto-oxidize and promote lipid peroxidation. These observations suggested that FLPs reduce ubiquinone (coenzyme Q, enabling it to serve as an antioxidant in the membrane. In support of this, a C. albicans coq3Δ mutant that fails to synthesize ubiquinone was also highly sensitive to oxidative stress. FLPs are critical for survival in the host, as the quadruple mutant was avirulent in a mouse model of systemic candidiasis under conditions where infection with wild type C. albicans was lethal. The quadruple mutant cells initially grew well in kidneys, the major site of C. albicans growth in mice, but then declined after the influx of neutrophils and by day 4 post-infection 33% of the mice cleared the infection. Thus, FLPs and ubiquinone are important new antioxidant mechanisms that are critical for fungal virulence. The potential of FLPs as novel targets for antifungal therapy is further underscored by their absence in mammalian cells.

  17. Dynamics of Agglutinin-Like Sequence (ALS) Protein Localization on the Surface of Candida Albicans

    Science.gov (United States)

    Coleman, David Andrew

    2009-01-01

    The ALS gene family encodes large cell-surface glycoproteins associated with "C. albicans" pathogenesis. Als proteins are thought to act as adhesin molecules binding to host tissues. Wide variation in expression levels among the ALS genes exists and is related to cell morphology and environmental conditions. "ALS1," "ALS3," and "ALS4" are three of…

  18. Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and Candida albicans.

    Directory of Open Access Journals (Sweden)

    Chen Ding

    Full Text Available Candida parapsilosis is a pathogenic fungus that is major cause of hospital-acquired infection, predominantly due to growth as biofilms on indwelling medical devices. It is related to Candida albicans, which remains the most common cause of candidiasis disease in humans. The transcription factor Bcr1 is an important regulator of biofilm formation in vitro in both C. parapsilosis and C. albicans. We show here that C. parapsilosis Bcr1 is required for in vivo biofilm development in a rat catheter model, like C. albicans. By comparing the transcription profiles of a bcr1 deletion in both species we found that regulation of expression of the CFEM family is conserved. In C. albicans, three of the five CFEM cell wall proteins (Rbt5, Pga7 and Csa1 are associated with both biofilm formation and acquisition of iron from heme, which is an important virulence characteristic. In C. parapsilosis, the CFEM family has undergone an expansion to 7 members. Expression of three genes (CFEM2, CFEM3, and CFEM6 is dependent on Bcr1, and is induced in low iron conditions. All three are involved in the acquisition of iron from heme. However, deletion of the three CFEM genes has no effect on biofilm formation in C. parapsilosis. Our data suggest that the role of the CFEM family in iron acquisition is conserved between C. albicans and C. parapsilosis, but their role in biofilm formation is not.

  19. 17β-Estradiol inhibits estrogen binding protein-mediated hypha formation in Candida albicans.

    Science.gov (United States)

    Kurakado, Sanae; Kurogane, Rie; Sugita, Takashi

    2017-08-01

    Candida albicans is one of the most prevalent and clinically important fungal pathogens. The ability to change form depending on environmental stress is an important microbial virulence factor. A survey of compounds that inhibit this morphological change identified various steroids, including 17β-estradiol. Interestingly, C. albicans has proteins capable of binding to steroids, including estrogen binding protein (Ebp1). Estrogens regulate cell differentiation and proliferation in humans through estrogen receptor proteins. To determine whether EBP1 regulates a virulence factor, we investigated the effect of 17β-estradiol on the morphological transition of C. albicans using an ebp1 deletion mutant. Treatment with 10 μg/mL of 17β-estradiol inhibited hypha formation, whereas its effect on the ebp1 deletion mutant was decreased compared to that on the wild-type and revertant strains. These data suggest a new pathway for the yeast-to-hypha transition via EBP1 in C. albicans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Niche-Specific Requirement for Hyphal Wall protein 1 in Virulence of Candida albicans

    Science.gov (United States)

    Staab, Janet F.; Datta, Kausik; Rhee, Peter

    2013-01-01

    Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa. PMID:24260489

  1. [Possible Involvement of Surface Antigen Protein 2 in the Morphological Transition and Biofilm Formation of Candida albicans].

    Science.gov (United States)

    Okamoto-Shibayama, Kazuko; Kikuchi, Yuichiro; Kokubu, Eitoyo; Ishihara, Kazuyuki

    2017-01-01

    Surface antigen protein 2 (Csa2) is a member of the Candida albicans Common in Fungal Extracellular Membranes (CFEM) protein superfamily. We previously established its role in iron acquisition in C. albicans. However, the other roles of Csa2 remain unknown. Here, we compared growth, morphological transition, and biofilm formation among wild-type, Csa2-mutant, and complemented strains of C. albicans. Deletion of the Csa2 gene resulted in smaller and reduced colony growth, significant attenuation of the dimorphic transition under serum-inducing conditions, and reduced biofilm formation; complementation restored these levels to those of the wild-type. Our findings demonstrated that Csa2 participated in yeast-to-hyphae morphological switching under serum-inducing conditions and contributed to the biofilm formation of C. albicans. This work, therefore, provides novel insights into the potential roles of Csa2 in virulence of C. albicans.

  2. Candida albicans PROTEIN PROFILE CHANGES IN RESPONSE TO THE BUTANOLIC EXTRACT OF Sapindus saponariaL.

    Directory of Open Access Journals (Sweden)

    Adriana FIORINI

    2016-01-01

    Full Text Available Candida albicans is an opportunistic human pathogen that is capable of causing superficial and systemic infections in immunocompromised patients. Extracts of Sapindus saponaria have been used as antimicrobial agents against various organisms. In the present study, we used a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS to identify the changes in protein abundance of C. albicans after exposure to the minimal inhibitory concentration (MIC and sub-minimal inhibitory concentration (sub-MIC of the butanolic extract (BUTE of S. saponaria and also to fluconazole. A total of six different proteins with greater than 1.5 fold induction or repression relative to the untreated control cells were identified among the three treatments. In general, proteins/enzymes involved with the glycolysis (GPM1, ENO1, FBA1, amino acid metabolism (ILV5, PDC11 and protein synthesis (ASC1 pathways were detected. In conclusion, our findings reveal antifungal-induced changes in protein abundance of C. albicans. By using the previously identified components of the BUTE of S. saponaria(e.g., saponins and sesquiterpene oligoglycosides, it will be possible to compare the behavior of compounds with unknown mechanisms of action, and this knowledge will help to focus the subsequent biochemical work aimed at defining the effects of these compounds.

  3. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins.

    Science.gov (United States)

    Jordan, Rachael P C; Williams, David W; Moran, Gary P; Coleman, David C; Sullivan, Derek J

    2014-04-01

    Candida albicans and Candida dubliniensis are very closely related pathogenic yeast species. Despite their close relationship, C. albicans is a far more successful colonizer and pathogen of humans. The purpose of this study was to determine if the disparity in the virulence of the two species is attributed to differences in their ability to adhere to human buccal epithelial cells (BECs) and/or extracellular matrix proteins. When grown overnight at 30°C in yeast extract peptone dextrose, genotype 1 C. dubliniensis isolates were found to be significantly more adherent to human BECs than C. albicans or C. dubliniensis genotypes 2-4 (P albicans to human BECs was observed, and C. dubliniensis genotype 1 and C. albicans adhered to BECs in significantly greater numbers than the other C. dubliniensis genotypes (P albicans to type I and IV collagen, fibronectin, laminin, vitronectin, and proline-rich peptides. These data suggest that C. albicans is not more adherent to epithelial cells or matrix proteins than C. dubliniensis and therefore other factors must contribute to the greater levels of virulence exhibited by C. albicans.

  4. Reverse phase protein microarray technology in traumatic brain injury.

    Science.gov (United States)

    Gyorgy, Andrea B; Walker, John; Wingo, Dan; Eidelman, Ofer; Pollard, Harvey B; Molnar, Andras; Agoston, Denes V

    2010-09-30

    Antibody based, high throughput proteomics technology represents an exciting new approach in understanding the pathobiologies of complex disorders such as cancer, stroke and traumatic brain injury. Reverse phase protein microarray (RPPA) can complement the classical methods based on mass spectrometry as a high throughput validation and quantification method. RPPA technology can address problematic issues, such as sample complexity, sensitivity, quantification, reproducibility and throughput, which are currently associated with mass spectrometry-based approaches. However, there are technical challenges, predominantly associated with the selection and use of antibodies, preparation and representation of samples and with analyzing and quantifying primary RPPA data. Here we present ways to identify and overcome some of the current issues associated with RPPA. We believe that using stringent quality controls, improved bioinformatics analysis and interpretation of primary RPPA data, this method will significantly contribute in generating new level of understanding about complex disorders at the level of systems biology. Published by Elsevier B.V.

  5. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans.

    Science.gov (United States)

    Chowdhury, Tahmeena; Köhler, Julia R

    2015-10-01

    TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant. © 2015 John Wiley & Sons Ltd.

  6. Expanding the substantial interactome of NEMO using protein microarrays.

    LENUS (Irish Health Repository)

    Fenner, Beau J

    2010-01-01

    Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.

  7. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  8. Direct labeling of serum proteins by fluorescent dye for antibody microarray.

    Science.gov (United States)

    Klimushina, M V; Gumanova, N G; Metelskaya, V A

    2017-05-06

    Analysis of serum proteome by antibody microarray is used to identify novel biomarkers and to study signaling pathways including protein phosphorylation and protein-protein interactions. Labeling of serum proteins is important for optimal performance of the antibody microarray. Proper choice of fluorescent label and optimal concentration of protein loaded on the microarray ensure good quality of imaging that can be reliably scanned and processed by the software. We have optimized direct serum protein labeling using fluorescent dye Arrayit Green 540 (Arrayit Corporation, USA) for antibody microarray. Optimized procedure produces high quality images that can be readily scanned and used for statistical analysis of protein composition of the serum. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Abolishing Cell Wall Glycosylphosphatidylinositol-Anchored Proteins in Candida albicans Enhances Recognition by Host Dectin-1.

    Science.gov (United States)

    Shen, Hui; Chen, Si Min; Liu, Wei; Zhu, Fang; He, Li Juan; Zhang, Jun Dong; Zhang, Shi Qun; Yan, Lan; Xu, Zheng; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2015-07-01

    Fungi can shield surface pathogen-associated molecular patterns (PAMPs) for evading host immune attack. The most common and opportunistic human pathogen, Candida albicans, can shield β-(1 3)-glucan on the cell wall, one of the major PAMPs, to avoid host phagocyte Dectin-1 recognition. The way to interfere in the shielding process for more effective antifungal defense is not well established. In this study, we found that deletion of the C. albicans GPI7 gene, which was responsible for adding ethanolaminephosphate to the second mannose in glycosylphosphatidylinositol (GPI) biosynthesis, could block the attachment of most GPI-anchored cell wall proteins (GPI-CWPs) to the cell wall and subsequently unmask the concealed β-(1,3)-glucan. Neutrophils could kill the uncloaked gpi7 mutant more efficiently with an augmented respiratory burst. The gpi7 mutant also stimulated Dectin-1-dependent immune responses of macrophages, including activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways and secretion of specific cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-12p40. Furthermore, the gpi7 null mutant could induce an enhanced inflammatory response through promoting significant recruitment of neutrophils and monocytes and could stimulate stronger Th1 and Th17 cell responses to fungal infections in vivo. These in vivo phenotypes also were Dectin-1 dependent. Thus, we assume that GPI-CWPs are involved in the immune mechanism of C. albicans escaping from host recognition by Dectin-1. Our studies also indicate that the blockage of GPI anchor synthesis is a strategy to inhibit C. albicans evading host recognition. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Protein microarray with horseradish peroxidase chemiluminescence for quantification of serum α-fetoprotein.

    Science.gov (United States)

    Zhao, Yuanshun; Zhang, Yonghong; Lin, Dongdong; Li, Kang; Yin, Chengzeng; Liu, Xiuhong; Jin, Boxun; Sun, Libo; Liu, Jinhua; Zhang, Aiying; Li, Ning

    2015-10-01

    To develop and evaluate a protein microarray assay with horseradish peroxidase (HRP) chemiluminescence for quantification of α-fetoprotein (AFP) in serum from patients with hepatocellular carcinoma (HCC). A protein microarray assay for AFP was developed. Serum was collected from patients with HCC and healthy control subjects. AFP was quantified using protein microarray and enzyme-linked immunosorbent assay (ELISA). Serum AFP concentrations determined via protein microarray were positively correlated (r = 0.973) with those determined via ELISA in patients with HCC (n = 60) and healthy control subjects (n = 30). Protein microarray showed 80% sensitivity and 100% specificity for HCC diagnosis. ELISA had 83.3% sensitivity and 100% specificity. Protein microarray effectively distinguished between patients with HCC and healthy control subjects (area under ROC curve 0.974; 95% CI 0.000, 1.000). Protein microarray is a rapid, simple and low-cost alternative to ELISA for detecting AFP in human serum. © The Author(s) 2015.

  11. Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans.

    Science.gov (United States)

    Gaur, Manisha; Choudhury, Devapriya; Prasad, Rajendra

    2005-01-01

    The recent completion of the sequencing project of the opportunistic human pathogenic yeast, Candida albicans (http://www.ncbi.nlm.nih.gov/), led us to analyze and classify its ATP-binding cassette (ABC) proteins, which constitute one of the largest superfamilies of proteins. Some of its members are multidrug transporters responsible for the commonly encountered problem of antifungal resistance. TBLASTN searches together with domain analysis identified 81 nucleotide-binding domains, which belong to 51 different putative open reading frames. Considering that each allelic pair represents a single ABC protein of the Candida genome, the total number of putative members of this superfamily is 28. Domain organization, sequence-based analysis and self-organizing map-based clustering led to the classification of Candida ABC proteins into 6 distinct subfamilies. Each subfamily from C. albicans has an equivalent in Saccharomyces cerevisiae suggesting a close evolutionary relationship between the two yeasts. Our searches also led to the identification of a new motif to each subfamily in Candida that could be used to identify sequences from the corresponding subfamily in other organisms. It is hoped that the inventory of Candida ABC transporters thus created will provide new insights into the role of ABC proteins in antifungal resistance as well as help in the functional characterization of the superfamily of these proteins. 2005 S. Karger AG, Basel

  12. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    Stempfer, René; Weinhäusel, Andreas; Syed, Parvez; Vierlinger, Klemens; Pichler, Rudolf; Meese, Eckart; Leidinger, Petra; Ludwig, Nicole; Kriegner, Albert; Nöhammer, Christa

    2010-01-01

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  13. Calling biomarkers in milk using a protein microarray on your smartphone

    NARCIS (Netherlands)

    Ludwig, S.K.J.; Tokarski, Christian; Lang, Stefan N.; Ginkel, Van L.A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, M.W.F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay

  14. Electrophoretic protein patterns and numerical analysis of Candida albicans from the oral cavities of healthy children

    Directory of Open Access Journals (Sweden)

    Boriollo Marcelo Fabiano Gomes

    2003-01-01

    Full Text Available The aim of this research was to evaluate the protein polymorphism degree among seventy-five C. albicans strains from healthy children oral cavities of five socioeconomic categories from eight schools (private and public in Piracicaba city, São Paulo State, in order to identify C. albicans subspecies and their similarities in infantile population groups and to establish their possible dissemination route. Cell cultures were grown in YEPD medium, collected by centrifugation, and washed with cold saline solution. The whole-cell proteins were extracted by cell disruption, using glass beads and submitted to SDS-PAGE technique. After electrophoresis, the protein bands were stained with Coomassie-blue and analyzed by statistics package NTSYS-pc version 1.70 software. Similarity matrix and dendrogram were generated by using the Dice similarity coefficient and UPGMA algorithm, respectively, which made it possible to evaluate the similarity or intra-specific polymorphism degrees, based on whole-cell protein fingerprinting of C. albicans oral isolates. A total of 13 major phenons (clusters were analyzed, according to their homogeneous (socioeconomic category and/or same school and heterogeneous (distinct socioeconomic categories and/or schools characteristics. Regarding to the social epidemiological aspect, the cluster composition showed higher similarities (0.788 < S D < 1.0 among C. albicans strains isolated from healthy children independent of their socioeconomic bases (high, medium, or low. Isolates of high similarity were not found in oral cavities from healthy children of social stratum A and D, B and D, or C and E. This may be explained by an absence of a dissemination route among these children. Geographically, some healthy children among identical and different schools (private and public also are carriers of similar strains but such similarity was not found among other isolates from children from certain schools. These data may reflect a

  15. Cross regulation between Candida albicans catalytic and regulatory subunits of protein kinase A.

    Science.gov (United States)

    Giacometti, Romina; Kronberg, Florencia; Biondi, Ricardo M; Hernández, Alejandra I; Passeron, Susana

    2012-01-01

    In the pathogen Candida albicans protein kinase A (PKA) catalytic subunit is encoded by two genes TPK1 and TPK2 and the regulatory subunit by one gene, BCY1. PKA mediates several cellular processes such as cell cycle regulation and the yeast to hyphae transition, a key factor for C. albicans virulence. The catalytic isoforms Tpk1p and Tpk2p share redundant functions in vegetative growth and hyphal development, though they differentially regulate glycogen metabolism, the stress response pathway and pseudohyphal formation. In Saccharomyces cerevisiae it was earlier reported that BCY1 overexpression not only increased the amount of TPK3 mRNA but also its catalytic activity. In C. albicans a significant decrease in Bcy1p expression levels was already observed in tpk2Δ null strains. In this work we showed that the upregulation in Bcy1p expression was observed in a set of strains having a TPK1 or TPK2 allele reintegrated in its own locus, as well as in strains expressing the TPKs under the control of the constitutive ACT1 promoter. To confirm the cross regulation event between Bcy1p and Tpkp expression we generated a mutant strain with the lowest PKA activity carrying one TPK1 and a unique BCY1 allele with the aim to obtain two derived strains in which BCY1 or TPK1 were placed under their own promoters inserted in the RPS10 neutral locus. We found that placing one copy of BCY1 upregulated the levels of Tpk1p and its catalytic activity; while TPK1 insertion led to an increase in BCY1 mRNA, Bcy1p and in a high cAMP binding activity. Our results suggest that C. albicans cells were able to compensate for the increased levels of either Tpk1p or Tpk2p subunits with a corresponding elevation of Bcy1 protein levels and vice versa, implying a tightly regulated mechanism to balance holoenzyme formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans.

    Science.gov (United States)

    Douglas, Lois M; Wang, Hong X; Konopka, James B

    2013-11-26

    Invasive growth of the fungal pathogen Candida albicans into tissues promotes disseminated infections in humans. The plasma membrane is essential for pathogenesis because this important barrier mediates morphogenesis and invasive growth, as well as secretion of virulence factors, cell wall synthesis, nutrient import, and other processes. Previous studies showed that the Sur7 tetraspan protein that localizes to MCC (membrane compartment occupied by Can1)/eisosome subdomains of the plasma membrane regulates a broad range of key functions, including cell wall synthesis, morphogenesis, and resistance to copper. Therefore, a distinct tetraspan protein found in MCC/eisosomes, Nce102, was investigated. Nce102 belongs to the MARVEL domain protein family, which is implicated in regulating membrane structure and function. Deletion of NCE102 did not cause the broad defects seen in sur7Δ cells. Instead, the nce102Δ mutant displayed a unique phenotype in that it was defective in forming hyphae and invading low concentrations of agar but could invade well in higher agar concentrations. This phenotype was likely due to a defect in actin organization that was observed by phalloidin staining. In support of this, the invasive growth defect of a bni1Δ mutant that mislocalizes actin due to lack of the Bni1 formin was also reversed at high agar concentrations. This suggests that a denser matrix provides a signal that compensates for the actin defects. The nce102Δ mutant displayed decreased virulence and formed abnormal hyphae in mice. These studies identify novel ways that Nce102 and the physical environment surrounding C. albicans regulate morphogenesis and pathogenesis. The plasma membrane promotes virulence of the human fungal pathogen Candida albicans by acting as a protective barrier around the cell and mediating dynamic activities, such as morphogenesis, cell wall synthesis, secretion of virulence factors, and nutrient uptake. To better understand how the plasma membrane

  17. PMA: Protein Microarray Analyser, a user-friendly tool for data processing and normalization.

    Science.gov (United States)

    Da Gama Duarte, Jessica; Goosen, Ryan W; Lawry, Peter J; Blackburn, Jonathan M

    2018-02-27

    Protein microarrays provide a high-throughput platform to measure protein interactions and associated functions, and can aid in the discovery of cancer biomarkers. The resulting protein microarray data can however be subject to systematic bias and noise, thus requiring a robust data processing, normalization and analysis pipeline to ensure high quality and robust results. To date, a comprehensive data processing pipeline is yet to be developed. Furthermore, a lack of analysis consistency is evident amongst different research groups, thereby impeding collaborative data consolidation and comparison. Thus, we sought to develop an accessible data processing tool using methods that are generalizable to the protein microarray field and which can be adapted to individual array layouts with minimal software engineering expertise. We developed an improved version of a previously developed pipeline of protein microarray data processing and implemented it as an open source software tool, with particular focus on widening its use and applicability. The Protein Microarray Analyser software presented here includes the following tools: (1) neighbourhood background correction, (2) net intensity correction, (3) user-defined noise threshold, (4) user-defined CV threshold amongst replicates and (5) assay controls, (6) composite 'pin-to-pin' normalization amongst sub-arrays, and (7) 'array-to-array' normalization amongst whole arrays.

  18. Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia.

    Science.gov (United States)

    Pitarch, Aida; Nombela, César; Gil, Concha

    2016-02-16

    Serum antibodies to specific Candida proteins have been reported as potential diagnostic biomarkers for candidemia. However, their diagnostic usefulness at the protein species level has hardly been examined. Using serological proteome analysis, we explored the IgG-antibody responses to Candida albicans protein species in candidemia and control patients. We found that 87 discrete protein species derived from 34 unique proteins were IgG-targets, although only 43 of them were differentially recognized by candidemia and control sera. An increase in the speciation of the immunome, connectivity and modularity of antigenic species co-recognition networks, and heterogeneity of antigenic species recognition patterns was associated with candidemia. IgG antibodies to certain discrete protein species were better predictors of candidemia than those to their corresponding proteins. A molecular discriminator delineated from the combined fingerprints of IgG antibodies to two distinct species of phosphoglycerate kinase and enolase accurately classified candidemia and control patients. These results provide new insight into the anti-Candida IgG-antibody response development in candidemia, and demonstrate that an immunoproteomic signature at the molecular level may be useful for its diagnosis. Our study further highlights the importance of defining pathogen-specific antigens at the chemical and molecular level for their potential application as immunodiagnostic reagents or even vaccine candidates.

  19. Fabrication of protein microarrays for alpha fetoprotein detection by using a rapid photo-immobilization process

    Directory of Open Access Journals (Sweden)

    Sirasa Yodmongkol

    2016-03-01

    Full Text Available In this study, protein microarrays based on sandwich immunoassays are generated to quantify the amount of alpha fetoprotein (AFP in blood serum. For chip generation a mixture of capture antibody and a photoactive copolymer consisting of N,N-dimethylacrylamide (DMAA, methacryloyloxy benzophenone (MaBP, and Na-4-styrenesulfonate (SSNa was spotted onto unmodified polymethyl methacrylate (PMMA substrates. Subsequently to printing of the microarray, the polymer and protein were photochemically cross-linked and the forming, biofunctionalized hydrogels simultaneously bound to the chip surface by short UV- irradiation. The obtained biochip was incubated with AFP antigen, followed by biotinylated AFP antibody and streptavidin-Cy5 and the fluorescence signal read-out. The developed microarray biochip covers the range of AFP in serum samples such as maternal serum in the range of 5 and 100 ng/ml. The chip production process is based on a fast and simple immobilization process, which can be applied to conventional plastic surfaces. Therefore, this protein microarray production process is a promising method to fabricate biochips for AFP screening processes. Keywords: Photo-immobilization, Protein microarray, Alpha fetoprotein, Hydrogel, 3D surface, Down syndrome

  20. Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression.

    Science.gov (United States)

    Yagnik, Darshna; Serafin, Vlad; J Shah, Ajit

    2018-01-29

    The global escalation in antibiotic resistance cases means alternative antimicrobials are essential. The aim of this study was to investigate the antimicrobial capacity of apple cider vinegar (ACV) against E. coli, S. aureus and C. albicans. The minimum dilution of ACV required for growth inhibition varied for each microbial species. For C. albicans, a 1/2 ACV had the strongest effect, S. aureus, a 1/25 dilution ACV was required, whereas for E-coli cultures, a 1/50 ACV dilution was required (p < 0.05). Monocyte co-culture with microbes alongside ACV resulted in dose dependent downregulation of inflammatory cytokines (TNFα, IL-6). Results are expressed as percentage decreases in cytokine secretion comparing ACV treated with non-ACV treated monocytes cultured with E-coli (TNFα, 99.2%; IL-6, 98%), S. aureus (TNFα, 90%; IL-6, 83%) and C. albicans (TNFα, 83.3%; IL-6, 90.1%) respectively. Proteomic analyses of microbes demonstrated that ACV impaired cell integrity, organelles and protein expression. ACV treatment resulted in an absence in expression of DNA starvation protein, citrate synthase, isocitrate and malate dehydrogenases in E-coli; chaperone protein DNak and ftsz in S. aureus and pyruvate kinase, 6-phosphogluconate dehydrogenase, fructose bisphosphate were among the enzymes absent in C.albican cultures. The results demonstrate ACV has multiple antimicrobial potential with clinical therapeutic implications.

  1. Protein Microarrays-Based Strategies for Life Detection in Astrobiology

    Science.gov (United States)

    Parro, Víctor; Rivas, Luis A.; Gómez-Elvira, Javier

    2008-03-01

    The detection of organic molecules of unambiguous biological origin is fundamental for the confirmation of present or past life. Planetary exploration requires the development of miniaturized apparatus for in situ life detection. Analytical techniques based on mass spectrometry have been traditionally used in space science. Following the Viking landers, gas chromatography-mass spectrometry (GC-MS) for organic detection has gained general acceptance and has been used successfully in the Cassini-Huygens mission to Titan. Microfluidics allows the development of miniaturized capillary electrophoresis devices for the detection of important molecules for life, like amino acids or nucleobases. Recently, a new approach is gaining acceptance in the space science community: the application of the well-known, highly specific, antibody-antigen affinity interaction for the detection and identification of organics and biochemical compounds. Antibodies can specifically bind a plethora of structurally different compounds of a broad range of molecular sizes, from amino acids level to whole cells. Antibody microarray technology allows us to look for the presence of thousands of different compounds in a single assay and in just one square centimeter. Herein, we discuss several important issues—most of which are common with other instruments dealing with life signature detection in the solar system—that must be addressed in order to use antibody microarrays for life detection and planetary exploration. These issues include (1) preservation of biomarkers, (2) the extraction techniques for biomarkers, (3) terrestrial analogues, (4) the antibody stability under space environments, (5) the selection of unequivocal biomarkers for the antibody production, or (6) the instrument design and implementation.

  2. Gene expression profile of THP-1 cells treated with heat-killed Candida albicans.

    Science.gov (United States)

    Hu, Zhi-De; Wei, Ting-Ting; Tang, Qing-Qin; Ma, Ning; Wang, Li-Li; Qin, Bao-Dong; Yin, Jian-Rong; Zhou, Lin; Zhong, Ren-Qian

    2016-05-01

    Mechanisms under immune response against Candida albicans (C. albicans) remain largely unknown. To better understand the mechanisms of innate immune response against C. albicans, we analyzed the gene expression profile of THP-1 cells stimulated with heat-killed C. albicans. THP-1 cells were stimulated with heat-killed C. albicans for 9 hours at a ratio of 1:1, and gene expression profile of the cells was analyzed using Whole Human Genome Oligo Microarray. Differentially expressed genes were defined as change folds more than 2 and with statistical significance. Gene ontology (GO) and pathway analysis were used to systematically identify biological connections of differentially expressed genes, as well as the pathways associated with the immune response against C. albicans. A total of 355 genes were up-regulated and 715 genes were down-regulated significantly. The up-regulated genes were particularly involved in biological process of RNA processing and pathway of the spliceosome. In case of down-regulated genes, the particularly involved immune-related pathways were G-protein coupled receptor signaling pathway, calcium signaling pathway, MAPK signaling pathway and Ras pathway. We depict the gene expression profile of heat-killed C. albicans stimulated THP-1 cells, and identify the major pathways involved in immune response against C. albicans. These pathways are potential candidate targets for developing anti-C. albicans agent.

  3. A Lateral Flow Protein Microarray for Rapid and Sensitive Antibody Assays

    Directory of Open Access Journals (Sweden)

    Helene Andersson-Svahn

    2011-11-01

    Full Text Available Protein microarrays are useful tools for highly multiplexed determination of presence or levels of clinically relevant biomarkers in human tissues and biofluids. However, such tools have thus far been restricted to laboratory environments. Here, we present a novel 384-plexed easy to use lateral flow protein microarray device capable of sensitive (< 30 ng/mL determination of antigen-specific antibodies in ten minutes of total assay time. Results were developed with gold nanobeads and could be recorded by a cell-phone camera or table top scanner. Excellent accuracy with an area under curve (AUC of 98% was achieved in comparison with an established glass microarray assay for 26 antigen-specific antibodies. We propose that the presented framework could find use in convenient and cost-efficient quality control of antibody production, as well as in providing a platform for multiplexed affinity-based assays in low-resource or mobile settings.

  4. Bioconjugated fluorescent zeolite L nanocrystals as labels in protein microarrays.

    Science.gov (United States)

    Li, Zhen; Luppi, Gianluigi; Geiger, Albert; Josel, Hans-Peter; De Cola, Luisa

    2011-11-18

    Zeolite L nanocrystals, as inorganic host material containing hydrophobic fluorophore N,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide in the unidirectional channels, are developed as new labels for biosensor systems. The external surface of the particles is modified with carboxylic acid groups for conjugation to primary amines of biomolecules such as antibodies. Anti-digoxigenin (anti-DIG) is selected to be immobilized on zeolite L via N-hydroxysulfosuccinimide ester linker. Together with DIG, it serves as a good universal binding pair for diverse analyte detection owing to the high binding affinity and low background noise. The conjugates are characterized by the dynamic light scattering technique for their hydrodynamic diameters and by enzyme-linked immunosorbent assay for antigen-antibody binding behavior. The characterizations prove that anti-DIG antibodies are successfully immobilized on zeolite L with their binding activities maintained. The microarray fluorescent sandwich immunoassay based on such nanocrystalline labels shows high sensitivity in a thyroid-stimulating hormone assay with the lower detection limit down to the femtomolar range. These new fluorescent labels possess great potential for in vitro diagnostics applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.

    Science.gov (United States)

    Beyer, Sasha J; Zhang, Xiaoli; Jimenez, Rafael E; Lee, Mei-Ling T; Richardson, Andrea L; Huang, Kun; Jhiang, Sissy M

    2011-10-11

    Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.

  6. Effect of the Ethyl Acetate Fraction of Eugenia uniflora on Proteins Global Expression during Morphogenesis in Candida albicans.

    Science.gov (United States)

    Silva-Rocha, Walicyranison P; de Azevedo, Matheus F; Ferreira, Magda R A; da Silva, Julhiany de Fátima; Svidzinski, Terezinha I E; Milan, Eveline P; Soares, Luiz A L; Rocha, Keyla B F; Uchôa, Adriana F; Mendes-Giannini, Maria J S; Fusco Almeida, Ana M; Chaves, Guilherme M

    2017-01-01

    Candida albicans is able to switch from yeast to hyphal growth and this is an essential step for tissue invasion and establishment of infection. Due to the limited drug arsenal used to treat fungal infections and the constant emergence of resistant strains, it is important to search for new therapeutic candidates. Therefore, this study aimed to investigate by proteomic analysis the role of a natural product ( Eugenia uniflora ) in impairing hypha formation in C. albicans . We also tested the potential action of E. uniflora to prevent and treat oral candidiasis induced in a murine model of oral infection and the ability of polymorphonuclear neutrophils to phagocytize C. albicans cells treated with the ethyl acetate fraction of the extract. We found that this fraction greatly reduced hypha formation after morphogenesis induction in the presence of serum. Besides, several proteins were differentially expressed in cells treated with the fraction. Surprisingly, the ethyl acetate fraction significantly reduced phagocytosis in C. albicans (Mean 120.36 ± 36.71 yeasts/100 PMNs vs. 44.68 ± 19.84 yeasts/100 PMNs). Oral candidiasis was attenuated when C. albicans cells were either pre-incubated in the presence of E. uniflora or when the fraction was applied to the surface of the oral cavity after infection. These results were consistent with the reduction in CFU counts (2.36 vs. 1.85 Log10 CFU/ml) and attenuation of tissue damage observed with histopathological analysis of animals belonging to treated group. We also observed shorter true hyphae by direct examination and histopathological analysis, when cells were treated with the referred natural product. The E. uniflora ethyl acetate fraction was non-toxic to human cells. E. uniflora may act on essential proteins mainly related to cellular structure, reducing the capacity of filamentation and attenuating infection in a murine model, without causing any toxic effect on human cells, suggesting that it may be a future

  7. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technol......In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray......-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment...

  8. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus

    Science.gov (United States)

    Price, Jordan V.; Haddon, David J.; Kemmer, Dodge; Delepine, Guillaume; Mandelbaum, Gil; Jarrell, Justin A.; Gupta, Rohit; Balboni, Imelda; Chakravarty, Eliza F.; Sokolove, Jeremy; Shum, Anthony K.; Anderson, Mark S.; Cheng, Mickie H.; Robinson, William H.; Browne, Sarah K.; Holland, Steven M.; Baechler, Emily C.; Utz, Paul J.

    2013-01-01

    Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor–binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor–binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell–activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α–driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE. PMID:24270423

  9. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone.

    Directory of Open Access Journals (Sweden)

    Susann K J Ludwig

    Full Text Available Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1. Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this 'protein microarray on a smartphone'-concept for on-site testing, e.g., in food safety, environment and health monitoring.

  10. Metal-enhanced fluorescent detection for protein microarrays based on a silver plasmonic substrate.

    Science.gov (United States)

    Li, Hui; Wang, Min; Qiang, Weibing; Hu, Hongting; Li, Wei; Xu, Danke

    2014-04-07

    This paper presents an ultrasensitive fluorescent detection method through fabricating a silver microarray substrate. Silver nanoparticles (AgNPs) and Ag@Au core-shell nanoparticles with different sizes were first synthesized by a seed-mediated growth method and the metal-enhanced fluorescence of these nanoparticles on different fluorescent dyes was investigated. The results indicated that AgNPs could act as a versatile and effective metal-enhanced fluorescence material for various fluorophores, whereas the enhanced fluorescence from Ag@Au was limited only to certain fluorophores. When the AgNPs were functionalized with aptamers and fluorescent dyes, a good analytical performance for simultaneous detection of human IgE and platelet-derived growth factor-BB (PDGF-BB) could be obtained. AgNPs were not only used as detection tags but also used to fabricate the plasmonic microarray substrate to further enhance the sensitivity of fluorescent detection. As a result, a linear response to PDGF-BB concentration was obtained in the concentration range of 16 pg mL(-1) to 50 ng mL(-1), and the detection limit was 3.2 pg mL(-1). In addition, the AgNP modified plasmonic microarrays showed remarkable recovery and no significant interference from human serum when applied to 2 ng mL(-1) PDGF-BB concentration. The plasmonic microarray substrate demonstrated both high specificity and sensitivity for protein microarray detection and this novel approach has great potential for ultrasensitive detection of protein biomarkers in the bio-medical field.

  11. Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer

    Directory of Open Access Journals (Sweden)

    Richardson Andrea L

    2011-10-01

    Full Text Available Abstract Background Na+/I- symporter (NIS-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Methods Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. Results and Discussion NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Conclusions Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.

  12. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function

    Science.gov (United States)

    Hoyer, Lois L.; Cota, Ernesto

    2016-01-01

    Approximately two decades have passed since the description of the first gene in the Candida albicans ALS (agglutinin-like sequence) family. Since that time, much has been learned about the composition of the family and the function of its encoded cell-surface glycoproteins. Solution of the structure of the Als adhesive domain provides the opportunity to evaluate the molecular basis for protein function. This review article is formatted as a series of fundamental questions and explores the diversity of the Als proteins, as well as their role in ligand binding, aggregative effects, and attachment to abiotic surfaces. Interaction of Als proteins with each other, their functional equivalence, and the effects of protein abundance on phenotypic conclusions are also examined. Structural features of Als proteins that may facilitate invasive function are considered. Conclusions that are firmly supported by the literature are presented while highlighting areas that require additional investigation to reveal basic features of the Als proteins, their relatedness to each other, and their roles in C. albicans biology. PMID:27014205

  13. Candida albicans Modifies the Protein Composition and Size Distribution of THP-1 Macrophage-Derived Extracellular Vesicles.

    Science.gov (United States)

    Reales-Calderón, Jose Antonio; Vaz, Catarina; Monteoliva, Lucía; Molero, Gloria; Gil, Concha

    2017-01-06

    The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective clearance of the pathogen. The secretion of proteins, mRNAs, noncoding RNAs and lipids through extracellular vesicles (EVs) is one of the mechanisms of communication between immune cells. EVs change their cargo to mediate different responses, and may play a role in the response against infections. Thus we have undertaken the first quantitative proteomic analysis on the protein composition of THP-1 macrophage-derived EVs during the interaction with Candida albicans. This study revealed changes in EVs sizes and in protein composition, and allowed the identification and quantification of 717 proteins. Of them, 133 proteins changed their abundance due to the interaction. The differentially abundant proteins were involved in functions relating to immune response, signaling, or cytoskeletal reorganization. THP-1-derived EVs, both from control and from Candida-infected macrophages, had similar effector functions on other THP-1-differenciated macrophages, activating ERK and p38 kinases, and increasing both the secretion of proinflammatory cytokines and the candidacidal activity; while in THP-1 nondifferenciated monocytes, only EVs from infected macrophages increased significantly the TNF-α secretion. Our findings provide new information on the role of macrophage-derived EVs in response to C. albicans infection and in macrophages communication.

  14. Dataset on preparation of the phosphorylated counterparts of a Momordica charantia protein for studying antifungal activities against susceptible dose-dependent C. albicans to antimycotics.

    Science.gov (United States)

    Qiao, Yuanbiao; Song, Li; Zhu, Chenchen; Wang, Qian; Guo, Tianyan; Yan, Yanhua; Li, Qingshan

    2017-12-01

    The data presented here are related to a research article entitled "Development of a phosphorylated Momordica charantia protein system for inhibiting susceptible dose-dependent C. albicans to available antimycotics: An allosteric regulation of protein" (Qiao et al., 2017) [1]. The data set includes three portions: (1) a relationship between reaction velocities of protein phosphorylation as a function of the substrate concentrations, determined in enzymatic reactions in aid of protein kinases; (2) a result of antifungal susceptibility testing of C. albicans after it is selected in antimycotics; and (3) a comparison of protein expression in the susceptible dose-dependent fungus relative to the wild C. albicans . In the first portion, the relationship of reaction velocities and substrate concentrations is expressed as an output from the inverse variation model. All data and analyses are made publicly available and citied in the research article using a style for the Data in Brief.

  15. An overview of innovations and industrial solutions in Protein Microarray Technology.

    Science.gov (United States)

    Gupta, Shabarni; Manubhai, K P; Kulkarni, Vishwesh; Srivastava, Sanjeeva

    2016-04-01

    The complexity involving protein array technology reflects in the fact that instrumentation and data analysis are subject to change depending on the biological question, technical compatibility of instruments and software used in each experiment. Industry has played a pivotal role in establishing standards for future deliberations in sustenance of these technologies in the form of protein array chips, arrayers, scanning devices, and data analysis software. This has enhanced the outreach of protein microarray technology to researchers across the globe. These have encouraged a surge in the adaptation of "nonclassical" approaches such as DNA-based protein arrays, micro-contact printing, label-free protein detection, and algorithms for data analysis. This review provides a unique overview of these industrial solutions available for protein microarray based studies. It aims at assessing the developments in various commercial platforms, thus providing a holistic overview of various modalities, options, and compatibility; summarizing the journey of this powerful high-throughput technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of the Ethyl Acetate Fraction of Eugenia uniflora on Proteins Global Expression during Morphogenesis in Candida albicans

    Directory of Open Access Journals (Sweden)

    Walicyranison P. Silva-Rocha

    2017-09-01

    Full Text Available Candida albicans is able to switch from yeast to hyphal growth and this is an essential step for tissue invasion and establishment of infection. Due to the limited drug arsenal used to treat fungal infections and the constant emergence of resistant strains, it is important to search for new therapeutic candidates. Therefore, this study aimed to investigate by proteomic analysis the role of a natural product (Eugenia uniflora in impairing hypha formation in C. albicans. We also tested the potential action of E. uniflora to prevent and treat oral candidiasis induced in a murine model of oral infection and the ability of polymorphonuclear neutrophils to phagocytize C. albicans cells treated with the ethyl acetate fraction of the extract. We found that this fraction greatly reduced hypha formation after morphogenesis induction in the presence of serum. Besides, several proteins were differentially expressed in cells treated with the fraction. Surprisingly, the ethyl acetate fraction significantly reduced phagocytosis in C. albicans (Mean 120.36 ± 36.71 yeasts/100 PMNs vs. 44.68 ± 19.84 yeasts/100 PMNs. Oral candidiasis was attenuated when C. albicans cells were either pre-incubated in the presence of E. uniflora or when the fraction was applied to the surface of the oral cavity after infection. These results were consistent with the reduction in CFU counts (2.36 vs. 1.85 Log10 CFU/ml and attenuation of tissue damage observed with histopathological analysis of animals belonging to treated group. We also observed shorter true hyphae by direct examination and histopathological analysis, when cells were treated with the referred natural product. The E. uniflora ethyl acetate fraction was non-toxic to human cells. E. uniflora may act on essential proteins mainly related to cellular structure, reducing the capacity of filamentation and attenuating infection in a murine model, without causing any toxic effect on human cells, suggesting that it may be a

  17. Microarray based on autodisplayed Ro proteins for medical diagnosis of systemic lupus erythematosus (SLE).

    Science.gov (United States)

    Yoo, Gu; Bong, Ji-Hong; Kim, Sinyoung; Jose, Joachim; Pyun, Jae-Chul

    2014-07-15

    A microarray-based immunoassay for the detection of autoantibodies against Ro protein was developed using Escherichia coli with autodisplayed Ro proteins (Ro(+)-E. coli). Patient serum usually contains various antibodies against the outer membrane components of E. coli as well as autoantibodies against the Ro protein. Therefore, the conventional immunoassay based on Ro(+)-E. coli requires both wild type E. coli (blank test) and Ro(+)-E. coli, and both strains of E. coli must be prepared in situ for each individual test serum. In this study, we tested the feasibility of using several types of animal sera as a replacement for individual human sera. An immunoassay without the blank test was developed using Ro(+)-E. coli by (1) blocking with rabbit serum, and (2) cleaving the Fc region from antibodies using papain. Modified E. coli with autodisplayed Ro protein was immobilized to a surface-modified microplate and the applicability of the immunoassay without the blank test was demonstrated using sera from patients with systemic lupus erythematosus (SLE). Using this approach, a microarray-based fluorescence immunoassay with immobilized Ro(+)-E. coli was able to detect anti-Ro autoantibodies in SLE patient sera with high specificity and selectivity and improved efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Microarray Meta-Analysis of RNA-Binding Protein Functions in Alternative Polyadenylation

    Science.gov (United States)

    Hu, Wenchao; Liu, Yuting; Yan, Jun

    2014-01-01

    Alternative polyadenylation (APA) is a post-transcriptional mechanism to generate diverse mRNA transcripts with different 3′UTRs from the same gene. In this study, we systematically searched for the APA events with differential expression in public mouse microarray data. Hundreds of genes with over-represented differential APA events and the corresponding experiments were identified. We further revealed that global APA differential expression occurred prevalently in tissues such as brain comparing to peripheral tissues, and biological processes such as development, differentiation and immune responses. Interestingly, we also observed widespread differential APA events in RNA-binding protein (RBP) genes such as Rbm3, Eif4e2 and Elavl1. Given the fact that RBPs are considered as the main regulators of differential APA expression, we constructed a co-expression network between APAs and RBPs using the microarray data. Further incorporation of CLIP-seq data of selected RBPs showed that Nova2 represses and Mbnl1 promotes the polyadenylation of closest poly(A) sites respectively. Altogether, our study is the first microarray meta-analysis in a mammal on the regulation of APA by RBPs that integrated massive mRNA expression data under a wide-range of biological conditions. Finally, we present our results as a comprehensive resource in an online website for the research community. PMID:24622240

  19. Design of a combinatorial dna microarray for protein-dnainteraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Mintseris, Julian; Eisen, Michael B.

    2006-07-07

    Background: Discovery of precise specificity oftranscription factors is an important step on the way to understandingthe complex mechanisms of gene regulation in eukaryotes. Recently,doublestranded protein-binding microarrays were developed as apotentially scalable approach to tackle transcription factor binding siteidentification. Results: Here we present an algorithmic approach toexperimental design of a microarray that allows for testing fullspecificity of a transcription factor binding to all possible DNA bindingsites of a given length, with optimally efficient use of the array. Thisdesign is universal, works for any factor that binds a sequence motif andis not species-specific. Furthermore, simulation results show that dataproduced with the designed arrays is easier to analyze and would resultin more precise identification of binding sites. Conclusion: In thisstudy, we present a design of a double stranded DNA microarray forprotein-DNA interaction studies and show that our algorithm allowsoptimally efficient use of the arrays for this purpose. We believe such adesign will prove useful for transcription factor binding siteidentification and other biological problems.

  20. Sensitivity of Candida Albicans Biofilm Cells Grown on Denture Acrylic to Antifungal Proteins and Chlorhexidine

    Science.gov (United States)

    Pusateri, Christopher R.; Monaco, Edward A.; Edgerton, Mira

    2009-01-01

    Objectives Candida albicans cells form biofilms on polymeric surfaces of dentures and other prostheses introduced into the oral cavity. Many biofilm microorganisms exhibit resistance to antimicrobial agents; C. albicans cells may also develop resistance to naturally-occurring antifungal peptides in human saliva including histatins (Hsts) and defensins (hBDs). Therefore, we evaluated Hst 5 activity on C. albicans biofilm cells compared to planktonic cells and measured whether surface treatment of denture acrylic with Hst 5, hBD-3, or chlorhexidine gluconate could inhibit in vitro biofilm development. Methods Acrylic disks were preconditioned with 500 μl saliva for 30 min, and inoculated with C. albicans cells (106 cells/ml) for 1 h, at 37 °C. Non-adherent cells were removed by washing and disks and were incubated in YPD growth medium for 24, 48, and 72 h at 37 °C. Candidacidal assays were performed on 48-hour-biofilms and on planktonically-grown cells using Hst 5 (15.5 μM, 31.25 μM, 62 μM). Cell adhesion was compared on disks pre-coated with 0.12% chlorhexidine gluconate, 50 μM Hst 5, or 0.6 μM hBD-3 after 24 h, 48 h, and 72 h growth. Results No significant difference was observed in sensitivity to Hst 5 of biofilm cells compared to planktonic cells (p > 0.05). Pre-coating disks with hBD-3 did not inhibit biofilm development; however, Hst 5 significantly inhibited biofilm development at 72 h, while 0.12% chlorhexidine significantly inhibited biofilm development at all time intervals (p denture acrylic are sensitive to killing by Hst 5. Surface coating acrylic with chlorhexidine or Hst 5 effectively inhibits biofilm growth and has potential therapeutic application. PMID:19249746

  1. Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans.

    Science.gov (United States)

    Sohn, K; Roehm, M; Urban, C; Saunders, N; Rothenstein, D; Lottspeich, F; Schröppel, K; Brunner, H; Rupp, S

    2005-12-01

    We applied two-dimensional gel electrophoresis to identify downstream effectors of CPH1 and EFG1 under hypha-inducing conditions in Candida albicans. Among the proteins that were expressed in wild-type cells but were strongly downregulated in a cph1Delta/efg1Delta double mutant in alpha-minimal essential medium at 37 degrees C, we could identify not-yet-characterized proteins, including Cor33-1p and Cor33-2p. The two proteins are almost identical (97% identity) and represent products of allelic isoforms of the same gene. Cor33p is highly similar to Cip1p from Candida sp. but lacks any significant homology to proteins from Saccharomyces cerevisiae. Strikingly, both proteins share homology with phenylcoumaran benzylic ether reductases and isoflavone reductases from plants. For other hypha-inducing media, like yeast-peptone-dextrose (YPD) plus serum at 37 degrees C, we could not detect any transcription for COR33 in wild-type cells, indicating that Cor33p is not hypha specific. In contrast, we found a strong induction for COR33 when cells were treated with 5 mM hydrogen peroxide. However, under oxidative conditions, transcription of COR33 was not dependent on EFG1, indicating that other regulatory factors are involved. In fact, upregulation depends on CAP1 at least, as transcript levels were clearly reduced in a Deltacap1 mutant strain under oxidative conditions. Unlike in wild-type cells, transcription of COR33 in a tsa1Delta mutant can be induced by treatment with 0.1 mM hydrogen peroxide. This suggests a functional link between COR33 and thiol-specific antioxidant-like proteins that are important in the oxidative-stress response in yeasts. Concordantly, cor33Delta deletion mutants show retarded growth on YPD plates supplemented with hydrogen peroxide, indicating that COR33 in general is implicated in conferring tolerance toward oxidative stress on Candida albicans.

  2. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans.

    Directory of Open Access Journals (Sweden)

    François L Mayer

    Full Text Available Small heat shock proteins (sHsps have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1 under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore

  3. Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates.

    Directory of Open Access Journals (Sweden)

    Shanshan Luo

    Full Text Available Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1 and Pra1 (pH-regulated antigen 1 in thirteen clinical C. albicans isolates. Four nucleotide (nt exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%. In addition adhesion to and infection of human endothelial cells was increased (difference 60%, and C3b surface deposition was less effective (difference 27%. Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.

  4. Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates.

    Science.gov (United States)

    Luo, Shanshan; Hipler, Uta-Christina; Münzberg, Christin; Skerka, Christine; Zipfel, Peter F

    2015-01-01

    Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.

  5. Analysis of Protein-DNA Interaction by Chromatin Immunoprecipitation and DNA Tiling Microarray (ChIP-on-chip).

    Science.gov (United States)

    Gao, Hui; Zhao, Chunyan

    2018-01-01

    Chromatin immunoprecipitation (ChIP) has become the most effective and widely used tool to study the interactions between specific proteins or modified forms of proteins and a genomic DNA region. Combined with genome-wide profiling technologies, such as microarray hybridization (ChIP-on-chip) or massively parallel sequencing (ChIP-seq), ChIP could provide a genome-wide mapping of in vivo protein-DNA interactions in various organisms. Here, we describe a protocol of ChIP-on-chip that uses tiling microarray to obtain a genome-wide profiling of ChIPed DNA.

  6. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    International Nuclear Information System (INIS)

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-01-01

    Highlights: ► The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. ► The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. ► The MBP–Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the “ATP state” of the mechanochemical cycle. This site differs from the Kar3 neck–core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  7. Development of a phosphorylated Momordica charantia protein system for inhibiting susceptible dose-dependent C. albicans to available antimycotics: An allosteric regulation of protein.

    Science.gov (United States)

    Qiao, Yuanbiao; Song, Li; Zhu, Chenchen; Wang, Qian; Guo, Tianyan; Yan, Yanhua; Li, Qingshan

    2017-11-15

    A regulatory Momordica charantia protein system was constructed allosterically by in vitro protein phosphorylation, in an attempt to evaluate antimycological pluripotency against dose-dependent susceptibilities in C. albicans. Fungal strain lineages susceptible to ketoconazole, econazole, miconazole, 5-flucytosine, nystatin and amphotericin B were prepared in laboratory, followed by identification via antifungal susceptibility testing. Protein phosphorylation was carried out in reactions with 5'-adenylic, guanidylic, cytidylic and uridylic acids and cyclic adenosine triphosphate, through catalysis of cyclin-dependent kinase 1, protein kinase A and protein kinase C respectively. Biochemical analysis of enzymatic reactions indicated the apparent Michaelis-Menten constants and maximal velocity values of 16.57-91.97mM and 55.56-208.33μM·min -1 , together with an approximate 1:1 reactant stoichiometric ratio. Three major protein phosphorylation sites were theoretically predicted at Thr255, Thr102 and Thr24 by a KinasePhos tool. Additionally, circular dichroism spectroscopy demonstrated that upon phosphorylation, protein folding structures were decreased in random coil, β6-sheet and α1-helix partial regions. McFarland equivalence standard testing yielded the concentration-dependent inhibition patterns, while fungus was grown in Sabouraud's dextrose agar. The minimal inhibitory concentrations of 0.16-0.51μM (at 50% response) were obtained for free protein and phosphorylated counterparts. With respect to the 3-cycling susceptibility testing regimen, individuals of total protein forms were administrated in-turn at 0.14μM/cycle. Relative inhibition ratios were retained to 66.13-81.04% of initial ones regarding the ketoconazole-susceptible C. albicans growth. An inhibitory protein system, with an advantage of decreasing antifungal susceptibilities to diverse antimycotics, was proposed because of regulatory pluripotency whereas little contribution to susceptibility in

  8. A protein microarray for the rapid screening of patients suspected of infection with various food-borne helminthiases.

    Directory of Open Access Journals (Sweden)

    Jia-Xu Chen

    Full Text Available BACKGROUND: Food-borne helminthiases (FBHs have become increasingly important due to frequent occurrence and worldwide distribution. There is increasing demand for developing more sensitive, high-throughput techniques for the simultaneous detection of multiple parasitic diseases due to limitations in differential clinical diagnosis of FBHs with similar symptoms. These infections are difficult to diagnose correctly by conventional diagnostic approaches including serological approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, antigens obtained from 5 parasite species, namely Cysticercus cellulosae, Angiostrongylus cantonensis, Paragonimus westermani, Trichinella spiralis and Spirometra sp., were semi-purified after immunoblotting. Sera from 365 human cases of helminthiasis and 80 healthy individuals were assayed with semi-purified antigens by both a protein microarray and the enzyme-linked immunosorbent assay (ELISA. The sensitivity, specificity and simplicity of each test for the end-user were evaluated. The specificity of the tests ranged from 97.0% (95% confidence interval (CI: 95.3-98.7% to 100.0% (95% CI: 100.0% in the protein microarray and from 97.7% (95% CI: 96.2-99.2% to 100.0% (95% CI: 100.0% in ELISA. The sensitivity varied from 85.7% (95% CI: 75.1-96.3% to 92.1% (95% CI: 83.5-100.0% in the protein microarray, while the corresponding values for ELISA were 82.0% (95% CI: 71.4-92.6% to 92.1% (95% CI: 83.5-100.0%. Furthermore, the Youden index spanned from 0.83 to 0.92 in the protein microarray and from 0.80 to 0.92 in ELISA. For each parasite, the Youden index from the protein microarray was often slightly higher than the one from ELISA even though the same antigen was used. CONCLUSIONS/SIGNIFICANCE: The protein microarray platform is a convenient, versatile, high-throughput method that can easily be adapted to massive FBH screening.

  9. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Science.gov (United States)

    Kempsell, Karen E.; Kidd, Stephen P.; Lewandowski, Kuiama; Elmore, Michael J.; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M.; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J.; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from

  10. Increasing robustness and sensitivity of protein microarrays through microagitation and automation.

    Science.gov (United States)

    Hartmann, M; Toegl, A; Kirchner, R; Templin, M F; Joos, T O

    2006-03-30

    Assay systems that employ protein microarrays for the analysis of complex samples are powerful tools to generate a high amount of data from a limiting amount of sample. Due to miniaturization, these systems are susceptible to fluctuations during signal generation and the use of uniform conditions for sample incubation and during the assay procedure is required to get reproducible results. Diffusion limits may prevent constant conditions on all parts of the array and can lead to the decease of the sensitivity of the array. Therefore, we set-up an automated assay system integrating a novel microagitation device using surface acoustic wave (SAW) technology. Multiplexed assays for the detection of autoantibodies from human serum and sandwich immunoassay for the detection of matrix metalloproteases (MMPs) were used to evaluate the system. Diffusion-rate limited solid phase reactions were enhanced by microagitation using the SAW technology resulting in up to three-fold higher signals.

  11. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays

    DEFF Research Database (Denmark)

    Säll, Anna; Walle, Maria; Wingren, Christer

    2016-01-01

    in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities...... of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also...... for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity...

  12. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity

    International Nuclear Information System (INIS)

    Liu Yingshuai; Li Xuelian; Bao Shujuan; Lu Zhisong; Li Changming; Li Qing

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 μg ml −1 or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors. (paper)

  13. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity

    Science.gov (United States)

    Liu, Yingshuai; Li, Xuelian; Bao, Shujuan; Lu, Zhisong; Li, Qing; Li, Chang Ming

    2013-05-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 μg ml-1 or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors.

  14. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun

    2015-06-11

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  15. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Kempsell

    2015-08-01

    Full Text Available A commercial Bacillus anthracis (Anthrax whole genome protein microarray has been used to identify immunogenic Anthrax proteins using sera from groups of donors with (a confirmed B. anthracis naturally acquired cutaneous infection, (b confirmed B. anthracis intravenous drug use-acquired infection (c occupational exposure in a wool-sorters factory (d humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups.Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However a number of other chromosomally-located and plasmid encoded open reading frames were also recognised by infected or exposed groups in comparison to controls. Some of these antigens e.g. BA4182 are not recognised by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo and are not currently found in the UK licensed Anthrax Vaccine (AVP. These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis ‘infectome’. These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesised, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  16. Innate immunity to Candida albicans

    Directory of Open Access Journals (Sweden)

    Yusuke Kiyoura

    2015-08-01

    Full Text Available Candida albicans is not a pathogen in healthy individuals, but can cause severe systemic candidiasis in immunocompromised patients. C. albicans has various virulence factors and activates the innate immune system. Specifically, C. albicans induces proinflammatory cytokine production in various cell types via many receptors, such as Toll-like receptors (TLRs and C-type lectin receptors (CLRs. This microorganism also promotes phagocytosis via CLRs on macrophages. In a previous study, we found that C. albicans induces the production of galectin-3, which is a known CLR that kills C. albicans. This review indicates that the use of mouthwash containing an antimicrobial peptide or protein might be a useful new oral care method for the prevention of oral candidiasis.

  17. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans

    Science.gov (United States)

    2018-01-01

    Yeast wall protein 1 (Ywp1) is an abundant glycoprotein of the cell wall of the yeast form of Candida albicans, the most prevalent fungal pathogen of humans. Antibodies that bind to the polypeptide backbone of isolated Ywp1 show little binding to intact yeast cells, presumably because the Ywp1 epitopes are masked by the polysaccharides of the mannoproteins that form the outer layer of the cell wall. Rare cells do exhibit much greater anti-Ywp1 binding, however, and one of these was isolated and characterized. No differences were seen in its Ywp1, but it exhibited greater adhesiveness, sensitivity to wall perturbing agents, and exposure of its underlying β-1,3-glucan layer to external antibodies. The molecular basis for this greater epitope accessibility has not been determined, but has facilitated exploration of how these properties change as a function of cell growth and morphology. In addition, previously engineered strains with reduced quantities of Ywp1 in their cell walls were also found to have greater β-1,3-glucan exposure, indicating that Ywp1 itself contributes to the masking of wall epitopes, which may be important for understanding the anti-adhesive effect of Ywp1. Ectopic production of Ywp1 by hyphae, which reduces the adhesivity of these filamentous forms of C. albicans, was similarly found to reduce exposure of the β-1,3-glucan in their walls. To monitor Ywp1 in the cell wall irrespective of its accessibility, green fluorescent protein (Gfp) was genetically inserted into wall-anchored Ywp1 using a bifunctional cassette that also allowed production from a single transfection of a soluble, anchor-free version. The wall-anchored Ywp1-Gfp-Ywp1 accumulated in the wall of the yeast forms but not hyphae, and appeared to have properties similar to native Ywp1, including its adhesion-inhibiting effect. Some pseudohyphal walls also detectably accumulated this probe. Strains of C. albicans with tandem hemagglutinin (HA) epitopes inserted into wall

  18. Tissue microarray analysis of eIF4E and its downstream effector proteins in human breast cancer

    Directory of Open Access Journals (Sweden)

    Clifford John

    2009-04-01

    Full Text Available Abstract Correction to Kleiner HE, Krishnan P, Tubbs J, Smith M, Meschonat C, Shi R, Lowery-Nordberg M, Adegboyega P, Unger M, Cardelli J et al: Tissue microarray analysis of eIF4E and its downstream effector proteins in human breast cancer. J Exp Clin Cancer Res 2009, 28:5.

  19. Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2003-09-01

    Full Text Available By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intratubular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.

  20. [Virulence factors of Candida albicans].

    Science.gov (United States)

    Staniszewska, Monika; Bondaryk, Małgorzata; Piłat, Joanna; Siennicka, Katarzyna; Magda, Urszula; Kurzatkowski, Wiesław

    2012-01-01

    Candida albicans is the most common etiological factor of opportunistic human fungal infections. In this review, we focus on the major virulence factors that mediate the pathogenesis of C. albicans. Among these virulence factors, secreted aspartyl proteases, adherence, pleomorphism are the most important features of C. albicans infections. Ability to exist as different pleomorphic forms is defined as pleomorphism. A number of quorum sensing (QS) molecules have been described which affect morphogenesis process in C. albicans. Furthermore, the morphological transition of C. albicans in response to changing environmental conditions represent a means by which the strain adapts to different biological niches. Furthermore, every morphotype has own virulence profile and each pleomorphic form provide critical functions required for pathogenesis. Candida albicans is a producer of extracellular hydrolytic enzymes. Among them lipases, phospholipases and secreted aspartyl proteinases (Sap) are most significant in virulence. Sap proteins contribute to pathogenesis by digestion of host cell membranes and molecules of the host immune system to avoid antimicrobial attack by the host. One of the key features in the development of candidiasis is adhesion ofC. albicans to buccal and vaginal epithelial cells. The adhesion to host cells represents the first step in the internalization process which involves adhesins. Knowledge of the role of the various C. albicans' virulence factors during in vivo infections is still incomplete, therefore further studies including quantification of genes expression and histopathological examination of tissues damage are required to fully understand pathogenesis of this opportunistic pathogen.

  1. Stress-associated endoplasmic reticulum protein 1 (SERP1) and Atg8 synergistically regulate unfolded protein response (UPR) that is independent on autophagy in Candida albicans.

    Science.gov (United States)

    Li, Jianrong; Yu, Qilin; Zhang, Bing; Xiao, Chenpeng; Ma, Tianyu; Yi, Xiao; Liang, Chao; Li, Mingchun

    2018-03-06

    Cellular stresses could activate several response processes, such as the unfolded protein response (UPR), autophagy and oxidative stress response to restore cellular homeostasis or render cell death. Herein, we identified the Candida albicans stress-associated endoplasmic reticulum protein 1 (SERP1), also known as Ysy6, which was involved in endoplasmic reticulum (ER) stress response. We found that deletion of both SERP1/YSY6 and ATG8 led to hypersensitivity to tunicamycin (TN), and resulted in severe mitochondrial dysfunction under this stress. UPR reporting systems illustrated that the double mutation attenuated splicing of HAC1 mRNA, followed by decreased level of UPR activation. In addition, the atg8Δ/Δ ysy6Δ/Δ double mutant had normal autophagic degradation of the ER component Sec63 under ER stress, suggesting that SERP1/Ysy6 and Atg8 synergistically regulated UPR that is independent on autophagy. We also found that deletion of both SERP1/YSY6 and ATG8 caused the loss of virulence. This study reveals the important role of SERP1/Ysy6 and Atg8 in ER stress response and virulence in C. albicans. Copyright © 2018. Published by Elsevier GmbH.

  2. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis

    International Nuclear Information System (INIS)

    Gao, Wei-Min; Haab, Brian B; Hanash, Samir M; Kuick, Rork; Orchekowski, Randal P; Misek, David E; Qiu, Ji; Greenberg, Alissa K; Rom, William N; Brenner, Dean E; Omenn, Gilbert S

    2005-01-01

    Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response. Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD). Two-color rolling-circle amplification was used to measure protein abundance. Seven of the 84 antibodies gave a significant difference (p < 0.01) for the lung cancer patients as compared to healthy controls, as well as compared to COPD patients. Proteins that exhibited higher abundances in the lung cancer samples relative to the control samples included C-reactive protein (CRP; a 13.3 fold increase), serum amyloid A (SAA; a 2.0 fold increase), mucin 1 and α-1-antitrypsin (1.4 fold increases). The increased expression levels of CRP and SAA were validated by Western blot analysis. Leave-one-out cross-validation was used to construct Diagonal Linear Discriminant Analysis (DLDA) classifiers. At a cutoff where all 56 of the non-tumor samples were correctly classified, 15/24 lung tumor patient sera were correctly classified. Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer

  3. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  4. A Combinatorial Protein Microarray for Probing Materials Interaction with Pancreatic Islet Cell Populations

    Directory of Open Access Journals (Sweden)

    Bahman Delalat

    2016-08-01

    Full Text Available Pancreatic islet transplantation has become a recognized therapy for insulin-dependent diabetes mellitus. During isolation from pancreatic tissue, the islet microenvironment is disrupted. The extracellular matrix (ECM within this space not only provides structural support, but also actively signals to regulate islet survival and function. In addition, the ECM is responsible for growth factor presentation and sequestration. By designing biomaterials that recapture elements of the native islet environment, losses in islet function and number can potentially be reduced. Cell microarrays are a high throughput screening tool able to recreate a multitude of cellular niches on a single chip. Here, we present a screening methodology for identifying components that might promote islet survival. Automated fluorescence microscopy is used to rapidly identify islet derived cell interaction with ECM proteins and immobilized growth factors printed on arrays. MIN6 mouse insulinoma cells, mouse islets and, finally, human islets are progressively screened. We demonstrate the capability of the platform to identify ECM and growth factor protein candidates that support islet viability and function and reveal synergies in cell response.

  5. Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1.

    Science.gov (United States)

    Ariyachet, Chaiyaboot; Beißel, Christian; Li, Xiang; Lorrey, Selena; Mackenzie, Olivia; Martin, Patrick M; O'Brien, Katharine; Pholcharee, Tossapol; Sim, Sue; Krebber, Heike; McBride, Anne E

    2017-05-01

    The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR-like RNA-binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post-transcriptional regulation in these processes. SR (serine-arginine)-rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1-GFP is predominantly nuclear, but also co-fractionates with translating ribosomes. The non-phosphorylatable slr1-6SA-GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1-6SA-GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1-6SA-GFP hyphal tip foci is reduced in the absence of the mRNA-transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA-protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport. © 2017 John Wiley & Sons Ltd.

  6. MAPPI-DAT: data management and analysis for protein-protein interaction data from the high-throughput MAPPIT cell microarray platform.

    Science.gov (United States)

    Gupta, Surya; De Puysseleyr, Veronic; Van der Heyden, José; Maddelein, Davy; Lemmens, Irma; Lievens, Sam; Degroeve, Sven; Tavernier, Jan; Martens, Lennart

    2017-05-01

    Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments. MAPPI-DAT is developed in Python, using R for data analysis and MySQL as data management system. MAPPI-DAT is cross-platform and can be ran on Microsoft Windows, Linux and OS X/macOS. The source code and a Microsoft Windows executable are freely available under the permissive Apache2 open source license at https://github.com/compomics/MAPPI-DAT. jan.tavernier@vib-ugent.be or lennart.martens@vib-ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  7. Protein microarray analysis for detection of serum anti-Helicobacter pylori antibodies after eradication therapy: a clinical follow-up.

    Science.gov (United States)

    Cui, Meihua; Wei, Hong; Mu, Fanghong; Yi, Guoxing; Fu, Yi; Yue, Lin

    2015-01-01

    We aimed to observe the changes in the anti-Helicobacter pylori (Hp) serum antibodies to Hp virulence factors after eradication therapy and evaluate the potential application value of protein microarray in detecting Hp antibodies after eradication therapy. A total of 107 Hp-positive patients with peptic ulcers (55) and chronic gastritis (52) were recruited. Serum antibodies to Hp urease (Ure), cytotoxin-associated protein (CagA), vacuolating cytotoxin (VacA), heat shock protein 60 (Hsp60), and anti-RdxA nitroreductase were measured. Four weeks after treatment, a 13C-urea breath test (13C- UBT) was applied to assess the Hp eradication state and to analyze correlations between the Hp eradication rate and the five antibodies. Six months after the therapy, protein microarray analysis was used to study the changes in these five serum antibodies. The overall Hp eradication rate was 86.0%There was no significant difference in the rate among the groups that tested positive and negative for the remaining four virulence factors. The disease type and serum anti-CagA antibody levels affect the therapeutic outcome of Hp eradication therapy. Protein microarray detection of Hp-related antibodies did not have significant application value for the long-term follow-up of Hp infection after eradication therapy.

  8. Graph Based Study of Allergen Cross-Reactivity of Plant Lipid Transfer Proteins (LTPs) Using Microarray in a Multicenter Study

    Science.gov (United States)

    Palacín, Arantxa; Gómez-Casado, Cristina; Rivas, Luis A.; Aguirre, Jacobo; Tordesillas, Leticia; Bartra, Joan; Blanco, Carlos; Carrillo, Teresa; Cuesta-Herranz, Javier; de Frutos, Consolación; Álvarez-Eire, Genoveva García; Fernández, Francisco J.; Gamboa, Pedro; Muñoz, Rosa; Sánchez-Monge, Rosa; Sirvent, Sofía; Torres, María J.; Varela-Losada, Susana; Rodríguez, Rosalía; Parro, Victor; Blanca, Miguel; Salcedo, Gabriel; Díaz-Perales, Araceli

    2012-01-01

    The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens. PMID:23272072

  9. Discrimination of influenza infection (A/2009 H1N1 from prior exposure by antibody protein microarray analysis.

    Directory of Open Access Journals (Sweden)

    Dennis te Beest

    Full Text Available Reliable discrimination of recent influenza A infection from previous exposure using hemagglutination inhibition (HI or virus neutralization tests is currently not feasible. This is due to low sensitivity of the tests and the interference of antibody responses generated by previous infections. Here we investigate the diagnostic characteristics of a newly developed antibody (HA1 protein microarray using data from cross-sectional serological studies carried out before and after the pandemic of 2009. The data are analysed by mixture models, providing a probabilistic classification of sera (susceptible, prior-exposed, recently infected. Estimated sensitivity and specificity for identifying A/2009 infections are low using HI (66% and 51%, and high when using A/2009 microarray data alone or together with A/1918 microarray data (96% and 95%. As a heuristic, a high A/2009 to A/1918 antibody ratio (>1.05 is indicative of recent infection, while a low ratio is indicative of a pre-existing response, even if the A/2009 titer is high. We conclude that highly sensitive and specific classification of individual sera is possible using the protein microarray, thereby enabling precise estimation of age-specific infection attack rates in the population even if sample sizes are small.

  10. Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs using microarray in a multicenter study.

    Directory of Open Access Journals (Sweden)

    Arantxa Palacín

    Full Text Available The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.

  11. Identification of proteomic biomarkers of preeclampsia using protein microarray and tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Karol Charkiewicz

    2015-05-01

    Full Text Available Preeclampsia (PE is the leading cause of death of the fetus and the mother. The exact pathomechanism has not so far been clarified. PE coexists with many other diseases, but it is often difficult to explain the association between them and find a clear reason for their occurrence. There are many predictive factors, but none are highly specific in preeclampsia. The diagnosis of preeclampsia seems to be very complex, which is another argument for the exploration of knowledge on this subject. Although many of the discoveries have hitherto been made in the field of proteomics, still no single specific biomarker of preeclampsia has been discovered. Research at the genome level is important because it can help us understand the genetic predisposition of patients affected by this disease. Nevertheless, researchers have recently become more interested in the pathophysiology of PE, and they are trying to answer the question: what is the real, direct cause of preeclampsia? Thus, the discovery of a protein that is a good predictor of preeclampsia development would significantly accelerate the medical care of pregnant women, and consequently reduce the risk of occurrence of HELLP syndrome and fetal death. Apart from the predictive and diagnostic function, such a discovery would help us to better understand the pathogenesis of preeclampsia and to find in the future a medical drug to suppress this disease. In order to make a breakthrough in this field, scientists need to use the most modern methods of proteomics, which allow for the analysis of small amounts of biological material in the shortest possible time, thereby giving a lot of information about existing proteins in the sample. Such optimization allows two methods, most commonly used by researchers: tandem mass spectrometry and protein microarray technique.

  12. Use of Green Fluorescent Protein and Reverse Transcription-PCR To Monitor Candida albicans Agglutinin-Like Sequence Gene Expression in a Murine Model of Disseminated Candidiasis

    OpenAIRE

    Green, Clayton B.; Zhao, Xiaomin; Hoyer, Lois L.

    2005-01-01

    Candida albicans PALS-green fluorescent protein (GFP) reporter strains were inoculated into mice in a disseminated candidiasis model, and GFP production was monitored by immunohistochemistry and reverse transcription-PCR (RT-PCR). GFP production from the ALS1 and ALS3 promoters was detected immunohistochemically. ALS1, ALS2, ALS3, ALS4, and ALS9 transcription was detected by RT-PCR, further identifying ALS genes expressed in this model.

  13. Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis.

    Science.gov (United States)

    Green, Clayton B; Zhao, Xiaomin; Hoyer, Lois L

    2005-03-01

    Candida albicans PALS-green fluorescent protein (GFP) reporter strains were inoculated into mice in a disseminated candidiasis model, and GFP production was monitored by immunohistochemistry and reverse transcription-PCR (RT-PCR). GFP production from the ALS1 and ALS3 promoters was detected immunohistochemically. ALS1, ALS2, ALS3, ALS4, and ALS9 transcription was detected by RT-PCR, further identifying ALS genes expressed in this model.

  14. Candida albicans Lacking the Gene Encoding the Regulatory Subunit of Protein Kinase A Displays a Defect in Hyphal Formation and an Altered Localization of the Catalytic Subunit

    Science.gov (United States)

    Cassola, Alejandro; Parrot, Marc; Silberstein, Susana; Magee, Beatrice B.; Passeron, Susana; Giasson, Luc; Cantore, María L.

    2004-01-01

    The fungal pathogen Candida albicans switches from a yeast-like to a filamentous mode of growth in response to a variety of environmental conditions. We examined the morphogenetic behavior of C. albicans yeast cells lacking the BCY1 gene, which encodes the regulatory subunit of protein kinase A. We cloned the BCY1 gene and generated a bcy1 tpk2 double mutant strain because a homozygous bcy1 mutant in a wild-type genetic background could not be obtained. In the bcy1 tpk2 mutant, protein kinase A activity (due to the presence of the TPK1 gene) was cyclic AMP independent, indicating that the cells harbored an unregulated phosphotransferase activity. This mutant has constitutive protein kinase A activity and displayed a defective germinative phenotype in N-acetylglucosamine and in serum-containing medium. The subcellular localization of a Tpk1-green fluorescent protein (GFP) fusion protein was examined in wild-type, tpk2 null, and bcy1 tpk2 double mutant strains. The fusion protein was observed to be predominantly nuclear in wild-type and tpk2 strains. This was not the case in the bcy1 tpk2 double mutant, where it appeared dispersed throughout the cell. Coimmunoprecipitation of Bcy1p with the Tpk1-GFP fusion protein demonstrated the interaction of these proteins inside the cell. These results suggest that one of the roles of Bcy1p is to tether the protein kinase A catalytic subunit to the nucleus. PMID:14871949

  15. Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions.

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2010-09-01

    Full Text Available Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO, contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.

  16. The secreted Candida albicans protein Pra1 disrupts host defense by broadly targeting and blocking complement C3 and C3 activation fragments.

    Science.gov (United States)

    Luo, Shanshan; Dasari, Prasad; Reiher, Nadine; Hartmann, Andrea; Jacksch, Susanne; Wende, Elisabeth; Barz, Dagmar; Niemiec, Maria Joanna; Jacobsen, Ilse; Beyersdorf, Niklas; Hünig, Thomas; Klos, Andreas; Skerka, Christine; Zipfel, Peter F

    2018-01-01

    Candida albicans the most frequently isolated clinical fungal pathogen can cause local as well as systemic and life-threatening infections particularly in immune-compromised individuals. A better and more detailed understanding how C. albicans evades human immune attack is therefore needed for identifying fungal immune-evasive proteins and develop new therapies. Here, we identified Pra1, the pH-regulated C. albicans antigen as a hierarchical complement inhibitor that targets C3, the central human complement component. Pra1 cleaved C3 at a unique site and further inhibited effector function of the activation fragments. The newly formed C3a-like peptide lacked the C-terminal arginine residue needed for C3a-receptor binding and activation. Moreover, Pra1 also blocked C3a-like antifungal activity as shown in survival assays, and the C3b-like molecule formed by Pra1 was degraded by the host protease Factor I. Pra1 also bound to C3a and C3b generated by human convertases and blocked their effector functions, like C3a antifungal activity shown by fungal survival, blocked C3a binding to human C3a receptor-expressing HEK cells, activation of Fura2-AM loaded cells, intracellular Ca 2+ signaling, IL-8 release, C3b deposition, as well as opsonophagocytosis and killing by human neutrophils. Thus, upon infection C. albicans uses Pra1 to destroy C3 and to disrupt host complement attack. In conclusion, candida Pra1 represents the first fungal C3-cleaving protease identified and functions as a fungal master regulator of innate immunity and as a central fungal immune-escape protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Methodological Challenges in Protein Microarray and Immunohistochemistry for the Discovery of Novel Autoantibodies in Paediatric Acute Disseminated Encephalomyelitis

    Science.gov (United States)

    Peschl, Patrick; Ramberger, Melanie; Höftberger, Romana; Jöhrer, Karin; Baumann, Matthias; Rostásy, Kevin; Reindl, Markus

    2017-01-01

    Acute disseminated encephalomyelitis (ADEM) is a rare autoimmune-mediated demyelinating disease affecting mainly children and young adults. Differentiation to multiple sclerosis is not always possible, due to overlapping clinical symptoms and recurrent and multiphasic forms. Until now, immunoglobulins reactive to myelin oligodendrocyte glycoprotein (MOG antibodies) have been found in a subset of patients with ADEM. However, there are still patients lacking autoantibodies, necessitating the identification of new autoantibodies as biomarkers in those patients. Therefore, we aimed to identify novel autoantibody targets in ADEM patients. Sixteen ADEM patients (11 seronegative, 5 seropositive for MOG antibodies) were analysed for potential new biomarkers, using a protein microarray and immunohistochemistry on rat brain tissue to identify antibodies against intracellular and surface neuronal and glial antigens. Nine candidate antigens were identified in the protein microarray analysis in at least two patients per group. Immunohistochemistry on rat brain tissue did not reveal new target antigens. Although no new autoantibody targets could be found here, future studies should aim to identify new biomarkers for therapeutic and prognostic purposes. The microarray analysis and immunohistochemistry methods used here have several limitations, which should be considered in future searches for biomarkers. PMID:28327523

  18. Protein microarray analysis in patients with asthma: elevation of the chemokine PARC/CCL18 in sputum.

    Science.gov (United States)

    Kim, Hyo-Bin; Kim, Chang-Keun; Iijima, Koji; Kobayashi, Takao; Kita, Hirohito

    2009-02-01

    Microarray technology offers a new opportunity to gain insight into global gene and protein expression profiles in asthma. To identify novel factors produced in the asthmatic airway, we analyzed sputum samples by using a membrane-based human cytokine microarray technology in patients with bronchial asthma (BA). Induced sputum was obtained from 28 BA subjects, 20 nonasthmatic atopic control (AC) subjects, and 38 nonasthmatic nonatopic normal control (NC) subjects. The microarray samples of subjects were randomly selected from nine BA subjects, three AC subjects, and six NC subjects. Sputum supernatants were analyzed using a custom human cytokine array (RayBio Custom Human Cytokine Array; RayBiotech; Norcross, GA) designed to analyze 79 specific cytokines simultaneously. The levels of growth-regulated oncogene (GRO)-alpha, eotaxin-2, and pulmonary and activation-regulated chemokine (PARC)/CCL18 were measured by sandwich enzyme-linked immunosorbent assays (ELISAs), and eosinophil-derived neurotoxin (EDN) was measured by radioimmunoassay. By microarray, the signal intensities for GRO-alpha, eotaxin-2, and PARC were significantly higher in BA subjects than in AC and NC subjects (p = 0.036, p = 0.042, and p = 0.033, respectively). By ELISA, the sputum PARC protein levels were significantly higher in BA subjects than in AC and NC subjects (p < 0.0001). Furthermore, PARC levels correlated significantly with sputum eosinophil percentages (r = 0.570, p < 0.0001) and the levels of EDN (r = 0.633, p < 0.0001), the regulated upon activation, normal T cell expressed and secreted cytokine (r = 0.440, p < 0.001), interleukin-4 (r = 0.415, p < 0.01), and interferon-gamma (r = 0.491, p < 0.001). By a nonbiased screening approach, a chemokine, PARC, is elevated in sputum specimens from patients with asthma. PARC may play important roles in development of airway eosinophilic inflammation in asthma.

  19. The role of Candida albicans AP-1 protein against host derived ROS in in vivo models of infection.

    Science.gov (United States)

    Jain, Charu; Pastor, Kelly; Gonzalez, Arely Y; Lorenz, Michael C; Rao, Reeta P

    2013-01-01

    Candida albicans is a major fungal pathogen of humans, causing mucosal infections that are difficult to eliminate and systemic infections that are often lethal primarily due to defects in the host's innate status. Here we demonstrate the utility of Caenorhabditis elegans, a model host to study innate immunity, by exploring the role of reactive oxygen species (ROS) as a critical innate response against C. albicans infections. Much like a human host, the nematode's innate immune response is activated to produce ROS in response to fungal infection. We use the C. albicans cap1 mutant, which is susceptible to ROS, as a tool to dissect this physiological innate immune response and show that cap1 mutants fail to cause disease and death, except in bli-3 mutant worms that are unable to produce ROS because of a defective NADPH oxidase. We further validate the ROS-mediated host defense mechanism in mammalian phagocytes by demonstrating that chemical inhibition of the NADPH oxidase in cultured macrophages enables the otherwise susceptible cap1 mutant to resists ROS-mediated phagolysis. Loss of CAP1 confers minimal attenuation of virulence in a disseminated mouse model, suggesting that CAP1-independent mechanisms contribute to pathogen survival in vivo. Our findings underscore a central theme in the process of infection-the intricate balance between the virulence strategies employed by C. albicans and the host's innate immune system and validates C. elegans as a simple model host to dissect this balance at the molecular level.

  20. Studying the protein expression in human B lymphoblastoid cells exposed to 1.8-GHz (GSM) radiofrequency radiation (RFR) with protein microarray.

    Science.gov (United States)

    Zhijian, Chen; Xiaoxue, Li; Wei, Zheng; Yezhen, Lu; Jianlin, Lou; Deqiang, Lu; Shijie, Chen; Lifen, Jin; Jiliang, He

    2013-03-29

    In the present study, the protein microarray was used to investigate the protein expression in human B-cell lymphoblastoid cells intermittently exposed to 1.8-GHz GSM radiofrequency radiation (RFR) at the specific absorption rate (SAR) of 2.0 W/kg for 24 h. The differential expression of 27 proteins was found, which were related to DNA damage repair, apoptosis, oncogenesis, cell cycle and proliferation (ratio >1.5-fold, PRFR exposure group (PRFR on DNA damage/repair and cell apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Lectin-based protein microarray analysis of differences in serum alpha-2-macroglobulin glycosylation between patients with colorectal cancer and persons without cancer.

    Science.gov (United States)

    Šunderić, Miloš; Šedivá, Alena; Robajac, Dragana; Miljuš, Goran; Gemeiner, Peter; Nedić, Olgica; Katrlík, Jaroslav

    2016-07-01

    Glycosylation is co- and posttranslational modifications affecting proteins. The glycopattern changes are associated with changes in biological function and are involved in many diseases including cancer. We present the lectin-based protein microarray method enabling determination of differences in protein glycosylation. The method involves isolation of targeted protein from samples by immunoprecipitation, spotting of protein from multiple samples into arrays on a microarray slide, incubation with set of biotinylated lectins, the reaction with fluorescent conjugate of streptavidin, and detection of fluorescent intensities by microarray scanner. Lectin-based protein microarray was applied in investigation of differences in alpha-2-macroglobulin (α2M) glycosylation isolated from sera samples of healthy persons and patients with colorectal cancer (CC). From 14 lectins used in analysis, statistically significant differences (Student's t-test, P microarray developed and described can serve as a suitable analytical technique for sensitive, simple, fast, and high-throughput determination of differences in protein glycosylation isolated from serum or other samples. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  2. Thioester-containing proteins of the tick Ixodes ricinus: Gene expression, response to microbial challenge and their role in phagocytosis of the yeast Candida albicans

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Veronika; Šíma, Radek; Šauman, Ivo; Hajdušek, Ondřej; Kopáček, Petr

    2015-01-01

    Roč. 48, č. 1 (2015), s. 55-64 ISSN 0145-305X R&D Projects: GA ČR GAP506/10/2136; GA ČR GA13-11043S; GA ČR GP13-27630P; GA ČR GP13-12816P; GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : Candida albicans * Complement * Innate immunity * Phagocytosis * Thioester-containing proteins * Tick Ixodes ricinus Subject RIV: EC - Immunology Impact factor: 3.620, year: 2015

  3. Microarray analysis of ncRNA expression patterns in Caenorhabditis elegans after RNAi against snoRNA associated proteins

    Directory of Open Access Journals (Sweden)

    Skogerbø Geir

    2008-06-01

    Full Text Available Abstract Background Short non-coding RNAs (ncRNAs perform their cellular functions in ribonucleoprotein (RNP complexes, which are also essential for maintaining the stability of the ncRNAs. Depletion of individual protein components of non-coding ribonucleoprotein (ncRNP particles by RNA interference (RNAi may therefore affect expression levels of the corresponding ncRNA, and depletion of candidate associated proteins may constitute an alternative strategy when investigating ncRNA-protein interactions and ncRNA functions. Therefore, we carried out a pilot study in which the effects of RNAi against protein components of small nucleolar RNPs (snoRNPs in Caenorhabditis elegans were observed on an ncRNA microarray. Results RNAi against individual C. elegans protein components of snoRNPs produced strongly reduced mRNA levels and distinct phenotypes for all targeted proteins. For each type of snoRNP, individual depletion of at least three of the four protein components produced significant (P ≦ 1.2 × 10-5 reductions in the expression levels of the corresponding small nucleolar RNAs (snoRNAs, whereas the expression levels of other ncRNAs were largely unaffected. The effects of depletion of individual proteins were in accordance with snoRNP structure analyses obtained in other species for all but two of the eight targeted proteins. Variations in snoRNA size, sequence and secondary structure characteristics were not systematically reflected in the affinity for individual protein component of snoRNPs. The data supported the classification of nearly all annotated snoRNAs and suggested the presence of several novel snoRNAs among unclassified short ncRNA transcripts. A number of transcripts containing canonical Sm binding element sequences (Sm Y RNAs also showed reduced expression after depletion of protein components of C/D box snoRNPs, whereas the expression of some stem-bulge RNAs (sbRNAs was increased after depletion of the same proteins. Conclusion

  4. Discovery and validation of an INflammatory PROtein-driven GAstric cancer Signature (INPROGAS) using antibody microarray-based oncoproteomics

    Science.gov (United States)

    Puig-Costa, Manuel; Codina-Cazador, Antonio; Cortés-Pastoret, Elisabet; Oliveras-Ferraros, Cristina; Cufí, Sílvia; Flaquer, Sílvia; Llopis-Puigmarti, Francesca; Pujol-Amado, Eulalia; Corominas-Faja, Bruna; Cuyàs, Elisabet; Ortiz, Rosa; Lopez-Bonet, Eugeni; Queralt, Bernardo; Guardeño, Raquel; Martin-Castillo, Begoña; Roig, Josep; Joven, Jorge; Menendez, Javier A.

    2014-01-01

    This study aimed to improve gastric cancer (GC) diagnosis by identifying and validating an INflammatory PROtein-driven GAstric cancer Signature (hereafter INPROGAS) using low-cost affinity proteomics. The detection of 120 cytokines, 43 angiogenic factors, 41 growth factors, 40 inflammatory factors and 10 metalloproteinases was performed using commercially available human antibody microarray-based arrays. We identified 21 inflammation-related proteins (INPROGAS) with significant differences in expression between GC tissues and normal gastric mucosa in a discovery cohort of matched pairs (n=10) of tumor/normal gastric tissues. Ingenuity pathway analysis confirmed the “inflammatory response”, “cellular movement” and “immune cell trafficking” as the most overrepresented biofunctions within INPROGAS. Using an expanded independent validation cohort (n = 22), INPROGAS classified gastric samples as “GC” or “non-GC” with a sensitivity of 82% (95% CI 59-94) and a specificity of 73% (95% CI 49-89). The positive predictive value and negative predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 56-94), respectively. The positive predictive value and negative predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 56-94), respectively. Antibody microarray analyses of the GC-associated inflammatory proteome identified a 21-protein INPROGAS that accurately discriminated GC from noncancerous gastric mucosa. PMID:24722433

  5. Identification of infection- and defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-zebrafish infection model.

    Science.gov (United States)

    Kuo, Zong-Yu; Chuang, Yung-Jen; Chao, Chun-Cheih; Liu, Fu-Chen; Lan, Chung-Yu; Chen, Bor-Sen

    2013-01-01

    Candida albicans infections and candidiasis are difficult to treat and create very serious therapeutic challenges. In this study, based on interactive time profile microarray data of C. albicans and zebrafish during infection, the infection-related protein-protein interaction (PPI) networks of the two species and the intercellular PPI network between host and pathogen were simultaneously constructed by a dynamic interaction model, modeled as an integrated network consisting of intercellular invasion and cellular defense processes during infection. The signal transduction pathways in regulating morphogenesis and hyphal growth of C. albicans were further investigated based on significant interactions found in the intercellular PPI network. Two cellular networks were also developed corresponding to the different infection stages (adhesion and invasion), and then compared with each other to identify proteins from which we can gain more insight into the pathogenic role of hyphal development in the C. albicans infection process. Important defense-related proteins in zebrafish were predicted using the same approach. The hyphal growth PPI network, zebrafish PPI network and host-pathogen intercellular PPI network were combined to form an integrated infectious PPI network that helps us understand the systematic mechanisms underlying the pathogenicity of C. albicans and the immune response of the host, and may help improve medical therapies and facilitate the development of new antifungal drugs. Copyright © 2013 S. Karger AG, Basel.

  6. Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation

    Czech Academy of Sciences Publication Activity Database

    Pelech, S.; Jelínková, Lucie; Šušor, Andrej; Zhang, H.; Shi, X.; Pavlok, Antonín; Kubelka, Michal; Kovářová, Hana

    2008-01-01

    Roč. 7, č. 7 (2008), s. 2860-2871 ISSN 1535-3893 R&D Projects: GA ČR GA204/06/1297 Grant - others:GA AV ČR(CZ) 1QS500450568 Program:1Q Institutional research plan: CEZ:AV0Z50450515 Keywords : antibody microarray * pig * frog Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.684, year: 2008

  7. Expression of the G protein-coupled estrogen receptor (GPER in endometriosis: a tissue microarray study

    Directory of Open Access Journals (Sweden)

    Samartzis Nicolas

    2012-04-01

    Full Text Available Abstract Background The G protein-coupled estrogen receptor (GPER is thought to be involved in non-genomic estrogen responses as well as processes such as cell proliferation and migration. In this study, we analyzed GPER expression patterns from endometriosis samples and normal endometrial tissue samples and compared these expression profiles to those of the classical sex hormone receptors. Methods A tissue microarray, which included 74 samples from different types of endometriosis (27 ovarian, 19 peritoneal and 28 deep-infiltrating and 30 samples from normal endometrial tissue, was used to compare the expression levels of the GPER, estrogen receptor (ER-alpha, ER-beta and progesterone receptor (PR. The immunoreactive score (IRS was calculated separately for epithelium and stroma as the product of the staining intensity and the percentage of positive cells. The expression levels of the hormonal receptors were dichotomized into low (IRS  =6 expression groups. Results The mean epithelial IRS (+/−standard deviation, range of cytoplasmic GPER expression was 1.2 (+/−1.7, 0–4 in normal endometrium and 5.1 (+/−3.5, 0–12 in endometriosis (p p = 0.71, of ER-alpha 10.6 (+/−2.4, 3–12 and 9.8 (+/−3.0, 2–12; p = 0.26, of ER-beta 2.4 (+/−2.2; 0–8 and 5.6 (+/−2.6; 0–10; p p p p = 0.001, of ER-beta 1.8 (+/−2.0; 0–8 and 5.4 (+/−2.5; 0–10; p p���= 0.044, respectively. Cytoplasmic GPER expression was not detectable in the stroma of endometrium and endometriosis. The observed frequency of high epithelial cytoplasmic GPER expression levels was 50% (n = 30/60 in the endometriosis and none (0/30 in the normal endometrium samples (p p = 0.01, as compared to peritoneal (9/18, 50% or deep-infiltrating endometriotic lesions (7/22, 31.8%. The frequency of high stromal nuclear GPER expression levels was 100% (n = 74/74 in endometriosis and 76.7% (n = 23/30 in normal endometrium (p

  8. Studying the protein expression in human B lymphoblastoid cells exposed to 1.8-GHz (GSM) radiofrequency radiation (RFR) with protein microarray

    International Nuclear Information System (INIS)

    Zhijian, Chen; Xiaoxue, Li; Wei, Zheng; Yezhen, Lu; Jianlin, Lou; Deqiang, Lu; Shijie, Chen; Lifen, Jin; Jiliang, He

    2013-01-01

    Highlights: ► Protein microarray shows the differential expression of 27 proteins induced by RFR. ► RPA32 related to DNA repair is down-regulated in Western blot. ► p73 related to cell genome stability and apoptosis is up-regulated in Western blot. -- Abstract: In the present study, the protein microarray was used to investigate the protein expression in human B-cell lymphoblastoid cells intermittently exposed to 1.8-GHz GSM radiofrequency radiation (RFR) at the specific absorption rate (SAR) of 2.0 W/kg for 24 h. The differential expression of 27 proteins was found, which were related to DNA damage repair, apoptosis, oncogenesis, cell cycle and proliferation (ratio >1.5-fold, P < 0.05). The results validated with Western blot assay indicated that the expression of RPA32 was significantly down-regulated (P < 0.05) while the expression of p73 was significantly up-regulated in RFR exposure group (P < 0.05). Because of the crucial roles of those proteins in DNA repair and cell apoptosis, the results of present investigation may explain the biological effects of RFR on DNA damage/repair and cell apoptosis

  9. ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation.

    Science.gov (United States)

    Feijs, Karla Lh; Kleine, Henning; Braczynski, Anne; Forst, Alexandra H; Herzog, Nicolas; Verheugd, Patricia; Linzen, Ulrike; Kremmer, Elisabeth; Lüscher, Bernhard

    2013-01-19

    Although ADP-ribosylation has been described five decades ago, only recently a distinction has been made between eukaryotic intracellular poly- and mono-ADP-ribosylating enzymes. Poly-ADP-ribosylation by ARTD1 (formerly PARP1) is best known for its role in DNA damage repair. Other polymer forming enzymes are ARTD2 (formerly PARP2), ARTD3 (formerly PARP3) and ARTD5/6 (formerly Tankyrase 1/2), the latter being involved in Wnt signaling and regulation of 3BP2. Thus several different functions of poly-ADP-ribosylation have been well described whereas intracellular mono-ADP-ribosylation is currently largely undefined. It is for example not known which proteins function as substrate for the different mono-ARTDs. This is partially due to lack of suitable reagents to study mono-ADP-ribosylation, which limits the current understanding of this post-translational modification. We have optimized a novel screening method employing protein microarrays, ProtoArrays®, applied here for the identification of substrates of ARTD10 (formerly PARP10) and ARTD8 (formerly PARP14). The results of this substrate screen were validated using in vitro ADP-ribosylation assays with recombinant proteins. Further analysis of the novel ARTD10 substrate GSK3β revealed mono-ADP-ribosylation as a regulatory mechanism of kinase activity by non-competitive inhibition in vitro. Additionally, manipulation of the ARTD10 levels in cells accordingly influenced GSK3β activity. Together these data provide the first evidence for a role of endogenous mono-ADP-ribosylation in intracellular signaling. Our findings indicate that substrates of ADP-ribosyltransferases can be identified using protein microarrays. The discovered substrates of ARTD10 and ARTD8 provide the first sets of proteins that are modified by mono-ADP-ribosyltransferases in vitro. By studying one of the ARTD10 substrates more closely, the kinase GSK3β, we identified mono-ADP-ribosylation as a negative regulator of kinase activity.

  10. Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions.

    Science.gov (United States)

    Kanoh, Naoki; Asami, Aya; Kawatani, Makoto; Honda, Kaori; Kumashiro, Saori; Takayama, Hiroshi; Simizu, Siro; Amemiya, Tomoyuki; Kondoh, Yasumitsu; Hatakeyama, Satoru; Tsuganezawa, Keiko; Utata, Rei; Tanaka, Akiko; Yokoyama, Shigeyuki; Tashiro, Hideo; Osada, Hiroyuki

    2006-12-18

    We have developed a unique photo-cross-linking approach for immobilizing a variety of small molecules in a functional-group-independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on-array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo-cross-linked microarrays of about 2000 natural products and drugs were constructed. This photo-cross-linked microarray format was found to be useful not merely for ligand screening but also to study the structure-activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo-cross-linking process.

  11. Purification and comparison of heat shock protein 90 (Hsp90) in Candida albicans isolates from Malaysian and Iranian patients and infected mice.

    Science.gov (United States)

    Khalili, V; Shokri, H; Khosravi, A R; Akim, A; Amri Saroukolaei, S

    2016-06-01

    The purposes of this study were to purify and compare the concentration ratios of heat shock protein 90 (Hsp90) in clinical isolates of Candida albicans (C. albicans) obtained from Malaysian and Iranian patients and infected mice. Hsp90 was extracted using glass beads and ultracentrifugation from yeast cells and purified by ion exchange chromatography (DEAE-cellulose) and followed by affinity chromatography (hydroxyapatite). Purity of Hsp90 was controlled by SDS-PAGE and its identification was realized by immunoblotting test. The graphs of ion exchange and affinity chromatography showed one peak in all C. albicans isolates obtained from both Malaysian and Iranian samples, infected mice and under high-thermal (42°C) and low-thermal (25°C) shock. In immunoblotting, the location of Hsp90 fragments was obtained around 47, 75 and 82kDa. The least average concentration ratios of Hsp90 were 0.350 and 0.240mg/g for Malaysian and Iranian isolates at 25°C, respectively, while the highest average concentration ratios of Hsp90 were 3.05 and 2.600mg/g for Malaysian and Iranian isolates at 42°C, respectively. There were differences in the ratio amount of Hsp90 between Malaysian isolates (1.01±0.07mg/g) and mice kidneys (1.23±0.28mg/g) as well as between Iranian isolates (0.70±0.19mg/g) and mice kidneys (1.00±0.28mg/g) (Pisolates, samples treated with temperatures (25°C or 42°C) and before and after infecting the mice (37°C), indicating higher virulent nature of this yeast species in high temperature in human and animal models. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Ethanolic extract of Passiflora edulis Sims leaves inhibits protein glycation and restores the oxidative burst in diabetic rat macrophages after Candida albicans exposure

    Directory of Open Access Journals (Sweden)

    Carolina Fernandes Ribas Martins

    2015-12-01

    Full Text Available abstract This study was conducted to evaluate the effects of the ethanolic extract of Passiflora edulis leaves on blood glucose, protein glycation, NADPH oxidase activity and macrophage phagocytic capacity after Candida albicans exposure in diabetic rats. The Passiflora edulis Sims leaves were dried to 40°C, powdered, extracted by maceration in 70% ethanol, evaporated under reduced pressure and lyophilised. The biochemical tests performed were total phenolic content (TP as determined by the Folin-Ciocalteu assay, trapping potential DPPH assay and total iron-reducing potential. Diabetes was induced by alloxan injection. Protein glycation was determined by AGE and fructosamine serum concentrations. Extract-treated diabetic animals demonstrated lower fructosamine concentrations compared with the diabetic group. Our results suggest that ethanolic Passiflora edulis Sims leaf extraction may have beneficial effects on diabetes and may improve glycaemic control in diabetic rats.

  13. Evolution of an influenza pandemic in 13 countries from 5 continents monitored by protein microarray from neonatal screening bloodspots.

    Science.gov (United States)

    de Bruin, E; Loeber, J G; Meijer, A; Castillo, G Martinez; Cepeda, M L Granados; Torres-Sepúlveda, M Rosario; Borrajo, G J C; Caggana, M; Giguere, Y; Meyer, M; Fukushi, M; Devi, A R Rama; Khneisser, I; Vilarinho, L; von Döbeln, U; Torresani, T; Mackenzie, J; Zutt, I; Schipper, M; Elvers, L H; Koopmans, M P G

    2014-09-01

    Because of lack of worldwide standardization of influenza virus surveillance, comparison between countries of impact of a pandemic is challenging. For that, other approaches to allow internationally comparative serosurveys are welcome. Here we explore the use of neonatal screening dried blood spots to monitor the trends of the 2009 influenza A (H1N1) pdm virus by the use of a protein microarray. We contacted colleagues from neonatal screening laboratories and asked for their willingness to participate in a study by testing anonymized neonatal screening bloodspots collected during the course of the pandemic. In total, 7749 dried blood spots from 13 countries in 5 continents where analyzed by using a protein microarray containing HA1 recombinant proteins derived from pandemic influenza A (H1N1) 2009 as well as seasonal influenza viruses. Results confirm the early start of the pandemic with extensive circulation in the US and Canada, when circulation of the new virus was limited in other parts of the world. The data collected from sites in Mexico suggested limited circulation of the virus during the early pandemic phase in this country. In contrast and to our surprise, an increase in seroprevalence early in 2009 was noted in the dataset from Argentina, suggestive of much more widespread circulation of the novel virus in this country than in Mexico. We conclude that this uniform serological testing of samples from a highly standardized screening system offers an interesting opportunity for monitoring population level attack rates of widespread diseases outbreaks and pandemics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. DNA Microarrays

    Science.gov (United States)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  15. Development of high-yield autofluorescent protein microarrays using hybrid cell-free expression with combined Escherichia coli S30 and wheat germ extracts

    Directory of Open Access Journals (Sweden)

    Lake April D

    2010-06-01

    Full Text Available Abstract Background Protein-based microarray platforms offer considerable promise as high-throughput technologies in proteomics. Particular advantages are provided by self-assembling protein microarrays and much interest centers around analysis of eukaryotic proteins and their molecular interactions. Efficient cell-free protein synthesis is paramount for the production of self-assembling protein microarrays, requiring optimal transcription, translation, and protein folding. The Escherichia coli S30 extract demonstrates high translation rates but lacks the protein-folding efficiency of its eukaryotic counterparts derived from rabbit reticulocyte and wheat germ extract. In comparison to E. coli, eukaryotic extracts, on the other hand, exhibit slower translation rates and poor overall protein yields. A cell-free expression system that synthesizes folded eukaryotic proteins in considerable yields would optimize in vitro translation for protein microarray assembly. Results Self-assembling autofluorescent protein microarrays were produced by in situ transcription and translation of chimeric proteins containing a C-terminal Green Fluorescent Protein tag. Proteins were immobilized as array elements using an anti-GFP monoclonal antibody. The amounts of correctly-folded chimeric proteins were quantified by measuring the fluorescence intensity from each array element. During cell-free expression, very little or no fluorescence was observed from GFP-tagged multidomain eukaryotic plant proteins when in vitro translation was performed with E. coli S30 extract. Improvement was seen using wheat germ extract, but fluorescence intensities were still low because of poor protein yields. A hybrid in vitro translation system, combining S30 and wheat germ extracts, produced high levels of correctly-folded proteins for most of the constructs that were tested. Conclusion The results are consistent with the hypothesis that the wheat germ extract enhances the protein

  16. Ag@SiO2-entrapped hydrogel microarray: a new platform for a metal-enhanced fluorescence-based protein assay.

    Science.gov (United States)

    Jang, Eunji; Kim, Minsu; Koh, Won-Gun

    2015-05-21

    We developed a novel protein-based bioassay platform utilizing metal-enhanced fluorescence (MEF), which is a hydrogel microarray entrapping silica-coated silver nanoparticles (Ag@SiO2). As a model system, different concentrations of glucose were detected using a fluorescence method by sequential bienzymatic reaction of hydrogel-entrapped glucose oxidase (GOX) and peroxidase (POD) inside a hydrogel microarray. Microarrays based on poly(ethylene glycol)(PEG) hydrogels were prepared by photopatterning a solution containing PEG diacrylate (PEG-DA), photoinitiator, enzymes, and Ag@SiO2. The resulting hydrogel microarrays were able to entrap both enzymes and Ag@SiO2 without leaching and deactivation problems. The presence of Ag@SiO2 within the hydrogel microarray enhanced the fluorescence signal, and the extent of the enhancement was dependent on the thickness of silica shells and the amount of Ag@SiO2. Optimal MEF effects were achieved when the thickness of the silica shell was 17.5 nm, and 0.5 mg mL(-1) of Ag@SiO2 was incorporated into the assay systems. Compared with the standard hydrogel microarray-based assay performed without Ag@SiO2, more than a 4-fold fluorescence enhancement was observed in a glucose concentration range between 10(-3) mM and 10.0 mM using hydrogel microarray entrapping Ag@SiO2, which led to significant improvements in the sensitivity and the limit of detection (LOD). The hydrogel microarray system presented in this study could be successfully combined with a microfluidic device as an initial step to create an MEF-based micro-total-analysis-system (μ-TAS).

  17. Peptide microarrays to probe for competition for binding sites in a protein interaction network

    NARCIS (Netherlands)

    Sinzinger, M.D.S.; Ruttekolk, I.R.R.; Gloerich, J.; Wessels, H.; Chung, Y.D.; Adjobo-Hermans, M.J.W.; Brock, R.E.

    2013-01-01

    Cellular protein interaction networks are a result of the binding preferences of a particular protein and the entirety of interactors that mutually compete for binding sites. Therefore, the reconstruction of interaction networks by the accumulation of interaction networks for individual proteins

  18. Protein turnover in atrophying muscle: from nutritional intervention to microarray expression analysis

    Science.gov (United States)

    Stein, T. Peter; Wade, Charles E.

    2003-01-01

    PURPOSE OF REVIEW: In response to decreased usage, skeletal muscle undergoes adaptive reductive remodeling due to the decrease in tension on the weight bearing components of the musculo-skeletal system. This response occurs with uncomplicated disuse (e.g. bed rest, space flight), as a secondary consequence of several widely prevalent chronic diseases for which activity is reduced (e.g. chronic obstructive pulmonary disease and chronic heart failure) and is part of the aging process. The problem is therefore one of considerable clinical importance. RECENT FINDINGS: The impaired function and exercise intolerance is related more to the associated muscle wasting rather than to the specific organ system primarily impacted by the disease. Progress has continued in describing the use of anabolic drugs and dietary manipulation. The major advance in the field has been: (i) the discovery of the atrogin-1 gene and (ii) the application of microarray expression analysis and proteomics with the objectives of obtaining comprehensive understanding of the pathways changed with disuse atrophy. SUMMARY: Disuse atrophy is a common clinical problem. There is a need for therapeutic interventions that do not involve exercise. A better understanding of the changes, particularly at the molecular level, could indicate hitherto unsuspected sites for nutritional and pharmacological intervention.

  19. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yansheng Liu

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA and Multiple reaction monitoring (MRM assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG and Leucine-rich alpha-2-glycoprotein (LRG1, two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases.

  20. Prediction of antigenic sites on ALS1 and HWP1 protein sequences in vaginal isolated C. albicans of using bioinformatics analysis

    Directory of Open Access Journals (Sweden)

    Mona Pakdel

    2015-04-01

    Full Text Available Background and Aim: The ability to predict antigenic sites on proteins is of major importance for medication. The aim of this study was to predict the antigenic sites on Agglutin in Like Sequence (ALS1 and Hyphal Wall Protein Sequences (HWP1 in Candida albicans isolated of vaginal infections using Physico-Chemical Profiles server. Materials and Methods: 7 isolates were obtained from women with vaginal infection which were collected from various medical centers of Tehran in 2011 and 2012. At the first,DNA was extracted  by Phenol-Chloroform method. Multiplex PCR was performed by using specific primers. In order to do bioinformatic studies, the genes were sequenced and then translated. Antigenic sites of protein sequences were identified by Physico-Chemical Profiles program. Results: The results showed that the presence of two genes als1 and hwp1 in isolates. In ALS1 and HWP1, respectively 2 and 1 antigenic site with the most antigenicity were identified. Conclusions: According to previous studies, Serine and Threonine phosphorylation is an important mechanism in pathogenesis of ALS1 and HWP1 proteins. Results in this study showed that serine and threonine are the most amino acids in the antigenic sites with high antigenicity property.

  1. Candida albicans pathogenicity mechanisms

    OpenAIRE

    Mayer, Fran?ois L.; Wilson, Duncan; Hube, Bernhard

    2013-01-01

    The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasi...

  2. Characterizing Antibody Responses to Plasmodium vivax and Plasmodium falciparum Antigens in India Using Genome-Scale Protein Microarrays.

    Directory of Open Access Journals (Sweden)

    Swapna Uplekar

    2017-01-01

    Full Text Available Understanding naturally acquired immune responses to Plasmodium in India is key to improving malaria surveillance and diagnostic tools. Here we describe serological profiling of immune responses at three sites in India by probing protein microarrays consisting of 515 Plasmodium vivax and 500 Plasmodium falciparum proteins with 353 plasma samples. A total of 236 malaria-positive (symptomatic and asymptomatic plasma samples and 117 malaria-negative samples were collected at three field sites in Raurkela, Nadiad, and Chennai. Indian samples showed significant seroreactivity to 265 P. vivax and 373 P. falciparum antigens, but overall seroreactivity to P. vivax antigens was lower compared to P. falciparum antigens. We identified the most immunogenic antigens of both Plasmodium species that were recognized at all three sites in India, as well as P. falciparum antigens that were associated with asymptomatic malaria. This is the first genome-scale analysis of serological responses to the two major species of malaria parasite in India. The range of immune responses characterized in different endemic settings argues for targeted surveillance approaches tailored to the diverse epidemiology of malaria across the world.

  3. Protein microarray analysis of antibody responses to Plasmodium falciparum in western Kenyan highland sites with differing transmission levels.

    Directory of Open Access Journals (Sweden)

    Elisabeth Baum

    Full Text Available Malaria represents a major public health problem in Africa. In the East African highlands, the high-altitude areas were previously considered too cold to support vector population and parasite transmission, rendering the region particularly prone to epidemic malaria due to the lack of protective immunity of the population. Since the 1980's, frequent malaria epidemics have been reported and these successive outbreaks may have generated some immunity against Plasmodium falciparum amongst the highland residents. Serological studies reveal indirect evidence of human exposure to the parasite, and can reliably assess prevalence of exposure and transmission intensity in an endemic area. However, the vast majority of serological studies of malaria have been, hereto, limited to a small number of the parasite's antigens. We surveyed and compared the antibody response profiles of age-stratified sera from residents of two endemic areas in the western Kenyan highlands with differing malaria transmission intensities, during two distinct seasons, against 854 polypeptides of P. falciparum using high-throughput proteomic microarray technology. We identified 107 proteins as serum antibody targets, which were then characterized for their gene ontology biological process and cellular component of the parasite, and showed significant enrichment for categories related to immune evasion, pathogenesis and expression on the host's cell and parasite's surface. Additionally, we calculated age-fitted annual seroconversion rates for the immunogenic proteins, and contrasted the age-dependent antibody acquisition for those antigens between the two sampling sites. We observed highly immunogenic antigens that produce stable antibody responses from early age in both sites, as well as less immunogenic proteins that require repeated exposure for stable responses to develop and produce different seroconversion rates between sites. We propose that a combination of highly and less

  4. Peptide microarray-based characterization of antibody responses to host proteins after bacille Calmette-Guérin vaccination.

    Science.gov (United States)

    Valentini, Davide; Rao, Martin; Rane, Lalit; Rahman, Sayma; Axelsson-Robertson, Rebecca; Heuchel, Rainer; Löhr, Matthias; Hoft, Daniel; Brighenti, Susanna; Zumla, Alimuddin; Maeurer, Markus

    2017-03-01

    Bacille Calmette-Guérin (BCG) is the world's most widely distributed vaccine, used against tuberculosis (TB), in cancer immunotherapy, and in autoimmune diseases due to its immunomodulatory properties. To date, the effect of BCG vaccination on antibody responses to host proteins has not been reported. High-content peptide microarrays (HCPM) offer a unique opportunity to gauge specific humoral immune responses. The sera of BCG-vaccinated healthy adults were tested on a human HCPM platform (4953 randomly selected epitopes of human proteins) to detect specific immunoglobulin gamma (IgG) responses. Samples were obtained at 56, 112, and 252 days after vaccination. Immunohistology was performed on lymph node tissue from patients with TB lymphadenitis. Results were analysed with a combination of existing and novel statistical methods. IgG recognition of host peptides exhibited a peak at day 56 post BCG vaccination in all study subjects tested, which diminished over time. Primarily, IgG responses exhibited increased reactivity to ion transporters (sodium, calcium channels), cytokine receptors (interleukin 2 receptor β (IL2Rβ), fibroblast growth factor receptor 1 (FGFR1)), other cell surface receptors (inositol, somatostatin, angiopoeitin), ribonucleoprotein, and enzymes (tyrosine kinases, phospholipase) on day 56. There was decreased IgG reactivity to transforming growth factor-beta type 1 receptor (TGFβR1) and, in agreement with the peptide microarray findings, immunohistochemical analysis of TB-infected lymph node samples revealed an overexpression of TGFβR in granulomatous lesions. Moreover, the vesicular monoamine transporter (VMAT2) showed increased reactivity on days 112 and 252, but not on day 56 post-vaccination. IgG to interleukin 4 receptor (IL4R) showed increased reactivity at 112 days post-vaccination, while IgG to IL2Rβ and FGFR1 showed decreased reactivity on days 112 and 252 as compared to day 56 post BCG vaccination. BCG vaccination modifies the host

  5. Rapid and Sensitive Multiplex Detection of Burkholderia pseudomallei-Specific Antibodies in Melioidosis Patients Based on a Protein Microarray Approach.

    Directory of Open Access Journals (Sweden)

    Christian Kohler

    2016-07-01

    Full Text Available The environmental bacterium Burkholderia pseudomallei causes the infectious disease melioidosis with a high case-fatality rate in tropical and subtropical regions. Direct pathogen detection can be difficult, and therefore an indirect serological test which might aid early diagnosis is desirable. However, current tests for antibodies against B. pseudomallei, including the reference indirect haemagglutination assay (IHA, lack sensitivity, specificity and standardization. Consequently, serological tests currently do not play a role in the diagnosis of melioidosis in endemic areas. Recently, a number of promising diagnostic antigens have been identified, but a standardized, easy-to-perform clinical laboratory test for sensitive multiplex detection of antibodies against B. pseudomallei is still lacking.In this study, we developed and validated a protein microarray which can be used in a standard 96-well format. Our array contains 20 recombinant and purified B. pseudomallei proteins, previously identified as serodiagnostic candidates in melioidosis. In total, we analyzed 196 sera and plasmas from melioidosis patients from northeast Thailand and 210 negative controls from melioidosis-endemic and non-endemic regions. Our protein array clearly discriminated between sera from melioidosis patients and controls with a specificity of 97%. Importantly, the array showed a higher sensitivity than did the IHA in melioidosis patients upon admission (cut-off IHA titer ≥1:160: IHA 57.3%, protein array: 86.7%; p = 0.0001. Testing of sera from single patients at 0, 12 and 52 weeks post-admission revealed that protein antigens induce either a short- or long-term antibody response.Our protein array provides a standardized, rapid, easy-to-perform test for the detection of B. pseudomallei-specific antibody patterns. Thus, this system has the potential to improve the serodiagnosis of melioidosis in clinical settings. Moreover, our high-throughput assay might be useful

  6. Microarray analysis applied to the study of milk protein loci in cattle

    Directory of Open Access Journals (Sweden)

    G. Pagnacco

    2010-01-01

    Full Text Available Milk proteins still arise much interest because of the proved effects of the most common milk genetic polymorphisms on quantitative and qualitative milk production, as well as on milk technological properties. The role of αs1-casein (CSN1S1, β-casein (CSN2, k-casein (CSN3 and β-lactoglobulin (LGB polymorphisms in the genetic improvement of milk production was already demonstrated in cattle, as reviewed by Di Stasio and Mariani (2000 and Martin et al. (2002.

  7. Tissue microarray analysis of eIF4E and its downstream effector proteins in human breast cancer

    Directory of Open Access Journals (Sweden)

    Clifford John

    2009-01-01

    Full Text Available Abstract Background Eukaryotic initiation factor 4E (eIF4E is elevated in many cancers and is a prognostic indicator in breast cancer. Many pro-tumorigenic proteins are selectively translated via eIF4E, including c-Myc, cyclin D1, ornithine decarboxylase (ODC, vascular endothelial growth factor (VEGF and Tousled-like kinase 1B (TLK1B. However, western blot analysis of these factors in human breast cancer has been limited by the availability of fresh frozen tissue and the labor-intensive nature of the multiple assays required. Our goal was to validate whether formalin-fixed, paraffin-embedded tissues arranged in a tissue microarray (TMA format would be more efficient than the use of fresh-frozen tissue and western blot to test multiple downstream gene products. Results Breast tumor TMAs were stained immunohistochemically and quantitated using the ARIOL imaging system. In the TMAs, eIF4E levels correlated strongly with c-Myc, cyclin D1, TLK1B, VEGF, and ODC. Western blot comparisons of eIF4E vs. TLK1B were consistent with the immunohistochemical results. Consistent with our previous western blot results, eIF4E did not correlate with node status, ER, PR, or HER-2/neu. Conclusion We conclude that the TMA technique yields similar results as the western blot technique and can be more efficient and thorough in the evaluation of several products downstream of eIF4E.

  8. Microarray analysis of the effect of Streptococcus equi subsp. zooepidemicus M-like protein in infecting porcine pulmonary alveolar macrophage.

    Science.gov (United States)

    Ma, Zhe; Zhang, Hui; Yi, Li; Fan, Hongjie; Lu, Chengping

    2012-01-01

    Streptococcus equi subsp. zooepidemicus (S. zooepidemicus), which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM) to infection with S. zooepidemicus ATCC35246 wild strain (WD) and SzP-knockout strain (KO) using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis.

  9. Microarray analysis of the effect of Streptococcus equi subsp. zooepidemicus M-like protein in infecting porcine pulmonary alveolar macrophage.

    Directory of Open Access Journals (Sweden)

    Zhe Ma

    Full Text Available Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM to infection with S. zooepidemicus ATCC35246 wild strain (WD and SzP-knockout strain (KO using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis.

  10. The Involvement of Thaumatin-Like Proteins in Plant Food Cross-Reactivity: A Multicenter Study Using a Specific Protein Microarray

    Science.gov (United States)

    Palacín, Arantxa; Rivas, Luis A.; Gómez-Casado, Cristina; Aguirre, Jacobo; Tordesillas, Leticia; Bartra, Joan; Blanco, Carlos; Carrillo, Teresa; Cuesta-Herranz, Javier; Bonny, José A. Cumplido; Flores, Enrique; García-Alvarez-Eire, Mar G.; García-Nuñez, Ignacio; Fernández, Francisco J.; Gamboa, Pedro; Muñoz, Rosa; Sánchez-Monge, Rosa; Torres, Maria; Losada, Susana Varela; Villalba, Mayte; Vega, Francisco; Parro, Victor; Blanca, Miguel; Salcedo, Gabriel; Díaz-Perales, Araceli

    2012-01-01

    Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited >50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy. PMID:22970164

  11. Construction and evaluation of an automated light directed protein-detecting microarray synthesizer.

    Science.gov (United States)

    Marthandan, N; Klyza, S; Li, S; Kwon, Y U; Kodadek, T; Garner, H R

    2008-03-01

    We have designed, constructed, and evaluated an automated instrument that has produced high-density arrays with more than 30 000 peptide features within a 1.5 cm(2) area of a glass slide surface. These arrays can be used for high throughput library screening for protein binding ligands, for potential drug candidate molecules, or for discovering biomarkers. The device consists of a novel fluidics system, a relay control electrical system, an optics system that implements Texas Instruments' digital micromirror device (DMD), and a microwave source for accelerated synthesis of peptide arrays. The instrument implements two novel solid phase chemical synthesis strategies for producing peptide and peptoid arrays. Biotin-streptavidin and DNP anti-DNP (dinitrophenol) models of antibody small molecule interactions were used to demonstrate and evaluate the instrument's capability to produce high-density protein detecting arrays. Several screening assay and detection schemes were explored with various levels of efficiency and assays with sensitivity of 10 nM were also possible.

  12. Microarray analysis sheds light on the dedifferentiating role of agouti signal protein in murine melanocytes via the Mc1r

    Science.gov (United States)

    Le Pape, Elodie; Passeron, Thierry; Giubellino, Alessio; Valencia, Julio C.; Wolber, Rainer; Hearing, Vincent J.

    2009-01-01

    The melanocortin-1 receptor (MC1R) is a key regulator of pigmentation in mammals and is tightly linked to an increased risk of skin cancers, including melanoma, in humans. Physiologically activated by α-melanocyte stimulating hormone (αMSH), MC1R function can be antagonized by a secreted factor, agouti signal protein (ASP), which is responsible for the lighter phenotypes in mammals (including humans), and is also associated with increased risk of skin cancer. It is therefore of great interest to characterize the molecular effects elicited by those MC1R ligands. In this study, we determined the gene expression profiles of murine melan-a melanocytes treated with ASP or αMSH over a 4-day time course using genome-wide oligonucleotide microarrays. As expected, there were significant reductions in expression of numerous melanogenic proteins elicited by ASP, which correlates with its inhibition of pigmentation. ASP also unexpectedly modulated the expression of genes involved in various other cellular pathways, including glutathione synthesis and redox metabolism. Many genes up-regulated by ASP are involved in morphogenesis (especially in nervous system development), cell adhesion, and extracellular matrix-receptor interactions. Concomitantly, ASP enhanced the migratory potential and the invasiveness of melanocytic cells in vitro. These results demonstrate the role of ASP in the dedifferentiation of melanocytes, identify pigment-related genes targeted by ASP and by αMSH, and provide insights into the pleiotropic molecular effects of MC1R signaling that may function during development and may affect skin cancer risk. PMID:19174519

  13. Photo-patterned free-standing hydrogel microarrays for massively parallel protein analysis

    Science.gov (United States)

    Duncombe, Todd A.; Herr, Amy E.

    2015-03-01

    Microfluidic technologies have largely been realized within enclosed microchannels. While powerful, a principle limitation of closed-channel microfluidics is the difficulty for sample extraction and downstream processing. To address this limitation and expand the utility of microfluidic analytical separation tools, we developed an openchannel hydrogel architecture for rapid protein analysis. Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail the development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. Owing to its open architecture - the platform can be easily interfaced with automated robotic controllers and downstream processing (e.g., sample spotters, immunological probing, mass spectroscopy). The fsPAG devices are directly photopatterened atop of and covalently attached to planar polymer or glass surfaces. Due to the fast developing custom analytical assays. Leveraging the rapid prototyping benefits - we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAGE platform is uniquely well-suited for massively parallelized proteomics, a major unrealized goal from bioanalytical technology.

  14. Identifying protein biomarkers in predicting disease severity of dengue virus infection using immune-related protein microarray.

    Science.gov (United States)

    Soe, Hui Jen; Yong, Yean K; Al-Obaidi, Mazen M Jamil; Raju, Chandramathi Samudi; Gudimella, Ranganath; Manikam, Rishya; Sekaran, Shamala Devi

    2018-02-01

    Dengue virus is one of the most widespread flaviviruses that re-emerged throughout recent decades. The progression from mild dengue to severe dengue (SD) with the complications such as vascular leakage and hemorrhage increases the fatality rate of dengue. The pathophysiology of SD is not entirely clear. To investigate potential biomarkers that are suggestive of pathogenesis of SD, a small panel of serum samples selected from 1 healthy individual, 2 dengue patients without warning signs (DWS-), 2 dengue patients with warning signs (DWS+), and 5 patients with SD were subjected to a pilot analysis using Sengenics Immunome protein array. The overall fold changes of protein expressions and clustering heat map revealed that PFKFB4, TPM1, PDCL3, and PTPN20A were elevated among patients with SD. Differential expression analysis identified that 29 proteins were differentially elevated greater than 2-fold in SD groups than DWS- and DWS+. From the 29 candidate proteins, pathways enrichment analysis also identified insulin signaling and cytoskeleton pathways were involved in SD, suggesting that the insulin pathway may play a pivotal role in the pathogenesis of SD.

  15. Mass spectrometric analysis of the secretome of Candida albicans

    NARCIS (Netherlands)

    Sorgo, A.G.; Heilmann, C.J.; Dekker, H.L.; Brul, S.; de Koster, C.G.; Klis, F.M.

    2010-01-01

    The pathogenic fungus Candida albicans secretes a considerable number of hydrolases and other proteins. In-depth studies of the C. albicans secretome could thus provide new candidates for diagnostic markers and vaccine development. We compared various growth conditions differing in pH, temperature

  16. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shulong; Fu, Yingyuan, E-mail: yingyuanfu@126.com; Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  17. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    International Nuclear Information System (INIS)

    Yang, Shulong; Fu, Yingyuan; Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-01-01

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca 2+ –Mg 2+ ATPase in C. albicans. • Baicalin increases the endocytic free Ca 2+ concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of 3 H-UdR, 3 H-TdR and 3 H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca 2+ –Mg 2+ ATPase, cytosolic Ca 2+ concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited 3 H-UdR, 3 H-TdR and 3 H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca 2+ –Mg 2+ ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca 2+ concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca 2+ –Mg 2+ ATPase, increasing cytosolic Ca 2+ content and damaging the ultrastructure of C. albicans

  18. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress.

    Science.gov (United States)

    Chauhan, Neeraj; Inglis, Diane; Roman, Elvira; Pla, Jesus; Li, Dongmei; Calera, Jose A; Calderone, Richard

    2003-10-01

    Ssk1p of Candida albicans is a putative response regulator protein of the Hog1 two-component signal transduction system. In Saccharomyces cerevisiae, the phosphorylation state of Ssk1p determines whether genes that promote the adaptation of cells to osmotic stress are activated. We have previously shown that C. albicans SSK1 does not complement the ssk1 mutant of S. cerevisiae and that the ssk1 mutant of C. albicans is not sensitive to sorbitol. In this study, we show that the C. albicans ssk1 mutant is sensitive to several oxidants, including hydrogen peroxide, t-butyl hydroperoxide, menadione, and potassium superoxide when each is incorporated in yeast extract-peptone-dextrose (YPD) agar medium. We used DNA microarrays to identify genes whose regulation is affected by the ssk1 mutation. RNA from mutant cells (strain CSSK21) grown in YPD medium for 3 h at 30 degrees C was reverse transcribed and then compared with similarly prepared RNA from wild-type cells (CAF2). We observed seven genes from mutant cells that were consistently up regulated (three-fold or greater compared to CAF2). In S. cerevisiae, three (AHP1, HSP12, and PYC2) of the seven genes that were up regulated provide cells with an adaptation function in response to oxidative stress; another gene (GPH1) is regulated under stress conditions by Hog1p. Three other genes that are up regulated encode a cell surface protein (FLO1), a mannosyl transferase (MNN4-4), and a putative two-component histidine kinase (CHK1) that regulates cell wall biosynthesis in C. albicans. Of the down-regulated genes, ALS1 is a known cell adhesin in C. albicans. Verification of the microarray data was obtained by reverse transcription-PCR for HSP12, AHP1, CHK1, PYC2, GPH1, ALS1, MNN4-4, and FLO1. To further determine the function of Ssk1p in the Hog1p signal transduction pathway in C. albicans, we used Western blot analysis to measure phosphorylation of Hog1p in the ssk1 mutant of C. albicans when grown under either osmotic or

  19. Candida albicans pathogenicity mechanisms.

    Science.gov (United States)

    Mayer, François L; Wilson, Duncan; Hube, Bernhard

    2013-02-15

    The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasion into host cells, the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes. Our understanding of when and how these mechanisms and factors contribute to infection has significantly increased during the last years. In addition, novel virulence mechanisms have recently been discovered. In this review we present an update on our current understanding of the pathogenicity mechanisms of this important human pathogen.

  20. Candida albicans pathogenicity mechanisms

    Science.gov (United States)

    Mayer, François L.; Wilson, Duncan; Hube, Bernhard

    2013-01-01

    The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasion into host cells, the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes. Our understanding of when and how these mechanisms and factors contribute to infection has significantly increased during the last years. In addition, novel virulence mechanisms have recently been discovered. In this review we present an update on our current understanding of the pathogenicity mechanisms of this important human pathogen. PMID:23302789

  1. Effect of Piper betle and Brucea javanica on the Differential Expression of Hyphal Wall Protein (HWP1 in Non-Candida albicans Candida (NCAC Species

    Directory of Open Access Journals (Sweden)

    Wan Himratul Aznita Wan Harun

    2013-01-01

    Full Text Available The study aimed to identify the HWP1 gene in non-Candida albicans Candida species and the differential expression of HWP1 following treatment with Piper betle and Brucea javanica aqueous extracts. All candidal suspensions were standardized to 1×106 cells/mL. The suspension was incubated overnight at 37 °C (C. parapsilosis, 35°C. Candidal cells were treated with each respective extract at 1, 3, and 6 mg/mL for 24 h. The total RNA was extracted and reverse transcription-polymerase chain reaction was carried out with a specific primer of HWP1. HWP1 mRNAs were only detected in C. albicans, C. parapsilosis, and C. tropicalis. Exposing the cells to the aqueous extracts has affected the expression of HWP1 transcripts. C. albicans, C. parapsilosis, and C. tropicalis have demonstrated different intensity of mRNA. Compared to P. betle, B. javanica demonstrated a higher suppression on the transcript levels of HWP1 in all samples. HWP1 was not detected in C. albicans following the treatment of B. javanica at 1 mg/mL. In contrast, C. parapsilosis and C. tropicalis were shown to have HWP1 regulation. However, the expression levels were reduced upon the addition of higher concentration of B. javanica extract. P. betle and B. javanica have potential to be developed as oral health product.

  2. A comparative study of genome-wide SNP, CGH microarray and protein expression analysis to explore genotypic and phenotypic mechanisms of acquired antiestrogen resistance in breast cancer.

    Science.gov (United States)

    Johnson, Neil; Speirs, Valerie; Curtin, Nicola J; Hall, Andrew G

    2008-09-01

    Allelic imbalance is a common feature of many malignancies. We have measured allelic imbalance in genomic DNA from the breast cancer cell lines T47D, MDA-MB-231, two antiestrogen sensitive (MCF7N and MCF7L) and two resistant MCF7 cell lines (MMU2 and LCC9) using single nucleotide polymorphism (SNP) oligonucleotide microarrays. DNA from MCF7(L) and MMU2 cells was also analysed by comparative genome hybridisation (CGH) to compare with SNP microarray data. Proteins previously determined to be involved in disease progression were quantified by Western blot and compared to array data. The SNP and CGH array both detected cytogenetic abnormalities commonly found in breast cancer: amplification of chromosomes 11q13-14.1, 17q and 20q containing cyclin D1, BCAS1 and 3 (Breast Cancer Amplified Sequence) and AIB1 (Amplified in Breast cancer) genes; losses at 6q, 9p and X chromosomes, which included ERalpha (Estrogen Receptor alpha) and p16 ( INK4A ) genes. However the SNP chip array data additionally identified regions of loss of heterozygosity (LOH) followed by duplication of the remaining allele-uniparental disomy (UPD). Good concordance between SNP arrays and CGH analyses was observed, however there was poor correlation between gene copy number and protein levels between the cell lines. There were reductions in ERalpha, cyclin D1 and p27 protein levels whilst p21 protein levels were elevated in antiestrogen resistant MCF7 cell lines. Although protein levels varied there was no difference in gene copy number. This study shows SNP and CGH array analysis are powerful tools for analysis of allelic imbalance in breast cancer. However, the antiestrogen resistant phenotype was likely to be due to changes in gene expression and protein degradation rather than in altered gene copy number.

  3. Microarray platform for omics analysis

    Science.gov (United States)

    Mecklenburg, Michael; Xie, Bin

    2001-09-01

    Microarray technology has revolutionized genetic analysis. However, limitations in genome analysis has lead to renewed interest in establishing 'omic' strategies. As we enter the post-genomic era, new microarray technologies are needed to address these new classes of 'omic' targets, such as proteins, as well as lipids and carbohydrates. We have developed a microarray platform that combines self- assembling monolayers with the biotin-streptavidin system to provide a robust, versatile immobilization scheme. A hydrophobic film is patterned on the surface creating an array of tension wells that eliminates evaporation effects thereby reducing the shear stress to which biomolecules are exposed to during immobilization. The streptavidin linker layer makes it possible to adapt and/or develop microarray based assays using virtually any class of biomolecules including: carbohydrates, peptides, antibodies, receptors, as well as them ore traditional DNA based arrays. Our microarray technology is designed to furnish seamless compatibility across the various 'omic' platforms by providing a common blueprint for fabricating and analyzing arrays. The prototype microarray uses a microscope slide footprint patterned with 2 by 96 flat wells. Data on the microarray platform will be presented.

  4. Gene expression profiling by DNA microarray analysis in mouse embryonic fibroblasts transformed by rasV12 mutated protein and the E1A oncogene

    Directory of Open Access Journals (Sweden)

    Berthezene Patrice

    2003-03-01

    Full Text Available Abstract Background Ras is an area of intensive biochemical and genetic studies and characterizing downstream components that relay ras-induced signals is clearly important. We used a systematic approach, based on DNA microarray technology to establish a first catalog of genes whose expression is altered by ras and, as such, potentially involved in the regulation of cell growth and transformation. Results We used DNA microarrays to analyze gene expression profiles of rasV12/E1A-transformed mouse embryonic fibroblasts. Among the ~12,000 genes and ESTs analyzed, 815 showed altered expression in rasV12/E1A-transformed fibroblasts, compared to control fibroblasts, of which 203 corresponded to ESTs. Among known genes, 202 were up-regulated and 410 were down-regulated. About one half of genes encoding transcription factors, signaling proteins, membrane proteins, channels or apoptosis-related proteins was up-regulated whereas the other half was down-regulated. Interestingly, most of the genes encoding structural proteins, secretory proteins, receptors, extracellular matrix components, and cytosolic proteins were down-regulated whereas genes encoding DNA-associated proteins (involved in DNA replication and reparation and cell growth-related proteins were up-regulated. These data may explain, at least in part, the behavior of transformed cells in that down-regulation of structural proteins, extracellular matrix components, secretory proteins and receptors is consistent with reversion of the phenotype of transformed cells towards a less differentiated phenotype, and up-regulation of cell growth-related proteins and DNA-associated proteins is consistent with their accelerated growth. Yet, we also found very unexpected results. For example, proteases and inhibitors of proteases as well as all 8 angiogenic factors present on the array were down-regulated in transformed fibroblasts although they are generally up-regulated in cancers. This observation suggests

  5. Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Lou, Jianlong; Jenko, Kathryn L.; Marks, James D.; Varnum, Susan M.

    2012-11-15

    Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are a group of seven (A-G) immunologically distinct proteins and cause the paralytic disease botulism. These toxins are the most poisonous substances known to humans and are potential bioweapon agents. Therefore, it is necessary to develop highly sensitive assays for the detection of BoNTs in both clinical and environmental samples. In the present study, we have developed an ELISA-based protein antibody microarray for the sensitive and simultaneous detection of BoNT serotype A, B, C, D, E and F. With engineered high-affinity antibodies, the assays have sensitivities in buffer of 8 fM (1.2 pg/mL) for serotypes A and B, and 32 fM (4.9 pg/mL) for serotypes C, D, E, and F. Using clinical and environmental samples (serum and milk), the microarray is capable of detecting BoNT/A-F to the same levels as in standard buffer. Cross reactivity between assays for individual serotype was also analyzed. These simultaneous, rapid, and sensitive assays have the potential to measure botulinum toxins in a high-throughput manner in complex clinical or environmental samples.

  6. A Serological Protein Microarray for Detection of Multiple Cross-Reactive Flavivirus Infections in Horses for Veterinary and Public Health Surveillance.

    Science.gov (United States)

    Cleton, N B; van Maanen, K; Bergervoet, S A; Bon, N; Beck, C; Godeke, G-J; Lecollinet, S; Bowen, R; Lelli, D; Nowotny, N; Koopmans, M P G; Reusken, C B E M

    2017-12-01

    The genus Flavivirus in the family Flaviviridae includes some of the most important examples of emerging zoonotic arboviruses that are rapidly spreading across the globe. Japanese encephalitis virus (JEV), West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Usutu virus (USUV) are mosquito-borne members of the JEV serological group. Although most infections in humans are asymptomatic or present with mild flu-like symptoms, clinical manifestations of JEV, WNV, SLEV, USUV and tick-borne encephalitis virus (TBEV) can include severe neurological disease and death. In horses, infection with WNV and JEV can lead to severe neurological disease and death, while USUV, SLEV and TBEV infections are mainly asymptomatic, however, and induce antibody responses. Horses often serve as sentinels to monitor active virus circulation in serological surveillance programmes specifically for WNV, USUV and JEV. Here, we developed and validated a NS1-antigen protein microarray for the serological differential diagnosis of flavivirus infections in horses using sera of experimentally and naturally infected symptomatic as well as asymptomatic horses. Using samples from experimentally infected horses, an IgG and IgM specificity of 100% and a sensitivity of 95% for WNV and 100% for JEV was achieved with a cut-off titre of 1 : 20 based on ROC calculation. In field settings, the microarray identified 93-100% of IgG-positive horses with recent WNV infections and 87% of TBEV IgG-positive horses. WNV IgM sensitivity was 80%. Differentiation between closely related flaviviruses by the NS1-antigen protein microarray is possible, even though we identified some instances of cross-reactivity among antibodies. However, the assay is not able to differentiate between naturally infected horses and animals vaccinated with an inactivated WNV whole-virus vaccine. We showed that the NS1-microarray can potentially be used for diagnosing and distinguishing flavivirus infections in horses and for public

  7. Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections

    OpenAIRE

    Wang, Yu-Chao; Tsai, I-Chun; Lin, Che; Hsieh, Wen-Ping; Lan, Chung-Yu; Chuang, Yung-Jen; Chen, Bor-Sen

    2014-01-01

    The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for bo...

  8. Secreted proteins of Candida albicans

    Czech Academy of Sciences Publication Activity Database

    Hrušková-Heidingsfeldová, Olga

    2008-01-01

    Roč. 13, č. 18 (2008), s. 7227-7242 ISSN 1093-9946 R&D Projects: GA MŠk(CZ) LC531; GA ČR GA203/05/0038 Institutional research plan: CEZ:AV0Z40550506 Keywords : proteinase * lipase * phospholipase Subject RIV: CE - Biochemistry Impact factor: 3.308, year: 2008

  9. Microarray analysis of androgen-regulated gene expression in testis: the use of the androgen-binding protein (ABP-transgenic mouse as a model

    Directory of Open Access Journals (Sweden)

    Grossman Gail

    2005-12-01

    Full Text Available Abstract Background Spermatogenesis is an androgen-dependent process, yet the molecular mechanisms of androgens' actions in testis are poorly understood. Transgenic mice overexpressing rat androgen-binding protein (ABP in their testes have reduced levels of intratesticular androgens and, as a result, show a progressive impairment of spermatogenesis. We used this model to characterize changes in global gene expression in testis in response to reduced bioavailability of androgens. Methods Total RNA was extracted from testes of 30-day old transgenic and wild-type control mice, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays. Microarray results were confirmed by real-time reverse transcription polymerase chain reaction. Results Three-hundred-eighty-one genes (3.05% of all transcripts represented on the chips were up-regulated and 198 genes (1.59% were down-regulated by at least a factor of 2 in the androgen-deficient animals compared to controls. Genes encoding membrane proteins, intracellular signaling molecules, enzymes, proteins participating in the immune response, and those involved in cytoskeleton organization were significantly overrepresented in the up-regulated group. Among the down-regulated transcripts, those coding for extracellular proteins were overrepresented most dramatically, followed by those related to proteolysis, cell adhesion, immune response, and growth factor, cytokine, and ion channel activities. Transcripts with the greatest potential impact on cellular activities included several transcription factors, intracellular signal transducers, secreted signaling molecules and enzymes, and various cell surface molecules. Major nodes in the up-regulated network were IL-6, AGT, MYC, and A2M, those in the down-regulated network were IL-2, -4, and -10, MAPK8, SOCS1, and CREB1. Conclusion Microarray analysis followed by gene ontology profiling and connectivity analysis identified several functional

  10. Emerging putative associations between non-coding RNAs and protein-coding genes in Neuropathic Pain. Added value from re-using microarray data.

    Directory of Open Access Journals (Sweden)

    Enrico Capobianco

    2016-10-01

    Full Text Available Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs. This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve injury, and studied in a rat model, using two neuronal tissues, namely dorsal root ganglion (DRG and sciatic nerve (SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes, and re-purposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parent genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to neuropathic pain. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN, and 8 in DRG, antisense RNA (31 asRNA in SN, and 12 in DRG and pseudogenes (456 in SN, 56 in DRG. In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly

  11. Dataset of microarray analysis to identify endoglin-dependent bone morphogenetic protein-2-responsive genes in the murine periodontal ligament cell line PDL-L2.

    Science.gov (United States)

    Ishibashi, Osamu; Inui, Takashi

    2014-12-01

    The periodontal ligament (PDL), connective tissue located between the cementum of teeth and alveolar bone of the mandibula, plays a crucial role in the maintenance and regeneration of periodontal tissues. We previously reported that endoglin was involved in the bone morphogenetic protein (BMP)-2-induced osteogenic differentiation of mouse PDL cells, which is associated with Smad-2 phosphorylation but not Smad-1/5/8 phosphorylation. Further, we found that the BMP-2-induced Smad-2 phosphorylation was, at least in part, dependent upon endoglin. In this study, to elucidate the detailed mechanism underlying the BMP-2-induced signaling pathway unique to PDL cells, we performed a cDNA microarray analysis to identify endoglin-dependent BMP-2-responsive genes in PDL-L2, a mouse PDL-derived cell line. Here we provide experimental methods and obtained dataset to correspond with our data in Gene Expression Omnibus (GEO) Datasets.

  12. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  13. Molecular genetic techniques for gene manipulation in Candida albicans

    Science.gov (United States)

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-01-01

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains. PMID:24759671

  14. Microarray Developed on Plastic Substrates.

    Science.gov (United States)

    Bañuls, María-José; Morais, Sergi B; Tortajada-Genaro, Luis A; Maquieira, Ángel

    2016-01-01

    There is a huge potential interest to use synthetic polymers as versatile solid supports for analytical microarraying. Chemical modification of polycarbonate (PC) for covalent immobilization of probes, micro-printing of protein or nucleic acid probes, development of indirect immunoassay, and development of hybridization protocols are described and discussed.

  15. Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based Detection of Global Pathogen-host AMPylation on Self-assembled Human Protein Microarrays*

    Science.gov (United States)

    Yu, Xiaobo; Woolery, Andrew R.; Luong, Phi; Hao, Yi Heng; Grammel, Markus; Westcott, Nathan; Park, Jin; Wang, Jie; Bian, Xiaofang; Demirkan, Gokhan; Hang, Howard C.; Orth, Kim; LaBaer, Joshua

    2014-01-01

    AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications. PMID:25073739

  16. Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based detection of global pathogen-host AMPylation on self-assembled human protein microarrays.

    Science.gov (United States)

    Yu, Xiaobo; Woolery, Andrew R; Luong, Phi; Hao, Yi Heng; Grammel, Markus; Westcott, Nathan; Park, Jin; Wang, Jie; Bian, Xiaofang; Demirkan, Gokhan; Hang, Howard C; Orth, Kim; LaBaer, Joshua

    2014-11-01

    AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac)

    DEFF Research Database (Denmark)

    Yuan, Yiyang; Krogh, Paul Henning; Bai, Xue

    2014-01-01

    The impact of Bt proteins on non-target arthropods is less understood than their effects on target organisms where the mechanism of toxic action is known. Here, we report the effects of two Bt proteins, Cry1Ab and Cry1Ac, on gene expression in the non-target collembolan, Folsomia candida....... A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were...... tested in specimens for both Cry1Ab and Cry1Ac at a series of concentrations. These transcripts were separated into two and three groups for Cry1Ab and Cry1Ac, respectively, depend on their expression levels. However, those eleven transcripts did not respond to the Bt proteins in Bt-rice residues....

  18. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis

    Science.gov (United States)

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G.; Cormack, Brendan; Edgerton, Mira

    2016-01-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata. PMID:27029023

  19. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis.

    Directory of Open Access Journals (Sweden)

    Swetha Tati

    2016-03-01

    Full Text Available Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC, we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.

  20. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis.

    Science.gov (United States)

    Naglik, Julian R; Challacombe, Stephen J; Hube, Bernhard

    2003-09-01

    Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.

  1. Manual evaluation of tissue microarrays in a high-throughput research project: The contribution of Indian surgical pathology to the Human Protein Atlas (HPA) project.

    Science.gov (United States)

    Navani, Sanjay

    2016-04-01

    The Human Protein Atlas (HPA) program (www.proteinatlas.org) is an international program that has been set up to allow for a systematic exploration of the human proteome using antibody-based proteomics. This is accomplished by combining high-throughput generation of affinity-purified (mono-specific) antibodies with protein profiling in a multitude of tissues/cell types assembled in tissue microarrays. Twenty-six surgical pathologists over a seven-and-half year period have annotated and curated approximately sixteen million tissue images derived from immunostaining of normal and cancer tissues by approximately 23 000 antibodies. Web-based annotation software that allows for a basic and rapid evaluation of immunoreactivity in tissues has been utilized. Intensity, fraction of immunoreactive cells and subcellular localization were recorded for each given cell population. A text comment summarizing the characteristics for each antibody was added. The methods used and the challenges encountered for this exercise, the largest effort ever by a single group of surgical pathologists, are discussed. Manual annotation of digital images is an important tool that may be successfully utilized in high-throughput research projects. This is the first time an Indian private pathology laboratory has been associated with cutting-edge research internationally providing a classic example of developed and emerging nation collaboration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Up-regulation of cell cycle arrest protein BTG2 correlates with increased overall survival in breast cancer, as detected by immunohistochemistry using tissue microarray

    Directory of Open Access Journals (Sweden)

    Jirström Karin

    2010-06-01

    Full Text Available Abstract Background Previous studies have shown that the ADIPOR1, ADORA1, BTG2 and CD46 genes differ significantly between long-term survivors of breast cancer and deceased patients, both in levels of gene expression and DNA copy numbers. The aim of this study was to characterize the expression of the corresponding proteins in breast carcinoma and to determine their correlation with clinical outcome. Methods Protein expression was evaluated using immunohistochemistry in an independent breast cancer cohort of 144 samples represented on tissue microarrays. Fisher's exact test was used to analyze the differences in protein expression between dead and alive patients. We used Cox-regression multivariate analysis to assess whether the new markers predict the survival status of the patients better than the currently used markers. Results BTG2 expression was demonstrated in a significantly lower proportion of samples from dead patients compared to alive patients, both in overall expression (P = 0.026 and cell membrane specific expression (P = 0.013, whereas neither ADIPOR1, ADORA1 nor CD46 showed differential expression in the two survival groups. Furthermore, a multivariate analysis showed that a model containing BTG2 expression in combination with HER2 and Ki67 expression along with patient age performed better than a model containing the currently used prognostic markers (tumour size, nodal status, HER2 expression, hormone receptor status, histological grade, and patient age. Interestingly, BTG2 has previously been described as a tumour suppressor gene involved in cell cycle arrest and p53 signalling. Conclusions We conclude that high-level BTG2 protein expression correlates with prolonged survival in patients with breast carcinoma.

  3. Cellular Components Mediating Coadherence of Candida albicans and Fusobacterium nucleatum.

    Science.gov (United States)

    Wu, T; Cen, L; Kaplan, C; Zhou, X; Lux, R; Shi, W; He, X

    2015-10-01

    Candida albicans is an opportunistic fungal pathogen found as part of the normal oral flora. It can be coisolated with Fusobacterium nucleatum, an opportunistic bacterial pathogen, from oral disease sites, such as those involved in refractory periodontitis and pulp necrosis. The physical coadherence between these 2 clinically important microbes has been well documented and suggested to play a role in facilitating their oral colonization and colocalization and contributing to polymicrobial pathogenesis. Previous studies indicated that the physical interaction between C. albicans and F. nucleatum was mediated by the carbohydrate components on the surface of C. albicans and the protein components on the Fusobaterium cell surface. However, the identities of the components involved still remain elusive. This study was aimed at identifying the genetic determinants involved in coaggregation between the 2 species. By screening a C. albicans SN152 mutant library and a panel of F. nucleatum 23726 outer membrane protein mutants, we identified FLO9, which encodes a putative adhesin-like cell wall mannoprotein of C. albicans and radD, an arginine-inhibitable adhesin-encoding gene in F. nucleatum that is involved in interspecies coadherence. Consistent with these findings, we demonstrated that the strong coaggregation between wild-type F. nucleatum 23726 and C. albicans SN152 in an in vitro assay could be greatly inhibited by arginine and mannose. Our study also suggested a complex multifaceted mechanism underlying physical interaction between C. albicans and F. nucleatum and for the first time revealed the identity of major genetic components involved in mediating the coaggregation. These observations provide useful knowledge for developing new targeted treatments for disrupting interactions between these 2 clinically relevant pathogens. © International & American Associations for Dental Research 2015.

  4. Cell-cycle and suppressor proteins expression in uterine cervix in HIV/HPV co-infection: comparative study by tissue micro-array (TMA

    Directory of Open Access Journals (Sweden)

    Russomano Fabio B

    2008-10-01

    Full Text Available Abstract Background The oncoproteins of human papillomavirus (HPVs directly effect cell-cycle control. We hypothesize that regulatory and cell cycle protein expression might be additionally modified in the cervix of HIV/HPV co-infected women. Methods We analyzed the expression of Rb, p27, VEGF and Elf-1 transcriptor factor by immunohistochemistry in 163 paraffin-embeded cervical samples using Tissue Micro-Array (TMA and correlated this to HIV-1 and HPV infection. Results HIV/HPV co-infection was associated with a significant increase in expression (p 2 in CIN I: 17.9, CIN II/III: 4.8, and tumor 3.9. Rb expression increased 3-fold for both low and high grade CIN with HPV/HIV-1 co-infection compared to HPV infection alone but did not reach statistical significance. There was a significant increase in Elf-1 expression in HPV+/HIV- women with CIN II/III and tumor (average of cells/mm2 in CIN I: 63.8; CIN II/III: 115.7 and tumor: 112.0, p = 0.005, in comparison to controls. Conclusion Co-infection of HPV and HIV leads to significant increase in the VEGF and p27 expression when compared to HPV+/HIV-negative infection that could facilitate viral persistence and invasive tumor development.

  5. BRCA1 protein expression and subcellular localization in primary breast cancer: Automated digital microscopy analysis of tissue microarrays.

    Directory of Open Access Journals (Sweden)

    Abeer M Mahmoud

    Full Text Available Mutations in BRCA1 are associated with familial as well as sporadic aggressive subtypes of breast cancer, but less is known about whether BRCA1 expression or subcellular localization contributes to progression in population-based settings.We examined BRCA1 expression and subcellular localization in invasive breast cancer tissues from an ethnically diverse sample of 286 patients and 36 normal breast tissue controls. Two different methods were used to label breast cancer tissues for BRCA1: (1 Dual immunofluoresent staining with BRCA1 and cytokeratin 8/18 and (2 immunohistochemical staining using the previously validated MS110 mouse monoclonal antibody. Slides were visualized and quantified using the VECTRA Automated Multispectral Image Analysis System and InForm software.BRCA1 staining was more intense in normal than in invasive breast tissue for both cytoplasmic (p<0.0001 and nuclear (p<0.01 compartments. BRCA1 nuclear to cytoplasmic ratio was higher in breast cancer cells than in normal mammary epithelial cells. Reduced BRCA1 expression was associated with high tumor grade and negative hormone receptors (estrogen receptor, progesterone receptor and Her2. On the other hand, high BRCA1 expression correlated with basal-like tumors (high CK5/6 and EGFR, and high nuclear androgen receptor staining. Lower nuclear to cytoplasmic ratio of BRCA1 correlated significantly with high Ki67 labeling index (p< 0.05 and family history of breast cancer (p = 0.001.Findings of this study indicate that alterations in BRCA1 protein expression and subcellular localization in breast cancer correlate with poor prognostic markers and aggressive tumor features. Further large-scale studies are required to assess the potential relevance of BRCA1 protein expression and localization in routine classification of breast cancer.

  6. Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections

    Directory of Open Access Journals (Sweden)

    Yu-Chao Wang

    2014-01-01

    Full Text Available The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection.

  7. Essential functional modules for pathogenic and defensive mechanisms in Candida albicans infections.

    Science.gov (United States)

    Wang, Yu-Chao; Tsai, I-Chun; Lin, Che; Hsieh, Wen-Ping; Lan, Chung-Yu; Chuang, Yung-Jen; Chen, Bor-Sen

    2014-01-01

    The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection.

  8. Cell-cycle and suppressor proteins expression in uterine cervix in HIV/HPV co-infection: comparative study by tissue micro-array (TMA)

    International Nuclear Information System (INIS)

    Nicol, Alcina F; Pirmez, Claude; Pires, Andréa Rodrigues Cordovil; Souza, Simone R de; Nuovo, Gerard J; Grinsztejn, Beatriz; Tristão, Aparecida; Russomano, Fabio B; Velasque, Luciane; Silva, José R Lapa e

    2008-01-01

    The oncoproteins of human papillomavirus (HPVs) directly effect cell-cycle control. We hypothesize that regulatory and cell cycle protein expression might be additionally modified in the cervix of HIV/HPV co-infected women. We analyzed the expression of Rb, p27, VEGF and Elf-1 transcriptor factor by immunohistochemistry in 163 paraffin-embeded cervical samples using Tissue Micro-Array (TMA) and correlated this to HIV-1 and HPV infection. HIV/HPV co-infection was associated with a significant increase in expression (p < 0.001) of VEGF and p27 in both low and high grade CIN when compared to the cervices of women infected by HPV alone. Decreased Rb expression was evident with increased CIN grade in the cervices of women infected with HPV alone (p = 0.003 average of cells/mm 2 in CIN I: 17.9, CIN II/III: 4.8, and tumor 3.9). Rb expression increased 3-fold for both low and high grade CIN with HPV/HIV-1 co-infection compared to HPV infection alone but did not reach statistical significance. There was a significant increase in Elf-1 expression in HPV+/HIV- women with CIN II/III and tumor (average of cells/mm 2 in CIN I: 63.8; CIN II/III: 115.7 and tumor: 112.0, p = 0.005), in comparison to controls. Co-infection of HPV and HIV leads to significant increase in the VEGF and p27 expression when compared to HPV+/HIV-negative infection that could facilitate viral persistence and invasive tumor development

  9. Cell-cycle and suppressor proteins expression in uterine cervix in HIV/HPV co-infection: comparative study by tissue micro-array (TMA).

    Science.gov (United States)

    Nicol, Alcina F; Pires, Andréa Rodrigues Cordovil; de Souza, Simone R; Nuovo, Gerard J; Grinsztejn, Beatriz; Tristão, Aparecida; Russomano, Fabio B; Velasque, Luciane; Lapa e Silva, José R; Pirmez, Claude

    2008-10-07

    The oncoproteins of human papillomavirus (HPVs) directly effect cell-cycle control. We hypothesize that regulatory and cell cycle protein expression might be additionally modified in the cervix of HIV/HPV co-infected women. We analyzed the expression of Rb, p27, VEGF and Elf-1 transcriptor factor by immunohistochemistry in 163 paraffin-embeded cervical samples using Tissue Micro-Array (TMA) and correlated this to HIV-1 and HPV infection. HIV/HPV co-infection was associated with a significant increase in expression (p < 0.001) of VEGF and p27 in both low and high grade CIN when compared to the cervices of women infected by HPV alone. Decreased Rb expression was evident with increased CIN grade in the cervices of women infected with HPV alone (p = 0.003 average of cells/mm2 in CIN I: 17.9, CIN II/III: 4.8, and tumor 3.9). Rb expression increased 3-fold for both low and high grade CIN with HPV/HIV-1 co-infection compared to HPV infection alone but did not reach statistical significance. There was a significant increase in Elf-1 expression in HPV+/HIV- women with CIN II/III and tumor (average of cells/mm2 in CIN I: 63.8; CIN II/III: 115.7 and tumor: 112.0, p = 0.005), in comparison to controls. Co-infection of HPV and HIV leads to significant increase in the VEGF and p27 expression when compared to HPV+/HIV-negative infection that could facilitate viral persistence and invasive tumor development.

  10. Microarray-integrated optoelectrofluidic immunoassay system.

    Science.gov (United States)

    Han, Dongsik; Park, Je-Kyun

    2016-05-01

    A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection.

  11. DNA Microarray Technology

    Science.gov (United States)

    ... this page. En Español: Tecnología de micromatriz de ADN DNA Microarray Technology What is a DNA microarray? ... this page. En Español: Tecnología de micromatriz de ADN Get Email Updates Privacy Copyright Contact Accessibility Plug- ...

  12. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans

    OpenAIRE

    Shibasaki, Seiji; Karasaki, Miki; Tafuku, Senji; Aoki, Wataru; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Abstract Candidiasis is a common fungal infection that is prevalent in immunocompromised individuals. In this study, an oral vaccine against Candida albicans was developed by using the molecular display approach. Enolase 1 protein (Eno1p) of C. albicans was expressed on the Lactobacillus casei cell surface by using poly-gamma-glutamic acid synthetase complex A from Bacillus subtilis as an anchoring protein. The Eno1p-displaying L. casei cells were used to immunize mice, which were later chall...

  13. Candida albicans CUG Mistranslation Is a Mechanism To Create Cell Surface Variation

    OpenAIRE

    Miranda, Isabel; Silva-Dias, Ana; Rocha, Rita; Teixeira-Santos, Rita; Coelho, Carolina; Gon?alves, Teresa; Santos, Manuel A. S.; Pina-Vaz, Cid?lia; Solis, Norma V.; Filler, Scott G.; Rodrigues, Ac?cio G.

    2013-01-01

    ABSTRACT In the human fungal pathogen Candida albicans, the CUG codon is translated 97% of the time as serine and 3% of the time as leucine, which potentially originates an array of proteins resulting from the translation of a single gene. Genes encoding cell surface proteins are enriched in CUG codons; thus, CUG mistranslation may influence the interactions of the organism with the host. To investigate this, we compared a C.?albicans strain that misincorporates 28% of leucine at CUGs with a ...

  14. A novel immunocompetent murine model for Candida albicans-promoted oral epithelial dysplasia.

    Science.gov (United States)

    Dwivedi, P P; Mallya, S; Dongari-Bagtzoglou, A

    2009-03-01

    Candida albicans is a common opportunistic pathogen found in the oral mucosa. Clinical observations indicate a significant positive association between oral Candida carriage or infection and oral epithelial dysplasia/neoplasia. The aim of this study was to test whether C. albicans is able to promote epithelial dysplasia or carcinoma in a mouse model of infection where a carcinogen (4 Nitroquinoline 1-oxide [4NQO]) was used as initiator of neoplasia. Mice were divided into four groups: group 1 received 4NQO alone; group 2 received 4NQO followed by C. albicans (ATCC 90234); group 3 received vehicle dimethyl sulfoxide (DMSO) followed by C. albicans and group 4 was untreated. Although 4NQO treated mice did not develop oral lesions, mice exposed to both 4NQO and C. albicans developed oral dysplastic lesions 19 weeks after exposure to 4NQO. Mice challenged with C. albicans only developed hyperplastic lesions. The expression of Ki-67 and p16, two cell-cycle associated proteins that are frequently deregulated in oral dysplasia/neoplasia, was also tested in these lesions. Ki-67 and p16 expression increased from normal to hyperplastic to dysplastic mucosa and was highest in the group exposed to both 4NQO and C. albicans. In conclusion, we showed that C. albicans plays a role in the promotion of oral dysplasia in a mouse model of infection when 4NQO was used as initiator of oral neoplasia.

  15. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum

    Science.gov (United States)

    Bor, Batbileg; Cen, Lujia; Agnello, Melissa; Shi, Wenyuan; He, Xuesong

    2016-01-01

    Candida albicans and Fusobacterium nucleatum are well-studied oral commensal microbes with pathogenic potential that are involved in various oral polymicrobial infectious diseases. Recently, we demonstrated that F. nucleatum ATCC 23726 coaggregates with C. albicans SN152, a process mainly mediated by fusobacterial membrane protein RadD and Candida cell wall protein Flo9. The aim of this study was to investigate the potential biological impact of this inter-kingdom interaction. We found that F. nucleatum ATCC 23726 inhibits growth and hyphal morphogenesis of C. albicans SN152 in a contact-dependent manner. Further analysis revealed that the inhibition of Candida hyphal morphogenesis is mediated via RadD and Flo9 protein pair. Using a murine macrophage cell line, we showed that the F. nucleatum-induced inhibition of Candida hyphal morphogenesis promotes C. albicans survival and negatively impacts the macrophage-killing capability of C. albicans. Furthermore, the yeast form of C. albicans repressed F. nucleatum-induced MCP-1 and TNFα production in macrophages. Our study suggests that the interaction between C. albicans and F. nucleatum leads to a mutual attenuation of virulence, which may function to promote a long-term commensal lifestyle within the oral cavity. This finding has significant implications for our understanding of inter-kingdom interaction and may impact clinical treatment strategies. PMID:27295972

  16. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.

    Science.gov (United States)

    de Barros, Patrícia Pimentel; Freire, Fernanda; Rossoni, Rodnei Dennis; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2017-07-01

    Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.

  17. Rationally designed transmembrane peptide mimics of the multidrug transporter protein Cdr1 act as antagonists to selectively block drug efflux and chemosensitize azole-resistant clinical isolates of Candida albicans.

    Science.gov (United States)

    Maurya, Indresh Kumar; Thota, Chaitanya Kumar; Verma, Sachin Dev; Sharma, Jyotsna; Rawal, Manpreet Kaur; Ravikumar, Balaguru; Sen, Sobhan; Chauhan, Neeraj; Lynn, Andrew M; Chauhan, Virander Singh; Prasad, Rajendra

    2013-06-07

    Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.

  18. Impact of protein supplementation and exercise in preventing changes in gene expression profiling in woman muscles after long-term bedrest as revealed by microarray analysis.

    Science.gov (United States)

    Chopard, Angele; Lecunff, Martine; Danger, Richard; Teusan, Raluca; Jasmin, Bernard J.; Marini, Jean-Francois; Leger, Jean

    Long duration space flights have a dramatic impact on human physiology and under such a condition, skeletal muscles are known to be one of the most affected systems. A thorough understanding of the basic mechanisms leading to muscle impairment under microgravity, which causes significant loss of muscle mass as well as structural disorders, is necessary for the development of efficient space flight countermeasures. This study was conducted under the aegis of the European Space Agency (ESA), the National Aeronautics and Space Administration of the USA (NASA), the Canadian Space Agency (CSA), and the French "Centre National d'Etudes Spatiales" (CNES). It gave us the opportunity to investigate for the first time the effects of prolonged disuse (long-term bedrest, LTBR) on the transcriptome of different muscle types in healthy women (control, n=8), as well as the potential beneficial impact of protein supplementation (nutrition, n=8) and a combined resistance and aerobic exercise training program (exercise, n=8). Pre- (LTBR -8) and post- (LTBR +59) biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles from each subject. Skeletal muscle gene expression profiles were obtained using a custom made microarray containing 6681 muscle-relevant genes. 555 differentiallyexpressed and statistically-significant genes were identified in control group following 60 days of LTBR, including 348 specific for SOL, 83 specific for VL, and 124 common for the two types of muscle (pexercise regimen resulted in a marked beneficial and compensatory effect by decreasing the number of differentially-expressed mRNAs by more than 90% in both SOL and VL muscles. Together, these findings provide an overview of skeletal muscle impairment following prolonged disuse by identifying specific groups of genes related to muscle function, as well as metabolic and canonical signaling pathways. Furthermore, these results highlight the importance of regular exercise in the maintenance of

  19. Transcriptome-Wide Identification of Differentially Expressed Genes in Solanum lycopersicon L. in Response to an Alfalfa-Protein Hydrolysate Using Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Ertani

    2017-07-01

    Full Text Available An alfalfa-based protein hydrolysate (EM has been tested in tomato (Solanum lycopersicon L. plants at two different concentrations (0.1 and 1 mL L-1 to get insight on its efficacy as biostimulant in this species and to unravel possible metabolic targets and molecular mechanisms that may shed light on its mode of action. EM was efficient in promoting the fresh biomass and content in chlorophyll and soluble sugars of tomato plants, especially when it was applied at the concentration of 1 mL L-1. This effect on plant productivity was likely related to the EM-dependent up-regulation of genes identified via microarray and involved in primary carbon and nitrogen metabolism, photosynthesis, nutrient uptake and developmental processes. EM also up-regulated a number of genes implied in the secondary metabolism that leads to the synthesis of compounds (phenols and terpenes functioning in plant development and interaction with the environment. Concomitantly, phenol content was enhanced in EM-treated plants. Several new genes have been identified in tomato as potential targets of EM action, like those involved in detoxification processes from reactive oxygen species and xenobiotic (particularly glutathione/ascorbate cycle-related and ABC transporters, and defense against abiotic and biotic stress. The model hypothesized is that elicitors present in the EM formulation like auxins, phenolics, and amino acids, may trigger a signal transduction pathway via modulation of the intracellular levels of the hormones ethylene, jasmonic acid and abscissic acid, which then further prompt the activation of a cascade events requiring the presence and activity of many kinases and transcription factors to activate stress-related genes. The genes identified suggest these kinases and transcription factors as players involved in a complex crosstalk between biotic and abiotic stress signaling pathways. We conclude that EM acts as a biostimulant in tomato due to its capacity to

  20. Transcriptome-Wide Identification of Differentially Expressed Genes inSolanum lycopersiconL. in Response to anAlfalfa-Protein Hydrolysate Using Microarrays.

    Science.gov (United States)

    Ertani, Andrea; Schiavon, Michela; Nardi, Serenella

    2017-01-01

    An alfalfa -based protein hydrolysate (EM) has been tested in tomato ( Solanum lycopersicon L.) plants at two different concentrations (0.1 and 1 mL L -1 ) to get insight on its efficacy as biostimulant in this species and to unravel possible metabolic targets and molecular mechanisms that may shed light on its mode of action. EM was efficient in promoting the fresh biomass and content in chlorophyll and soluble sugars of tomato plants, especially when it was applied at the concentration of 1 mL L -1 . This effect on plant productivity was likely related to the EM-dependent up-regulation of genes identified via microarray and involved in primary carbon and nitrogen metabolism, photosynthesis, nutrient uptake and developmental processes. EM also up-regulated a number of genes implied in the secondary metabolism that leads to the synthesis of compounds (phenols and terpenes) functioning in plant development and interaction with the environment. Concomitantly, phenol content was enhanced in EM-treated plants. Several new genes have been identified in tomato as potential targets of EM action, like those involved in detoxification processes from reactive oxygen species and xenobiotic (particularly glutathione/ascorbate cycle-related and ABC transporters), and defense against abiotic and biotic stress. The model hypothesized is that elicitors present in the EM formulation like auxins, phenolics, and amino acids, may trigger a signal transduction pathway via modulation of the intracellular levels of the hormones ethylene, jasmonic acid and abscissic acid, which then further prompt the activation of a cascade events requiring the presence and activity of many kinases and transcription factors to activate stress-related genes. The genes identified suggest these kinases and transcription factors as players involved in a complex crosstalk between biotic and abiotic stress signaling pathways. We conclude that EM acts as a biostimulant in tomato due to its capacity to stimulate

  1. DNA Microarray Technology; TOPICAL

    International Nuclear Information System (INIS)

    WERNER-WASHBURNE, MARGARET; DAVIDSON, GEORGE S.

    2002-01-01

    Collaboration between Sandia National Laboratories and the University of New Mexico Biology Department resulted in the capability to train students in microarray techniques and the interpretation of data from microarray experiments. These studies provide for a better understanding of the role of stationary phase and the gene regulation involved in exit from stationary phase, which may eventually have important clinical implications. Importantly, this research trained numerous students and is the basis for three new Ph.D. projects

  2. 17-β-Estradiol Upregulates the Stress Response in Candida albicans: Implications for Microbial Virulence

    OpenAIRE

    C. O’Connor; M. Essmann; B. Larsen

    1998-01-01

    Objective: The influence of 17-β-estradiol on the stress response of Candida albicans was studied.Methods: The survival of clinical isolates of C. albicans treated with 17-β-estradiol after heat and oxidative stress was measured by viable plate counts. Cellular proteins were analyzed via SDSPAGE.Results: The heat stress response induced by 17-β-estradiol in C. albicans grown at 25 ℃ protected the organisms against the lethal temperature of 48.5 ℃, as shown by viable plate counts. 17-β-estradi...

  3. 17-beta-estradiol upregulates the stress response in Candida albicans: implications for microbial virulence.

    OpenAIRE

    O'Connor, C; Essmann, M; Larsen, B

    1998-01-01

    OBJECTIVE: The influence of 17-beta-estradiol on the stress response of Candida albicans was studied. METHODS: The survival of clinical isolates of C. albicans treated with 17-beta-estradiol after heat and oxidative stress was measured by viable plate counts. Cellular proteins were analyzed via SDS-PAGE. RESULTS: The heat stress response induced by 17-beta-estradiol in C. albicans grown at 25 degrees C protected the organisms against the lethal temperature of 48.5 degrees C, as shown by viabl...

  4. CandidaDB: a genome database for Candida albicans pathogenomics.

    Science.gov (United States)

    d'Enfert, C; Goyard, S; Rodriguez-Arnaveilhe, S; Frangeul, L; Jones, L; Tekaia, F; Bader, O; Albrecht, Antje; Castillo, L; Dominguez, A; Ernst, J F; Fradin, C; Gaillardin, C; Garcia-Sanchez, S; de Groot, P; Hube, B; Klis, F M; Krishnamurthy, S; Kunze, D; Lopez, M-C; Mavor, A; Martin, N; Moszer, I; Onésime, D; Perez Martin, J; Sentandreu, R; Valentin, E; Brown, A J P

    2005-01-01

    CandidaDB is a database dedicated to the genome of the most prevalent systemic fungal pathogen of humans, Candida albicans. CandidaDB is based on an annotation of the Stanford Genome Technology Center C.albicans genome sequence data by the European Galar Fungail Consortium. CandidaDB Release 2.0 (June 2004) contains information pertaining to Assembly 19 of the genome of C.albicans strain SC5314. The current release contains 6244 annotated entries corresponding to 130 tRNA genes and 5917 protein-coding genes. For these, it provides tentative functional assignments along with numerous pre-run analyses that can assist the researcher in the evaluation of gene function for the purpose of specific or large-scale analysis. CandidaDB is based on GenoList, a generic relational data schema and a World Wide Web interface that has been adapted to the handling of eukaryotic genomes. The interface allows users to browse easily through genome data and retrieve information. CandidaDB also provides more elaborate tools, such as pattern searching, that are tightly connected to the overall browsing system. As the C.albicans genome is diploid and still incompletely assembled, CandidaDB provides tools to browse the genome by individual supercontigs and to examine information about allelic sequences obtained from complementary contigs. CandidaDB is accessible at http://genolist.pasteur.fr/CandidaDB.

  5. Chemiluminescence microarrays in analytical chemistry: a critical review.

    Science.gov (United States)

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  6. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans.

    LENUS (Irish Health Repository)

    Jackson, Andrew P

    2009-12-01

    Candida dubliniensis is the closest known relative of Candida albicans, the most pathogenic yeast species in humans. However, despite both species sharing many phenotypic characteristics, including the ability to form true hyphae, C. dubliniensis is a significantly less virulent and less versatile pathogen. Therefore, to identify C. albicans-specific genes that may be responsible for an increased capacity to cause disease, we have sequenced the C. dubliniensis genome and compared it with the known C. albicans genome sequence. Although the two genome sequences are highly similar and synteny is conserved throughout, 168 species-specific genes are identified, including some encoding known hyphal-specific virulence factors, such as the aspartyl proteinases Sap4 and Sap5 and the proposed invasin Als3. Among the 115 pseudogenes confirmed in C. dubliniensis are orthologs of several filamentous growth regulator (FGR) genes that also have suspected roles in pathogenesis. However, the principal differences in genomic repertoire concern expansion of the TLO gene family of putative transcription factors and the IFA family of putative transmembrane proteins in C. albicans, which represent novel candidate virulence-associated factors. The results suggest that the recent evolutionary histories of C. albicans and C. dubliniensis are quite different. While gene families instrumental in pathogenesis have been elaborated in C. albicans, C. dubliniensis has lost genomic capacity and key pathogenic functions. This could explain why C. albicans is a more potent pathogen in humans than C. dubliniensis.

  7. Cell wall proteinaceous components in isolates of Candida albicans and non-albicans species from HIV-infected patients with oropharyngeal candidiasis.

    Science.gov (United States)

    López-Ribot, J L; Kirkpatrick, W R; McAtee, R K; Revankar, S G; Patterson, T F

    1998-09-01

    Oropharyngeal candidiasis (OPC) remains a common opportunistic infection in HIV-infected patients. Candida albicans is the most frequent causative agent of OPC. However, non-albicans spp. are being increasingly isolated. Candidal cell wall proteins and mannoproteins play important roles in the biology and patogenesis of candidiasis. In the present study, we have analyzed the proteinaceous components associated with cell wall extracts from C. albicans, Candida tropicalis, Candida pseudotropicalis, Candida krusei, Candida glabrata, Candida parapsilosis, Candida guilliermondii and Candida rugosa obtained from HIV-infected patients with recurrent OPC. Cell wall proteinaceous components were extracted with beta-mercaptoethanol and analyzed using electrophoresis, immunoblotting (with antisera generated against C. albicans cell wall components, and with serum samples and oral saline rinses from patients with OPC), and lectin-blotting (concanavalin A) techniques. Numerous molecular species were solubilized from the various isolates. Major qualitative and quantitative differences in the polypeptidic and antigenic profiles associated with the cell wall extracts from the different Candida spp. were discernible. Some of the antibody preparations generated against C. albicans cell wall components were able to recognize homologous materials present in the extracts from non-albicans spp. Information on cell wall antigens of Candida species may be important in the therapy and prevention of HIV-related OPC.

  8. Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis

    OpenAIRE

    Naglik, Julian R.; Challacombe, Stephen J.; Hube, Bernhard

    2003-01-01

    Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known,...

  9. The Stanford Microarray Database

    Science.gov (United States)

    Sherlock, Gavin; Hernandez-Boussard, Tina; Kasarskis, Andrew; Binkley, Gail; Matese, John C.; Dwight, Selina S.; Kaloper, Miroslava; Weng, Shuai; Jin, Heng; Ball, Catherine A.; Eisen, Michael B.; Spellman, Paul T.; Brown, Patrick O.; Botstein, David; Cherry, J. Michael

    2001-01-01

    The Stanford Microarray Database (SMD) stores raw and normalized data from microarray experiments, and provides web interfaces for researchers to retrieve, analyze and visualize their data. The two immediate goals for SMD are to serve as a storage site for microarray data from ongoing research at Stanford University, and to facilitate the public dissemination of that data once published, or released by the researcher. Of paramount importance is the connection of microarray data with the biological data that pertains to the DNA deposited on the microarray (genes, clones etc.). SMD makes use of many public resources to connect expression information to the relevant biology, including SGD [Ball,C.A., Dolinski,K., Dwight,S.S., Harris,M.A., Issel-Tarver,L., Kasarskis,A., Scafe,C.R., Sherlock,G., Binkley,G., Jin,H. et al. (2000) Nucleic Acids Res., 28, 77–80], YPD and WormPD [Costanzo,M.C., Hogan,J.D., Cusick,M.E., Davis,B.P., Fancher,A.M., Hodges,P.E., Kondu,P., Lengieza,C., Lew-Smith,J.E., Lingner,C. et al. (2000) Nucleic Acids Res., 28, 73–76], Unigene [Wheeler,D.L., Chappey,C., Lash,A.E., Leipe,D.D., Madden,T.L., Schuler,G.D., Tatusova,T.A. and Rapp,B.A. (2000) Nucleic Acids Res., 28, 10–14], dbEST [Boguski,M.S., Lowe,T.M. and Tolstoshev,C.M. (1993) Nature Genet., 4, 332–333] and SWISS-PROT [Bairoch,A. and Apweiler,R. (2000) Nucleic Acids Res., 28, 45–48] and can be accessed at http://genome-www.stanford.edu/microarray. PMID:11125075

  10. Flexible Survival Strategies of Pseudomonas aeruginosa in Biofilms Result in Increased Fitness Compared with Candida albicans *

    Science.gov (United States)

    Purschke, Frauke Gina; Hiller, Ekkehard; Trick, Iris; Rupp, Steffen

    2012-01-01

    The majority of microorganisms persist in nature as surface-attached communities often surrounded by an extracellular matrix, called biofilms. Most natural biofilms are not formed by a single species but by multiple species. Microorganisms not only cooperate as in some multispecies biofilms but also compete for available nutrients. The Gram-negative bacterium Pseudomonas aeruginosa and the polymorphic fungus Candida albicans are two opportunistic pathogens that are often found coexisting in a human host. Several models of mixed biofilms have been reported for these organisms showing antagonistic behavior. To investigate the interaction of P. aeruginosa and C. albicans in more detail, we analyzed the secretome of single and mixed biofilms of both organisms using MALDI-TOF MS/MS at several time points. Overall 247 individual proteins were identified, 170 originated from P. aeruginosa and 77 from C. albicans. Only 39 of the 131 in mixed biofilms identified proteins were assigned to the fungus whereby the remaining 92 proteins belonged to P. aeruginosa. In single-species biofilms, both organisms showed a higher diversity of proteins with 73 being assigned to C. albicans and 154 to P. aeruginosa. Most interestingly, P. aeruginosa in the presence of C. albicans secreted 16 proteins in significantly higher amounts or exclusively among other virulence factors such as exotoxin A and iron acquisition systems. In addition, the high affinity iron-binding siderophore pyoverdine was identified in mixed biofilms but not in bacterial biofilms, indicating that P. aeruginosa increases its capability to sequester iron in competition with C. albicans. In contrast, C. albicans metabolism was significantly reduced, including a reduction in detectable iron acquisition proteins. The results obtained in this study show that microorganisms not only compete with the host for essential nutrients but also strongly with the present microflora in order to gain a competitive advantage. PMID

  11. A Human Lectin Microarray for Sperm Surface Glycosylation Analysis *

    Science.gov (United States)

    Sun, Yangyang; Cheng, Li; Gu, Yihua; Xin, Aijie; Wu, Bin; Zhou, Shumin; Guo, Shujuan; Liu, Yin; Diao, Hua; Shi, Huijuan; Wang, Guangyu; Tao, Sheng-ce

    2016-01-01

    Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays. PMID:27364157

  12. Alcohols inhibit translation to regulate morphogenesis in C. albicans.

    Science.gov (United States)

    Egbe, Nkechi E; Paget, Caroline M; Wang, Hui; Ashe, Mark P

    2015-04-01

    Many molecules are secreted into the growth media by microorganisms to modulate the metabolic and physiological processes of the organism. For instance, alcohols like butanol, ethanol and isoamyl alcohol are produced by the human pathogenic fungus, Candida albicans and induce morphological differentiation. Here we show that these same alcohols cause a rapid inhibition of protein synthesis. More specifically, the alcohols target translation initiation, a complex stage of the gene expression process. Using molecular techniques, we have identified the likely translational target of these alcohols in C. albicans as the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, which supports the exchange reaction where eIF2.GDP is converted to eIF2.GTP. Even minimal regulation at this step will lead to alterations in the levels of specific proteins that may allow the exigencies of the fungus to be realised. Indeed, similar to the effects of alcohols, a minimal inhibition of protein synthesis with cycloheximide also causes an induction of filamentous growth. These results suggest a molecular basis for the effect of various alcohols on morphological differentiation in C. albicans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Up-to-Date Applications of Microarrays and Their Way to Commercialization

    Directory of Open Access Journals (Sweden)

    Sarah Schumacher

    2015-04-01

    Full Text Available This review addresses up-to-date applications of Protein Microarrays. Protein Microarrays play a significant role in basic research as well as in clinical applications and are applicable in a lot of fields, e.g., DNA, proteins and small molecules. Additionally they are on the way to enter clinics in routine diagnostics. Protein Microarrays can be powerful tools to improve healthcare. An overview of basic characteristics to mediate essential knowledge of this technique is given. To reach this goal, some challenges still have to be addressed. A few applications of Protein Microarrays in a medical context are shown. Finally, an outlook, where the potential of Protein Microarrays is depicted and speculations how the future of Protein Microarrays will look like are made.

  14. Global transcriptome sequencing identifies chlamydospore specific markers in Candida albicans and Candida dubliniensis.

    Directory of Open Access Journals (Sweden)

    Katja Palige

    Full Text Available Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2 which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens.

  15. Global Transcriptome Sequencing Identifies Chlamydospore Specific Markers in Candida albicans and Candida dubliniensis

    LENUS (Irish Health Repository)

    Palige, Katja

    2013-04-15

    Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2) which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens.

  16. Regulatory networks controlling nitrogen sensing and uptake in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shruthi Ramachandra

    Full Text Available Nitrogen is one of the key nutrients for microbial growth. During infection, pathogenic fungi like C. albicans need to acquire nitrogen from a broad range of different and changing sources inside the host. Detecting the available nitrogen sources and adjusting the expression of genes for their uptake and degradation is therefore crucial for survival and growth as well as for establishing an infection. Here, we analyzed the transcriptional response of C. albicans to nitrogen starvation and feeding with the infection-relevant nitrogen sources arginine and bovine serum albumin (BSA, representing amino acids and proteins, respectively. The response to nitrogen starvation was marked by an immediate repression of protein synthesis and an up-regulation of general amino acid permeases, as well as an up-regulation of autophagal processes in its later stages. Feeding with arginine led to a fast reduction in expression of general permeases for amino acids and to resumption of protein synthesis. The response to BSA feeding was generally slower, and was additionally characterized by an up-regulation of oligopeptide transporter genes. From time-series data, we inferred network interaction models for genes relevant in nitrogen detection and uptake. Each individual network was found to be largely specific for the experimental condition (starvation or feeding with arginine or BSA. In addition, we detected several novel connections between regulator and effector genes, with putative roles in nitrogen uptake. We conclude that C. albicans adopts a particular nitrogen response network, defined by sets of specific gene-gene connections for each environmental condition. All together, they form a grid of possible gene regulatory networks, increasing the transcriptional flexibility of C. albicans.

  17. Regulatory networks controlling nitrogen sensing and uptake in Candida albicans.

    Science.gov (United States)

    Ramachandra, Shruthi; Linde, Jörg; Brock, Matthias; Guthke, Reinhard; Hube, Bernhard; Brunke, Sascha

    2014-01-01

    Nitrogen is one of the key nutrients for microbial growth. During infection, pathogenic fungi like C. albicans need to acquire nitrogen from a broad range of different and changing sources inside the host. Detecting the available nitrogen sources and adjusting the expression of genes for their uptake and degradation is therefore crucial for survival and growth as well as for establishing an infection. Here, we analyzed the transcriptional response of C. albicans to nitrogen starvation and feeding with the infection-relevant nitrogen sources arginine and bovine serum albumin (BSA), representing amino acids and proteins, respectively. The response to nitrogen starvation was marked by an immediate repression of protein synthesis and an up-regulation of general amino acid permeases, as well as an up-regulation of autophagal processes in its later stages. Feeding with arginine led to a fast reduction in expression of general permeases for amino acids and to resumption of protein synthesis. The response to BSA feeding was generally slower, and was additionally characterized by an up-regulation of oligopeptide transporter genes. From time-series data, we inferred network interaction models for genes relevant in nitrogen detection and uptake. Each individual network was found to be largely specific for the experimental condition (starvation or feeding with arginine or BSA). In addition, we detected several novel connections between regulator and effector genes, with putative roles in nitrogen uptake. We conclude that C. albicans adopts a particular nitrogen response network, defined by sets of specific gene-gene connections for each environmental condition. All together, they form a grid of possible gene regulatory networks, increasing the transcriptional flexibility of C. albicans.

  18. Candida albicans escapes from mouse neutrophils

    DEFF Research Database (Denmark)

    Ermert, David; Niemiec, Maria J; Röhm, Marc

    2013-01-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mou...

  19. Design of a covalently bonded glycosphingolipid microarray

    DEFF Research Database (Denmark)

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vi......Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform......, the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release......-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin...

  20. Limonene inhibits Candida albicans growth by inducing apoptosis.

    Science.gov (United States)

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2017-10-09

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Robust Microarray Image Processing

    OpenAIRE

    Novikov, Eugene; Barillot, Emmanuel

    2007-01-01

    In this work we have presented a complete solution for robust, high-throughput, two-color microarray image processing comprising procedures for automatic spot localization, spot quantification and spot quality control. The spot localization algorithm is fully automatic and robust with respect to deviations from perfect spot alignment and contamination. As an input, it requires only the common array design parameters: number of blocks and number of spots in the x and y directions of the array....

  2. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics

    DEFF Research Database (Denmark)

    Reales-Calderón, Jose Antonio; Sylvester, Marc; Strijbis, Karin

    2013-01-01

    Macrophages play a pivotal role in the prevention of Candida albicans infections. Yeast recognition and phagocytosis by macrophages is mediated by Pattern Recognition Receptors (PRRs) that initiate downstream signal transduction cascades by protein phosphorylation and dephosphorylation. We exposed...... RAW 264.7 macrophages to C. albicans for 3h and used SILAC to quantify macrophage proteins and phosphoproteins by mass spectrometry to study the effects of infection. We identified 53 macrophage up-regulated proteins and 15 less abundant in the presence of C. albicans out of a total of 2071 identified...... of apoptotic markers revealed that anti-apoptotic signals prevailed during the interaction of the yeast. Our proteomics study suggests that besides inflammation, apoptosis is a central pathway in the immune defense against C. albicans infection....

  3. Germ tube-specific antigens of Candida albicans cell walls

    International Nuclear Information System (INIS)

    Sundstrom, P.R.

    1986-01-01

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with 125 I, or metabolically with [ 35 S] methionine or [ 3 H] mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen

  4. A Human-Curated Annotation of the Candida albicans Genome.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.

  5. Candida albicans hyphal invasion: thigmotropism or chemotropism?

    Science.gov (United States)

    Davies, J M; Stacey, A J; Gilligan, C A

    1999-02-15

    Hyphae of the human pathogenic fungus Candida albicans exhibit thigmotropic behaviour in vitro, in common with phytopathogenic and saprotrophic fungi. An examination of the literature on C. albicans hyphal penetration of epithelial and endothelial membranes does not support the premise that hyphal thigmotropism plays a major role in tissue invasion. Further experimentation is now required to assess thigmotropic behaviour on host membranes and vaginal epithelial cells are suggested as a test model. It is proposed that while thigmotropism may and invasion of tissue invaginations, chemotropism can explain C. albicans hyphal invasion patterns of both endothelium and epithelium.

  6. BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 proteins are related to human glioma tumor grade: immunohistochemistry and public microarray data meta-analysis.

    Directory of Open Access Journals (Sweden)

    Vassiliki Pelekanou

    Full Text Available Gliomas are common and lethal tumors of the central nervous system (CNS. Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK and their receptors (BAFF-R, TACI, BCMA, Fn14 in gliomas. In addition, we investigated by immunohistochemistry (IHC the tumor cells' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype.

  7. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    Science.gov (United States)

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  8. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans.

    Science.gov (United States)

    Shibasaki, Seiji; Karasaki, Miki; Tafuku, Senji; Aoki, Wataru; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Candidiasis is a common fungal infection that is prevalent in immunocompromised individuals. In this study, an oral vaccine against Candida albicans was developed by using the molecular display approach. Enolase 1 protein (Eno1p) of C. albicans was expressed on the Lactobacillus casei cell surface by using poly-gamma-glutamic acid synthetase complex A from Bacillus subtilis as an anchoring protein. The Eno1p-displaying L. casei cells were used to immunize mice, which were later challenged with a lethal dose of C. albicans. The data indicated that the vaccine elicited a strong IgG response and increased the survival rate of the vaccinated mice. Furthermore, L. casei acted as a potent adjuvant and induced high antibody titers that were comparable to those induced by strong adjuvants such as the cholera toxin. Overall, the molecular display method can be used to rapidly develop vaccines that can be conveniently administered and require minimal processing.

  9. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment.

    Science.gov (United States)

    Gil-Bona, Ana; Amador-García, Ahinara; Gil, Concha; Monteoliva, Lucia

    2017-12-06

    The cell surface and secreted proteins are the initial points of contact between Candida albicans and the host. Improvements in protein extraction approaches and mass spectrometers have allowed researchers to obtain a comprehensive knowledge of these external subproteomes. In this paper, we review the published proteomic studies that have examined C. albicans extracellular proteins, including the cell surface proteins or surfome and the secreted proteins or secretome. The use of different approaches to isolate cell wall and cell surface proteins, such as fractionation approaches or cell shaving, have resulted in different outcomes. Proteins with N-terminal signal peptide, known as classically secreted proteins, and those that lack the signal peptide, known as unconventionally secreted proteins, have been consistently identified. Existing studies on C. albicans extracellular vesicles reveal that they are relevant as an unconventional pathway of protein secretion and can help explain the presence of proteins without a signal peptide, including some moonlighting proteins, in the cell wall and the extracellular environment. According to the global view presented in this review, cell wall proteins, virulence factors such as adhesins or hydrolytic enzymes, metabolic enzymes and stress related-proteins are important groups of proteins in C. albicans surfome and secretome. Candida albicans extracellular proteins are involved in biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Furthermore, these proteins include virulence factors and immunogenic proteins. This review is of outstanding interest, not only because it extends knowledge of the C. albicans surface and extracellular proteins that could be related with pathogenesis, but also because it presents insights that may facilitate the future development of new antifungal drugs and vaccines and contributes to efforts to identify new biomarkers that can be employed to diagnose candidiasis

  10. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    Science.gov (United States)

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  11. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction.

    Science.gov (United States)

    Sun, Lingmei; Liao, Kai; Hang, Chengcheng; Wang, Dayong

    2017-01-01

    To investigate the effects of honokiol on induction of reactive oxygen species (ROS), antioxidant defense systems, mitochondrial dysfunction, and apoptosis in Candida albicans. To measure ROS accumulation, 2',7'-dichlorofluorescein diacetate fluorescence was used. Lipid peroxidation was assessed using both fluorescence staining and a thiobarbituric acid reactive substances (TBARS) assay. Protein oxidation was determined using dinitrophenylhydrazine derivatization. Antioxidant enzymatic activities were measured using commercially available detection kits. Superoxide dismutase (SOD) genes expression was measured using real time RT-PCR. To assess its antifungal abilities and effectiveness on ROS accumulation, honokiol and the SOD inhibitor N,N'-diethyldithiocarbamate (DDC) were used simultaneously. Mitochondrial dysfunction was assessed by measuring the mitochondrial membrane potential (mtΔψ). Honokiol-induced apoptosis was assessed using an Annexin V-FITC apoptosis detection kit. ROS, lipid peroxidation, and protein oxidation occurred in a dose-dependent manner in C. albicans after honokiol treatment. Honokiol caused an increase in antioxidant enzymatic activity. In addition, honokiol treatment induced SOD genes expression in C. albicans cells. Moreover, addition of DDC resulted in increased endogenous ROS levels and potentiated the antifungal activity of honokiol. Mitochondrial dysfunction was confirmed by measured changes to mtΔψ. The level of apoptosis increased in a dose-dependent manner after honokiol treatment. Collectively, these results indicate that honokiol acts as a pro-oxidant in C. albicans. Furthermore, the SOD inhibitor DDC can be used to potentiate the activity of honokiol against C. albicans.

  12. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Lingmei Sun

    Full Text Available To investigate the effects of honokiol on induction of reactive oxygen species (ROS, antioxidant defense systems, mitochondrial dysfunction, and apoptosis in Candida albicans.To measure ROS accumulation, 2',7'-dichlorofluorescein diacetate fluorescence was used. Lipid peroxidation was assessed using both fluorescence staining and a thiobarbituric acid reactive substances (TBARS assay. Protein oxidation was determined using dinitrophenylhydrazine derivatization. Antioxidant enzymatic activities were measured using commercially available detection kits. Superoxide dismutase (SOD genes expression was measured using real time RT-PCR. To assess its antifungal abilities and effectiveness on ROS accumulation, honokiol and the SOD inhibitor N,N'-diethyldithiocarbamate (DDC were used simultaneously. Mitochondrial dysfunction was assessed by measuring the mitochondrial membrane potential (mtΔψ. Honokiol-induced apoptosis was assessed using an Annexin V-FITC apoptosis detection kit.ROS, lipid peroxidation, and protein oxidation occurred in a dose-dependent manner in C. albicans after honokiol treatment. Honokiol caused an increase in antioxidant enzymatic activity. In addition, honokiol treatment induced SOD genes expression in C. albicans cells. Moreover, addition of DDC resulted in increased endogenous ROS levels and potentiated the antifungal activity of honokiol. Mitochondrial dysfunction was confirmed by measured changes to mtΔψ. The level of apoptosis increased in a dose-dependent manner after honokiol treatment.Collectively, these results indicate that honokiol acts as a pro-oxidant in C. albicans. Furthermore, the SOD inhibitor DDC can be used to potentiate the activity of honokiol against C. albicans.

  13. Triclosan antagonises fluconazole activity against Candida albicans

    OpenAIRE

    MORAN, GARY

    2012-01-01

    Epub October 4th Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg/L. However, at subinhibitory concentrations (0.5-2 mg/L) triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1? and cdr2? strains. Triclosan did not affect fluconazole upt...

  14. Compressive Sensing DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Sheikh Mona A

    2009-01-01

    Full Text Available Compressive sensing microarrays (CSMs are DNA-based sensors that operate using group testing and compressive sensing (CS principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed.

  15. [Rbf1 (RPG-box binding factor), a transcription factor involved in yeast-hyphal transition of Candida albicans].

    Science.gov (United States)

    Aoki, Y; Ishii, N; Watanabe, M; Yoshihara, F; Arisawa, M

    1998-01-01

    The major fungal pathogen for fungal diseases which have become a major medical problem in the last few years is Candida albicans, which can grow both in yeast and hyphae forms. This ability of C. albicans is thought to contribute to its colonization and dissemination within host tissues. In a recent few years, accompanying the introduction of molecular biological tools into C. albicans organism, several factors involved in the signal transduction pathway for yeast-hyphal transition have been identified. One MAP kinase pathway in C. albicans, similar to that leading to STE12 activation in Saccharomyces cerevisiae, has been reported. C. albicans strains mutant in these genes show retarded filamentous growth on a solid media but no impairment of filamentous growth in mice. These results suggest two scenarios that a kinase signaling cascade plays a part in stimulating the morphological transition in C. albicans, and that there would be another signaling pathway effective in animals. In this latter true hyphal pathway, although some candidate proteins, such as Efg1 (transcription factor), Int1 (integrin-like membrane protein), or Phr1 (pH-regulated membrane protein), have been identified, it is still too early to say that we understand the whole picture of that cascade. We have cloned a C. albicans gene encoding a novel DNA binding protein, Rbf1, that predominantly localizes in the nucleus, and shows transcriptional activation capability. Disruption of the functional RBF1 genes of C. albicans induced the filamentous growth on all solid and liquid media tested, suggesting that Rbf1 might be another candidate for the true hyphal pathway. Relationships with other factors described above, and the target (regulated) genes of Rbf1 is under investigation.

  16. Candida albicans Biofilms and Human Disease

    Science.gov (United States)

    Nobile, Clarissa J.; Johnson, Alexander D.

    2016-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  17. Laser direct writing of biomolecule microarrays

    Science.gov (United States)

    Serra, P.; Fernández-Pradas, J. M.; Berthet, F. X.; Colina, M.; Elvira, J.; Morenza, J. L.

    Protein-based biosensors are highly efficient tools for protein detection and identification. The production of these devices requires the manipulation of tiny amounts of protein solutions in conditions preserving their biological properties. In this work, laser induced forward transfer (LIFT) was used for spotting an array of a purified bacterial antigen in order to check the viability of this technique for the production of protein microarrays. A pulsed Nd:YAG laser beam (355 nm wavelength, 10 ns pulse duration) was used to transfer droplets of a solution containing the Treponema pallidum 17 kDa protein antigen on a glass slide. Optical microscopy showed that a regular array of micrometric droplets could be precisely and uniformly spotted onto a solid substrate. Subsequently, it was proved that LIFT deposition of a T. pallidum 17 kDa antigen onto nylon-coated glass slides preserves its antigenic reactivity and diagnostic properties. These results support that LIFT is suitable for the production of protein microarrays and pave the way for future diagnostics applications.

  18. Development of a Digital Microarray with Interferometric Reflectance Imaging

    Science.gov (United States)

    Sevenler, Derin

    This dissertation describes a new type of molecular assay for nucleic acids and proteins. We call this technique a digital microarray since it is conceptually similar to conventional fluorescence microarrays, yet it performs enumerative ('digital') counting of the number captured molecules. Digital microarrays are approximately 10,000-fold more sensitive than fluorescence microarrays, yet maintain all of the strengths of the platform including low cost and high multiplexing (i.e., many different tests on the same sample simultaneously). Digital microarrays use gold nanorods to label the captured target molecules. Each gold nanorod on the array is individually detected based on its light scattering, with an interferometric microscopy technique called SP-IRIS. Our optimized high-throughput version of SP-IRIS is able to scan a typical array of 500 spots in less than 10 minutes. Digital DNA microarrays may have utility in applications where sequencing is prohibitively expensive or slow. As an example, we describe a digital microarray assay for gene expression markers of bacterial drug resistance.

  19. Antigen microarrays: descriptive chemistry or functional immunomics?

    Science.gov (United States)

    Prechl, József; Papp, Krisztián; Erdei, Anna

    2010-04-01

    Advances in protein microarray technology allow the generation of high content, reliable information about complex, multilevel protein interaction networks. Yet antigen arrays are used mostly only as devices for parallel immune assays describing multitudes of individual binding events. We propose here that the huge amount of immunological information hidden in the plasma of an individual could be better revealed by combining the characterization of antibody binding to target epitopes with improved estimation of effector functions triggered by these binding events. Furthermore, we could generate functional immune profiles characterizing general immune responsiveness of the individual by designing arrays incorporating epitope collections from diverse subsets of antibody targets. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. DNA Microarray-Based Diagnostics.

    Science.gov (United States)

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

  1. Plasticity of Candida albicans Biofilms

    Science.gov (United States)

    Daniels, Karla J.

    2016-01-01

    SUMMARY Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal. PMID:27250770

  2. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species

    Science.gov (United States)

    Whibley, Natasha; Gaffen, Sarah L.

    2015-01-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on C. albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions. PMID:26276374

  3. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species.

    Science.gov (United States)

    Whibley, Natasha; Gaffen, Sarah L

    2015-11-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Immune response to Candida albicans Resposta imune a Candida albicans

    Directory of Open Access Journals (Sweden)

    Luis Carlos Jabur Gaziri

    2008-10-01

    Full Text Available Candida albicans causes infections of the skin, oral cavity and esophagus, gastrointestinal tract, vagina and vascular system. Most infections occur in immunocompromised hosts or debilitated patients. More than 90% of HIV positive patients suffer from mucosal candidiasis at least once in the course of this disease. The overall severity and chronicity of oral candidiasis in patients with AIDS are mainly attributed to the HIV-induced immune deficiency in the affected individuals, namely, the loss of T-helper cells and reduction in the number of CD4+ T lymphocytes. In mucosal colonization and systemic infections of mice by this fungus, Th1 cells mediate phagocyte-dependent protection, whose most important cytokines are IL-2, IFN-ã, TNF-á and IL-12. In contrast, production of inhibitory cytokines such as IL-4 and IL- 10 by Th2 cells are associated with disactivation of phagocytes and disease progression. Possibly, the growth of filamentous forms is better adapted to evade the cells of the immune system, whereas the yeast form may be the mode of proliferation in infected tissues. By the discriminative production of IL- 12 or IL-4 in response to the yeast or filamentous forms respectively, dendritic cells acquire the capacity of inducing the differentiation of CD4+ cells towards the Th1 or Th2 phenotypes. Candida albicans causa infecções na pele, cavidade oral e esôfago, trato gastrointestinal, vagina e sistema vascular de humanos. As infecções ocorrem em hospedeiros imunocomprometidos ou pacientes debilitados. Acima de 90% dos pacientes HIV+ sofrem de candidíase de mucosas ao menos uma vez no decorrer da doença. A severidade e cronicidade da candidíase oral em pacientes com AIDS são atribuídas, principalmente, à imunodeficiência induzida pelo HIV nos indivíduos afetados, a saber, perda de funções de célula T auxiliar e redução do número de linfócitos T CD4. Na colonização de mucosas e infecções sistêmicas de camundongos por

  5. Bioactive interleukin-1alpha is cytolytically released from Candida albicans-infected oral epithelial cells.

    Science.gov (United States)

    Dongari-Bagtzoglou, A; Kashleva, H; Villar, C Cunha

    2004-12-01

    Oral epithelial cells are primary targets of Candida albicans in the oropharynx and may regulate the inflammatory host response to this pathogen. This investigation studied the mechanisms underlying interleukin-1alpha (IL-1alpha) release by oral epithelial cells and the role of IL-1alpha in regulating the mucosal inflammatory response to C. albicans. Infected oral epithelial cells released processed IL-1alpha protein in culture supernatants. The IL-1alpha generated was stored intracellularly and was released upon cell lysis. This was further supported by the fact that different C. albicans strains induced variable IL-1alpha release, depending on their cytolytic activity. IL-1alpha from C. albicans-infected oral epithelial cells upregulated proinflammatory cytokine secretion (IL-8 and GM-CSF) in uninfected oral epithelial or stromal cells. Our studies suggest that production of IL-1alpha, IL-8 and GM-CSF may take place in the oral mucosa in response to lytic infection of epithelial cells with C. albicans. This process can act as an early innate immune surveillance system and may contribute to the clinicopathologic signs of infection in the oral mucosa.

  6. Human vaginal epithelial cells augment autophagy marker genes in response to Candida albicans infection.

    Science.gov (United States)

    Shroff, Ankit; Sequeira, Roicy; Reddy, Kudumula Venkata Rami

    2017-04-01

    Autophagy plays an important role in clearance of intracellular pathogens. However, no information is available on its involvement in vaginal infections such as vulvo-vaginal candidiasis (VVC). VVC is intimately associated with the immune status of the human vaginal epithelial cells (VECs). The objective of our study is to decipher if autophagy process is involved during Candida albicans infection of VECs. In this study, C. albicans infection system was established using human VEC line (VK2/E6E7). Infection-induced change in the expression of autophagy markers like LC3 and LAMP-1 were analyzed by RT-PCR, q-PCR, Western blot, immunofluorescence and transmission electron microscopy (TEM) studies were carried out to ascertain the localization of autophagosomes. Multiplex ELISA was carried out to determine the cytokine profiles. Analysis of LC3 and LAMP-1 expression at mRNA and protein levels at different time points revealed up-regulation of these markers 6 hours post C. albicans infection. LC3 and LAMP-1 puncti were observed in infected VECs after 12 hours. TEM studies showed C. albicans entrapped in autophagosomes. Cytokines-TNF-α and IL-1β were up-regulated in culture supernatants of VECs at 12 hours post-infection. The results suggest that C. albicans invasion led to the activation of autophagy as a host defense mechanism of VECs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. DNA microarrays : a molecular cloning manual

    National Research Council Canada - National Science Library

    Sambrook, Joseph; Bowtell, David

    2002-01-01

    .... DNA Microarrays provides authoritative, detailed instruction on the design, construction, and applications of microarrays, as well as comprehensive descriptions of the software tools and strategies...

  8. Urinary tract infections and Candida albicans.

    Science.gov (United States)

    Behzadi, Payam; Behzadi, Elham; Ranjbar, Reza

    2015-01-01

    Urinary tract candidiasis is known as the most frequent nosocomial fungal infection worldwide. Candida albicans is the most common cause of nosocomial fungal urinary tract infections; however, a rapid change in the distribution of Candida species is undergoing. Simultaneously, the increase of urinary tract candidiasis has led to the appearance of antifungal resistant Candida species. In this review, we have an in depth look into Candida albicans uropathogenesis and distribution of the three most frequent Candida species contributing to urinary tract candidiasis in different countries around the world. For writing this review, Google Scholar -a scholarly search engine- (http://scholar.google.com/) and PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) were used. The most recently published original articles and reviews of literature relating to the first three Candida species causing urinary tract infections in different countries and the pathogenicity of Candida albicans were selected and studied. Although some studies show rapid changes in the uropathogenesis of Candida species causing urinary tract infections in some countries, Candida albicans is still the most important cause of candidal urinary tract infections. Despite the ranking of Candida albicans as the dominant species for urinary tract candidiasis, specific changes have occurred in some countries. At this time, it is important to continue the surveillance related to Candida species causing urinary tract infections to prevent, control and treat urinary tract candidiasis in future.

  9. HER2/neu (c-erbB-2) gene amplification and protein expression are rare in uterine cervical neoplasia: a tissue microarray study of 814 archival specimens

    DEFF Research Database (Denmark)

    Lesnikova, Iana; Lidang, Marianne; Hamilton-Dutoit, Stephen

    2009-01-01

    intraepithelial neoplasia (CIN)1 (n = 262), CIN2 (n = 230), CIN3 (n = 186) and invasive carcinoma (n = 136), for HER2/neu protein expression by immunohistochemistry (IHC) and for HER2/neu gene amplification by chromogenic in situ hybridization (CISH). We found moderate or strong immunohistochemical positivity...... for HER2/neu in 64 of 814 specimens (7.9%). Using CISH, polysomy of the HER2/neu gene was detected in 87 cases (10.7%), low/borderline amplification in five cases (0.6%) and true amplification in four cases (0.5%). The correlation between IHC and CISH was statistically significant in CIN2, CIN3...

  10. Candida albicans mannoprotein influences the biological function of dendritic cells.

    Science.gov (United States)

    Pietrella, Donatella; Bistoni, Giovanni; Corbucci, Cristina; Perito, Stefano; Vecchiarelli, Anna

    2006-04-01

    Cell wall components of fungi involved in induction of host immune response are predominantly proteins and glycoproteins, the latter being mainly mannoproteins (MP). In this study we analyse the interaction of the MP from Candida albicans (MP65) with dendritic cells (DC) and demonstrate that MP65 stimulates DC and induces the release of TNF-alpha, IL-6 and the activation of IL-12 gene, with maximal value 6 h post treatment. MP65 induces DC maturation by increasing costimulatory molecules and decreasing CD14 and FcgammaR molecule expression. The latter effect is partly mediated by toll-like receptor 2 (TLR2) and TLR4, and the MyD88-dependent pathway is involved in the process. MP65 enables DC to activate T cell response, its protein core is essential for induction of T cell activation, while its glycosylated portion primarily promotes cytokine production. The mechanisms involved in induction of protective response against C. albicans could be mediated by the MP65 antigen, suggesting that MP65 may be a suitable candidate vaccine.

  11. Mechanism of iron uptake by the pathogenic yeast, Candida albicans

    International Nuclear Information System (INIS)

    Ismail, A.

    1986-01-01

    C. albicans requires iron for growth and phenotypic development. When deprived of iron, mycelium and bud formation was suppressed. Survival of the organism was also reduced under iron-limiting conditions. The combination of elevated temperature and iron-deprivation further reduced phenotypic development and survival of the yeast. The combination of elevated temperature and iron starvation resulted in a decrease in both the growth rate and siderophore production. However, with time, the cells were able to show partial recovery in the growth rate which occurred concomitantly with an increase in siderophore production. In order for siderophores to be utilized, ferri-siderophore receptors must be produced. The receptor was shown to be located in the plasma membrane of the yeast. Scatchard analysis of the binding of ferri-siderophores to plasma membrane receptors showed an increase in receptor affinity and number of binding sites in iron-starved cells when compared to control cells. Autoradiograms of the 58 Fe-siderophore-protein complex following SDS-PAGE separation of candidal proteins revealed the presence of a ferri-siderophore receptor of approximately 10,000 daltons. C. albicans strains which lacked the ability to synthesize phenolate siderophore maintained a phenolate receptor and bound candidal phenolate siderophore better than non-candidal phenolate siderophores

  12. Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin.

    Science.gov (United States)

    Bocheńska, Oliwia; Rąpała-Kozik, Maria; Wolak, Natalia; Braś, Grażyna; Kozik, Andrzej; Dubin, Adam; Aoki, Wataru; Ueda, Mitsuyoshi; Mak, Paweł

    2013-10-01

    Secreted aspartic peptidases (Saps) are a group of ten acidic hydrolases considered as key virulence factors of Candida albicans. These enzymes supply the fungus with nutrient amino acids as well as are able to degrade the selected host's proteins involved in the immune defense. Our previous studies showed that the human menstrual discharge is exceptionally rich in bactericidal hemoglobin (Hb) fragments - hemocidins. However, to date, the genesis of such peptides is unclear. The presented study demonstrates that the action of C. albicans isozymes Sap1-Sap6, Sap8 and Sap9, but not Sap7 and Sap10, toward human hemoglobin leads to limited proteolysis of this protein and generates a variety of antimicrobial hemocidins. We have identified these peptides and checked their activity against selected microorganisms representative for human vagina. We have also demonstrated that the process of Hb hydrolysis is most effective at pH 4.0, characteristic for vagina, and the liberated peptides showed pronounced killing activity toward Lactobacillus acidophilus, and to a lower degree, Escherichia coli. However, only a very weak activity toward Staphylococcus aureus and C. albicans was noticed. These findings provide interesting new insights into pathophysiology of human vaginal candidiasis and suggest that C. albicans may be able to compete with the other microorganisms of the same physiological niche using the microbicidal peptides generated from the host protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  14. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans

    Science.gov (United States)

    2013-01-01

    Background Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Results Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Conclusions Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S

  15. Alternative Candida albicans lifestyles: growth on surfaces.

    Science.gov (United States)

    Kumamoto, Carol A; Vinces, Marcelo D

    2005-01-01

    Candida albicans, an opportunistic fungal pathogen, causes a wide variety of human diseases such as oral thrush and disseminated candidiasis. Many aspects of C. albicans physiology have been studied during liquid growth, but in its natural environment, the gastrointestinal tract of a mammalian host, the organism associates with surfaces. Growth on a surface triggers several behaviors, such as biofilm formation, invasion, and thigmotropism, that are important for infection. Recent discoveries have identified factors that regulate these behaviors and revealed the importance of these behaviors for pathogenesis.

  16. Mycosynthesis of Silver Nanoparticles from Candida albicans and its ...

    African Journals Online (AJOL)

    Purpose: To produce and characterize silver nanoparticles using Candida albicans and evaluate its antibacterial properties. Methods: Extracellular silver nanoparticles were biosynthesized using C. albicans. The biomass obtained from cultures of C. albicans was used to synthesize silver nanoparticles in 1.5 mM silver ...

  17. Comparative antifungal susceptibility analysis of Candida albicans versus non-albicans Candida corneal isolates.

    Science.gov (United States)

    Spierer, Oriel; Dugar, Jyoti; Miller, Darlene; OʼBrien, Terrence P

    2015-05-01

    To compare the in vitro activity of topical amphotericin B (AMB), natamycin, voriconazole, and fluconazole against human corneal isolates of Candida sp. for guidance in the treatment of Candida keratitis. Sixty-eight Candida isolates (37 albicans and 31 non-albicans isolates) recovered from corneal scrapings submitted to rule out microbial keratitis, during the years 2005 to 2011, at the Bascom Palmer Eye Institute, were examined in this study. Corneal isolates were cultured on fungal agars for 48 hours. Each yeast isolate was dispensed into 4 microtiter wells, each containing 100 mL of commercial (natamycin 5%) or compounded (AMB 0.15%, voriconazole 1%, and fluconazole 0.2%) antifungal medications. A comparison of growth patterns was conducted. One hundred percent of the samples showed growth inhibition after treatment exposure with AMB or natamycin. The isolates treated with voriconazole demonstrated an 85% inhibition rate overall, with the Candida albicans samples showing a 77% inhibition rate and the non-albicans sp. a 93% inhibition rate. In the fluconazole group, there was only a 19.6% inhibition rate noted, with a 7.7% inhibition rate observed in the C. albicans group versus a 30% inhibition rate in the non-albicans group. AMB 0.2% and natamycin 5% have equal effectiveness and full inhibition against Candida keratitis isolates. Fluconazole 0.2% is not the drug of choice in both C. albicans and non-albicans keratitis. Voriconazole 1% may need a stronger concentration for higher effectiveness, but potentially may be helpful as a second agent in the treatment of Candida keratitis.

  18. Comparison of albicans vs. non-albicans candidemia in French intensive care units

    Science.gov (United States)

    2010-01-01

    Introduction Candidemia raises numerous therapeutic issues for intensive care physicians. Epidemiological data that could guide the choice of initial therapy are still required. This analysis sought to compare the characteristics of intensive care unit (ICU) patients with candidemia due to non-albicans Candida species with those of ICU patients with candidemia due to Candida albicans. Methods A prospective, observational, multicenter, French study was conducted from October 2005 to May 2006. Patients exhibiting candidemia developed during ICU stay and exclusively due either to one or more non-albicans Candida species or to C. albicans were selected. The data collected included patient characteristics on ICU admission and at the onset of candidemia. Results Among the 136 patients analyzed, 78 (57.4%) had candidemia caused by C. albicans. These patients had earlier onset of infection (11.1 ± 14.2 days after ICU admission vs. 17.4 ± 17.7, p = 0.02), higher severity scores on ICU admission (SOFA: 10.4 ± 4.7 vs. 8.6 ± 4.6, p = 0.03; SAPS II: 57.4 ± 22.8 vs. 48.7 ± 15.5, P = 0.015), and were less often neutropenic (2.6% vs. 12%, p = 0.04) than patients with candidemia due to non-albicans Candida species. Conclusions Although patients infected with Candida albicans differed from patients infected with non-albicans Candida species for a few characteristics, no clinical factor appeared pertinent enough to guide the choice of empirical antifungal therapy in ICU. PMID:20507569

  19. Antibiotic resistance in Candida albicans and Staphylococcus ...

    African Journals Online (AJOL)

    Nowadays, vaginal candidiasis and bacterial vaginosis are frequently encountered in medical practice and antibiotic resistance in implicated pathogens has not been reported in Dschang. This study sought to determine the antimicrobial susceptibility patterns of 198 isolates of Candida albicans and 300 strains of ...

  20. Undecylenic Acid Inhibits Morphogenesis of Candida albicans

    OpenAIRE

    McLain, Nealoo; Ascanio, Rhoda; Baker, Carol; Strohaver, Robert A.; Dolan, Joseph W.

    2000-01-01

    Resilient liners are frequently used to treat denture stomatitis, a condition often associated with Candida albicans infections. Of 10 liners tested, 2 were found to inhibit the switch from the yeast form to hyphae and a third was found to stimulate this switch. The inhibitor was determined to be undecylenic acid.

  1. Undecylenic acid inhibits morphogenesis of Candida albicans.

    Science.gov (United States)

    McLain, N; Ascanio, R; Baker, C; Strohaver, R A; Dolan, J W

    2000-10-01

    Resilient liners are frequently used to treat denture stomatitis, a condition often associated with Candida albicans infections. Of 10 liners tested, 2 were found to inhibit the switch from the yeast form to hyphae and a third was found to stimulate this switch. The inhibitor was determined to be undecylenic acid.

  2. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages.

    Science.gov (United States)

    McKenzie, C G J; Koser, U; Lewis, L E; Bain, J M; Mora-Montes, H M; Barker, R N; Gow, N A R; Erwig, L P

    2010-04-01

    The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to escape destruction by the host immune system. Using mutant strains that are defective in cell surface glycosylation, cell wall protein synthesis, and yeast-hypha morphogenesis, we have investigated three important aspects of C. albicans innate immune interactions: phagocytosis by primary macrophages and macrophage cell lines, hyphal formation within macrophage phagosomes, and the ability to escape from and kill macrophages. We show that cell wall glycosylation is critically important for the recognition and ingestion of C. albicans by macrophages. Phagocytosis was significantly reduced for mutants deficient in phosphomannan biosynthesis (mmn4Delta, pmr1Delta, and mnt3 mnt5Delta), whereas O- and N-linked mannan defects (mnt1Delta mnt2Delta and mns1Delta) were associated with increased ingestion, compared to the parent wild-type strains and genetically complemented controls. In contrast, macrophage uptake of mutants deficient in cell wall proteins such as adhesins (ece1Delta, hwp1Delta, and als3Delta) and yeast-locked mutants (clb2Delta, hgc1Delta, cph1Delta, efg1Delta, and efg1Delta cph1Delta), was similar to that observed for wild-type C. albicans. Killing of macrophages was abrogated in hypha-deficient strains, significantly reduced in all glycosylation mutants, and comparable to wild type in cell wall protein mutants. The diminished ability of glycosylation mutants to kill macrophages was not a consequence of impaired hyphal formation within macrophage phagosomes. Therefore, cell wall composition and the ability to undergo yeast-hypha morphogenesis are critical determinants of the macrophage's ability to ingest and process C. albicans.

  3. Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations.

    Science.gov (United States)

    Rajkowska, Katarzyna; Otlewska, Anna; Kunicka-Styczyńska, Alina; Krajewska, Agnieszka

    2017-06-19

    Members of Candida species cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. In order to prevent from Candida sp. development, essential oils are more and more frequently applied, due to their antifungal activity, low toxicity if used appropriately, and biodegrability. The aim of the study was to characterize the early alterations in Candida albicans metabolic properties in relation to proteins and chromosomal DNA profiles, after treatment with peppermint and clove oils at sub-inhibitory concentrations. The yeasts were affected by the oils even at a concentration of 0.0075% v / v , which resulted in changes in colony morphotypes and metabolic activities. Peppermint and clove oils at concentrations ranging from 0.015× MIC (minimal inhibitory concentration) to 0.5× MIC values substantially affected the enzymatic abilities of C. albicans , and these changes were primarily associated with the loss or decrease of activity of all 9 enzymes detected in the untreated yeast. Moreover, 29% isolates showed additional activity of N -acetyl-β-glucosaminidase and 14% isolates-α-fucosidase in comparison to the yeast grown without essential oils addition. In response to essential oils at 0.25-0.5× MIC, extensive changes in C. albicans whole-cell protein profiles were noted. However, the yeast biochemical profiles were intact with the sole exception of the isolate treated with clove oil at 0.5× MIC. The alterations were not attributed to gross chromosomal rearrangements in C. albicans karyotype. The predominantly observed decrease in protein fractions and the yeast enzymatic activity after treatment with the oils should be considered as a phenotypic response of C. albicans to the essential oils at their sub-inhibitory concentrations and may lead to the reduction of this yeast pathogenicity.

  4. Independent component analysis of Alzheimer's DNA microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Vanderburg Charles R

    2009-01-01

    Full Text Available Abstract Background Gene microarray technology is an effective tool to investigate the simultaneous activity of multiple cellular pathways from hundreds to thousands of genes. However, because data in the colossal amounts generated by DNA microarray technology are usually complex, noisy, high-dimensional, and often hindered by low statistical power, their exploitation is difficult. To overcome these problems, two kinds of unsupervised analysis methods for microarray data: principal component analysis (PCA and independent component analysis (ICA have been developed to accomplish the task. PCA projects the data into a new space spanned by the principal components that are mutually orthonormal to each other. The constraint of mutual orthogonality and second-order statistics technique within PCA algorithms, however, may not be applied to the biological systems studied. Extracting and characterizing the most informative features of the biological signals, however, require higher-order statistics. Results ICA is one of the unsupervised algorithms that can extract higher-order statistical structures from data and has been applied to DNA microarray gene expression data analysis. We performed FastICA method on DNA microarray gene expression data from Alzheimer's disease (AD hippocampal tissue samples and consequential gene clustering. Experimental results showed that the ICA method can improve the clustering results of AD samples and identify significant genes. More than 50 significant genes with high expression levels in severe AD were extracted, representing immunity-related protein, metal-related protein, membrane protein, lipoprotein, neuropeptide, cytoskeleton protein, cellular binding protein, and ribosomal protein. Within the aforementioned categories, our method also found 37 significant genes with low expression levels. Moreover, it is worth noting that some oncogenes and phosphorylation-related proteins are expressed in low levels. In

  5. Microarray analysis of rice d1 (RGA1 mutant reveals the potential role of G-protein alpha subunit in regulating multiple abiotic stresses such as drought, salinity, heat and cold

    Directory of Open Access Journals (Sweden)

    Annie Prasanna Jangam

    2016-01-01

    Full Text Available The genome-wide role of heterotrimeric G-proteins in abiotic stress response in rice has not been examined from a functional genomics perspective, despite the availability of mutants and evidences involving individual genes/processes/stresses. Our rice whole transcriptome microarray analysis (GSE 20925 at NCBI GEO using the G-alpha subunit (RGA1 null mutant (Daikoku 1 or d1 and its corresponding wild type (O. sativa Japonica Nipponbare identified 2270 unique differentially expressed genes (DEGs. Out of them, we mined for all the potentially abiotic stress-responsive genes using Gene Ontology terms, STIFDB2.0 and Rice DB. The first two approaches produced smaller subsets of the 1886 genes found at Rice DB. The GO approach revealed similar regulation of several families of stress-responsive genes in RGA1 mutant. The Genevestigator analysis of the stress-responsive subset of the RGA1-regulated genes from STIFDB revealed cold and drought-responsive clusters. Meta data analysis at Rice DB revealed large stress-response categories such as cold (878 up /810 down, drought (882 up /837 down, heat (913 up /777 down, and salt stress (889 up /841 down. 1498 of them are common to all the four abiotic stresses, followed by fewer genes common to smaller groups of stresses. The RGA1-regulated genes that uniquely respond to individual stresses include 111 in heat stress, 8 each in cold only and drought only stresses and 2 genes in salt stress only. The common DEGs (1498 belong to pathways such as the synthesis of polyamine, glycine-betaine, proline and trehalose. Some of the common DEGs belong to abiotic stress signaling pathways such as calcium-dependent pathway, ABA independent and dependent pathway and MAP kinase pathway in the RGA1 mutant. Gene ontology of the common stress responsive DEGs revealed 62 unique molecular functions such as transporters, enzyme regulators, transferases, hydrolases, carbon and protein metabolism, binding to nucleotides

  6. Candida albicans CUG mistranslation is a mechanism to create cell surface variation.

    Science.gov (United States)

    Miranda, Isabel; Silva-Dias, Ana; Rocha, Rita; Teixeira-Santos, Rita; Coelho, Carolina; Gonçalves, Teresa; Santos, Manuel A S; Pina-Vaz, Cidália; Solis, Norma V; Filler, Scott G; Rodrigues, Acácio G

    2013-08-30

    In the human fungal pathogen Candida albicans, the CUG codon is translated 97% of the time as serine and 3% of the time as leucine, which potentially originates an array of proteins resulting from the translation of a single gene. Genes encoding cell surface proteins are enriched in CUG codons; thus, CUG mistranslation may influence the interactions of the organism with the host. To investigate this, we compared a C. albicans strain that misincorporates 28% of leucine at CUGs with a wild-type parental strain. The first strain displayed increased adherence to inert and host molecules. In addition, it was less susceptible to phagocytosis by murine macrophages, probably due to reduced exposure of cell surface β-glucans. To prove that these phenotypes occurred due to serine/leucine exchange, the C. albicans adhesin and invasin ALS3 was expressed in Saccharomyces cerevisiae in its two natural isoforms (Als3p-Leu and Als3p-Ser). The cells with heterologous expression of Als3p-Leu showed increased adherence to host substrates and flocculation. We propose that CUG mistranslation has been maintained during the evolution of C. albicans due to its potential to generate cell surface variability, which significantly alters fungus-host interactions. The translation of genetic information into proteins is a highly accurate cellular process. In the human fungal pathogen Candida albicans, a unique mistranslation event involving the CUG codon occurs. The CUG codon is mainly translated as serine but can also be translated as leucine. Leucine and serine are two biochemically distinct amino acids, hydrophobic and hydrophilic, respectively. The increased rate of leucine incorporation at CUG decoding triggers C. albicans virulence attributes, such as morphogenesis, phenotypic switching, and adhesion. Here, we show that CUG mistranslation masks the fungal cell wall molecule β-glucan that is normally recognized by the host immune system, delaying its response. Furthermore, we demonstrate

  7. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species

    Directory of Open Access Journals (Sweden)

    Rodnei Dennis Rossoni

    2013-12-01

    Full Text Available The ability to produce enzymes, such as hemolysins, is an important virulence factor for the genus Candida.The objective of this study was to compare the hemolytic activity between C. albicansand non-albicans Candida species. Fifty strains of Candida species, isolated from the oral cavity of patients infected with HIV were studied. The isolates included the following species: C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, C. dubliniensis, C. norvegensis, C. lusitaniae, and C. guilliermondii. Hemolysin production was evaluated on Sabouraud dextrose agar containing chloramphenicol, blood, and glucose. A loop-full of pure Candidaculture was spot-inoculated onto plates and incubated at 37ºC for 24 h in a 5% CO2 atmosphere. Hemolytic activity was defined as the formation of a translucent halo around the colonies. All C. albicansstrains that were studied produced hemolysins. Among the non-albicans Candidaspecies, 86% exhibited hemolytic activity. Only C. guilliermondiiand some C. parapsilosis isolates were negative for this enzyme. In conclusion, most non-albicans Candidaspecies had a similar ability to produce hemolysins when compared to C. albicans.

  8. Development of DNA probes for Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  9. Development of DNA probes for Candida albicans

    International Nuclear Information System (INIS)

    Cheung, L.L.; Hudson, J.B.

    1988-01-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both 32 P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis

  10. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates.

    Science.gov (United States)

    Chin, V K; Foong, K J; Maha, A; Rusliza, B; Norhafizah, M; Ng, K P; Chong, P P

    2013-12-01

    This study was aimed at determining the phospholipase and haemolysin activity of Candida isolates in Malaysia. A total of 37 Candida clinical isolates representing seven species, Candida albicans (12), Candida tropicalis (8), Candida glabrata (4), Candida parapsilosis (1), Candida krusei (4), Candida orthopsilosis (1) and Candida rugosa (7) were tested. In vitro phospholipase activity was determined by using egg yolk plate assay whereas in vitro haemolysin activity was tested by using blood plate assay on sheep blood Sabouraud's dextrose agar (SDA) enriched with glucose. Phospholipase activity was detected in 75% (9 out of 12) of the C. albicans isolates. Among the 25 non- C. albicans Candida isolates, phospholipase activity was detected in only 24% of these isolates. The phospholipase activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.002). Haemolysin activity was detected in 100% of the C. albicans, C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, and C. orthopsilosis isolates while 75% of the C. krusei isolates and 12.3% of the C. rugosa isolates showed haemolysin activity. The haemolytic activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.0001).The findings in this study indicate that C. albicans isolates in Malaysia may possess greater virulence potential than the non-albicans species.

  11. Tissue Microarray: A rapidly evolving diagnostic and research tool

    Science.gov (United States)

    Jawhar, Nazar M.T.

    2009-01-01

    Tissue microarray is a recent innovation in the field of pathology. A microarray contains many small representative tissue samples from hundreds of different cases assembled on a single histologic slide, and therefore allows high throughput analysis of multiple specimens at the same time. Tissue microarrays are paraffin blocks produced by extracting cylindrical tissue cores from different paraffin donor blocks and re-embedding these into a single recipient (microarray) block at defined array coordinates. Using this technique, up to 1000 or more tissue samples can be arrayed into a single paraffin block. It can permit simultaneous analysis of molecular targets at the DNA, mRNA, and protein levels under identical, standardized conditions on a single glass slide, and also provide maximal preservation and use of limited and irreplaceable archival tissue samples. This versatile technique, in which data analysis is automated facilitates retrospective and prospective human tissue studies. It is a practical and effective tool for high-throughput molecular analysis of tissues that is helping to identify new diagnostic and prognostic markers and targets in human cancers, and has a range of potential applications in basic research, prognostic oncology and drug discovery. This article summarizes the technical aspects of tissue microarray construction and sectioning, advantages, application, and limitations. PMID:19318744

  12. Triclosan antagonizes fluconazole activity against Candida albicans.

    LENUS (Irish Health Repository)

    Higgins, J

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg\\/L. However, at subinhibitory concentrations (0.5-2 mg\\/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes.

  13. Triclosan Antagonizes Fluconazole Activity against Candida albicans

    Science.gov (United States)

    Higgins, J.; Pinjon, E.; Oltean, H.N.; White, T.C.; Kelly, S.L.; Martel, C.M.; Sullivan, D.J.; Coleman, D.C.; Moran, G.P.

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg/L. However, at subinhibitory concentrations (0.5-2 mg/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes. PMID:21972257

  14. Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic?

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-01-01

    Candida albicans and Candida dubliniensis are highly related pathogenic yeast species. However, C. albicans is far more prevalent in human infection and has been shown to be more pathogenic in a wide range of infection models. Comparison of the genomes of the two species has revealed that they are very similar although there are some significant differences, largely due to the expansion of virulence-related gene families (e.g., ALS and SAP) in C. albicans, and increased levels of pseudogenisation in C. dubliniensis. Comparative global gene expression analyses have also been used to investigate differences in the ability of the two species to tolerate environmental stress and to produce hyphae, two traits that are likely to play a role in the lower virulence of C. dubliniensis. Taken together, these data suggest that C. dubliniensis is in the process of undergoing reductive evolution and may have become adapted for growth in a specialized anatomic niche.

  15. Seeded Bayesian Networks: Constructing genetic networks from microarray data

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2008-07-01

    Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

  16. Candida albicans Adherence to Glass Ionomer Restorative Dental Material

    OpenAIRE

    Lawaf, Shirin; Azizi, Arash

    2009-01-01

    Background and aims. It is believed that adherence of Candida albicans to oral surfaces is a critical event in the colonization and development of oral diseases such as candida-associated denture stomatitis. Although there is considerable information about the adherence of Candida albicans to buccal epithelial cells and prosthetic materials, there is very little information available about the adherence of Candida albicans to glass ionomer materials. The purpose of this study was to investiga...

  17. Enhancement of Candida albicans killing activity of separated human epidermal cells by ultraviolet radiation

    International Nuclear Information System (INIS)

    Csato, M.; Kenderessy, A.S.; Dobozy, A.

    1987-01-01

    Ultraviolet irradiation enhanced the Candida albicans killing activity of freshly separated human epidermal cells in vitro. The simulation was dose-dependent and was not due to soluble extracellular factors acting on non-irradiated epidermal cells. The enhancement of the killing activity remained unchanged when epidermal cells were depleted of Langerhans cells. Protein synthesis inhibitors and prostaglandin antagonists inhibited the ultraviolet-induced augmentation of killing activity. (author)

  18. Enzyme microarrays assembled by acoustic dispensing technology.

    Science.gov (United States)

    Wong, E Y; Diamond, S L

    2008-10-01

    Miniaturizing bioassays to the nanoliter scale for high-throughput screening reduces the consumption of reagents that are expensive or difficult to handle. Through the use of acoustic dispensing technology, nanodroplets containing 10 microM ATP (3 microCi/microL (32)P) and reaction buffer in 10% glycerol were positionally dispensed to the surface of glass slides to form 40-nL compartments (100 droplets/slide) for Pim1 (proviral integration site 1) kinase reactions. The reactions were activated by dispensing 4 nL of various levels of a pyridocarbazolo-cyclopentadienyl ruthenium complex Pim1 inhibitor, followed by dispensing 4 nL of a Pim1 kinase and peptide substrate solution to achieve final concentrations of 150 nM enzyme and 10 microM substrate. The microarray was incubated at 30 degrees C (97% R(h)) for 1.5 h. The spots were then blotted to phosphocellulose membranes to capture phosphorylated substrate. With phosphor imaging to quantify the washed membranes, the assay showed that, for doses of inhibitor from 0.75 to 3 microM, Pim1 was increasingly inhibited. Signal-to-background ratios were as high as 165, and average coefficients of variation for the assay were approximately 20%. Coefficients of variation for dispensing typical working buffers were under 5%. Thus, microarrays assembled by acoustic dispensing are promising as cost-effective tools that can be used in protein assay development.

  19. Germ tube growth of Candida albicans.

    Science.gov (United States)

    Gow, N A

    1997-12-01

    The clinical pathogen Candida albicans is a budding yeast that is capable of forming a range of polarized and expanded cell shapes from pseudohyphae to true nonconstricted hyphae. Filamentous forms consist of contiguous uninucleated compartments that are partitioned by septa. It has long been held that the so-called "dimorphic transition" from a budding to a filamentous form may aid the fungus to penetrate epithelia and may therefore be a virulence factor. This review summarized new information regarding the physiology and ecology of hyphal growth in C. albicans. New evidence has demonstrated that hyphae of C. albicans have a sense of touch so that they grow along grooves and through pores (thigmotropism). This may aid infiltration of epithelial surfaces during tissue invasion. Hyphae are also aerotropic and can form helices when contacting solid surfaces. Growing evidence supports the view that hyphal growth is a response to nutrient deprivation, especially low nitrogen and that filamentous growth enables the fungus to forage for nutrients more effectively. Further insights into the growth of C. albicans have come from the analysis of genes and mutations of Saccharomyces which have begun to reveal the molecular mechanisms underlying the mechanisms of bud site selection, cell polarity and signal transduction pathways that lead to pseudohyphal development in this and other organisms. For example, it is now clear that a MAP-kinase cascade, homologous to the mating pathway in Saccharomyces, regulates filamentous growth in both fungi. However, this must be only one of several overlapping or separate signal transduction pathways for hyphal development because filamentous growth still occurs in mutants of Candida and Saccharomyces which are blocked in this pathway. Cell cycle analyses have shown that hyphal phase cell cycle of Candida is distinct from that in budding and pseudohyphal formation and so pseudohyphal growth of Saccharomyces is not a true model of germ tube

  20. Direct calibration of PICKY-designed microarrays

    Directory of Open Access Journals (Sweden)

    Ronald Pamela C

    2009-10-01

    Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

  1. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    Science.gov (United States)

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  2. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  3. Candida albicans scavenges host zinc via Pra1 during endothelial invasion.

    Directory of Open Access Journals (Sweden)

    Francesco Citiulo

    Full Text Available The ability of pathogenic microorganisms to assimilate essential nutrients from their hosts is critical for pathogenesis. Here we report endothelial zinc sequestration by the major human fungal pathogen, Candida albicans. We hypothesised that, analogous to siderophore-mediated iron acquisition, C. albicans utilises an extracellular zinc scavenger for acquiring this essential metal. We postulated that such a "zincophore" system would consist of a secreted factor with zinc-binding properties, which can specifically reassociate with the fungal cell surface. In silico analysis of the C. albicans secretome for proteins with zinc binding motifs identified the pH-regulated antigen 1 (Pra1. Three-dimensional modelling of Pra1 indicated the presence of at least two zinc coordination sites. Indeed, recombinantly expressed Pra1 exhibited zinc binding properties in vitro. Deletion of PRA1 in C. albicans prevented fungal sequestration and utilisation of host zinc, and specifically blocked host cell damage in the absence of exogenous zinc. Phylogenetic analysis revealed that PRA1 arose in an ancient fungal lineage and developed synteny with ZRT1 (encoding a zinc transporter before divergence of the Ascomycota and Basidiomycota. Structural modelling indicated physical interaction between Pra1 and Zrt1 and we confirmed this experimentally by demonstrating that Zrt1 was essential for binding of soluble Pra1 to the cell surface of C. albicans. Therefore, we have identified a novel metal acquisition system consisting of a secreted zinc scavenger ("zincophore", which reassociates with the fungal cell. Furthermore, functional similarities with phylogenetically unrelated prokaryotic systems indicate that syntenic zinc acquisition loci have been independently selected during evolution.

  4. Interactions Between Candida albicans and Host Interações entre Candida albicans e Hospedeiro

    Directory of Open Access Journals (Sweden)

    Tatiane De Rossi

    2011-06-01

    Full Text Available Candida albicans can cause grave infections in patients who are immunocompromised by diseases, by surgery, or by immunesupresive therapy. The high levels of morbidity and mortality resulting from those infections in hospitalized patients show that C. albicans became a prominent human pathogen. Although the host immune system is the major factor balancing the transition from commensalisms to pathogenicity, several virulence attributes expressed by C. albicans, such as adhesion factors, phenotypic switching, dimorphic behavior, and secretion of hydrolytic enzymes, might contribute to the persistence of colonization as well as the development of symptomatic episodes. Host defense against candidiasis relies mainly on the ingestion and elimination of C. albicans by phagocytic cells, which present receptors Toll-like 4, dectin–1 associated to receptors Toll-like2 and mannose receptors. The cytokine IL-10 (IL-10 produced by phagocytes has a crucial role on susceptibility of host fungal infection, whereas IL-10 produced by regulatory T cells is mainly responsible by commensalisms. In contrast, productions of tumour necrosis factor - α (TNF-α, interleukin–1 β (lL-1 β, (IL-6 and (Il-12 provided protective cell–mediated immunity. The interferon-γ produced by natural killer and TH1 cells stimulates migration of phagocytes and major efficacy on destruction of fungi. In epithelial cells from mucosas the NOD-like receptors and defensins-β cytoplasmatic prevent the translocation of C. albicans from microbiota to tissues, which are modulated by IL-1 β, Il-17 and Il-22 cytokines. to pathogenicity, several virulence attributes expressed by C. albicans, such as adhesion factors, phenotypic switching, dimorphic behavior, and secretion of hydrolytic enzymes, might contribute to the persistence of colonization as well as the development of symptomatic episodes. Host defense against candidiasis relies mainly on the ingestion and elimination of C. albicans

  5. Candida albicans response to spaceflight (NASA STS-115)

    Data.gov (United States)

    National Aeronautics and Space Administration — This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen Candida albicans...

  6. Comparison of the clinical risk factors between Candida albicans and Candida non-albicans species for bloodstream infection.

    Science.gov (United States)

    Shigemura, Katsumi; Osawa, Kayo; Jikimoto, Takumi; Yoshida, Hiroyuki; Hayama, Brian; Ohji, Goh; Iwata, Kentaro; Fujisawa, Masato; Arakawa, Soichi

    2014-04-01

    The purpose of this study is to investigate the risk factors and susceptibilities to antifungal agents of Candida albicans and Candida non-albicans species (spp.) in candidemia cases in Kobe University Hospital. We investigated all consecutive patients with candida bloodstream infection (BSI) from 2008-2013 for whose full data were available for analyses, examining clinical factors such as gender, general complications, postoperative status or susceptibilities to antifungal agents. These factors were also compared between Candida albicans spp. and Candida non-albicans by univariate and multivariate analyses. Univariate analyses showed a significantly higher rate of Candida non-albicans species BSI patients cancer (odds ratio (OR) (95% confidence interval (CI))=2.29 (1.04-5.06) and P=0.040), chemotherapy (OR=4.35 (1.11-17.1) and P=0.035), fluconazole (FLCZ) resistance (OR=77.3 (4.51-1324) and P=0.003), and itraconazole (ITCZ) resistance (OR=15.6 (5.39-45.1) and PCandida albicans. Multivariate analyses demonstrated that Candida non-albicans spp. had significantly higher rate of chemotherapy (OR=4.44 (1.04-19.0) and P=0.045), FLCZ resistance (OR=5.87 (2.01-17.1) and P=0.001), and ITCZ resistance (OR=18.7(5.77-60.4) and PCandida albicans. In conclusion, this study revealed several risk factors for BSI with Candida albicans (underlying cardiovascular diseases and postoperative status) and Candida non-albicans spp. (cancer and chemotherapy), and demonstrated that Candida non-albicans spp. were more resistant to FLCZ and ITCZ than Candida albicans.

  7. Serum Antibody Profile during Colonization of the Mouse Gut by Candida albicans: Relevance for Protection during Systemic Infection.

    Science.gov (United States)

    Huertas, Blanca; Prieto, Daniel; Pitarch, Aida; Gil, Concha; Pla, Jesús; Díez-Orejas, Rosalía

    2017-01-06

    Candida albicans is a commensal microorganism in the oral cavity and gastrointestinal and urogenital tracts of most individuals that acts as an opportunistic pathogen when the host immune response is reduced. Here, we established different immunocompetent murine models to analyze the antibody responses to the C. albicans proteome during commensalism, commensalism followed by infection, and infection (C, C+I, and I models, respectively). Serum anti-C. albicans IgG antibody levels were higher in colonized mice than in infected mice. The antibody responses during gut commensalism (up to 55 days of colonization) mainly focused on C. albicans proteins involved in stress response and metabolism and differed in both models of commensalism. Different serum IgG antibody-reactivity profiles were also found over time among the three murine models. C. albicans gut colonization protected mice from an intravenous lethal fungal challenge, emphasizing the benefits of fungal gut colonization. This work highlights the importance of fungal gut colonization for future immune prophylactic therapies.

  8. Tissue microarray profiling in human heart failure.

    Science.gov (United States)

    Lal, Sean; Nguyen, Lisa; Tezone, Rhenan; Ponten, Fredrik; Odeberg, Jacob; Li, Amy; Dos Remedios, Cristobal

    2016-09-01

    Tissue MicroArrays (TMAs) are a versatile tool for high-throughput protein screening, allowing qualitative analysis of a large number of samples on a single slide. We have developed a customizable TMA system that uniquely utilizes cryopreserved human cardiac samples from both heart failure and donor patients to produce formalin-fixed paraffin-embedded sections. Confirmatory upstream or downstream molecular studies can then be performed on the same (biobanked) cryopreserved tissue. In a pilot study, we applied our TMAs to screen for the expression of four-and-a-half LIM-domain 2 (FHL2), a member of the four-and-a-half LIM family. This protein has been implicated in the pathogenesis of heart failure in a variety of animal models. While FHL2 is abundant in the heart, not much is known about its expression in human heart failure. For this purpose, we generated an affinity-purified rabbit polyclonal anti-human FHL2 antibody. Our TMAs allowed high-throughput profiling of FHL2 protein using qualitative and semiquantitative immunohistochemistry that proved complementary to Western blot analysis. We demonstrated a significant relative reduction in FHL2 protein expression across different forms of human heart failure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research

    DEFF Research Database (Denmark)

    Pedersen, Henriette Lodberg; Fangel, Jonatan Ulrik; McCleary, Barry

    2012-01-01

    Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established......, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides...... for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes....

  10. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  11. Ribosomal RNA processing in Candida albicans.

    Science.gov (United States)

    Pendrak, Michael L; Roberts, David D

    2011-12-01

    Ribosome assembly begins with conversion of a polycistronic precursor into 18S, 5.8S, and 25S rRNAs. In the ascomycete fungus Candida albicans, rRNA transcription starts 604 nt upstream of the 18S rRNA junction (site A1). One major internal processing site in the 5' external transcribed spacer (A0) occurs 108 nt from site A1. The A0-A1 fragment persists as a stable species during log phase growth and can be used to assess proliferation rates. Separation of the small and large subunit pre-rRNAs occurs at sites A2 and A3 in internal transcribed spacer-1 Saccharomyces cerevisiae pre-rRNA. However, the 5' end of the 5.8S rRNA is represented by only a 5.8S (S) form, and a 7S rRNA precursor of the 5.8S rRNA extends into internal transcribed spacer 1 to site A2, which differs from S. cerevisiae. External transcribed spacer 1 and internal transcribed spacers 1 and 2 show remarkable structural similarity with S. cerevisiae despite low sequence identity. Maturation of C. albicans rRNA resembles other eukaryotes in that processing can occur cotranscriptionally or post-transcriptionally. During rapid proliferation, U3 snoRNA-dependent processing occurs before large and small subunit rRNA separation, consistent with cotranscriptional processing. As cells pass the diauxic transition, the 18S pre-rRNA accumulates into stationary phase as a 23S species, possessing an intact 5' external transcribed spacer extending to site A3. Nutrient addition to starved cells results in the disappearance of the 23S rRNA, indicating a potential role in normal physiology. Therefore, C. albicans reveals new mechanisms that regulate post- versus cotranscriptional rRNA processing.

  12. Candida albicans osteomyelitis of the cervical spine

    International Nuclear Information System (INIS)

    Cha, Jang-Gyu; Hong, Hyun-Sook; Koh, Yoon-Woo; Kim, Hee-Kyung; Park, Jung-Mi

    2008-01-01

    Fungal osteomyelitis is a rare infection that usually develops in immunocompromised patients. Additionally, involvement of the cervical spine by Candida albicans is extremely rare; only three previous cases of Candida vertebral osteomyelitis have been reported in the literature. The diagnosis may be delayed due to nonspecific radiologic findings and a slow progression. We report the CT, MRI, bone scan, and PET-CT findings in a patient who developed Candida osteomyelitis, which was initially misdiagnosed as metastasis, at the atlas and axis following treatment for nasopharyngeal cancer. (orig.)

  13. A genome-wide 20 K citrus microarray for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Gadea Jose

    2008-07-01

    Full Text Available Abstract Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database 1 was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global

  14. Sensitivity pattern of clinical isolates of Candida albicans from hiv ...

    African Journals Online (AJOL)

    This study was carried out to investigate the sensitivity pattern of clinical isolates of C. albicans from HIV/AIDS patients to combined P. grisea extract and tioconazole. Twenty isolates of C. albicans were obtained from high vaginal swab (HVS) from HIV/AIDS patients in Bishop Shanahan Hospital, Nsukka after their ...

  15. Antifungal drug susceptibility of Candida albicans | Bii | East African ...

    African Journals Online (AJOL)

    Objective: To determine the susceptibility of clinical isolates of Candida albicans and to establish the minimum inhibitory concentrations (MIC) to commonly used antifungal drugs. Design: Laboratory based experiment. Setting: Mbagathi District Hospital, Nairobi, Kenya. Subjects: Candida albicans isolated between 1998 ...

  16. Candida albicans adherence to glass ionomer restorative dental material

    Directory of Open Access Journals (Sweden)

    Shirin Lawaf

    2009-06-01

    Full Text Available Background and aims. It is believed that adherence of Candida albicans to oral surfaces is a critical event in the colonization and development of oral diseases such as candida-associated denture stomatitis. Although there is considerable information about the adherence of Candida albicans to buccal epithelial cells and prosthetic materials, there is very little information available about the adherence of Candida albicans to glass ionomer materials. The purpose of this study was to investigate the degree of Candida albicans adherence to glass ionomer restorative material. Materials and methods. In this experimental study adherence of Candida albicans strains was studied with and without human whole saliva. First, glass ionomer fragments were prepared; then yeast cells were inoculated and incubated with different incubation times. After incubation, the fragments were removed from the wells and stained with 0.1% calcofluor white. Adhesion was quantified by counting the total number of cells at 40, 80 and 120 minutes. The analysis of variance and Student's test were used to assess the significance of differences between the means. Results. In the absence of saliva, the adherence of Candida albicans showed an increase, reaching a maximum at the end of the experiment (120 minutes. However, in the presence of saliva, the adherence of Candida albicans to glass ionomer significantly decreased. Conclusion. The presence of human whole saliva is an important factor in the adherence of Candida albicans to glass ionomer restorative material.

  17. Candida albicans Adherence to Glass Ionomer Restorative Dental Material.

    Science.gov (United States)

    Lawaf, Shirin; Azizi, Arash

    2009-01-01

    It is believed that adherence of Candida albicans to oral surfaces is a critical event in the coloni-zation and development of oral diseases such as candida-associated denture stomatitis. Although there is considerable infor-mation about the adherence of Candida albicans to buccal epithelial cells and prosthetic materials, there is very little infor-mation available about the adherence of Candida albicans to glass ionomer materials. The purpose of this study was to investigate the degree of Candida albicans adherence to glass ionomer restorative material. In this experimental study adherence of Candida albicans strains was studied with and without human whole saliva. First, glass ionomer fragments were prepared; then yeast cells were inoculated and incubated with differ-ent incubation times. After incubation, the fragments were removed from the wells and stained with 0.1% calcofluor white. Adhesion was quantified by counting the total number of cells at 40, 80 and 120 minutes. The analysis of variance and Stu-dent's test were used to assess the significance of differences between the means. In the absence of saliva, the adherence of Candida albicans showed an increase, reaching a maximum at the end of the experiment (120 minutes). However, in the presence of saliva, the adherence of Candida albicans to glass ionomer significantly decreased. The presence of human whole saliva is an important factor in the adherence of Candida albicans to glass ion-omer restorative material.

  18. Evaluation of Candida Albicans Biofilm Formation on Various Parts ...

    African Journals Online (AJOL)

    Evaluation of Candida Albicans Biofilm Formation on Various Parts of Implant Material Surfaces. ... In general, yeast cells have remarkable potential to adhere to host surfaces, such as teeth or mucosa, and to artificial, non-biological surfaces, such as dental materials. C. albicans adhesion to denture materials is widely ...

  19. Evaluation of Candida albicans biofilm formation on various dental ...

    African Journals Online (AJOL)

    This study compared the susceptibility of six dental restorative materials to Candida albicans adhesion. Materials and methods: Cylindrical samples of each material were made according to the manufacturers' instructions. The antifungal effect of the samples on C. albicans was determined with the disc-diffusion method.

  20. Emerging azole resistance among Candida albicans from clinical ...

    African Journals Online (AJOL)

    Candida albicans is one of the most frequently isolated yeasts in clinical laboratories and accounts for up to 80 % of the yeasts recovered from sites of infection. The study was set out to determine antifungal susceptibility of clinical isolates of Candida albicans and to establish the Minimum Inhibitory Concentrations (MIC) to ...

  1. Comparison of the adhesion ability of Candida albicans strains to ...

    African Journals Online (AJOL)

    The purpose of the present study is to investigate the ability of oral Candida albicans strains to adhere to Caco-2 and Hep-2 epithelial cells, to produce slime using Congo red and Safranin methods and to form a biofilm on polymethylmethacrylate. A total of 20 C. albicans strains were tested in the present work. The biofilm ...

  2. Acid production by oral strains of Candida albicans and Lactobacilli

    NARCIS (Netherlands)

    Klinke, T.; Kneist, S.; de Soet, J.J.; Kuhlisch, E.; Mauersberger, S.; Forster, A.; Klimm, W.

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed,

  3. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans

    Science.gov (United States)

    Douglas, Lois M.; Konopka, James. B.

    2017-01-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878

  4. Infection-associated genes of Candida albicans.

    Science.gov (United States)

    Hube, Bernhard

    2006-08-01

    Advances in the medical treatment of life-threatening disorders have increased the population of patients that are more susceptible to opportunistic microbial infections, such as those caused by the Candida species, in particular Candida albicans. This fungus normally belongs to the microbial flora but may cause a range of diseases from superficial to disseminated. What exactly causes the transition from commensalism to pathogenesis is not clear and how this fungus switches from a commensal mode of growth to a parasitic lifestyle remains unknown. Identifying the genes and factors essential for the different stages of C. albicans infections will not only help understanding of the infection process but also provide information about those fungal factors that have to be inhibited, and those parts of the immune system that have to be stimulated, in order to control or prevent infections. Furthermore, knowledge of those genes whose expression is associated with infection but not commensalism may provide valuable information to improve our diagnostic tools. A number of methodologies and models have already been used to identify infection-associated genes. In addition to genes encoding classical virulence determinants, such as those involved in interactions with the immune system and immune evasion, scientists have monitored the expression of genes involved in nutrient acquisition, metabolism, stress response, physical interaction and hyphal formation in infection models and have begun to elucidate the roles of these genes.

  5. Spotted cotton oligonucleotide microarrays for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Nettleton Dan

    2007-03-01

    Full Text Available Abstract Background Microarrays offer a powerful tool for diverse applications plant biology and crop improvement. Recently, two comprehensive assemblies of cotton ESTs were constructed based on three Gossypium species. Using these assemblies as templates, we describe the design and creation and of a publicly available oligonucleotide array for cotton, useful for all four of the cultivated species. Results Synthetic oligonucleotide probes were generated from exemplar sequences of a global assembly of 211,397 cotton ESTs derived from >50 different cDNA libraries representing many different tissue types and tissue treatments. A total of 22,787 oligonucleotide probes are included on the arrays, optimized to target the diversity of the transcriptome and previously studied cotton genes, transcription factors, and genes with homology to Arabidopsis. A small portion of the oligonucleotides target unidentified protein coding sequences, thereby providing an element of gene discovery. Because many oligonucleotides were based on ESTs from fiber-specific cDNA libraries, the microarray has direct application for analysis of the fiber transcriptome. To illustrate the utility of the microarray, we hybridized labeled bud and leaf cDNAs from G. hirsutum and demonstrate technical consistency of results. Conclusion The cotton oligonucleotide microarray provides a reproducible platform for transcription profiling in cotton, and is made publicly available through http://cottonevolution.info.

  6. Microarrays: Molecular allergology and nanotechnology for personalised medicine (II).

    Science.gov (United States)

    Lucas, J M

    2010-01-01

    Progress in nanotechnology and DNA recombination techniques have produced tools for the diagnosis and investigation of allergy at molecular level. The most advanced examples of such progress are the microarray techniques, which have been expanded not only in research in the field of proteomics but also in application to the clinical setting. Microarrays of allergic components offer results relating to hundreds of allergenic components in a single test, and using a small amount of serum which can be obtained from capillary blood. The availability of new molecules will allow the development of panels including new allergenic components and sources, which will require evaluation for clinical use. Their application opens the door to component-based diagnosis, to the holistic perception of sensitisation as represented by molecular allergy, and to patient-centred medical practice by allowing great diagnostic accuracy and the definition of individualised immunotherapy for each patient. The present article reviews the application of allergenic component microarrays to allergology for diagnosis, management in the form of specific immunotherapy, and epidemiological studies. A review is also made of the use of protein and gene microarray techniques in basic research and in allergological diseases. Lastly, an evaluation is made of the challenges we face in introducing such techniques to clinical practice, and of the future perspectives of this new technology. Copyright 2010 SEICAP. Published by Elsevier Espana. All rights reserved.

  7. Microarray expression profiling of human dental pulp from single subject.

    Science.gov (United States)

    Tete, Stefano; Mastrangelo, Filiberto; Scioletti, Anna Paola; Tranasi, Michelangelo; Raicu, Florina; Paolantonio, Michele; Stuppia, Liborio; Vinci, Raffaele; Gherlone, Enrico; Ciampoli, Cristian; Sberna, Maria Teresa; Conti, Pio

    2008-01-01

    Microarray is a recently developed simultaneous analysis of expression patterns of thousand of genes. The aim of this research was to evaluate the expression profile of human healthy dental pulp in order to find the presence of genes activated and encoding for proteins involved in the physiological process of human dental pulp. We report data obtained by analyzing expression profiles of human tooth pulp from single subjects, using an approach based on the amplification of the total RNA. Experiments were performed on a high-density array able to analyse about 21,000 oligonucleotide sequences of about 70 bases in duplicate, using an approach based on the amplification of the total RNA from the pulp of a single tooth. Obtained data were analyzed using the S.A.M. system (Significance Analysis of Microarray) and genes were merged according to their molecular functions and biological process by the Onto-Express software. The microarray analysis revealed 362 genes with specific pulp expression. Genes showing significant high expression were classified in genes involved in tooth development, protoncogenes, genes of collagen, DNAse, Metallopeptidases and Growth factors. We report a microarray analysis, carried out by extraction of total RNA from specimens of healthy human dental pulp tissue. This approach represents a powerful tool in the study of human normal and pathological pulp, allowing minimization of the genetic variability due to the pooling of samples from different individuals.

  8. Identification and characterization of Rvs162/Rvs167-3, a novel N-BAR heterodimer in the human fungal pathogen Candida albicans

    NARCIS (Netherlands)

    Gkourtsa, Areti; van den Burg, Janny; Strijbis, Karin; Avula, Teja; Bijvoets, Sietske; Timm, Dave; Hochstenbach, Frans; Distel, Ben

    Membrane reshaping resides at the core of many important cellular processes and amongst its mediators are the BAR (Bin, Amphiphysin, Rvs) domain-containing proteins. We have explored the diversity and function of the Rvs BAR proteins in Candida albicans and identified a novel family member, Rvs167-3

  9. Identification and characterization of Rvs162/Rvs167-3, a novel N-BAR heterodimer in the human fungal pathogen Candida albicans

    NARCIS (Netherlands)

    Gkourtsa, Areti; van den Burg, Janny; Strijbis, Karin; Avula, Teja; Bijvoets, Sietske; Timm, Dave; Hochstenbach, Frans; Distel, Ben

    2015-01-01

    Membrane reshaping resides at the core of many important cellular processes, and among its mediators are the BAR (Bin, Amphiphysin, Rvs) domain-containing proteins. We have explored the diversity and function of the Rvs BAR proteins in Candida albicans and identified a novel family member, Rvs167-3

  10. ISG15 in Host Defense Against Candida albicans Infection in a Mouse Model of Fungal Keratitis.

    Science.gov (United States)

    Dong, Chen; Gao, Nan; Ross, Bing X; Yu, Fu-Shin X

    2017-06-01

    ISG15, a di-ubiquitin-like protein, is critical for controlling certain viral and bacterial infections. We sought to determine if ISG15 plays a role in corneal innate immunity against Candida albicans (C. albicans) using a C57BL/6 (B6) mouse model of human fungal keratitis. Scarified corneas of adult B6 mice were pretreated with TLR5 ligand flagellin and then inoculated with C. albicans. The expression of ISG15 and other genes involved in ISG15 conjugation (ISGylation) was determined by real-time PCR. ISG15 expression and distribution in infected corneas were assessed by immunohistochemistry. ISGylation was examined by Western blotting. siRNA knockdown and recombinant ISG15 were used to elucidate the effects of ISG15 on controlling fungal keratitis by clinical scoring, fungal number plate counting, ELISA cytokine determination, and polymorphonuclear leukocytes (PMN) infiltration measurement. Heat-killed C. albicans induced expression of ISG15, and hBD2 was markedly enhanced by flagellin-pretreatment in cultured human primary corneal epithelial cells (CECs). In vivo, C. albicans infection induced the expression of ISG15, ISGylation-associated genes (UBE1L, UBCH8, and HERC5), and ISGylation in mouse CECs, all of which were enhanced by flagellin-pretreatment. siRNA knockdown of ISG15 increased keratitis severity, dampened flagellin-induced protection, and greatly suppressed the expressions of ISGylation enzymes, IFN-γ, but not CXCL2 in B6 mouse CECs. Recombinant ISG15, on the other hand, enhanced corneal innate immunity against C. albicans and suppressed infection-induced IL-1β, but not IL-Ra expression. ISG15 alone induced the expression of IL-1Ra, CXCL10, and CRAMP in mouse CECs. ISG15 was upregulated and secreted in cultured human CECs in response to challenge in a type 1 IFN-dependent manner. Our data, for the first time, demonstrate that ISG15 acts as an immunomodulator in the cornea and plays a critical role in controlling fungal keratitis.

  11. The EADGENE Microarray Data Analysis Workshop

    DEFF Research Database (Denmark)

    de Koning, Dirk-Jan; Jaffrézic, Florence; Lund, Mogens Sandø

    2007-01-01

    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from...... 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays...... from a direct comparison of two treatments (dye-balanced). While there was broader agreement with regards to methods of microarray normalisation and significance testing, there were major differences with regards to quality control. The quality control approaches varied from none, through using...

  12. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity

    Science.gov (United States)

    Zhang, Shi Qun; Zou, Zui; Shen, Hui; Shen, Shuai Shuai; Miao, Qi; Huang, Xin; Liu, Wei; Li, Li Ping; Chen, Si Min; Yan, Lan; Zhang, Jun Dong; Zhao, Jing Jun; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2016-01-01

    The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3)-glucan, a crucial pathogen-associated molecular pattern (PAMP) of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans. PMID:27144456

  13. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity.

    Directory of Open Access Journals (Sweden)

    Shi Qun Zhang

    2016-05-01

    Full Text Available The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3-glucan, a crucial pathogen-associated molecular pattern (PAMP of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans.

  14. The EADGENE Microarray Data Analysis Workshop

    OpenAIRE

    de Koning, Dirk-Jan; Jaffrézic, Florence; Lund, Mogens Sandø; Watson, Michael; Channing, Caroline; Hulsegge, Ina; Pool, Marco; Buitenhuis, Bart; Hedegaard, Jakob; Hornshøj, Henrik; Jiang, Li; Sørensen, Peter; Marot, Guillemette; Delmas, Céline; Lê Cao, Kim-Anh

    2007-01-01

    Abstract Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarra...

  15. Control of gag-pol gene expression in the Candida albicans retrotransposon Tca2

    Directory of Open Access Journals (Sweden)

    Gibson Joanne

    2007-10-01

    Full Text Available Abstract Background In the C. albicans retrotransposon Tca2, the gag and pol ORFs are separated by a UGA stop codon, 3' of which is a potential RNA pseudoknot. It is unclear how the Tca2 gag UGA codon is bypassed to allow pol expression. However, in other retroelements, translational readthrough of the gag stop codon can be directed by its flanking sequence, including a 3' pseudoknot. Results The hypothesis was tested that in Tca2, gag stop codon flanking sequences direct translational readthrough and synthesis of a gag-pol fusion protein. Sequence from the Tca2 gag-UGA-pol junction (300 nt was inserted between fused lacZ and luciferase (luc genes in a Saccharomyces cerevisiae dual reporter construct. Although downstream of UGA, luc was expressed, but its expression was unaffected by inserting additional stop codons at the 3' end of lacZ. Luc expression was instead being driven by a previously unknown minor promoter activity within the gag-pol junction region. Evidence together indicated that junction sequence alone cannot direct UGA readthrough. Using reporter genes in C. albicans, the activities of this gag-pol junction promoter and the Tca2 long terminal repeat (LTR promoter were compared. Of the two promoters, only the LTR promoter was induced by heat-shock, which also triggers retrotransposition. Tca2 pol protein, epitope-tagged in C. albicans to allow detection, was also heat-shock induced, indicating that pol proteins were expressed from a gag-UGA-pol RNA. Conclusion This is the first demonstration that the LTR promoter directs Tca2 pol protein expression, and that pol proteins are translated from a gag-pol RNA, which thus requires a mechanism for stop codon bypass. However, in contrast to most other retroelement and viral readthrough signals, immediate gag UGA-flanking sequences were insufficient to direct stop readthrough in S. cerevisiae, indicating non-canonical mechanisms direct gag UGA bypass in Tca2.

  16. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species

    Science.gov (United States)

    Whaley, Sarah G.; Berkow, Elizabeth L.; Rybak, Jeffrey M.; Nishimoto, Andrew T.; Barker, Katherine S.; Rogers, P. David

    2017-01-01

    Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species. PMID:28127295

  17. Prevalence of yeast other than Candida albicans in denture wearers.

    Science.gov (United States)

    Cavaleiro, Inês; Proença, Luis; Félix, Sérgio; Salema-Oom, Madalena

    2013-07-01

    The isolation of yeast species other than Candida albicans from the oral mucosa has been increasing in frequency, suggesting that those may constitute emerging potential oral colonizers. The purpose of this work was to determine whether yeast species other than C. albicans are associated with factors related to wearing of dental prostheses. tRNA-PCR fingerprinting and sequencing of the 26S rDNA D1/D2 domain were used to identify all yeasts isolated from CHROMagar™ Candida cultures of oral swabs collected from 178 patients. Besides C. albicans, 13 other species were identified, corresponding to 34% of the yeast isolates. The majority of the non-C. albicans species were not detected as single colonizers but rather in co-colonization with one or two other yeasts, often with C. albicans. No significant associations were found with non-C. albicans species. On the contrary, the best-fitted logistic regression model predicts that either wearing a denture (adjusted odds = 4.6) or insufficient oral hygiene (adjusted odds = 2.3) are risks for colonization by yeast, in general. The colonization with non-C. albicans species and co-colonization were not independently associated with any of the analyzed host-related factors. In particular, neither wearing a removable denture nor being elderly were significant predictors. © 2012 by the American College of Prosthodontists.

  18. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  19. "Harshlighting" small blemishes on microarrays

    Directory of Open Access Journals (Sweden)

    Wittkowski Knut M

    2005-03-01

    Full Text Available Abstract Background Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs. Results We present a method that harnesses the statistical power provided by having several HDONAs available, which are obtained under similar conditions except for the experimental factor. This method "harshlights" blemishes and renders them evident. We find empirically that about 25% of our chips are blemished, and we analyze the impact of masking them on screening for differentially expressed genes. Conclusion Experiments attempting to assess subtle expression changes should be carefully screened for blemishes on the chips. The proposed method provides investigators with a novel robust approach to improve the sensitivity of microarray analyses. By utilizing topological information to identify and mask blemishes prior to model based analyses, the method prevents artefacts from confounding the process of background correction, normalization, and summarization.

  20. DLH1 is a functional Candida albicans homologue of the meiosis-specific gene DMC1

    Energy Technology Data Exchange (ETDEWEB)

    Diener, A.C.; Fink, G.R. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-06-01

    DMC1/LIM15 homologue 1 (DLH1), a gene related to meiosis-specific genes, has been isolated from Candida albicans, a fungus thought not to undergo meiosis. The deduced protein sequence of DLH1 contains 74% amino acid identity with Dmc1p from Saccharomyces cerevisiae and 63% with Lim15p from the plant Lilium longiflorum, meiosis-specific homologous of Escherichia coli RecA. Candida DLH1 complements a dmc1/dmc1 null mutant in S. cerevisiae. High copy expression of DLH1 restores both sporulation and meiotic recombination to a Saccharomyces dmc1/{Delta}/dmc1{Delta} strain. Unlike the DMC1 gene, which is transcribed only in meiotic cells, the heterologous Candida DLH1 gene is transcribed in both vegetative and meiotic cells of S. cerevisiae. Transcription of DLH1 is not detected or induced in C. albicans under conditions that induce DMC1 and meiosis in S. cerevisiae. The presence of an intact homologue of a meiosis-specific gene in C. albicans raises the possibility that this organism has a cryptic meiotic pathway. 25 refs., 6 figs., 3 tabs.

  1. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans.

    Science.gov (United States)

    Brand, Alexandra; Vacharaksa, Anjalee; Bendel, Catherine; Norton, Jennifer; Haynes, Paula; Henry-Stanley, Michelle; Wells, Carol; Ross, Karen; Gow, Neil A R; Gale, Cheryl A

    2008-04-01

    Directional growth is a function of polarized cells such as neurites, pollen tubes, and fungal hyphae. Correct orientation of the extending cell tip depends on signaling pathways and effectors that mediate asymmetric responses to specific environmental cues. In the hyphal form of the eukaryotic fungal pathogen Candida albicans, these responses include thigmotropism and galvanotropism (hyphal turning in response to changes in substrate topography and imposed electrical fields, respectively) and penetration into semisolid substrates. During vegetative growth in C. albicans, as in the model yeast Saccharomyces cerevisiae, the Ras-like GTPase Rsr1 mediates internal cellular cues to position new buds in a prespecified pattern on the mother cell cortex. Here, we demonstrate that Rsr1 is also important for hyphal tip orientation in response to the external environmental cues that induce thigmotropic and galvanotropic growth. In addition, Rsr1 is involved in hyphal interactions with epithelial cells in vitro and its deletion diminishes the hyphal invasion of kidney tissue during systemic infection. Thus, Rsr1, an internal polarity landmark in yeast, is also involved in polarized growth responses to asymmetric environmental signals, a paradigm that is different from that described for the homologous protein in S. cerevisiae. Rsr1 may thereby contribute to the pathogenesis of C. albicans infections by influencing hyphal tip responses triggered by interaction with host tissues.

  2. Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae

    Science.gov (United States)

    Thomson, Darren D; Wehmeier, Silvia; Byfield, FitzRoy J; Janmey, Paul A; Caballero-Lima, David; Crossley, Alison; Brand, Alexandra C

    2015-01-01

    Filamentous hyphae of the human pathogen, Candida albicans, invade mucosal layers and medical silicones. In vitro, hyphal tips reorient thigmotropically on contact with small obstacles. It is not known how surface topography is sensed but hyphae lacking the cortical marker, Rsr1/Bud1, are unresponsive. We show that, on surfaces, the morphology of hyphal tips and the position of internal polarity protein complexes are asymmetrically skewed towards the substratum and biased towards the softer of two surfaces. In nano-fabricated chambers, the Spitzenkörper (Spk) responded to touch by translocating across the apex towards the point of contact, where its stable maintenance correlated with contour-following growth. In the rsr1Δ mutant, the position of the Spk meandered and these responses were attenuated. Perpendicular collision caused lateral Spk oscillation within the tip until after establishment of a new growth axis, suggesting Spk position does not predict the direction of growth in C. albicans. Acute tip reorientation occurred only in cells where forward growth was countered by hyphal friction sufficient to generate a tip force of ∼ 8.7 μN (1.2 MPa), more than that required to penetrate host cell membranes. These findings suggest mechanisms through which the organization of hyphal tip growth in C. albicans facilitates the probing, penetration and invasion of host tissue. PMID:25262778

  3. CO(2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Rebecca A Hall

    2010-11-01

    Full Text Available When colonising host-niches or non-animated medical devices, individual cells of the fungal pathogen Candida albicans expand into significant biomasses. Here we show that within such biomasses, fungal metabolically generated CO(2 acts as a communication molecule promoting the switch from yeast to filamentous growth essential for C. albicans pathology. We find that CO(2-mediated intra-colony signalling involves the adenylyl cyclase protein (Cyr1p, a multi-sensor recently found to coordinate fungal responses to serum and bacterial peptidoglycan. We further identify Lys 1373 as essential for CO(2/bicarbonate regulation of Cyr1p. Disruption of the CO(2/bicarbonate receptor-site interferes selectively with C. albicans filamentation within fungal biomasses. Comparisons between the Drosophila melanogaster infection model and the mouse model of disseminated candidiasis, suggest that metabolic CO(2 sensing may be important for initial colonisation and epithelial invasion. Our results reveal the existence of a gaseous Candida signalling pathway and its molecular mechanism and provide insights into an evolutionary conserved CO(2-signalling system.

  4. PRODUCTION OF A HUMAN RECOMBINANT ANTIBODY AGAINST SEROTYPE A CANDIDA ALBICANS

    Directory of Open Access Journals (Sweden)

    A A. Jafari

    2005-07-01

    Full Text Available After using 3 different generations of antibodies including human and non-human hyperimmune sera, monoclonal antibodies and chimeric antibodies, more recently a newer approach has been developed in which the antibody genes are cloned directly from a patient peripheral B-lymphocytes and expressed in a host like E. coli. In this study the Candida albicans serotype A (NCTC 3153 mannan was purified using a modified Fehling method and used for selection of human recombinant antibody from a C. albicans phage antibody library. After four rounds of affinity selecting (panning, 2 predominant clones were chosen by DNA fingerprinting and ELISA. A 248 amino acid DNA fragment coding for anti-C. albicans mannan scFv was sequenced and cloned in a pBAD-TOPO cloning vector to produce a soluble and phage free antibody. The analysis of antibody sequences by V base Index (DNAPLOT confirmed the human antibody origin with the VH4 family in V segment of heavy variable chain and VL3 (Lambda 3 in J segment of the light variable chain. This antibody fragment was purified using immobilized metal affinity chromatography and inmmunoblotted as a 31kDa recombinant protein.

  5. Genetic Variability of Candida albicans Sap8 Propeptide in Isolates from Different Types of Infection

    Directory of Open Access Journals (Sweden)

    Joana Carvalho-Pereira

    2015-01-01

    Full Text Available The secreted aspartic proteases (Saps are among the most studied virulence determinants in Candida albicans. These proteins are translated as pre-pro-enzymes consisting of a signal sequence followed by a propeptide and the mature enzyme. The propeptides of secreted proteinases are important for the correct processing, folding/secretion of the mature enzyme. In this study, the DNA sequences of C. albicans Saps were screened and a microsatellite was identified in SAP8 propeptide region. The genetic variability of the repetitive region of Sap8 propeptide was determined in 108 C. albicans independent strains isolated from different types of infection: oral infection (OI, oral commensal (OC, vulvovaginal candidiasis (VVC, and bloodstream infections (BSI. Nine different propeptides for Sap8 processing were identified whose frequencies varied with the type of infection. OC strains presented the highest gene diversity while OI isolated the lowest. The contribution of the Saps to mucosal and systemic infections has been demonstrated and recently Sap8 has been implicated in the cleavage of a signalling glycoprotein that leads to Cek1-MAPK pathway activation. This work is the first to identify a variable microsatellite in the propeptide of a secreted aspartic protease and brings new insights into the variability of Sap8.

  6. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR

    Directory of Open Access Journals (Sweden)

    Deforce Dieter

    2006-08-01

    Full Text Available Abstract Background Candida albicans biofilms are commonly found on indwelling medical devices. However, the molecular basis of biofilm formation and development is not completely understood. Expression analysis of genes potentially involved in these processes, such as the ALS (Agglutinine Like Sequence gene family can be performed using quantitative PCR (qPCR. In the present study, we investigated the expression stability of eight housekeeping genes potentially useful as reference genes to study gene expression in Candida albicans (C. albicans biofilms, using the geNorm Visual Basic Application (VBA for Microsoft Excel. To validate our normalization strategies we determined differences in ALS1 and ALS3 expression levels between C. albicans biofilm cells and their planktonic counterparts. Results The eight genes tested in this study are ranked according to their expression stability (from most stable to least stable as follows: ACT1 (β-actin/PMA1 (adenosine triphosphatase, RIP (ubiquinol cytochrome-c reductase complex component, RPP2B (cytosolic ribosomal acidic protein P2B, LSC2 (succinyl-CoA synthetase β-subunit fragment, IMH3 (inosine-5'-monophosphate dehydrogenase fragment, CPA1 (carbamoyl-phosphate synthethase small subunit and GAPDH (glyceraldehyde-3-phosphate dehydrogenase. Our data indicate that five genes are necessary for accurate and reliable normalization of gene expression data in C. albicans biofilms. Using different normalization strategies, we found a significant upregulation of the ALS1 gene and downregulation of the ALS3 gene in C. albicans biofilms grown on silicone disks in a continous flow system, the CDC reactor (Centre for Disease Control, for 24 hours. Conclusion In conclusion, we recommend the use of the geometric mean of the relative expression values from the five housekeeping genes (ACT1, PMA1, RIP, RPP2B and LSC2 for normalization, when analysing differences in gene expression levels between C. albicans biofilm

  7. Candida albicans Hyphae: From Growth Initiation to Invasion

    Directory of Open Access Journals (Sweden)

    Jigar V. Desai

    2018-01-01

    Full Text Available Candida albicans is a commensal resident of the human gastrointestinal and genital tracts. Under conditions such as dysbiosis, host immune perturbances, or the presence of catheters/implanted medical devices, the fungus may cause debilitating mucosal or fatal systemic infections. The ability of C. albicans to grow as long filamentous hyphae is critical for its pathogenic potential as it allows the fungus to invade the underlying substratum. In this brief review, I will outline the current understanding regarding the mechanistic regulation of hyphal growth and invasion in C. albicans.

  8. A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix

    International Nuclear Information System (INIS)

    Klotz, S.A.; Smith, R.L.

    1991-01-01

    Binding of fibronectin, an extracellular matrix (ECM) protein, to Candida albicans was measured, and adherence of the fungus to immobilized ECM proteins, fibronectin, laminin, types I and IV collagen, and subendothelial ECM was studied. 125I-labeled fibronectin was inhibited from binding to the fungus by unlabeled human plasma fibronectin and by Arg-Gly-Asp (RGD), Gly-Arg-Gly-Glu-Ser-Pro (GRGESP), and Gly-Arg-Gly-Asp-Thr-Pro (GRGDTP), but binding was not inhibited by Gly-Arg-Gly-Asp-Ser-Pro. Soluble fibronectin, RGD, GRGESP, and GRGDTP also inhibited fungal adherence to the individual immobilized ECM proteins in a complex pattern, but only soluble fibronectin (10(-7) M) inhibited fungal adherence to subendothelial ECM. Thus, C. albicans possesses at least one type of cell surface receptor for binding soluble fibronectin that can be inhibited with peptides. This receptor apparently is used to bind the fungus to immobilized ECM proteins and to subendothelial ECM and may play a role in the initiation of disseminated disease by bloodborne fungi by providing for adherence of the microorganisms to ECM proteins

  9. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    Science.gov (United States)

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  10. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2006-03-01

    Full Text Available The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast Saccharomyces cerevisiae, where numerous cell wall integrity (CWI genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen Candida albicans. We have tested this hypothesis by using a new C. albicans genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in S. cerevisiae, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced C. albicans genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in S. cerevisiae, but promote its growth in caspofungin. We have used a new resource to identify a key C. albicans transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes.

  11. An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans – Staphyloccoccus aureus Biofilms

    Science.gov (United States)

    Lown, Livia; Peters, Brian M.; Walraven, Carla J.; Noverr, Mairi C.; Lee, Samuel A.

    2016-01-01

    Candida albicans is a major cause of catheter-related bloodstream infections and is associated with high morbidity and mortality. Due to the propensity of C. albicans to form drug-resistant biofilms, the current standard of care includes catheter removal; however, reinsertion may be technically challenging or risky. Prolonged exposure of an antifungal lock solution within the catheter in conjunction with systemic therapy has been experimentally attempted for catheter salvage. Previously, we demonstrated excellent in vitro activity of micafungin, ethanol, and high-dose doxycycline as single agents for prevention and treatment of C. albicans biofilms. Thus, we sought to investigate optimal combinations of micafungin, ethanol, and/or doxycycline as a lock solution. We performed two- and three-drug checkerboard assays to determine the in vitro activity of pairwise or three agents in combination for prevention or treatment of C. albicans biofilms. Optimal lock solutions were tested for activity against C. albicans clinical isolates, reference strains and polymicrobial C. albicans-S. aureus biofilms. A solution containing 20% (v/v) ethanol, 0.01565 μg/mL micafungin, and 800 μg/mL doxycycline demonstrated a reduction of 98% metabolic activity and no fungal regrowth when used to prevent fungal biofilm formation; however there was no advantage over 20% ethanol alone. This solution was also successful in inhibiting the regrowth of C. albicans from mature polymicrobial biofilms, although it was not fully bactericidal. Solutions containing 5% ethanol with low concentrations of micafungin and doxycycline demonstrated synergistic activity when used to prevent monomicrobial C. albicans biofilm formation. A combined solution of micafungin, ethanol and doxycycline is highly effective for the prevention of C. albicans biofilm formation but did not demonstrate an advantage over 20% ethanol alone in these studies. PMID:27428310

  12. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray.

    Science.gov (United States)

    Ramirez, Lisa S; Wang, Jun

    2016-01-06

    Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications.

  13. LNA-modified isothermal oligonucleotide microarray for ...

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... To achieve high detection specificity, we fabricated an isothermal microarray ... diagnosis, drug screening, food inspection, agricultural prod- uct monitoring ..... printed with probes B1, B2 and B3 for Bacillus licheniformis (image 1), and microarray analysis of Bacillus licheniformis PCR products amplified ...

  14. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans

    DEFF Research Database (Denmark)

    Cheon, Seon Ah; Bal, Jyotiranjan; Song, Yunkyoung

    2012-01-01

    Lag1p and Lac1p catalyse ceramide synthesis in Saccharomyces cerevisiae. This study shows that Lag1 family proteins are generally required for polarized growth in hemiascomycetous yeast. However, in contrast to S. cerevisiae where these proteins are functionally redundant, C. albicans Lag1p (CaLag1......p) and Lac1p (CaLac1p) are functionally distinct. Lack of CaLag1p, but not CaLac1p, caused severe defects in the growth and hyphal morphogenesis of C. albicans. Deletion of CaLAG1 decreased expression of the hypha-specific HWP1 and ECE1 genes. Moreover, overexpression of CaLAG1 induced pseudohyphal....... albicans....

  15. In silico design and performance of peptide microarrays for breast cancer tumour-auto-antibody testing

    Directory of Open Access Journals (Sweden)

    Andreas Weinhäusel

    2012-06-01

    Full Text Available The simplicity and potential of minimally invasive testing using sera from patients makes auto-antibody based biomarkers a very promising tool for use in cancer diagnostics. Protein microarrays have been used for the identification of such auto-antibody signatures. Because high throughput protein expression and purification is laborious, synthetic peptides might be a good alternative for microarray generation and multiplexed analyses. In this study, we designed 1185 antigenic peptides, deduced from proteins expressed by 642 cDNA expression clones found to be sero-reactive in both breast tumour patients and controls. The sero-reactive proteins and the corresponding peptides were used for the production of protein and peptide microarrays. Serum samples from females with benign and malignant breast tumours and healthy control sera (n=16 per group were then analysed. Correct classification of the serum samples on peptide microarrays were 78% for discrimination of ‘malignant versus healthy controls’, 72% for ‘benign versus malignant’ and 94% for ‘benign versus controls’. On protein arrays, correct classification for these contrasts was 69%, 59% and 59%, respectively. The over-representation analysis of the classifiers derived from class prediction showed enrichment of genes associated with ribosomes, spliceosomes, endocytosis and the pentose phosphate pathway. Sequence analyses of the peptides with the highest sero-reactivity demonstrated enrichment of the zinc-finger domain. Peptides’ sero-reactivities were found negatively correlated with hydrophobicity and positively correlated with positive charge, high inter-residue protein contact energies and a secondary structure propensity bias. This study hints at the possibility of using in silico designed antigenic peptide microarrays as an alternative to protein microarrays for the improvement of tumour auto-antibody based diagnostics.

  16. Budding off: bringing functional genomics to Candida albicans

    Science.gov (United States)

    Anderson, Matthew Z.

    2016-01-01

    Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein–DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species. PMID:26424829

  17. Candida albicans and napkin dermatitis: relationship and lesion ...

    African Journals Online (AJOL)

    Candida albicans and napkin dermatitis: relationship and lesion severity correlation. Amani Hussein Ahmed Karsani, Abdullateef Azolaibani, Yasser Farouq, Khalid Zedan, Mohammed Mohsen Alotaibi, Ghada Bin Saif, Ibrahim H. Babikir ...

  18. Innate immune cell response upon Candida albicans infection

    Science.gov (United States)

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-ying; Cao, Yongbing; Yan, Tianhua

    2016-01-01

    abstract Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity. PMID:27078171

  19. Global Identification of Biofilm-Specific Proteolysis in Candida albicans.

    Science.gov (United States)

    Winter, Michael B; Salcedo, Eugenia C; Lohse, Matthew B; Hartooni, Nairi; Gulati, Megha; Sanchez, Hiram; Takagi, Julie; Hube, Bernhard; Andes, David R; Johnson, Alexander D; Craik, Charles S; Nobile, Clarissa J

    2016-09-13

    Candida albicans is a fungal species that is part of the normal human microbiota and also an opportunistic pathogen capable of causing mucosal and systemic infections. C. albicans cells proliferate in a planktonic (suspension) state, but they also form biofilms, organized and tightly packed communities of cells attached to a solid surface. Biofilms colonize many niches of the human body and persist on implanted medical devices, where they are a major source of new C. albicans infections. Here, we used an unbiased and global substrate-profiling approach to discover proteolytic activities produced specifically by C. albicans biofilms, compared to planktonic cells, with the goal of identifying potential biofilm-specific diagnostic markers and targets for therapeutic intervention. This activity-based profiling approach, coupled with proteomics, identified Sap5 (Candidapepsin-5) and Sap6 (Candidapepsin-6) as major biofilm-specific proteases secreted by C. albicans Fluorogenic peptide substrates with selectivity for Sap5 or Sap6 confirmed that their activities are highly upregulated in C. albicans biofilms; we also show that these activities are upregulated in other Candida clade pathogens. Deletion of the SAP5 and SAP6 genes in C. albicans compromised biofilm development in vitro in standard biofilm assays and in vivo in a rat central venous catheter biofilm model. This work establishes secreted proteolysis as a promising enzymatic marker and potential therapeutic target for Candida biofilm formation. Biofilm formation by the opportunistic fungal pathogen C. albicans is a major cause of life-threatening infections. This work provides a global characterization of secreted proteolytic activity produced specifically by C. albicans biofilms. We identify activity from the proteases Sap5 and Sap6 as highly upregulated during C. albicans biofilm formation and develop Sap-cleavable fluorogenic substrates that enable the detection of biofilms from C. albicans and also

  20. Genomic and Phenotypic Variation in Morphogenetic Networks of Two Candida albicans Isolates Subtends Their Different Pathogenic Potential

    Directory of Open Access Journals (Sweden)

    Duccio Cavalieri

    2018-01-01

    Full Text Available The transition from commensalism to pathogenicity of Candida albicans reflects both the host inability to mount specific immune responses and the microorganism’s dimorphic switch efficiency. In this study, we used whole genome sequencing and microarray analysis to investigate the genomic determinants of the phenotypic changes observed in two C. albicans clinical isolates (YL1 and YQ2. In vitro experiments employing epithelial, microglial, and peripheral blood mononuclear cells were thus used to evaluate C. albicans isolates interaction with first line host defenses, measuring adhesion, susceptibility to phagocytosis, and induction of secretory responses. Moreover, a murine model of peritoneal infection was used to compare the in vivo pathogenic potential of the two isolates. Genome sequence and gene expression analysis of C. albicans YL1 and YQ2 showed significant changes in cellular pathways involved in environmental stress response, adhesion, filamentous growth, invasiveness, and dimorphic transition. This was in accordance with the observed marked phenotypic differences in biofilm production, dimorphic switch efficiency, cell adhesion, invasion, and survival to phagocyte-mediated host defenses. The mutations in key regulators of the hyphal growth pathway in the more virulent strain corresponded to an overall greater number of budding yeast cells released. Compared to YQ2, YL1 consistently showed enhanced pathogenic potential, since in vitro, it was less susceptible to ingestion by phagocytic cells and more efficient in invading epithelial cells, while in vivo YL1 was more effective than YQ2 in recruiting inflammatory cells, eliciting IL-1β response and eluding phagocytic cells. Overall, these results indicate an unexpected isolate-specific variation in pathways important for host invasion and colonization, showing how the genetic background of C. albicans may greatly affect its behavior both in vitro and in vivo. Based on this approach, we

  1. Purpurin suppresses Candida albicans biofilm formation and hyphal development.

    Directory of Open Access Journals (Sweden)

    Paul Wai-Kei Tsang

    Full Text Available A striking and clinically relevant virulence trait of the human fungal pathogen Candida albicans is its ability to grow and switch reversibly among different morphological forms. Inhibition of yeast-to-hypha transition in C. albicans represents a new paradigm for antifungal intervention. We have previously demonstrated the novel antifungal activity of purpurin against Candida fungi. In this study, we extended our investigation by examining the in vitro effect of purpurin on C. albicans morphogenesis and biofilms. The susceptibility of C. albicans biofilms to purpurin was examined quantitatively by 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl-2H-tetrazolium-5-carboxanilide reduction assay. Hyphal formation and biofilm ultrastructure were examined qualitatively by scanning electron microscopy (SEM. Quantitative reverse transcription-PCR (qRT-PCR was used to evaluate the expression of hypha-specific genes and hyphal regulator in purpurin-treated fungal cells. The results showed that, at sub-lethal concentration (3 µg/ml, purpurin blocked the yeast-to-hypha transition under hypha-inducing conditions. Purpurin also inhibited C. albicans biofilm formation and reduced the metabolic activity of mature biofilms in a concentration-dependent manner. SEM images showed that purpurin-treated C. albicans biofilms were scanty and exclusively consisted of aggregates of blastospores. qRT-PCR analyses indicated that purpurin downregulated the expression of hypha-specific genes (ALS3, ECE1, HWP1, HYR1 and the hyphal regulator RAS1. The data strongly suggested that purpurin suppressed C. albicans morphogenesis and caused distorted biofilm formation. By virtue of the ability to block these two virulence traits in C. albicans, purpurin may represent a potential candidate that deserves further investigations in the development of antifungal strategies against this notorious human fungal pathogen in vivo.

  2. Factors Supporting Cysteine Tolerance and Sulfite Production in Candida albicans

    OpenAIRE

    Hennicke, Florian; Grumbt, Maria; Lermann, Ulrich; Ueberschaar, Nico; Palige, Katja; Böttcher, Bettina; Jacobsen, Ilse D.; Staib, Claudia; Morschhäuser, Joachim; Monod, Michel; Hube, Bernhard; Hertweck, Christian; Staib, Peter

    2013-01-01

    The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions ...

  3. Effectiveness of magnetic fluid hyperthermia against Candida albicans cells.

    Science.gov (United States)

    Chudzik, Barbara; Miaskowski, Arkadiusz; Surowiec, Zbigniew; Czernel, Grzegorz; Duluk, Tomasz; Marczuk, Andrzej; Gagoś, Mariusz

    2016-12-01

    Candida albicans is one of the most frequently isolated fungal pathogens causing opportunistic infections in humans. Targeted magnetic fluid hyperthermia (MFH) is a promising method in thermal therapy facilitating selective heating of pathogen cells like C. albicans. In the paper, we used meso-2,3-dimercaptosuccinic acid (DMSA)-coated magnetic nanoparticles (MNPs) and functionalised anti-C. albicans immunomagnetic nanoparticles (IMNPs) to investigate the potential of MFH in combating C. albicans cells in vitro. Using Mössbauer spectroscopy it was found that synthesised MNPs exhibited superparamagnetic phenomena. On the basis of calorimetric experiments, the maximum SAR (specific absorption rate) was found and a proper concentration of MNPs was established to control the temperature. MFH based on both DMSA-coated MNPs and functionalised anti-C. albicans IMNPs was more effective in combating C. albicans cells in vitro than thermostat hyperthermia. Especially promising results were obtained using functionalised IMNPs, which eradicated most of the pathogen colonies at the temperature of 43 °C.

  4. Candida albicans survival and biofilm formation under starvation conditions.

    Science.gov (United States)

    Ning, Y; Hu, X; Ling, J; Du, Y; Liu, J; Liu, H; Peng, Z

    2013-01-01

    To investigate the survival and biofilm formation capacity of Candida albicans in starvation and under anaerobic conditions. Candida albicans growth and survival were monitored in vitro for up to 8 months. Fungal suspensions from late exponential, stationary and starvation phases were incubated on human dentine, polystyrene and glass slides. Scanning electron microscopy (SEM) was used to observe the process of biofilm formation. 2,3-bis(2-Methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide inner salt (XTT) reduction assay was performed to quantify the biofilm formation capability, and confocal laser scanning microscopy (CLSM) was used to study and make semi-quantitative comparisons of the ultrastructure of biofilms formed on human dentine. 'XTT bioactivity' and 'COMSTAT results' were analysed by two-way analysis of variance (ANOVA) and one-way ANOVA, respectively. Candida albicans survived for over six months. SEM demonstrated that starving C. albicans produced mature biofilms on different substrata. C. albicans of the same growth phase incubated on human dentine displayed significantly higher biofilm formation capability than on polystyrene or glass slides (P roughness coefficient and surface/volume ratio (P < 0.05). Candida albicans cells can survive and form biofilms in anaerobic and nutrient-limited conditions and may pose a treatment challenge. © 2012 International Endodontic Journal.

  5. Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters.

    Science.gov (United States)

    Li, Peng; Seneviratne, Chaminda J; Alpi, Emanuele; Vizcaino, Juan A; Jin, Lijian

    2015-10-01

    Candida infection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics of Candida biofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains of Candida albicans, Candida glabrata, and Candida tropicalis but failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles of C. albicans biofilm persister fractions by liquid chromatography-tandem mass spectrometry. The C. albicans biofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible for Candida growth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance of Candida biofilm persisters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. PTM Microarray: Request for Year 3 Set-Aside Funds — EDRN Public Portal

    Science.gov (United States)

    We hypothesize that PTMs on proteins that are secreted by the breast will provide a more sensitive method for detecting breast cancer than analysis of the parent protein. We will antibody microarrays to have examine 9 circulating proteins, each of which is known to be actively secreted by the breast, for several structurally and functionally distinct PTMs. We will determine if these modified proteins have the potential to used in the early detection of breast cancer.

  7. Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in western China.

    Science.gov (United States)

    Fu, Jinjian; Ding, Yanling; Wei, Ba; Wang, Lin; Xu, Shaolin; Qin, Peixu; Wei, Liuhua; Jiang, Lijun

    2017-05-06

    Although the majority of Candida infections occur in the developing world, candidemia epidemiology is poorly understood in these countries. The aim of this study was to investigate the epidemiology of non-Candida albicans (non-C. albicans) candidemia among neonates at Liuzhou Maternity and Child Healthcare Hospital in China. A retrospective review of all positive blood culture about Candida species in neonatal intensive care unit was conducted between January 2012 and November 2015. Information about demographics, risk factors and outcome of candidemia were collected. Univariate and multivariate logistic regression models were used to identify the risk factors associated with the development of non-C.albicans candidemia. The prevalence of candidemia in infants was 1.4%. Non-C.albicans was responsible for 56.5% of neonatal candidemia. The predisposing factors for development of non-C.albicans candidemia among infants included mechanical ventilation [odds ratio (OR), 95% confidence interval (95%CI) = 3.13, 1.07-9.14; P = 0.037] and use of assisted reproductive technology (OR, 95%CI = 4.52, 1.39-14.77; P = 0.012). The overall mortality rate of candidemia was 8.7% and non-C.albicans attributed to 83.3% of all mortalities. Non-C.albicans species are the major cause of candidemia in local neonatal group. The study highlights the urgent needs to evaluate the possibility of development of non-C.albicans candidemia in neonates exposed to these risk factors and much emphasis must be laid on the early implementation of medical intervention to reduce the incidences of candidemia in neonates.

  8. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  9. Annotating breast cancer microarray samples using ontologies

    Science.gov (United States)

    Liu, Hongfang; Li, Xin; Yoon, Victoria; Clarke, Robert

    2008-01-01

    As the most common cancer among women, breast cancer results from the accumulation of mutations in essential genes. Recent advance in high-throughput gene expression microarray technology has inspired researchers to use the technology to assist breast cancer diagnosis, prognosis, and treatment prediction. However, the high dimensionality of microarray experiments and public access of data from many experiments have caused inconsistencies which initiated the development of controlled terminologies and ontologies for annotating microarray experiments, such as the standard microarray Gene Expression Data (MGED) ontology (MO). In this paper, we developed BCM-CO, an ontology tailored specifically for indexing clinical annotations of breast cancer microarray samples from the NCI Thesaurus. Our research showed that the coverage of NCI Thesaurus is very limited with respect to i) terms used by researchers to describe breast cancer histology (covering 22 out of 48 histology terms); ii) breast cancer cell lines (covering one out of 12 cell lines); and iii) classes corresponding to the breast cancer grading and staging. By incorporating a wider range of those terms into BCM-CO, we were able to indexed breast cancer microarray samples from GEO using BCM-CO and MGED ontology and developed a prototype system with web interface that allows the retrieval of microarray data based on the ontology annotations. PMID:18999108

  10. Anti-Candida albicans natural products, sources of new antifungal drugs: A review.

    Science.gov (United States)

    Zida, A; Bamba, S; Yacouba, A; Ouedraogo-Traore, R; Guiguemdé, R T

    2017-03-01

    Candida albicans is the most prevalent fungal pathogen in humans. Due to the development of drug resistance, there is today a need for new antifungal agents for the efficient management of C. albicans infections. Therefore, we reviewed antifungal activity, mechanisms of action, possible synergism with antifungal drugs of all natural substances experimented to be efficient against C. albicans for future. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A total of 111 documents were published and highlighted 142 anti-C. albicans natural products. These products are mostly are reported in Asia (44.37%) and America (28.17%). According to in vitro model criteria, from the 142 natural substances, antifungal activity can be considered as important for 40 (28.20%) and moderate for 24 (16.90%). Sixteen products have their antifungal activity confirmed by in vivo gold standard experimentation. Microbial natural products, source of antifungals, have their antifungal mechanism well described in the literature: interaction with ergosterol (polyenes), inhibition 1,3-β-d-glucan synthase (Echinocandins), inhibition of the synthesis of cell wall components (chitin and mannoproteins), inhibition of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase) and inhibition of protein synthesis (sordarins). Natural products from plants mostly exert their antifungal effects by membrane-active mechanism. Some substances from arthropods are also explored to act on the fungal membrane. Interestingly, synergistic effects were found between different classes of natural products as well as between natural products and azoles. Search for anti-C. albicans new drugs is promising since the list of natural substances, which disclose activity against this yeast is today long. Investigations must be pursued not only to found more new anti

  11. Applications of heparin and heparan sulfate microarrays.

    Science.gov (United States)

    Yin, Jian; Seeberger, Peter H

    2010-01-01

    Carbohydrate microarrays have become crucial tools for revealing the biological interactions and functions of glycans, primarily because the microarray format enables the investigation of large numbers of carbohydrates at a time. Heparan sulfate (HS) and heparin are the most structurally complex glycosaminoglycans (GAGs). In this chapter, we describe the preparation of a small library of HS/heparin oligosaccharides, and the fabrication of HS/heparin microarrays that have been used to establish HS/heparin-binding profiles. Fibroblast growth factors (FGFs), natural cytotoxicity receptors (NCRs), and chemokines were screened to illuminate the very important biological functions of these glycans. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Fuzzy clustering analysis of microarray data.

    Science.gov (United States)

    Han, Lixin; Zeng, Xiaoqin; Yan, Hong

    2008-10-01

    Fuzzy clustering is a useful tool for identifying relevant subsets of microarray data. This paper proposes a fuzzy clustering method for microarray data analysis. An advantage of the method is that it used a combination of the fuzzy c-means and the principal component analysis to identify the groups of genes that show similar expression patterns. It allows a gene to belong to more than a gene expression pattern with different membership grades. The method is suitable for the analysis of large amounts of noisy microarray data.

  13. Metric learning for DNA microarray data analysis

    International Nuclear Information System (INIS)

    Takeuchi, Ichiro; Nakagawa, Masao; Seto, Masao

    2009-01-01

    In many microarray studies, gene set selection is an important preliminary step for subsequent main task such as tumor classification, cancer subtype identification, etc. In this paper, we investigate the possibility of using metric learning as an alternative to gene set selection. We develop a simple metric learning algorithm aiming to use it for microarray data analysis. Exploiting a property of the algorithm, we introduce a novel approach for extending the metric learning to be adaptive. We apply the algorithm to previously studied microarray data on malignant lymphoma subtype identification.

  14. Pineal function: impact of microarray analysis

    DEFF Research Database (Denmark)

    Klein, David C; Bailey, Michael J; Carter, David A

    2009-01-01

    Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the re......Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity...... foundation that microarray analysis has provided will broadly support future research on pineal function....

  15. Inhibition of matrix metalloproteins 9 attenuated Candida albicans induced inflammation in mouse cornea.

    Science.gov (United States)

    Dong, C; Yang, M G

    2016-10-31

    Since the severe corneal ulceration of mouse cornea is known to occur with inflammation. As one of imperative matrix metalloproteinase, the potential roles of matrix metalloproteins 9 (MMP9) in corneal ulceration and keratitis are still unveiled caused by fungal invasion. In this study, Candida albicans (CA) inoculated wild-type KM mice cornea was used as a model pathogen in corneal inflammation.  CA invasion significantly stimulated the expression of collagen IV and MMP9 detected by RT-PCR, Real-time PCR and Immunofluorescent staining in mouse cornea as soon as 6 hours post infection, and relatively decreased at 1 day post infection. For examining the role of MMP9 in fungal keratitis, the mice corneas were subconjunctivally injected MMP9 antibody or recombinant MMP9 protein 6 hours prior to CA inoculation, using rabbit IgG as control. Subconjunctival injection of recombinant MMP9 protein prior to CA inoculation enhanced, whereas MMP9 antibody attenuated corneal ulceration and inflammation, examining basement membrane, fungal load, myeloperoxidase (MPO) and proinflammatory cytokines including Macrophage inflammatory protein 2 (MIP2), Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α). Inhibition of MMP9 could potentially attenuate Candida albicans induced inflammation in mouse cornea.

  16. Simvastatin inhibits Candida albicans biofilm in vitro.

    Science.gov (United States)

    Liu, Geoffrey; Vellucci, Vincent F; Kyc, Stephanie; Hostetter, Margaret K

    2009-12-01

    By inhibiting the conversion of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) to mevalonate, statins impair cholesterol metabolism in humans. We reasoned that statins might similarly interfere with the biosynthesis of ergosterol, the major sterol of the yeast cell membrane. As assessed by spectrophotometric and microscopic analysis, significant inhibition of biofilm production was noted after 16-h incubation with 1, 2.5, and 5 muM simvastatin, concentrations that did not affect growth, adhesion, or hyphal formation by C. albicans in vitro. Higher concentrations (10, 20, and 25 muM simvastatin) inhibited biofilm by >90% but also impaired growth. Addition of exogenous ergosterol (90 muM) overcame the effects of 1 and 2.5 muM simvastatin, suggesting that at least one mechanism of inhibition is interference with ergosterol biosynthesis. Clinical isolates from blood, skin, and mucosal surfaces produced biofilms; biofilms from bloodstream isolates were similarly inhibited by simvastatin. In the absence of fungicidal activity, simvastatin's interruption of a critical step in an essential metabolic pathway, highly conserved from yeast to man, has unexpected effects on biofilm production by a eukaryotic pathogen.

  17. IFN-gamma in Candida albicans infections.

    Science.gov (United States)

    Gozalbo, Daniel; Gil, Maria Luisa

    2009-01-01

    The dimorphic fungus Candida albicans is the most frequent etiologic agent that causes opportunistic infections called candidiasis, a disease whose systemic manifestation could prove fatal and whose incidence is increasing as a result of an expanding immunocompromised population. Here we review the role of interferon-gamma (IFN-gamma) in the host protection against invasive candidiasis. This cytokine plays an essential role in both the innate and adaptive arms of the immune response to candidiasis. We focus on recent progress on host-pathogen interactions at the molecular level, leading to the production of IFN-gamma by host cells. IFN-gamma is produced by CD4 Th1, CD8, gamma delta T, and natural killer (NK) cells, essentially in response to both IL-12 and/or IL-18, and plays an important role in the regulation of the immune system as well as in the control of the infectious process. IFN-gamma is required for optimal activation of phagocytes, collaborates in the generation of protective antibody response, and favours the development of a Th1 protective response.

  18. Candida albicans keratitis in an immunocompromised patient

    Directory of Open Access Journals (Sweden)

    H Mohammed J Hassan

    2010-10-01

    Full Text Available H Mohammed J Hassan1, Theocharis Papanikolaou2, Georgios Mariatos1, Amany Hammad3, Hala Hassan41Ophthalmology Department, Barnsley Hospital NHS Foundation Trust, South Yorkshire, England, UK; 2Ophthalmology Department, Cambridge University Hospitals NHS Foundation Trust, England, UK; 3Ophthalmology Department, Rotherham Hospital NHS Foundation Trust, England, UK; 4Corneal and External Disease Service, Moorfields Eye Hospital NHS Foundation Trust, London, England, UKPurpose: When investigating a case of unexplained corneal ulceration, we need to think of fungal infection and any predisposing factors.Methods: A case study of a corneal ulceration in a patient who was HIV positive with a devastating visual outcome.Results: Therapeutic corneal graft was necessary due to corneal perforation. Immunocompromised state of patient was retrospectively diagnosed.Conclusions: Candida albicans keratitis is an opportunistic infection of a compromised cornea, and sometimes unknowingly compromised host, which can be initially misdiagnosed. Despite intensive antifungal therapy, occasionally patients require corneal grafting to improve vision, and before it is possible to establish an accurate diagnosis.Keywords: fungal keratitis, corneal perforation, keratoplasty, human immunodeficiency virus, HIV

  19. Frequency of Candida albicans in Patients with Funguria

    International Nuclear Information System (INIS)

    Jamil, S.; Jamil, N.; Hafiz, S.; Siddiqui, S.; Saad, U.

    2016-01-01

    Objective: To determine the frequency of Candida albicans in patients with funguria. Study Design: Descriptive cross-sectional study. Place and Duration of Study: Department of Microbiology, Sindh Institute of Urology and Transplantation, from July to December 2012. Methodology: Patients urine samples with fungus/Candida were included. Candida albicans was identified by the production of tubular structures (germ tubes) on microscopy as per standard procedure followed by inoculation on Chrom agar (Oxoid) and Corn Meal-Tween 80 agar (Oxoid). The identification of other non-albicans Candida species was also done both microscopically and macroscopically as per standard procedure. Results: Out of the 289 isolates, 204 (70.6 percentage) were male patients and 85 (29.4 percentage) were female patients, with 165 (57.1 percentage) from the out-patients and 124 (42.9 percentage) from the in-patients. Five species of Candida were found to be prevalent including 87 (30.1 percentage) Candida albicans, 176 (60.9 percentage) Candida tropicalis, 14 (4.8 percentage) Candida parapsilosis, 8 (2.8 percentage) Candida glabrata and 4 (1.4 percentage) Candida lusitaniae. Majority of patients with funguria were aged above 50 years (60.2 percentage). Conclusion: In the present study, 30.1 percentage patients with funguria had Candida albicans. The most frequently isolated species was Candida tropicalis (60.9 percentage), followed by other non-albicans Candida. This study has shown the emergence of non-albicans Candida as a major cause of candiduria. (author)

  20. Phosphomannosylation and the Functional Analysis of the Extended Candida albicans MNN4-Like Gene Family

    Directory of Open Access Journals (Sweden)

    Roberto J. González-Hernández

    2017-11-01

    Full Text Available Phosphomannosylation is a modification of cell wall proteins that occurs in some species of yeast-like organisms, including the human pathogen Candida albicans. These modified mannans confer a negative charge to the wall, which is important for the interactions with phagocytic cells of the immune systems and cationic antimicrobial peptides. In Saccharomyces cerevisiae, the synthesis of phosphomannan relies on two enzymes, the phosphomannosyltransferase Ktr6 and its positive regulator Mnn4. However, in C. albicans, at least three phosphomannosyltransferases, Mnn4, Mnt3 and Mnt5, participate in the addition of phosphomannan. In addition to MNN4, C. albicans has a MNN4-like gene family composed of seven other homologous members that have no known function. Here, using the classical mini-Ura-blaster approach and the new gene knockout CRISPR-Cas9 system for gene disruption, we generated mutants lacking single and multiple genes of the MNN4 family; and demonstrate that, although Mnn4 has a major impact on the phosphomannan content, MNN42 was also required for full protein phosphomannosylation. The reintroduction of MNN41, MNN42, MNN46, or MNN47 in a genetic background lacking MNN4 partially restored the phenotype associated with the mnn4Δ null mutant, suggesting that there is partial redundancy of function between some family members and that the dominant effect of MNN4 over other genes could be due to its relative abundance within the cell. We observed that additional copies of alleles number of any of the other family members, with the exception of MNN46, restored the phosphomannan content in cells lacking both MNT3 and MNT5. We, therefore, suggest that phosphomannosylation is achieved by three groups of proteins: [i] enzymes solely activated by Mnn4, [ii] enzymes activated by the dual action of Mnn4 and any of the products of other MNN4-like genes, with exception of MNN46, and [iii] activation of Mnt3 and Mnt5 by Mnn4 and Mnn46. Therefore

  1. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  2. The determination of optimal cells disintegration method of Candida albicans and Candida tropicalis fungals

    Directory of Open Access Journals (Sweden)

    M. V. Rybalkyn

    2014-08-01

    Full Text Available Candidiasis is common infectious disease that affects the mucous membranes, skin, nails, hair, and internal organs. Now Ukraine has neither domestic nor registered imported vaccine against candidiasis. The development of vaccine for prevention and treatment of candidiasis is a key issue in modern medicine and pharmacy. Similar research is actively conducted in many countries of the world: Russia, USA, Japan and others. It should be noted that researchers have not yet reached a consensus view which vaccine is most effective with candidiasis. There are several types of vaccines: live, inactivated, subunit and others. In this article, we consider getting the potential subunit vaccine from Candida albicans and Candida tropicalis fungi. Subunit vaccine is composed of fragments of antigens that can provide an adequate immune response. These vaccines can be represented by particles of microbes. It is known that the main substances in cells of genus Candida fungi, which have antigenic properties, are proteins and polysaccharides. However, the question of their localization in the layers of the cell wall and cytoplasm nowadays require more detailed studies. Many researchers to highlight cytoplasm antigens and all the other layers of the cell use the following methods: grinding cells with quartz sand, destroying them in different machine disintegrating, freezing and thawing a multi others. To obtain potential subunit vaccine fungi were rejected by methods that are based on the processing of biomass fungi chemicals (extraction, hydrolysis. The aim of this work was to study experimentally the destruction method of Candida albicans and Candida tropicalis fungi. Cells of Candida albicans fungi strain CCM 335-867 and Candida tropicalis fungi strain 20336 ATTS have been separately cultured in vitro on agar Sabouraud at 25 ± 2º C for 48 hours and then washed by 10 ml of sterile 0.9% isotonic sodium chloride solution. Cell suspension of Candida albicans and

  3. Daya hambat xylitol dan nistation terhadap pertumbuhan Candida albicans (in vitro (Inhibition effect of xylitol and nistatin combination on Candida albicans growth (in vitro

    Directory of Open Access Journals (Sweden)

    Sarah Kartimah Djajusman

    2014-09-01

    Full Text Available Background: The growth of Candida albicans can be controlled by using antifungal such as nystatin. These days we found that using antifungal is not enough to control Candida albicans, we also have to control the intake of sugar by using xylitol. Purpose: Purpose of the study was to determine the optimal inhibitory concentration of xylitol-nystatin in the Candida albicans growth. Methods: This was an in-vitro study using an antimicrobial test of serial dilution with xylitol-nystatin and sucrose–nystatin consentration of 1%, 3%, 5%, 7%, 9%, and 10%.Growth inhibition of C. albicans was determined by the inhibition zone of xylitol + nystatin on C. albicans culture media (in vitro Results: The result of study was the inhibitory consentration of xylitol-nystatin to inhibit Candida albicans growth was 3%-10%. Conclusion: The study showed that combination of xylitol and nystation could inhibit the growth of Candida albicans.Latar belakang: Pertumbuhan Candida albicans dapat dikontrol dengan menggunakan antijamur seperti nistatin. Penggunakan antijamur saja tidak cukup untuk mengontrol Candida albicans, namun perlu pula mengontrol asupan gula dengan menggunakan xylitol. Tujuan: Tujuan dari penelitian ini adalah untuk menentukan konsentrasi hambat optimal xylitol-nistatin dalam pertumbuhan Candida albicans. Metode: Penelitian ini merupakan penelitian in vitro menggunakan uji antimikroba pengenceran serial dengan xylitol-nistatin dan nystatin-sukrosa konsentrasi 1%, 3 %, 5 %, 7%, 9%, dan 10%. Daya hambat pertumbuhan C. albicans diukur dari zona hambat xylitol + nistatin pada media kultur C. albicans (in vitro Hasil: Konsentrasi penghambatan xylitol-nistatin untuk menghambat pertumbuhan Candida albicans adalah 3-10%. Simpulan: Hasil penelitian menunjukkan bahwa kombinasi xylitol dan nystation bisa menghambat pertumbuhan Candida albicans.

  4. A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions.

    Science.gov (United States)

    Mora-Montes, Héctor M; Bates, Steven; Netea, Mihai G; Castillo, Luis; Brand, Alexandra; Buurman, Ed T; Díaz-Jiménez, Diana F; Jan Kullberg, Bart; Brown, Alistair J P; Odds, Frank C; Gow, Neil A R

    2010-04-16

    The cell wall proteins of fungi are modified by N- and O-linked mannosylation and phosphomannosylation, resulting in changes to the physical and immunological properties of the cell. Glycosylation of cell wall proteins involves the activities of families of endoplasmic reticulum and Golgi-located glycosyl transferases whose activities are difficult to infer through bioinformatics. The Candida albicans MNT1/KRE2 mannosyl transferase family is represented by five members. We showed previously that Mnt1 and Mnt2 are involved in O-linked mannosylation and are required for virulence. Here, the role of C. albicans MNT3, MNT4, and MNT5 was determined by generating single and multiple MnTDelta null mutants and by functional complementation experiments in Saccharomyces cerevisiae. CaMnt3, CaMnt4, and CaMnt5 did not participate in O-linked mannosylation, but CaMnt3 and CaMnt5 had redundant activities in phosphomannosylation and were responsible for attachment of approximately half of the phosphomannan attached to N-linked mannans. CaMnt4 and CaMnt5 participated in N-mannan branching. Deletion of CaMNT3, CaMNT4, and CaMNT5 affected the growth rate and virulence of C. albicans, affected the recognition of the yeast by human monocytes and cytokine stimulation, and led to increased cell wall chitin content and exposure of beta-glucan at the cell wall surface. Therefore, the MNT1/KRE2 gene family participates in three types of protein mannosylation in C. albicans, and these modifications play vital roles in fungal cell wall structure and cell surface recognition by the innate immune system.

  5. PATMA: parser of archival tissue microarray

    Directory of Open Access Journals (Sweden)

    Lukasz Roszkowiak

    2016-12-01

    Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  6. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans

    Directory of Open Access Journals (Sweden)

    Shiyu Liu

    2017-01-01

    Full Text Available Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS, and expression of glucosyltransferases (Gtfs. Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans, and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  7. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  8. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  9. Contributions to Statistical Problems Related to Microarray Data

    Science.gov (United States)

    Hong, Feng

    2009-01-01

    Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…

  10. A microarray analysis of two distinct lymphatic endothelial cell populations

    Directory of Open Access Journals (Sweden)

    Bernhard Schweighofer

    2015-06-01

    Full Text Available We have recently identified lymphatic endothelial cells (LECs to form two morphologically different populations, exhibiting significantly different surface protein expression levels of podoplanin, a major surface marker for this cell type. In vitro shockwave treatment (IVSWT of LECs resulted in enrichment of the podoplaninhigh cell population and was accompanied by markedly increased cell proliferation, as well as 2D and 3D migration. Gene expression profiles of these distinct populations were established using Affymetrix microarray analyses. Here we provide additional details about our dataset (NCBI GEO accession number GSE62510 and describe how we analyzed the data to identify differently expressed genes in these two LEC populations.

  11. Versatile High Throughput Microarray Analysis for Marine Glycobiology

    DEFF Research Database (Denmark)

    Asunción Salmeán, Armando

    to concept proof that is possible to use the Comprehensive Microarray Polymer Profiling (CoMPP) as a tool for other extracellular matrixes such as marine animals and not only for algal or plant cell walls. Thus, we discovered fucoidan and cellulose epitopes in several tissues of various marine animals from...... in cell development. Another part of this work focused in the development of a novel methodology for the discovery of unknown algal polysaccharides and characterization of carbohydrate binding proteins. Based on the coevolution between alga and marine saprophytic microorganisms, which use the algal...

  12. Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans

    International Nuclear Information System (INIS)

    Prasannan, Priya; Suliman, Huda S.; Robertus, Jon D.

    2009-01-01

    Fungal methionine synthase catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine to create methionine. The enzyme, called Met6p in fungi, is required for the growth of the pathogen Candida albicans, and is consequently a reasonable target for antifungal drug design. In order to understand the mechanism of this class of enzyme, we created a three-dimensional model of the C. albicans enzyme based on the known structure of the homologous enzyme from Arabidopsis thaliana. A fusion protein was created and shown to have enzyme activity similar to the wild-type Met6p. Fusion proteins containing mutations at eight key sites were expressed and assayed in this background. The D614 carboxylate appears to ion pair with the amino group of homocysteine and is essential for activity. Similarly, D504 appears to bind to the polar edge of the folate and is also required for activity. Other groups tested have lesser roles in substrate binding and catalysis.

  13. Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Prasannan, Priya; Suliman, Huda S. [Institute of Cellular and Molecular Biology, Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas, Austin, TX 78712 (United States); Robertus, Jon D., E-mail: jrobertus@mail.utexas.edu [Institute of Cellular and Molecular Biology, Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas, Austin, TX 78712 (United States)

    2009-05-15

    Fungal methionine synthase catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine to create methionine. The enzyme, called Met6p in fungi, is required for the growth of the pathogen Candida albicans, and is consequently a reasonable target for antifungal drug design. In order to understand the mechanism of this class of enzyme, we created a three-dimensional model of the C. albicans enzyme based on the known structure of the homologous enzyme from Arabidopsis thaliana. A fusion protein was created and shown to have enzyme activity similar to the wild-type Met6p. Fusion proteins containing mutations at eight key sites were expressed and assayed in this background. The D614 carboxylate appears to ion pair with the amino group of homocysteine and is essential for activity. Similarly, D504 appears to bind to the polar edge of the folate and is also required for activity. Other groups tested have lesser roles in substrate binding and catalysis.

  14. Human Thrombin Detection Through a Sandwich Aptamer Microarray: Interaction Analysis in Solution and in Solid Phase

    Science.gov (United States)

    Sosic, Alice; Meneghello, Anna; Cretaio, Erica; Gatto, Barbara

    2011-01-01

    We have developed an aptamer-based microarray for human thrombin detection exploiting two non-overlapping DNA thrombin aptamers recognizing different exosites of the target protein. The 15-mer aptamer (TBA1) binds the fibrinogen-binding site, whereas the 29-mer aptamer (TBA2) binds the heparin binding domain. Extensive analysis on the complex formation between human thrombin and modified aptamers was performed by Electrophoresis Mobility Shift Assay (EMSA), in order to verify in solution whether the chemical modifications introduced would affect aptamers/protein recognition. The validated system was then applied to the aptamer microarray, using the solid phase system devised by the solution studies. Finally, the best procedure for Sandwich Aptamer Microarray (SAM) and the specificity of the sandwich formation for the developed aptasensor for human thrombin were optimized. PMID:22163703

  15. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    Directory of Open Access Journals (Sweden)

    Apurva K Pathak

    2012-02-01

    Full Text Available OBJECTIVE: In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. MATERIAL AND METHODS: The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB. Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. RESULTS: In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination were reported. CONCLUSIONS: The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species.

  16. Genome-wide functional analysis in Candida albicans

    Science.gov (United States)

    Motaung, Thabiso E.; Ells, Ruan; Pohl, Carolina H.; Albertyn, Jacobus; Tsilo, Toi J.

    2017-01-01

    ABSTRACT Candida albicans is an important etiological agent of superficial and life-threatening infections in individuals with compromised immune systems. To date, we know of several overlapping genetic networks that govern virulence attributes in this fungal pathogen. Classical use of deletion mutants has led to the discovery of numerous virulence factors over the years, and genome-wide functional analysis has propelled gene discovery at an even faster pace. Indeed, a number of recent studies using large-scale genetic screens followed by genome-wide functional analysis has allowed for the unbiased discovery of many new genes involved in C. albicans biology. Here we share our perspectives on the role of these studies in analyzing fundamental aspects of C. albicans virulence properties. PMID:28277904

  17. Psd1 Effects on Candida albicans Planktonic Cells and Biofilms.

    Science.gov (United States)

    Gonçalves, Sónia; Silva, Patrícia M; Felício, Mário R; de Medeiros, Luciano N; Kurtenbach, Eleonora; Santos, Nuno C

    2017-01-01

    Candida albicans is an important human pathogen, causing opportunistic infections. The adhesion of planktonic cells to a substrate is the first step for biofilm development. The antimicrobial peptide (AMP) Ps d1 is a defensin isolated from Pisum sativum seeds. We tested the effects of this AMP on C. albicans biofilms and planktonic cells, comparing its activity with amphotericin B and fluconazole. Three C. albicans variants were studied, one of them a mutant deficient in glucosylceramide synthase, conferring resistance to Ps d1 antifungal action. Atomic force microscopy (AFM) was used to assess morphological and biomechanical changes on fungal cells. Surface alterations, with membrane disruption and leakage of cellular contents, were observed. Cytometry assays and confocal microscopy imaging showed that Ps d1 causes cell death, in a time and concentration-dependent manner. These results demonstrate Ps d1 pleiotropic action against a relevant fungal human pathogen, suggesting its use as natural antimycotic agent.

  18. [Adhesion of clinical Candida albicans isolate to buccal epithelial cells].

    Science.gov (United States)

    Wellmer, A

    1999-01-01

    Mucosal adherence and germ tube formation are considered to be important virulence factors of C. albicans. Adherence is a precondition for colonisation and invasion. We investigated 11 clinical isolates (among them 5 cases recovered from oesophageal thrush) for quantification of the two characteristics and correlated the results with clinical data. Adherence was measured on buccal epithelial cells and the continuous flow culture was used for quantification of germ tube formation. Adherence of strains recovered from clinically, culturally and serologically confirmed oesophageal thrush adhered stronger to buccal epithelial cells than isolates from patients with heavy colonisation without signs of candidosis. Strains with stronger adherence showed a significantly faster and an increased germ tube formation in the continuous flow culture. Strains from oesophageal thrush therefore show a more marked expression of the investigated virulence factors. Therefore a good adherence is a necessity for infection of the oesophagus by C. albicans. The preferential isolation of C. albicans from oesophageal thrush (> 90%) supports this assumption.

  19. Oral candidiasis-adhesion of non-albicans Candida species

    Directory of Open Access Journals (Sweden)

    Bokor-Bratić Marija B.

    2008-01-01

    Full Text Available Oral candidiasis is an opportunistic infection caused primarily by Candida albicans. However, in recent years, species of non-albicans Candida have been implicated more frequently in mucosal infection. Candida species usually reside as commensal organisms and are part of normal oral microflora. Determining exactly how transformation from commensal to pathogen takes place and how it can be prevented is continuous challenge for clinical doctors. Candidal adherence to mucosal surfaces is considered as a critical initial step in the pathogenesis of oral candidiasis. Acrylic dentures, acting as reservoirs, play an important role in increasing the risk from Candida colonisation. Thus, this review discusses what is currently known about the adhesion of non-albicans Candida species of oral origin to buccal epithelial cells and denture acrylics.

  20. A Candida albicans gene expressed in Saccharomyces cerevisiae results in a distinct pattern of mRNA processing.

    Science.gov (United States)

    Iborra, A; Sentandreu, R; Gozalbo, D

    1996-09-01

    Two plasmids (derived from YCplac22 and YEplac112) carrying a Candida albicans gene (including the 5' non-coding promoter sequences) coding for a 30 kDa membrane-bound protein, were used to transform Saccharomyces cerevisiae cells. A 30 kDa protein was immunodetected by Western blot in the membrane fraction of transformants. Northern analysis showed the presence of three mRNA species (of about 1.1, 0.7 and 0.5 kb) hybridizing with the C. albicans gene as a probe. The same result was obtained using the 5' and 3' regions of the gene as probes, whereas only a 1.1 kb mRNA was found in C. albicans and none was detected in S. cerevisiae control transformants. Thus, heterologous expression of this gene in S. cerevisiae results in a distinct pattern of mRNA processing, either due to the location on plasmid vectors and/or to differences in the mRNA processing systems in the two microorganisms.

  1. A gene expression microarray for Nicotiana benthamiana based on de novo transcriptome sequence assembly.

    Science.gov (United States)

    Goralski, Michal; Sobieszczanska, Paula; Obrepalska-Steplowska, Aleksandra; Swiercz, Aleksandra; Zmienko, Agnieszka; Figlerowicz, Marek

    2016-01-01

    Nicotiana benthamiana has been widely used in laboratories around the world for studying plant-pathogen interactions and posttranscriptional gene expression silencing. Yet the exploration of its transcriptome has lagged behind due to the lack of both adequate sequence information and genome-wide analysis tools, such as DNA microarrays. Despite the increasing use of high-throughput sequencing technologies, the DNA microarrays still remain a popular gene expression tool, because they are cheaper and less demanding regarding bioinformatics skills and computational effort. We designed a gene expression microarray with 103,747 60-mer probes, based on two recently published versions of N. benthamiana transcriptome (v.3 and v.5). Both versions were reconstructed from RNA-Seq data of non-strand-specific pooled-tissue libraries, so we defined the sense strand of the contigs prior to designing the probe. To accomplish this, we combined a homology search against Arabidopsis thaliana proteins and hybridization to a test 244k microarray containing pairs of probes, which represented individual contigs. We identified the sense strand in 106,684 transcriptome contigs and used this information to design an Nb-105k microarray on an Agilent eArray platform. Following hybridization of RNA samples from N. benthamiana roots and leaves we demonstrated that the new microarray had high specificity and sensitivity for detection of differentially expressed transcripts. We also showed that the data generated with the Nb-105k microarray may be used to identify incorrectly assembled contigs in the v.5 transcriptome, by detecting inconsistency in the gene expression profiles, which is indicated using multiple microarray probes that match the same v.5 primary transcripts. We provided a complete design of an oligonucleotide microarray that may be applied to the research of N. benthamiana transcriptome. This, in turn, will allow the N. benthamiana research community to take full advantage of

  2. Invasive candidiasis in intensive care units in China: Risk factors and prognoses of Candida albicans and non-albicans Candida infections.

    Science.gov (United States)

    Gong, Xiaoying; Luan, Ting; Wu, Xingmao; Li, Guofu; Qiu, Haibo; Kang, Yan; Qin, Bingyu; Fang, Qiang; Cui, Wei; Qin, Yingzhi; Li, Jianguo; Zang, Bin

    2016-05-01

    To investigate the risk factors and prognoses of patients with invasive Candida albicans and non-albicans Candida (NAC) infection in intensive care units (ICUs) in China. Between November 2009 and April 2011, we performed a prospective study of critically ill patients with invasive Candida infection from 67 ICUs across China to compare the risk factors and mortality between patients with C albicans and NAC infection. There were 306 patients with proven invasive Candida; 244 cases (a total 389 Candida isolates) were sent to laboratory for strain identification (C albicans, 40.1%; NAC, 59.9%). More patients admitted for surgery or trauma had NAC infection than C albicans infection. C albicans infection was more common in patients with subclavian vein catheters or peritoneal drainage tubes. Compared with patients with C albicans infection, patients with NAC infection had longer antifungal therapy (P albicans remains the most common pathogen in candidiasis in critical care patients. However, the number of NAC infections exceeded C albicans infections. Compared with patients with C albicans infection, patients with NAC infection had heavier disease burdens. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Factors supporting cysteine tolerance and sulfite production in Candida albicans.

    Science.gov (United States)

    Hennicke, Florian; Grumbt, Maria; Lermann, Ulrich; Ueberschaar, Nico; Palige, Katja; Böttcher, Bettina; Jacobsen, Ilse D; Staib, Claudia; Morschhäuser, Joachim; Monod, Michel; Hube, Bernhard; Hertweck, Christian; Staib, Peter

    2013-04-01

    The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.

  4. Salivary pellicles equalise surfaces' charges and modulate the virulence of Candida albicans biofilm.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Williams, David; Senna, Plínio Mendes; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José

    2016-06-01

    Numerous environmental factors influence the pathogenesis of Candida biofilms and an understanding of these is necessary for appropriate clinical management. To investigate the role of material type, pellicle and stage of biofilm development on the viability, bioactivity, virulence and structure of C. albicans biofilms. The surface roughness (SR) and surface free energy (SFE) of acrylic and titanium discs was measured. Pellicles of saliva, or saliva supplemented with plasma, were formed on acrylic and titanium discs. Candida albicans biofilms were then generated for 1.5 h, 24h, 48 h and 72 h. The cell viability in biofilms was analysed by culture, whilst DNA concentration and the expression of Candida virulence genes (ALS1, ALS3 and HWP1) were evaluated using qPCR. Biofilm metabolic activity was determined using XTT reduction assay, and biofilm structure analysed by Scanning Electron Microscopy (SEM). Whilst the SR of acrylic and titanium did not significantly differ, the saliva with plasma pellicle increased significantly the total SFE of both surface. The number of viable microorganisms and DNA concentration increased with biofilm development, not differing within materials and pellicles. Biofilms developed on saliva with plasma pellicle surfaces had significantly higher activity after 24h and this was accompanied with higher expression of virulence genes at all periods. Induction of C. albicans virulence occurs with the presence of plasma proteins in pellicles, throughout biofilm growth. To mitigate such effects, reduction of increased plasmatic exudate, related to chronic inflammatory response, could aid the management of candidal biofilm-related infections. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Immunomodulatory and protective effect of probiotic Lactobacillus casei against Candida albicans infection in malnourished mice.

    Science.gov (United States)

    Villena, Julio; Salva, Susana; Agüero, Graciela; Alvarez, Susana

    2011-06-01

    The effect of Lactobacillus casei CRL 431 (Lc), when administered as a supplement to a repletion diet, on the resistance of malnourished mice to Candida albicans infection was studied. Weaned mice were malnourished by being given a protein-free diet (PFD) for 21 days. The malnourished mice were then fed a balanced conventional diet (BCD) for 7 days or BCD for 7 days with supplemental Lc on days 6 and 7 (BCD+Lc). Malnourished (MNC) and well-nourished (WNC) mice were used as controls. At the end of the treatments the mice were infected intraperitoneally with C. albicans. Animals that had received probiotics had improved survival and resistance against this infection compared to those in the BCD and MNC groups. The number and fungicidal activity of phagocytes, and the concentrations of tumor necrosis factor-α, interferon-γ and interleukin-6 (IL-6), increased in blood and infected tissues in all experimental groups, but MNC mice showed lower concentrations than those in the WNC group. BCD and BCD+Lc mice showed higher concentrations of these variables than those in the MNC group, but only the BCD+Lc group presented values similar to the WNC mice. Malnutrition also impaired the production of IL-17 and IL-10 in response to infection. Both repletion treatments normalized IL-17 concentrations, but IL-10 in the BCD+Lc group was significantly higher than in WNC mice. The addition of L. casei to the repletion diet normalized the immune response against C. albicans, allowing efficient recruitment and activation of phagocytes, as well as effective release of pro-inflammatory cytokines. In addition, probiotic treatment induced an increase in IL-10 concentrations, which would have helped to prevent damage caused by the inflammatory response. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  6. Application of the systematic "DAmP" approach to create a partially defective C. albicans mutant.

    Science.gov (United States)

    Finkel, J S; Yudanin, N; Nett, J E; Andes, D R; Mitchell, A P

    2011-11-01

    An understanding of gene function often relies upon creating multiple kinds of alleles. Functional analysis in Candida albicans, a major fungal pathogen, has generally included characterization of mutant strains with insertion or deletion alleles and over-expression alleles. Here we use in C. albicans another type of allele that has been employed effectively in the model yeast Saccharomyces cerevisiae, a "Decreased Abundance by mRNA Perturbation" (DAmP) allele (Yan et al., 2008). DAmP alleles are created systematically through replacement of 30 noncoding regions with nonfunctional heterologous sequences, and thus are broadly applicable. We used a DAmP allele to probe the function of Sun41, a surface protein with roles in cell wall integrity, cell-cell adherence, hyphal formation, and biofilm formation that has been suggested as a possible therapeutic target (Firon et al., 2007; Hiller et al., 2007; Norice et al., 2007). A SUN41-DAmP allele results in approximately 10-fold reduced levels of SUN41 RNA, and yields intermediate phenotypes in most assays. We report that a sun41Δ/Δ mutant is defective in biofilm formation in vivo, and that the SUN41-DAmP allele complements that defect. This finding argues that Sun41 may not be an ideal therapeutic target for biofilm inhibition, since a 90% decrease in activity has little effect on biofilm formation in vivo. We anticipate that DAmP alleles of C. albicans genes will be informative for analysis of other prospective drug targets, including essential genes.

  7. A radiolabel release microassay for phagocytic killing of Candida albicans

    International Nuclear Information System (INIS)

    Bistoni, F.; Baccarini, M.; Blasi, E.; Marconi, P.; Puccetti, P.

    1982-01-01

    The chromium-51 release technique for quantifying intracellular killing of radiolabelled Candida albicans particles was exploited in a microassay in which murine and human phagocytes acted as effectors under peculiarly simple conditions. At appropriate effector: target ratios and with a 4 h incubation, up to 50% specific chromium release could be detected in the supernatant with no need for opsonization or lysis of phagocytes. This simple microassay permits easy-to-perform, simultaneous testing of a variety of different phagocytes even if only available in limited amounts, and provides an objective measurement of intracellular killing of Candida albicans. (Auth.)

  8. Actin and phosphoinositide recruitment to fully formed Candida albicans phagosomes in mouse macrophages

    NARCIS (Netherlands)

    Heinsbroek, Sigrid E. M.; Kamen, Lynn A.; Taylor, Philip R.; Brown, Gordon D.; Swanson, Joel; Gordon, Siamon

    2009-01-01

    Candida albicans is a dimorphic yeast that enters macrophages (Mphi) via the beta-glucan receptor dectin-1. Phagocytosis of C. albicans is characterized by actin polymerization, Syk kinase activation and rapid acquisition of phagolysosomal markers. In mice, C. albicans are able to resist the harsh

  9. Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors.

    NARCIS (Netherlands)

    Netea, M.G.; Gow, N.A.; Joosten, L.A.B.; Verschueren, I.; Meer, J.W.M. van der; Kullberg, B.J.

    2010-01-01

    The role of TLR4 in the recognition of Candida albicans has been brought into question. In order to assess whether discrepancies in the literature are due to differences in the recognition of various C. albicans strains, we selected 14 different isolates of C. albicans to evaluate their recognition

  10. Advancing microarray assembly with acoustic dispensing technology.

    Science.gov (United States)

    Wong, E Y; Diamond, S L

    2009-01-01

    In the assembly of microarrays and microarray-based chemical assays and enzymatic bioassays, most approaches use pins for contact spotting. Acoustic dispensing is a technology capable of nanoliter transfers by using acoustic energy to eject liquid sample from an open source well. Although typically used for well plate transfers, when applied to microarraying, it avoids the drawbacks of undesired physical contact with the sample; difficulty in assembling multicomponent reactions on a chip by readdressing, a rigid mode of printing that lacks patterning capabilities; and time-consuming wash steps. We demonstrated the utility of acoustic dispensing by delivering human cathepsin L in a drop-on-drop fashion into individual 50-nanoliter, prespotted reaction volumes to activate enzyme reactions at targeted positions on a microarray. We generated variable-sized spots ranging from 200 to 750 microm (and higher) and handled the transfer of fluorescent bead suspensions with increasing source well concentrations of 0.1 to 10 x 10(8) beads/mL in a linear fashion. There are no tips that can clog, and liquid dispensing CVs are generally below 5%. This platform expands the toolbox for generating analytical arrays and meets needs associated with spatially addressed assembly of multicomponent microarrays on the nanoliter scale.

  11. Peptide Microarray Analysis of the Cross-talk Between O-GlcNAcylation and Tyrosine Phosphorylation

    NARCIS (Netherlands)

    Shi, Jie; Tomašič, Tihomir; Sharif, Suhela; Brouwer, Arwin J; Anderluh, Marko; Ruijtenbeek, Rob; Pieters, Roland J

    2017-01-01

    O-GlcNAcylation of proteins regulates important cellular processes. A few reports noted that O-GlcNAcylation exhibits cross-talk with tyrosine phosphorylation. With an activity-based microarray analysis of 256 tyrosine kinase peptide substrates, we found that phosphorylation of 6 peptides by Jak2

  12. Identifying HIPK1 as Target of miR-22-3p Enhancing Recombinant Protein Production From HEK 293 Cell by Using Microarray and HTP siRNA Screen.

    Science.gov (United States)

    Inwood, Sarah; Buehler, Eugen; Betenbaugh, Michael; Lal, Madhu; Shiloach, Joseph

    2018-02-01

    Protein expression from human embryonic kidney cells (HEK 293) is an important tool for structural and clinical studies. It is previously shown that microRNAs (small, noncoding RNAs) are effective means for improved protein expression from these cells, and by conducting a high-throughput screening of the human microRNA library, several microRNAs are identified as potential candidates for improving expression. From these, miR-22-3p is chosen for further study since it increased the expression of luciferase, two membrane proteins and a secreted fusion protein with minimal effect on the cells' growth and viability. Since each microRNA can interact with several gene targets, it is of interest to identify the repressed genes for understanding and exploring the improved expression mechanism for further implementation. Here, the authors describe a novel approach for identification of the target genes by integrating the differential gene expression analysis with information obtained from our previously conducted high-throughput siRNA screening. The identified genes were validated as being involved in improving luciferase expression by using siRNA and qRT-PCR. Repressing the target gene, HIPK1, is found to increase luciferase and GPC3 expression 3.3- and 2.2-fold, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Expression, crystallization and preliminary X-ray data analysis of NT-Als9-2, a fungal adhesin from Candida albicans

    International Nuclear Information System (INIS)

    Salgado, Paula S.; Yan, Robert; Rowan, Fiona; Cota, Ernesto

    2011-01-01

    Details of the expression and crystallization of the N-terminal fragment of Als9-2, an adhesin from the human commensal/pathogenic fungus C. albicans, are reported. Preliminary analysis of the collected X-ray data is also discussed. Candida albicans is a common human fungal commensal that can also cause a range of infections from skin/mucosal ‘thrush’ to severe systemic candidiasis. Adherence to host cells is one of the key determinants of Candida pathogenesis. The Als family of surface proteins has been implicated in adhesion of C. albicans, yet limited information has been published on the structure and mechanism of these fungal adhesins. The N-terminal region of these proteins has been shown to possess adhesive properties, making it a possible target for new therapeutic strategies. Recombinant NT-Als9-2 from C. albicans (residues 18–329) was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.0 Å resolution. The crystals belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 34.73, b = 68.71, c = 120.03 Å, α = β = γ = 90° and one molecule in the asymmetric unit. Platinum-derivatized crystals belonged to the same space group, with similar unit-cell parameters, although they were not completely isomorphous

  14. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  15. Hybridization and Selective Release of DNA Microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy

  16. POTENSI ANTIFUNGI TANGKAI DAUN JARAK PAGAR TERHADAP PERTUMBUHAN Candida albicans

    Directory of Open Access Journals (Sweden)

    Ni Made Niagita Wiratni

    2017-12-01

    Full Text Available Tangkai daun Jarak pagar merupakan bagian dari Jarak pagar yang bisa dimanfaatkan sebagai pengobatan herbal oleh masyarakat untuk mengatasi masalah keputihan. Keputihan adalah gejala yang umum dialami oleh sebagian besar wanita yang disebabkan oleh infeksi Candida albicans. Penelitian ini eksperimen murni dengan desain kontrol posttest yang bertujuan untuk mengetahui kandungan fitokimia dan potensi antijamur ekstrak tangkai daun jarak pagar terhadap pertumbuhan Candida albicans. Ekstrak tangkai daun jarak pagar dalam penelitian ini diperoleh melalui proses ekstraksi pelarut dengan menggunakan etanol 96% dengan metode maserasi. Metode yang digunakan untuk uji fitokimia adalah metode kualitatif, sedangkan untuk uji potensi antijamur dilakukan dengan metode difusi dengan konsentrasi 10%, 25%, 30%, 40% dan 50%. Hasil uji fitokimia menunjukkan bahwa ekstrak tangkai daun jarak pagar mengandung saponin, tanin, dan flavonoid, namun tidak ditemukan senyawa alkaloid, namun hasil uji potensi antijamur menunjukkan bahwa diameter rata-rata zona inhibisi terhadap pertumbuhan Candida albicans adalah 0 mm . Kesimpulan dari penelitian ini adalah ekstrak tangkai daun jarak pagar tidak dapat menghambat pertumbuhan Candida albicans. Peneliti selanjutnya disarankan untuk melakukan uji fitokimia secara kuantitatif dan untuk menguji potensi antijamur tangkai daun jarak pagar dengan metode pengenceran.

  17. Antimicrobial Activity of Five Medicinal Plants on Candida Albicans

    Directory of Open Access Journals (Sweden)

    Fatemeh Masomi

    2016-10-01

    Full Text Available Background: In recent years, drug resistance to human pathogenic fungi has been increased. Medicinal plants are one way to overcome antibiotic resistance. The aim of this study was to evaluate the antifungal and inhibitory activity of five medicinal plants on the growth of Candida albicans. Methods: This study was done in the Microbiology Lab of Shahid Bahonar University of Kerman, Iran in 2015. Five medicinal plants include: Trachyspermum ammi (seed, Teucrium polium (leaf, Piper nigrum (seed, Pistachia vera (skin, Camelia sinensis (leaf were collected. Collected plant materials were extracted by ethanol and methanol solvent with maceration method. Antifungal activity of the ethanolic and methanolic extracts was evaluated by paper disc diffusion and agar well diffusion methods. Besides, MIC and MBC of each extract was determined. Results: All plant extracts had sufficient inhibitory effect against C. albicans but the extracts of P. vera had the best inhibitory effect on C. albicans (ZOI: 40 mm. The lowest antifungal effect between these five plants related to Piper nigrum (ZOI: 13 mm. Besides, the P. vera extracts had the best MIC and MBC values (6.25 and 12.5 mg/ml. Conclusion: This study strongly evidence the maximum antimicrobial activity of medicinal plants against C. albicans that this inhibitory effect varies with the different solvent-extract form. A more comprehensive study need to identify the effective compounds that have these antifungal properties.

  18. Hyphal content determines the compression strength of Candida albicans biofilms

    NARCIS (Netherlands)

    Paramonova, Ekaterina; Krom, Bastiaan P.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    Candida albicans is the most frequently isolated human fungal pathogen among species causing biofilm-related clinical infections. Mechanical properties of Candida biofilms have hitherto been given no attention, despite the fact that mechanical properties are important for selection of treatment or

  19. Incidence Of Candida Albicans Infection Among Women Having ...

    African Journals Online (AJOL)

    Objectives: This work was carried out to ascertain the incidence of candida albicans among women in Anambra State. Design: High vaginal swab (HVS) samples were collected from women that attend six hospitals in Anambra State between the months of June and September 2006. Settings: The samples were collected ...

  20. Evaluation of Candida Albicans Biofilm Formation on Various Dental ...

    African Journals Online (AJOL)

    2016-06-24

    Jun 24, 2016 ... Aims: Candida adhesion to any oral substrata is the first and essential stage in ... in the oral cavity of 20-40% of healthy individuals[1] .... colonizing bacteria.[24] Higher numbers of C. albicans are found on rough surfaces than on polished, smooth surfaces.[25] Theoretically, and as a consequence, dental.

  1. PERTUMBUHAN CANDIDA ALBICANS PADA PERMUKAAN POLIESTER EBP-2421

    Directory of Open Access Journals (Sweden)

    Widowati Siswomihardjo

    2015-08-01

    Full Text Available Acrylic resin has been the only polymeric material for denture base for many years. One of the requirements for an ideal polymeric denture base material. It should be resistant to bacterial growth. The growth of Candida albicans on the surface of dentures is a concern for many denture wearers. This organism often is associated with denture stomatitis. A preliminary study showed polyester EBP-2421, a polymeric material for statues can also be manipulated to denture base. This research examined the growth of Candida albicans on the surface of EBP-2421. Research was carried out on strips of polyester EBP-2421 and Selton acrylic resin. Strips were contaminated with Candida albicans for 24 hours. Examinations on polyester EBP-2421 and acrylic resin immersed in saliva significantly differ from the not immersed strips (p<0,05. The lowest frequency were Candida albicans adhered on stripes of polyester EBP-2421 immersed in saliva. This result related with the fact that polyester EBP-2421 has smoother surface topography than acrylic resin.

  2. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  3. The use of microarrays in microbial ecology

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  4. Iron-dependency of biological properties of Candida albicans

    Directory of Open Access Journals (Sweden)

    V. V. Leonov

    2017-01-01

    Full Text Available Background: Candidal infections occur in individuals with humoral or cell immunity deficiency. Any disorders of iron metabolism promote immune deficiency and abnormal sensitivity to infections. Potential modification of biological properties of Candida spp. in disorders of iron metabolism has not been discussed. Aim: To clarify the effects of iron metabolism disorders on the modification of biological properties of C.  albicans. Materials and methods: Growth kinetics of reference strain (24433 АТСС and clinical isolates of C.  albicans (n=20 depending on the concentration of Fe2+ ions in the broth and serum of blood donors with various types of iron metabolism (n=2 was studied by turbidimetry. We also assessed the expression of the adhesion gen (als3, hemolytic phospholipase C genes (plb1, plb2, plс and aspartic protease gene (sap1 in serum of donors with various iron levels. Results: Growth parameters of all C. albicans strains studied depends on the iron levels in the medium. The calculated constant of affinity to Fe2+ (Ks for C. albicans strains was in the range from 179.5 to 1863.3 μM. Clinical isolates are more iron-dependent (179.5albicans and is associated with overexpression of all virulence genes studied. Incubation of C.  albicans with iron-deficient and iron-loaded sera results in an increase in the growth rate up to 0.017 h-1 and 0.012 h-1, respectively, but is associated with a  reduction in expression of the major virulence genes. Conclusion: Biological properties of C. albicans are modified depending on the iron metabolism of the host. In those with normal iron metabolism, immune system suppresses Candida growth. Excess iron levels may promote candidiasis, whereas in iron

  5. Synthesis of O-glycopeptides and construction of glycopeptide microarrays

    DEFF Research Database (Denmark)

    Blixt, Klas Ola; Cló, Emiliano

    2013-01-01

    O-glycosylation of proteins is an important modification which affects biological function and immunity. In this chapter, we provide protocols for efficient solid-phase O-glycopeptide synthesis (SPGPS) and protocols for the construction of glycopeptide microarray chips for screening applications....... This will be exemplified for mucin-type glycopeptides and the construction of glycopeptide microarrays. To this end, the protocols provided are particularly suited for small-scale robotic parallel synthesis. N-Terminal amine capping of deletion peptides during synthesis stands out as vital to this strategy. It allows...

  6. Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity.

    Science.gov (United States)

    Liu, Pan; Wu, Xiuping; Liao, Chengshui; Liu, Xiaolei; Du, Jing; Shi, Haining; Wang, Xuelin; Bai, Xue; Peng, Peng; Yu, Lu; Wang, Feng; Zhao, Ying; Liu, Mingyuan

    2014-01-01

    The formation of extracellular traps (ETs) has recently been recognized as a novel defense mechanism in several types of innate immune cells. It has been suggested that these structures are toxic to microbes and contribute significantly to killing several pathogens. However, the role of ETs formed by macrophages (METs) in defense against microbes remains little known. In this study, we demonstrated that a subset of murine J774A.1 macrophage cell line (8% to 17%) and peritoneal macrophages (8.5% to 15%) form METs-like structures (METs-LS) in response to Escherichia coli and Candida albicans challenge. We found only a portion of murine METs-LS, which are released by dying macrophages, showed detectable killing effects on trapped E. coli but not C. albicans. Fluorescence and scanning electron microscopy analyses revealed that, in vitro, both microorganisms were entrapped in J774A.1 METs-LS composed of DNA and microbicidal proteins such as histone, myeloperoxidase and lysozyme. DNA components of both nucleus and mitochondrion origins were detectable in these structures. Additionally, METs-LS formation occurred independently of ROS produced by NADPH oxidase, and this process did not result in cell lysis. In summary, our results emphasized that microbes induced METs-LS in murine macrophage cells and that the microbicidal activity of these METs-LS differs greatly. We propose the function of METs-LS is to contain invading microbes at the infection site, thereby preventing the systemic diffusion of them, rather than significantly killing them.

  7. A core filamentation response network in Candida albicans is restricted to eight genes.

    Directory of Open Access Journals (Sweden)

    Ronny Martin

    Full Text Available Although morphological plasticity is a central virulence trait of Candida albicans, the number of filament-associated genes and the interplay of mechanisms regulating their expression remain unknown. By correlation-based network modeling of the transcriptional response to different defined external stimuli for morphogenesis we identified a set of eight genes with highly correlated expression patterns, forming a core filamentation response. This group of genes included ALS3, ECE1, HGT2, HWP1, IHD1 and RBT1 which are known or supposed to encode for cell- wall associated proteins as well as the Rac1 guanine nucleotide exchange factor encoding gene DCK1 and the unknown function open reading frame orf19.2457. The validity of network modeling was confirmed using a dataset of advanced complexity that describes the transcriptional response of C. albicans during epithelial invasion as well as comparing our results with other previously published transcriptome studies. Although the set of core filamentation response genes was quite small, several transcriptional regulators are involved in the control of their expression, depending on the environmental condition.

  8. Biophysical Effects of a Polymeric Biosurfactant in Candida krusei and Candida albicans Cells.

    Science.gov (United States)

    Ferreira, Gabriella Freitas; Dos Santos Pinto, Bruna Lorrana; Souza, Eliene Batista; Viana, José Lima; Zagmignan, Adrielle; Dos Santos, Julliana Ribeiro Alves; Santos, Áquila Rodrigues Costa; Tavares, Priscila Batista; Denadai, Ângelo Márcio Leite; Monteiro, Andrea Souza

    2016-12-01

    This study evaluated the effects of a polymeric biosurfactant produced by Trichosporon montevideense CLOA72 in the adhesion of Candida albicans and Candida krusei cells to human buccal epithelial cells and its interference in biofilm formation by these strains. The biofilm inhibition by biosurfactant (25 mg/mL) in C. krusei and C. albicans in polystyrene was reduced up to 79.5 and 85 %, respectively. In addition, the zeta potential and hydrodynamic diameter of the yeasts altered as a function of the biosurfactant concentration added to the cell suspension. The changes in the cell surface characteristics and the interface modification can contribute to the inhibition of the initial adherence of yeasts cells to the surface. In addition, the analyses of the biofilm matrix and planktonic cell surfaces demonstrated differences in carbohydrate and protein concentrations for the two studied strains, which may contribute to the modulation of cell adhesion or consolidation of biofilms, especially in C. krusei. This study suggests a possible application of the of CLOA72 biosurfactant in inhibiting the adhesion and formation of biofilms on biological surfaces by yeasts of the Candida genus.

  9. White cells facilitate opposite- and same-sex mating of opaque cells in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Li Tao

    2014-10-01

    Full Text Available Modes of sexual reproduction in eukaryotic organisms are extremely diverse. The human fungal pathogen Candida albicans undergoes a phenotypic switch from the white to the opaque phase in order to become mating-competent. In this study, we report that functionally- and morphologically-differentiated white and opaque cells show a coordinated behavior during mating. Although white cells are mating-incompetent, they can produce sexual pheromones when treated with pheromones of the opposite mating type or by physically interacting with opaque cells of the opposite mating type. In a co-culture system, pheromones released by white cells induce opaque cells to form mating projections, and facilitate both opposite- and same-sex mating of opaque cells. Deletion of genes encoding the pheromone precursor proteins and inactivation of the pheromone response signaling pathway (Ste2-MAPK-Cph1 impair the promoting role of white cells (MTLa in the sexual mating of opaque cells. White and opaque cells communicate via a paracrine pheromone signaling system, creating an environment conducive to sexual mating. This coordination between the two different cell types may be a trade-off strategy between sexual and asexual lifestyles in C. albicans.

  10. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shuyuan Liu

    Full Text Available Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers, amlodipine (AML, nifedipine (NIF, benidipine (BEN and flunarizine (FNZ with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1 expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2. The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin and YVC1 (encoding calcium channel protein in vacuole membrane.

  11. Coating polypropylene surfaces with protease weakens the adhesion and increases the dispersion of Candida albicans cells.

    Science.gov (United States)

    Andreani, Eugenio Spadoni; Villa, Federica; Cappitelli, Francesca; Krasowska, Anna; Biniarz, Piotr; Łukaszewicz, Marcin; Secundo, Francesco

    2017-03-01

    To investigate the ability of the proteases, subtilisin and α-chymotrypsin (aCT), to inhibit the adhesion of Candida albicans biofilm to a polypropylene surface. The proteases were immobilized on plasma-treated polypropylene by covalently linking them with either glutaraldehyde (GA) or N'-diisopropylcarbodiimide (DIC) and N-hydroxysuccinimide (NHS). The immobilization did not negatively affect the enzyme activity and in the case of subtilisin, the activity was up to 640% higher than that of the free enzyme when using N-acetyl phenylalanine ethyl ester as the substrate. The efficacies against biofilm dispersal for the GA-linked SubC and aCT coatings were 41 and 55% higher than the control (polypropylene coated with only GA), respectively, whereas no effect was observed with enzymes immobilized with DIC and NHS. The higher dispersion efficacy observed for the proteases immobilized with GA could be both steric (proper orientation of the active site) and dynamic (higher protein mobility/flexibility). Proteases immobilized on a polypropylene surface reduced the adhesion of C. albicans biofilms and therefore may be useful in developing anti-biofilm surfaces based on non-toxic molecules and sustainable strategies.

  12. Impaired killing of Candida albicans by granulocytes mobilized for transfusion purposes: a role for granule components.

    Science.gov (United States)

    Gazendam, Roel P; van de Geer, Annemarie; van Hamme, John L; Tool, Anton T J; van Rees, Dieke J; Aarts, Cathelijn E M; van den Biggelaar, Maartje; van Alphen, Floris; Verkuijlen, Paul; Meijer, Alexander B; Janssen, Hans; Roos, Dirk; van den Berg, Timo K; Kuijpers, Taco W

    2016-05-01

    Granulocyte transfusions are used to treat neutropenic patients with life-threatening bacterial or fungal infections that do not respond to anti-microbial drugs. Donor neutrophils that have been mobilized with granulocyte-colony stimulating factor (G-CSF) and dexamethasone are functional in terms of antibacterial activity, but less is known about their fungal killing capacity. We investigated the neutrophil-mediated cytotoxic response against C. albicans and A. fumigatus in detail. Whereas G-CSF/dexamethasone-mobilized neutrophils appeared less mature as compared to neutrophils from untreated controls, these cells exhibited normal ROS production by the NADPH oxidase system and an unaltered granule mobilization capacity upon stimulation. G-CSF/dexamethasone-mobilized neutrophils efficiently inhibited A. fumigatus germination and killed Aspergillus and Candida hyphae, but the killing of C. albicans yeasts was distinctly impaired. Following normal Candida phagocytosis, analysis by mass spectrometry of purified phagosomes after fusion with granules demonstrated that major constituents of the antimicrobial granule components, including major basic protein (MBP), were reduced. Purified MBP showed candidacidal activity, and neutrophil-like Crisp-Cas9 NB4-KO-MBP differentiated into phagocytes were impaired in Candida killing. Together, these findings indicate that G-CSF/dexamethasone-mobilized neutrophils for transfusion purposes have a selectively impaired capacity to kill Candida yeasts, as a consequence of an altered neutrophil granular content. Copyright© Ferrata Storti Foundation.

  13. The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting.

    Science.gov (United States)

    Jadhav, Ashwini; Bansode, Bhagyashree; Phule, Datta; Shelar, Amruta; Patil, Rajendra; Gade, Wasudev; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2017-05-01

    Fluoroquinolines are broad spectrum fourth generation antibiotics. Some of the Fluoroquinolines exhibit antifungal activity. We are reporting the potential mechanism of action of a fluoroquinoline antibiotic, moxifloxacin on the growth, morphogenesis and biofilm formation of the human pathogen Candida albicans. Moxifloxacin was found to be Candidacidal in nature. Moxifloxacin seems to inhibit the yeast to Hyphal morphogenesis by affecting signaling pathways. It arrested the cell cycle of C. albicans at S phase. Docking of moxifloxacin with predicted structure of C. albicans DNA Topoisomerase II suggests that moxifloxacin may bind and inhibit the activity of DNA Topoisomerase II in C. albicans. Moxifloxacin could be used as a dual purpose antibiotic for treating mixed infections caused by bacteria as well as C. albicans. In addition chances of developing moxifloxacin resistance in C. albicans are less considering the fact that moxifloxacin may target multiple steps in yeast to hyphal transition in C. albicans.

  14. Serum repressing efflux pump CDR1 in Candida albicans

    Directory of Open Access Journals (Sweden)

    Fan Jen-Chung

    2006-07-01

    Full Text Available Abstract Background In the past decades, the prevalence of candidemia has increased significantly and drug resistance has also become a pressing problem. Overexpression of CDR1, an efflux pump, has been proposed as a major mechanism contributing to the drug resistance in Candida albicans. It has been demonstrated that biological fluids such as human serum can have profound effects on antifungal pharmacodynamics. The aim of this study is to understand the effects of serum in drug susceptibility via monitoring the activity of CDR1 promoter of C. albicans. Results The wild-type C. albicans cells (SC5314 but not the cdr1/cdr1 mutant cells became more susceptible to the antifungal drug when the medium contained serum. To understand the regulation of CDR1 in the presence of serum, we have constructed CDR1 promoter-Renilla luciferase (CDR1p-RLUC reporter to monitor the activity of the CDR1 promoter in C. albicans. As expected, the expression of CDR1p-RLUC was induced by miconazole. Surprisingly, it was repressed by serum. Consistently, the level of CDR1 mRNA was also reduced in the presence of serum but not N-acetyl-D-glucosamine, a known inducer for germ tube formation. Conclusion Our finding that the expression of CDR1 is repressed by serum raises the question as to how does CDR1 contribute to the drug resistance in C. albicans causing candidemia. This also suggests that it is important to re-assess the prediction of in vivo therapeutic outcome of candidemia based on the results of standard in vitro antifungal susceptibility testing, conducted in the absence of serum.

  15. Direct bioethanol production by amylolytic yeast Candida albicans.

    Science.gov (United States)

    Aruna, A; Nagavalli, M; Girijashankar, V; Ponamgi, S P D; Swathisree, V; Rao, L Venkateswar

    2015-03-01

    An attempt was made to produce bioethanol using optimized fermentation parameters and mutationally improved strain of Candida albicans. The mutant strain OMC3E6 obtained by UV irradiation followed by ethidium bromide successive mutations showed 2.6 times more glucoamylase secretion and 1.5 times more bioethanol production via direct conversion of starch. Enhanced hydrolysis of insoluble starch (72%) and potato starch (70%) was achieved with glucoamylase enzyme preparation from mutant C. albicans. In fermentation medium, the use of maltose, corn steep liquor, NaH2 PO4 , NaCl + MgSO4 and Triton X-100 has increased the glucoamylase production by the microbe. Under optimized conditions, C. albicans eventually produced 437 g ethanol kg(-1) potatoes. Earlier reports mentioned the use of thrice the quantity of starch as reported by us followed by more fermentation period (3-4 days) and demanded pretreatment of starch sources with alpha-amylase as well. Here, we simplified these three steps and obtained 73% conversion of insoluble starch into ethanol via direct conversion method in a period of 2 days without the involvement of cell immobilizations or enzyme pretreatment steps. Due to fast depletion of fossil fuels in the modern world, bioethanol usage as an alternate energy source is the need of the hour. For the first time, we report bioethanol production by Candida albicans via direct conversion of starchy biomass into ethanol along with enhanced starch-hydrolysing capacity and ethanol conversion ratio. So far, C. albicans was dealt in the field of clinical pathology, but here we successfully employed this organism to produce bioethanol from starchy agri-substrates. Optimizing fermentation parameters and improving the microbial strains through successive mutagenesis can improve the end product yield. © 2014 The Society for Applied Microbiology.

  16. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results

    Directory of Open Access Journals (Sweden)

    Dai Yilin

    2012-06-01

    Full Text Available Abstract Background Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. Findings We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Conclusion Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  17. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Deming Xu

    2007-06-01

    Full Text Available Candida albicans is a prevalent fungal pathogen amongst the immunocompromised population, causing both superficial and life-threatening infections. Since C. albicans is diploid, classical transmission genetics can not be performed to study specific aspects of its biology and pathogenesis. Here, we exploit the diploid status of C. albicans by constructing a library of 2,868 heterozygous deletion mutants and screening this collection using 35 known or novel compounds to survey chemically induced haploinsufficiency in the pathogen. In this reverse genetic assay termed the fitness test, genes related to the mechanism of action of the probe compounds are clearly identified, supporting their functional roles and genetic interactions. In this report, chemical-genetic relationships are provided for multiple FDA-approved antifungal drugs (fluconazole, voriconazole, caspofungin, 5-fluorocytosine, and amphotericin B as well as additional compounds targeting ergosterol, fatty acid and sphingolipid biosynthesis, microtubules, actin, secretion, rRNA processing, translation, glycosylation, and protein folding mechanisms. We also demonstrate how chemically induced haploinsufficiency profiles can be used to identify the mechanism of action of novel antifungal agents, thereby illustrating the potential utility of this approach to antifungal drug discovery.

  18. Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans

    Science.gov (United States)

    Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman

    2017-01-01

    Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.

  19. The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans.

    Science.gov (United States)

    Chen, Xinyue; Zhang, Ruoyu; Takada, Ayako; Iwatani, Shun; Oka, Chiemi; Kitamoto, Toshitaka; Kajiwara, Susumu

    2017-02-01

    The fungal pathogen Candida albicans undergoes a transition from yeast cells to filamentous cells that is related to its pathogenicity. The complex multicellular processes involved in biofilm formation by this fungus also include this transition. In this work, we investigated the morphological role of the Bgl2 protein (Bgl2p) in the transition to filamentous cells during biofilm formation by C. albicans. Bgl2p has been identified as a β-1, 3-glucosyltransferase, and transcription of the CaBGL2 gene is upregulated during biofilm formation. We used scanning electron microscopy to observe the microstructure of a bgl2 null mutant during biofilm formation and found a delay in the transition to filamentous cells in the premature phase (24 hours) of biofilm formation. Deletion of the CaBGL2 gene led to a decrease in the expression of CPH2 and TEC1, which encode transcription factors required for the transition to the filamentous form. These findings indicate that Bgl2p plays a role in the transition to filamentous cells during biofilm formation by C. albicans. © 2016 Blackwell Verlag GmbH.

  20. Effect of quinoline based 1,2,3-triazole and its structural analogues on growth and virulence attributes of Candida albicans.

    Science.gov (United States)

    Irfan, Mohammad; Alam, Shadab; Manzoor, Nikhat; Abid, Mohammad

    2017-01-01

    Candida albicans, along with some other non-albicans Candida species, is a group of yeast, which causes serious infections in humans that can be both systemic and superficial. Despite the fact that extensive efforts have been put into the discovery of novel antifungal agents, the frequency of these fungal infections has increased drastically worldwide. In our quest for the discovery of novel antifungal compounds, we had previously synthesized and screened quinoline containing 1,2,3-triazole (3a) as a potent Candida spp inhibitor. In the present study, two structural analogues of 3a (3b and 3c) have been synthesized to determine the role of quinoline and their anti-Candida activities have been evaluated. Preliminary results helped us to determine 3a and 3b as lead inhibitors. The IC50 values of compound 3a for C. albicans ATCC 90028 (standard) and C. albicans (fluconazole resistant) strains were 0.044 and 2.3 μg/ml, respectively while compound 3b gave 25.4 and 32.8 μg/ml values for the same strains. Disk diffusion, growth and time kill curve assays showed significant inhibition of C. albicans in the presence of compounds 3a and 3b. Moreover, 3a showed fungicidal nature while 3b was fungistatic. Both the test compounds significantly lower the secretion of proteinases and phospholipases. While, 3a inhibited proteinase secretion in C. albicans (resistant strain) by 45%, 3b reduced phospholipase secretion by 68% in C. albicans ATCC90028 at their respective MIC values. Proton extrusion and intracellular pH measurement studies suggested that both compounds potentially inhibit the activity of H+ ATPase, a membrane protein that is crucial for various cell functions. Similarly, 95-97% reduction in ergosterol content was measured in the presence of the test compounds at MIC and MIC/2. The study led to identification of two quinoline based potent inhibitors of C. albicans for further structural optimization and pharmacological investigation.

  1. Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides

    Science.gov (United States)

    Nguyen, H. T.; Dupont, L. N.; Jean, A. M.; Géhin, T.; Chevolot, Y.; Laurenceau, E.; Gijs, M. A. M.

    2018-03-01

    We report here a new microfluidic method allowing for the quantification of human epidermal growth factor receptor 2 (HER2) expression levels from formalin-fixed breast cancer tissues. After partial extraction of proteins from the tissue slide, the extract is routed to an antibody (Ab) microarray for HER2 titration by fluorescence. Then the HER2-expressing cell area is evaluated by immunofluorescence (IF) staining of the tissue slide and used to normalize the fluorescent HER2 signal measured from the Ab microarray. The number of HER2 gene copies measured by fluorescence in situ hybridization (FISH) on an adjacent tissue slide is concordant with the normalized HER2 expression signal. This work is the first study implementing biomarker extraction and detection from cancer tissue slides using microfluidics in combination with a microarray system, paving the way for further developments towards multiplex and precise quantification of cancer biomarkers.

  2. Identification of genes differentially expressed in hyphae of Candida albicans Identificação de gases em hifa de Candida albicans

    Directory of Open Access Journals (Sweden)

    Analy Salles de Azevedo Melo

    2003-11-01

    Full Text Available The ability to switch from yeast to hyphal forms is essential for Candida albicans virulence. This morphological switch involves the expression of hyphal-specific genes under the control of transcriptional factors. To contribute to the discovery of hyphal-specific genes, we used a differential screening method where clones of a genomic DNA library were hybridized with yeast and hyphal cDNA probes. Two clones with increased expression in hyphae were selected for study. Sequencing these clones, we found that they encoded two important metabolic genes, CaHXT7 (high-affinity hexose transporter and CaYLL34 (member of the AAA ATPase family. CaHXT7 and CaYLL34 ORFs were completely determined. Analyses of the putative proteins show that: (1 CaHxt7p has one hexose transporter domain and (2 CaYll34p has two AAA ATPase domains. These results show, for the first time, increased expression of metabolic genes in C. albicans hyphae. Also, because the proteins encoded by CaHXT7 and CaYLL34 may be necessary for the switching to hyphae, they could be new targets for antifungal drugs.A transição morfológica de levedura para hifa é essencial para a virulência de Candida albicans. Esta transição envolve a expressão de genes hifa-específicos que estão sob o controle de fatores transcricionais. Para descobrir genes hifa-específicos utilizamos um método de triagem diferencial, onde clones de biblioteca de DNA genômico foram hibridizados com sondas de cDNA de levedura e hifa. Dois clones com aumento de expressão em hifa foram selecionados. O sequenciamento dos insertos destes clones permitiu a identificação de dois genes metabólicos importantes: CaHXT7 (high-affinity hexose transporter e CaYLL34 (da família AAA ATPase. As ORFs completas destes genes foram caracterizadas e a análise das proteínas hipotéticas revelou que: (1 CaHxt7p tem um domínio de transportador de hexose e (2 CaYll34 tem dois domínios AAA ATPase. Este é o primeiro estudo que

  3. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans

    Science.gov (United States)

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-01-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668

  4. Mutational analysis of metacaspase CaMca1 and decapping activator Edc3 in the pathogenicity of Candida albicans.

    Science.gov (United States)

    Jeong, Jeong-Hoon; Lee, Seok-Eui; Kim, Jinmi

    2016-12-01

    Candida albicans, an opportunistic fungal pathogen, displays apoptotic cell death in response to various stresses and a wide range of antifungal treatments. CaMca1, which is the only metacaspase in C. albicans, has been described as a key player in apoptotic cell death. Edc3 is an mRNA decapping activator and a scaffold protein of processing bodies. Edc3 was previously shown to regulate CaMCA1 expression and oxidative stress-induced apoptosis. In this study, we analyzed the contribution of the catalytic residues of the CaMca1 to the oxidative stress-induced apoptosis and pathogenicity of C. albicans. The CaMCA1 C292A mutation decreased caspase activity to a level similar to that observed in the Camca1/Camca1 deletion strain and over-expression of CaMCA1 C292A failed to suppress the oxidative-stress phenotypes of the edc3/edc3 mutant strain. The edc3/edc3, Camca1/Camca1, and CaMCA1 C292A mutant strains were not virulent in a murine candidiasis model. Filamentation defects were observed in the Camca1/Camca1 mutant cells, whereas this defect was only partial in CaMCA1 C292A mutant cells. These results suggest that CaMca1 and Edc3 play essential roles in the oxidative stress-induced apoptosis and virulence of C. albicans, and also support the notion that Edc3 is a key regulator of CaMca1 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Persistent Candida albicans colonization and molecular mechanisms of azole resistance in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients.

    Science.gov (United States)

    Siikala, Emilia; Rautemaa, Riina; Richardson, Malcolm; Saxen, Harri; Bowyer, Paul; Sanglard, Dominique

    2010-12-01

    Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I) suffer from chronic candidosis caused mainly by Candida albicans, and repeated courses of azole antifungals have led to the development of resistance in the APECED patient population in Finland. The aim of our study was to address whether the patients are persistently colonized with the same or genetically closely related strains, whether epidemic strains are present and which molecular mechanisms account for azole resistance. Sets of C. albicans (n = 19) isolates from nine APECED patients reported with decreased susceptibility to fluconazole isolated up to 9 years apart were included. The strains were typed by multilocus sequence typing. CDR1/2, MDR1 and ERG11 mRNA expression was analysed by northern blotting and Cdr1, Cdr2 and Mdr1 protein expression by western blotting, and TAC1 and ERG11 genes were sequenced. All seven patients with multiple C. albicans isolates analysed were persistently colonized with the same or a genetically closely related strain for a mean of 5 years. All patients were colonized with different strains and no epidemic strains were found. The major molecular mechanisms behind the azole resistance were mutations in TAC1 contributing to overexpression of CDR1 and CDR2. Six new TAC1 mutations were found, one of which (N740S) is likely to be a gain-of-function mutation. Most isolates were found to have gained multiple TAC1 and ERG11 point mutations. Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations occur within strains, leading to the development of azole-resistant isolates.

  6. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-11-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography-mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen.

  7. Functional interaction analysis of GM1-related carbohydrates and Vibrio cholerae toxins using carbohydrate microarray.

    Science.gov (United States)

    Kim, Chang Sup; Seo, Jeong Hyun; Cha, Hyung Joon

    2012-08-07

    The development of analytical tools is important for understanding the infection mechanisms of pathogenic bacteria or viruses. In the present work, a functional carbohydrate microarray combined with a fluorescence immunoassay was developed to analyze the interactions of Vibrio cholerae toxin (ctx) proteins and GM1-related carbohydrates. Ctx proteins were loaded onto the surface-immobilized GM1 pentasaccharide and six related carbohydrates, and their binding affinities were detected immunologically. The analysis of the ctx-carbohydrate interactions revealed that the intrinsic selectivity of ctx was GM1 pentasaccharide ≫ GM2 tetrasaccharide > asialo GM1 tetrasaccharide ≥ GM3trisaccharide, indicating that a two-finger grip formation and the terminal monosaccharides play important roles in the ctx-GM1 interaction. In addition, whole cholera toxin (ctxAB(5)) had a stricter substrate specificity and a stronger binding affinity than only the cholera toxin B subunit (ctxB). On the basis of the quantitative analysis, the carbohydrate microarray showed the sensitivity of detection of the ctxAB(5)-GM1 interaction with a limit-of-detection (LOD) of 2 ng mL(-1) (23 pM), which is comparable to other reported high sensitivity assay tools. In addition, the carbohydrate microarray successfully detected the actual toxin directly secreted from V. cholerae, without showing cross-reactivity to other bacteria. Collectively, these results demonstrate that the functional carbohydrate microarray is suitable for analyzing toxin protein-carbohydrate interactions and can be applied as a biosensor for toxin detection.

  8. A Comparative Transcriptomics Workflow for Analyzing Microarray Data From CHO Cell Cultures.

    Science.gov (United States)

    Chen, Chun; Le, Huong; Follstad, Brian; Goudar, Chetan T

    2018-03-01

    Microarray-based comparative transcriptomics analysis is a powerful tool to understand therapeutic protein producing mammalian cell lines at the gene expression level. However, an integrated analysis workflow specifically designed for end-to-end analysis of microarray data for CHO cells, the most prevalent host for commercial recombinant protein production, is lacking. To address this gap, an automated data analysis workflow in R that leverages public domain analysis modules is developed to analyze microarray based gene expression data. In addition to testing the global transcriptome differences of CHO cells at different conditions, the workflow identifies differentially expressed genes and pathways with intuitive visualizations as the outputs. The utility of this automated workflow is demonstrated by comparing the transcriptomic profiles of recombinant protein expressing CHO cells with and without a temperature shift. Statistically significant differential expression at the gene, pathway, and global transcriptome levels are identified and visualized. An automated workflow like the one developed in this study will enable rapid translation of CHO culture microarray data into biologically relevant information for mechanism-driven cell line optimization and bioprocess development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microarray analysis of potential genes in the pathogenesis of recurrent oral ulcer.

    Science.gov (United States)

    Han, Jingying; He, Zhiwei; Li, Kun; Hou, Lu

    2015-01-01

    Recurrent oral ulcer seriously threatens patients' daily life and health. This study investigated potential genes and pathways that participate in the pathogenesis of recurrent oral ulcer by high throughput bioinformatic analysis. RT-PCR and Western blot were applied to further verify screened interleukins effect. Recurrent oral ulcer related genes were collected from websites and papers, and further found out from Human Genome 280 6.0 microarray data. Each pathway of recurrent oral ulcer related genes were got through chip hybridization. RT-PCR was applied to test four recurrent oral ulcer related genes to verify the microarray data. Data transformation, scatter plot, clustering analysis, and expression pattern analysis were used to analyze recurrent oral ulcer related gene expression changes. Recurrent oral ulcer gene microarray was successfully established. Microarray showed that 551 genes involved in recurrent oral ulcer activity and 196 genes were recurrent oral ulcer related genes. Of them, 76 genes up-regulated, 62 genes down-regulated, and 58 genes up-/down-regulated. Total expression level up-regulated 752 times (60%) and down-regulated 485 times (40%). IL-2 plays an important role in the occurrence, development and recurrence of recurrent oral ulcer on the mRNA and protein levels. Gene microarray can be used to analyze potential genes and pathways in recurrent oral ulcer. IL-2 may be involved in the pathogenesis of recurrent oral ulcer.

  10. Biological microarray interpretation : The rules of engagement

    NARCIS (Netherlands)

    Breitling, Rainer

    2006-01-01

    Gene expression microarrays are now established as a standard tool in biological and biochemical laboratories. Interpreting the masses of data generated by this technology poses a number of unusual new challenges. Over the past few years a consensus has begun to emerge concerning the most important

  11. Single-species microarrays and comparative transcriptomics.

    Directory of Open Access Journals (Sweden)

    Frédéric J J Chain

    Full Text Available BACKGROUND: Prefabricated expression microarrays are currently available for only a few species but methods have been proposed to extend their application to comparisons between divergent genomes. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that the hybridization intensity of genomic DNA is a poor basis on which to select unbiased probes on Affymetrix expression arrays for studies of comparative transcriptomics, and that doing so produces spurious results. We used the Affymetrix Xenopus laevis microarray to evaluate expression divergence between X. laevis, X. borealis, and their F1 hybrids. When data are analyzed with probes that interrogate only sequences with confirmed identity in both species, we recover results that differ substantially analyses that use genomic DNA hybridizations to select probes. CONCLUSIONS/SIGNIFICANCE: Our findings have implications for the experimental design of comparative expression studies that use single-species microarrays, and for our understanding of divergent expression in hybrid clawed frogs. These findings also highlight important limitations of single-species microarrays for studies of comparative transcriptomics of polyploid species.

  12. Microarray technology: a promising tool in nutrigenomics.

    Science.gov (United States)

    Masotti, Andrea; Da Sacco, Letizia; Bottazzo, Gian Franco; Alisi, Anna

    2010-08-01

    Microarray technology is a powerful tool for the global evaluation of gene expression profiles in tissues and for understanding many of the factors controlling the regulation of gene transcription. This technique not only provides a considerable amount of information on markers and predictive factors that may potentially characterize a specific clinical picture, but also promises new applications for therapy. One of the most recent applications of microarrays concerns nutritional genomics. Nutritional genomics, known as nutrigenomics, aims to identify and understand mechanisms of molecular interaction between nutrients and/or other dietary bioactive compounds and the genome. Actually, many nutrigenomic studies utilize new approaches such as microarrays, genomics, and bioinformatics to understand how nutrients influence gene expression. The coupling of these new technologies with nutrigenomics promises to lead to improvements in diet and health. In fact, it may provide new information which can be used to ameliorate dietary regimens and to discover novel natural agents for the treatment of important diseases such as diabetes and cancer. This critical review gives an overview of the clinical relevance of a nutritional approach to several important diseases, and proposes the use of microarray for nutrigenomic studies.

  13. Comparing transformation methods for DNA microarray data

    NARCIS (Netherlands)

    Thygesen, Helene H.; Zwinderman, Aeilko H.

    2004-01-01

    Background: When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include

  14. Shrinkage covariance matrix approach for microarray data

    Science.gov (United States)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  15. Evaluating different methods of microarray data normalization

    Directory of Open Access Journals (Sweden)

    Ferreira Carlos

    2006-10-01

    Full Text Available Abstract Background With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration. Results Here, we considered three commonly used normalization approaches, namely: Loess, Splines and Wavelets, and two non-parametric regression methods, which have yet to be used for normalization, namely, the Kernel smoothing and Support Vector Regression. The results obtained were compared using artificial microarray data and benchmark studies. The results indicate that the Support Vector Regression is the most robust to outliers and that Kernel is the worst normalization technique, while no practical differences were observed between Loess, Splines and Wavelets. Conclusion In face of our results, the Support Vector Regression is favored for microarray normalization due to its superiority when compared to the other methods for its robustness in estimating the normalization curve.

  16. Ecologically relevant stress resistance: from microarrays and ...

    Indian Academy of Sciences (India)

    2004-10-15

    Oct 15, 2004 ... Home; Journals; Journal of Biosciences; Volume 29; Issue 4. Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic and genetic stress as model stresses.

  17. Gene Expression Analysis Using Agilent DNA Microarrays

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Hybridization of labeled cDNA to microarrays is an intuitively simple and a vastly underestimated process. If it is not performed, optimized, and standardized with the same attention to detail as e.g., RNA amplification, information may be overlooked or even lost. Careful balancing of the amount...

  18. Photoinactivation of single and mixed biofilms of Candida albicans and non-albicans Candida species using Photodythazine® [corrected].

    Science.gov (United States)

    Carmello, Juliana Cabrini; Alves, Fernanda; Mima, Ewerton Garcia de Oliveira; Jorge, Janaina Habib; Bagnato, Vanderlei Salvador; Pavarina, Ana Cláudia

    2017-03-01

    This study evaluated the effectiveness of antimicrobial photodynamic therapy (aPDT) mediated by Photodithazine ® (PDZ) formulated in hydrogel, in the inactivation of mono and duo-species biofilms of Candida albicans, Candida glabrata and Candida tropicalis. Standardized suspensions of each strain were prepared and after biofilm formation, mono-species were treated with 150 and 175mg/L of PDZ for 20min (pre-irradiation time), and exposed to LED light at a dose of 37.5J/cm 2 (660nm). The duo-species biofilms (C. albicans+C. glabrata and C. albicans+C. tropicalis) were treated with 150mg/L of PDZ and light. Additional samples were treated with PDZ or light only, and the control did not receive any treatment. Next, microbiological evaluation was performed by spreading the cells on Sabouraud Dextrose Agar and CHROMagar Candida for colony forming units (CFU/mL). Moreover, the total biomass of biofilm was verified using the crystal violet staining assay (CV). The data were submitted to ANOVA and Tukey post-hoc (α=0.05). The use of PDZ 150mg/L promoted a reduction of 1.0, 1.2, 1.5 log 10 in the viability of C. glabrata, C. albicans and C. tropicalis, respectively. The same concentration reduced in 1.0 log 10 the viability of each species grown as duo-species biofilms. The crystal violet assay showed that the use of 150mg/L reduced 24.4%, 39.2% and 43.7% of the total biomass of C. albicans, C. tropicalis and C. glabrata, respectively. aPDT did not reduce the total biomass to the duo-species biofilms. Thus, PDZ-mediated aPDT was more effective in the inactivation of mono-species biofilms of Candida spp. compared with duo-species biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A method of microarray data storage using array data type.

    Science.gov (United States)

    Tsoi, Lam C; Zheng, W Jim

    2007-04-01

    A well-designed microarray database can provide valuable information on gene expression levels. However, designing an efficient microarray database with minimum space usage is not an easy task since designers need to integrate the microarray data with the information of genes, probe annotation, and the descriptions of each microarray experiment. Developing better methods to store microarray data can greatly improve the efficiency and usefulness of such data. A new schema is proposed to store microarray data by using array data type in an object-relational database management system--PostgreSQL. The implemented database can store all the microarray data from the same chip in an array data structure. The variable-length array data type in PostgreSQL can store microarray data from same chip. The implementation of our schema can help to increase the data retrieval and space efficiency.

  20. Microarray Analysis of Space-flown Murine Thymus Tissue

    Data.gov (United States)

    National Aeronautics and Space Administration — Microarray Analysis of Space-flown Murine Thymus Tissue Reveals Changes in Gene Expression Regulating Stress and Glucocorticoid Receptors. We used microarrays to...

  1. Identifying Fishes through DNA Barcodes and Microarrays.

    Science.gov (United States)

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N; Weber, Hannes; Blohm, Dietmar

    2010-09-07

    International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  2. Identifying Fishes through DNA Barcodes and Microarrays.

    Directory of Open Access Journals (Sweden)

    Marc Kochzius

    Full Text Available BACKGROUND: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. METHODOLOGY/PRINCIPAL FINDINGS: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S, cytochrome b (cyt b, and cytochrome oxidase subunit I (COI for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90% renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. CONCLUSIONS/SIGNIFICANCE: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  3. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  4. Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation.

    Science.gov (United States)

    Richard, Arianne C; Lyons, Paul A; Peters, James E; Biasci, Daniele; Flint, Shaun M; Lee, James C; McKinney, Eoin F; Siegel, Richard M; Smith, Kenneth G C

    2014-08-04

    Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.

  5. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    Science.gov (United States)

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model.

    LENUS (Irish Health Repository)

    Spiering, Martin J

    2010-02-01

    Candida albicans and Candida dubliniensis are closely related species displaying differences in virulence and genome content, therefore providing potential opportunities to identify novel C. albicans virulence genes. C. albicans gene arrays were used for comparative analysis of global gene expression in the two species in reconstituted human oral epithelium (RHE). C. albicans (SC5314) showed upregulation of hypha-specific and virulence genes within 30 min postinoculation, coinciding with rapid induction of filamentation and increased RHE damage. C. dubliniensis (CD36) showed no detectable upregulation of hypha-specific genes, grew as yeast, and caused limited RHE damage. Several genes absent or highly divergent in C. dubliniensis were upregulated in C. albicans. One such gene, SFL2 (orf19.3969), encoding a putative heat shock factor, was deleted in C. albicans. DeltaDeltasfl2 cells failed to filament under a range of hypha-inducing conditions and exhibited greatly reduced RHE damage, reversed by reintroduction of SFL2 into the DeltaDeltasfl2 strain. Moreover, SFL2 overexpression in C. albicans triggered hyphal morphogenesis. Although SFL2 deletion had no apparent effect on host survival in the murine model of systemic infection, DeltaDeltasfl2 strain-infected kidney tissues contained only yeast cells. These results suggest a role for SFL2 in morphogenesis and an indirect role in C. albicans pathogenesis in epithelial tissues.

  7. CANDIDA ALBICANS AND NON-ALBICANS SPECIES AS ETIOLOGICAL AGENT OF VAGINITIS IN PREGNANT AND NONPREGNANT WOMEN

    Science.gov (United States)

    Babić, Mirela; Hukić, Mirsada

    2010-01-01

    Pregnancy represents a risk factor in the occurrence of vaginal candidosis. The objectives of our study were: to make determination of the microscopic findings of vaginal swab, frequency of Candida species in the culture of pregnant women and patients who are not pregnant, determine the Candida species in all cultures, and to determine the frequency and differences in the frequency of C. albicans and other non-albicans species. In one year study performed during 2006 year, we tested patients of Gynaecology and Obstetrics clinic of the Clinical Centre in Sarajevo and Gynaecology department of the General hospital in Sarajevo. 447 woman included in the study were separated in two groups: 203 pregnant (in the last trimester of pregnancy), and 244 non-pregnant woman in period of fertility. Each vaginal swab was examined microscopically. The yeast, number of colonies, and the species of Candida were determined on Sabouraud dextrose agar with presence of antibiotics. For determination of Candida species, we used germ tube test for detection of C. albicans, and cultivation on the selective medium and assimilation tests for detection of non-albicans species. The results indicated positive microscopic findings in the test group (40,9%), as well as greater number of positive cultures (46,8%). The most commonly detected species for both groups was C. albicans (test group 40.9% and control group 23,0%). The most commonly detected non-albicans species for the test group were C. glabrata (4,2 %) and C. krusei (3,2%), and for the control group were C. glabrata (3,2%) and C. parapsilosis (3,2%). The microscopic findings correlated with the number of colonies in positive cultures. In the test group, we found an increased number of yeasts (64,3%), and the pseudopyphae and blastopores by microscopic examination as an indication of infection. In the control group, we found a small number of yeasts (64,6%), in the form of blastopores, as an indication of the candida colonisation. Our

  8. Exploring the mechanisms of action of human secretory RNase 3 and RNase 7 against Candida albicans.

    Science.gov (United States)

    Salazar, Vivian A; Arranz-Trullén, Javier; Navarro, Susanna; Blanco, Jose A; Sánchez, Daniel; Moussaoui, Mohammed; Boix, Ester

    2016-10-01

    Human antimicrobial RNases, which belong to the vertebrate RNase A superfamily and are secreted upon infection, display a wide spectrum of antipathogen activities. In this work, we examined the antifungal activity of the eosinophil RNase 3 and the skin-derived RNase 7, two proteins expressed by innate cell types that are directly involved in the host defense against fungal infection. Candida albicans has been selected as a suitable working model for testing RNase activities toward a eukaryotic pathogen. We explored the distinct levels of action of both RNases on yeast by combining cell viability and membrane model assays together with protein labeling and confocal microscopy. Site-directed mutagenesis was applied to ablate either the protein active site or the key anchoring region for cell binding. This is the first integrated study that highlights the RNases' dual mechanism of action. Along with an overall membrane-destabilization process, the RNases could internalize and target cellular RNA. The data support the contribution of the enzymatic activity for the antipathogen action of both antimicrobial proteins, which can be envisaged as suitable templates for the development of novel antifungal drugs. We suggest that both human RNases work as multitasking antimicrobial proteins that provide a first line immune barrier. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. An immunological link between Candida albicans colonization and Crohn's disease.

    Science.gov (United States)

    Gerard, Romain; Sendid, Boualem; Colombel, Jean-Frederic; Poulain, Daniel; Jouault, Thierry

    2015-06-01

    The etiology of Crohn's disease (CD), an autoimmune, inflammatory bowel disease (IBD) which affects approximately one million people in Europe, is still unclear. Nevertheless, it is widely accepted that CD could result from an inappropriate inflammatory response to intestinal microorganisms in a genetically susceptible host. Most studies to date have concerned the involvement of bacteria in disease progression. In addition to bacteria, there appears to be a possible link between the commensal yeast Candida albicans and disease development. In this review, in an attempt to link the gut colonization process and the development of CD, we describe the different pathways that are involved in the progression of CD and in the host response to C. albicans, making the yeast a possible initiator of the inflammatory process observed in this IBD.

  10. Genetics of Candida albicans, a diploid human fungal pathogen.

    Science.gov (United States)

    Noble, Suzanne M; Johnson, Alexander D

    2007-01-01

    Candida albicans is a species of fungus that typically resides in the gastrointestinal tracts of humans and other warm-blooded animals. It is also the most common human fungal pathogen, causing a variety of skin and soft tissue infections in healthy people and more virulent invasive and disseminated diseases in patients with compromised immune systems. How this microorganism manages to persist in healthy hosts but also to cause a spectrum of disease states in the immunocompromised host are questions of significant biological interest as well as major clinical and economic importance. In this review, we describe recent developments in population genetics, the mating process, and gene disruption technology that are providing much needed experimental insights into the biology of C. albicans.

  11. Host response to Candida albicans bloodstream infection and sepsis

    Science.gov (United States)

    Duggan, Seána; Leonhardt, Ines; Hünniger, Kerstin; Kurzai, Oliver

    2015-01-01

    Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management. PMID:25785541

  12. Low virulent oral Candida albicans strains isolated from smokers.

    Science.gov (United States)

    de Azevedo Izidoro, Ana Claudia Santos; Semprebom, Andressa Marafon; Baboni, Fernanda Brasil; Rosa, Rosimeire Takaki; Machado, Maria Angela Naval; Samaranayake, Lakshman Perera; Rosa, Edvaldo Antonio Ribeiro

    2012-02-01

    It is widely accepted that tabagism is a predisposing factor to oral candidosis and cumulate data suggest that cigarette compounds may increase candidal virulence. To verify if enhanced virulence occurs in Candida albicans from chronic smokers, a cohort of 42 non-smokers and other of 58 smokers (all with excellent oral conditions and without signs of candidosis) were swabbed on tong dorsum and jugal mucosa. Results showed that oral candidal loads do not differ between smoker and non-smokers. Activities of secreted aspartyl-protease (Sap), phospholipase, chondroitinase, esterase-lipase, and haemolysin secretions were screened for thirty-two C. albicans isolates. There were detected significant increments in phospholipasic and chondroitinasic activities in isolates from non-smokers. For other virulence factors, no differences between both cohorts were achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B

    Directory of Open Access Journals (Sweden)

    Demet Toprak

    2015-01-01

    Full Text Available Central nervous system (CNS infection with Candida is rare but significant because of its high morbidity and mortality. When present, it is commonly seen among immunocompromised and hospitalized patients. Herein, we describe a case of a four-year-old boy with acute lymphoblastic leukemia (ALL who experienced recurrent Candida albicans meningitis. The patient was treated successfully with intravenous liposomal amphotericin B at first attack, but 25 days after discharge he was readmitted to hospital with symptoms of meningitis. Candida albicans was grown in CFS culture again and cranial magnetic resonance imaging (MRI showed ventriculitis. We administered liposomal amphotericin B both intravenously and intraventricularly and favorable result was achieved without any adverse effects. Intraventricular amphotericin B may be considered for the treatment of recurrent CNS Candida infections in addition to intravenous administration.

  14. Microarray analysis of gene expression in disk abalone Haliotis discus discus after bacterial challenge.

    Science.gov (United States)

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Oh, Chulhong; Lee, Youngdeuk; Whang, Ilson; Lee, Jae-Seong; Choi, Cheol Young; Lee, Jehee

    2011-02-01

    In this study, we investigated the gene expression profiling of disk abalone, Haliotis discus discus challenged by a mixture of three pathogenic bacteria Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes using a cDNA microarray. Upon bacteria challenge, 68 (1.6%) and 112 (2.7%) gene transcripts changed their expression levels ≥2 or ≤2 -fold in gills and digestive tract, respectively. There were 46 tissue-specific transcripts that up-regulated specifically in the digestive tract. In contrast, only 13 transcripts showed gill-specific up-regulation. Quantitative real-time PCR was performed to verify microarray data and results revealed that candidate genes namely Krüppell-like factor (KLF), lachesin, muscle lim protein, thioredoxin-2 (TRx-2), nuclear factor interleukin 3 (NFIL-3) and abalone protein 38 were up-regulated. Also, our results further indicated that bacteria challenge may activate the transcription factors or their activators (Krüppell-like factor, inhibitor of NF-κB or Ik-B), inflammatory cytokines (IL-3 regulated protein, allograft inflammatory factor), other cytokines (IFN-44-like protein, SOCS-2), antioxidant enzymes (glutathione-S-transferase, thioredoxin-2 and thioredoxin peroxidase), and apoptosis-related proteins (TNF-α, archeron) in abalone. The identification of immune and stress response genes and their expression profiles in this microarray will permit detailed investigation of the stress and immune responses of abalone genes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. The Antifungal Effect of Endocyn Against Candida albicans Biofilm

    Science.gov (United States)

    2016-05-13

    quantitatively by microbiological plate count and qualitatively by confocal microscopy using Live/Dead staining. XTT data was analyzed by two-way analysis...wells of a 24-well plate containing 2 ml of sterile RPMI media . In order to achieve mature fungal biofilm formation, the plate was placed in a...exhibits rapid antifungal efficacy in vitro. C. albicans biofilms were cultivated on polystyrene, washed, and treated with Endocyn (white bar) over a

  16. Hydrolytic enzymes as virulence factors of Candida albicans.

    Science.gov (United States)

    Schaller, Martin; Borelli, Claudia; Korting, Hans C; Hube, Bernhard

    2005-11-01

    Candida albicans is a facultative pathogenic micro-organism that has developed several virulence traits enabling invasion of host tissues and avoidance of host defence mechanisms. Virulence factors that contribute to this process are the hydrolytic enzymes. Most of them are extracellularly secreted by the fungus. The most discussed hydrolytic enzymes produced by C. albicans are secreted aspartic proteinases (Saps). The role of these Saps for C. albicans infections was carefully evaluated in numerous studies, whereas only little is known about the physiological role of the secreted phospholipases (PL) and almost nothing about the involvement of lipases (Lip) in virulence. They may play an important role in the pathogenicity of candidosis and their hydrolytic activity probably has a number of possible functions in addition to the simple role of digesting molecules for nutrition. Saps as the best-studied member of this group of hydrolytic enzymes contribute to host tissue invasion by digesting or destroying cell membranes and by degrading host surface molecules. There is also some evidence that hydrolytic enzymes are able to attack cells and molecules of the host immune system to avoid or resist antimicrobial activity. High hydrolytic activity with broad substrate specificity has been found in several Candida species, most notably in C. albicans. This activity is attributed to multigene families with at least 10 members for Saps and Lips and several members for PL B. Distinct members of these gene families are differentially regulated in various Candida infections. In future, prevention and control of Candida infections might be achieved by pharmacological or immunological tools specifically modulated to inhibit virulence factors, e.g. the family of Saps.

  17. Alteramide B is a microtubule antagonist of inhibiting Candida albicans.

    Science.gov (United States)

    Ding, Yanjiao; Li, Yaoyao; Li, Zhenyu; Zhang, Juanli; Lu, Chunhua; Wang, Haoxin; Shen, Yuemao; Du, Liangcheng

    2016-10-01

    Alteramide B (ATB), isolated from Lysobacter enzymogenes C3, was a new polycyclic tetramate macrolactam (PTM). ATB exhibited potent inhibitory activity against several yeasts, particularly Candida albicans SC5314, but its antifungal mechanism is unknown. The structure of ATB was established by extensive spectroscopic analyses, including high-resolution mass spectrometry, 1D- and 2D-NMR, and CD spectra. Flow cytometry, fluorescence microscope, transmission electron microscope, molecular modeling, overexpression and site-directed mutation studies were employed to delineate the anti-Candida molecular mechanism of ATB. ATB induced apoptosis in C. albicans through inducing reactive oxygen species (ROS) production by disrupting microtubules. Molecular dynamics studies revealed the binding patterns of ATB to the β-tubulin subunit. Overexpression of the wild type and site-directed mutants of the β-tubulin gene (TUBB) changed the sensitivity of C. albicans to ATB, confirming the binding of ATB to β-tubulin, and indicating that the binding sites are L215, L217, L273, L274 and R282. In vivo, ATB significantly improved the survival of the candidiasis mice and reduced fungal burden. The molecular mechanism underlying the ATB-induced apoptosis in C. albicans is through inhibiting tubulin polymerization that leads to cell cycle arrest at the G2/M phase. The identification of ATB and the study of its activity provide novel mechanistic insights into the mode of action of PTMs against the human pathogen. This study shows that ATB is a new microtubule inhibitor and a promising anti-Candida lead compound. The results also support β-tubulin as a potential target for anti-Candida drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Adaptation of Candida albicans to Reactive Sulfur Species.

    Science.gov (United States)

    Chebaro, Yasmin; Lorenz, Michael; Fa, Alice; Zheng, Rui; Gustin, Michael

    2017-05-01

    Candida albicans is an opportunistic fungal pathogen that is highly resistant to different oxidative stresses. How reactive sulfur species (RSS) such as sulfite regulate gene expression and the role of the transcription factor Zcf2 and the sulfite exporter Ssu1 in such responses are not known. Here, we show that C. albicans specifically adapts to sulfite stress and that Zcf2 is required for that response as well as induction of genes predicted to remove sulfite from cells and to increase the intracellular amount of a subset of nitrogen metabolites. Analysis of mutants in the sulfate assimilation pathway show that sulfite conversion to sulfide accounts for part of sulfite toxicity and that Zcf2-dependent expression of the SSU1 sulfite exporter is induced by both sulfite and sulfide. Mutations in the SSU1 promoter that selectively inhibit induction by the reactive nitrogen species (RNS) nitrite, a previously reported activator of SSU1 , support a model for C. albicans in which Cta4-dependent RNS induction and Zcf2-dependent RSS induction are mediated by parallel pathways, different from S. cerevisiae in which the transcription factor Fzf1 mediates responses to both RNS and RSS. Lastly, we found that endogenous sulfite production leads to an increase in resistance to exogenously added sulfite. These results demonstrate that C. albicans has a unique response to sulfite that differs from the general oxidative stress response, and that adaptation to internal and external sulfite is largely mediated by one transcription factor and one effector gene. Copyright © 2017 by the Genetics Society of America.

  19. Candida albicans in patients with oronasal communication and obturator prostheses

    OpenAIRE

    MATTOS, Beatriz Silva Câmara; SOUSA, Andréa Alves de; MAGALHÃES, Marina Helena C. G. de; ANDRÉ, Marcia; BRITO E DIAS, Reinaldo

    2009-01-01

    Patients using obturator prostheses often present denture-induced stomatitis. In order to detect the presence of oral Candida albicans in patients with oronasal communications and to evaluate the effectiveness of a topical antifungal treatment, cytological smears obtained from the buccal and palatal mucosa of 10 adult patients, and from the nasal acrylic surface of their obturator prostheses were examined. A therapeutic protocol comprising the use of oral nystatin (Mycostatin®) and prosthesis...

  20. Competitive Fitness of Fluconazole-Resistant Clinical Candida albicans Strains.

    Science.gov (United States)

    Popp, Christina; Hampe, Irene A I; Hertlein, Tobias; Ohlsen, Knut; Rogers, P David; Morschhäuser, Joachim

    2017-07-01

    The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1 and Tac1, which result in constitutive overexpression of multidrug efflux pumps, and Upc2, which result in constitutive overexpression of ergosterol biosynthesis genes. However, the deregulated gene expression that is caused by hyperactive forms of these transcription factors also reduces the fitness of the cells in the absence of the drug. To investigate whether fluconazole-resistant clinical C. albicans isolates have overcome the fitness costs of drug resistance, we assessed the relative fitness of C. albicans isolates containing resistance mutations in these transcription factors in competition with matched drug-susceptible isolates from the same patients. Most of the fluconazole-resistant isolates were outcompeted by the corresponding drug-susceptible isolates when grown in rich medium without fluconazole. On the other hand, some resistant isolates with gain-of-function mutations in MRR1 did not exhibit reduced fitness under these conditions. In a mouse model of disseminated candidiasis, three out of four tested fluconazole-resistant clinical isolates did not exhibit a significant fitness defect. However, all four fluconazole-resistant isolates were outcompeted by the matched susceptible isolates in a mouse model of gastrointestinal colonization, demonstrating that the effects of drug resistance on in vivo fitness depend on the host niche. Collectively, our results indicate that the fitness costs of drug resistance in C. albicans are not easily remediated, especially when proper control of gene expression is required for successful adaptation to life within a mammalian host. Copyright © 2017 American Society for Microbiology.

  1. ANTAGONISTIC EFFECT OF EDIBLE MUSHROOM EXTRACT ON CANDIDA ALBICANS GROWTH

    Directory of Open Access Journals (Sweden)

    Paccola Edneia A. de Souza

    2001-01-01

    Full Text Available Five species of edible mushrooms, Lentinula edodes, Pleurotus ostreatus, Pholiota nameko, Macrolepiota bonaerensis and Agaricus blazei, were tested for their potential to inhibit the in vitro growth of the pathogenic yeast Candida albicans. Only L. edodes had a fungistatic effect on this human pathogen. The inhibitory compound was produced intra and extracellularly in submersed L. edodes culture, and was also present in fresh and dehydrated mushroom basidiocarps. The fungistatic compound was heat sensitive and lost activity after 72 hours.

  2. Viral diagnosis in Indian livestock using customized microarray chips.

    Science.gov (United States)

    Yadav, Brijesh S; Pokhriyal, Mayank; Ratta, Barkha; Kumar, Ajay; Saxena, Meeta; Sharma, Bhaskar

    2015-01-01

    Viral diagnosis in Indian livestock using customized microarray chips is gaining momentum in recent years. Hence, it is possible to design customized microarray chip for viruses infecting livestock in India. Customized microarray chips identified Bovine herpes virus-1 (BHV-1), Canine Adeno Virus-1 (CAV-1), and Canine Parvo Virus-2 (CPV-2) in clinical samples. Microarray identified specific probes were further confirmed using RT-PCR in all clinical and known samples. Therefore, the application of microarray chips during viral disease outbreaks in Indian livestock is possible where conventional methods are unsuitable. It should be noted that customized application requires a detailed cost efficiency calculation.

  3. Performance of a multiplexed serological microarray for the detection of antibodies against central nervous system pathogens.

    Science.gov (United States)

    Jääskeläinen, Anne J; Viitala, Sari M; Kurkela, Satu; Hepojoki, Satu; Sillanpää, Heidi; Kallio-Kokko, Hannimari; Bergström, Tomas; Suni, Jukka; Närvänen, Ale; Vapalahti, Olli; Vaheri, Antti

    2014-05-01

    Central nervous system (CNS) infections have multiple potential causative agents for which simultaneous pathogen screening can provide a useful tool. This study evaluated a multiplexed microarray for the simultaneous detection of antibodies against CNS pathogens. The performance of selected microarray antigens for the detection of IgG antibodies against herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), adenovirus, Mycoplasma pneumoniae and Borrelia burgdorferi sensu lato, was evaluated using serum sample panels tested with reference assays used in a routine diagnostic laboratory. The microarray sensitivity for HSV-1, HSV-2, VZV, adenovirus and M. pneumonia ranged from 77% to 100%, and the specificity ranged from 74% to 97%. Very variable sensitivities and specificities were found for borrelial antigens of three different VlsE protein IR(6) peptide variants (IR6p1, IR6p2, IR6p4) and three recombinant decorin binding proteins A (DbpA; DbpAIa, DbpA91, DbpAG40). For single antigens, good specificity was shown for antigens of IR6p4 and DbpAIa (96%), while DbpA91, IR6p1 and IR6p2 were moderately specific (88-92%). The analytical sensitivity of the microarray was dependent on the borrelial IgG concentration of the specimen. The overall performance and technical features of the platform showed that the platform supports both recombinant proteins, whole viruses and peptides as antigens. This study showed diagnostic potential for all six CNS pathogens, including Borrelia burgdorferi sensu lato, using glutaraldehyde based microarray, and further highlighted the importance of careful antigen selection and the requirement for the use of multiple borrelial antigens in order to increase specificity without a major lack of sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Interactions of Candida albicans with host epithelial surfaces

    Directory of Open Access Journals (Sweden)

    David W. Williams

    2013-10-01

    Full Text Available Candida albicans is an opportunistic, fungal pathogen of humans that frequently causes superficial infections of oral and vaginal mucosal surfaces of debilitated and susceptible individuals. The organism is however, commonly encountered as a commensal in healthy individuals where it is a component of the normal microflora. The key determinant in the type of relationship that Candida has with its host is how it interacts with the epithelial surface it colonises. A delicate balance clearly exists between the potentially damaging effects of Candida virulence factors and the nature of the immune response elicited by the host. Frequently, it is changes in host factors that lead to Candida seemingly changing from a commensal to pathogenic existence. However, given the often reported heterogeneity in morphological and biochemical factors that exist between Candida species and indeed strains of C. albicans, it may also be the fact that colonising strains differ in the way they exploit resources to allow persistence at mucosal surfaces and as a consequence this too may affect the way Candida interacts with epithelial cells. The aim of this review is to provide an overview of some of the possible interactions that may occur between C. albicans and host epithelial surfaces that may in turn dictate whether Candida removal, its commensal persistence or infection follows.

  5. Studies on effect of Microbial Iron Chelators on Candida Albican

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.; Milicent, S.; Zaheer-Uddin

    2005-01-01

    Iron is an essential for the life of all microbe cells. It generally exists in the oxidized form Fe(III). Even under anaerobic reducing condition the metal appear to be taken up as Fe(III). Thus free-living microorganisms require specific and effective ferric ion transport system to cope with low availability of the metal. In iron deficient environment they produce a low molecular weight specific chelators called siderphores or microbial iron chelators. Siderphores compete for limited supplied of iron. These compounds came out of the cell but can not re-enter without iron due to high affinity of these siderphores often have more than one catechol/hydroxamate functions and are multidentate (usually hexadentate ligands). The aim of the present research is to check the effect of iron chelators, namely gallic acid and salisyl hydroxamate on the growth of Candida albican in vitro. C. albican is the opportunistic paltogen present as the normal flora inside human body. In vivo the growth of C. albican is distributed by the use of antibiotics and immuno suppressers. In cases of iron over-dosage in human being, the patients are treated with certain a-iron chelators. Hence an attempt is made to notice the effect that might be inhibition or enhancement of the organism in vitro. (author)

  6. Distribution of Candida albicans genotypes among family members

    Science.gov (United States)

    Mehta, S. K.; Stevens, D. A.; Mishra, S. K.; Feroze, F.; Pierson, D. L.

    1999-01-01

    Thirty-three families (71 subjects) were screened for the presence of Candida albicans in mouthwash or stool specimens; 12 families (28 subjects) were culture-positive for this yeast. An enrichment procedure provided a twofold increase in the recovery of C. albicans from mouthwash specimens. Nine of the twelve culture-positive families had two positive members each, two families had three positive members each, and one family had four positive members. Genetic profiles were obtained by three methods: pulsed-field gel electrophoresis; restriction endonuclease analysis, and random amplification of polymorphic DNA analysis. DNA fingerprinting of C. albicans isolated from one body site three consecutive times revealed that each of the 12 families carried a distinct genotype. No two families shared the same strain, and two or more members of a family commonly shared the same strain. Intrafamily genotypic identity (i.e., each member within the family harbored the same strain) was demonstrated in six families. Genotypes of isolates from husband and wife differed from one another in five families. All three methods were satisfactory in determining genotypes; however, we concluded that restriction endonuclease analysis provided adequate resolving power.

  7. Inhibition of human natural killer (NK) cytotoxicity by Candida albicans

    International Nuclear Information System (INIS)

    Zunino, S.; Hudig, D.

    1986-01-01

    Experiments were initiated to determine whether human NK cells are cytotoxic to C. albicans with similar activity observed for mouse NK cells against the yeast Paracoccidiodes brasiliensis. In 48 hour assays using limiting dilutions of C. albicans, strain 3153A, mononuclear leukocytes with NK activity had only marginal effects on yeast outgrowth, whereas granulocytes killed most of the yeast. However, these yeast were able to block NK activity in 4 hr 51 Cr release assays with K562 cells, at yeast to K562 ratios of 10:1 and 100:1. Yeast pretreated with the serum of the majority of donors blocked the NK activity more than untreated yeast. Two of the 7 donors did not enhance NK inhibition after pretreatment of the yeast with their serum. Serum antibody to C. albicans and complement consumption by the yeast correlated with the relative efficiency of NK inhibition for most donors. This report suggests that there may be in vivo interactions between NK cells of the immune system and opportunistic fungal pathogens, which may compromise NK cell function

  8. Facilitating RNA structure prediction with microarrays.

    Science.gov (United States)

    Kierzek, Elzbieta; Kierzek, Ryszard; Turner, Douglas H; Catrina, Irina E

    2006-01-17

    Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.

  9. [Study on andrographolide-induced apoptosis of Candida albicans biofilm dispersion cells].

    Science.gov (United States)

    Wang, Changzhong; Han, Ning; Xu, Zhenhua; Cheng, Huijuan; Guan, Yan; Yun, Yun; Wang, Yan

    2012-02-01

    To detect the effect of andrographolide on apoptosis of Candida albicans biofilm dispersion cells. The morphological changes of apoptotic C. albicans biofilm cells were observed by using Hoechst 33258 staining Fluorescence microscope; changes of mitochondrial membrane potential (MMP) of C. albicans biofilm cells were detected by rhodamine 123 staining flow cytometry; and reactive oxygen species (ROS) was detected by DHR staining flow cytometry. 1 000, 100 micromol x L(-1) of andrographolide could cause pyknosis and dense staining of C. albicans biofilm cells, 1 000, 100, 10 micromol x L(-1) of andrographolide could decrease MMP and increase ROS of C. albicans biofilm cells. Andrographolide of appropriate concentrations could induce apoptosis of dispersion cells of C. albicans biofilms.

  10. Respiratory Tularemia:Francisella Tularensisand Microarray Probe Designing.

    Science.gov (United States)

    Ranjbar, Reza; Behzadi, Payam; Mammina, Caterina

    2016-01-01

    Francisella tularensis ( F. tularensis ) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing. The main goal of this original article was to design suitable long oligo microarray probes for detection and identification of F. tularensis . For performing this research, the complete genomes of F. tularensis subsp. tularensis FSC198, F. tularensis subsp. holarctica LVS, F. tularensis subsp. mediasiatica , F. tularensis subsp. novicida ( F. novicida U112), and F. philomiragia subsp. philomiragia ATCC 25017 were studied via NCBI BLAST tool, GView and PanSeq Servers and finally the microarray probes were produced and processed via AlleleID 7.7 software and Oligoanalyzer tool, respectively. In this in silico investigation, a number of long oligo microarray probes were designed for detecting and identifying F. tularensis . Among these probes, 15 probes were recognized as the best candidates for microarray chip designing. Calibrated microarray probes reduce the biasis of DNA microarray technology as an advanced, rapid, accurate and cost-effective molecular diagnostic tool with high specificity and sensitivity. Professional microarray probe designing provides us with much more facility and flexibility regarding preparation of a microarray diagnostic chip.

  11. Weighted analysis of general microarray experiments

    Directory of Open Access Journals (Sweden)

    Kristiansson Erik

    2007-10-01

    Full Text Available Abstract Background In DNA microarray experiments, measurements from different biological samples are often assumed to be independent and to have identical variance. For many datasets these assumptions have been shown to be invalid and typically lead to too optimistic p-values. A method called WAME has been proposed where a variance is estimated for each sample and a covariance is estimated for each pair of samples. The current version of WAME is, however, limited to experiments with paired design, e.g. two-channel microarrays. Results The WAME procedure is extended to general microarray experiments, making it capable of handling both one- and two-channel datasets. Two public one-channel datasets are analysed and WAME detects both unequal variances and correlations. WAME is compared to other common methods: fold-change ranking, ordinary linear model with t-tests, LIMMA and weighted LIMMA. The p-value distributions are shown to differ greatly between the examined methods. In a resampling-based simulation study, the p-values generated by WAME are found to be substantially more correct than the alternatives when a relatively small proportion of the genes is regulated. WAME is also shown to have higher power than the other methods. WAME is available as an R-package. Conclusion The WAME procedure is generalized and the limitation to paired-design microarray datasets is removed. The examined other methods produce invalid p-values in many cases, while WAME is shown to produce essentially valid p-values when a relatively small proportion of genes is regulated. WAME is also shown to have higher power than the examined alternative methods.

  12. Tissue Microarray Analysis Applied to Bone Diagenesis

    OpenAIRE

    Barrios Mello, Rafael; Regis Silva, Maria Regina; Seixas Alves, Maria Teresa; Evison, Martin; Guimarães, Marco Aurélio; Francisco, Rafaella Arrabaça; Dias Astolphi, Rafael; Miazato Iwamura, Edna Sadayo

    2017-01-01

    Taphonomic processes affecting bone post mortem are important in forensic, archaeological and palaeontological investigations. In this study, the application of tissue microarray (TMA) analysis to a sample of femoral bone specimens from 20 exhumed individuals of known period of burial and age at death is described. TMA allows multiplexing of subsamples, permitting standardized comparative analysis of adjacent sections in 3-D and of representative cross-sections of a large number of specimens....

  13. Improving FoRe: A New Inlet Design for Filtering Samples through Individual Microarray Spots.

    Science.gov (United States)

    de Lange, Victoria; Habegger, Marco; Schmidt, Marco; Vörös, János

    2017-03-24

    In this publication we present an improvement to our previously introduced vertical flow microarray, the FoRe array, which capitalizes on the fusion of immunofiltration and densely packed micron test sites. Filtering samples through individual microarray spots allows us to rapidly analyze dilute samples with high-throughput and high signal-to-noise. Unlike other flowthrough microarrays, in the FoRe design samples are injected into micron channels and sequentially exposed to different targets. This arrangement makes it possible to increase the sensitivity of the microarray by simply increasing the sample volume or to rapidly reconcentrate samples after preprocessing steps dilute the analyte. Here we present a new inlet system which allows us to increase the analyzed sample volume without compromising the micron spot size and dense layout. We combined this with a model assay to demonstrate that the device is sensitive to the amount of antigen, and as a result, sample volume directly correlates to sensitivity. We introduced a simple technique for analysis of blood, which previously clogged the nanometer-sized pores, requiring only microliter volumes expected from an infant heel prick. A drop of blood is mixed with buffer to separate the plasma before reconcentrating the sample on the microarray spot. We demonstrated the success of this procedure by spiking TNF-α into blood and achieved a limit of detection of 18 pM. Compared to traditional protein microarrays, the FoRe array is still inexpensive, customizable, and simple to use, and thanks to these improvements has a broad range of applications from small animal studies to environmental monitoring.

  14. Antifungal activity of extracts and isolated compounds from Buchenavia tomentosa on Candida albicans and non-albicans.

    Science.gov (United States)

    Teodoro, Guilherme R; Brighenti, Fernanda L; Delbem, Alberto C Botazzo; Delbem, Ádina Cléia B; Khouri, Sonia; Gontijo, Aline Vidal L; Pascoal, Aislan Crf; Salvador, Marcos J; Koga-Ito, Cristiane Y

    2015-01-01

    This study aimed to evaluate the antifungal activity of Buchenavia tomentosa extract and bioactive compounds on six Candida species. The antimicrobial activity of extract was evaluated using standard strains and clinical isolates. Cytotoxicity was tested in order to evaluate cell damage caused by the extract. Extract was chemically characterized and the antifungal activity of its compounds was evaluated. Extract showed antifungal activity on Candida species. Candida non-albicans were more susceptible than Candida albicans. Low cytotoxicity for extract was observed. The isolated compounds presented antifungal activity at least against one Candida spp. and all compounds presented antifungal effect on Candida glabrata. Extracts from Buchenavia tomentosa showed promising antifungal activity on Candida species with low cytotoxicity. Gallic acid, corilagin and ellagic acid showed promising inhibitory activity on Candida glabrata.

  15. Analyzing microarray data using quantitative association rules.

    Science.gov (United States)

    Georgii, Elisabeth; Richter, Lothar; Rückert, Ulrich; Kramer, Stefan

    2005-09-01

    We tackle the problem of finding regularities in microarray data. Various data mining tools, such as clustering, classification, Bayesian networks and association rules, have been applied so far to gain insight into gene-expression data. Association rule mining techniques used so far work on discretizations of the data and cannot account for cumulative effects. In this paper, we investigate the use of quantitative association rules that can operate directly on numeric data and represent cumulative effects of variables. Technically speaking, this type of quantitative association rules based on half-spaces can find non-axis-parallel regularities. We performed a variety of experiments testing the utility of quantitative association rules for microarray data. First of all, the results should be statistically significant and robust against fluctuations in the data. Next, the approach should be scalable in the number of variables, which is important for such high-dimensional data. Finally, the rules should make sense biologically and be sufficiently different from rules found in regular association rule mining working with discretizations. In all of these dimensions, the proposed approach performed satisfactorily. Therefore, quantitative association rules based on half-spaces should be considered as a tool for the analysis of microarray gene-expression data. The code is available from the authors on request.

  16. Metadata management and semantics in microarray repositories.

    Science.gov (United States)

    Kocabaş, F; Can, T; Baykal, N

    2011-12-01

    The number of microarray and other high-throughput experiments on primary repositories keeps increasing as do the size and complexity of the results in response to biomedical investigations. Initiatives have been started on standardization of content, object model, exchange format and ontology. However, there are backlogs and inability to exchange data between microarray repositories, which indicate that there is a great need for a standard format and data management. We have introduced a metadata framework that includes a metadata card and semantic nets that make experimental results visible, understandable and usable. These are encoded in syntax encoding schemes and represented in RDF (Resource Description Frame-word), can be integrated with other metadata cards and semantic nets, and can be exchanged, shared and queried. We demonstrated the performance and potential benefits through a case study on a selected microarray repository. We concluded that the backlogs can be reduced and that exchange of information and asking of knowledge discovery questions can become possible with the use of this metadata framework.

  17. A New Distribution Family for Microarray Data

    Directory of Open Access Journals (Sweden)

    Diana Mabel Kelmansky

    2017-02-01

    Full Text Available The traditional approach with microarray data has been to apply transformations that approximately normalize them, with the drawback of losing the original scale. The alternative stand point taken here is to search for models that fit the data, characterized by the presence of negative values, preserving their scale; one advantage of this strategy is that it facilitates a direct interpretation of the results. A new family of distributions named gpower-normal indexed by p∈R is introduced and it is proven that these variables become normal or truncated normal when a suitable gpower transformation is applied. Expressions are given for moments and quantiles, in terms of the truncated normal density. This new family can be used to model asymmetric data that include non-positive values, as required for microarray analysis. Moreover, it has been proven that the gpower-normal family is a special case of pseudo-dispersion models, inheriting all the good properties of these models, such as asymptotic normality for small variances. A combined maximum likelihood method is proposed to estimate the model parameters, and it is applied to microarray and contamination data. Rcodes are available from the authors upon request.

  18. Canine Central Nervous System Neoplasm Phenotyping Using Tissue Microarray Technique.

    Science.gov (United States)

    Spitzbarth, I; Heinrich, F; Herder, V; Recker, T; Wohlsein, P; Baumgärtner, W

    2017-05-01

    Tissue microarrays (TMAs) represent a useful technique for the simultaneous phenotyping of large sample numbers and are particularly suitable for histopathologic tumor research. In this study, TMAs were used to evaluate semiquantitatively the expression of multiple antigens in various canine central nervous system (CNS) neoplasms and to identify markers with potential discriminative diagnostic relevance. Ninety-seven canine CNS neoplasms, previously diagnosed on hematoxylin and eosin sections according to the World Health Organization classification, were investigated on TMAs, with each tumor consisting of 2 cylindrical samples from the center and the periphery of the neoplasm. Tumor cells were phenotyped using a panel of 28 monoclonal and polyclonal antibodies, and hierarchical clustering analysis was applied to group neoplasms according to similarities in their expression profiles. Hierarchical clustering generally grouped cases with similar histologic diagnoses; however, gliomas especially exhibited a considerable heterogeneity in their positivity scores. Multiple tumor groups, such as astrocytomas and oligodendrogliomas, significantly differed in the proportion of positive immunoreaction for certain markers such as p75 NTR , AQP4, GFAP, and S100 protein. The study highlights AQP4 and p75 NTR as novel markers, helping to discriminate between canine astrocytoma and oligodendroglioma. Furthermore, the results suggest that p75 NTR and proteolipid protein may represent useful markers, whose expression inversely correlates with malignant transformation in canine astrocytomas and oligodendrogliomas, respectively. Tissue microarray was demonstrated to be a useful and time-saving tool for the simultaneous immunohistochemical characterization of multiple canine CNS neoplasms. The present study provides a detailed overview of the expression patterns of different types of canine CNS neoplasms.

  19. Quercetin Sensitizes Fluconazole-Resistant Candida albicans To Induce Apoptotic Cell Death by Modulating Quorum Sensing

    OpenAIRE

    Singh, B. N.; Upreti, D. K.; Singh, B. R.; Pandey, G.; Verma, S.; Roy, S.; Naqvi, A. H.; Rawat, A. K. S.

    2015-01-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC...

  20. Sputum Candida albicans presages FEV₁ decline and hospital-treated exacerbations in cystic fibrosis.

    LENUS (Irish Health Repository)

    Chotirmall, Sanjay H

    2010-11-01

    The role of Candida albicans in the cystic fibrosis (CF) airway is underexplored. Considered a colonizer, few question its pathogenic potential despite high isolation frequencies from sputum culture. We evaluated the frequency and identified the strongest predictors of C albicans colonization in CF. Independent associations of colonization with clinical outcomes were determined, and the longitudinal effects of C albicans acquisition on BMI and FEV₁ were evaluated.

  1. Effect of Xylitol on Candida albicans resistance in serum (in vitro study

    Directory of Open Access Journals (Sweden)

    Ria Puspitawati

    2013-07-01

    Full Text Available Xylitol is reported to inhibit the growth of C. albicans. Objectives: Investigating serum factor role in inhibiting the growth of C. albicans and the effect of 1%, 5%, 10% xylitol on C. albicans resistance in serum in vitro. Methods: Identification of C. albicans (oral swab of candidiasis patient was conducted using CHROMAgar, confirmed by germ tube test. The cultures were serially diluted, inoculated in Saburoud Dextrose Broth (SDB contained 0% (control, 1%, 5%, or 10% xylitol, and kept for 3 or 7 days. These inoculations were then exposed to either active or inactive serum (Fetal Bovine Serum heated in 65ºC for 30 minutes for 2 hours in 37ºC. The colony forming unit (CFU of C. albicans in Saburoud Dextrose Agar (SDA were counted after 2 days. C. albicans ATCC 10231 strain was used as a comparison. One-way ANOVA with 0.05 was used. Results: After 3 days cultured in media with or without xylitol, the CFU of C. albicans exposed to active serum were significantly lower than those exposed to inactive serum (p=0.032. Although not statistically significant (p=0.689, increased concentration of xylitol lead to increased resistance of C. albicans in active serum. Only 7 day exposure of 10% xylitol resulted in significantly higher growth of C. albicans (p=0.034. No significant difference of C. albicans CFU in active or inactive serum (p=0.404. Conclusion: Serum factor has role in inhibiting C. albicans growth in vitro. Exposure of 1%, 5%, or 10% xylitol for 3 or 7 days has no significant effect on C. albicans resistance in serum.DOI: 10.14693/jdi.v16i2.98

  2. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.

    Science.gov (United States)

    Ellepola, K; Liu, Y; Cao, T; Koo, H; Seneviratne, C J

    2017-09-01

    Streptococcus mutans is a biofilm-forming oral pathogen commonly associated with dental caries. Clinical studies have shown that S. mutans is often detected with Candida albicans in early childhood caries. Although the C. albicans presence has been shown to enhance bacterial accumulation in biofilms, the influence of S. mutans on fungal biology in this mixed-species relationship remains largely uncharacterized. Therefore, we aimed to investigate how the presence of S. mutans influences C. albicans biofilm development and coexistence. Using a newly established haploid biofilm model of C. albicans, we found that S. mutans augmented haploid C. albicans accumulation in mixed-species biofilms. Similarly, diploid C. albicans also showed enhanced biofilm formation in the presence of S. mutans. Surprisingly, the presence of S. mutans restored the biofilm-forming ability of C. albicans bcr1Δ mutant and bcr1Δ/Δ mutant, which is known to be severely defective in biofilm formation when grown as single species. Moreover, C. albicans hyphal growth factor HWP1 as well as ALS1 and ALS3, which are also involved in fungal biofilm formation, were upregulated in the presence of S. mutans. Subsequently, we found that S. mutans-derived glucosyltransferase B (GtfB) itself can promote C. albicans biofilm development. Interestingly, GtfB was able to increase the expression of HWP1, ALS1, and ALS3 genes in the C. albicans diploid wild-type SC5314 and bcr1Δ/Δ, leading to enhanced fungal biofilms. Hence, the present study demonstrates that a bacterial exoenzyme (GtfB) augments the C. albicans counterpart in mixed-species biofilms through a BCR1-independent mechanism. This novel finding may explain the mutualistic role of S. mutans and C. albicans in cariogenic biofilms.

  3. Inhibitory Effect of Alpha-Mangostin on Adhesion of Candida albicans to Denture Acrylic

    OpenAIRE

    Kaomongkolgit, Ruchadaporn; Jamdee, Kusuma

    2015-01-01

    Objective: Candida-associated denture stomatitis is a very common disease affecting denture wearers. It is characterized by the presence of yeast biofilm on the denture, primarily associated with C. albicans. The investigation of agents that can reduce C. albicans adhesion may represent a significant advancement in the prevention and treatment of this disease. This study aims to investigate the effect of alpha-mangostin on the in vitro adhesion of C. albicans to denture acrylic and germ tube ...

  4. Antibiofilm and Antihyphal Activities of Cedar Leaf Essential Oil, Camphor, and Fenchone Derivatives against Candida albicans

    OpenAIRE

    Manoharan, Ranjith Kumar; Lee, Jin-Hyung; Lee, Jintae

    2017-01-01

    Candida albicans can form biofilms composed of yeast, hyphal, and pseudohyphal elements, and C. albicans cells in the hyphal stage could be a virulence factor. The present study describes the chemical composition, antibiofilm, and antihyphal activities of cedar leaf essential oil (CLEO), which was found to possess remarkable antibiofilm activity against C. albicans but not to affect its planktonic cell growth. Nineteen components were identified in CLEO by gas chromatography/mass spectrometry...

  5. Rax2 is important for directional establishment of growth sites, but not for reorientation of growth axes, during Candida albicans hyphal morphogenesis.

    Science.gov (United States)

    Gonia, Sara; Norton, Jennifer; Watanaskul, Lindy; Pulver, Rebecca; Morrison, Emma; Brand, Alexandra; Gale, Cheryl A

    2013-07-01

    Hyphae of filamentous fungi maintain generally linear growth over long distances. In Candida albicans, hyphae are able to reorient their growth in the direction of certain environmental cues. In previous work, the C. albicans bud-site selection proteins Rsr1 and Bud2 were identified as important for hyphae to maintain linear growth and were necessary for hyphal responses to directional cues in the environment (tropisms). To ask if hyphal directional responses are general functions of all yeast bud-site selection proteins, we studied the role of Rax2, ortholog of the Saccharomyces cerevisiae bud-site selection protein Rax2, in C. albicans hyphal morphogenesis. Rax2-YFP localized to the hyphal cell surface in puncta and at the hyphal tip in a crescent. Strains lacking Rax2 had hyphal morphologies that did not differ from control strains. In non-cued growth conditions, rax2 mutant strains had defects in both yeast (bud) and hyphal (branch) site selection and mutant hyphae exhibited non-linear growth trajectories as compared to control hyphae. In contrast, when encountering a directional environmental cue, hyphae lacking Rax2 retained the ability to reorient growth in response to both topographical (thigmotropism) and electric-field (galvanotropism) stimuli but exhibited a reduced ability to establish hyphal growth in the direction of a cathodal stimulus. In conclusion, these results indicate that C. albicans Rax2 is important for establishing sites of emergence of yeast and hyphal daughters and for maintaining the linearity of hyphal growth. In contrast to Rsr1 and Bud2, Rax2 is not involved in responses that require a reorientation of the direction of already established hyphal growth (tropisms). Thus, it appears that some hyphal directionality responses are separable in that they are mediated by a different set of polarity proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A Global Analysis of Kinase Function in Candida albicans Hyphal Morphogenesis Reveals a Role for the Endocytosis Regulator Akl1

    Directory of Open Access Journals (Sweden)

    Hagit Bar-Yosef

    2018-02-01

    Full Text Available The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.

  7. MicroarrayDesigner: an online search tool and repository for near-optimal microarray experimental designs.

    Science.gov (United States)

    Sacan, Ahmet; Ferhatosmanoglu, Nilgun; Ferhatosmanoglu, Hakan

    2009-09-22

    Dual-channel microarray experiments are commonly employed for inference of differential gene expressions across varying organisms and experimental conditions. The design of dual-channel microarray experiments that can help minimize the errors in the resulting inferences has recently received increasing attention. However, a general and scalable search tool and a corresponding database of optimal designs were still missing. An efficient and scalable search method for finding near-optimal dual-channel microarray designs, based on a greedy hill-climbing optimization strategy, has been developed. It is empirically shown that this method can successfully and efficiently find near-optimal designs. Additionally, an improved interwoven loop design construction algorithm has been developed to provide an easily computable general class of near-optimal designs. Finally, in order to make the best results readily available to biologists, a continuously evolving catalog of near-optimal designs is provided. A new search algorithm and database for near-optimal microarray designs have been developed. The search tool and the database are accessible via the World Wide Web at http://db.cse.ohio-state.edu/MicroarrayDesigner. Source code and binary distributions are available for academic use upon request.

  8. MicroarrayDesigner: an online search tool and repository for near-optimal microarray experimental designs

    Directory of Open Access Journals (Sweden)

    Ferhatosmanoglu Nilgun

    2009-09-01

    Full Text Available Abstract Background Dual-channel microarray experiments are commonly employed for inference of differential gene expressions across varying organisms and experimental conditions. The design of dual-channel microarray experiments that can help minimize the errors in the resulting inferences has recently received increasing attention. However, a general and scalable search tool and a corresponding database of optimal designs were still missing. Description An efficient and scalable search method for finding near-optimal dual-channel microarray designs, based on a greedy hill-climbing optimization strategy, has been developed. It is empirically shown that this method can successfully and efficiently find near-optimal designs. Additionally, an improved interwoven loop design construction algorithm has been developed to provide an easily computable general class of near-optimal designs. Finally, in order to make the best results readily available to biologists, a continuously evolving catalog of near-optimal designs is provided. Conclusion A new search algorithm and database for near-optimal microarray designs have been developed. The search tool and the database are accessible via the World Wide Web at http://db.cse.ohio-state.edu/MicroarrayDesigner. Source code and binary distributions are available for academic use upon request.

  9. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells.

    Science.gov (United States)

    Vila, Taissa; Ishida, Kelly; Seabra, Sergio Henrique; Rozental, Sonia

    2016-11-01

    Candida spp. can adhere to and form biofilms over different surfaces, becoming less susceptible to antifungal treatment. Resistance of biofilms to antifungal agents is multifactorial and the extracellular matrix (ECM) appears to play an important role. Among the few available antifungals for treatment of candidaemia, only the lipid formulations of amphotericin B (AmB) and the echinocandins are effective against biofilms. Our group has previously demonstrated that miltefosine has an important effect against Candida albicans biofilms. Thus, the aim of this work was to expand the analyses of the in vitro antibiofilm activity of miltefosine to non-albicans Candida spp. Miltefosine had significant antifungal activity against planktonic cells and the development of biofilms of C. albicans, Candida parapsilosis, Candida tropicalis and Candida glabrata. The activity profile in biofilms was superior to fluconazole and was similar to that of AmB and caspofungin. Biofilm-derived cells with their ECM extracted became as susceptible to miltefosine as planktonic cells, confirming the importance of the ECM in the biofilm resistant behaviour. Miltefosine also inhibited biofilm dispersion of cells at the same concentration needed to inhibit planktonic cell growth. The data obtained in this work reinforce the potent inhibitory activity of miltefosine on biofilms of the four most pathogenic Candida spp. and encourage further studies for the utilisation of this drug and/or structural analogues on biofilm-related infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  10. Mitochondrial Sorting and Assembly Machinery Subunit Sam37 in Candida albicans: Insight into the Roles of Mitochondria in Fitness, Cell Wall Integrity, and Virulence

    Science.gov (United States)

    Qu, Yue; Jelicic, Branka; Pettolino, Filomena; Perry, Andrew; Lo, Tricia L.; Hewitt, Victoria L.; Bantun, Farkad; Beilharz, Traude H.; Peleg, Anton Y.; Lithgow, Trevor; Djordjevic, Julianne T.

    2012-01-01

    Recent studies indicate that mitochondrial functions impinge on cell wall integrity, drug tolerance, and virulence of human fungal pathogens. However, the mechanistic aspects of these processes are poorly understood. We focused on the mitochondrial outer membrane SAM (Sorting and Assembly Machinery) complex subunit Sam37 in Candida albicans. Inactivation of SAM37 in C. albicans leads to a large reduction in fitness, a phenotype not conserved with the model yeast Saccharomyces cerevisiae. Our data indicate that slow growth of the sam37ΔΔ mutant results from mitochondrial DNA loss, a new function for Sam37 in C. albicans, and from reduced activity of the essential SAM complex subunit Sam35. The sam37ΔΔ mutant was hypersensitive to drugs that target the cell wall and displayed altered cell wall structure, supporting a role for Sam37 in cell wall integrity in C. albicans. The sensitivity of the mutant to membrane-targeting antifungals was not significantly altered. The sam37ΔΔ mutant was avirulent in the mouse model, and bioinformatics showed that the fungal Sam37 proteins are distant from their animal counterparts and could thus represent potential drug targets. Our study provides the first direct evidence for a link between mitochondrial function and cell wall integrity in C. albicans and is further relevant for understanding mitochondrial function in fitness, antifungal drug tolerance, and virulence of this major pathogen. Beyond the relevance to fungal pathogenesis, this work also provides new insight into the mitochondrial and cellular roles of the SAM complex in fungi. PMID:22286093

  11. Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells

    Science.gov (United States)

    2012-01-01

    Background Oral candidiasis is a common fungal disease mainly caused by Candida albicans. The aim of this study was to investigate the effects of A-type cranberry proanthocyanidins (AC-PACs) on pathogenic properties of C. albicans as well as on the inflammatory response of oral epithelial cells induced by this oral pathogen. Methods Microplate dilution assays were performed to determine the effect of AC-PACs on C. albicans growth as well as biofilm formation stained with crystal violet. Adhesion of FITC-labeled C. albicans to oral epithelial cells and to acrylic resin disks was monitored by fluorometry. The effects of AC-PACs on C. albicans-induced cytokine secretion, nuclear factor-kappa B (NF-κB) p65 activation and kinase phosphorylation in oral epithelial cells were determined by immunological assays. Results Although AC-PACs did not affect growth of C. albicans, it prevented biofilm formation and reduced adherence of C. albicans to oral epithelial cells and saliva-coated acrylic resin discs. In addition, AC-PACs significantly decreased the secretion of IL-8 and IL-6 by oral epithelial cells stimulated with C. albicans. This anti-inflammatory effect was associated with reduced activation of NF-κB p65 and phosphorylation of specific signal intracellular kinases. Conclusion AC-PACs by affecting the adherence properties of C. albicans